diff options
author | Felix Fietkau <nbd@openwrt.org> | 2015-03-23 10:14:20 +0000 |
---|---|---|
committer | Felix Fietkau <nbd@openwrt.org> | 2015-03-23 10:14:20 +0000 |
commit | a6f914d57303b25f18ca0b11124e1a016d17fc33 (patch) | |
tree | e89d719dd0b8865a0ba40750ef896b4cc705480c /target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch | |
parent | 752fc0c8d3441967f3a672bc6c0c0abff058d5d0 (diff) | |
download | mtk-20170518-a6f914d57303b25f18ca0b11124e1a016d17fc33.zip mtk-20170518-a6f914d57303b25f18ca0b11124e1a016d17fc33.tar.gz mtk-20170518-a6f914d57303b25f18ca0b11124e1a016d17fc33.tar.bz2 |
bcm53xx: remove linux 3.14 support
Signed-off-by: Felix Fietkau <nbd@openwrt.org>
SVN-Revision: 44946
Diffstat (limited to 'target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch')
-rw-r--r-- | target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch | 2443 |
1 files changed, 0 insertions, 2443 deletions
diff --git a/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch b/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch deleted file mode 100644 index 8b6ed43..0000000 --- a/target/linux/bcm53xx/patches-3.14/001-mtd-spi-nor.patch +++ /dev/null @@ -1,2443 +0,0 @@ -This patches adds the SPI-NOR device support code form kernel 3.17-rc1. -This patch does not contain any further code not in this mainline kernel. - ---- a/drivers/mtd/Kconfig -+++ b/drivers/mtd/Kconfig -@@ -366,6 +366,8 @@ source "drivers/mtd/onenand/Kconfig" - - source "drivers/mtd/lpddr/Kconfig" - -+source "drivers/mtd/spi-nor/Kconfig" -+ - source "drivers/mtd/ubi/Kconfig" - - endif # MTD ---- a/drivers/mtd/Makefile -+++ b/drivers/mtd/Makefile -@@ -35,4 +35,5 @@ inftl-objs := inftlcore.o inftlmount.o - - obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/ - -+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/ - obj-$(CONFIG_MTD_UBI) += ubi/ ---- /dev/null -+++ b/drivers/mtd/spi-nor/fsl-quadspi.c -@@ -0,0 +1,1009 @@ -+/* -+ * Freescale QuadSPI driver. -+ * -+ * Copyright (C) 2013 Freescale Semiconductor, Inc. -+ * -+ * This program is free software; you can redistribute it and/or modify -+ * it under the terms of the GNU General Public License as published by -+ * the Free Software Foundation; either version 2 of the License, or -+ * (at your option) any later version. -+ */ -+#include <linux/kernel.h> -+#include <linux/module.h> -+#include <linux/interrupt.h> -+#include <linux/errno.h> -+#include <linux/platform_device.h> -+#include <linux/sched.h> -+#include <linux/delay.h> -+#include <linux/io.h> -+#include <linux/clk.h> -+#include <linux/err.h> -+#include <linux/of.h> -+#include <linux/of_device.h> -+#include <linux/timer.h> -+#include <linux/jiffies.h> -+#include <linux/completion.h> -+#include <linux/mtd/mtd.h> -+#include <linux/mtd/partitions.h> -+#include <linux/mtd/spi-nor.h> -+ -+/* The registers */ -+#define QUADSPI_MCR 0x00 -+#define QUADSPI_MCR_RESERVED_SHIFT 16 -+#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT) -+#define QUADSPI_MCR_MDIS_SHIFT 14 -+#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT) -+#define QUADSPI_MCR_CLR_TXF_SHIFT 11 -+#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT) -+#define QUADSPI_MCR_CLR_RXF_SHIFT 10 -+#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT) -+#define QUADSPI_MCR_DDR_EN_SHIFT 7 -+#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT) -+#define QUADSPI_MCR_END_CFG_SHIFT 2 -+#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT) -+#define QUADSPI_MCR_SWRSTHD_SHIFT 1 -+#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT) -+#define QUADSPI_MCR_SWRSTSD_SHIFT 0 -+#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT) -+ -+#define QUADSPI_IPCR 0x08 -+#define QUADSPI_IPCR_SEQID_SHIFT 24 -+#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT) -+ -+#define QUADSPI_BUF0CR 0x10 -+#define QUADSPI_BUF1CR 0x14 -+#define QUADSPI_BUF2CR 0x18 -+#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe -+ -+#define QUADSPI_BUF3CR 0x1c -+#define QUADSPI_BUF3CR_ALLMST_SHIFT 31 -+#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT) -+ -+#define QUADSPI_BFGENCR 0x20 -+#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16 -+#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT)) -+#define QUADSPI_BFGENCR_SEQID_SHIFT 12 -+#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT) -+ -+#define QUADSPI_BUF0IND 0x30 -+#define QUADSPI_BUF1IND 0x34 -+#define QUADSPI_BUF2IND 0x38 -+#define QUADSPI_SFAR 0x100 -+ -+#define QUADSPI_SMPR 0x108 -+#define QUADSPI_SMPR_DDRSMP_SHIFT 16 -+#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT) -+#define QUADSPI_SMPR_FSDLY_SHIFT 6 -+#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT) -+#define QUADSPI_SMPR_FSPHS_SHIFT 5 -+#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT) -+#define QUADSPI_SMPR_HSENA_SHIFT 0 -+#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT) -+ -+#define QUADSPI_RBSR 0x10c -+#define QUADSPI_RBSR_RDBFL_SHIFT 8 -+#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT) -+ -+#define QUADSPI_RBCT 0x110 -+#define QUADSPI_RBCT_WMRK_MASK 0x1F -+#define QUADSPI_RBCT_RXBRD_SHIFT 8 -+#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT) -+ -+#define QUADSPI_TBSR 0x150 -+#define QUADSPI_TBDR 0x154 -+#define QUADSPI_SR 0x15c -+#define QUADSPI_SR_IP_ACC_SHIFT 1 -+#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT) -+#define QUADSPI_SR_AHB_ACC_SHIFT 2 -+#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT) -+ -+#define QUADSPI_FR 0x160 -+#define QUADSPI_FR_TFF_MASK 0x1 -+ -+#define QUADSPI_SFA1AD 0x180 -+#define QUADSPI_SFA2AD 0x184 -+#define QUADSPI_SFB1AD 0x188 -+#define QUADSPI_SFB2AD 0x18c -+#define QUADSPI_RBDR 0x200 -+ -+#define QUADSPI_LUTKEY 0x300 -+#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 -+ -+#define QUADSPI_LCKCR 0x304 -+#define QUADSPI_LCKER_LOCK 0x1 -+#define QUADSPI_LCKER_UNLOCK 0x2 -+ -+#define QUADSPI_RSER 0x164 -+#define QUADSPI_RSER_TFIE (0x1 << 0) -+ -+#define QUADSPI_LUT_BASE 0x310 -+ -+/* -+ * The definition of the LUT register shows below: -+ * -+ * --------------------------------------------------- -+ * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | -+ * --------------------------------------------------- -+ */ -+#define OPRND0_SHIFT 0 -+#define PAD0_SHIFT 8 -+#define INSTR0_SHIFT 10 -+#define OPRND1_SHIFT 16 -+ -+/* Instruction set for the LUT register. */ -+#define LUT_STOP 0 -+#define LUT_CMD 1 -+#define LUT_ADDR 2 -+#define LUT_DUMMY 3 -+#define LUT_MODE 4 -+#define LUT_MODE2 5 -+#define LUT_MODE4 6 -+#define LUT_READ 7 -+#define LUT_WRITE 8 -+#define LUT_JMP_ON_CS 9 -+#define LUT_ADDR_DDR 10 -+#define LUT_MODE_DDR 11 -+#define LUT_MODE2_DDR 12 -+#define LUT_MODE4_DDR 13 -+#define LUT_READ_DDR 14 -+#define LUT_WRITE_DDR 15 -+#define LUT_DATA_LEARN 16 -+ -+/* -+ * The PAD definitions for LUT register. -+ * -+ * The pad stands for the lines number of IO[0:3]. -+ * For example, the Quad read need four IO lines, so you should -+ * set LUT_PAD4 which means we use four IO lines. -+ */ -+#define LUT_PAD1 0 -+#define LUT_PAD2 1 -+#define LUT_PAD4 2 -+ -+/* Oprands for the LUT register. */ -+#define ADDR24BIT 0x18 -+#define ADDR32BIT 0x20 -+ -+/* Macros for constructing the LUT register. */ -+#define LUT0(ins, pad, opr) \ -+ (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \ -+ ((LUT_##ins) << INSTR0_SHIFT)) -+ -+#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT) -+ -+/* other macros for LUT register. */ -+#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4) -+#define QUADSPI_LUT_NUM 64 -+ -+/* SEQID -- we can have 16 seqids at most. */ -+#define SEQID_QUAD_READ 0 -+#define SEQID_WREN 1 -+#define SEQID_WRDI 2 -+#define SEQID_RDSR 3 -+#define SEQID_SE 4 -+#define SEQID_CHIP_ERASE 5 -+#define SEQID_PP 6 -+#define SEQID_RDID 7 -+#define SEQID_WRSR 8 -+#define SEQID_RDCR 9 -+#define SEQID_EN4B 10 -+#define SEQID_BRWR 11 -+ -+enum fsl_qspi_devtype { -+ FSL_QUADSPI_VYBRID, -+ FSL_QUADSPI_IMX6SX, -+}; -+ -+struct fsl_qspi_devtype_data { -+ enum fsl_qspi_devtype devtype; -+ int rxfifo; -+ int txfifo; -+}; -+ -+static struct fsl_qspi_devtype_data vybrid_data = { -+ .devtype = FSL_QUADSPI_VYBRID, -+ .rxfifo = 128, -+ .txfifo = 64 -+}; -+ -+static struct fsl_qspi_devtype_data imx6sx_data = { -+ .devtype = FSL_QUADSPI_IMX6SX, -+ .rxfifo = 128, -+ .txfifo = 512 -+}; -+ -+#define FSL_QSPI_MAX_CHIP 4 -+struct fsl_qspi { -+ struct mtd_info mtd[FSL_QSPI_MAX_CHIP]; -+ struct spi_nor nor[FSL_QSPI_MAX_CHIP]; -+ void __iomem *iobase; -+ void __iomem *ahb_base; /* Used when read from AHB bus */ -+ u32 memmap_phy; -+ struct clk *clk, *clk_en; -+ struct device *dev; -+ struct completion c; -+ struct fsl_qspi_devtype_data *devtype_data; -+ u32 nor_size; -+ u32 nor_num; -+ u32 clk_rate; -+ unsigned int chip_base_addr; /* We may support two chips. */ -+}; -+ -+static inline int is_vybrid_qspi(struct fsl_qspi *q) -+{ -+ return q->devtype_data->devtype == FSL_QUADSPI_VYBRID; -+} -+ -+static inline int is_imx6sx_qspi(struct fsl_qspi *q) -+{ -+ return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX; -+} -+ -+/* -+ * An IC bug makes us to re-arrange the 32-bit data. -+ * The following chips, such as IMX6SLX, have fixed this bug. -+ */ -+static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) -+{ -+ return is_vybrid_qspi(q) ? __swab32(a) : a; -+} -+ -+static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) -+{ -+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); -+ writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); -+} -+ -+static inline void fsl_qspi_lock_lut(struct fsl_qspi *q) -+{ -+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); -+ writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); -+} -+ -+static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) -+{ -+ struct fsl_qspi *q = dev_id; -+ u32 reg; -+ -+ /* clear interrupt */ -+ reg = readl(q->iobase + QUADSPI_FR); -+ writel(reg, q->iobase + QUADSPI_FR); -+ -+ if (reg & QUADSPI_FR_TFF_MASK) -+ complete(&q->c); -+ -+ dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg); -+ return IRQ_HANDLED; -+} -+ -+static void fsl_qspi_init_lut(struct fsl_qspi *q) -+{ -+ void __iomem *base = q->iobase; -+ int rxfifo = q->devtype_data->rxfifo; -+ u32 lut_base; -+ u8 cmd, addrlen, dummy; -+ int i; -+ -+ fsl_qspi_unlock_lut(q); -+ -+ /* Clear all the LUT table */ -+ for (i = 0; i < QUADSPI_LUT_NUM; i++) -+ writel(0, base + QUADSPI_LUT_BASE + i * 4); -+ -+ /* Quad Read */ -+ lut_base = SEQID_QUAD_READ * 4; -+ -+ if (q->nor_size <= SZ_16M) { -+ cmd = SPINOR_OP_READ_1_1_4; -+ addrlen = ADDR24BIT; -+ dummy = 8; -+ } else { -+ /* use the 4-byte address */ -+ cmd = SPINOR_OP_READ_1_1_4; -+ addrlen = ADDR32BIT; -+ dummy = 8; -+ } -+ -+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), -+ base + QUADSPI_LUT(lut_base)); -+ writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo), -+ base + QUADSPI_LUT(lut_base + 1)); -+ -+ /* Write enable */ -+ lut_base = SEQID_WREN * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base)); -+ -+ /* Page Program */ -+ lut_base = SEQID_PP * 4; -+ -+ if (q->nor_size <= SZ_16M) { -+ cmd = SPINOR_OP_PP; -+ addrlen = ADDR24BIT; -+ } else { -+ /* use the 4-byte address */ -+ cmd = SPINOR_OP_PP; -+ addrlen = ADDR32BIT; -+ } -+ -+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), -+ base + QUADSPI_LUT(lut_base)); -+ writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1)); -+ -+ /* Read Status */ -+ lut_base = SEQID_RDSR * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1), -+ base + QUADSPI_LUT(lut_base)); -+ -+ /* Erase a sector */ -+ lut_base = SEQID_SE * 4; -+ -+ if (q->nor_size <= SZ_16M) { -+ cmd = SPINOR_OP_SE; -+ addrlen = ADDR24BIT; -+ } else { -+ /* use the 4-byte address */ -+ cmd = SPINOR_OP_SE; -+ addrlen = ADDR32BIT; -+ } -+ -+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen), -+ base + QUADSPI_LUT(lut_base)); -+ -+ /* Erase the whole chip */ -+ lut_base = SEQID_CHIP_ERASE * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE), -+ base + QUADSPI_LUT(lut_base)); -+ -+ /* READ ID */ -+ lut_base = SEQID_RDID * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8), -+ base + QUADSPI_LUT(lut_base)); -+ -+ /* Write Register */ -+ lut_base = SEQID_WRSR * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2), -+ base + QUADSPI_LUT(lut_base)); -+ -+ /* Read Configuration Register */ -+ lut_base = SEQID_RDCR * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1), -+ base + QUADSPI_LUT(lut_base)); -+ -+ /* Write disable */ -+ lut_base = SEQID_WRDI * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base)); -+ -+ /* Enter 4 Byte Mode (Micron) */ -+ lut_base = SEQID_EN4B * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base)); -+ -+ /* Enter 4 Byte Mode (Spansion) */ -+ lut_base = SEQID_BRWR * 4; -+ writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base)); -+ -+ fsl_qspi_lock_lut(q); -+} -+ -+/* Get the SEQID for the command */ -+static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) -+{ -+ switch (cmd) { -+ case SPINOR_OP_READ_1_1_4: -+ return SEQID_QUAD_READ; -+ case SPINOR_OP_WREN: -+ return SEQID_WREN; -+ case SPINOR_OP_WRDI: -+ return SEQID_WRDI; -+ case SPINOR_OP_RDSR: -+ return SEQID_RDSR; -+ case SPINOR_OP_SE: -+ return SEQID_SE; -+ case SPINOR_OP_CHIP_ERASE: -+ return SEQID_CHIP_ERASE; -+ case SPINOR_OP_PP: -+ return SEQID_PP; -+ case SPINOR_OP_RDID: -+ return SEQID_RDID; -+ case SPINOR_OP_WRSR: -+ return SEQID_WRSR; -+ case SPINOR_OP_RDCR: -+ return SEQID_RDCR; -+ case SPINOR_OP_EN4B: -+ return SEQID_EN4B; -+ case SPINOR_OP_BRWR: -+ return SEQID_BRWR; -+ default: -+ dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); -+ break; -+ } -+ return -EINVAL; -+} -+ -+static int -+fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len) -+{ -+ void __iomem *base = q->iobase; -+ int seqid; -+ u32 reg, reg2; -+ int err; -+ -+ init_completion(&q->c); -+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n", -+ q->chip_base_addr, addr, len, cmd); -+ -+ /* save the reg */ -+ reg = readl(base + QUADSPI_MCR); -+ -+ writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR); -+ writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, -+ base + QUADSPI_RBCT); -+ writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR); -+ -+ do { -+ reg2 = readl(base + QUADSPI_SR); -+ if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) { -+ udelay(1); -+ dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2); -+ continue; -+ } -+ break; -+ } while (1); -+ -+ /* trigger the LUT now */ -+ seqid = fsl_qspi_get_seqid(q, cmd); -+ writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR); -+ -+ /* Wait for the interrupt. */ -+ err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)); -+ if (!err) { -+ dev_err(q->dev, -+ "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n", -+ cmd, addr, readl(base + QUADSPI_FR), -+ readl(base + QUADSPI_SR)); -+ err = -ETIMEDOUT; -+ } else { -+ err = 0; -+ } -+ -+ /* restore the MCR */ -+ writel(reg, base + QUADSPI_MCR); -+ -+ return err; -+} -+ -+/* Read out the data from the QUADSPI_RBDR buffer registers. */ -+static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf) -+{ -+ u32 tmp; -+ int i = 0; -+ -+ while (len > 0) { -+ tmp = readl(q->iobase + QUADSPI_RBDR + i * 4); -+ tmp = fsl_qspi_endian_xchg(q, tmp); -+ dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n", -+ q->chip_base_addr, tmp); -+ -+ if (len >= 4) { -+ *((u32 *)rxbuf) = tmp; -+ rxbuf += 4; -+ } else { -+ memcpy(rxbuf, &tmp, len); -+ break; -+ } -+ -+ len -= 4; -+ i++; -+ } -+} -+ -+/* -+ * If we have changed the content of the flash by writing or erasing, -+ * we need to invalidate the AHB buffer. If we do not do so, we may read out -+ * the wrong data. The spec tells us reset the AHB domain and Serial Flash -+ * domain at the same time. -+ */ -+static inline void fsl_qspi_invalid(struct fsl_qspi *q) -+{ -+ u32 reg; -+ -+ reg = readl(q->iobase + QUADSPI_MCR); -+ reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; -+ writel(reg, q->iobase + QUADSPI_MCR); -+ -+ /* -+ * The minimum delay : 1 AHB + 2 SFCK clocks. -+ * Delay 1 us is enough. -+ */ -+ udelay(1); -+ -+ reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); -+ writel(reg, q->iobase + QUADSPI_MCR); -+} -+ -+static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, -+ u8 opcode, unsigned int to, u32 *txbuf, -+ unsigned count, size_t *retlen) -+{ -+ int ret, i, j; -+ u32 tmp; -+ -+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n", -+ q->chip_base_addr, to, count); -+ -+ /* clear the TX FIFO. */ -+ tmp = readl(q->iobase + QUADSPI_MCR); -+ writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR); -+ -+ /* fill the TX data to the FIFO */ -+ for (j = 0, i = ((count + 3) / 4); j < i; j++) { -+ tmp = fsl_qspi_endian_xchg(q, *txbuf); -+ writel(tmp, q->iobase + QUADSPI_TBDR); -+ txbuf++; -+ } -+ -+ /* Trigger it */ -+ ret = fsl_qspi_runcmd(q, opcode, to, count); -+ -+ if (ret == 0 && retlen) -+ *retlen += count; -+ -+ return ret; -+} -+ -+static void fsl_qspi_set_map_addr(struct fsl_qspi *q) -+{ -+ int nor_size = q->nor_size; -+ void __iomem *base = q->iobase; -+ -+ writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD); -+ writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD); -+ writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD); -+ writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD); -+} -+ -+/* -+ * There are two different ways to read out the data from the flash: -+ * the "IP Command Read" and the "AHB Command Read". -+ * -+ * The IC guy suggests we use the "AHB Command Read" which is faster -+ * then the "IP Command Read". (What's more is that there is a bug in -+ * the "IP Command Read" in the Vybrid.) -+ * -+ * After we set up the registers for the "AHB Command Read", we can use -+ * the memcpy to read the data directly. A "missed" access to the buffer -+ * causes the controller to clear the buffer, and use the sequence pointed -+ * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. -+ */ -+static void fsl_qspi_init_abh_read(struct fsl_qspi *q) -+{ -+ void __iomem *base = q->iobase; -+ int seqid; -+ -+ /* AHB configuration for access buffer 0/1/2 .