summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAlexandros C. Couloumbis <alex@ozo.com>2010-07-31 06:49:38 +0000
committerAlexandros C. Couloumbis <alex@ozo.com>2010-07-31 06:49:38 +0000
commit927d42ed6245933b429124deede788510a3b10df (patch)
treed2c027f5c0bd861201293bc434abb445e045a34f
parent524779230e795437606f65f8cf494d483d6cf8ca (diff)
downloadmtk-20170518-927d42ed6245933b429124deede788510a3b10df.zip
mtk-20170518-927d42ed6245933b429124deede788510a3b10df.tar.gz
mtk-20170518-927d42ed6245933b429124deede788510a3b10df.tar.bz2
generic/patches-2.6.32: finalize jffs2/lzma support on 2.6.32.x
SVN-Revision: 22423
-rw-r--r--target/linux/generic/patches-2.6.32/008-jffs2_make_lzma_available.patch5142
1 files changed, 5142 insertions, 0 deletions
diff --git a/target/linux/generic/patches-2.6.32/008-jffs2_make_lzma_available.patch b/target/linux/generic/patches-2.6.32/008-jffs2_make_lzma_available.patch
new file mode 100644
index 0000000..482b703
--- /dev/null
+++ b/target/linux/generic/patches-2.6.32/008-jffs2_make_lzma_available.patch
@@ -0,0 +1,5142 @@
+--- a/fs/jffs2/Kconfig
++++ b/fs/jffs2/Kconfig
+@@ -139,6 +139,15 @@ config JFFS2_LZO
+ This feature was added in July, 2007. Say 'N' if you need
+ compatibility with older bootloaders or kernels.
+
++config JFFS2_LZMA
++ bool "JFFS2 LZMA compression support" if JFFS2_COMPRESSION_OPTIONS
++ select LZMA_COMPRESS
++ select LZMA_DECOMPRESS
++ depends on JFFS2_FS
++ default n
++ help
++ JFFS2 wrapper to the LZMA C SDK
++
+ config JFFS2_RTIME
+ bool "JFFS2 RTIME compression support" if JFFS2_COMPRESSION_OPTIONS
+ depends on JFFS2_FS
+--- a/fs/jffs2/Makefile
++++ b/fs/jffs2/Makefile
+@@ -18,4 +18,7 @@ jffs2-$(CONFIG_JFFS2_RUBIN) += compr_rub
+ jffs2-$(CONFIG_JFFS2_RTIME) += compr_rtime.o
+ jffs2-$(CONFIG_JFFS2_ZLIB) += compr_zlib.o
+ jffs2-$(CONFIG_JFFS2_LZO) += compr_lzo.o
++jffs2-$(CONFIG_JFFS2_LZMA) += compr_lzma.o
+ jffs2-$(CONFIG_JFFS2_SUMMARY) += summary.o
++
++CFLAGS_compr_lzma.o += -Iinclude/linux -Ilib/lzma
+--- a/fs/jffs2/compr.c
++++ b/fs/jffs2/compr.c
+@@ -319,6 +319,9 @@ int __init jffs2_compressors_init(void)
+ #ifdef CONFIG_JFFS2_LZO
+ jffs2_lzo_init();
+ #endif
++#ifdef CONFIG_JFFS2_LZMA
++ jffs2_lzma_init();
++#endif
+ /* Setting default compression mode */
+ #ifdef CONFIG_JFFS2_CMODE_NONE
+ jffs2_compression_mode = JFFS2_COMPR_MODE_NONE;
+@@ -342,6 +345,9 @@ int __init jffs2_compressors_init(void)
+ int jffs2_compressors_exit(void)
+ {
+ /* Unregistering compressors */
++#ifdef CONFIG_JFFS2_LZMA
++ jffs2_lzma_exit();
++#endif
+ #ifdef CONFIG_JFFS2_LZO
+ jffs2_lzo_exit();
+ #endif
+--- a/fs/jffs2/compr.h
++++ b/fs/jffs2/compr.h
+@@ -28,9 +28,9 @@
+ #define JFFS2_DYNRUBIN_PRIORITY 20
+ #define JFFS2_LZARI_PRIORITY 30
+ #define JFFS2_RTIME_PRIORITY 50
+-#define JFFS2_ZLIB_PRIORITY 60
+-#define JFFS2_LZO_PRIORITY 80
+-
++#define JFFS2_LZMA_PRIORITY 70
++#define JFFS2_ZLIB_PRIORITY 80
++#define JFFS2_LZO_PRIORITY 90
+
+ #define JFFS2_RUBINMIPS_DISABLED /* RUBINs will be used only */
+ #define JFFS2_DYNRUBIN_DISABLED /* for decompression */
+@@ -98,5 +98,9 @@ void jffs2_zlib_exit(void);
+ int jffs2_lzo_init(void);
+ void jffs2_lzo_exit(void);
+ #endif
++#ifdef CONFIG_JFFS2_LZMA
++int jffs2_lzma_init(void);
++void jffs2_lzma_exit(void);
++#endif
+
+ #endif /* __JFFS2_COMPR_H__ */
+--- /dev/null
++++ b/fs/jffs2/compr_lzma.c
+@@ -0,0 +1,128 @@
++/*
++ * JFFS2 -- Journalling Flash File System, Version 2.
++ *
++ * For licensing information, see the file 'LICENCE' in this directory.
++ *
++ * JFFS2 wrapper to the LZMA C SDK
++ *
++ */
++
++#include <linux/lzma.h>
++#include "compr.h"
++
++#ifdef __KERNEL__
++ static DEFINE_MUTEX(deflate_mutex);
++#endif
++
++CLzmaEncHandle *p;
++Byte propsEncoded[LZMA_PROPS_SIZE];
++SizeT propsSize = sizeof(propsEncoded);
++
++STATIC void lzma_free_workspace(void)
++{
++ LzmaEnc_Destroy(p, &lzma_alloc, &lzma_alloc);
++}
++
++STATIC int INIT lzma_alloc_workspace(CLzmaEncProps *props)
++{
++ if ((p = (CLzmaEncHandle *)LzmaEnc_Create(&lzma_alloc)) == NULL)
++ {
++ PRINT_ERROR("Failed to allocate lzma deflate workspace\n");
++ return -ENOMEM;
++ }
++
++ if (LzmaEnc_SetProps(p, props) != SZ_OK)
++ {
++ lzma_free_workspace();
++ return -1;
++ }
++
++ if (LzmaEnc_WriteProperties(p, propsEncoded, &propsSize) != SZ_OK)
++ {
++ lzma_free_workspace();
++ return -1;
++ }
++
++ return 0;
++}
++
++STATIC int jffs2_lzma_compress(unsigned char *data_in, unsigned char *cpage_out,
++ uint32_t *sourcelen, uint32_t *dstlen, void *model)
++{
++ SizeT compress_size = (SizeT)(*dstlen);
++ int ret;
++
++ #ifdef __KERNEL__
++ mutex_lock(&deflate_mutex);
++ #endif
++
++ ret = LzmaEnc_MemEncode(p, cpage_out, &compress_size, data_in, *sourcelen,
++ 0, NULL, &lzma_alloc, &lzma_alloc);
++
++ #ifdef __KERNEL__
++ mutex_unlock(&deflate_mutex);
++ #endif
++
++ if (ret != SZ_OK)
++ return -1;
++
++ *dstlen = (uint32_t)compress_size;
++
++ return 0;
++}
++
++STATIC int jffs2_lzma_decompress(unsigned char *data_in, unsigned char *cpage_out,
++ uint32_t srclen, uint32_t destlen, void *model)
++{
++ int ret;
++ SizeT dl = (SizeT)destlen;
++ SizeT sl = (SizeT)srclen;
++ ELzmaStatus status;
++
++ ret = LzmaDecode(cpage_out, &dl, data_in, &sl, propsEncoded,
++ propsSize, LZMA_FINISH_ANY, &status, &lzma_alloc);
++
++ if (ret != SZ_OK || status == LZMA_STATUS_NOT_FINISHED || dl != (SizeT)destlen)
++ return -1;
++
++ return 0;
++}
++
++static struct jffs2_compressor jffs2_lzma_comp = {
++ .priority = JFFS2_LZMA_PRIORITY,
++ .name = "lzma",
++ .compr = JFFS2_COMPR_LZMA,
++ .compress = &jffs2_lzma_compress,
++ .decompress = &jffs2_lzma_decompress,
++ .disabled = 0,
++};
++
++int INIT jffs2_lzma_init(void)
++{
++ int ret;
++ CLzmaEncProps props;
++ LzmaEncProps_Init(&props);
++
++ props.dictSize = LZMA_BEST_DICT(0x2000);
++ props.level = LZMA_BEST_LEVEL;
++ props.lc = LZMA_BEST_LC;
++ props.lp = LZMA_BEST_LP;
++ props.pb = LZMA_BEST_PB;
++ props.fb = LZMA_BEST_FB;
++
++ ret = lzma_alloc_workspace(&props);
++ if (ret < 0)
++ return ret;
++
++ ret = jffs2_register_compressor(&jffs2_lzma_comp);
++ if (ret)
++ lzma_free_workspace();
++
++ return ret;
++}
++
++void jffs2_lzma_exit(void)
++{
++ jffs2_unregister_compressor(&jffs2_lzma_comp);
++ lzma_free_workspace();
++}
+--- a/fs/jffs2/super.c
++++ b/fs/jffs2/super.c
+@@ -254,14 +254,41 @@ static int __init init_jffs2_fs(void)
+ BUILD_BUG_ON(sizeof(struct jffs2_raw_inode) != 68);
+ BUILD_BUG_ON(sizeof(struct jffs2_raw_summary) != 32);
+
+- printk(KERN_INFO "JFFS2 version 2.2."
++ printk(KERN_INFO "JFFS2 version 2.2"
+ #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
+ " (NAND)"
+ #endif
+ #ifdef CONFIG_JFFS2_SUMMARY
+- " (SUMMARY) "
++ " (SUMMARY)"
+ #endif
+- " © 2001-2006 Red Hat, Inc.\n");
++#ifdef CONFIG_JFFS2_ZLIB
++ " (ZLIB)"
++#endif
++#ifdef CONFIG_JFFS2_LZO
++ " (LZO)"
++#endif
++#ifdef CONFIG_JFFS2_LZMA
++ " (LZMA)"
++#endif
++#ifdef CONFIG_JFFS2_RTIME
++ " (RTIME)"
++#endif
++#ifdef CONFIG_JFFS2_RUBIN
++ " (RUBIN)"
++#endif
++#ifdef CONFIG_JFFS2_CMODE_NONE
++ " (CMODE_NONE)"
++#endif
++#ifdef CONFIG_JFFS2_CMODE_PRIORITY
++ " (CMODE_PRIORITY)"
++#endif
++#ifdef CONFIG_JFFS2_CMODE_SIZE
++ " (CMODE_SIZE)"
++#endif
++#ifdef CONFIG_JFFS2_CMODE_FAVOURLZO
++ " (CMODE_FAVOURLZO)"
++#endif
++ " (c) 2001-2006 Red Hat, Inc.\n");
+
+ jffs2_inode_cachep = kmem_cache_create("jffs2_i",
+ sizeof(struct jffs2_inode_info),
+--- a/include/linux/jffs2.h
++++ b/include/linux/jffs2.h
+@@ -45,6 +45,7 @@
+ #define JFFS2_COMPR_DYNRUBIN 0x05
+ #define JFFS2_COMPR_ZLIB 0x06
+ #define JFFS2_COMPR_LZO 0x07
++#define JFFS2_COMPR_LZMA 0x08
+ /* Compatibility flags. */
+ #define JFFS2_COMPAT_MASK 0xc000 /* What do to if an unknown nodetype is found */
+ #define JFFS2_NODE_ACCURATE 0x2000
+--- /dev/null
++++ b/include/linux/lzma.h
+@@ -0,0 +1,62 @@
++#ifndef __LZMA_H__
++#define __LZMA_H__
++
++#ifdef __KERNEL__
++ #include <linux/kernel.h>
++ #include <linux/sched.h>
++ #include <linux/slab.h>
++ #include <linux/vmalloc.h>
++ #include <linux/init.h>
++ #define LZMA_MALLOC vmalloc
++ #define LZMA_FREE vfree
++ #define PRINT_ERROR(msg) printk(KERN_WARNING #msg)
++ #define INIT __init
++ #define STATIC static
++#else
++ #include <stdint.h>
++ #include <stdlib.h>
++ #include <stdio.h>
++ #include <unistd.h>
++ #include <string.h>
++ #include <asm/types.h>
++ #include <errno.h>
++ #include <linux/jffs2.h>
++ #ifndef PAGE_SIZE
++ extern int page_size;
++ #define PAGE_SIZE page_size
++ #endif
++ #define LZMA_MALLOC malloc
++ #define LZMA_FREE free
++ #define PRINT_ERROR(msg) fprintf(stderr, msg)
++ #define INIT
++ #define STATIC
++#endif
++
++#include "lzma/LzmaDec.h"
++#include "lzma/LzmaEnc.h"
++
++#define LZMA_BEST_LEVEL (9)
++#define LZMA_BEST_LC (0)
++#define LZMA_BEST_LP (0)
++#define LZMA_BEST_PB (0)
++#define LZMA_BEST_FB (273)
++
++#define LZMA_BEST_DICT(n) (((int)((n) / 2)) * 2)
++
++static void *p_lzma_malloc(void *p, size_t size)
++{
++ if (size == 0)
++ return NULL;
++
++ return LZMA_MALLOC(size);
++}
++
++static void p_lzma_free(void *p, void *address)
++{
++ if (address != NULL)
++ LZMA_FREE(address);
++}
++
++static ISzAlloc lzma_alloc = {p_lzma_malloc, p_lzma_free};
++
++#endif
+--- /dev/null
++++ b/include/linux/lzma/LzFind.h
+@@ -0,0 +1,115 @@
++/* LzFind.h -- Match finder for LZ algorithms
++2009-04-22 : Igor Pavlov : Public domain */
++
++#ifndef __LZ_FIND_H
++#define __LZ_FIND_H
++
++#include "Types.h"
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++typedef UInt32 CLzRef;
++
++typedef struct _CMatchFinder
++{
++ Byte *buffer;
++ UInt32 pos;
++ UInt32 posLimit;
++ UInt32 streamPos;
++ UInt32 lenLimit;
++
++ UInt32 cyclicBufferPos;
++ UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
++
++ UInt32 matchMaxLen;
++ CLzRef *hash;
++ CLzRef *son;
++ UInt32 hashMask;
++ UInt32 cutValue;
++
++ Byte *bufferBase;
++ ISeqInStream *stream;
++ int streamEndWasReached;
++
++ UInt32 blockSize;
++ UInt32 keepSizeBefore;
++ UInt32 keepSizeAfter;
++
++ UInt32 numHashBytes;
++ int directInput;
++ size_t directInputRem;
++ int btMode;
++ int bigHash;
++ UInt32 historySize;
++ UInt32 fixedHashSize;
++ UInt32 hashSizeSum;
++ UInt32 numSons;
++ SRes result;
++ UInt32 crc[256];
++} CMatchFinder;
++
++#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer)
++#define Inline_MatchFinder_GetIndexByte(p, index) ((p)->buffer[(Int32)(index)])
++
++#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos)
++
++int MatchFinder_NeedMove(CMatchFinder *p);
++Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p);
++void MatchFinder_MoveBlock(CMatchFinder *p);
++void MatchFinder_ReadIfRequired(CMatchFinder *p);
++
++void MatchFinder_Construct(CMatchFinder *p);
++
++/* Conditions:
++ historySize <= 3 GB
++ keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB
++*/
++int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
++ UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
++ ISzAlloc *alloc);
++void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc);
++void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems);
++void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
++
++UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
++ UInt32 *distances, UInt32 maxLen);
++
++/*
++Conditions:
++ Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
++ Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
++*/
++
++typedef void (*Mf_Init_Func)(void *object);
++typedef Byte (*Mf_GetIndexByte_Func)(void *object, Int32 index);
++typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
++typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
++typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
++typedef void (*Mf_Skip_Func)(void *object, UInt32);
++
++typedef struct _IMatchFinder
++{
++ Mf_Init_Func Init;
++ Mf_GetIndexByte_Func GetIndexByte;
++ Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
++ Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
++ Mf_GetMatches_Func GetMatches;
++ Mf_Skip_Func Skip;
++} IMatchFinder;
++
++void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable);
++
++void MatchFinder_Init(CMatchFinder *p);
++UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
++UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
++void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
++void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif
+--- /dev/null
++++ b/include/linux/lzma/LzHash.h
+@@ -0,0 +1,54 @@
++/* LzHash.h -- HASH functions for LZ algorithms
++2009-02-07 : Igor Pavlov : Public domain */
++
++#ifndef __LZ_HASH_H
++#define __LZ_HASH_H
++
++#define kHash2Size (1 << 10)
++#define kHash3Size (1 << 16)
++#define kHash4Size (1 << 20)
++
++#define kFix3HashSize (kHash2Size)
++#define kFix4HashSize (kHash2Size + kHash3Size)
++#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
++
++#define HASH2_CALC hashValue = cur[0] | ((UInt32)cur[1] << 8);
++
++#define HASH3_CALC { \
++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
++ hash2Value = temp & (kHash2Size - 1); \
++ hashValue = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; }
++
++#define HASH4_CALC { \
++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
++ hash2Value = temp & (kHash2Size - 1); \
++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
++ hashValue = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & p->hashMask; }
++
++#define HASH5_CALC { \
++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
++ hash2Value = temp & (kHash2Size - 1); \
++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
++ hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)); \
++ hashValue = (hash4Value ^ (p->crc[cur[4]] << 3)) & p->hashMask; \
++ hash4Value &= (kHash4Size - 1); }
++
++/* #define HASH_ZIP_CALC hashValue = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */
++#define HASH_ZIP_CALC hashValue = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF;
++
++
++#define MT_HASH2_CALC \
++ hash2Value = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1);
++
++#define MT_HASH3_CALC { \
++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
++ hash2Value = temp & (kHash2Size - 1); \
++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); }
++
++#define MT_HASH4_CALC { \
++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \
++ hash2Value = temp & (kHash2Size - 1); \
++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \
++ hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); }
++
++#endif
+--- /dev/null
++++ b/include/linux/lzma/LzmaDec.h
+@@ -0,0 +1,231 @@
++/* LzmaDec.h -- LZMA Decoder
++2009-02-07 : Igor Pavlov : Public domain */
++
++#ifndef __LZMA_DEC_H
++#define __LZMA_DEC_H
++
++#include "Types.h"
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/* #define _LZMA_PROB32 */
++/* _LZMA_PROB32 can increase the speed on some CPUs,
++ but memory usage for CLzmaDec::probs will be doubled in that case */
++
++#ifdef _LZMA_PROB32
++#define CLzmaProb UInt32
++#else
++#define CLzmaProb UInt16
++#endif
++
++
++/* ---------- LZMA Properties ---------- */
++
++#define LZMA_PROPS_SIZE 5
++
++typedef struct _CLzmaProps
++{
++ unsigned lc, lp, pb;
++ UInt32 dicSize;
++} CLzmaProps;
++
++/* LzmaProps_Decode - decodes properties
++Returns:
++ SZ_OK
++ SZ_ERROR_UNSUPPORTED - Unsupported properties
++*/
++
++SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
++
++
++/* ---------- LZMA Decoder state ---------- */
++
++/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
++ Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
++
++#define LZMA_REQUIRED_INPUT_MAX 20
++
++typedef struct
++{
++ CLzmaProps prop;
++ CLzmaProb *probs;
++ Byte *dic;
++ const Byte *buf;
++ UInt32 range, code;
++ SizeT dicPos;
++ SizeT dicBufSize;
++ UInt32 processedPos;
++ UInt32 checkDicSize;
++ unsigned state;
++ UInt32 reps[4];
++ unsigned remainLen;
++ int needFlush;
++ int needInitState;
++ UInt32 numProbs;
++ unsigned tempBufSize;
++ Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
++} CLzmaDec;
++
++#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; }
++
++void LzmaDec_Init(CLzmaDec *p);
++
++/* There are two types of LZMA streams:
++ 0) Stream with end mark. That end mark adds about 6 bytes to compressed size.
