diff options
author | Florian Fainelli <florian@openwrt.org> | 2007-07-26 20:00:24 +0000 |
---|---|---|
committer | Florian Fainelli <florian@openwrt.org> | 2007-07-26 20:00:24 +0000 |
commit | c43c4da559585d9a0e6d833aff5e4c99d01f1300 (patch) | |
tree | c548510d6f7535a6a1370588debd193d0738bc07 /package/rt2x00/src/rt2500pci.c | |
parent | 1a12e151ee8b9c2257cbd14ba8769f8065e19ec9 (diff) | |
download | mtk-20170518-c43c4da559585d9a0e6d833aff5e4c99d01f1300.zip mtk-20170518-c43c4da559585d9a0e6d833aff5e4c99d01f1300.tar.gz mtk-20170518-c43c4da559585d9a0e6d833aff5e4c99d01f1300.tar.bz2 |
Add rt2x00-mac80211 snapshot (#1916)
SVN-Revision: 8184
Diffstat (limited to 'package/rt2x00/src/rt2500pci.c')
-rw-r--r-- | package/rt2x00/src/rt2500pci.c | 1907 |
1 files changed, 1907 insertions, 0 deletions
diff --git a/package/rt2x00/src/rt2500pci.c b/package/rt2x00/src/rt2500pci.c new file mode 100644 index 0000000..61d7e74 --- /dev/null +++ b/package/rt2x00/src/rt2500pci.c @@ -0,0 +1,1907 @@ +/* + Copyright (C) 2004 - 2007 rt2x00 SourceForge Project + <http://rt2x00.serialmonkey.com> + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the + Free Software Foundation, Inc., + 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + */ + +/* + Module: rt2500pci + Abstract: rt2500pci device specific routines. + Supported chipsets: RT2560. + */ + +/* + * Set enviroment defines for rt2x00.h + */ +#define DRV_NAME "rt2500pci" + +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/version.h> +#include <linux/init.h> +#include <linux/pci.h> +#include <linux/dma-mapping.h> +#include <linux/delay.h> +#include <linux/etherdevice.h> +#include <linux/eeprom_93cx6.h> + +#include <asm/io.h> + +#include "rt2x00.h" +#include "rt2x00pci.h" +#include "rt2500pci.h" + +/* + * Register access. + * All access to the CSR registers will go through the methods + * rt2x00pci_register_read and rt2x00pci_register_write. + * BBP and RF register require indirect register access, + * and use the CSR registers BBPCSR and RFCSR to achieve this. + * These indirect registers work with busy bits, + * and we will try maximal REGISTER_BUSY_COUNT times to access + * the register while taking a REGISTER_BUSY_DELAY us delay + * between each attampt. When the busy bit is still set at that time, + * the access attempt is considered to have failed, + * and we will print an error. + */ +static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + unsigned int i; + + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + rt2x00pci_register_read(rt2x00dev, BBPCSR, ®); + if (!rt2x00_get_field32(reg, BBPCSR_BUSY)) + break; + udelay(REGISTER_BUSY_DELAY); + } + + return reg; +} + +static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev, + const u8 reg_id, const u8 value) +{ + u32 reg; + + /* + * Wait until the BBP becomes ready. + */ + reg = rt2500pci_bbp_check(rt2x00dev); + if (rt2x00_get_field32(reg, BBPCSR_BUSY)) { + ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n"); + return; + } + + /* + * Write the data into the BBP. + */ + reg = 0; + rt2x00_set_field32(®, BBPCSR_VALUE, value); + rt2x00_set_field32(®, BBPCSR_REGNUM, reg_id); + rt2x00_set_field32(®, BBPCSR_BUSY, 1); + rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); + + rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); +} + +static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev, + const u8 reg_id, u8 *value) +{ + u32 reg; + + /* + * Wait until the BBP becomes ready. + */ + reg = rt2500pci_bbp_check(rt2x00dev); + if (rt2x00_get_field32(reg, BBPCSR_BUSY)) { + ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n"); + return; + } + + /* + * Write the request into the BBP. + */ + reg = 0; + rt2x00_set_field32(®, BBPCSR_REGNUM, reg_id); + rt2x00_set_field32(®, BBPCSR_BUSY, 1); + rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); + + rt2x00pci_register_write(rt2x00dev, BBPCSR, reg); + + /* + * Wait until the BBP becomes ready. + */ + reg = rt2500pci_bbp_check(rt2x00dev); + if (rt2x00_get_field32(reg, BBPCSR_BUSY)) { + ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n"); + *value = 0xff; + return; + } + + *value = rt2x00_get_field32(reg, BBPCSR_VALUE); +} + +static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev, + const u32 value) +{ + u32 reg; + unsigned int i; + + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + rt2x00pci_register_read(rt2x00dev, RFCSR, ®); + if (!rt2x00_get_field32(reg, RFCSR_BUSY)) + goto rf_write; + udelay(REGISTER_BUSY_DELAY); + } + + ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n"); + return; + +rf_write: + reg = 0; + rt2x00_set_field32(®, RFCSR_VALUE, value); + rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); + rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); + rt2x00_set_field32(®, RFCSR_BUSY, 1); + + rt2x00pci_register_write(rt2x00dev, RFCSR, reg); +} + +static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) +{ + struct rt2x00_dev *rt2x00dev = eeprom->data; + u32 reg; + + rt2x00pci_register_read(rt2x00dev, CSR21, ®); + + eeprom->reg_data_in = !!rt2x00_get_field32(reg, + CSR21_EEPROM_DATA_IN); + eeprom->reg_data_out = !!rt2x00_get_field32(reg, + CSR21_EEPROM_DATA_OUT); + eeprom->reg_data_clock = !!rt2x00_get_field32(reg, + CSR21_EEPROM_DATA_CLOCK); + eeprom->reg_chip_select = !!rt2x00_get_field32(reg, + CSR21_EEPROM_CHIP_SELECT); +} + +static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) +{ + struct rt2x00_dev *rt2x00dev = eeprom->data; + u32 reg = 0; + + rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, + !!eeprom->reg_data_in); + rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, + !!eeprom->reg_data_out); + rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, + !!eeprom->reg_data_clock); + rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, + !!eeprom->reg_chip_select); + + rt2x00pci_register_write(rt2x00dev, CSR21, reg); +} + +#ifdef CONFIG_RT2X00_LIB_DEBUGFS +#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) ) + +static void rt2500pci_read_csr(struct rt2x00_dev *rt2x00dev, + const unsigned long word, void *data) +{ + rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data); +} + +static void rt2500pci_write_csr(struct rt2x00_dev *rt2x00dev, + const unsigned long word, void *data) +{ + rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), *((u32*)data)); +} + +static void rt2500pci_read_eeprom(struct rt2x00_dev *rt2x00dev, + const unsigned long word, void *data) +{ + rt2x00_eeprom_read(rt2x00dev, word, data); +} + +static void rt2500pci_write_eeprom(struct rt2x00_dev *rt2x00dev, + const unsigned long word, void *data) +{ + rt2x00_eeprom_write(rt2x00dev, word, *((u16*)data)); +} + +static void rt2500pci_read_bbp(struct rt2x00_dev *rt2x00dev, + const unsigned long word, void *data) +{ + rt2500pci_bbp_read(rt2x00dev, word, data); +} + +static void rt2500pci_write_bbp(struct rt2x00_dev *rt2x00dev, + const unsigned long word, void *data) +{ + rt2500pci_bbp_write(rt2x00dev, word, *((u8*)data)); +} + +static const struct rt2x00debug rt2500pci_rt2x00debug = { + .owner = THIS_MODULE, + .reg_csr = { + .read = rt2500pci_read_csr, + .write = rt2500pci_write_csr, + .word_size = sizeof(u32), + .word_count = CSR_REG_SIZE / sizeof(u32), + }, + .reg_eeprom = { + .read = rt2500pci_read_eeprom, + .write = rt2500pci_write_eeprom, + .word_size = sizeof(u16), + .word_count = EEPROM_SIZE / sizeof(u16), + }, + .reg_bbp = { + .read = rt2500pci_read_bbp, + .write = rt2500pci_write_bbp, + .word_size = sizeof(u8), + .word_count = BBP_SIZE / sizeof(u8), + }, +}; +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ + +#ifdef CONFIG_RT2500PCI_RFKILL +static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + rt2x00pci_register_read(rt2x00dev, GPIOCSR, ®); + return rt2x00_get_field32(reg, GPIOCSR_BIT0); +} +#endif /* CONFIG_RT2400PCI_RFKILL */ + +/* + * Configuration handlers. + */ +static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid) +{ + u32 reg[2]; + + memset(®, 0, sizeof(reg)); + memcpy(®, bssid, ETH_ALEN); + + /* + * The BSSID is passed to us as an array of bytes, + * that array is little endian, so no need for byte ordering. + */ + rt2x00pci_register_multiwrite(rt2x00dev, CSR5, ®, sizeof(reg)); +} + +static void rt2500pci_config_promisc(struct rt2x00_dev *rt2x00dev, + const int promisc) +{ + u32 reg; + + rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); + rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, !promisc); + rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); +} + +static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, + const int type) +{ + u32 reg; + + rt2x00pci_register_write(rt2x00dev, CSR14, 0); + + /* + * Apply hardware packet filter. + */ + rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); + + if (!is_monitor_present(&rt2x00dev->interface) && + (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA)) + rt2x00_set_field32(®, RXCSR0_DROP_TODS, 1); + else + rt2x00_set_field32(®, RXCSR0_DROP_TODS, 0); + + rt2x00_set_field32(®, RXCSR0_DROP_CRC, 1); + if (is_monitor_present(&rt2x00dev->interface)) { + rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, 0); + rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, 0); + rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 0); + } else { + rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, 1); + rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, 1); + rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); + } + + rt2x00_set_field32(®, RXCSR0_DROP_MCAST, 0); + rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); + + rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); + + /* + * Enable beacon config + */ + rt2x00pci_register_read(rt2x00dev, BCNCSR1, ®); + rt2x00_set_field32(®, BCNCSR1_PRELOAD, + PREAMBLE + get_duration(IEEE80211_HEADER, 2)); + rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, + rt2x00_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON) + ->tx_params.cw_min); + rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg); + + /* + * Enable synchronisation. + */ + rt2x00pci_register_read(rt2x00dev, CSR14, ®); + if (is_interface_present(&rt2x00dev->interface)) { + rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); + rt2x00_set_field32(®, CSR14_TBCN, 1); + } + + rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); + if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP) + rt2x00_set_field32(®, CSR14_TSF_SYNC, 2); + else if (type == IEEE80211_IF_TYPE_STA) + rt2x00_set_field32(®, CSR14_TSF_SYNC, 1); + else if (is_monitor_present(&rt2x00dev->interface) && + !is_interface_present(&rt2x00dev->interface)) + rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); + + rt2x00pci_register_write(rt2x00dev, CSR14, reg); +} + +static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, + const int value, const int channel, const int txpower) +{ + u32 rf1 = rt2x00dev->rf1; + u32 rf2 = value; + u32 rf3 = rt2x00dev->rf3; + u32 rf4 = rt2x00dev->rf4; + + if (rt2x00_rf(&rt2x00dev->chip, RF2525) || + rt2x00_rf(&rt2x00dev->chip, RF2525E)) + rf2 |= 0x00080000; + + if (rt2x00_rf(&rt2x00dev->chip, RF2525E) && channel == 14) + rf4 |= 0x00000010; + + if (rt2x00_rf(&rt2x00dev->chip, RF5222)) { + if (channel < 14) { + rf1 = 0x00022020; + rf4 = 0x00000a0b; + } else if (channel == 14) { + rf1 = 0x00022010; + rf4 = 0x00000a1b; + } else if (channel < 64) { + rf1 = 0x00022010; + rf4 = 0x00000a1f; + } else if (channel < 140) { + rf1 = 0x00022010; + rf4 = 0x00000a0f; + } else if (channel < 161) { + rf1 = 0x00022020; + rf4 = 0x00000a07; + } + } + + /* + * Set TXpower. + */ + rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); + + /* + * Switch on tuning bits. + * For RT2523 devices we do not need to update the R1 register. + */ + if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) + rt2x00_set_field32(&rf1, RF1_TUNER, 1); + rt2x00_set_field32(&rf3, RF3_TUNER, 1); + + /* + * For RT2525 we should first set the channel to half band higher. + */ + if (rt2x00_rf(&rt2x00dev->chip, RF2525)) { + static const u32 vals[] = { + 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, + 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, + 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, + 0x00080d2e, 0x00080d3a + }; + + rt2500pci_rf_write(rt2x00dev, rf1); + rt2500pci_rf_write(rt2x00dev, vals[channel - 1]); + rt2500pci_rf_write(rt2x00dev, rf3); + if (rf4) + rt2500pci_rf_write(rt2x00dev, rf4); + } + + rt2500pci_rf_write(rt2x00dev, rf1); + rt2500pci_rf_write(rt2x00dev, rf2); + rt2500pci_rf_write(rt2x00dev, rf3); + if (rf4) + rt2500pci_rf_write(rt2x00dev, rf4); + + /* + * Channel 14 requires the Japan filter bit to be set. + */ + rt2500pci_bbp_write(rt2x00dev, 70, (channel == 14) ? 0x4e : 0x46); + + msleep(1); + + /* + * Switch off tuning bits. + * For RT2523 devices we do not need to update the R1 register. + */ + rt2x00_set_field32(&rf1, RF1_TUNER, 0); + rt2x00_set_field32(&rf3, RF3_TUNER, 0); + + + if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) + rt2500pci_rf_write(rt2x00dev, rf1); + + rt2500pci_rf_write(rt2x00dev, rf3); + + /* + * Update rf fields + */ + rt2x00dev->rf1 = rf1; + rt2x00dev->rf2 = rf2; + rt2x00dev->rf3 = rf3; + rt2x00dev->rf4 = rf4; + rt2x00dev->tx_power = txpower; + + /* + * Clear false CRC during channel switch. + */ + rt2x00pci_register_read(rt2x00dev, CNT0, &rf1); +} + +static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, + const int txpower) +{ + rt2x00_set_field32(&rt2x00dev->rf3, RF3_TXPOWER, + TXPOWER_TO_DEV(txpower)); + rt2500pci_rf_write(rt2x00dev, rt2x00dev->rf3); + +} + +static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev, + const int antenna_tx, const int antenna_rx) +{ + u32 reg; + u8 r14; + u8 r2; + + rt2x00pci_register_read(rt2x00dev, BBPCSR1, ®); + rt2500pci_bbp_read(rt2x00dev, 14, &r14); + rt2500pci_bbp_read(rt2x00dev, 2, &r2); + + /* + * Configure