*/ -+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR); -+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR); -+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR); -+ writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR); -+ -+ /* We only use the buffer3 */ -+ writel(0, base + QUADSPI_BUF0IND); -+ writel(0, base + QUADSPI_BUF1IND); -+ writel(0, base + QUADSPI_BUF2IND); -+ -+ /* Set the default lut sequence for AHB Read. */ -+ seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode); -+ writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT, -+ q->iobase + QUADSPI_BFGENCR); -+} -+ -+/* We use this function to do some basic init for spi_nor_scan(). */ -+static int fsl_qspi_nor_setup(struct fsl_qspi *q) -+{ -+ void __iomem *base = q->iobase; -+ u32 reg; -+ int ret; -+ -+ /* the default frequency, we will change it in the future.*/ -+ ret = clk_set_rate(q->clk, 66000000); -+ if (ret) -+ return ret; -+ -+ /* Init the LUT table. */ -+ fsl_qspi_init_lut(q); -+ -+ /* Disable the module */ -+ writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, -+ base + QUADSPI_MCR); -+ -+ reg = readl(base + QUADSPI_SMPR); -+ writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK -+ | QUADSPI_SMPR_FSPHS_MASK -+ | QUADSPI_SMPR_HSENA_MASK -+ | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); -+ -+ /* Enable the module */ -+ writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, -+ base + QUADSPI_MCR); -+ -+ /* enable the interrupt */ -+ writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); -+ -+ return 0; -+} -+ -+static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) -+{ -+ unsigned long rate = q->clk_rate; -+ int ret; -+ -+ if (is_imx6sx_qspi(q)) -+ rate *= 4; -+ -+ ret = clk_set_rate(q->clk, rate); -+ if (ret) -+ return ret; -+ -+ /* Init the LUT table again. */ -+ fsl_qspi_init_lut(q); -+ -+ /* Init for AHB read */ -+ fsl_qspi_init_abh_read(q); -+ -+ return 0; -+} -+ -+static struct of_device_id fsl_qspi_dt_ids[] = { -+ { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, }, -+ { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, }, -+ { /* sentinel */ } -+}; -+MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); -+ -+static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor) -+{ -+ q->chip_base_addr = q->nor_size * (nor - q->nor); -+} -+ -+static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) -+{ -+ int ret; -+ struct fsl_qspi *q = nor->priv; -+ -+ ret = fsl_qspi_runcmd(q, opcode, 0, len); -+ if (ret) -+ return ret; -+ -+ fsl_qspi_read_data(q, len, buf); -+ return 0; -+} -+ -+static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len, -+ int write_enable) -+{ -+ struct fsl_qspi *q = nor->priv; -+ int ret; -+ -+ if (!buf) { -+ ret = fsl_qspi_runcmd(q, opcode, 0, 1); -+ if (ret) -+ return ret; -+ -+ if (opcode == SPINOR_OP_CHIP_ERASE) -+ fsl_qspi_invalid(q); -+ -+ } else if (len > 0) { -+ ret = fsl_qspi_nor_write(q, nor, opcode, 0, -+ (u32 *)buf, len, NULL); -+ } else { -+ dev_err(q->dev, "invalid cmd %d\n", opcode); -+ ret = -EINVAL; -+ } -+ -+ return ret; -+} -+ -+static void fsl_qspi_write(struct spi_nor *nor, loff_t to, -+ size_t len, size_t *retlen, const u_char *buf) -+{ -+ struct fsl_qspi *q = nor->priv; -+ -+ fsl_qspi_nor_write(q, nor, nor->program_opcode, to, -+ (u32 *)buf, len, retlen); -+ -+ /* invalid the data in the AHB buffer. */ -+ fsl_qspi_invalid(q); -+} -+ -+static int fsl_qspi_read(struct spi_nor *nor, loff_t from, -+ size_t len, size_t *retlen, u_char *buf) -+{ -+ struct fsl_qspi *q = nor->priv; -+ u8 cmd = nor->read_opcode; -+ int ret; -+ -+ dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n", -+ cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len); -+ -+ /* Wait until the previous command is finished. */ -+ ret = nor->wait_till_ready(nor); -+ if (ret) -+ return ret; -+ -+ /* Read out the data directly from the AHB buffer.*/ -+ memcpy(buf, q->ahb_base + q->chip_base_addr + from, len); -+ -+ *retlen += len; -+ return 0; -+} -+ -+static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) -+{ -+ struct fsl_qspi *q = nor->priv; -+ int ret; -+ -+ dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", -+ nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs); -+ -+ /* Wait until finished previous write command. */ -+ ret = nor->wait_till_ready(nor); -+ if (ret) -+ return ret; -+ -+ /* Send write enable, then erase commands. */ -+ ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); -+ if (ret) -+ return ret; -+ -+ ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); -+ if (ret) -+ return ret; -+ -+ fsl_qspi_invalid(q); -+ return 0; -+} -+ -+static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) -+{ -+ struct fsl_qspi *q = nor->priv; -+ int ret; -+ -+ ret = clk_enable(q->clk_en); -+ if (ret) -+ return ret; -+ -+ ret = clk_enable(q->clk); -+ if (ret) { -+ clk_disable(q->clk_en); -+ return ret; -+ } -+ -+ fsl_qspi_set_base_addr(q, nor); -+ return 0; -+} -+ -+static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) -+{ -+ struct fsl_qspi *q = nor->priv; -+ -+ clk_disable(q->clk); -+ clk_disable(q->clk_en); -+} -+ -+static int fsl_qspi_probe(struct platform_device *pdev) -+{ -+ struct device_node *np = pdev->dev.of_node; -+ struct mtd_part_parser_data ppdata; -+ struct device *dev = &pdev->dev; -+ struct fsl_qspi *q; -+ struct resource *res; -+ struct spi_nor *nor; -+ struct mtd_info *mtd; -+ int ret, i = 0; -+ bool has_second_chip = false; -+ const struct of_device_id *of_id = -+ of_match_device(fsl_qspi_dt_ids, &pdev->dev); -+ -+ q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL); -+ if (!q) -+ return -ENOMEM; -+ -+ q->nor_num = of_get_child_count(dev->of_node); -+ if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) -+ return -ENODEV; -+ -+ /* find the resources */ -+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); -+ q->iobase = devm_ioremap_resource(dev, res); -+ if (IS_ERR(q->iobase)) { -+ ret = PTR_ERR(q->iobase); -+ goto map_failed; -+ } -+ -+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, -+ "QuadSPI-memory"); -+ q->ahb_base = devm_ioremap_resource(dev, res); -+ if (IS_ERR(q->ahb_base)) { -+ ret = PTR_ERR(q->ahb_base); -+ goto map_failed; -+ } -+ q->memmap_phy = res->start; -+ -+ /* find the clocks */ -+ q->clk_en = devm_clk_get(dev, "qspi_en"); -+ if (IS_ERR(q->clk_en)) { -+ ret = PTR_ERR(q->clk_en); -+ goto map_failed; -+ } -+ -+ q->clk = devm_clk_get(dev, "qspi"); -+ if (IS_ERR(q->clk)) { -+ ret = PTR_ERR(q->clk); -+ goto map_failed; -+ } -+ -+ ret = clk_prepare_enable(q->clk_en); -+ if (ret) { -+ dev_err(dev, "can not enable the qspi_en clock\n"); -+ goto map_failed; -+ } -+ -+ ret = clk_prepare_enable(q->clk); -+ if (ret) { -+ clk_disable_unprepare(q->clk_en); -+ dev_err(dev, "can not enable the qspi clock\n"); -+ goto map_failed; -+ } -+ -+ /* find the irq */ -+ ret = platform_get_irq(pdev, 0); -+ if (ret < 0) { -+ dev_err(dev, "failed to get the irq\n"); -+ goto irq_failed; -+ } -+ -+ ret = devm_request_irq(dev, ret, -+ fsl_qspi_irq_handler, 0, pdev->name, q); -+ if (ret) { -+ dev_err(dev, "failed to request irq.\n"); -+ goto irq_failed; -+ } -+ -+ q->dev = dev; -+ q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data; -+ platform_set_drvdata(pdev, q); -+ -+ ret = fsl_qspi_nor_setup(q); -+ if (ret) -+ goto irq_failed; -+ -+ if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) -+ has_second_chip = true; -+ -+ /* iterate the subnodes. */ -+ for_each_available_child_of_node(dev->of_node, np) { -+ const struct spi_device_id *id; -+ char modalias[40]; -+ -+ /* skip the holes */ -+ if (!has_second_chip) -+ i *= 2; -+ -+ nor = &q->nor[i]; -+ mtd = &q->mtd[i]; -+ -+ nor->mtd = mtd; -+ nor->dev = dev; -+ nor->priv = q; -+ mtd->priv = nor; -+ -+ /* fill the hooks */ -+ nor->read_reg = fsl_qspi_read_reg; -+ nor->write_reg = fsl_qspi_write_reg; -+ nor->read = fsl_qspi_read; -+ nor->write = fsl_qspi_write; -+ nor->erase = fsl_qspi_erase; -+ -+ nor->prepare = fsl_qspi_prep; -+ nor->unprepare = fsl_qspi_unprep; -+ -+ if (of_modalias_node(np, modalias, sizeof(modalias)) < 0) -+ goto map_failed; -+ -+ id = spi_nor_match_id(modalias); -+ if (!id) -+ goto map_failed; -+ -+ ret = of_property_read_u32(np, "spi-max-frequency", -+ &q->clk_rate); -+ if (ret < 0) -+ goto map_failed; -+ -+ /* set the chip address for READID */ -+ fsl_qspi_set_base_addr(q, nor); -+ -+ ret = spi_nor_scan(nor, id, SPI_NOR_QUAD); -+ if (ret) -+ goto map_failed; -+ -+ ppdata.of_node = np; -+ ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0); -+ if (ret) -+ goto map_failed; -+ -+ /* Set the correct NOR size now. */ -+ if (q->nor_size == 0) { -+ q->nor_size = mtd->size; -+ -+ /* Map the SPI NOR to accessiable address */ -+ fsl_qspi_set_map_addr(q); -+ } -+ -+ /* -+ * The TX FIFO is 64 bytes in the Vybrid, but the Page Program -+ * may writes 265 bytes per time. The write is working in the -+ * unit of the TX FIFO, not in the unit of the SPI NOR's page -+ * size. -+ * -+ * So shrink the spi_nor->page_size if it is larger then the -+ * TX FIFO. -+ */ -+ if (nor->page_size > q->devtype_data->txfifo) -+ nor->page_size = q->devtype_data->txfifo; -+ -+ i++; -+ } -+ -+ /* finish the rest init. */ -+ ret = fsl_qspi_nor_setup_last(q); -+ if (ret) -+ goto last_init_failed; -+ -+ clk_disable(q->clk); -+ clk_disable(q->clk_en); -+ dev_info(dev, "QuadSPI SPI NOR flash driver\n"); -+ return 0; -+ -+last_init_failed: -+ for (i = 0; i < q->nor_num; i++) -+ mtd_device_unregister(&q->mtd[i]); -+ -+irq_failed: -+ clk_disable_unprepare(q->clk); -+ clk_disable_unprepare(q->clk_en); -+map_failed: -+ dev_err(dev, "Freescale QuadSPI probe failed\n"); -+ return ret; -+} -+ -+static int fsl_qspi_remove(struct platform_device *pdev) -+{ -+ struct fsl_qspi *q = platform_get_drvdata(pdev); -+ int i; -+ -+ for (i = 0; i < q->nor_num; i++) -+ mtd_device_unregister(&q->mtd[i]); -+ -+ /* disable the hardware */ -+ writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); -+ writel(0x0, q->iobase + QUADSPI_RSER); -+ -+ clk_unprepare(q->clk); -+ clk_unprepare(q->clk_en); -+ return 0; -+} -+ -+static struct platform_driver fsl_qspi_driver = { -+ .driver = { -+ .name = "fsl-quadspi", -+ .bus = &platform_bus_type, -+ .owner = THIS_MODULE, -+ .of_match_table = fsl_qspi_dt_ids, -+ }, -+ .probe = fsl_qspi_probe, -+ .remove = fsl_qspi_remove, -+}; -+module_platform_driver(fsl_qspi_driver); -+ -+MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); -+MODULE_AUTHOR("Freescale Semiconductor Inc."); -+MODULE_LICENSE("GPL v2"); ---- /dev/null -+++ b/drivers/mtd/spi-nor/Kconfig -@@ -0,0 +1,17 @@ -+menuconfig MTD_SPI_NOR -+ tristate "SPI-NOR device support" -+ depends on MTD -+ help -+ This is the framework for the SPI NOR which can be used by the SPI -+ device drivers and the SPI-NOR device driver. -+ -+if MTD_SPI_NOR -+ -+config SPI_FSL_QUADSPI -+ tristate "Freescale Quad SPI controller" -+ depends on ARCH_MXC -+ help -+ This enables support for the Quad SPI controller in master mode. -+ We only connect the NOR to this controller now. -+ -+endif # MTD_SPI_NOR ---- /dev/null -+++ b/drivers/mtd/spi-nor/Makefile -@@ -0,0 +1,2 @@ -+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o -+obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o ---- /dev/null -+++ b/drivers/mtd/spi-nor/spi-nor.c -@@ -0,0 +1,1160 @@ -+/* -+ * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with -+ * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c -+ * -+ * Copyright (C) 2005, Intec Automation Inc. -+ * Copyright (C) 2014, Freescale Semiconductor, Inc. -+ * -+ * This code is free software; you can redistribute it and/or modify -+ * it under the terms of the GNU General Public License version 2 as -+ * published by the Free Software Foundation. -+ */ -+ -+#include <linux/err.h> -+#include <linux/errno.h> -+#include <linux/module.h> -+#include <linux/device.h> -+#include <linux/mutex.h> -+#include <linux/math64.h> -+ -+#include <linux/mtd/cfi.h> -+#include <linux/mtd/mtd.h> -+#include <linux/of_platform.h> -+#include <linux/spi/flash.h> -+#include <linux/mtd/spi-nor.h> -+ -+/* Define max times to check status register before we give up. */ -+#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */ -+ -+#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16) -+ -+/* -+ * Read the status register, returning its value in the location -+ * Return the status register value. -+ * Returns negative if error occurred. -+ */ -+static int read_sr(struct spi_nor *nor) -+{ -+ int ret; -+ u8 val; -+ -+ ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); -+ if (ret < 0) { -+ pr_err("error %d reading SR\n", (int) ret); -+ return ret; -+ } -+ -+ return val; -+} -+ -+/* -+ * Read the flag status register, returning its value in the location -+ * Return the status register value. -+ * Returns negative if error occurred. -+ */ -+static int read_fsr(struct spi_nor *nor) -+{ -+ int ret; -+ u8 val; -+ -+ ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); -+ if (ret < 0) { -+ pr_err("error %d reading FSR\n", ret); -+ return ret; -+ } -+ -+ return val; -+} -+ -+/* -+ * Read configuration register, returning its value in the -+ * location. Return the configuration register value. -+ * Returns negative if error occured. -+ */ -+static int read_cr(struct spi_nor *nor) -+{ -+ int ret; -+ u8 val; -+ -+ ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); -+ if (ret < 0) { -+ dev_err(nor->dev, "error %d reading CR\n", ret); -+ return ret; -+ } -+ -+ return val; -+} -+ -+/* -+ * Dummy Cycle calculation for different type of read. -+ * It can be used to support more commands with -+ * different dummy cycle requirements. -+ */ -+static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) -+{ -+ switch (nor->flash_read) { -+ case SPI_NOR_FAST: -+ case SPI_NOR_DUAL: -+ case SPI_NOR_QUAD: -+ return 1; -+ case SPI_NOR_NORMAL: -+ return 0; -+ } -+ return 0; -+} -+ -+/* -+ * Write status register 1 byte -+ * Returns negative if error occurred. -+ */ -+static inline int write_sr(struct spi_nor *nor, u8 val) -+{ -+ nor->cmd_buf[0] = val; -+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); -+} -+ -+/* -+ * Set write enable latch with Write Enable command. -+ * Returns negative if error occurred. -+ */ -+static inline int write_enable(struct spi_nor *nor) -+{ -+ return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0); -+} -+ -+/* -+ * Send write disble instruction to the chip. -+ */ -+static inline int write_disable(struct spi_nor *nor) -+{ -+ return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0); -+} -+ -+static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) -+{ -+ return mtd->priv; -+} -+ -+/* Enable/disable 4-byte addressing mode. */ -+static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable) -+{ -+ int status; -+ bool need_wren = false; -+ u8 cmd; -+ -+ switch (JEDEC_MFR(jedec_id)) { -+ case CFI_MFR_ST: /* Micron, actually */ -+ /* Some Micron need WREN command; all will accept it */ -+ need_wren = true; -+ case CFI_MFR_MACRONIX: -+ case 0xEF /* winbond */: -+ if (need_wren) -+ write_enable(nor); -+ -+ cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; -+ status = nor->write_reg(nor, cmd, NULL, 0, 0); -+ if (need_wren) -+ write_disable(nor); -+ -+ return status; -+ default: -+ /* Spansion style */ -+ nor->cmd_buf[0] = enable << 7; -+ return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0); -+ } -+} -+ -+static int spi_nor_wait_till_ready(struct spi_nor *nor) -+{ -+ unsigned long deadline; -+ int sr; -+ -+ deadline = jiffies + MAX_READY_WAIT_JIFFIES; -+ -+ do { -+ cond_resched(); -+ -+ sr = read_sr(nor); -+ if (sr < 0) -+ break; -+ else if (!(sr & SR_WIP)) -+ return 0; -+ } while (!time_after_eq(jiffies, deadline)); -+ -+ return -ETIMEDOUT; -+} -+ -+static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor) -+{ -+ unsigned long deadline; -+ int sr; -+ int fsr; -+ -+ deadline = jiffies + MAX_READY_WAIT_JIFFIES; -+ -+ do { -+ cond_resched(); -+ -+ sr = read_sr(nor); -+ if (sr < 0) { -+ break; -+ } else if (!(sr & SR_WIP)) { -+ fsr = read_fsr(nor); -+ if (fsr < 0) -+ break; -+ if (fsr & FSR_READY) -+ return 0; -+ } -+ } while (!time_after_eq(jiffies, deadline)); -+ -+ return -ETIMEDOUT; -+} -+ -+/* -+ * Service routine to read status register until ready, or timeout occurs. -+ * Returns non-zero if error. -+ */ -+static int wait_till_ready(struct spi_nor *nor) -+{ -+ return nor->wait_till_ready(nor); -+} -+ -+/* -+ * Erase the whole flash memory -+ * -+ * Returns 0 if successful, non-zero otherwise. -+ */ -+static int erase_chip(struct spi_nor *nor) -+{ -+ int ret; -+ -+ dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10)); -+ -+ /* Wait until finished previous write command. */ -+ ret = wait_till_ready(nor); -+ if (ret) -+ return ret; -+ -+ /* Send write enable, then erase commands. */ -+ write_enable(nor); -+ -+ return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0); -+} -+ -+static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) -+{ -+ int ret = 0; -+ -+ mutex_lock(&nor->lock); -+ -+ if (nor->prepare) { -+ ret = nor->prepare(nor, ops); -+ if (ret) { -+ dev_err(nor->dev, "failed in the preparation.