++ 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */
++
++typedef enum
++{
++ LZMA_FINISH_ANY, /* finish at any point */
++ LZMA_FINISH_END /* block must be finished at the end */
++} ELzmaFinishMode;
++
++/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
++
++ You must use LZMA_FINISH_END, when you know that current output buffer
++ covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
++
++ If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
++ and output value of destLen will be less than output buffer size limit.
++ You can check status result also.
++
++ You can use multiple checks to test data integrity after full decompression:
++ 1) Check Result and "status" variable.
++ 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
++ 3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
++ You must use correct finish mode in that case. */
++
++typedef enum
++{
++ LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
++ LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
++ LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
++ LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
++ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
++} ELzmaStatus;
++
++/* ELzmaStatus is used only as output value for function call */
++
++
++/* ---------- Interfaces ---------- */
++
++/* There are 3 levels of interfaces:
++ 1) Dictionary Interface
++ 2) Buffer Interface
++ 3) One Call Interface
++ You can select any of these interfaces, but don't mix functions from different
++ groups for same object. */
++
++
++/* There are two variants to allocate state for Dictionary Interface:
++ 1) LzmaDec_Allocate / LzmaDec_Free
++ 2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
++ You can use variant 2, if you set dictionary buffer manually.
++ For Buffer Interface you must always use variant 1.
++
++LzmaDec_Allocate* can return:
++ SZ_OK
++ SZ_ERROR_MEM - Memory allocation error
++ SZ_ERROR_UNSUPPORTED - Unsupported properties
++*/
++
++SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc);
++void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc);
++
++SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc);
++void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc);
++
++/* ---------- Dictionary Interface ---------- */
++
++/* You can use it, if you want to eliminate the overhead for data copying from
++ dictionary to some other external buffer.
++ You must work with CLzmaDec variables directly in this interface.
++
++ STEPS:
++ LzmaDec_Constr()
++ LzmaDec_Allocate()
++ for (each new stream)
++ {
++ LzmaDec_Init()
++ while (it needs more decompression)
++ {
++ LzmaDec_DecodeToDic()
++ use data from CLzmaDec::dic and update CLzmaDec::dicPos
++ }
++ }
++ LzmaDec_Free()
++*/
++
++/* LzmaDec_DecodeToDic
++
++ The decoding to internal dictionary buffer (CLzmaDec::dic).
++ You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
++
++finishMode:
++ It has meaning only if the decoding reaches output limit (dicLimit).
++ LZMA_FINISH_ANY - Decode just dicLimit bytes.
++ LZMA_FINISH_END - Stream must be finished after dicLimit.
++
++Returns:
++ SZ_OK
++ status:
++ LZMA_STATUS_FINISHED_WITH_MARK
++ LZMA_STATUS_NOT_FINISHED
++ LZMA_STATUS_NEEDS_MORE_INPUT
++ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
++ SZ_ERROR_DATA - Data error
++*/
++
++SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
++ const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
++
++
++/* ---------- Buffer Interface ---------- */
++
++/* It's zlib-like interface.
++ See LzmaDec_DecodeToDic description for information about STEPS and return results,
++ but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
++ to work with CLzmaDec variables manually.
++
++finishMode:
++ It has meaning only if the decoding reaches output limit (*destLen).
++ LZMA_FINISH_ANY - Decode just destLen bytes.
++ LZMA_FINISH_END - Stream must be finished after (*destLen).
++*/
++
++SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
++ const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
++
++
++/* ---------- One Call Interface ---------- */
++
++/* LzmaDecode
++
++finishMode:
++ It has meaning only if the decoding reaches output limit (*destLen).
++ LZMA_FINISH_ANY - Decode just destLen bytes.
++ LZMA_FINISH_END - Stream must be finished after (*destLen).
++
++Returns:
++ SZ_OK
++ status:
++ LZMA_STATUS_FINISHED_WITH_MARK
++ LZMA_STATUS_NOT_FINISHED
++ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
++ SZ_ERROR_DATA - Data error
++ SZ_ERROR_MEM - Memory allocation error
++ SZ_ERROR_UNSUPPORTED - Unsupported properties
++ SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
++*/
++
++SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
++ const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
++ ELzmaStatus *status, ISzAlloc *alloc);
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif
+--- /dev/null
++++ b/include/linux/lzma/LzmaEnc.h
+@@ -0,0 +1,80 @@
++/* LzmaEnc.h -- LZMA Encoder
++2009-02-07 : Igor Pavlov : Public domain */
++
++#ifndef __LZMA_ENC_H
++#define __LZMA_ENC_H
++
++#include "Types.h"
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++#define LZMA_PROPS_SIZE 5
++
++typedef struct _CLzmaEncProps
++{
++ int level; /* 0 <= level <= 9 */
++ UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
++ (1 << 12) <= dictSize <= (1 << 30) for 64-bit version
++ default = (1 << 24) */
++ int lc; /* 0 <= lc <= 8, default = 3 */
++ int lp; /* 0 <= lp <= 4, default = 0 */
++ int pb; /* 0 <= pb <= 4, default = 2 */
++ int algo; /* 0 - fast, 1 - normal, default = 1 */
++ int fb; /* 5 <= fb <= 273, default = 32 */
++ int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
++ int numHashBytes; /* 2, 3 or 4, default = 4 */
++ UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
++ unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
++ int numThreads; /* 1 or 2, default = 2 */
++} CLzmaEncProps;
++
++void LzmaEncProps_Init(CLzmaEncProps *p);
++void LzmaEncProps_Normalize(CLzmaEncProps *p);
++UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
++
++
++/* ---------- CLzmaEncHandle Interface ---------- */
++
++/* LzmaEnc_* functions can return the following exit codes:
++Returns:
++ SZ_OK - OK
++ SZ_ERROR_MEM - Memory allocation error
++ SZ_ERROR_PARAM - Incorrect paramater in props
++ SZ_ERROR_WRITE - Write callback error.
++ SZ_ERROR_PROGRESS - some break from progress callback
++ SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
++*/
++
++typedef void * CLzmaEncHandle;
++
++CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc);
++void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig);
++SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
++SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
++SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream,
++ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
++SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
++ int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
++
++/* ---------- One Call Interface ---------- */
++
++/* LzmaEncode
++Return code:
++ SZ_OK - OK
++ SZ_ERROR_MEM - Memory allocation error
++ SZ_ERROR_PARAM - Incorrect paramater
++ SZ_ERROR_OUTPUT_EOF - output buffer overflow
++ SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
++*/
++
++SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
++ const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
++ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig);
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif
+--- /dev/null
++++ b/include/linux/lzma/Types.h
+@@ -0,0 +1,226 @@
++/* Types.h -- Basic types
++2009-11-23 : Igor Pavlov : Public domain */
++
++#ifndef __7Z_TYPES_H
++#define __7Z_TYPES_H
++
++#include <stddef.h>
++
++#ifdef _WIN32
++#include <windows.h>
++#endif
++
++#ifndef EXTERN_C_BEGIN
++#ifdef __cplusplus
++#define EXTERN_C_BEGIN extern "C" {
++#define EXTERN_C_END }
++#else
++#define EXTERN_C_BEGIN
++#define EXTERN_C_END
++#endif
++#endif
++
++EXTERN_C_BEGIN
++
++#define SZ_OK 0
++
++#define SZ_ERROR_DATA 1
++#define SZ_ERROR_MEM 2
++#define SZ_ERROR_CRC 3
++#define SZ_ERROR_UNSUPPORTED 4
++#define SZ_ERROR_PARAM 5
++#define SZ_ERROR_INPUT_EOF 6
++#define SZ_ERROR_OUTPUT_EOF 7
++#define SZ_ERROR_READ 8
++#define SZ_ERROR_WRITE 9
++#define SZ_ERROR_PROGRESS 10
++#define SZ_ERROR_FAIL 11
++#define SZ_ERROR_THREAD 12
++
++#define SZ_ERROR_ARCHIVE 16
++#define SZ_ERROR_NO_ARCHIVE 17
++
++typedef int SRes;
++
++#ifdef _WIN32
++typedef DWORD WRes;
++#else
++typedef int WRes;
++#endif
++
++#ifndef RINOK
++#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; }
++#endif
++
++typedef unsigned char Byte;
++typedef short Int16;
++typedef unsigned short UInt16;
++
++#ifdef _LZMA_UINT32_IS_ULONG
++typedef long Int32;
++typedef unsigned long UInt32;
++#else
++typedef int Int32;
++typedef unsigned int UInt32;
++#endif
++
++#ifdef _SZ_NO_INT_64
++
++/* define _SZ_NO_INT_64, if your compiler doesn't support 64-bit integers.
++ NOTES: Some code will work incorrectly in that case! */
++
++typedef long Int64;
++typedef unsigned long UInt64;
++
++#else
++
++#if defined(_MSC_VER) || defined(__BORLANDC__)
++typedef __int64 Int64;
++typedef unsigned __int64 UInt64;
++#else
++typedef long long int Int64;
++typedef unsigned long long int UInt64;
++#endif
++
++#endif
++
++#ifdef _LZMA_NO_SYSTEM_SIZE_T
++typedef UInt32 SizeT;
++#else
++typedef size_t SizeT;
++#endif
++
++typedef int Bool;
++#define True 1
++#define False 0
++
++
++#ifdef _WIN32
++#define MY_STD_CALL __stdcall
++#else
++#define MY_STD_CALL
++#endif
++
++#ifdef _MSC_VER
++
++#if _MSC_VER >= 1300
++#define MY_NO_INLINE __declspec(noinline)
++#else
++#define MY_NO_INLINE
++#endif
++
++#define MY_CDECL __cdecl
++#define MY_FAST_CALL __fastcall
++
++#else
++
++#define MY_CDECL
++#define MY_FAST_CALL
++
++#endif
++
++
++/* The following interfaces use first parameter as pointer to structure */
++
++typedef struct
++{
++ SRes (*Read)(void *p, void *buf, size_t *size);
++ /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
++ (output(*size) < input(*size)) is allowed */
++} ISeqInStream;
++
++/* it can return SZ_ERROR_INPUT_EOF */
++SRes SeqInStream_Read(ISeqInStream *stream, void *buf, size_t size);
++SRes SeqInStream_Read2(ISeqInStream *stream, void *buf, size_t size, SRes errorType);
++SRes SeqInStream_ReadByte(ISeqInStream *stream, Byte *buf);
++
++typedef struct
++{
++ size_t (*Write)(void *p, const void *buf, size_t size);
++ /* Returns: result - the number of actually written bytes.
++ (result < size) means error */
++} ISeqOutStream;
++
++typedef enum
++{
++ SZ_SEEK_SET = 0,
++ SZ_SEEK_CUR = 1,
++ SZ_SEEK_END = 2
++} ESzSeek;
++
++typedef struct
++{
++ SRes (*Read)(void *p, void *buf, size_t *size); /* same as ISeqInStream::Read */
++ SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
++} ISeekInStream;
++
++typedef struct
++{
++ SRes (*Look)(void *p, void **buf, size_t *size);
++ /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
++ (output(*size) > input(*size)) is not allowed
++ (output(*size) < input(*size)) is allowed */
++ SRes (*Skip)(void *p, size_t offset);
++ /* offset must be <= output(*size) of Look */
++
++ SRes (*Read)(void *p, void *buf, size_t *size);
++ /* reads directly (without buffer). It's same as ISeqInStream::Read */
++ SRes (*Seek)(void *p, Int64 *pos, ESzSeek origin);
++} ILookInStream;
++
++SRes LookInStream_LookRead(ILookInStream *stream, void *buf, size_t *size);
++SRes LookInStream_SeekTo(ILookInStream *stream, UInt64 offset);
++
++/* reads via ILookInStream::Read */
++SRes LookInStream_Read2(ILookInStream *stream, void *buf, size_t size, SRes errorType);
++SRes LookInStream_Read(ILookInStream *stream, void *buf, size_t size);
++
++#define LookToRead_BUF_SIZE (1 << 14)
++
++typedef struct
++{
++ ILookInStream s;
++ ISeekInStream *realStream;
++ size_t pos;
++ size_t size;
++ Byte buf[LookToRead_BUF_SIZE];
++} CLookToRead;
++
++void LookToRead_CreateVTable(CLookToRead *p, int lookahead);
++void LookToRead_Init(CLookToRead *p);
++
++typedef struct
++{
++ ISeqInStream s;
++ ILookInStream *realStream;
++} CSecToLook;
++
++void SecToLook_CreateVTable(CSecToLook *p);
++
++typedef struct
++{
++ ISeqInStream s;
++ ILookInStream *realStream;
++} CSecToRead;
++
++void SecToRead_CreateVTable(CSecToRead *p);
++
++typedef struct
++{
++ SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize);
++ /* Returns: result. (result != SZ_OK) means break.
++ Value (UInt64)(Int64)-1 for size means unknown value. */
++} ICompressProgress;
++
++typedef struct
++{
++ void *(*Alloc)(void *p, size_t size);
++ void (*Free)(void *p, void *address); /* address can be 0 */
++} ISzAlloc;
++
++#define IAlloc_Alloc(p, size) (p)->Alloc((p), size)
++#define IAlloc_Free(p, a) (p)->Free((p), a)
++
++EXTERN_C_END
++
++#endif
+--- a/lib/Kconfig
++++ b/lib/Kconfig
+@@ -103,6 +103,12 @@ config LZO_COMPRESS
+ config LZO_DECOMPRESS
+ tristate
+
++config LZMA_COMPRESS
++ tristate
++
++config LZMA_DECOMPRESS
++ tristate
++
+ #
+ # These all provide a common interface (hence the apparent duplication with
+ # ZLIB_INFLATE; DECOMPRESS_GZIP is just a wrapper.)
+--- a/lib/Makefile
++++ b/lib/Makefile
+@@ -2,6 +2,16 @@
+ # Makefile for some libs needed in the kernel.