the TX antenna. + */ + if (antenna_tx == ANTENNA_DIVERSITY) { + rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); + rt2x00_set_field32(®, BBPCSR1_CCK, 2); + rt2x00_set_field32(®, BBPCSR1_OFDM, 2); + } else if (antenna_tx == ANTENNA_A) { + rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); + rt2x00_set_field32(®, BBPCSR1_CCK, 0); + rt2x00_set_field32(®, BBPCSR1_OFDM, 0); + } else if (antenna_tx == ANTENNA_B) { + rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); + rt2x00_set_field32(®, BBPCSR1_CCK, 2); + rt2x00_set_field32(®, BBPCSR1_OFDM, 2); + } + + /* + * Configure the RX antenna. + */ + if (antenna_rx == ANTENNA_DIVERSITY) + rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); + else if (antenna_rx == ANTENNA_A) + rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); + else if (antenna_rx == ANTENNA_B) + rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); + + /* + * RT2525E and RT5222 need to flip TX I/Q + */ + if (rt2x00_rf(&rt2x00dev->chip, RF2525E) || + rt2x00_rf(&rt2x00dev->chip, RF5222)) { + rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); + rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); + rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); + + /* + * RT2525E does not need RX I/Q Flip. + */ + if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) + rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); + } else { + rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); + rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); + } + + rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg); + rt2500pci_bbp_write(rt2x00dev, 14, r14); + rt2500pci_bbp_write(rt2x00dev, 2, r2); +} + +static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev, + const int short_slot_time, const int beacon_int) +{ + u32 reg; + + rt2x00pci_register_read(rt2x00dev, CSR11, ®); + rt2x00_set_field32(®, CSR11_SLOT_TIME, + short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME); + rt2x00pci_register_write(rt2x00dev, CSR11, reg); + + rt2x00pci_register_read(rt2x00dev, CSR18, ®); + rt2x00_set_field32(®, CSR18_SIFS, SIFS); + rt2x00_set_field32(®, CSR18_PIFS, + short_slot_time ? SHORT_PIFS : PIFS); + rt2x00pci_register_write(rt2x00dev, CSR18, reg); + + rt2x00pci_register_read(rt2x00dev, CSR19, ®); + rt2x00_set_field32(®, CSR19_DIFS, + short_slot_time ? SHORT_DIFS : DIFS); + rt2x00_set_field32(®, CSR19_EIFS, EIFS); + rt2x00pci_register_write(rt2x00dev, CSR19, reg); + + rt2x00pci_register_read(rt2x00dev, TXCSR1, ®); + rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); + rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); + rt2x00pci_register_write(rt2x00dev, TXCSR1, reg); + + rt2x00pci_register_read(rt2x00dev, CSR12, ®); + rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, beacon_int * 16); + rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, beacon_int * 16); + rt2x00pci_register_write(rt2x00dev, CSR12, reg); +} + +static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate) +{ + struct ieee80211_conf *conf = &rt2x00dev->hw->conf; + u32 reg; + u32 preamble; + u16 value; + + preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) + ? SHORT_PREAMBLE : PREAMBLE; + + reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATE; + rt2x00pci_register_write(rt2x00dev, ARCSR1, reg); + + rt2x00pci_register_read(rt2x00dev, TXCSR1, ®); + value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ? + SHORT_DIFS : DIFS) + + PLCP + preamble + get_duration(ACK_SIZE, 10); + rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, value); + value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10); + rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, value); + rt2x00pci_register_write(rt2x00dev, TXCSR1, reg); + + preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00; + + rt2x00pci_register_read(rt2x00dev, ARCSR2, ®); + rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00 | preamble); + rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); + rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10)); + rt2x00pci_register_write(rt2x00dev, ARCSR2, reg); + + rt2x00pci_register_read(rt2x00dev, ARCSR3, ®); + rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble); + rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); + rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20)); + rt2x00pci_register_write(rt2x00dev, ARCSR3, reg); + + rt2x00pci_register_read(rt2x00dev, ARCSR4, ®); + rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble); + rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); + rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55)); + rt2x00pci_register_write(rt2x00dev, ARCSR4, reg); + + rt2x00pci_register_read(rt2x00dev, ARCSR5, ®); + rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble); + rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); + rt2x00_set_field32(®, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110)); + rt2x00pci_register_write(rt2x00dev, ARCSR5, reg); +} + +static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev, + const int phymode) +{ + struct ieee80211_hw_mode *mode; + struct ieee80211_rate *rate; + + if (phymode == MODE_IEEE80211A) + rt2x00dev->curr_hwmode = HWMODE_A; + else if (phymode == MODE_IEEE80211B) + rt2x00dev->curr_hwmode = HWMODE_B; + else + rt2x00dev->curr_hwmode = HWMODE_G; + + mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode]; + rate = &mode->rates[mode->num_rates - 1]; + + rt2500pci_config_rate(rt2x00dev, rate->val2); +} + +static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr) +{ + u32 reg[2]; + + memset(®, 0, sizeof(reg)); + memcpy(®, addr, ETH_ALEN); + + /* + * The MAC address is passed to us as an array of bytes, + * that array is little endian, so no need for byte ordering. + */ + rt2x00pci_register_multiwrite(rt2x00dev, CSR3, ®, sizeof(reg)); +} + +/* + * LED functions. + */ +static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + rt2x00pci_register_read(rt2x00dev, LEDCSR, ®); + + rt2x00_set_field32(®, LEDCSR_ON_PERIOD, 70); + rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, 30); + + if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) { + rt2x00_set_field32(®, LEDCSR_LINK, 1); + rt2x00_set_field32(®, LEDCSR_ACTIVITY, 0); + } else if (rt2x00dev->led_mode == LED_MODE_ASUS) { + rt2x00_set_field32(®, LEDCSR_LINK, 0); + rt2x00_set_field32(®, LEDCSR_ACTIVITY, 1); + } else { + rt2x00_set_field32(®, LEDCSR_LINK, 1); + rt2x00_set_field32(®, LEDCSR_ACTIVITY, 1); + } + + rt2x00pci_register_write(rt2x00dev, LEDCSR, reg); +} + +static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + rt2x00pci_register_read(rt2x00dev, LEDCSR, ®); + rt2x00_set_field32(®, LEDCSR_LINK, 0); + rt2x00_set_field32(®, LEDCSR_ACTIVITY, 0); + rt2x00pci_register_write(rt2x00dev, LEDCSR, reg); +} + +/* + * Link tuning + */ +static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, int rssi) +{ + u32 reg; + u8 