\n"); -+ mutex_unlock(&nor->lock); -+ return ret; -+ } -+ } -+ return ret; -+} -+ -+static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) -+{ -+ if (nor->unprepare) -+ nor->unprepare(nor, ops); -+ mutex_unlock(&nor->lock); -+} -+ -+/* -+ * Erase an address range on the nor chip. The address range may extend -+ * one or more erase sectors. Return an error is there is a problem erasing. -+ */ -+static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) -+{ -+ struct spi_nor *nor = mtd_to_spi_nor(mtd); -+ u32 addr, len; -+ uint32_t rem; -+ int ret; -+ -+ dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, -+ (long long)instr->len); -+ -+ div_u64_rem(instr->len, mtd->erasesize, &rem); -+ if (rem) -+ return -EINVAL; -+ -+ addr = instr->addr; -+ len = instr->len; -+ -+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); -+ if (ret) -+ return ret; -+ -+ /* whole-chip erase? */ -+ if (len == mtd->size) { -+ if (erase_chip(nor)) { -+ ret = -EIO; -+ goto erase_err; -+ } -+ -+ /* REVISIT in some cases we could speed up erasing large regions -+ * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up -+ * to use "small sector erase", but that's not always optimal. -+ */ -+ -+ /* "sector"-at-a-time erase */ -+ } else { -+ while (len) { -+ if (nor->erase(nor, addr)) { -+ ret = -EIO; -+ goto erase_err; -+ } -+ -+ addr += mtd->erasesize; -+ len -= mtd->erasesize; -+ } -+ } -+ -+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); -+ -+ instr->state = MTD_ERASE_DONE; -+ mtd_erase_callback(instr); -+ -+ return ret; -+ -+erase_err: -+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); -+ instr->state = MTD_ERASE_FAILED; -+ return ret; -+} -+ -+static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) -+{ -+ struct spi_nor *nor = mtd_to_spi_nor(mtd); -+ uint32_t offset = ofs; -+ uint8_t status_old, status_new; -+ int ret = 0; -+ -+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); -+ if (ret) -+ return ret; -+ -+ /* Wait until finished previous command */ -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto err; -+ -+ status_old = read_sr(nor); -+ -+ if (offset < mtd->size - (mtd->size / 2)) -+ status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0; -+ else if (offset < mtd->size - (mtd->size / 4)) -+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; -+ else if (offset < mtd->size - (mtd->size / 8)) -+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; -+ else if (offset < mtd->size - (mtd->size / 16)) -+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; -+ else if (offset < mtd->size - (mtd->size / 32)) -+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; -+ else if (offset < mtd->size - (mtd->size / 64)) -+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; -+ else -+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; -+ -+ /* Only modify protection if it will not unlock other areas */ -+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) > -+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { -+ write_enable(nor); -+ ret = write_sr(nor, status_new); -+ if (ret) -+ goto err; -+ } -+ -+err: -+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); -+ return ret; -+} -+ -+static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) -+{ -+ struct spi_nor *nor = mtd_to_spi_nor(mtd); -+ uint32_t offset = ofs; -+ uint8_t status_old, status_new; -+ int ret = 0; -+ -+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); -+ if (ret) -+ return ret; -+ -+ /* Wait until finished previous command */ -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto err; -+ -+ status_old = read_sr(nor); -+ -+ if (offset+len > mtd->size - (mtd->size / 64)) -+ status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0); -+ else if (offset+len > mtd->size - (mtd->size / 32)) -+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0; -+ else if (offset+len > mtd->size - (mtd->size / 16)) -+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1; -+ else if (offset+len > mtd->size - (mtd->size / 8)) -+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0; -+ else if (offset+len > mtd->size - (mtd->size / 4)) -+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2; -+ else if (offset+len > mtd->size - (mtd->size / 2)) -+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0; -+ else -+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1; -+ -+ /* Only modify protection if it will not lock other areas */ -+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) < -+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) { -+ write_enable(nor); -+ ret = write_sr(nor, status_new); -+ if (ret) -+ goto err; -+ } -+ -+err: -+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); -+ return ret; -+} -+ -+struct flash_info { -+ /* JEDEC id zero means "no ID" (most older chips); otherwise it has -+ * a high byte of zero plus three data bytes: the manufacturer id, -+ * then a two byte device id. -+ */ -+ u32 jedec_id; -+ u16 ext_id; -+ -+ /* The size listed here is what works with SPINOR_OP_SE, which isn't -+ * necessarily called a "sector" by the vendor. -+ */ -+ unsigned sector_size; -+ u16 n_sectors; -+ -+ u16 page_size; -+ u16 addr_width; -+ -+ u16 flags; -+#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */ -+#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */ -+#define SST_WRITE 0x04 /* use SST byte programming */ -+#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */ -+#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */ -+#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */ -+#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */ -+#define USE_FSR 0x80 /* use flag status register */ -+}; -+ -+#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ -+ ((kernel_ulong_t)&(struct flash_info) { \ -+ .jedec_id = (_jedec_id), \ -+ .ext_id = (_ext_id), \ -+ .sector_size = (_sector_size), \ -+ .n_sectors = (_n_sectors), \ -+ .page_size = 256, \ -+ .flags = (_flags), \ -+ }) -+ -+#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ -+ ((kernel_ulong_t)&(struct flash_info) { \ -+ .sector_size = (_sector_size), \ -+ .n_sectors = (_n_sectors), \ -+ .page_size = (_page_size), \ -+ .addr_width = (_addr_width), \ -+ .flags = (_flags), \ -+ }) -+ -+/* NOTE: double check command sets and memory organization when you add -+ * more nor chips. This current list focusses on newer chips, which -+ * have been converging on command sets which including JEDEC ID. -+ */ -+const struct spi_device_id spi_nor_ids[] = { -+ /* Atmel -- some are (confusingly) marketed as "DataFlash" */ -+ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, -+ { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, -+ -+ { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, -+ { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, -+ { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, -+ -+ { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, -+ { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, -+ { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, -+ { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, -+ -+ { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, -+ -+ /* EON -- en25xxx */ -+ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, -+ { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, -+ { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, -+ { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, -+ { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, -+ { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, -+ { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, -+ -+ /* ESMT */ -+ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) }, -+ -+ /* Everspin */ -+ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, -+ { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, -+ -+ /* GigaDevice */ -+ { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) }, -+ { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) }, -+ -+ /* Intel/Numonyx -- xxxs33b */ -+ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, -+ { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, -+ { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, -+ -+ /* Macronix */ -+ { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, -+ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, -+ { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, -+ { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, -+ { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) }, -+ { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, -+ { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) }, -+ { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, -+ { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, -+ { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, -+ { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, -+ { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, -+ { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, -+ -+ /* Micron */ -+ { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) }, -+ { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) }, -+ { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) }, -+ { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) }, -+ { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) }, -+ { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) }, -+ { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) }, -+ -+ /* PMC */ -+ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, -+ { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, -+ { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, -+ -+ /* Spansion -- single (large) sector size only, at least -+ * for the chips listed here (without boot sectors). -+ */ -+ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, -+ { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) }, -+ { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, -+ { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, -+ { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, -+ { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, -+ { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, -+ { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, -+ { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) }, -+ { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) }, -+ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, -+ { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, -+ { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, -+ { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, -+ { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, -+ { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, -+ { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) }, -+ { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, -+ -+ /* SST -- large erase sizes are "overlays", "sectors" are 4K */ -+ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, -+ { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, -+ { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, -+ { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, -+ { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, -+ { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, -+ { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, -+ { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, -+ { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, -+ -+ /* ST Microelectronics -- newer production may have feature updates */ -+ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, -+ { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, -+ { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, -+ { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, -+ { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, -+ { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, -+ { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, -+ { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, -+ { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, -+ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) }, -+ -+ { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, -+ { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, -+ { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, -+ { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, -+ { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, -+ { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, -+ { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, -+ { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, -+ { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, -+ -+ { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, -+ { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, -+ { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, -+ -+ { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, -+ { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, -+ { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, -+ -+ { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, -+ { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, -+ { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, -+ { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, -+ { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, -+ -+ /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ -+ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, -+ { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, -+ { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, -+ { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, -+ { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, -+ { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, -+ { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, -+ { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) }, -+ { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, -+ { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, -+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, -+ { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, -+ { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, -+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, -+ { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, -+ -+ /* Catalyst / On Semiconductor -- non-JEDEC */ -+ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, -+ { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, -+ { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, -+ { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, -+ { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, -+ { }, -+}; -+EXPORT_SYMBOL_GPL(spi_nor_ids); -+ -+static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor) -+{ -+ int tmp; -+ u8 id[5]; -+ u32 jedec; -+ u16 ext_jedec; -+ struct flash_info *info; -+ -+ tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5); -+ if (tmp < 0) { -+ dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp); -+ return ERR_PTR(tmp); -+ } -+ jedec = id[0]; -+ jedec = jedec << 8; -+ jedec |= id[1]; -+ jedec = jedec << 8; -+ jedec |= id[2]; -+ -+ ext_jedec = id[3] << 8 | id[4]; -+ -+ for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { -+ info = (void *)spi_nor_ids[tmp].driver_data; -+ if (info->jedec_id == jedec) { -+ if (info->ext_id == 0 || info->ext_id == ext_jedec) -+ return &spi_nor_ids[tmp]; -+ } -+ } -+ dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec); -+ return ERR_PTR(-ENODEV); -+} -+ -+static const struct spi_device_id *jedec_probe(struct spi_nor *nor) -+{ -+ return nor->read_id(nor); -+} -+ -+static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, -+ size_t *retlen, u_char *buf) -+{ -+ struct spi_nor *nor = mtd_to_spi_nor(mtd); -+ int ret; -+ -+ dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); -+ -+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); -+ if (ret) -+ return ret; -+ -+ ret = nor->read(nor, from, len, retlen, buf); -+ -+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); -+ return ret; -+} -+ -+static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, -+ size_t *retlen, const u_char *buf) -+{ -+ struct spi_nor *nor = mtd_to_spi_nor(mtd); -+ size_t actual; -+ int ret; -+ -+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); -+ -+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); -+ if (ret) -+ return ret; -+ -+ /* Wait until finished previous write command. */ -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto time_out; -+ -+ write_enable(nor); -+ -+ nor->sst_write_second = false; -+ -+ actual = to % 2; -+ /* Start write from odd address. */ -+ if (actual) { -+ nor->program_opcode = SPINOR_OP_BP; -+ -+ /* write one byte. */ -+ nor->write(nor, to, 1, retlen, buf); -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto time_out; -+ } -+ to += actual; -+ -+ /* Write out most of the data here. */ -+ for (; actual < len - 1; actual += 2) { -+ nor->program_opcode = SPINOR_OP_AAI_WP; -+ -+ /* write two bytes. */ -+ nor->write(nor, to, 2, retlen, buf + actual); -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto time_out; -+ to += 2; -+ nor->sst_write_second = true; -+ } -+ nor->sst_write_second = false; -+ -+ write_disable(nor); -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto time_out; -+ -+ /* Write out trailing byte if it exists. */ -+ if (actual != len) { -+ write_enable(nor); -+ -+ nor->program_opcode = SPINOR_OP_BP; -+ nor->write(nor, to, 1, retlen, buf + actual); -+ -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto time_out; -+ write_disable(nor); -+ } -+time_out: -+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); -+ return ret; -+} -+ -+/* -+ * Write an address range to the nor chip. Data must be written in -+ * FLASH_PAGESIZE chunks. The address range may be any size provided -+ * it is within the physical boundaries. -+ */ -+static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, -+ size_t *retlen, const u_char *buf) -+{ -+ struct spi_nor *nor = mtd_to_spi_nor(mtd); -+ u32 page_offset, page_size, i; -+ int ret; -+ -+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); -+ -+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); -+ if (ret) -+ return ret; -+ -+ /* Wait until finished previous write command. */ -+ ret = wait_till_ready(nor); -+ if (ret) -+ goto write_err; -+ -+ write_enable(nor); -+ -+ page_offset = to & (nor->page_size - 1); -+ -+ /* do all the bytes fit onto one page? */ -+ if (page_offset + len <= nor->page_size) { -+ nor->write(nor, to, len, retlen, buf); -+ } else { -+ /* the size of data