+ #
+
++ifdef CONFIG_JFFS2_ZLIB
++ CONFIG_ZLIB_INFLATE:=y
++ CONFIG_ZLIB_DEFLATE:=y
++endif
++
++ifdef CONFIG_JFFS2_LZMA
++ CONFIG_LZMA_DECOMPRESS:=y
++ CONFIG_LZMA_COMPRESS:=y
++endif
++
+ ifdef CONFIG_FUNCTION_TRACER
+ ORIG_CFLAGS := $(KBUILD_CFLAGS)
+ KBUILD_CFLAGS = $(subst -pg,,$(ORIG_CFLAGS))
+@@ -65,6 +75,8 @@ obj-$(CONFIG_ZLIB_DEFLATE) += zlib_defla
+ obj-$(CONFIG_REED_SOLOMON) += reed_solomon/
+ obj-$(CONFIG_LZO_COMPRESS) += lzo/
+ obj-$(CONFIG_LZO_DECOMPRESS) += lzo/
++obj-$(CONFIG_LZMA_COMPRESS) += lzma/
++obj-$(CONFIG_LZMA_DECOMPRESS) += lzma/
+
+ lib-$(CONFIG_DECOMPRESS_GZIP) += decompress_inflate.o
+ lib-$(CONFIG_DECOMPRESS_BZIP2) += decompress_bunzip2.o
+--- /dev/null
++++ b/lib/lzma/LzFind.c
+@@ -0,0 +1,761 @@
++/* LzFind.c -- Match finder for LZ algorithms
++2009-04-22 : Igor Pavlov : Public domain */
++
++#include <string.h>
++
++#include "LzFind.h"
++#include "LzHash.h"
++
++#define kEmptyHashValue 0
++#define kMaxValForNormalize ((UInt32)0xFFFFFFFF)
++#define kNormalizeStepMin (1 << 10) /* it must be power of 2 */
++#define kNormalizeMask (~(kNormalizeStepMin - 1))
++#define kMaxHistorySize ((UInt32)3 << 30)
++
++#define kStartMaxLen 3
++
++static void LzInWindow_Free(CMatchFinder *p, ISzAlloc *alloc)
++{
++ if (!p->directInput)
++ {
++ alloc->Free(alloc, p->bufferBase);
++ p->bufferBase = 0;
++ }
++}
++
++/* keepSizeBefore + keepSizeAfter + keepSizeReserv must be < 4G) */
++
++static int LzInWindow_Create(CMatchFinder *p, UInt32 keepSizeReserv, ISzAlloc *alloc)
++{
++ UInt32 blockSize = p->keepSizeBefore + p->keepSizeAfter + keepSizeReserv;
++ if (p->directInput)
++ {
++ p->blockSize = blockSize;
++ return 1;
++ }
++ if (p->bufferBase == 0 || p->blockSize != blockSize)
++ {
++ LzInWindow_Free(p, alloc);
++ p->blockSize = blockSize;
++ p->bufferBase = (Byte *)alloc->Alloc(alloc, (size_t)blockSize);
++ }
++ return (p->bufferBase != 0);
++}
++
++Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; }
++Byte MatchFinder_GetIndexByte(CMatchFinder *p, Int32 index) { return p->buffer[index]; }
++
++UInt32 MatchFinder_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; }
++
++void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue)
++{
++ p->posLimit -= subValue;
++ p->pos -= subValue;
++ p->streamPos -= subValue;
++}
++
++static void MatchFinder_ReadBlock(CMatchFinder *p)
++{
++ if (p->streamEndWasReached || p->result != SZ_OK)
++ return;
++ if (p->directInput)
++ {
++ UInt32 curSize = 0xFFFFFFFF - p->streamPos;
++ if (curSize > p->directInputRem)
++ curSize = (UInt32)p->directInputRem;
++ p->directInputRem -= curSize;
++ p->streamPos += curSize;
++ if (p->directInputRem == 0)
++ p->streamEndWasReached = 1;
++ return;
++ }
++ for (;;)
++ {
++ Byte *dest = p->buffer + (p->streamPos - p->pos);
++ size_t size = (p->bufferBase + p->blockSize - dest);
++ if (size == 0)
++ return;
++ p->result = p->stream->Read(p->stream, dest, &size);
++ if (p->result != SZ_OK)
++ return;
++ if (size == 0)
++ {
++ p->streamEndWasReached = 1;
++ return;
++ }
++ p->streamPos += (UInt32)size;
++ if (p->streamPos - p->pos > p->keepSizeAfter)
++ return;
++ }
++}
++
++void MatchFinder_MoveBlock(CMatchFinder *p)
++{
++ memmove(p->bufferBase,
++ p->buffer - p->keepSizeBefore,
++ (size_t)(p->streamPos - p->pos + p->keepSizeBefore));
++ p->buffer = p->bufferBase + p->keepSizeBefore;
++}
++
++int MatchFinder_NeedMove(CMatchFinder *p)
++{
++ if (p->directInput)
++ return 0;
++ /* if (p->streamEndWasReached) return 0; */
++ return ((size_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter);
++}
++
++void MatchFinder_ReadIfRequired(CMatchFinder *p)
++{
++ if (p->streamEndWasReached)
++ return;
++ if (p->keepSizeAfter >= p->streamPos - p->pos)
++ MatchFinder_ReadBlock(p);
++}
++
++static void MatchFinder_CheckAndMoveAndRead(CMatchFinder *p)
++{
++ if (MatchFinder_NeedMove(p))
++ MatchFinder_MoveBlock(p);
++ MatchFinder_ReadBlock(p);
++}
++
++static void MatchFinder_SetDefaultSettings(CMatchFinder *p)
++{
++ p->cutValue = 32;
++ p->btMode = 1;
++ p->numHashBytes = 4;
++ p->bigHash = 0;
++}
++
++#define kCrcPoly 0xEDB88320
++
++void MatchFinder_Construct(CMatchFinder *p)
++{
++ UInt32 i;
++ p->bufferBase = 0;
++ p->directInput = 0;
++ p->hash = 0;
++ MatchFinder_SetDefaultSettings(p);
++
++ for (i = 0; i < 256; i++)
++ {
++ UInt32 r = i;
++ int j;
++ for (j = 0; j < 8; j++)
++ r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1));
++ p->crc[i] = r;
++ }
++}
++
++static void MatchFinder_FreeThisClassMemory(CMatchFinder *p, ISzAlloc *alloc)
++{
++ alloc->Free(alloc, p->hash);
++ p->hash = 0;
++}
++
++void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc)
++{
++ MatchFinder_FreeThisClassMemory(p, alloc);
++ LzInWindow_Free(p, alloc);
++}
++
++static CLzRef* AllocRefs(UInt32 num, ISzAlloc *alloc)
++{
++ size_t sizeInBytes = (size_t)num * sizeof(CLzRef);
++ if (sizeInBytes / sizeof(CLzRef) != num)
++ return 0;
++ return (CLzRef *)alloc->Alloc(alloc, sizeInBytes);
++}
++
++int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
++ UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
++ ISzAlloc *alloc)
++{
++ UInt32 sizeReserv;
++ if (historySize > kMaxHistorySize)
++ {
++ MatchFinder_Free(p, alloc);
++ return 0;
++ }
++ sizeReserv = historySize >> 1;
++ if (historySize > ((UInt32)2 << 30))
++ sizeReserv = historySize >> 2;
++ sizeReserv += (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19);
++
++ p->keepSizeBefore = historySize + keepAddBufferBefore + 1;
++ p->keepSizeAfter = matchMaxLen + keepAddBufferAfter;
++ /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */
++ if (LzInWindow_Create(p, sizeReserv, alloc))
++ {
++ UInt32 newCyclicBufferSize = historySize + 1;
++ UInt32 hs;
++ p->matchMaxLen = matchMaxLen;
++ {
++ p->fixedHashSize = 0;
++ if (p->numHashBytes == 2)
++ hs = (1 << 16) - 1;
++ else
++ {
++ hs = historySize - 1;
++ hs |= (hs >> 1);
++ hs |= (hs >> 2);
++ hs |= (hs >> 4);
++ hs |= (hs >> 8);
++ hs >>= 1;
++ hs |= 0xFFFF; /* don't change it! It's required for Deflate */
++ if (hs > (1 << 24))
++ {
++ if (p->numHashBytes == 3)
++ hs = (1 << 24) - 1;
++ else
++ hs >>= 1;
++ }
++ }
++ p->hashMask = hs;
++ hs++;
++ if (p->numHashBytes > 2) p->fixedHashSize += kHash2Size;
++ if (p->numHashBytes > 3) p->fixedHashSize += kHash3Size;
++ if (p->numHashBytes > 4) p->fixedHashSize += kHash4Size;
++ hs += p->fixedHashSize;
++ }
++
++ {
++ UInt32 prevSize = p->hashSizeSum + p->numSons;
++ UInt32 newSize;
++ p->historySize = historySize;
++ p->hashSizeSum = hs;
++ p->cyclicBufferSize = newCyclicBufferSize;
++ p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize);
++ newSize = p->hashSizeSum + p->numSons;
++ if (p->hash != 0 && prevSize == newSize)
++ return 1;
++ MatchFinder_FreeThisClassMemory(p, alloc);
++ p->hash = AllocRefs(newSize, alloc);
++ if (p->hash != 0)
++ {
++ p->son = p->hash + p->hashSizeSum;
++ return 1;
++ }
++ }
++ }
++ MatchFinder_Free(p, alloc);
++ return 0;
++}
++
++static void MatchFinder_SetLimits(CMatchFinder *p)
++{
++ UInt32 limit = kMaxValForNormalize - p->pos;
++ UInt32 limit2 = p->cyclicBufferSize - p->cyclicBufferPos;
++ if (limit2 < limit)
++ limit = limit2;
++ limit2 = p->streamPos - p->pos;
++ if (limit2 <= p->keepSizeAfter)
++ {
++ if (limit2 > 0)
++ limit2 = 1;
++ }
++ else
++ limit2 -= p->keepSizeAfter;
++ if (limit2 < limit)
++ limit = limit2;
++ {
++ UInt32 lenLimit = p->streamPos - p->pos;
++ if (lenLimit > p->matchMaxLen)
++ lenLimit = p->matchMaxLen;
++ p->lenLimit = lenLimit;
++ }
++ p->posLimit = p->pos + limit;
++}
++
++void MatchFinder_Init(CMatchFinder *p)
++{
++ UInt32 i;
++ for (i = 0; i < p->hashSizeSum; i++)
++ p->hash[i] = kEmptyHashValue;
++ p->cyclicBufferPos = 0;
++ p->buffer = p->bufferBase;
++ p->pos = p->streamPos = p->cyclicBufferSize;
++ p->result = SZ_OK;
++ p->streamEndWasReached = 0;
++ MatchFinder_ReadBlock(p);
++ MatchFinder_SetLimits(p);
++}
++
++static UInt32 MatchFinder_GetSubValue(CMatchFinder *p)
++{
++ return (p->pos - p->historySize - 1) & kNormalizeMask;
++}
++
++void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems)
++{
++ UInt32 i;
++ for (i = 0; i < numItems; i++)
++ {
++ UInt32 value = items[i];
++ if (value <= subValue)
++ value = kEmptyHashValue;
++ else
++ value -= subValue;
++ items[i] = value;
++ }
++}
++
++static void MatchFinder_Normalize(CMatchFinder *p)
++{
++ UInt32 subValue = MatchFinder_GetSubValue(p);
++ MatchFinder_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons);
++ MatchFinder_ReduceOffsets(p, subValue);
++}
++
++static void MatchFinder_CheckLimits(CMatchFinder *p)
++{
++ if (p->pos == kMaxValForNormalize)
++ MatchFinder_Normalize(p);
++ if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos)
++ MatchFinder_CheckAndMoveAndRead(p);
++ if (p->cyclicBufferPos == p->cyclicBufferSize)
++ p->cyclicBufferPos = 0;
++ MatchFinder_SetLimits(p);
++}
++
++static UInt32 * Hc_GetMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
++ UInt32 *distances, UInt32 maxLen)
++{
++ son[_cyclicBufferPos] = curMatch;
++ for (;;)
++ {
++ UInt32 delta = pos - curMatch;
++ if (cutValue-- == 0 || delta >= _cyclicBufferSize)
++ return distances;
++ {
++ const Byte *pb = cur - delta;
++ curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)];
++ if (pb[maxLen] == cur[maxLen] && *pb == *cur)
++ {
++ UInt32 len = 0;
++ while (++len != lenLimit)
++ if (pb[len] != cur[len])
++ break;
++ if (maxLen < len)
++ {
++ *distances++ = maxLen = len;
++ *distances++ = delta - 1;
++ if (len == lenLimit)
++ return distances;
++ }
++ }
++ }
++ }
++}
++
++UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue,
++ UInt32 *distances, UInt32 maxLen)
++{
++ CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
++ CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
++ UInt32 len0 = 0, len1 = 0;
++ for (;;)
++ {
++ UInt32 delta = pos - curMatch;
++ if (cutValue-- == 0 || delta >= _cyclicBufferSize)
++ {
++ *ptr0 = *ptr1 = kEmptyHashValue;
++ return distances;
++ }
++ {
++ CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
++ const Byte *pb = cur - delta;
++ UInt32 len = (len0 < len1 ? len0 : len1);
++ if (pb[len] == cur[len])
++ {
++ if (++len != lenLimit && pb[len] == cur[len])
++ while (++len != lenLimit)
++ if (pb[len] != cur[len])
++ break;
++ if (maxLen < len)
++ {
++ *distances++ = maxLen = len;
++ *distances++ = delta - 1;
++ if (len == lenLimit)
++ {
++ *ptr1 = pair[0];
++ *ptr0 = pair[1];
++ return distances;
++ }
++ }
++ }
++ if (pb[len] < cur[len])
++ {
++ *ptr1 = curMatch;
++ ptr1 = pair + 1;
++ curMatch = *ptr1;
++ len1 = len;
++ }
++ else
++ {
++ *ptr0 = curMatch;
++ ptr0 = pair;
++ curMatch = *ptr0;
++ len0 = len;
++ }
++ }
++ }
++}
++
++static void SkipMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son,
++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue)
++{
++ CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1;
++ CLzRef *ptr1 = son + (_cyclicBufferPos << 1);
++ UInt32 len0 = 0, len1 = 0;
++ for (;;)
++ {
++ UInt32 delta = pos - curMatch;
++ if (cutValue-- == 0 || delta >= _cyclicBufferSize)
++ {
++ *ptr0 = *ptr1 = kEmptyHashValue;
++ return;
++ }
++ {
++ CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1);
++ const Byte *pb = cur - delta;
++ UInt32 len = (len0 < len1 ? len0 : len1);
++ if (pb[len] == cur[len])
++ {
++ while (++len != lenLimit)
++ if (pb[len] != cur[len])
++ break;
++ {
++ if (len == lenLimit)
++ {
++ *ptr1 = pair[0];
++ *ptr0 = pair[1];
++ return;
++ }
++ }
++ }
++ if (pb[len] < cur[len])
++ {
++ *ptr1 = curMatch;
++ ptr1 = pair + 1;
++ curMatch = *ptr1;
++ len1 = len;
++ }
++ else
++ {
++ *ptr0 = curMatch;
++ ptr0 = pair;
++ curMatch = *ptr0;
++ len0 = len;
++ }
++ }
++ }
++}
++
++#define MOVE_POS \
++ ++p->cyclicBufferPos; \
++ p->buffer++; \
++ if (++p->pos == p->posLimit) MatchFinder_CheckLimits(p);
++
++#define MOVE_POS_RET MOVE_POS return offset;
++
++static void MatchFinder_MovePos(CMatchFinder *p) { MOVE_POS; }
++
++#define GET_MATCHES_HEADER2(minLen, ret_op) \
++ UInt32 lenLimit; UInt32 hashValue; const Byte *cur; UInt32 curMatch; \
++ lenLimit = p->lenLimit; { if (lenLimit < minLen) { MatchFinder_MovePos(p); ret_op; }} \
++ cur = p->buffer;
++
++#define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0)
++#define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue)
++
++#define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue
++
++#define GET_MATCHES_FOOTER(offset, maxLen) \
++ offset = (UInt32)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \
++ distances + offset, maxLen) - distances); MOVE_POS_RET;
++
++#define SKIP_FOOTER \
++ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS;
++
++static UInt32 Bt2_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
++{
++ UInt32 offset;
++ GET_MATCHES_HEADER(2)
++ HASH2_CALC;
++ curMatch = p->hash[hashValue];
++ p->hash[hashValue] = p->pos;
++ offset = 0;
++ GET_MATCHES_FOOTER(offset, 1)
++}
++
++UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
++{
++ UInt32 offset;
++ GET_MATCHES_HEADER(3)
++ HASH_ZIP_CALC;
++ curMatch = p->hash[hashValue];
++ p->hash[hashValue] = p->pos;
++ offset = 0;
++ GET_MATCHES_FOOTER(offset, 2)
++}
++
++static UInt32 Bt3_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
++{
++ UInt32 hash2Value, delta2, maxLen, offset;
++ GET_MATCHES_HEADER(3)
++
++ HASH3_CALC;
++
++ delta2 = p->pos - p->hash[hash2Value];
++ curMatch = p->hash[kFix3HashSize + hashValue];
++
++ p->hash[hash2Value] =
++ p->hash[kFix3HashSize + hashValue] = p->pos;
++
++
++ maxLen = 2;
++ offset = 0;
++ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
++ {
++ for (; maxLen != lenLimit; maxLen++)
++ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
++ break;
++ distances[0] = maxLen;
++ distances[1] = delta2 - 1;
++ offset = 2;
++ if (maxLen == lenLimit)
++ {
++ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
++ MOVE_POS_RET;
++ }
++ }
++ GET_MATCHES_FOOTER(offset, maxLen)
++}
++
++static UInt32 Bt4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
++{
++ UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
++ GET_MATCHES_HEADER(4)
++
++ HASH4_CALC;
++
++ delta2 = p->pos - p->hash[ hash2Value];
++ delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
++ curMatch = p->hash[kFix4HashSize + hashValue];
++
++ p->hash[ hash2Value] =
++ p->hash[kFix3HashSize + hash3Value] =
++ p->hash[kFix4HashSize + hashValue] = p->pos;
++
++ maxLen = 1;
++ offset = 0;
++ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
++ {
++ distances[0] = maxLen = 2;
++ distances[1] = delta2 - 1;
++ offset = 2;
++ }
++ if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
++ {
++ maxLen = 3;
++ distances[offset + 1] = delta3 - 1;
++ offset += 2;
++ delta2 = delta3;
++ }
++ if (offset != 0)
++ {
++ for (; maxLen != lenLimit; maxLen++)
++ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
++ break;
++ distances[offset - 2] = maxLen;
++ if (maxLen == lenLimit)
++ {
++ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p));
++ MOVE_POS_RET;
++ }
++ }
++ if (maxLen < 3)
++ maxLen = 3;
++ GET_MATCHES_FOOTER(offset, maxLen)
++}
++
++static UInt32 Hc4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
++{
++ UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset;
++ GET_MATCHES_HEADER(4)
++
++ HASH4_CALC;
++
++ delta2 = p->pos - p->hash[ hash2Value];
++ delta3 = p->pos - p->hash[kFix3HashSize + hash3Value];
++ curMatch = p->hash[kFix4HashSize + hashValue];
++
++ p->hash[ hash2Value] =
++ p->hash[kFix3HashSize + hash3Value] =
++ p->hash[kFix4HashSize + hashValue] = p->pos;
++
++ maxLen = 1;
++ offset = 0;
++ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur)
++ {
++ distances[0] = maxLen = 2;
++ distances[1] = delta2 - 1;
++ offset = 2;
++ }
++ if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur)
++ {
++ maxLen = 3;
++ distances[offset + 1] = delta3 - 1;
++ offset += 2;
++ delta2 = delta3;
++ }
++ if (offset != 0)
++ {
++ for (; maxLen != lenLimit; maxLen++)
++ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen])
++ break;
++ distances[offset - 2] = maxLen;
++ if (maxLen == lenLimit)
++ {
++ p->son[p->cyclicBufferPos] = curMatch;
++ MOVE_POS_RET;
++ }
++ }
++ if (maxLen < 3)
++ maxLen = 3;
++ offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
++ distances + offset, maxLen) - (distances));
++ MOVE_POS_RET
++}
++
++UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances)
++{
++ UInt32 offset;
++ GET_MATCHES_HEADER(3)
++ HASH_ZIP_CALC;
++ curMatch = p->hash[hashValue];
++ p->hash[hashValue] = p->pos;
++ offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p),
++ distances, 2) - (distances));
++ MOVE_POS_RET
++}
++
++static void Bt2_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
++{
++ do
++ {
++ SKIP_HEADER(2)
++ HASH2_CALC;
++ curMatch = p->hash[hashValue];
++ p->hash[hashValue] = p->pos;
++ SKIP_FOOTER
++ }
++ while (--num != 0);