r17; + + /* + * To prevent collisions with MAC ASIC on chipsets + * up to version C the link tuning should halt after 20 + * seconds. + */ + if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D && + rt2x00dev->link.count > 20) + return; + + rt2500pci_bbp_read(rt2x00dev, 17, &r17); + + /* + * Chipset versions C and lower should directly continue + * to the dynamic CCA tuning. + */ + if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D) + goto dynamic_cca_tune; + + /* + * A too low RSSI will cause too much false CCA which will + * then corrupt the R17 tuning. To remidy this the tuning should + * be stopped (While making sure the R17 value will not exceed limits) + */ + if (rssi < -80 && rt2x00dev->link.count > 20) { + if (r17 >= 0x41) { + r17 = rt2x00dev->link.curr_noise; + rt2500pci_bbp_write(rt2x00dev, 17, r17); + } + return; + } + + /* + * Special big-R17 for short distance + */ + if (rssi >= -58) { + if (r17 != 0x50) + rt2500pci_bbp_write(rt2x00dev, 17, 0x50); + return; + } + + /* + * Special mid-R17 for middle distance + */ + if (rssi >= -74) { + if (r17 != 0x41) + rt2500pci_bbp_write(rt2x00dev, 17, 0x41); + return; + } + + /* + * Leave short or middle distance condition, restore r17 + * to the dynamic tuning range. + */ + if (r17 >= 0x41) { + rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.curr_noise); + return; + } + +dynamic_cca_tune: + + /* + * R17 is inside the dynamic tuning range, + * start tuning the link based on the false cca counter. + */ + rt2x00pci_register_read(rt2x00dev, CNT3, ®); + rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); + + if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) { + rt2500pci_bbp_write(rt2x00dev, 17, ++r17); + rt2x00dev->link.curr_noise = r17; + } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) { + rt2500pci_bbp_write(rt2x00dev, 17, --r17); + rt2x00dev->link.curr_noise = r17; + } +} + +/* + * Initialization functions. + */ +static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev) +{ + struct data_desc *rxd; + unsigned int i; + u32 word; + + memset(rt2x00dev->rx->data_addr, 0x00, + rt2x00_get_ring_size(rt2x00dev->rx)); + + for (i = 0; i < rt2x00dev->rx->stats.limit; i++) { + rxd = rt2x00dev->rx->entry[i].priv; + + rt2x00_desc_read(rxd, 1, &word); + rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, + rt2x00dev->rx->entry[i].data_dma); + rt2x00_desc_write(rxd, 1, word); + + rt2x00_desc_read(rxd, 0, &word); + rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); + rt2x00_desc_write(rxd, 0, word); + } + + rt2x00_ring_index_clear(rt2x00dev->rx); +} + +static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, + const int queue) +{ + struct data_ring *ring = rt2x00_get_ring(rt2x00dev, queue); + struct data_desc *txd; + unsigned int i; + u32 word; + + memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring)); + + for (i = 0; i < ring->stats.limit; i++) { + txd = ring->entry[i].priv; + + rt2x00_desc_read(txd, 1, &word); + rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, + ring->entry[i].data_dma); + rt2x00_desc_write(txd, 1, word); + + rt2x00_desc_read(txd, 0, &word); + rt2x00_set_field32(&word, TXD_W0_VALID, 0); + rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); + rt2x00_desc_write(txd, 0, word); + } + + rt2x00_ring_index_clear(ring); +} + +static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + /* + * Initialize rings. + */ + rt2500pci_init_rxring(rt2x00dev); + rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0); + rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1); + rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON); + rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); + + /* + * Initialize registers. + */ + rt2x00pci_register_read(rt2x00dev, TXCSR2, ®); + rt2x00_set_field32(®, TXCSR2_TXD_SIZE, + rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size); + rt2x00_set_field32(®, TXCSR2_NUM_TXD, + rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit); + rt2x00_set_field32(®, TXCSR2_NUM_ATIM, + rt2x00dev->bcn[1].stats.limit); + rt2x00_set_field32(®, TXCSR2_NUM_PRIO, + rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit); + rt2x00pci_register_write(rt2x00dev, TXCSR2, reg); + + rt2x00pci_register_read(rt2x00dev, TXCSR3, ®); + rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, + rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma); + rt2x00pci_register_write(rt2x00dev, TXCSR3, reg); + + rt2x00pci_register_read(rt2x00dev, TXCSR5, ®); + rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, + rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma); + rt2x00pci_register_write(rt2x00dev, TXCSR5, reg); + + rt2x00pci_register_read(rt2x00dev, TXCSR4, ®); + rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, + rt2x00dev->bcn[1].data_dma); + rt2x00pci_register_write(rt2x00dev, TXCSR4, reg); + + rt2x00pci_register_read(rt2x00dev, TXCSR6, ®); + rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, + rt2x00dev->bcn[0].data_dma); + rt2x00pci_register_write(rt2x00dev, TXCSR6, reg); + + rt2x00pci_register_read(rt2x00dev, RXCSR1, ®); + rt2x00_set_field32(®, RXCSR1_RXD_SIZE, + rt2x00dev->rx->desc_size); + rt2x00_set_field32(®, RXCSR1_NUM_RXD, + rt2x00dev->rx->stats.limit); + rt2x00pci_register_write(rt2x00dev, RXCSR1, reg); + + rt2x00pci_register_read(rt2x00dev, RXCSR2, ®); + rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, + rt2x00dev->rx->data_dma); + rt2x00pci_register_write(rt2x00dev, RXCSR2, reg); + + return 0; +} + +static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) + return -EBUSY; + + rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); + rt2x00pci_register_write(rt2x00dev, PCICSR, 0x000003b8); + + rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002); + rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002); + rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002); + rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002); + + rt2x00pci_register_read(rt2x00dev, TIMECSR, ®); + rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); + rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); + rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); + rt2x00pci_register_write(rt2x00dev, TIMECSR, reg); + + rt2x00pci_register_read(rt2x00dev, CSR9, ®); + rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, + rt2x00dev->rx->data_size / 128); + rt2x00pci_register_write(rt2x00dev, CSR9, reg); + + rt2x00pci_register_write(rt2x00dev, CNT3, 0); + + rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); + rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0); + + rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223); + rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518); + + rt2x00pci_register_read(rt2x00dev, MACCSR2, ®); + rt2x00_set_field32(®, MACCSR2_DELAY, 64); + rt2x00pci_register_write(rt2x00dev, MACCSR2, reg); + + /* + * Always use CWmin and CWmax set in descriptor. + */ + rt2x00pci_register_read(rt2x00dev, CSR11, ®); + rt2x00_set_field32(®, CSR11_CW_SELECT, 0); + rt2x00pci_register_write(rt2x00dev, CSR11, reg); + + rt2x00pci_register_read(rt2x00dev, RXCSR3, ®); + /* + * Signal. + */ + rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); + rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); + /* + * Rssi. + */ + rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); + rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); + /* + * OFDM Rate. + */ + rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); + rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); + /* + * OFDM. + */ + rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); + rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); + rt2x00pci_register_write(rt2x00dev, RXCSR3, reg); + + rt2x00pci_register_read(rt2x00dev, RALINKCSR, ®); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); + rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg); + + rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200); + + rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020); + + rt2x00pci_register_write(rt2x00dev, ARTCSR0, 0x7038140a); + rt2x00pci_register_write(rt2x00dev, ARTCSR1, 0x1d21252d); + rt2x00pci_register_write(rt2x00dev, ARTCSR2, 0x1919191d); + + rt2x00pci_register_read(rt2x00dev, CSR1, ®); + rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); + rt2x00_set_field32(®, CSR1_BBP_RESET, 0); + rt2x00_set_field32(®, CSR1_HOST_READY, 0); + rt2x00pci_register_write(rt2x00dev, CSR1, reg); + + rt2x00pci_register_read(rt2x00dev, CSR1, ®); + rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); + rt2x00_set_field32(®, CSR1_HOST_READY, 1); + rt2x00pci_register_write(rt2x00dev, CSR1, reg); + + /* + * We must clear the FCS and FIFO error count. + * These registers are cleared on read, + * so we may pass a useless variable to store the value. + */ + rt2x00pci_register_read(rt2x00dev, CNT0, ®); + rt2x00pci_register_read(rt2x00dev, CNT4, ®); + + return 0; +} + +static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) +{ + unsigned int i; + u16 eeprom; + u8 reg_id; + u8 value; + + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + rt2500pci_bbp_read(rt2x00dev, 0, &value); + if ((value != 0xff) && (value != 0x00)) + goto continue_csr_init; + NOTICE(rt2x00dev, "Waiting for BBP register.\n"); + udelay(REGISTER_BUSY_DELAY); + } + + ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); + return -EACCES; + +continue_csr_init: + rt2500pci_bbp_write(rt2x00dev, 3, 0x02); + rt2500pci_bbp_write(rt2x00dev, 4, 0x19); + rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); + rt2500pci_bbp_write(rt2x00dev, 15, 0x30); + rt2500pci_bbp_write(rt2x00dev, 16, 0xac); + rt2500pci_bbp_write(rt2x00dev, 17, 0x48); + rt2500pci_bbp_write(rt2x00dev, 18, 0x18); + rt2500pci_bbp_write(rt2x00dev, 19, 0xff); + rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); + rt2500pci_bbp_write(rt2x00dev, 21, 0x08); + rt2500pci_bbp_write(rt2x00dev, 22, 0x08); + rt2500pci_bbp_write(rt2x00dev, 23, 0x08); + rt2500pci_bbp_write(rt2x00dev, 24, 0x70); + rt2500pci_bbp_write(rt2x00dev, 25, 0x40); + rt2500pci_bbp_write(rt2x00dev, 26, 0x08); + rt2500pci_bbp_write(rt2x00dev, 27, 0x23); + rt2500pci_bbp_write(rt2x00dev, 30, 0x10); + rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); + rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); + rt2500pci_bbp_write(rt2x00dev, 34, 0x12); + rt2500pci_bbp_write(rt2x00dev, 35, 0x50); + rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); + rt2500pci_bbp_write(rt2x00dev, 40, 0x02); + rt2500pci_bbp_write(rt2x00dev, 41, 0x60); + rt2500pci_bbp_write(rt2x00dev, 53, 0x10); + rt2500pci_bbp_write(rt2x00dev, 54, 0x18); + rt2500pci_bbp_write(rt2x00dev, 56, 0x08); + rt2500pci_bbp_write(rt2x00dev, 57, 0x10); + rt2500pci_bbp_write(rt2x00dev, 58, 0x08); + rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); + rt2500pci_bbp_write(rt2x00dev, 62, 0x10); + + DEBUG(rt2x00dev, "Start initialization from EEPROM...\n"); + for (i = 0; i < EEPROM_BBP_SIZE; i++) { + rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); + + if (eeprom != 0xffff && eeprom != 0x0000) { + reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); + value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); + DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n", + reg_id, value); + rt2500pci_bbp_write(rt2x00dev, reg_id, value); + } + } + DEBUG(rt2x00dev, "...End initialization from EEPROM.\n"); + + return 0; +} + +/* + * Device state switch handlers. + */ +static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + u32 reg; + + rt2x00pci_register_read(rt2x00dev, RXCSR0, ®); + rt2x00_set_field32(®, RXCSR0_DISABLE_RX, + state == STATE_RADIO_RX_OFF); + rt2x00pci_register_write(rt2x00dev, RXCSR0, reg); +} + +static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + /* + * Initialize all registers. + */ + if (rt2500pci_init_rings(rt2x00dev) || + rt2500pci_init_registers(rt2x00dev) || + rt2500pci_init_bbp(rt2x00dev)) { + ERROR(rt2x00dev, "Register initialization failed.\n"); + return -EIO; + } + + /* + * Clear interrupts. + */ + rt2x00pci_register_read(rt2x00dev, CSR7, ®); + rt2x00pci_register_write(rt2x00dev, CSR7, reg); + + /* + * Enable interrupts. + */ + rt2x00pci_register_read(rt2x00dev, CSR8, ®); + rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, 0); + rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0); + rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0); + rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0); + rt2x00_set_field32(®, CSR8_RXDONE, 0); + rt2x00pci_register_write(rt2x00dev, CSR8, reg); + + /* + * Enable LED + */ + rt2500pci_enable_led(rt2x00dev); + + return 0; +} + +static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + /* + * Disable LED + */ + rt2500pci_disable_led(rt2x00dev); + + rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0); + + /* + * Disable synchronisation. + */ + rt2x00pci_register_write(rt2x00dev, CSR14, 0); + + /* + * Cancel RX and TX. + */ + rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); + rt2x00_set_field32(®, TXCSR0_ABORT, 1); + rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); + + /* + * Disable interrupts. + */ + rt2x00pci_register_read(rt2x00dev, CSR8, ®); + rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, 1); + rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 1); + rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 1); + rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 1); + rt2x00_set_field32(®, CSR8_RXDONE, 1); + rt2x00pci_register_write(rt2x00dev, CSR8, reg); +} + +static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + u32 reg; + unsigned int i; + char put_to_sleep; + char bbp_state; + char rf_state; + + put_to_sleep = (state != STATE_AWAKE); + + rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®); + rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); + rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); + rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); + rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); + rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg); + + /* + * Device is not guaranteed to be in the requested state yet. + * We must wait until the register indicates that the + * device has entered the correct state. + */ + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + rt2x00pci_register_read(rt2x00dev, PWRCSR1, ®); + bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE); + rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE); + if (bbp_state == state && rf_state == state) + return 0; + msleep(10); + } + + NOTICE(rt2x00dev, "Device failed to enter state %d, " + "current device state: bbp %d and rf %d.