remaining on the first page */ -+ page_size = nor->page_size - page_offset; -+ nor->write(nor, to, page_size, retlen, buf); -+ -+ /* write everything in nor->page_size chunks */ -+ for (i = page_size; i < len; i += page_size) { -+ page_size = len - i; -+ if (page_size > nor->page_size) -+ page_size = nor->page_size; -+ -+ wait_till_ready(nor); -+ write_enable(nor); -+ -+ nor->write(nor, to + i, page_size, retlen, buf + i); -+ } -+ } -+ -+write_err: -+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); -+ return 0; -+} -+ -+static int macronix_quad_enable(struct spi_nor *nor) -+{ -+ int ret, val; -+ -+ val = read_sr(nor); -+ write_enable(nor); -+ -+ nor->cmd_buf[0] = val | SR_QUAD_EN_MX; -+ nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0); -+ -+ if (wait_till_ready(nor)) -+ return 1; -+ -+ ret = read_sr(nor); -+ if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { -+ dev_err(nor->dev, "Macronix Quad bit not set\n"); -+ return -EINVAL; -+ } -+ -+ return 0; -+} -+ -+/* -+ * Write status Register and configuration register with 2 bytes -+ * The first byte will be written to the status register, while the -+ * second byte will be written to the configuration register. -+ * Return negative if error occured. -+ */ -+static int write_sr_cr(struct spi_nor *nor, u16 val) -+{ -+ nor->cmd_buf[0] = val & 0xff; -+ nor->cmd_buf[1] = (val >> 8); -+ -+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0); -+} -+ -+static int spansion_quad_enable(struct spi_nor *nor) -+{ -+ int ret; -+ int quad_en = CR_QUAD_EN_SPAN << 8; -+ -+ write_enable(nor); -+ -+ ret = write_sr_cr(nor, quad_en); -+ if (ret < 0) { -+ dev_err(nor->dev, -+ "error while writing configuration register\n"); -+ return -EINVAL; -+ } -+ -+ /* read back and check it */ -+ ret = read_cr(nor); -+ if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { -+ dev_err(nor->dev, "Spansion Quad bit not set\n"); -+ return -EINVAL; -+ } -+ -+ return 0; -+} -+ -+static int set_quad_mode(struct spi_nor *nor, u32 jedec_id) -+{ -+ int status; -+ -+ switch (JEDEC_MFR(jedec_id)) { -+ case CFI_MFR_MACRONIX: -+ status = macronix_quad_enable(nor); -+ if (status) { -+ dev_err(nor->dev, "Macronix quad-read not enabled\n"); -+ return -EINVAL; -+ } -+ return status; -+ default: -+ status = spansion_quad_enable(nor); -+ if (status) { -+ dev_err(nor->dev, "Spansion quad-read not enabled\n"); -+ return -EINVAL; -+ } -+ return status; -+ } -+} -+ -+static int spi_nor_check(struct spi_nor *nor) -+{ -+ if (!nor->dev || !nor->read || !nor->write || -+ !nor->read_reg || !nor->write_reg || !nor->erase) { -+ pr_err("spi-nor: please fill all the necessary fields!\n"); -+ return -EINVAL; -+ } -+ -+ if (!nor->read_id) -+ nor->read_id = spi_nor_read_id; -+ if (!nor->wait_till_ready) -+ nor->wait_till_ready = spi_nor_wait_till_ready; -+ -+ return 0; -+} -+ -+int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id, -+ enum read_mode mode) -+{ -+ struct flash_info *info; -+ struct flash_platform_data *data; -+ struct device *dev = nor->dev; -+ struct mtd_info *mtd = nor->mtd; -+ struct device_node *np = dev->of_node; -+ int ret; -+ int i; -+ -+ ret = spi_nor_check(nor); -+ if (ret) -+ return ret; -+ -+ /* Platform data helps sort out which chip type we have, as -+ * well as how this board partitions it. If we don't have -+ * a chip ID, try the JEDEC id commands; they'll work for most -+ * newer chips, even if we don't recognize the particular chip. -+ */ -+ data = dev_get_platdata(dev); -+ if (data && data->type) { -+ const struct spi_device_id *plat_id; -+ -+ for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) { -+ plat_id = &spi_nor_ids[i]; -+ if (strcmp(data->type, plat_id->name)) -+ continue; -+ break; -+ } -+ -+ if (i < ARRAY_SIZE(spi_nor_ids) - 1) -+ id = plat_id; -+ else -+ dev_warn(dev, "unrecognized id %s\n", data->type); -+ } -+ -+ info = (void *)id->driver_data; -+ -+ if (info->jedec_id) { -+ const struct spi_device_id *jid; -+ -+ jid = jedec_probe(nor); -+ if (IS_ERR(jid)) { -+ return PTR_ERR(jid); -+ } else if (jid != id) { -+ /* -+ * JEDEC knows better, so overwrite platform ID. We -+ * can't trust partitions any longer, but we'll let -+ * mtd apply them anyway, since some partitions may be -+ * marked read-only, and we don't want to lose that -+ * information, even if it's not 100% accurate. -+ */ -+ dev_warn(dev, "found %s, expected %s\n", -+ jid->name, id->name); -+ id = jid; -+ info = (void *)jid->driver_data; -+ } -+ } -+ -+ mutex_init(&nor->lock); -+ -+ /* -+ * Atmel, SST and Intel/Numonyx serial nor tend to power -+ * up with the software protection bits set -+ */ -+ -+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL || -+ JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL || -+ JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) { -+ write_enable(nor); -+ write_sr(nor, 0); -+ } -+ -+ if (data && data->name) -+ mtd->name = data->name; -+ else -+ mtd->name = dev_name(dev); -+ -+ mtd->type = MTD_NORFLASH; -+ mtd->writesize = 1; -+ mtd->flags = MTD_CAP_NORFLASH; -+ mtd->size = info->sector_size * info->n_sectors; -+ mtd->_erase = spi_nor_erase; -+ mtd->_read = spi_nor_read; -+ -+ /* nor protection support for STmicro chips */ -+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) { -+ mtd->_lock = spi_nor_lock; -+ mtd->_unlock = spi_nor_unlock; -+ } -+ -+ /* sst nor chips use AAI word program */ -+ if (info->flags & SST_WRITE) -+ mtd->_write = sst_write; -+ else -+ mtd->_write = spi_nor_write; -+ -+ if ((info->flags & USE_FSR) && -+ nor->wait_till_ready == spi_nor_wait_till_ready) -+ nor->wait_till_ready = spi_nor_wait_till_fsr_ready; -+ -+ /* prefer "small sector" erase if possible */ -+ if (info->flags & SECT_4K) { -+ nor->erase_opcode = SPINOR_OP_BE_4K; -+ mtd->erasesize = 4096; -+ } else if (info->flags & SECT_4K_PMC) { -+ nor->erase_opcode = SPINOR_OP_BE_4K_PMC; -+ mtd->erasesize = 4096; -+ } else { -+ nor->erase_opcode = SPINOR_OP_SE; -+ mtd->erasesize = info->sector_size; -+ } -+ -+ if (info->flags & SPI_NOR_NO_ERASE) -+ mtd->flags |= MTD_NO_ERASE; -+ -+ mtd->dev.parent = dev; -+ nor->page_size = info->page_size; -+ mtd->writebufsize = nor->page_size; -+ -+ if (np) { -+ /* If we were instantiated by DT, use it */ -+ if (of_property_read_bool(np, "m25p,fast-read")) -+ nor->flash_read = SPI_NOR_FAST; -+ else -+ nor->flash_read = SPI_NOR_NORMAL; -+ } else { -+ /* If we weren't instantiated by DT, default to fast-read */ -+ nor->flash_read = SPI_NOR_FAST; -+ } -+ -+ /* Some devices cannot do fast-read, no matter what DT tells us */ -+ if (info->flags & SPI_NOR_NO_FR) -+ nor->flash_read = SPI_NOR_NORMAL; -+ -+ /* Quad/Dual-read mode takes precedence over fast/normal */ -+ if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) { -+ ret = set_quad_mode(nor, info->jedec_id); -+ if (ret) { -+ dev_err(dev, "quad mode not supported\n"); -+ return ret; -+ } -+ nor->flash_read = SPI_NOR_QUAD; -+ } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) { -+ nor->flash_read = SPI_NOR_DUAL; -+ } -+ -+ /* Default commands */ -+ switch (nor->flash_read) { -+ case SPI_NOR_QUAD: -+ nor->read_opcode = SPINOR_OP_READ_1_1_4; -+ break; -+ case SPI_NOR_DUAL: -+ nor->read_opcode = SPINOR_OP_READ_1_1_2; -+ break; -+ case SPI_NOR_FAST: -+ nor->read_opcode = SPINOR_OP_READ_FAST; -+ break; -+ case SPI_NOR_NORMAL: -+ nor->read_opcode = SPINOR_OP_READ; -+ break; -+ default: -+ dev_err(dev, "No Read opcode defined\n"); -+ return -EINVAL; -+ } -+ -+ nor->program_opcode = SPINOR_OP_PP; -+ -+ if (info->addr_width) -+ nor->addr_width = info->addr_width; -+ else if (mtd->size > 0x1000000) { -+ /* enable 4-byte addressing if the device exceeds 16MiB */ -+ nor->addr_width = 4; -+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) { -+ /* Dedicated 4-byte command set */ -+ switch (nor->flash_read) { -+ case SPI_NOR_QUAD: -+ nor->read_opcode = SPINOR_OP_READ4_1_1_4; -+ break; -+ case SPI_NOR_DUAL: -+ nor->read_opcode = SPINOR_OP_READ4_1_1_2; -+ break; -+ case SPI_NOR_FAST: -+ nor->read_opcode = SPINOR_OP_READ4_FAST; -+ break; -+ case SPI_NOR_NORMAL: -+ nor->read_opcode = SPINOR_OP_READ4; -+ break; -+ } -+ nor->program_opcode = SPINOR_OP_PP_4B; -+ /* No small sector erase for 4-byte command set */ -+ nor->erase_opcode = SPINOR_OP_SE_4B; -+ mtd->erasesize = info->sector_size; -+ } else -+ set_4byte(nor, info->jedec_id, 1); -+ } else { -+ nor->addr_width = 3; -+ } -+ -+ nor->read_dummy = spi_nor_read_dummy_cycles(nor); -+ -+ dev_info(dev, "%s (%lld Kbytes)\n", id->name, -+ (long long)mtd->size >> 10); -+ -+ dev_dbg(dev, -+ "mtd .name = %s, .size = 0x%llx (%lldMiB), " -+ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", -+ mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), -+ mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); -+ -+ if (mtd->numeraseregions) -+ for (i = 0; i < mtd->numeraseregions; i++) -+ dev_dbg(dev, -+ "mtd.eraseregions[%d] = { .offset = 0x%llx, " -+ ".erasesize = 0x%.8x (%uKiB), " -+ ".numblocks = %d }\n", -+ i, (long long)mtd->eraseregions[i].offset, -+ mtd->eraseregions[i].erasesize, -+ mtd->eraseregions[i].erasesize / 1024, -+ mtd->eraseregions[i].numblocks); -+ return 0; -+} -+EXPORT_SYMBOL_GPL(spi_nor_scan); -+ -+const struct spi_device_id *spi_nor_match_id(char *name) -+{ -+ const struct spi_device_id *id = spi_nor_ids; -+ -+ while (id->name[0]) { -+ if (!strcmp(name, id->name)) -+ return id; -+ id++; -+ } -+ return NULL; -+} -+EXPORT_SYMBOL_GPL(spi_nor_match_id); -+ -+MODULE_LICENSE("GPL"); -+MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); -+MODULE_AUTHOR("Mike Lavender"); -+MODULE_DESCRIPTION("framework for SPI NOR"); ---- /dev/null -+++ b/include/linux/mtd/spi-nor.h -@@ -0,0 +1,218 @@ -+/* -+ * Copyright (C) 2014 Freescale Semiconductor, Inc. -+ * -+ * This program is free software; you can redistribute it and/or modify -+ * it under the terms of the GNU General Public License as published by -+ * the Free Software Foundation; either version 2 of the License, or -+ * (at your option) any later version. -+ */ -+ -+#ifndef __LINUX_MTD_SPI_NOR_H -+#define __LINUX_MTD_SPI_NOR_H -+ -+/* -+ * Note on opcode nomenclature: some opcodes have a format like -+ * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number -+ * of I/O lines used for the opcode, address, and data (respectively). The -+ * FUNCTION has an optional suffix of '4', to represent an opcode which -+ * requires a 4-byte (32-bit) address. -+ */ -+ -+/* Flash opcodes. */ -+#define SPINOR_OP_WREN 0x06 /* Write enable */ -+#define SPINOR_OP_RDSR 0x05 /* Read status register */ -+#define SPINOR_OP_WRSR 0x01 /* Write status register 1 byte */ -+#define SPINOR_OP_READ 0x03 /* Read data bytes (low frequency) */ -+#define SPINOR_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */ -+#define SPINOR_OP_READ_1_1_2 0x3b /* Read data bytes (Dual SPI) */ -+#define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad SPI) */ -+#define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */ -+#define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */ -+#define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */ -+#define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */ -+#define SPINOR_OP_CHIP_ERASE 0xc7 /* Erase whole flash chip */ -+#define SPINOR_OP_SE 0xd8 /* Sector erase (usually 64KiB) */ -+#define SPINOR_OP_RDID 0x9f /* Read JEDEC ID */ -+#define SPINOR_OP_RDCR 0x35 /* Read configuration register */ -+#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */ -+ -+/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */ -+#define SPINOR_OP_READ4 0x13 /* Read data bytes (low frequency) */ -+#define SPINOR_OP_READ4_FAST 0x0c /* Read data bytes (high frequency) */ -+#define SPINOR_OP_READ4_1_1_2 0x3c /* Read data bytes (Dual SPI) */ -+#define SPINOR_OP_READ4_1_1_4 0x6c /* Read data bytes (Quad SPI) */ -+#define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */ -+#define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */ -+ -+/* Used for SST flashes only. */ -+#define SPINOR_OP_BP 0x02 /* Byte program */ -+#define SPINOR_OP_WRDI 0x04 /* Write disable */ -+#define SPINOR_OP_AAI_WP 0xad /* Auto address increment word program */ -+ -+/* Used for Macronix and Winbond flashes. */ -+#define SPINOR_OP_EN4B 0xb7 /* Enter 4-byte mode */ -+#define SPINOR_OP_EX4B 0xe9 /* Exit 4-byte mode */ -+ -+/* Used for Spansion flashes only. */ -+#define SPINOR_OP_BRWR 0x17 /* Bank register write */ -+ -+/* Status Register bits. */ -+#define SR_WIP 1 /* Write in progress */ -+#define SR_WEL 2 /* Write enable latch */ -+/* meaning of other SR_* bits may differ between vendors */ -+#define SR_BP0 4 /* Block protect 0 */ -+#define SR_BP1 8 /* Block protect 1 */ -+#define SR_BP2 0x10 /* Block protect 2 */ -+#define SR_SRWD 0x80 /* SR write protect */ -+ -+#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */ -+ -+/* Flag Status Register bits */ -+#define FSR_READY 0x80 -+ -+/* Configuration Register bits. */ -+#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */ -+ -+enum read_mode { -+ SPI_NOR_NORMAL = 0, -+ SPI_NOR_FAST, -+ SPI_NOR_DUAL, -+ SPI_NOR_QUAD, -+}; -+ -+/** -+ * struct spi_nor_xfer_cfg - Structure for defining a Serial Flash transfer -+ * @wren: command for "Write Enable", or 0x00 for not required -+ * @cmd: command for operation -+ * @cmd_pins: number of pins to send @cmd (1, 2, 4) -+ * @addr: address for operation -+ * @addr_pins: number of pins to send @addr (1, 2, 4) -+ * @addr_width: number of address bytes -+ * (3,4, or 0 for address not required) -+ * @mode: mode data -+ * @mode_pins: number of pins to send @mode (1, 2, 4) -+ * @mode_cycles: number of mode cycles (0 for mode not required) -+ * @dummy_cycles: number of dummy cycles (0 for dummy not required) -+ */ -+struct spi_nor_xfer_cfg { -+ u8 wren; -+ u8 cmd; -+ u8 cmd_pins; -+ u32 addr; -+ u8 addr_pins; -+ u8 addr_width; -+ u8 mode; -+ u8 mode_pins; -+ u8 mode_cycles; -+ u8 dummy_cycles; -+}; -+ -+#define SPI_NOR_MAX_CMD_SIZE 8 -+enum spi_nor_ops { -+ SPI_NOR_OPS_READ = 0, -+ SPI_NOR_OPS_WRITE, -+ SPI_NOR_OPS_ERASE, -+ SPI_NOR_OPS_LOCK, -+ SPI_NOR_OPS_UNLOCK, -+}; -+ -+/** -+ * struct spi_nor - Structure for defining a the SPI NOR layer -+ * @mtd: point to a mtd_info structure -+ * @lock: the lock for the read/write/erase/lock/unlock operations -+ * @dev: point to a spi device, or a spi nor controller device. -+ * @page_size: the page size of the SPI NOR -+ * @addr_width: number of address bytes -+ * @erase_opcode: the opcode for erasing a sector -+ * @read_opcode: the read opcode -+ * @read_dummy: the dummy needed by the read operation -+ * @program_opcode: the program opcode -+ * @flash_read: the mode of the read -+ * @sst_write_second: used by the SST write operation -+ * @cfg: used by the read_xfer/write_xfer -+ * @cmd_buf: used by the write_reg -+ * @prepare: [OPTIONAL] do some preparations for the -+ * read/write/erase/lock/unlock operations -+ * @unprepare: [OPTIONAL] do some post work after the -+ * read/write/erase/lock/unlock operations -+ * @read_xfer: [OPTIONAL] the read fundamental primitive -+ * @write_xfer: [OPTIONAL] the writefundamental primitive -+ * @read_reg: [DRIVER-SPECIFIC] read out the register -+ * @write_reg: [DRIVER-SPECIFIC] write data to the register -+ * @read_id: [REPLACEABLE] read out the ID data, and find -+ * the proper spi_device_id -+ * @wait_till_ready: [REPLACEABLE] wait till the NOR becomes ready -+ * @read: [DRIVER-SPECIFIC] read data from the SPI NOR -+ * @write: [DRIVER-SPECIFIC] write data to the SPI NOR -+ * @erase: [DRIVER-SPECIFIC] erase a sector of the SPI NOR -+ * at the offset @offs -+ * @priv: the private data -+ */ -+struct spi_nor { -+ struct mtd_info *mtd; -+ struct mutex lock; -+ struct device *dev; -+ u32 page_size; -+ u8 addr_width; -+ u8 erase_opcode; -+ u8 read_opcode; -+ u8 read_dummy; -+ u8 program_opcode; -+ enum read_mode flash_read; -+ bool sst_write_second; -+ struct spi_nor_xfer_cfg cfg; -+ u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE]; -+ -+ int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops); -+ void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops); -+ int (*read_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg, -+ u8 *buf, size_t len); -+ int (*write_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg, -+ u8 *buf, size_t len); -+ int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len); -+ int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len, -+ int write_enable); -+ const struct spi_device_id *(*read_id)(struct spi_nor *nor); -+ int (*wait_till_ready)(struct spi_nor *nor); -+ -+ int (*read)(struct spi_nor *nor, loff_t from, -+ size_t len, size_t *retlen, u_char *read_buf); -+ void (*write)(struct spi_nor *nor, loff_t to, -+ size_t len, size_t *retlen, const u_char *write_buf); -+ int (*erase)(struct spi_nor *nor, loff_t offs); -+ -+ void *priv; -+}; -+ -+/** -+ * spi_nor_scan() - scan the SPI NOR -+ * @nor: the spi_nor structure -+ * @id: the spi_device_id provided by the driver -+ * @mode: the read mode supported by the driver -+ * -+ * The drivers can use this fuction to scan the SPI NOR. -+ * In the scanning, it will try to get all the necessary information to -+ * fill the mtd_info{} and the spi_nor{}. -+ * -+ * The board may assigns a spi_device_id with @id which be used to compared with -+ * the spi_device_id detected by the scanning. -+ * -+ * Return: 0 for success, others for failure. -+ */ -+int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id, -+ enum read_mode mode); -+extern const struct spi_device_id spi_nor_ids[]; -+ -+/** -+ * spi_nor_match_id() - find the spi_device_id by the name -+ * @name: the name of the spi_device_id -+ * -+ * The drivers use this function to find the spi_device_id -+ * specified by the @name. -+ * -+ * Return: returns the right spi_device_id pointer on success, -+ * and returns NULL on failure. -+ */ -+const struct spi_device_id *spi_nor_match_id(char *name); -+ -+#endif |