++}
++
++void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
++{
++ do
++ {
++ SKIP_HEADER(3)
++ HASH_ZIP_CALC;
++ curMatch = p->hash[hashValue];
++ p->hash[hashValue] = p->pos;
++ SKIP_FOOTER
++ }
++ while (--num != 0);
++}
++
++static void Bt3_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
++{
++ do
++ {
++ UInt32 hash2Value;
++ SKIP_HEADER(3)
++ HASH3_CALC;
++ curMatch = p->hash[kFix3HashSize + hashValue];
++ p->hash[hash2Value] =
++ p->hash[kFix3HashSize + hashValue] = p->pos;
++ SKIP_FOOTER
++ }
++ while (--num != 0);
++}
++
++static void Bt4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
++{
++ do
++ {
++ UInt32 hash2Value, hash3Value;
++ SKIP_HEADER(4)
++ HASH4_CALC;
++ curMatch = p->hash[kFix4HashSize + hashValue];
++ p->hash[ hash2Value] =
++ p->hash[kFix3HashSize + hash3Value] = p->pos;
++ p->hash[kFix4HashSize + hashValue] = p->pos;
++ SKIP_FOOTER
++ }
++ while (--num != 0);
++}
++
++static void Hc4_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
++{
++ do
++ {
++ UInt32 hash2Value, hash3Value;
++ SKIP_HEADER(4)
++ HASH4_CALC;
++ curMatch = p->hash[kFix4HashSize + hashValue];
++ p->hash[ hash2Value] =
++ p->hash[kFix3HashSize + hash3Value] =
++ p->hash[kFix4HashSize + hashValue] = p->pos;
++ p->son[p->cyclicBufferPos] = curMatch;
++ MOVE_POS
++ }
++ while (--num != 0);
++}
++
++void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num)
++{
++ do
++ {
++ SKIP_HEADER(3)
++ HASH_ZIP_CALC;
++ curMatch = p->hash[hashValue];
++ p->hash[hashValue] = p->pos;
++ p->son[p->cyclicBufferPos] = curMatch;
++ MOVE_POS
++ }
++ while (--num != 0);
++}
++
++void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable)
++{
++ vTable->Init = (Mf_Init_Func)MatchFinder_Init;
++ vTable->GetIndexByte = (Mf_GetIndexByte_Func)MatchFinder_GetIndexByte;
++ vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinder_GetNumAvailableBytes;
++ vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinder_GetPointerToCurrentPos;
++ if (!p->btMode)
++ {
++ vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches;
++ vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip;
++ }
++ else if (p->numHashBytes == 2)
++ {
++ vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches;
++ vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip;
++ }
++ else if (p->numHashBytes == 3)
++ {
++ vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches;
++ vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip;
++ }
++ else
++ {
++ vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches;
++ vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip;
++ }
++}
+--- /dev/null
++++ b/lib/lzma/LzmaDec.c
+@@ -0,0 +1,999 @@
++/* LzmaDec.c -- LZMA Decoder
++2009-09-20 : Igor Pavlov : Public domain */
++
++#include "LzmaDec.h"
++
++#include <string.h>
++
++#define kNumTopBits 24
++#define kTopValue ((UInt32)1 << kNumTopBits)
++
++#define kNumBitModelTotalBits 11
++#define kBitModelTotal (1 << kNumBitModelTotalBits)
++#define kNumMoveBits 5
++
++#define RC_INIT_SIZE 5
++
++#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
++
++#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
++#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
++#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
++#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
++ { UPDATE_0(p); i = (i + i); A0; } else \
++ { UPDATE_1(p); i = (i + i) + 1; A1; }
++#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
++
++#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
++#define TREE_DECODE(probs, limit, i) \
++ { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
++
++/* #define _LZMA_SIZE_OPT */
++
++#ifdef _LZMA_SIZE_OPT
++#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
++#else
++#define TREE_6_DECODE(probs, i) \
++ { i = 1; \
++ TREE_GET_BIT(probs, i); \
++ TREE_GET_BIT(probs, i); \
++ TREE_GET_BIT(probs, i); \
++ TREE_GET_BIT(probs, i); \
++ TREE_GET_BIT(probs, i); \
++ TREE_GET_BIT(probs, i); \
++ i -= 0x40; }
++#endif
++
++#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
++
++#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
++#define UPDATE_0_CHECK range = bound;
++#define UPDATE_1_CHECK range -= bound; code -= bound;
++#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
++ { UPDATE_0_CHECK; i = (i + i); A0; } else \
++ { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
++#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
++#define TREE_DECODE_CHECK(probs, limit, i) \
++ { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
++
++
++#define kNumPosBitsMax 4
++#define kNumPosStatesMax (1 << kNumPosBitsMax)
++
++#define kLenNumLowBits 3
++#define kLenNumLowSymbols (1 << kLenNumLowBits)
++#define kLenNumMidBits 3
++#define kLenNumMidSymbols (1 << kLenNumMidBits)
++#define kLenNumHighBits 8
++#define kLenNumHighSymbols (1 << kLenNumHighBits)
++
++#define LenChoice 0
++#define LenChoice2 (LenChoice + 1)
++#define LenLow (LenChoice2 + 1)
++#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
++#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
++#define kNumLenProbs (LenHigh + kLenNumHighSymbols)
++
++
++#define kNumStates 12
++#define kNumLitStates 7
++
++#define kStartPosModelIndex 4
++#define kEndPosModelIndex 14
++#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
++
++#define kNumPosSlotBits 6
++#define kNumLenToPosStates 4
++
++#define kNumAlignBits 4
++#define kAlignTableSize (1 << kNumAlignBits)
++
++#define kMatchMinLen 2
++#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
++
++#define IsMatch 0
++#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
++#define IsRepG0 (IsRep + kNumStates)
++#define IsRepG1 (IsRepG0 + kNumStates)
++#define IsRepG2 (IsRepG1 + kNumStates)
++#define IsRep0Long (IsRepG2 + kNumStates)
++#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
++#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
++#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
++#define LenCoder (Align + kAlignTableSize)
++#define RepLenCoder (LenCoder + kNumLenProbs)
++#define Literal (RepLenCoder + kNumLenProbs)
++
++#define LZMA_BASE_SIZE 1846
++#define LZMA_LIT_SIZE 768
++
++#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
++
++#if Literal != LZMA_BASE_SIZE
++StopCompilingDueBUG
++#endif
++
++#define LZMA_DIC_MIN (1 << 12)
++
++/* First LZMA-symbol is always decoded.
++And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
++Out:
++ Result:
++ SZ_OK - OK
++ SZ_ERROR_DATA - Error
++ p->remainLen:
++ < kMatchSpecLenStart : normal remain
++ = kMatchSpecLenStart : finished
++ = kMatchSpecLenStart + 1 : Flush marker
++ = kMatchSpecLenStart + 2 : State Init Marker
++*/
++
++static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
++{
++ CLzmaProb *probs = p->probs;
++
++ unsigned state = p->state;
++ UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
++ unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
++ unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
++ unsigned lc = p->prop.lc;
++
++ Byte *dic = p->dic;
++ SizeT dicBufSize = p->dicBufSize;
++ SizeT dicPos = p->dicPos;
++
++ UInt32 processedPos = p->processedPos;
++ UInt32 checkDicSize = p->checkDicSize;
++ unsigned len = 0;
++
++ const Byte *buf = p->buf;
++ UInt32 range = p->range;
++ UInt32 code = p->code;
++
++ do
++ {
++ CLzmaProb *prob;
++ UInt32 bound;
++ unsigned ttt;
++ unsigned posState = processedPos & pbMask;
++
++ prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
++ IF_BIT_0(prob)
++ {
++ unsigned symbol;
++ UPDATE_0(prob);
++ prob = probs + Literal;
++ if (checkDicSize != 0 || processedPos != 0)
++ prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
++ (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
++
++ if (state < kNumLitStates)
++ {
++ state -= (state < 4) ? state : 3;
++ symbol = 1;
++ do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
++ }
++ else
++ {
++ unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
++ unsigned offs = 0x100;
++ state -= (state < 10) ? 3 : 6;
++ symbol = 1;
++ do
++ {
++ unsigned bit;
++ CLzmaProb *probLit;
++ matchByte <<= 1;
++ bit = (matchByte & offs);
++ probLit = prob + offs + bit + symbol;
++ GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
++ }
++ while (symbol < 0x100);
++ }
++ dic[dicPos++] = (Byte)symbol;
++ processedPos++;
++ continue;
++ }
++ else
++ {
++ UPDATE_1(prob);
++ prob = probs + IsRep + state;
++ IF_BIT_0(prob)
++ {
++ UPDATE_0(prob);
++ state += kNumStates;
++ prob = probs + LenCoder;
++ }
++ else
++ {
++ UPDATE_1(prob);
++ if (checkDicSize == 0 && processedPos == 0)
++ return SZ_ERROR_DATA;
++ prob = probs + IsRepG0 + state;
++ IF_BIT_0(prob)
++ {
++ UPDATE_0(prob);
++ prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
++ IF_BIT_0(prob)
++ {
++ UPDATE_0(prob);
++ dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
++ dicPos++;
++ processedPos++;
++ state = state < kNumLitStates ? 9 : 11;
++ continue;
++ }
++ UPDATE_1(prob);
++ }
++ else
++ {
++ UInt32 distance;
++ UPDATE_1(prob);
++ prob = probs + IsRepG1 + state;
++ IF_BIT_0(prob)
++ {
++ UPDATE_0(prob);
++ distance = rep1;
++ }
++ else
++ {
++ UPDATE_1(prob);
++ prob = probs + IsRepG2 + state;
++ IF_BIT_0(prob)
++ {
++ UPDATE_0(prob);
++ distance = rep2;
++ }
++ else
++ {
++ UPDATE_1(prob);
++ distance = rep3;
++ rep3 = rep2;
++ }
++ rep2 = rep1;
++ }
++ rep1 = rep0;
++ rep0 = distance;
++ }
++ state = state < kNumLitStates ? 8 : 11;
++ prob = probs + RepLenCoder;
++ }
++ {
++ unsigned limit, offset;
++ CLzmaProb *probLen = prob + LenChoice;
++ IF_BIT_0(probLen)
++ {
++ UPDATE_0(probLen);
++ probLen = prob + LenLow + (posState << kLenNumLowBits);
++ offset = 0;
++ limit = (1 << kLenNumLowBits);
++ }
++ else
++ {
++ UPDATE_1(probLen);
++ probLen = prob + LenChoice2;
++ IF_BIT_0(probLen)
++ {
++ UPDATE_0(probLen);
++ probLen = prob + LenMid + (posState << kLenNumMidBits);
++ offset = kLenNumLowSymbols;
++ limit = (1 << kLenNumMidBits);
++ }
++ else
++ {
++ UPDATE_1(probLen);
++ probLen = prob + LenHigh;
++ offset = kLenNumLowSymbols + kLenNumMidSymbols;
++ limit = (1 << kLenNumHighBits);
++ }
++ }
++ TREE_DECODE(probLen, limit, len);
++ len += offset;
++ }
++
++ if (state >= kNumStates)
++ {
++ UInt32 distance;
++ prob = probs + PosSlot +
++ ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
++ TREE_6_DECODE(prob, distance);
++ if (distance >= kStartPosModelIndex)
++ {
++ unsigned posSlot = (unsigned)distance;
++ int numDirectBits = (int)(((distance >> 1) - 1));
++ distance = (2 | (distance & 1));
++ if (posSlot < kEndPosModelIndex)
++ {
++ distance <<= numDirectBits;
++ prob = probs + SpecPos + distance - posSlot - 1;
++ {
++ UInt32 mask = 1;
++ unsigned i = 1;
++ do
++ {
++ GET_BIT2(prob + i, i, ; , distance |= mask);
++ mask <<= 1;
++ }
++ while (--numDirectBits != 0);
++ }
++ }
++ else
++ {
++ numDirectBits -= kNumAlignBits;
++ do
++ {
++ NORMALIZE
++ range >>= 1;
++
++ {
++ UInt32 t;
++ code -= range;
++ t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
++ distance = (distance << 1) + (t + 1);
++ code += range & t;
++ }
++ /*
++ distance <<= 1;
++ if (code >= range)
++ {
++ code -= range;
++ distance |= 1;
++ }
++ */
++ }
++ while (--numDirectBits != 0);
++ prob = probs + Align;
++ distance <<= kNumAlignBits;
++ {
++ unsigned i = 1;
++ GET_BIT2(prob + i, i, ; , distance |= 1);
++ GET_BIT2(prob + i, i, ; , distance |= 2);
++ GET_BIT2(prob + i, i, ; , distance |= 4);
++ GET_BIT2(prob + i, i, ; , distance |= 8);
++ }
++ if (distance == (UInt32)0xFFFFFFFF)
++ {
++ len += kMatchSpecLenStart;
++ state -= kNumStates;
++ break;
++ }
++ }
++ }
++ rep3 = rep2;
++ rep2 = rep1;
++ rep1 = rep0;
++ rep0 = distance + 1;
++ if (checkDicSize == 0)
++ {
++ if (distance >= processedPos)
++ return SZ_ERROR_DATA;
++ }
++ else if (distance >= checkDicSize)
++ return SZ_ERROR_DATA;
++ state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
++ }
++
++ len += kMatchMinLen;
++
++ if (limit == dicPos)
++ return SZ_ERROR_DATA;
++ {
++ SizeT rem = limit - dicPos;
++ unsigned curLen = ((rem < len) ? (unsigned)rem : len);
++ SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
++
++ processedPos += curLen;
++
++ len -= curLen;
++ if (pos + curLen <= dicBufSize)
++ {
++ Byte *dest = dic + dicPos;
++ ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
++ const Byte *lim = dest + curLen;
++ dicPos += curLen;
++ do
++ *(dest) = (Byte)*(dest + src);
++ while (++dest != lim);
++ }
++ else
++ {
++ do
++ {
++ dic[dicPos++] = dic[pos];
++ if (++pos == dicBufSize)
++ pos = 0;
++ }
++ while (--curLen != 0);
++ }
++ }
++ }
++ }
++ while (dicPos < limit && buf < bufLimit);
++ NORMALIZE;
++ p->buf = buf;
++ p->range = range;
++ p->code = code;
++ p->remainLen = len;
++ p->dicPos = dicPos;
++ p->processedPos = processedPos;
++ p->reps[0] = rep0;
++ p->reps[1] = rep1;
++ p->reps[2] = rep2;
++ p->reps[3] = rep3;
++ p->state = state;
++
++ return SZ_OK;
++}
++
++static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
++{
++ if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
++ {
++ Byte *dic = p->dic;
++ SizeT dicPos = p->dicPos;
++ SizeT dicBufSize = p->dicBufSize;
++ unsigned len = p->remainLen;
++ UInt32 rep0 = p->reps[0];
++ if (limit - dicPos < len)
++ len = (unsigned)(limit - dicPos);
++
++ if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
++ p->checkDicSize = p->prop.dicSize;
++
++ p->processedPos += len;
++ p->remainLen -= len;
++ while (len-- != 0)
++ {
++ dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
++ dicPos++;
++ }
++ p->dicPos = dicPos;
++ }
++}
++
++static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
++{
++ do
++ {
++ SizeT limit2 = limit;
++ if (p->checkDicSize == 0)
++ {
++ UInt32 rem = p->prop.dicSize - p->processedPos;
++ if (limit - p->dicPos > rem)
++ limit2 = p->dicPos + rem;
++ }
++ RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
++ if (p->processedPos >= p->prop.dicSize)
++ p->checkDicSize = p->prop.dicSize;
++ LzmaDec_WriteRem(p, limit);
++ }
++ while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
++
++ if (p->remainLen > kMatchSpecLenStart)
++ {
++ p->remainLen = kMatchSpecLenStart;
++ }
++ return 0;
++}
++
++typedef enum
++{
++ DUMMY_ERROR, /* unexpected end of input stream */
++ DUMMY_LIT,
++ DUMMY_MATCH,
++ DUMMY_REP
++} ELzmaDummy;
++
++static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
++{
++ UInt32 range = p->range;
++ UInt32 code = p->code;
++ const Byte *bufLimit = buf + inSize;
++ CLzmaProb *probs = p->probs;
++ unsigned state = p->state;
++ ELzmaDummy res;
++
++ {
++ CLzmaProb *prob;
++ UInt32 bound;
++ unsigned ttt;
++ unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
++
++ prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
++ IF_BIT_0_CHECK(prob)
++ {
++ UPDATE_0_CHECK
++
++ /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
++
++ prob = probs + Literal;
++ if (p->checkDicSize != 0 || p->processedPos != 0)
++ prob += (LZMA_LIT_SIZE *
++ ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
++ (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
++
++ if (state < kNumLitStates)
++ {
++ unsigned symbol = 1;
++ do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
++ }
++ else
++ {
++ unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
++ ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
++ unsigned offs = 0x100;
++ unsigned symbol = 1;
++ do
++ {
++ unsigned bit;
++ CLzmaProb *probLit;
++ matchByte <<= 1;
++ bit = (matchByte & offs);
++ probLit = prob + offs + bit + symbol;
++ GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
++ }
++ while (symbol < 0x100);
++ }
++ res = DUMMY_LIT;
++ }
++ else
++ {
++ unsigned len;
++ UPDATE_1_CHECK;
++
++ prob = probs + IsRep + state;
++ IF_BIT_0_CHECK(prob)
++ {
++ UPDATE_0_CHECK;
++ state = 0;
++ prob = probs + LenCoder;
++ res = DUMMY_MATCH;
++ }
++ else
++ {
++ UPDATE_1_CHECK;
++ res = DUMMY_REP;
++ prob = probs + IsRepG0 + state;
++ IF_BIT_0_CHECK(prob)
++ {
++ UPDATE_0_CHECK;
++ prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
++ IF_BIT_0_CHECK(prob)
++ {
++ UPDATE_0_CHECK;
++ NORMALIZE_CHECK;
++ return DUMMY_REP;
++ }
++ else
++ {
++ UPDATE_1_CHECK;
++ }
++ }
++ else
++ {
++ UPDATE_1_CHECK;
++ prob = probs + IsRepG1 + state;
++ IF_BIT_0_CHECK(prob)
++ {
++ UPDATE_0_CHECK;
++ }
++ else
++ {
++ UPDATE_1_CHECK;
++ prob = probs + IsRepG2 + state;
++ IF_BIT_0_CHECK(prob)
++ {
++ UPDATE_0_CHECK;
++ }
++ else
++ {
++ UPDATE_1_CHECK;
++ }
++ }
++ }
++ state = kNumStates;
++ prob = probs + RepLenCoder;
++ }
++ {
++ unsigned limit, offset;
++ CLzmaProb *probLen = prob + LenChoice;
++ IF_BIT_0_CHECK(probLen)
++ {
++ UPDATE_0_CHECK;
++ probLen = prob + LenLow + (posState << kLenNumLowBits);
++ offset = 0;
++ limit = 1 << kLenNumLowBits;
++ }
++ else
++ {
++ UPDATE_1_CHECK;
++ probLen = prob + LenChoice2;
++ IF_BIT_0_CHECK(probLen)
++ {
++ UPDATE_0_CHECK;