\n", + state, bbp_state, rf_state); + + return -EBUSY; +} + +static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + int retval = 0; + + switch (state) { + case STATE_RADIO_ON: + retval = rt2500pci_enable_radio(rt2x00dev); + break; + case STATE_RADIO_OFF: + rt2500pci_disable_radio(rt2x00dev); + break; + case STATE_RADIO_RX_ON: + case STATE_RADIO_RX_OFF: + rt2500pci_toggle_rx(rt2x00dev, state); + break; + case STATE_DEEP_SLEEP: + case STATE_SLEEP: + case STATE_STANDBY: + case STATE_AWAKE: + retval = rt2500pci_set_state(rt2x00dev, state); + break; + default: + retval = -ENOTSUPP; + break; + } + + return retval; +} + +/* + * TX descriptor initialization + */ +static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, + struct data_entry *entry, struct data_desc *txd, + struct data_entry_desc *desc, struct ieee80211_hdr *ieee80211hdr, + unsigned int length, struct ieee80211_tx_control *control) +{ + u32 word; + + /* + * Start writing the descriptor words. + */ + rt2x00_desc_read(txd, 2, &word); + rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); + rt2x00_set_field32(&word, TXD_W2_AIFS, entry->ring->tx_params.aifs); + rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->ring->tx_params.cw_min); + rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->ring->tx_params.cw_max); + rt2x00_desc_write(txd, 2, word); + + rt2x00_desc_read(txd, 3, &word); + rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal); + rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service); + rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low); + rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high); + rt2x00_desc_write(txd, 3, word); + + rt2x00_desc_read(txd, 10, &word); + rt2x00_set_field32(&word, TXD_W10_RTS, + test_bit(ENTRY_TXD_RTS_FRAME, &entry->flags)); + rt2x00_desc_write(txd, 10, word); + + rt2x00_desc_read(txd, 0, &word); + rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); + rt2x00_set_field32(&word, TXD_W0_VALID, 1); + rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, + test_bit(ENTRY_TXD_MORE_FRAG, &entry->flags)); + rt2x00_set_field32(&word, TXD_W0_ACK, + test_bit(ENTRY_TXD_REQ_ACK, &entry->flags)); + rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, + test_bit(ENTRY_TXD_REQ_TIMESTAMP, &entry->flags)); + rt2x00_set_field32(&word, TXD_W0_OFDM, + test_bit(ENTRY_TXD_OFDM_RATE, &entry->flags)); + rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); + rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs); + rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, 0); + rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length); + rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); + rt2x00_desc_write(txd, 0, word); +} + +/* + * TX data initialization + */ +static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, int queue) +{ + u32 reg; + + if (queue == IEEE80211_TX_QUEUE_BEACON) { + rt2x00pci_register_read(rt2x00dev, CSR14, ®); + if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) { + rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); + rt2x00pci_register_write(rt2x00dev, CSR14, reg); + } + return; + } + + rt2x00pci_register_read(rt2x00dev, TXCSR0, ®); + if (queue == IEEE80211_TX_QUEUE_DATA0) + rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1); + else if (queue == IEEE80211_TX_QUEUE_DATA1) + rt2x00_set_field32(®, TXCSR0_KICK_TX, 1); + else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON) + rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1); + rt2x00pci_register_write(rt2x00dev, TXCSR0, reg); +} + +/* + * Interrupt functions. + */ +static void rt2500pci_rxdone(struct rt2x00_dev *rt2x00dev) +{ + struct data_ring *ring = rt2x00dev->rx; + struct data_entry *entry; + struct data_desc *rxd; + u32 word0; + u32 word2; + int signal; + int rssi; + int ofdm; + u16 size; + + while (1) { + entry = rt2x00_get_data_entry(ring); + rxd = entry->priv; + rt2x00_desc_read(rxd, 0, &word0); + rt2x00_desc_read(rxd, 2, &word2); + + if (rt2x00_get_field32(word0, RXD_W0_OWNER_NIC)) + break; + + /* + * TODO: Don't we need to keep statistics + * updated about events like CRC and physical errors? + */ + if (rt2x00_get_field32(word0, RXD_W0_CRC) || + rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) + goto skip_entry; + + /* + * Obtain the status about this packet. + */ + size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); + signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); + rssi = rt2x00_get_field32(word2, RXD_W2_RSSI); + ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM); + + /* + * Send the packet to upper layer. + */ + rt2x00lib_rxdone(entry, entry->data_addr, size, + signal, rssi, ofdm); + +skip_entry: + if (test_bit(DEVICE_ENABLED_RADIO, &ring->rt2x00dev->flags)) { + rt2x00_set_field32(&word0, RXD_W0_OWNER_NIC, 1); + rt2x00_desc_write(rxd, 0, word0); + } + + rt2x00_ring_index_inc(ring); + } +} + +static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue) +{ + struct data_ring *ring = rt2x00_get_ring(rt2x00dev, queue); + struct data_entry *entry; + struct data_desc *txd; + u32 word; + int tx_status; + int retry; + + while (!rt2x00_ring_empty(ring)) { + entry = rt2x00_get_data_entry_done(ring); + txd = entry->priv; + rt2x00_desc_read(txd, 0, &word); + + if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || + !rt2x00_get_field32(word, TXD_W0_VALID)) + break; + + /* + * Obtain the status about this packet. + */ + tx_status = rt2x00_get_field32(word, TXD_W0_RESULT); + retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); + + rt2x00lib_txdone(entry, tx_status, retry); + + /* + * Make this entry available for reuse. + */ + entry->flags = 0; + rt2x00_set_field32(&word, TXD_W0_VALID, 0); + rt2x00_desc_write(txd, 0, word); + rt2x00_ring_index_done_inc(ring); + } + + /* + * If the data ring was full before the txdone handler + * we must make sure the packet queue in the mac80211 stack + * is reenabled when the txdone handler has finished. + */ + entry = ring->entry; + if (!rt2x00_ring_full(ring)) + ieee80211_wake_queue(rt2x00dev->hw, + entry->tx_status.control.queue); +} + +static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) +{ + struct rt2x00_dev *rt2x00dev = dev_instance; + u32 reg; + + /* + * Get the interrupt sources & saved to local variable. + * Write register value back to clear pending interrupts. + */ + rt2x00pci_register_read(rt2x00dev, CSR7, ®); + rt2x00pci_register_write(rt2x00dev, CSR7, reg); + + if (!reg) + return IRQ_NONE; + + if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) + return IRQ_HANDLED; + + /* + * Handle interrupts, walk through all bits + * and run the tasks, the bits are checked in order of + * priority. + */ + + /* + * 1 - Beacon timer expired interrupt. + */ + if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) + rt2x00pci_beacondone(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); + + /* + * 2 - Rx ring done interrupt. + */ + if (rt2x00_get_field32(reg, CSR7_RXDONE)) + rt2500pci_rxdone(rt2x00dev); + + /* + * 3 - Atim ring transmit done interrupt. + */ + if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING)) + rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON); + + /* + * 4 - Priority ring transmit done interrupt. + */ + if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING)) + rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0); + + /* + * 5 - Tx ring transmit done interrupt. + */ + if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) + rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1); + + return IRQ_HANDLED; +} + +/* + * Device initialization functions. + */ +static int rt2500pci_alloc_eeprom(struct rt2x00_dev *rt2x00dev) +{ + struct eeprom_93cx6 eeprom; + u32 reg; + u16 word; + + /* + * Allocate the eeprom memory, check the eeprom width + * and copy the entire eeprom into this allocated memory. + */ + rt2x00dev->eeprom = kzalloc(EEPROM_SIZE, GFP_KERNEL); + if (!rt2x00dev->eeprom) + return -ENOMEM; + + rt2x00pci_register_read(rt2x00dev, CSR21, ®); + + eeprom.data = rt2x00dev; + eeprom.register_read = rt2500pci_eepromregister_read; + eeprom.register_write = rt2500pci_eepromregister_write; + eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? + PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; + eeprom.reg_data_in = 0; + eeprom.reg_data_out = 0; + eeprom.reg_data_clock = 0; + eeprom.reg_chip_select = 0; + + eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, + EEPROM_SIZE / sizeof(u16)); + + /* + * Start validation of the data that has been read. + */ + rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); + rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); + rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); + EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); + } + + rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); + rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); + rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); + EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); + } + + rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, + MAX_RX_SSI); + rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); + EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word); + } + + return 0; +} + +static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + u16 value; + u16 eeprom; + + /* + * Read EEPROM word for configuration. + */ + rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); + + /* + * Identify RF chipset. + */ + value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); + rt2x00pci_register_read(rt2x00dev, CSR0, ®); + rt2x00_set_chip(rt2x00dev, RT2560, value, reg); + + if (!rt2x00_rf(&rt2x00dev->chip, RF2522) && + !rt2x00_rf(&rt2x00dev->chip, RF2523) && + !rt2x00_rf(&rt2x00dev->chip, RF2524) && + !rt2x00_rf(&rt2x00dev->chip, RF2525) && + !rt2x00_rf(&rt2x00dev->chip, RF2525E) && + !rt2x00_rf(&rt2x00dev->chip, RF5222)) { + ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); + return -ENODEV; + } + + /* + * Identify default antenna configuration. + */ + rt2x00dev->hw->conf.antenna_sel_tx = rt2x00_get_field16(eeprom, + EEPROM_ANTENNA_TX_DEFAULT); + rt2x00dev->hw->conf.antenna_sel_rx = rt2x00_get_field16(eeprom, + EEPROM_ANTENNA_RX_DEFAULT); + + /* + * Store led mode, for correct led behaviour. + */ + rt2x00dev->led_mode = rt2x00_get_field16(eeprom, + EEPROM_ANTENNA_LED_MODE); + + /* + * Detect if this device has an hardware controlled radio. + */ + if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) + __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags); + + /* + * Check if the BBP tuning should be enabled. + */ + rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); + + if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) + __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags); + + /* + * Read the RSSI <-> dBm offset information. + */ + rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); + rt2x00dev->hw->max_rssi = + rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); + + return 0; +} + +static const struct { + unsigned int chip; + u32 val[3]; +} rf_vals[] = { + { RF2522, { 0x00002050, 0x00000101, 0x00000000 } }, + { RF2523, { 0x00022010, 0x000e0111, 0x00000a1b } }, + { RF2524, { 0x00032020, 0x00000101, 0x00000a1b } }, + { RF2525, { 0x00022020, 0x00060111, 0x00000a1b } }, + { RF2525E, { 0x00022020, 0x00060111, 0x00000a0b } }, + { RF5222, { 0x00000000, 0x00000101, 0x00000000 } }, +}; + +/* + * RF value list for RF2522 + * Supports: 2.4 GHz + */ +static const u32 rf_vals_bg_2522[] = { + 0x000c1fda, 0x000c1fee, 0x000c2002, 0x000c2016, 0x000c202a, + 0x000c203e, 0x000c2052, 0x000c2066, 0x000c207a, 0x000c208e, + 0x000c20a2, 0x000c20b6, 0x000c20ca, 0x000c20fa +}; + +/* + * RF value list for RF2523, RF2524 & RF2525 + * Supports: 2.4 GHz + */ +static const u32 rf_vals_bg_252x[] = { + 0x00000c9e, 0x00000ca2, 0x00000ca6, 0x00000caa, 0x00000cae, + 0x00000cb2, 0x00000cb6, 0x00000cba, 0x00000cbe, 0x00000d02, + 0x00000d06, 0x00000d0a, 0x00000d0e, 0x00000d1a +}; + +/* + * RF value list for RF2525E & RF5222 + * Supports: 2.4 GHz + */ +static const u32 rf_vals_bg_5x[] = { + 0x00001136, 0x0000113a, 0x0000113e, 0x00001182, 0x00001186, + 0x0000118a, 0x0000118e, 0x00001192, 0x00001196, 0x0000119a, + 0x0000119e, 0x000011a2, 0x000011a6, 0x000011ae +}; + +/* + * RF value list for RF5222 (supplement to rf_vals_bg_5x) + * Supports: 5.2 GHz + */ +static const u32 rf_vals_a_5x[] = { + 0x00018896, 0x0001889a, 0x0001889e, 0x000188a2, 0x000188a6, + 0x000188aa, 0x000188ae, 0x000188b2, 0x00008802, 0x00008806, + 0x0000880a, 0x0000880e, 0x00008812, 0x00008816, 0x0000881a, + 0x0000881e, 0x00008822, 0x00008826, 0x0000882a, 0x000090a6, + 0x000090ae, 0x000090b6, 0x000090be +}; + +static void rt2500pci_init_hw_mode(struct rt2x00_dev *rt2x00dev) +{ + struct hw_mode_spec *spec = &rt2x00dev->spec; + u8 *txpower; + unsigned int i; + + /* + * Initialize all hw fields. + */ + rt2x00dev->hw->flags = IEEE80211_HW_HOST_GEN_BEACON | + IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | + IEEE80211_HW_WEP_INCLUDE_IV | + IEEE80211_HW_DATA_NULLFUNC_ACK | + IEEE80211_HW_NO_TKIP_WMM_HWACCEL | + IEEE80211_HW_MONITOR_DURING_OPER; + rt2x00dev->hw->extra_tx_headroom = 0; + rt2x00dev->hw->max_rssi = MAX_RX_SSI; + rt2x00dev->hw->max_noise = MAX_RX_NOISE; + rt2x00dev->hw->queues = 2; + + /* + * This device supports ATIM + */ + __set_bit(DEVICE_SUPPORT_ATIM, &rt2x00dev->flags); + + /* + * Set device specific, but channel independent RF values. + */ + for (i = 0; i < ARRAY_SIZE(rf_vals); i++) { + if (rt2x00_rf(&rt2x00dev->chip, rf_vals[i].chip)) { + rt2x00dev->rf1 = rf_vals[i].val[0]; + rt2x00dev->rf3 = rf_vals[i].val[1]; + rt2x00dev->rf4 = rf_vals[i].val[2]; + } + } + + /* + * Convert tx_power array in eeprom. + */ + txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); + for (i = 0; i < 14; i++) + txpower[i] = TXPOWER_FROM_DEV(txpower[i]); + + /* + * Initialize hw_mode information. + */ + spec->mac_addr = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); + spec->num_modes = 2; + spec->num_rates = 12; + spec->num_channels = 14; + spec->tx_power_a = NULL; + spec->tx_power_bg = txpower; + spec->tx_power_default = DEFAULT_TXPOWER; + spec->chan_val_a = NULL; + + if (rt2x00_rf(&rt2x00dev->chip, RF2522)) + spec->chan_val_bg = rf_vals_bg_2522; + else if (rt2x00_rf(&rt2x00dev->chip, RF2523) || + rt2x00_rf(&rt2x00dev->chip, RF2524) || + rt2x00_rf(&rt2x00dev->chip, RF2525)) + spec->chan_val_bg = rf_vals_bg_252x; + else if (rt2x00_rf(&rt2x00dev->chip, RF2525E) || + rt2x00_rf(&rt2x00dev->chip, RF5222)) + spec->chan_val_bg = rf_vals_bg_5x; + + if (rt2x00_rf(&rt2x00dev->chip, RF5222)) { + spec->num_modes = 3; + spec->num_channels += 23; + spec->chan_val_a = rf_vals_a_5x; + } +} + +static int rt2500pci_init_hw(struct rt2x00_dev *rt2x00dev) +{ + int retval; + + /* + * Allocate eeprom data. + */ + retval = rt2500pci_alloc_eeprom(rt2x00dev); + if (retval) + return retval; + + retval = rt2500pci_init_eeprom(rt2x00dev); + if (retval) + return retval; + + /* + * Initialize hw specifications. + */ + rt2500pci_init_hw_mode(rt2x00dev); + + return 0; +} + +/* + * IEEE80211 stack callback functions. + */ +static int rt2500pci_get_stats(struct ieee80211_hw *hw, + struct ieee80211_low_level_stats *stats) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u32 reg; + + /* + * Update FCS error count from register. + * The dot11ACKFailureCount, dot11RTSFailureCount and + * dot11RTSSuccessCount are updated in interrupt time. + */ + rt2x00pci_register_read(rt2x00dev, CNT0, ®); + rt2x00dev->low_level_stats.dot11FCSErrorCount += + rt2x00_get_field32(reg, CNT0_FCS_ERROR); + + memcpy(stats, &rt2x00dev->low_level_stats, sizeof(*stats)); + + return 0; +} + +static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw, + u32 short_retry, u32 long_retry) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u32 reg; + + rt2x00pci_register_read(rt2x00dev, CSR11, ®); + rt2x00_set_field32(®, CSR11_LONG_RETRY, long_retry); + rt2x00_set_field32(®, CSR11_SHORT_RETRY, short_retry); + rt2x00pci_register_write(rt2x00dev, CSR11, reg); + + return 0; +} + +static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u64 tsf; + u32 reg; + + rt2x00pci_register_read(rt2x00dev, CSR17, ®); + tsf = (u64)rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; + rt2x00pci_register_read(rt2x00dev, CSR16, ®); + tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); + + return tsf; +} + +static void rt2500pci_reset_tsf(struct ieee80211_hw *hw) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + + rt2x00pci_register_write(rt2x00dev, CSR16, 0); + rt2x00pci_register_write(rt2x00dev, CSR17, 0); +} + +static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u32 reg; + + rt2x00pci_register_read(rt2x00dev, CSR15, ®); + return rt2x00_get_field32(reg, CSR15_BEACON_SENT); +} + +static const struct ieee80211_ops rt2500pci_mac80211_ops = { + .tx = rt2x00lib_tx, + .reset = rt2x00lib_reset, + .open = rt2x00lib_open, + .stop = rt2x00lib_stop, + .add_interface = rt2x00lib_add_interface, + .remove_interface = rt2x00lib_remove_interface, + .config = rt2x00lib_config, + .config_interface = rt2x00lib_config_interface, + .set_multicast_list = rt2x00lib_set_multicast_list, + .get_stats = rt2500pci_get_stats, + .set_retry_limit = rt2500pci_set_retry_limit, + .conf_tx = rt2x00lib_conf_tx, + .get_tx_stats = rt2x00lib_get_tx_stats, + .get_tsf = rt2500pci_get_tsf, + .reset_tsf = rt2500pci_reset_tsf, + .beacon_update = rt2x00pci_beacon_update, + .tx_last_beacon = rt2500pci_tx_last_beacon, +}; + +static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { + .irq_handler = rt2500pci_interrupt, + .init_hw = rt2500pci_init_hw, + .initialize = rt2x00pci_initialize, + .uninitialize = rt2x00pci_uninitialize, + .set_device_state = rt2500pci_set_device_state, +#ifdef CONFIG_RT2500PCI_RFKILL + .rfkill_poll = rt2500pci_rfkill_poll, +#endif /* CONFIG_RT2500PCI_RFKILL */ + .link_tuner = rt2500pci_link_tuner, + .write_tx_desc = rt2500pci_write_tx_desc, + .write_tx_data = rt2x00pci_write_tx_data, + .kick_tx_queue = rt2500pci_kick_tx_queue, + .config_type = rt2500pci_config_type, + .config_phymode = rt2500pci_config_phymode, + .config_channel = rt2500pci_config_channel, + .config_mac_addr = rt2500pci_config_mac_addr, + .config_bssid = rt2500pci_config_bssid, + .config_promisc = rt2500pci_config_promisc, + .config_txpower = rt2500pci_config_txpower, + .config_antenna = rt2500pci_config_antenna, + .config_duration = rt2500pci_config_duration, +}; + +static const struct rt2x00_ops rt2500pci_ops = { + .name = DRV_NAME, + .rxd_size = RXD_DESC_SIZE, + .txd_size = TXD_DESC_SIZE, + .lib = &rt2500pci_rt2x00_ops, + .hw = &rt2500pci_mac80211_ops, +#ifdef CONFIG_RT2X00_LIB_DEBUGFS + .debugfs = &rt2500pci_rt2x00debug, +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ +}; + +/* + * RT2500pci module information. + */ +static struct pci_device_id rt2500pci_device_table[] = { + { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) }, + { 0, } +}; + +MODULE_AUTHOR(DRV_PROJECT); +MODULE_VERSION(DRV_VERSION); +MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); +MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards"); +MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); +MODULE_LICENSE("GPL"); + +static struct pci_driver rt2500pci_driver = { + .name = DRV_NAME, + .id_table = rt2500pci_device_table, + .probe = rt2x00pci_probe, + .remove = __devexit_p(rt2x00pci_remove), +#ifdef CONFIG_PM + .suspend = rt2x00pci_suspend, + .resume = rt2x00pci_resume, +#endif /* CONFIG_PM */ +}; + +static int __init rt2500pci_init(void) +{ + printk(KERN_INFO "Loading module: %s - %s by %s.\n", + DRV_NAME, DRV_VERSION, DRV_PROJECT); + return pci_register_driver(&rt2500pci_driver); +} + +static void __exit rt2500pci_exit(void) +{ + printk(KERN_INFO "Unloading module: %s.\n", DRV_NAME); + pci_unregister_driver(&rt2500pci_driver); +} + +module_init(rt2500pci_init); +module_exit(rt2500pci_exit); |