++ probLen = prob + LenMid + (posState << kLenNumMidBits);
++ offset = kLenNumLowSymbols;
++ limit = 1 << kLenNumMidBits;
++ }
++ else
++ {
++ UPDATE_1_CHECK;
++ probLen = prob + LenHigh;
++ offset = kLenNumLowSymbols + kLenNumMidSymbols;
++ limit = 1 << kLenNumHighBits;
++ }
++ }
++ TREE_DECODE_CHECK(probLen, limit, len);
++ len += offset;
++ }
++
++ if (state < 4)
++ {
++ unsigned posSlot;
++ prob = probs + PosSlot +
++ ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
++ kNumPosSlotBits);
++ TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
++ if (posSlot >= kStartPosModelIndex)
++ {
++ int numDirectBits = ((posSlot >> 1) - 1);
++
++ /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
++
++ if (posSlot < kEndPosModelIndex)
++ {
++ prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
++ }
++ else
++ {
++ numDirectBits -= kNumAlignBits;
++ do
++ {
++ NORMALIZE_CHECK
++ range >>= 1;
++ code -= range & (((code - range) >> 31) - 1);
++ /* if (code >= range) code -= range; */
++ }
++ while (--numDirectBits != 0);
++ prob = probs + Align;
++ numDirectBits = kNumAlignBits;
++ }
++ {
++ unsigned i = 1;
++ do
++ {
++ GET_BIT_CHECK(prob + i, i);
++ }
++ while (--numDirectBits != 0);
++ }
++ }
++ }
++ }
++ }
++ NORMALIZE_CHECK;
++ return res;
++}
++
++
++static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
++{
++ p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
++ p->range = 0xFFFFFFFF;
++ p->needFlush = 0;
++}
++
++void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
++{
++ p->needFlush = 1;
++ p->remainLen = 0;
++ p->tempBufSize = 0;
++
++ if (initDic)
++ {
++ p->processedPos = 0;
++ p->checkDicSize = 0;
++ p->needInitState = 1;
++ }
++ if (initState)
++ p->needInitState = 1;
++}
++
++void LzmaDec_Init(CLzmaDec *p)
++{
++ p->dicPos = 0;
++ LzmaDec_InitDicAndState(p, True, True);
++}
++
++static void LzmaDec_InitStateReal(CLzmaDec *p)
++{
++ UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
++ UInt32 i;
++ CLzmaProb *probs = p->probs;
++ for (i = 0; i < numProbs; i++)
++ probs[i] = kBitModelTotal >> 1;
++ p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
++ p->state = 0;
++ p->needInitState = 0;
++}
++
++SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
++ ELzmaFinishMode finishMode, ELzmaStatus *status)
++{
++ SizeT inSize = *srcLen;
++ (*srcLen) = 0;
++ LzmaDec_WriteRem(p, dicLimit);
++
++ *status = LZMA_STATUS_NOT_SPECIFIED;
++
++ while (p->remainLen != kMatchSpecLenStart)
++ {
++ int checkEndMarkNow;
++
++ if (p->needFlush != 0)
++ {
++ for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
++ p->tempBuf[p->tempBufSize++] = *src++;
++ if (p->tempBufSize < RC_INIT_SIZE)
++ {
++ *status = LZMA_STATUS_NEEDS_MORE_INPUT;
++ return SZ_OK;
++ }
++ if (p->tempBuf[0] != 0)
++ return SZ_ERROR_DATA;
++
++ LzmaDec_InitRc(p, p->tempBuf);
++ p->tempBufSize = 0;
++ }
++
++ checkEndMarkNow = 0;
++ if (p->dicPos >= dicLimit)
++ {
++ if (p->remainLen == 0 && p->code == 0)
++ {
++ *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
++ return SZ_OK;
++ }
++ if (finishMode == LZMA_FINISH_ANY)
++ {
++ *status = LZMA_STATUS_NOT_FINISHED;
++ return SZ_OK;
++ }
++ if (p->remainLen != 0)
++ {
++ *status = LZMA_STATUS_NOT_FINISHED;
++ return SZ_ERROR_DATA;
++ }
++ checkEndMarkNow = 1;
++ }
++
++ if (p->needInitState)
++ LzmaDec_InitStateReal(p);
++
++ if (p->tempBufSize == 0)
++ {
++ SizeT processed;
++ const Byte *bufLimit;
++ if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
++ {
++ int dummyRes = LzmaDec_TryDummy(p, src, inSize);
++ if (dummyRes == DUMMY_ERROR)
++ {
++ memcpy(p->tempBuf, src, inSize);
++ p->tempBufSize = (unsigned)inSize;
++ (*srcLen) += inSize;
++ *status = LZMA_STATUS_NEEDS_MORE_INPUT;
++ return SZ_OK;
++ }
++ if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
++ {
++ *status = LZMA_STATUS_NOT_FINISHED;
++ return SZ_ERROR_DATA;
++ }
++ bufLimit = src;
++ }
++ else
++ bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
++ p->buf = src;
++ if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
++ return SZ_ERROR_DATA;
++ processed = (SizeT)(p->buf - src);
++ (*srcLen) += processed;
++ src += processed;
++ inSize -= processed;
++ }
++ else
++ {
++ unsigned rem = p->tempBufSize, lookAhead = 0;
++ while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
++ p->tempBuf[rem++] = src[lookAhead++];
++ p->tempBufSize = rem;
++ if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
++ {
++ int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
++ if (dummyRes == DUMMY_ERROR)
++ {
++ (*srcLen) += lookAhead;
++ *status = LZMA_STATUS_NEEDS_MORE_INPUT;
++ return SZ_OK;
++ }
++ if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
++ {
++ *status = LZMA_STATUS_NOT_FINISHED;
++ return SZ_ERROR_DATA;
++ }
++ }
++ p->buf = p->tempBuf;
++ if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
++ return SZ_ERROR_DATA;
++ lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
++ (*srcLen) += lookAhead;
++ src += lookAhead;
++ inSize -= lookAhead;
++ p->tempBufSize = 0;
++ }
++ }
++ if (p->code == 0)
++ *status = LZMA_STATUS_FINISHED_WITH_MARK;
++ return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
++}
++
++SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
++{
++ SizeT outSize = *destLen;
++ SizeT inSize = *srcLen;
++ *srcLen = *destLen = 0;
++ for (;;)
++ {
++ SizeT inSizeCur = inSize, outSizeCur, dicPos;
++ ELzmaFinishMode curFinishMode;
++ SRes res;
++ if (p->dicPos == p->dicBufSize)
++ p->dicPos = 0;
++ dicPos = p->dicPos;
++ if (outSize > p->dicBufSize - dicPos)
++ {
++ outSizeCur = p->dicBufSize;
++ curFinishMode = LZMA_FINISH_ANY;
++ }
++ else
++ {
++ outSizeCur = dicPos + outSize;
++ curFinishMode = finishMode;
++ }
++
++ res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
++ src += inSizeCur;
++ inSize -= inSizeCur;
++ *srcLen += inSizeCur;
++ outSizeCur = p->dicPos - dicPos;
++ memcpy(dest, p->dic + dicPos, outSizeCur);
++ dest += outSizeCur;
++ outSize -= outSizeCur;
++ *destLen += outSizeCur;
++ if (res != 0)
++ return res;
++ if (outSizeCur == 0 || outSize == 0)
++ return SZ_OK;
++ }
++}
++
++void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
++{
++ alloc->Free(alloc, p->probs);
++ p->probs = 0;
++}
++
++static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
++{
++ alloc->Free(alloc, p->dic);
++ p->dic = 0;
++}
++
++void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
++{
++ LzmaDec_FreeProbs(p, alloc);
++ LzmaDec_FreeDict(p, alloc);
++}
++
++SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
++{
++ UInt32 dicSize;
++ Byte d;
++
++ if (size < LZMA_PROPS_SIZE)
++ return SZ_ERROR_UNSUPPORTED;
++ else
++ dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
++
++ if (dicSize < LZMA_DIC_MIN)
++ dicSize = LZMA_DIC_MIN;
++ p->dicSize = dicSize;
++
++ d = data[0];
++ if (d >= (9 * 5 * 5))
++ return SZ_ERROR_UNSUPPORTED;
++
++ p->lc = d % 9;
++ d /= 9;
++ p->pb = d / 5;
++ p->lp = d % 5;
++
++ return SZ_OK;
++}
++
++static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
++{
++ UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
++ if (p->probs == 0 || numProbs != p->numProbs)
++ {
++ LzmaDec_FreeProbs(p, alloc);
++ p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
++ p->numProbs = numProbs;
++ if (p->probs == 0)
++ return SZ_ERROR_MEM;
++ }
++ return SZ_OK;
++}
++
++SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
++{
++ CLzmaProps propNew;
++ RINOK(LzmaProps_Decode(&propNew, props, propsSize));
++ RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
++ p->prop = propNew;
++ return SZ_OK;
++}
++
++SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
++{
++ CLzmaProps propNew;
++ SizeT dicBufSize;
++ RINOK(LzmaProps_Decode(&propNew, props, propsSize));
++ RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
++ dicBufSize = propNew.dicSize;
++ if (p->dic == 0 || dicBufSize != p->dicBufSize)
++ {
++ LzmaDec_FreeDict(p, alloc);
++ p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
++ if (p->dic == 0)
++ {
++ LzmaDec_FreeProbs(p, alloc);
++ return SZ_ERROR_MEM;
++ }
++ }
++ p->dicBufSize = dicBufSize;
++ p->prop = propNew;
++ return SZ_OK;
++}
++
++SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
++ const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
++ ELzmaStatus *status, ISzAlloc *alloc)
++{
++ CLzmaDec p;
++ SRes res;
++ SizeT inSize = *srcLen;
++ SizeT outSize = *destLen;
++ *srcLen = *destLen = 0;
++ if (inSize < RC_INIT_SIZE)
++ return SZ_ERROR_INPUT_EOF;
++
++ LzmaDec_Construct(&p);
++ res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
++ if (res != 0)
++ return res;
++ p.dic = dest;
++ p.dicBufSize = outSize;
++
++ LzmaDec_Init(&p);
++
++ *srcLen = inSize;
++ res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
++
++ if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
++ res = SZ_ERROR_INPUT_EOF;
++
++ (*destLen) = p.dicPos;
++ LzmaDec_FreeProbs(&p, alloc);
++ return res;
++}
+--- /dev/null
++++ b/lib/lzma/LzmaEnc.c
+@@ -0,0 +1,2271 @@
++/* LzmaEnc.c -- LZMA Encoder
++2009-11-24 : Igor Pavlov : Public domain */
++
++#include <string.h>
++
++/* #define SHOW_STAT */
++/* #define SHOW_STAT2 */
++
++#if defined(SHOW_STAT) || defined(SHOW_STAT2)
++#include <stdio.h>
++#endif
++
++#include "LzmaEnc.h"
++
++/* disable MT */
++#define _7ZIP_ST
++
++#include "LzFind.h"
++#ifndef _7ZIP_ST
++#include "LzFindMt.h"
++#endif
++
++#ifdef SHOW_STAT
++static int ttt = 0;
++#endif
++
++#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
++
++#define kBlockSize (9 << 10)
++#define kUnpackBlockSize (1 << 18)
++#define kMatchArraySize (1 << 21)
++#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
++
++#define kNumMaxDirectBits (31)
++
++#define kNumTopBits 24
++#define kTopValue ((UInt32)1 << kNumTopBits)
++
++#define kNumBitModelTotalBits 11
++#define kBitModelTotal (1 << kNumBitModelTotalBits)
++#define kNumMoveBits 5
++#define kProbInitValue (kBitModelTotal >> 1)
++
++#define kNumMoveReducingBits 4
++#define kNumBitPriceShiftBits 4
++#define kBitPrice (1 << kNumBitPriceShiftBits)
++
++void LzmaEncProps_Init(CLzmaEncProps *p)
++{
++ p->level = 5;
++ p->dictSize = p->mc = 0;
++ p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
++ p->writeEndMark = 0;
++}
++
++void LzmaEncProps_Normalize(CLzmaEncProps *p)
++{
++ int level = p->level;
++ if (level < 0) level = 5;
++ p->level = level;
++ if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
++ if (p->lc < 0) p->lc = 3;
++ if (p->lp < 0) p->lp = 0;
++ if (p->pb < 0) p->pb = 2;
++ if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
++ if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
++ if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
++ if (p->numHashBytes < 0) p->numHashBytes = 4;
++ if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
++ if (p->numThreads < 0)
++ p->numThreads =
++ #ifndef _7ZIP_ST
++ ((p->btMode && p->algo) ? 2 : 1);
++ #else
++ 1;
++ #endif
++}
++
++UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
++{
++ CLzmaEncProps props = *props2;
++ LzmaEncProps_Normalize(&props);
++ return props.dictSize;
++}
++
++/* #define LZMA_LOG_BSR */
++/* Define it for Intel's CPU */
++
++
++#ifdef LZMA_LOG_BSR
++
++#define kDicLogSizeMaxCompress 30
++
++#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); }
++
++UInt32 GetPosSlot1(UInt32 pos)
++{
++ UInt32 res;
++ BSR2_RET(pos, res);
++ return res;
++}
++#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
++#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
++
++#else
++
++#define kNumLogBits (9 + (int)sizeof(size_t) / 2)
++#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
++
++void LzmaEnc_FastPosInit(Byte *g_FastPos)
++{
++ int c = 2, slotFast;
++ g_FastPos[0] = 0;
++ g_FastPos[1] = 1;
++
++ for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
++ {
++ UInt32 k = (1 << ((slotFast >> 1) - 1));
++ UInt32 j;
++ for (j = 0; j < k; j++, c++)
++ g_FastPos[c] = (Byte)slotFast;
++ }
++}
++
++#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \
++ (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
++ res = p->g_FastPos[pos >> i] + (i * 2); }
++/*
++#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
++ p->g_FastPos[pos >> 6] + 12 : \
++ p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
++*/
++
++#define GetPosSlot1(pos) p->g_FastPos[pos]
++#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
++#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
++
++#endif
++
++
++#define LZMA_NUM_REPS 4
++
++typedef unsigned CState;
++
++typedef struct
++{
++ UInt32 price;
++
++ CState state;
++ int prev1IsChar;
++ int prev2;
++
++ UInt32 posPrev2;
++ UInt32 backPrev2;
++
++ UInt32 posPrev;
++ UInt32 backPrev;
++ UInt32 backs[LZMA_NUM_REPS];
++} COptimal;
++
++#define kNumOpts (1 << 12)
++
++#define kNumLenToPosStates 4
++#define kNumPosSlotBits 6
++#define kDicLogSizeMin 0
++#define kDicLogSizeMax 32
++#define kDistTableSizeMax (kDicLogSizeMax * 2)
++
++
++#define kNumAlignBits 4
++#define kAlignTableSize (1 << kNumAlignBits)
++#define kAlignMask (kAlignTableSize - 1)
++
++#define kStartPosModelIndex 4
++#define kEndPosModelIndex 14
++#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
++
++#define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
++
++#ifdef _LZMA_PROB32
++#define CLzmaProb UInt32
++#else
++#define CLzmaProb UInt16
++#endif
++
++#define LZMA_PB_MAX 4
++#define LZMA_LC_MAX 8
++#define LZMA_LP_MAX 4
++
++#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
++
++
++#define kLenNumLowBits 3
++#define kLenNumLowSymbols (1 << kLenNumLowBits)
++#define kLenNumMidBits 3
++#define kLenNumMidSymbols (1 << kLenNumMidBits)
++#define kLenNumHighBits 8
++#define kLenNumHighSymbols (1 << kLenNumHighBits)
++
++#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
++
++#define LZMA_MATCH_LEN_MIN 2
++#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
++
++#define kNumStates 12
++
++typedef struct
++{
++ CLzmaProb choice;
++ CLzmaProb choice2;
++ CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
++ CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
++ CLzmaProb high[kLenNumHighSymbols];
++} CLenEnc;
++
++typedef struct
++{
++ CLenEnc p;
++ UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
++ UInt32 tableSize;
++ UInt32 counters[LZMA_NUM_PB_STATES_MAX];
++} CLenPriceEnc;
++
++typedef struct
++{
++ UInt32 range;
++ Byte cache;
++ UInt64 low;
++ UInt64 cacheSize;
++ Byte *buf;
++ Byte *bufLim;
++ Byte *bufBase;
++ ISeqOutStream *outStream;
++ UInt64 processed;
++ SRes res;
++} CRangeEnc;
++
++typedef struct
++{
++ CLzmaProb *litProbs;
++
++ CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
++ CLzmaProb isRep[kNumStates];
++ CLzmaProb isRepG0[kNumStates];
++ CLzmaProb isRepG1[kNumStates];
++ CLzmaProb isRepG2[kNumStates];
++ CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
++
++ CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
++ CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
++ CLzmaProb posAlignEncoder[1 << kNumAlignBits];
++
++ CLenPriceEnc lenEnc;
++ CLenPriceEnc repLenEnc;
++
++ UInt32 reps[LZMA_NUM_REPS];
++ UInt32 state;
++} CSaveState;
++
++typedef struct
++{
++ IMatchFinder matchFinder;
++ void *matchFinderObj;
++
++ #ifndef _7ZIP_ST
++ Bool mtMode;
++ CMatchFinderMt matchFinderMt;
++ #endif
++
++ CMatchFinder matchFinderBase;
++
++ #ifndef _7ZIP_ST
++ Byte pad[128];
++ #endif
++
++ UInt32 optimumEndIndex;
++ UInt32 optimumCurrentIndex;
++
++ UInt32 longestMatchLength;
++ UInt32 numPairs;
++ UInt32 numAvail;
++ COptimal opt[kNumOpts];
++
++ #ifndef LZMA_LOG_BSR
++ Byte g_FastPos[1 << kNumLogBits];
++ #endif
++
++ UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
++ UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
++ UInt32 numFastBytes;
++ UInt32 additionalOffset;
++ UInt32 reps[LZMA_NUM_REPS];
++ UInt32 state;
++
++ UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
++ UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
++ UInt32 alignPrices[kAlignTableSize];
++ UInt32 alignPriceCount;
++
++ UInt32 distTableSize;
++
++ unsigned lc, lp, pb;
++ unsigned lpMask, pbMask;
++
++ CLzmaProb *litProbs;
++
++ CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
++ CLzmaProb isRep[kNumStates];
++ CLzmaProb isRepG0[kNumStates];
++ CLzmaProb isRepG1[kNumStates];
++ CLzmaProb isRepG2[kNumStates];
++ CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
++
++ CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
++ CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
++ CLzmaProb posAlignEncoder[1 << kNumAlignBits];
++
++ CLenPriceEnc lenEnc;
++ CLenPriceEnc repLenEnc;
++
++ unsigned lclp;
++
++ Bool fastMode;
++
++ CRangeEnc rc;
++
++ Bool writeEndMark;
++ UInt64 nowPos64;
++ UInt32 matchPriceCount;
++ Bool finished;
++ Bool multiThread;
++
++ SRes result;
++ UInt32 dictSize;
++ UInt32 matchFinderCycles;
++
++ int needInit;
++
++ CSaveState saveState;
++} CLzmaEnc;
++
++void LzmaEnc_SaveState(CLzmaEncHandle pp)
++{
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ CSaveState *dest = &p->saveState;
++ int i;
++ dest->lenEnc = p->lenEnc;
++ dest->repLenEnc = p->repLenEnc;
++ dest->state = p->state;
++
++ for (i = 0; i < kNumStates; i++)
++ {
++ memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
++ memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
++ }
++ for (i = 0; i < kNumLenToPosStates; i++)
++ memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
++ memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
++ memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
++ memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
++ memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
++ memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
++ memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
++ memcpy(dest->reps, p->reps, sizeof(p->reps));
++ memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
++}
++
++void LzmaEnc_RestoreState(CLzmaEncHandle pp)
++{
++ CLzmaEnc *dest = (CLzmaEnc *)pp;
++ const CSaveState *p = &dest->saveState;
++ int i;
++ dest->lenEnc = p->lenEnc;
++ dest->repLenEnc = p->repLenEnc;
++ dest->state = p->state;
++
++ for (i = 0; i < kNumStates; i++)
++ {
++ memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
++ memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
++ }
++ for (i = 0; i < kNumLenToPosStates; i++)
++ memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
++ memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
++ memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
++ memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
++ memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
++ memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
++ memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
++ memcpy(dest->reps, p->reps, sizeof(p->reps));
++ memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
++}
++
++SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
++{
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ CLzmaEncProps props = *props2;
++ LzmaEncProps_Normalize(&props);
++
++ if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
++ props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
++ return SZ_ERROR_PARAM;
++ p->dictSize = props.dictSize;
++ p->matchFinderCycles = props.mc;
++ {
++ unsigned fb = props.fb;
++ if (fb < 5)
++ fb = 5;
++ if (fb > LZMA_MATCH_LEN_MAX)
++ fb = LZMA_MATCH_LEN_MAX;
++ p->numFastBytes = fb;
++ }
++ p->lc = props.lc;
++ p->lp = props.lp;
++ p->pb = props.pb;
++ p->fastMode = (props.algo == 0);
++ p->matchFinderBase.btMode = props.btMode;
++ {
++ UInt32 numHashBytes = 4;
++ if (props.btMode)
++ {
++ if (props.numHashBytes < 2)
++ numHashBytes = 2;
++ else if (props.numHashBytes < 4)
++ numHashBytes = props.numHashBytes;
++ }
++ p->matchFinderBase.numHashBytes = numHashBytes;
++ }
++
++ p->matchFinderBase.cutValue = props.mc;
++
++ p->writeEndMark = props.writeEndMark;
++
++ #ifndef _7ZIP_ST
++ /*
++ if (newMultiThread != _multiThread)
++ {
++ ReleaseMatchFinder();
++ _multiThread = newMultiThread;
++ }
++ */
++ p->multiThread = (props.numThreads > 1);
++ #endif
++
++ return SZ_OK;
++}
++
++static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
++static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
++static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
++static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
++
++#define IsCharState(s) ((s) < 7)
++
++#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
++
++#define kInfinityPrice (1 << 30)
++
++static void RangeEnc_Construct(CRangeEnc *p)
++{
++ p->outStream = 0;
++ p->bufBase = 0;
++}
++
++#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
++
++#define RC_BUF_SIZE (1 << 16)
++static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc)
++{
++ if (p->bufBase == 0)
++ {
++ p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE);
++ if (p->bufBase == 0)
++ return 0;
++ p->bufLim = p->bufBase + RC_BUF_SIZE;
++ }
++ return 1;
++}
++
++static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc)
++{
++ alloc->Free(alloc, p->bufBase);
++ p->bufBase = 0;
++}
++
++static void RangeEnc_Init(CRangeEnc *p)
++{
++ /* Stream.Init(); */
++ p->low = 0;
++ p->range = 0xFFFFFFFF;
++ p->cacheSize = 1;
++ p->cache = 0;
++
++ p->buf = p->bufBase;
++
++ p->processed = 0;
++ p->res = SZ_OK;
++}
++
++static void RangeEnc_FlushStream(CRangeEnc *p)
++{
++ size_t num;
++ if (p->res != SZ_OK)
++ return;
++ num = p->buf - p->bufBase;
++ if (num != p->outStream->Write(p->outStream, p->bufBase, num))
++ p->res = SZ_ERROR_WRITE;
++ p->processed += num;
++ p->buf = p->bufBase;
++}
++
++static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
++{
++ if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0)
++ {
++ Byte temp = p->cache;
++ do
++ {
++ Byte *buf = p->buf;
++ *buf++ = (Byte)(temp + (Byte)(p->low >> 32));
++ p->buf = buf;
++ if (buf == p->bufLim)
++ RangeEnc_FlushStream(p);
++ temp = 0xFF;
++ }
++ while (--p->cacheSize != 0);
++ p->cache = (Byte)((UInt32)p->low >> 24);
++ }
++ p->cacheSize++;
++ p->low = (UInt32)p->low << 8;
++}
++
++static void RangeEnc_FlushData(CRangeEnc *p)
++{
++ int i;
++ for (i = 0; i < 5; i++)
++ RangeEnc_ShiftLow(p);
++}
++
++static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits)
++{
++ do
++ {
++ p->range >>= 1;
++ p->low += p->range & (0 - ((value >> --numBits) & 1));
++ if (p->range < kTopValue)
++ {
++ p->range <<= 8;
++ RangeEnc_ShiftLow(p);
++ }
++ }
++ while (numBits != 0);
++}
++
++static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol)
++{
++ UInt32 ttt = *prob;
++ UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt;
++ if (symbol == 0)
++ {
++ p->range = newBound;
++ ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
++ }
++ else
++ {
++ p->low += newBound;
++ p->range -= newBound;
++ ttt -= ttt >> kNumMoveBits;
++ }
++ *prob = (CLzmaProb)ttt;
++ if (p->range < kTopValue)
++ {
++ p->range <<= 8;
++ RangeEnc_ShiftLow(p);
++ }
++}
++
++static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
++{
++ symbol |= 0x100;
++ do
++ {
++ RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
++ symbol <<= 1;
++ }
++ while (symbol < 0x10000);
++}
++
++static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
++{
++ UInt32 offs = 0x100;
++ symbol |= 0x100;
++ do
++ {
++ matchByte <<= 1;
++ RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
++ symbol <<= 1;
++ offs &= ~(matchByte ^ symbol);
++ }
++ while (symbol < 0x10000);
++}
++
++void LzmaEnc_InitPriceTables(UInt32 *ProbPrices)
++{
++ UInt32 i;
++ for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
++ {
++ const int kCyclesBits = kNumBitPriceShiftBits;
++ UInt32 w = i;
++ UInt32 bitCount = 0;
++ int j;
++ for (j = 0; j < kCyclesBits; j++)
++ {
++ w = w * w;
++ bitCount <<= 1;
++ while (w >= ((UInt32)1 << 16))
++ {
++ w >>= 1;
++ bitCount++;
++ }
++ }
++ ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
++ }
++}
++
++
++#define GET_PRICE(prob, symbol) \
++ p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
++
++#define GET_PRICEa(prob, symbol) \
++ ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
++
++#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
++#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
++
++#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
++#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
++
++static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices)
++{
++ UInt32 price = 0;
++ symbol |= 0x100;
++ do
++ {
++ price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
++ symbol <<= 1;
++ }
++ while (symbol < 0x10000);
++ return price;
++}
++
++static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices)
++{
++ UInt32 price = 0;
++ UInt32 offs = 0x100;
++ symbol |= 0x100;
++ do
++ {
++ matchByte <<= 1;
++ price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
++ symbol <<= 1;
++ offs &= ~(matchByte ^ symbol);
++ }
++ while (symbol < 0x10000);
++ return price;
++}
++
++
++static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
++{
++ UInt32 m = 1;
++ int i;
++ for (i = numBitLevels; i != 0;)
++ {
++ UInt32 bit;
++ i--;
++ bit = (symbol >> i) & 1;
++ RangeEnc_EncodeBit(rc, probs + m, bit);
++ m = (m << 1) | bit;
++ }
++}
++
++static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol)
++{
++ UInt32 m = 1;
++ int i;
++ for (i = 0; i < numBitLevels; i++)
++ {
++ UInt32 bit = symbol & 1;
++ RangeEnc_EncodeBit(rc, probs + m, bit);
++ m = (m << 1) | bit;
++ symbol >>= 1;
++ }
++}
++
++static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
++{
++ UInt32 price = 0;
++ symbol |= (1 << numBitLevels);
++ while (symbol != 1)
++ {
++ price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
++ symbol >>= 1;
++ }
++ return price;
++}
++
++static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices)
++{
++ UInt32 price = 0;
++ UInt32 m = 1;
++ int i;
++ for (i = numBitLevels; i != 0; i--)
++ {
++ UInt32 bit = symbol & 1;
++ symbol >>= 1;
++ price += GET_PRICEa(probs[m], bit);
++ m = (m << 1) | bit;
++ }
++ return price;
++}
++
++
++static void LenEnc_Init(CLenEnc *p)
++{
++ unsigned i;
++ p->choice = p->choice2 = kProbInitValue;
++ for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
++ p->low[i] = kProbInitValue;
++ for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
++ p->mid[i] = kProbInitValue;
++ for (i = 0; i < kLenNumHighSymbols; i++)
++ p->high[i] = kProbInitValue;
++}
++
++static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState)
++{
++ if (symbol < kLenNumLowSymbols)
++ {
++ RangeEnc_EncodeBit(rc, &p->choice, 0);
++ RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
++ }
++ else
++ {
++ RangeEnc_EncodeBit(rc, &p->choice, 1);
++ if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
++ {
++ RangeEnc_EncodeBit(rc, &p->choice2, 0);
++ RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
++ }
++ else
++ {
++ RangeEnc_EncodeBit(rc, &p->choice2, 1);
++ RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
++ }
++ }
++}
++
++static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices)
++{
++ UInt32 a0 = GET_PRICE_0a(p->choice);
++ UInt32 a1 = GET_PRICE_1a(p->choice);
++ UInt32 b0 = a1 + GET_PRICE_0a(p->choice2);
++ UInt32 b1 = a1 + GET_PRICE_1a(p->choice2);
++ UInt32 i = 0;
++ for (i = 0; i < kLenNumLowSymbols; i++)
++ {
++ if (i >= numSymbols)
++ return;
++ prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
++ }
++ for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
++ {
++ if (i >= numSymbols)
++ return;
++ prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
++ }
++ for (; i < numSymbols; i++)
++ prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
++}
++
++static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices)
++{
++ LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
++ p->counters[posState] = p->tableSize;
++}
++
++static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices)
++{
++ UInt32 posState;
++ for (posState = 0; posState < numPosStates; posState++)
++ LenPriceEnc_UpdateTable(p, posState, ProbPrices);
++}
++
++static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices)
++{
++ LenEnc_Encode(&p->p, rc, symbol, posState);
++ if (updatePrice)
++ if (--p->counters[posState] == 0)
++ LenPriceEnc_UpdateTable(p, posState, ProbPrices);
++}
++
++
++
++
++static void MovePos(CLzmaEnc *p, UInt32 num)
++{
++ #ifdef SHOW_STAT
++ ttt += num;
++ printf("\n MovePos %d", num);
++ #endif
++ if (num != 0)
++ {
++ p->additionalOffset += num;
++ p->matchFinder.Skip(p->matchFinderObj, num);
++ }
++}
++
++static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes)
++{
++ UInt32 lenRes = 0, numPairs;
++ p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
++ numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
++ #ifdef SHOW_STAT
++ printf("\n i = %d numPairs = %d ", ttt, numPairs / 2);
++ ttt++;
++ {
++ UInt32 i;
++ for (i = 0; i < numPairs; i += 2)
++ printf("%2d %6d | ", p->matches[i], p->matches[i + 1]);
++ }
++ #endif
++ if (numPairs > 0)
++ {
++ lenRes = p->matches[numPairs - 2];
++ if (lenRes == p->numFastBytes)
++ {
++ const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
++ UInt32 distance = p->matches[numPairs - 1] + 1;
++ UInt32 numAvail = p->numAvail;
++ if (numAvail > LZMA_MATCH_LEN_MAX)
++ numAvail = LZMA_MATCH_LEN_MAX;
++ {
++ const Byte *pby2 = pby - distance;
++ for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
++ }
++ }
++ }
++ p->additionalOffset++;
++ *numDistancePairsRes = numPairs;
++ return lenRes;
++}
++
++
++#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False;
++#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False;
++#define IsShortRep(p) ((p)->backPrev == 0)
++
++static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState)
++{
++ return
++ GET_PRICE_0(p->isRepG0[state]) +
++ GET_PRICE_0(p->isRep0Long[state][posState]);
++}
++
++static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState)
++{
++ UInt32 price;
++ if (repIndex == 0)
++ {
++ price = GET_PRICE_0(p->isRepG0[state]);
++ price += GET_PRICE_1(p->isRep0Long[state][posState]);
++ }
++ else
++ {
++ price = GET_PRICE_1(p->isRepG0[state]);
++ if (repIndex == 1)
++ price += GET_PRICE_0(p->isRepG1[state]);
++ else
++ {
++ price += GET_PRICE_1(p->isRepG1[state]);
++ price += GET_PRICE(p->isRepG2[state], repIndex - 2);
++ }
++ }
++ return price;
++}
++
++static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState)
++{
++ return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
++ GetPureRepPrice(p, repIndex, state, posState);
++}
++
++static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur)
++{
++ UInt32 posMem = p->opt[cur].posPrev;
++ UInt32 backMem = p->opt[cur].backPrev;
++ p->optimumEndIndex = cur;
++ do
++ {
++ if (p->opt[cur].prev1IsChar)
++ {
++ MakeAsChar(&p->opt[posMem])
++ p->opt[posMem].posPrev = posMem - 1;
++ if (p->opt[cur].prev2)
++ {
++ p->opt[posMem - 1].prev1IsChar = False;
++ p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
++ p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
++ }
++ }
++ {
++ UInt32 posPrev = posMem;
++ UInt32 backCur = backMem;
++
++ backMem = p->opt[posPrev].backPrev;
++ posMem = p->opt[posPrev].posPrev;
++
++ p->opt[posPrev].backPrev = backCur;
++ p->opt[posPrev].posPrev = cur;
++ cur = posPrev;
++ }
++ }
++ while (cur != 0);
++ *backRes = p->opt[0].backPrev;
++ p->optimumCurrentIndex = p->opt[0].posPrev;
++ return p->optimumCurrentIndex;
++}
++
++#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300)
++
++static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes)
++{
++ UInt32 numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
++ UInt32 matchPrice, repMatchPrice, normalMatchPrice;
++ UInt32 reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
++ UInt32 *matches;
++ const Byte *data;
++ Byte curByte, matchByte;
++ if (p->optimumEndIndex != p->optimumCurrentIndex)
++ {
++ const COptimal *opt = &p->opt[p->optimumCurrentIndex];
++ UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex;
++ *backRes = opt->backPrev;
++ p->optimumCurrentIndex = opt->posPrev;
++ return lenRes;
++ }
++ p->optimumCurrentIndex = p->optimumEndIndex = 0;
++
++ if (p->additionalOffset == 0)
++ mainLen = ReadMatchDistances(p, &numPairs);
++ else
++ {
++ mainLen = p->longestMatchLength;
++ numPairs = p->numPairs;
++ }
++
++ numAvail = p->numAvail;
++ if (numAvail < 2)
++ {
++ *backRes = (UInt32)(-1);
++ return 1;
++ }
++ if (numAvail > LZMA_MATCH_LEN_MAX)
++ numAvail = LZMA_MATCH_LEN_MAX;
++
++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
++ repMaxIndex = 0;
++ for (i = 0; i < LZMA_NUM_REPS; i++)
++ {
++ UInt32 lenTest;
++ const Byte *data2;
++ reps[i] = p->reps[i];
++ data2 = data - (reps[i] + 1);
++ if (data[0] != data2[0] || data[1] != data2[1])
++ {
++ repLens[i] = 0;
++ continue;
++ }
++ for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
++ repLens[i] = lenTest;
++ if (lenTest > repLens[repMaxIndex])
++ repMaxIndex = i;
++ }
++ if (repLens[repMaxIndex] >= p->numFastBytes)
++ {
++ UInt32 lenRes;
++ *backRes = repMaxIndex;
++ lenRes = repLens[repMaxIndex];
++ MovePos(p, lenRes - 1);
++ return lenRes;
++ }
++
++ matches = p->matches;
++ if (mainLen >= p->numFastBytes)
++ {
++ *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
++ MovePos(p, mainLen - 1);
++ return mainLen;
++ }
++ curByte = *data;
++ matchByte = *(data - (reps[0] + 1));
++
++ if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
++ {
++ *backRes = (UInt32)-1;
++ return 1;
++ }
++
++ p->opt[0].state = (CState)p->state;
++
++ posState = (position & p->pbMask);
++
++ {
++ const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
++ p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
++ (!IsCharState(p->state) ?
++ LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
++ LitEnc_GetPrice(probs, curByte, p->ProbPrices));
++ }
++
++ MakeAsChar(&p->opt[1]);
++
++ matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
++ repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
++
++ if (matchByte == curByte)
++ {
++ UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
++ if (shortRepPrice < p->opt[1].price)
++ {
++ p->opt[1].price = shortRepPrice;
++ MakeAsShortRep(&p->opt[1]);
++ }
++ }
++ lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
++
++ if (lenEnd < 2)
++ {
++ *backRes = p->opt[1].backPrev;
++ return 1;
++ }
++
++ p->opt[1].posPrev = 0;
++ for (i = 0; i < LZMA_NUM_REPS; i++)
++ p->opt[0].backs[i] = reps[i];
++
++ len = lenEnd;
++ do
++ p->opt[len--].price = kInfinityPrice;
++ while (len >= 2);
++
++ for (i = 0; i < LZMA_NUM_REPS; i++)
++ {
++ UInt32 repLen = repLens[i];
++ UInt32 price;
++ if (repLen < 2)
++ continue;
++ price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
++ do
++ {
++ UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
++ COptimal *opt = &p->opt[repLen];
++ if (curAndLenPrice < opt->price)
++ {
++ opt->price = curAndLenPrice;
++ opt->posPrev = 0;
++ opt->backPrev = i;
++ opt->prev1IsChar = False;
++ }
++ }
++ while (--repLen >= 2);
++ }
++
++ normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
++
++ len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
++ if (len <= mainLen)
++ {
++ UInt32 offs = 0;
++ while (len > matches[offs])
++ offs += 2;
++ for (; ; len++)
++ {
++ COptimal *opt;
++ UInt32 distance = matches[offs + 1];
++
++ UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
++ UInt32 lenToPosState = GetLenToPosState(len);
++ if (distance < kNumFullDistances)
++ curAndLenPrice += p->distancesPrices[lenToPosState][distance];
++ else
++ {
++ UInt32 slot;
++ GetPosSlot2(distance, slot);
++ curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
++ }
++ opt = &p->opt[len];
++ if (curAndLenPrice < opt->price)
++ {
++ opt->price = curAndLenPrice;
++ opt->posPrev = 0;
++ opt->backPrev = distance + LZMA_NUM_REPS;
++ opt->prev1IsChar = False;
++ }
++ if (len == matches[offs])
++ {
++ offs += 2;
++ if (offs == numPairs)
++ break;
++ }
++ }
++ }
++
++ cur = 0;
++
++ #ifdef SHOW_STAT2
++ if (position >= 0)
++ {
++ unsigned i;
++ printf("\n pos = %4X", position);
++ for (i = cur; i <= lenEnd; i++)
++ printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price);
++ }
++ #endif
++
++ for (;;)
++ {
++ UInt32 numAvailFull, newLen, numPairs, posPrev, state, posState, startLen;
++ UInt32 curPrice, curAnd1Price, matchPrice, repMatchPrice;
++ Bool nextIsChar;
++ Byte curByte, matchByte;
++ const Byte *data;
++ COptimal *curOpt;
++ COptimal *nextOpt;
++
++ cur++;
++ if (cur == lenEnd)
++ return Backward(p, backRes, cur);
++
++ newLen = ReadMatchDistances(p, &numPairs);
++ if (newLen >= p->numFastBytes)
++ {
++ p->numPairs = numPairs;
++ p->longestMatchLength = newLen;
++ return Backward(p, backRes, cur);
++ }
++ position++;
++ curOpt = &p->opt[cur];
++ posPrev = curOpt->posPrev;
++ if (curOpt->prev1IsChar)
++ {
++ posPrev--;
++ if (curOpt->prev2)
++ {
++ state = p->opt[curOpt->posPrev2].state;
++ if (curOpt->backPrev2 < LZMA_NUM_REPS)
++ state = kRepNextStates[state];
++ else
++ state = kMatchNextStates[state];
++ }
++ else
++ state = p->opt[posPrev].state;
++ state = kLiteralNextStates[state];
++ }
++ else
++ state = p->opt[posPrev].state;
++ if (posPrev == cur - 1)
++ {
++ if (IsShortRep(curOpt))
++ state = kShortRepNextStates[state];
++ else
++ state = kLiteralNextStates[state];
++ }
++ else
++ {
++ UInt32 pos;
++ const COptimal *prevOpt;
++ if (curOpt->prev1IsChar && curOpt->prev2)
++ {
++ posPrev = curOpt->posPrev2;
++ pos = curOpt->backPrev2;
++ state = kRepNextStates[state];
++ }
++ else
++ {
++ pos = curOpt->backPrev;
++ if (pos < LZMA_NUM_REPS)
++ state = kRepNextStates[state];
++ else
++ state = kMatchNextStates[state];
++ }
++ prevOpt = &p->opt[posPrev];
++ if (pos < LZMA_NUM_REPS)
++ {
++ UInt32 i;
++ reps[0] = prevOpt->backs[pos];
++ for (i = 1; i <= pos; i++)
++ reps[i] = prevOpt->backs[i - 1];
++ for (; i < LZMA_NUM_REPS; i++)
++ reps[i] = prevOpt->backs[i];
++ }
++ else
++ {
++ UInt32 i;
++ reps[0] = (pos - LZMA_NUM_REPS);
++ for (i = 1; i < LZMA_NUM_REPS; i++)
++ reps[i] = prevOpt->backs[i - 1];
++ }
++ }
++ curOpt->state = (CState)state;
++
++ curOpt->backs[0] = reps[0];
++ curOpt->backs[1] = reps[1];
++ curOpt->backs[2] = reps[2];
++ curOpt->backs[3] = reps[3];
++
++ curPrice = curOpt->price;
++ nextIsChar = False;
++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
++ curByte = *data;
++ matchByte = *(data - (reps[0] + 1));
++
++ posState = (position & p->pbMask);
++
++ curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
++ {
++ const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
++ curAnd1Price +=
++ (!IsCharState(state) ?
++ LitEnc_GetPriceMatched(probs, curByte, matchByte, p->ProbPrices) :
++ LitEnc_GetPrice(probs, curByte, p->ProbPrices));
++ }
++
++ nextOpt = &p->opt[cur + 1];
++
++ if (curAnd1Price < nextOpt->price)
++ {
++ nextOpt->price = curAnd1Price;
++ nextOpt->posPrev = cur;
++ MakeAsChar(nextOpt);
++ nextIsChar = True;
++ }
++
++ matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
++ repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
++
++ if (matchByte == curByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
++ {
++ UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
++ if (shortRepPrice <= nextOpt->price)
++ {
++ nextOpt->price = shortRepPrice;
++ nextOpt->posPrev = cur;
++ MakeAsShortRep(nextOpt);
++ nextIsChar = True;
++ }
++ }
++ numAvailFull = p->numAvail;
++ {
++ UInt32 temp = kNumOpts - 1 - cur;
++ if (temp < numAvailFull)
++ numAvailFull = temp;
++ }
++
++ if (numAvailFull < 2)
++ continue;
++ numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
++
++ if (!nextIsChar && matchByte != curByte) /* speed optimization */
++ {
++ /* try Literal + rep0 */
++ UInt32 temp;
++ UInt32 lenTest2;
++ const Byte *data2 = data - (reps[0] + 1);
++ UInt32 limit = p->numFastBytes + 1;
++ if (limit > numAvailFull)
++ limit = numAvailFull;
++
++ for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
++ lenTest2 = temp - 1;
++ if (lenTest2 >= 2)
++ {
++ UInt32 state2 = kLiteralNextStates[state];
++ UInt32 posStateNext = (position + 1) & p->pbMask;
++ UInt32 nextRepMatchPrice = curAnd1Price +
++ GET_PRICE_1(p->isMatch[state2][posStateNext]) +
++ GET_PRICE_1(p->isRep[state2]);
++ /* for (; lenTest2 >= 2; lenTest2--) */
++ {
++ UInt32 curAndLenPrice;
++ COptimal *opt;
++ UInt32 offset = cur + 1 + lenTest2;
++ while (lenEnd < offset)
++ p->opt[++lenEnd].price = kInfinityPrice;
++ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
++ opt = &p->opt[offset];
++ if (curAndLenPrice < opt->price)
++ {
++ opt->price = curAndLenPrice;
++ opt->posPrev = cur + 1;
++ opt->backPrev = 0;
++ opt->prev1IsChar = True;
++ opt->prev2 = False;
++ }
++ }
++ }
++ }
++
++ startLen = 2; /* speed optimization */
++ {
++ UInt32 repIndex;
++ for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
++ {
++ UInt32 lenTest;
++ UInt32 lenTestTemp;
++ UInt32 price;
++ const Byte *data2 = data - (reps[repIndex] + 1);
++ if (data[0] != data2[0] || data[1] != data2[1])
++ continue;
++ for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
++ while (lenEnd < cur + lenTest)
++ p->opt[++lenEnd].price = kInfinityPrice;
++ lenTestTemp = lenTest;
++ price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
++ do
++ {
++ UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
++ COptimal *opt = &p->opt[cur + lenTest];
++ if (curAndLenPrice < opt->price)
++ {
++ opt->price = curAndLenPrice;
++ opt->posPrev = cur;
++ opt->backPrev = repIndex;
++ opt->prev1IsChar = False;
++ }
++ }
++ while (--lenTest >= 2);
++ lenTest = lenTestTemp;
++
++ if (repIndex == 0)
++ startLen = lenTest + 1;
++
++ /* if (_maxMode) */
++ {
++ UInt32 lenTest2 = lenTest + 1;
++ UInt32 limit = lenTest2 + p->numFastBytes;
++ UInt32 nextRepMatchPrice;
++ if (limit > numAvailFull)
++ limit = numAvailFull;
++ for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
++ lenTest2 -= lenTest + 1;
++ if (lenTest2 >= 2)
++ {
++ UInt32 state2 = kRepNextStates[state];
++ UInt32 posStateNext = (position + lenTest) & p->pbMask;
++ UInt32 curAndLenCharPrice =
++ price + p->repLenEnc.prices[posState][lenTest - 2] +
++ GET_PRICE_0(p->isMatch[state2][posStateNext]) +
++ LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
++ data[lenTest], data2[lenTest], p->ProbPrices);
++ state2 = kLiteralNextStates[state2];
++ posStateNext = (position + lenTest + 1) & p->pbMask;
++ nextRepMatchPrice = curAndLenCharPrice +
++ GET_PRICE_1(p->isMatch[state2][posStateNext]) +
++ GET_PRICE_1(p->isRep[state2]);
++
++ /* for (; lenTest2 >= 2; lenTest2--) */
++ {
++ UInt32 curAndLenPrice;
++ COptimal *opt;
++ UInt32 offset = cur + lenTest + 1 + lenTest2;
++ while (lenEnd < offset)
++ p->opt[++lenEnd].price = kInfinityPrice;
++ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
++ opt = &p->opt[offset];
++ if (curAndLenPrice < opt->price)
++ {
++ opt->price = curAndLenPrice;
++ opt->posPrev = cur + lenTest + 1;
++ opt->backPrev = 0;
++ opt->prev1IsChar = True;
++ opt->prev2 = True;
++ opt->posPrev2 = cur;
++ opt->backPrev2 = repIndex;
++ }
++ }
++ }
++ }
++ }
++ }
++ /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */
++ if (newLen > numAvail)
++ {
++ newLen = numAvail;
++ for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
++ matches[numPairs] = newLen;
++ numPairs += 2;
++ }
++ if (newLen >= startLen)
++ {
++ UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
++ UInt32 offs, curBack, posSlot;
++ UInt32 lenTest;
++ while (lenEnd < cur + newLen)
++ p->opt[++lenEnd].price = kInfinityPrice;
++
++ offs = 0;
++ while (startLen > matches[offs])
++ offs += 2;
++ curBack = matches[offs + 1];
++ GetPosSlot2(curBack, posSlot);
++ for (lenTest = /*2*/ startLen; ; lenTest++)
++ {
++ UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
++ UInt32 lenToPosState = GetLenToPosState(lenTest);
++ COptimal *opt;
++ if (curBack < kNumFullDistances)
++ curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
++ else
++ curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
++
++ opt = &p->opt[cur + lenTest];
++ if (curAndLenPrice < opt->price)
++ {
++ opt->price = curAndLenPrice;
++ opt->posPrev = cur;
++ opt->backPrev = curBack + LZMA_NUM_REPS;
++ opt->prev1IsChar = False;
++ }
++
++ if (/*_maxMode && */lenTest == matches[offs])
++ {
++ /* Try Match + Literal + Rep0 */
++ const Byte *data2 = data - (curBack + 1);
++ UInt32 lenTest2 = lenTest + 1;
++ UInt32 limit = lenTest2 + p->numFastBytes;
++ UInt32 nextRepMatchPrice;
++ if (limit > numAvailFull)
++ limit = numAvailFull;
++ for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
++ lenTest2 -= lenTest + 1;
++ if (lenTest2 >= 2)
++ {
++ UInt32 state2 = kMatchNextStates[state];
++ UInt32 posStateNext = (position + lenTest) & p->pbMask;
++ UInt32 curAndLenCharPrice = curAndLenPrice +
++ GET_PRICE_0(p->isMatch[state2][posStateNext]) +
++ LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
++ data[lenTest], data2[lenTest], p->ProbPrices);
++ state2 = kLiteralNextStates[state2];
++ posStateNext = (posStateNext + 1) & p->pbMask;
++ nextRepMatchPrice = curAndLenCharPrice +
++ GET_PRICE_1(p->isMatch[state2][posStateNext]) +
++ GET_PRICE_1(p->isRep[state2]);
++
++ /* for (; lenTest2 >= 2; lenTest2--) */
++ {
++ UInt32 offset = cur + lenTest + 1 + lenTest2;
++ UInt32 curAndLenPrice;
++ COptimal *opt;
++ while (lenEnd < offset)
++ p->opt[++lenEnd].price = kInfinityPrice;
++ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
++ opt = &p->opt[offset];
++ if (curAndLenPrice < opt->price)
++ {
++ opt->price = curAndLenPrice;
++ opt->posPrev = cur + lenTest + 1;
++ opt->backPrev = 0;
++ opt->prev1IsChar = True;
++ opt->prev2 = True;
++ opt->posPrev2 = cur;
++ opt->backPrev2 = curBack + LZMA_NUM_REPS;
++ }
++ }
++ }
++ offs += 2;
++ if (offs == numPairs)
++ break;
++ curBack = matches[offs + 1];
++ if (curBack >= kNumFullDistances)
++ GetPosSlot2(curBack, posSlot);
++ }
++ }
++ }
++ }
++}
++
++#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
++
++static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes)
++{
++ UInt32 numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
++ const Byte *data;
++ const UInt32 *matches;
++
++ if (p->additionalOffset == 0)
++ mainLen = ReadMatchDistances(p, &numPairs);
++ else
++ {
++ mainLen = p->longestMatchLength;
++ numPairs = p->numPairs;
++ }
++
++ numAvail = p->numAvail;
++ *backRes = (UInt32)-1;
++ if (numAvail < 2)
++ return 1;
++ if (numAvail > LZMA_MATCH_LEN_MAX)
++ numAvail = LZMA_MATCH_LEN_MAX;
++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
++
++ repLen = repIndex = 0;
++ for (i = 0; i < LZMA_NUM_REPS; i++)
++ {
++ UInt32 len;
++ const Byte *data2 = data - (p->reps[i] + 1);
++ if (data[0] != data2[0] || data[1] != data2[1])
++ continue;
++ for (len = 2; len < numAvail && data[len] == data2[len]; len++);
++ if (len >= p->numFastBytes)
++ {
++ *backRes = i;
++ MovePos(p, len - 1);
++ return len;
++ }
++ if (len > repLen)
++ {
++ repIndex = i;
++ repLen = len;
++ }
++ }
++
++ matches = p->matches;
++ if (mainLen >= p->numFastBytes)
++ {
++ *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
++ MovePos(p, mainLen - 1);
++ return mainLen;
++ }
++
++ mainDist = 0; /* for GCC */
++ if (mainLen >= 2)
++ {
++ mainDist = matches[numPairs - 1];
++ while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
++ {
++ if (!ChangePair(matches[numPairs - 3], mainDist))
++ break;
++ numPairs -= 2;
++ mainLen = matches[numPairs - 2];
++ mainDist = matches[numPairs - 1];
++ }
++ if (mainLen == 2 && mainDist >= 0x80)
++ mainLen = 1;
++ }
++
++ if (repLen >= 2 && (
++ (repLen + 1 >= mainLen) ||
++ (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
++ (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
++ {
++ *backRes = repIndex;
++ MovePos(p, repLen - 1);
++ return repLen;
++ }
++
++ if (mainLen < 2 || numAvail <= 2)
++ return 1;
++
++ p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
++ if (p->longestMatchLength >= 2)
++ {
++ UInt32 newDistance = matches[p->numPairs - 1];
++ if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
++ (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
++ (p->longestMatchLength > mainLen + 1) ||
++ (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
++ return 1;
++ }
++
++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
++ for (i = 0; i < LZMA_NUM_REPS; i++)
++ {
++ UInt32 len, limit;
++ const Byte *data2 = data - (p->reps[i] + 1);
++ if (data[0] != data2[0] || data[1] != data2[1])
++ continue;
++ limit = mainLen - 1;
++ for (len = 2; len < limit && data[len] == data2[len]; len++);
++ if (len >= limit)
++ return 1;
++ }
++ *backRes = mainDist + LZMA_NUM_REPS;
++ MovePos(p, mainLen - 2);
++ return mainLen;
++}
++
++static void WriteEndMarker(CLzmaEnc *p, UInt32 posState)
++{
++ UInt32 len;
++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
++ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
++ p->state = kMatchNextStates[p->state];
++ len = LZMA_MATCH_LEN_MIN;
++ LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
++ RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
++ RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
++ RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
++}
++
++static SRes CheckErrors(CLzmaEnc *p)
++{
++ if (p->result != SZ_OK)
++ return p->result;
++ if (p->rc.res != SZ_OK)
++ p->result = SZ_ERROR_WRITE;
++ if (p->matchFinderBase.result != SZ_OK)
++ p->result = SZ_ERROR_READ;
++ if (p->result != SZ_OK)
++ p->finished = True;
++ return p->result;
++}
++
++static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
++{
++ /* ReleaseMFStream(); */
++ p->finished = True;
++ if (p->writeEndMark)
++ WriteEndMarker(p, nowPos & p->pbMask);
++ RangeEnc_FlushData(&p->rc);
++ RangeEnc_FlushStream(&p->rc);
++ return CheckErrors(p);
++}
++
++static void FillAlignPrices(CLzmaEnc *p)
++{
++ UInt32 i;
++ for (i = 0; i < kAlignTableSize; i++)
++ p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
++ p->alignPriceCount = 0;
++}
++
++static void FillDistancesPrices(CLzmaEnc *p)
++{
++ UInt32 tempPrices[kNumFullDistances];
++ UInt32 i, lenToPosState;
++ for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
++ {
++ UInt32 posSlot = GetPosSlot1(i);
++ UInt32 footerBits = ((posSlot >> 1) - 1);
++ UInt32 base = ((2 | (posSlot & 1)) << footerBits);
++ tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
++ }
++
++ for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
++ {
++ UInt32 posSlot;
++ const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
++ UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
++ for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
++ posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
++ for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
++ posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
++
++ {
++ UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
++ UInt32 i;
++ for (i = 0; i < kStartPosModelIndex; i++)
++ distancesPrices[i] = posSlotPrices[i];
++ for (; i < kNumFullDistances; i++)
++ distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
++ }
++ }
++ p->matchPriceCount = 0;
++}
++
++void LzmaEnc_Construct(CLzmaEnc *p)
++{
++ RangeEnc_Construct(&p->rc);
++ MatchFinder_Construct(&p->matchFinderBase);
++ #ifndef _7ZIP_ST
++ MatchFinderMt_Construct(&p->matchFinderMt);
++ p->matchFinderMt.MatchFinder = &p->matchFinderBase;
++ #endif
++
++ {
++ CLzmaEncProps props;
++ LzmaEncProps_Init(&props);
++ LzmaEnc_SetProps(p, &props);
++ }
++
++ #ifndef LZMA_LOG_BSR
++ LzmaEnc_FastPosInit(p->g_FastPos);
++ #endif
++
++ LzmaEnc_InitPriceTables(p->ProbPrices);
++ p->litProbs = 0;
++ p->saveState.litProbs = 0;
++}
++
++CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc)
++{
++ void *p;
++ p = alloc->Alloc(alloc, sizeof(CLzmaEnc));
++ if (p != 0)
++ LzmaEnc_Construct((CLzmaEnc *)p);
++ return p;
++}
++
++void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc)
++{
++ alloc->Free(alloc, p->litProbs);
++ alloc->Free(alloc, p->saveState.litProbs);
++ p->litProbs = 0;
++ p->saveState.litProbs = 0;
++}
++
++void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ #ifndef _7ZIP_ST
++ MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
++ #endif
++ MatchFinder_Free(&p->matchFinderBase, allocBig);
++ LzmaEnc_FreeLits(p, alloc);
++ RangeEnc_Free(&p->rc, alloc);
++}
++
++void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
++ alloc->Free(alloc, p);
++}
++
++static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize)
++{
++ UInt32 nowPos32, startPos32;
++ if (p->needInit)
++ {
++ p->matchFinder.Init(p->matchFinderObj);
++ p->needInit = 0;
++ }
++
++ if (p->finished)
++ return p->result;
++ RINOK(CheckErrors(p));
++
++ nowPos32 = (UInt32)p->nowPos64;
++ startPos32 = nowPos32;
++
++ if (p->nowPos64 == 0)
++ {
++ UInt32 numPairs;
++ Byte curByte;
++ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
++ return Flush(p, nowPos32);
++ ReadMatchDistances(p, &numPairs);
++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
++ p->state = kLiteralNextStates[p->state];
++ curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
++ LitEnc_Encode(&p->rc, p->litProbs, curByte);
++ p->additionalOffset--;
++ nowPos32++;
++ }
++
++ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
++ for (;;)
++ {
++ UInt32 pos, len, posState;
++
++ if (p->fastMode)
++ len = GetOptimumFast(p, &pos);
++ else
++ len = GetOptimum(p, nowPos32, &pos);
++
++ #ifdef SHOW_STAT2
++ printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos);
++ #endif
++
++ posState = nowPos32 & p->pbMask;
++ if (len == 1 && pos == (UInt32)-1)
++ {
++ Byte curByte;
++ CLzmaProb *probs;
++ const Byte *data;
++
++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
++ curByte = *data;
++ probs = LIT_PROBS(nowPos32, *(data - 1));
++ if (IsCharState(p->state))
++ LitEnc_Encode(&p->rc, probs, curByte);
++ else
++ LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1));
++ p->state = kLiteralNextStates[p->state];
++ }
++ else
++ {
++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
++ if (pos < LZMA_NUM_REPS)
++ {
++ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
++ if (pos == 0)
++ {
++ RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
++ RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
++ }
++ else
++ {
++ UInt32 distance = p->reps[pos];
++ RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
++ if (pos == 1)
++ RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
++ else
++ {
++ RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
++ RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
++ if (pos == 3)
++ p->reps[3] = p->reps[2];
++ p->reps[2] = p->reps[1];
++ }
++ p->reps[1] = p->reps[0];
++ p->reps[0] = distance;
++ }
++ if (len == 1)
++ p->state = kShortRepNextStates[p->state];
++ else
++ {
++ LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
++ p->state = kRepNextStates[p->state];
++ }
++ }
++ else
++ {
++ UInt32 posSlot;
++ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
++ p->state = kMatchNextStates[p->state];
++ LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
++ pos -= LZMA_NUM_REPS;
++ GetPosSlot(pos, posSlot);
++ RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
++
++ if (posSlot >= kStartPosModelIndex)
++ {
++ UInt32 footerBits = ((posSlot >> 1) - 1);
++ UInt32 base = ((2 | (posSlot & 1)) << footerBits);
++ UInt32 posReduced = pos - base;
++
++ if (posSlot < kEndPosModelIndex)
++ RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
++ else
++ {
++ RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
++ RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
++ p->alignPriceCount++;
++ }
++ }
++ p->reps[3] = p->reps[2];
++ p->reps[2] = p->reps[1];
++ p->reps[1] = p->reps[0];
++ p->reps[0] = pos;
++ p->matchPriceCount++;
++ }
++ }
++ p->additionalOffset -= len;
++ nowPos32 += len;
++ if (p->additionalOffset == 0)
++ {
++ UInt32 processed;
++ if (!p->fastMode)
++ {
++ if (p->matchPriceCount >= (1 << 7))
++ FillDistancesPrices(p);
++ if (p->alignPriceCount >= kAlignTableSize)
++ FillAlignPrices(p);
++ }
++ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
++ break;
++ processed = nowPos32 - startPos32;
++ if (useLimits)
++ {
++ if (processed + kNumOpts + 300 >= maxUnpackSize ||
++ RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
++ break;
++ }
++ else if (processed >= (1 << 15))
++ {
++ p->nowPos64 += nowPos32 - startPos32;
++ return CheckErrors(p);
++ }
++ }
++ }
++ p->nowPos64 += nowPos32 - startPos32;
++ return Flush(p, nowPos32);
++}
++
++#define kBigHashDicLimit ((UInt32)1 << 24)
++
++static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ UInt32 beforeSize = kNumOpts;
++ Bool btMode;
++ if (!RangeEnc_Alloc(&p->rc, alloc))
++ return SZ_ERROR_MEM;
++ btMode = (p->matchFinderBase.btMode != 0);
++ #ifndef _7ZIP_ST
++ p->mtMode = (p->multiThread && !p->fastMode && btMode);
++ #endif
++
++ {
++ unsigned lclp = p->lc + p->lp;
++ if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
++ {
++ LzmaEnc_FreeLits(p, alloc);
++ p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
++ p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
++ if (p->litProbs == 0 || p->saveState.litProbs == 0)
++ {
++ LzmaEnc_FreeLits(p, alloc);
++ return SZ_ERROR_MEM;
++ }
++ p->lclp = lclp;
++ }
++ }
++
++ p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
++
++ if (beforeSize + p->dictSize < keepWindowSize)
++ beforeSize = keepWindowSize - p->dictSize;
++
++ #ifndef _7ZIP_ST
++ if (p->mtMode)
++ {
++ RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig));
++ p->matchFinderObj = &p->matchFinderMt;
++ MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
++ }
++ else
++ #endif
++ {
++ if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
++ return SZ_ERROR_MEM;
++ p->matchFinderObj = &p->matchFinderBase;
++ MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
++ }
++ return SZ_OK;
++}
++
++void LzmaEnc_Init(CLzmaEnc *p)
++{
++ UInt32 i;
++ p->state = 0;
++ for (i = 0 ; i < LZMA_NUM_REPS; i++)
++ p->reps[i] = 0;
++
++ RangeEnc_Init(&p->rc);
++
++
++ for (i = 0; i < kNumStates; i++)
++ {
++ UInt32 j;
++ for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
++ {
++ p->isMatch[i][j] = kProbInitValue;
++ p->isRep0Long[i][j] = kProbInitValue;
++ }
++ p->isRep[i] = kProbInitValue;
++ p->isRepG0[i] = kProbInitValue;
++ p->isRepG1[i] = kProbInitValue;
++ p->isRepG2[i] = kProbInitValue;
++ }
++
++ {
++ UInt32 num = 0x300 << (p->lp + p->lc);
++ for (i = 0; i < num; i++)
++ p->litProbs[i] = kProbInitValue;
++ }
++
++ {
++ for (i = 0; i < kNumLenToPosStates; i++)
++ {
++ CLzmaProb *probs = p->posSlotEncoder[i];
++ UInt32 j;
++ for (j = 0; j < (1 << kNumPosSlotBits); j++)
++ probs[j] = kProbInitValue;
++ }
++ }
++ {
++ for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
++ p->posEncoders[i] = kProbInitValue;
++ }
++
++ LenEnc_Init(&p->lenEnc.p);
++ LenEnc_Init(&p->repLenEnc.p);
++
++ for (i = 0; i < (1 << kNumAlignBits); i++)
++ p->posAlignEncoder[i] = kProbInitValue;
++
++ p->optimumEndIndex = 0;
++ p->optimumCurrentIndex = 0;
++ p->additionalOffset = 0;
++
++ p->pbMask = (1 << p->pb) - 1;
++ p->lpMask = (1 << p->lp) - 1;
++}
++
++void LzmaEnc_InitPrices(CLzmaEnc *p)
++{
++ if (!p->fastMode)
++ {
++ FillDistancesPrices(p);
++ FillAlignPrices(p);
++ }
++
++ p->lenEnc.tableSize =
++ p->repLenEnc.tableSize =
++ p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
++ LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
++ LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
++}
++
++static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ UInt32 i;
++ for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++)
++ if (p->dictSize <= ((UInt32)1 << i))
++ break;
++ p->distTableSize = i * 2;
++
++ p->finished = False;
++ p->result = SZ_OK;
++ RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
++ LzmaEnc_Init(p);
++ LzmaEnc_InitPrices(p);
++ p->nowPos64 = 0;
++ return SZ_OK;
++}
++
++static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
++ ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ p->matchFinderBase.stream = inStream;
++ p->needInit = 1;
++ p->rc.outStream = outStream;
++ return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
++}
++
++SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
++ ISeqInStream *inStream, UInt32 keepWindowSize,
++ ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ p->matchFinderBase.stream = inStream;
++ p->needInit = 1;
++ return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
++}
++
++static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
++{
++ p->matchFinderBase.directInput = 1;
++ p->matchFinderBase.bufferBase = (Byte *)src;
++ p->matchFinderBase.directInputRem = srcLen;
++}
++
++SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
++ UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ LzmaEnc_SetInputBuf(p, src, srcLen);
++ p->needInit = 1;
++
++ return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
++}
++
++void LzmaEnc_Finish(CLzmaEncHandle pp)
++{
++ #ifndef _7ZIP_ST
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ if (p->mtMode)
++ MatchFinderMt_ReleaseStream(&p->matchFinderMt);
++ #else
++ pp = pp;
++ #endif
++}
++
++typedef struct
++{
++ ISeqOutStream funcTable;
++ Byte *data;
++ SizeT rem;
++ Bool overflow;
++} CSeqOutStreamBuf;
++
++static size_t MyWrite(void *pp, const void *data, size_t size)
++{
++ CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp;
++ if (p->rem < size)
++ {
++ size = p->rem;
++ p->overflow = True;
++ }
++ memcpy(p->data, data, size);
++ p->rem -= size;
++ p->data += size;
++ return size;
++}
++
++
++UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
++{
++ const CLzmaEnc *p = (CLzmaEnc *)pp;
++ return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
++}
++
++const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
++{
++ const CLzmaEnc *p = (CLzmaEnc *)pp;
++ return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
++}
++
++SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
++ Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
++{
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ UInt64 nowPos64;
++ SRes res;
++ CSeqOutStreamBuf outStream;
++
++ outStream.funcTable.Write = MyWrite;
++ outStream.data = dest;
++ outStream.rem = *destLen;
++ outStream.overflow = False;
++
++ p->writeEndMark = False;
++ p->finished = False;
++ p->result = SZ_OK;
++
++ if (reInit)
++ LzmaEnc_Init(p);
++ LzmaEnc_InitPrices(p);
++ nowPos64 = p->nowPos64;
++ RangeEnc_Init(&p->rc);
++ p->rc.outStream = &outStream.funcTable;
++
++ res = LzmaEnc_CodeOneBlock(p, True, desiredPackSize, *unpackSize);
++
++ *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
++ *destLen -= outStream.rem;
++ if (outStream.overflow)
++ return SZ_ERROR_OUTPUT_EOF;
++
++ return res;
++}
++
++static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
++{
++ SRes res = SZ_OK;
++
++ #ifndef _7ZIP_ST
++ Byte allocaDummy[0x300];
++ int i = 0;
++ for (i = 0; i < 16; i++)
++ allocaDummy[i] = (Byte)i;
++ #endif
++
++ for (;;)
++ {
++ res = LzmaEnc_CodeOneBlock(p, False, 0, 0);
++ if (res != SZ_OK || p->finished != 0)
++ break;
++ if (progress != 0)
++ {
++ res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
++ if (res != SZ_OK)
++ {
++ res = SZ_ERROR_PROGRESS;
++ break;
++ }
++ }
++ }
++ LzmaEnc_Finish(p);
++ return res;
++}
++
++SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
++ ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
++ return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
++}
++
++SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
++{
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++ int i;
++ UInt32 dictSize = p->dictSize;
++ if (*size < LZMA_PROPS_SIZE)
++ return SZ_ERROR_PARAM;
++ *size = LZMA_PROPS_SIZE;
++ props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
++
++ for (i = 11; i <= 30; i++)
++ {
++ if (dictSize <= ((UInt32)2 << i))
++ {
++ dictSize = (2 << i);
++ break;
++ }
++ if (dictSize <= ((UInt32)3 << i))
++ {
++ dictSize = (3 << i);
++ break;
++ }
++ }
++
++ for (i = 0; i < 4; i++)
++ props[1 + i] = (Byte)(dictSize >> (8 * i));
++ return SZ_OK;
++}
++
++SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
++ int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ SRes res;
++ CLzmaEnc *p = (CLzmaEnc *)pp;
++
++ CSeqOutStreamBuf outStream;
++
++ LzmaEnc_SetInputBuf(p, src, srcLen);
++
++ outStream.funcTable.Write = MyWrite;
++ outStream.data = dest;
++ outStream.rem = *destLen;
++ outStream.overflow = False;
++
++ p->writeEndMark = writeEndMark;
++
++ p->rc.outStream = &outStream.funcTable;
++ res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
++ if (res == SZ_OK)
++ res = LzmaEnc_Encode2(p, progress);
++
++ *destLen -= outStream.rem;
++ if (outStream.overflow)
++ return SZ_ERROR_OUTPUT_EOF;
++ return res;
++}
++
++SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
++ const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
++ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig)
++{
++ CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
++ SRes res;
++ if (p == 0)
++ return SZ_ERROR_MEM;
++
++ res = LzmaEnc_SetProps(p, props);
++ if (res == SZ_OK)
++ {
++ res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
++ if (res == SZ_OK)
++ res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
++ writeEndMark, progress, alloc, allocBig);
++ }
++
++ LzmaEnc_Destroy(p, alloc, allocBig);
++ return res;
++}
+--- /dev/null
++++ b/lib/lzma/Makefile
+@@ -0,0 +1,7 @@
++lzma_compress-objs := LzFind.o LzmaEnc.o
++lzma_decompress-objs := LzmaDec.o
++
++obj-$(CONFIG_LZMA_COMPRESS) += lzma_compress.o
++obj-$(CONFIG_LZMA_DECOMPRESS) += lzma_decompress.o
++
++EXTRA_CFLAGS += -Iinclude/linux -Iinclude/linux/lzma -include types.h