diff options
author | Gabor Juhos <juhosg@openwrt.org> | 2012-05-18 20:10:53 +0000 |
---|---|---|
committer | Gabor Juhos <juhosg@openwrt.org> | 2012-05-18 20:10:53 +0000 |
commit | c2a2d59db5ef7b8b9c35d1756585d8b3c6f35543 (patch) | |
tree | 66049fc1334ba92332e345b934956b48aca8cc4f /target/linux/cns3xxx | |
parent | 1fd4bf270b2100ef13eb41677ff36a377d0d6dba (diff) | |
download | mtk-20170518-c2a2d59db5ef7b8b9c35d1756585d8b3c6f35543.zip mtk-20170518-c2a2d59db5ef7b8b9c35d1756585d8b3c6f35543.tar.gz mtk-20170518-c2a2d59db5ef7b8b9c35d1756585d8b3c6f35543.tar.bz2 |
cns3xxx: add support for 3.3
Compile tested only.
SVN-Revision: 31809
Diffstat (limited to 'target/linux/cns3xxx')
17 files changed, 27541 insertions, 0 deletions
diff --git a/target/linux/cns3xxx/config-3.3 b/target/linux/cns3xxx/config-3.3 new file mode 100644 index 0000000..29d0ac6 --- /dev/null +++ b/target/linux/cns3xxx/config-3.3 @@ -0,0 +1,204 @@ +CONFIG_ALIGNMENT_TRAP=y +CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE=y +CONFIG_ARCH_CNS3XXX=y +CONFIG_ARCH_HAS_CPU_IDLE_WAIT=y +CONFIG_ARCH_NR_GPIO=0 +# CONFIG_ARCH_SELECT_MEMORY_MODEL is not set +# CONFIG_ARCH_SPARSEMEM_DEFAULT is not set +CONFIG_ARCH_SUSPEND_POSSIBLE=y +# CONFIG_ARCH_USES_GETTIMEOFFSET is not set +CONFIG_ARCH_WANT_OPTIONAL_GPIOLIB=y +CONFIG_ARM=y +# CONFIG_ARM_CPU_SUSPEND is not set +CONFIG_ARM_GIC=y +CONFIG_ARM_L1_CACHE_SHIFT=5 +CONFIG_ARM_NR_BANKS=8 +CONFIG_ARM_PATCH_PHYS_VIRT=y +CONFIG_ARM_THUMB=y +CONFIG_ATA=y +# CONFIG_ATA_SFF is not set +CONFIG_ATA_VERBOSE_ERROR=y +CONFIG_BCMA_POSSIBLE=y +CONFIG_BLK_DEV_RAM=y +CONFIG_BLK_DEV_RAM_COUNT=2 +CONFIG_BLK_DEV_RAM_SIZE=32768 +CONFIG_BLK_DEV_SD=y +CONFIG_CACHE_L2X0=y +CONFIG_CLKDEV_LOOKUP=y +CONFIG_CNS3XXX_ETH=y +CONFIG_CPU_32v6=y +CONFIG_CPU_32v6K=y +CONFIG_CPU_ABRT_EV6=y +# CONFIG_CPU_BPREDICT_DISABLE is not set +CONFIG_CPU_CACHE_V6=y +CONFIG_CPU_CACHE_VIPT=y +CONFIG_CPU_COPY_V6=y +CONFIG_CPU_CP15=y +CONFIG_CPU_CP15_MMU=y +CONFIG_CPU_HAS_ASID=y +CONFIG_CPU_HAS_PMU=y +# CONFIG_CPU_ICACHE_DISABLE is not set +CONFIG_CPU_PABRT_V6=y +CONFIG_CPU_RMAP=y +CONFIG_CPU_TLB_V6=y +CONFIG_CPU_V6K=y +CONFIG_DEBUG_BUGVERBOSE=y +# CONFIG_DEBUG_USER is not set +CONFIG_DECOMPRESS_LZMA=y +CONFIG_DMA_CACHE_RWFO=y +# CONFIG_DWC_DEBUG is not set +# CONFIG_DWC_DEVICE_ONLY is not set +# CONFIG_DWC_HOST_ONLY is not set +CONFIG_DWC_OTG_MODE=y +CONFIG_EEPROM_AT24=y +CONFIG_FRAME_POINTER=y +CONFIG_GENERIC_BUG=y +CONFIG_GENERIC_CLOCKEVENTS=y +CONFIG_GENERIC_CLOCKEVENTS_BROADCAST=y +CONFIG_GENERIC_CLOCKEVENTS_BUILD=y +CONFIG_GENERIC_GPIO=y +CONFIG_GENERIC_IRQ_SHOW=y +CONFIG_GENERIC_PCI_IOMAP=y +CONFIG_GPIOLIB=y +CONFIG_GPIO_PCA953X=y +CONFIG_GPIO_PCA953X_IRQ=y +CONFIG_GPIO_SYSFS=y +CONFIG_HARDIRQS_SW_RESEND=y +CONFIG_HAS_DMA=y +CONFIG_HAS_IOMEM=y +CONFIG_HAS_IOPORT=y +CONFIG_HAVE_AOUT=y +CONFIG_HAVE_ARCH_KGDB=y +CONFIG_HAVE_ARCH_PFN_VALID=y +CONFIG_HAVE_ARM_SCU=y +CONFIG_HAVE_ARM_TWD=y +CONFIG_HAVE_CLK=y +CONFIG_HAVE_C_RECORDMCOUNT=y +CONFIG_HAVE_DMA_API_DEBUG=y +CONFIG_HAVE_DYNAMIC_FTRACE=y +CONFIG_HAVE_FTRACE_MCOUNT_RECORD=y +CONFIG_HAVE_FUNCTION_GRAPH_TRACER=y +CONFIG_HAVE_FUNCTION_TRACER=y +CONFIG_HAVE_GENERIC_DMA_COHERENT=y +CONFIG_HAVE_GENERIC_HARDIRQS=y +CONFIG_HAVE_IDE=y +CONFIG_HAVE_IRQ_WORK=y +CONFIG_HAVE_KERNEL_GZIP=y +CONFIG_HAVE_KERNEL_LZMA=y +CONFIG_HAVE_KERNEL_LZO=y +CONFIG_HAVE_KERNEL_XZ=y +CONFIG_HAVE_MEMBLOCK=y +CONFIG_HAVE_OPROFILE=y +CONFIG_HAVE_PERF_EVENTS=y +CONFIG_HAVE_PROC_CPU=y +CONFIG_HAVE_REGS_AND_STACK_ACCESS_API=y +CONFIG_HAVE_SMP=y +CONFIG_HAVE_SPARSE_IRQ=y +CONFIG_HWMON=y +CONFIG_HW_RANDOM=m +CONFIG_I2C=y +CONFIG_I2C_BOARDINFO=y +CONFIG_I2C_CHARDEV=y +CONFIG_I2C_CNS3XXX=y +CONFIG_INITRAMFS_SOURCE="" +CONFIG_IRQ_DOMAIN=y +CONFIG_KTIME_SCALAR=y +CONFIG_LEDS_GPIO=y +# CONFIG_LEDS_TRIGGER_NETDEV is not set +CONFIG_LOCAL_TIMERS=y +CONFIG_M25PXX_USE_FAST_READ=y +CONFIG_MACH_CNS3420VB=y +CONFIG_MACH_GW2388=y +CONFIG_MDIO_BOARDINFO=y +# CONFIG_MFD_T7L66XB is not set +CONFIG_MIGHT_HAVE_CACHE_L2X0=y +CONFIG_MIGHT_HAVE_PCI=y +CONFIG_MMC=y +CONFIG_MMC_BLOCK=y +CONFIG_MMC_SDHCI=y +CONFIG_MMC_SDHCI_CNS3XXX=y +# CONFIG_MMC_SDHCI_PCI is not set +CONFIG_MMC_SDHCI_PLTFM=y +# CONFIG_MMC_TIFM_SD is not set +CONFIG_MPCORE_WATCHDOG=y +CONFIG_MTD_M25P80=y +CONFIG_MTD_PHYSMAP=y +CONFIG_MULTI_IRQ_HANDLER=y +CONFIG_MUTEX_SPIN_ON_OWNER=y +CONFIG_NEED_DMA_MAP_STATE=y +CONFIG_NET_VENDOR_CAVIUM=y +CONFIG_NLS=y +CONFIG_NR_CPUS=2 +CONFIG_OUTER_CACHE=y +CONFIG_OUTER_CACHE_SYNC=y +CONFIG_PAGEFLAGS_EXTENDED=y +CONFIG_PAGE_OFFSET=0xC0000000 +CONFIG_PCI=y +CONFIG_PCI_DOMAINS=y +CONFIG_PERF_USE_VMALLOC=y +CONFIG_PHYLIB=y +CONFIG_PL310_ERRATA_588369=y +CONFIG_PL310_ERRATA_727915=y +CONFIG_PL310_ERRATA_769419=y +# CONFIG_PREEMPT_RCU is not set +CONFIG_RAID_ATTRS=y +CONFIG_RFS_ACCEL=y +CONFIG_RPS=y +CONFIG_RTC_CLASS=y +CONFIG_RTC_DRV_DS1672=y +CONFIG_SATA_AHCI=y +CONFIG_SATA_AHCI_PLATFORM=y +CONFIG_SCSI=y +# CONFIG_SCSI_MULTI_LUN is not set +CONFIG_SENSORS_AD7418=y +CONFIG_SENSORS_GSP=y +CONFIG_SERIAL_8250_NR_UARTS=3 +CONFIG_SERIAL_8250_RUNTIME_UARTS=3 +CONFIG_SMP=y +CONFIG_SMP_ON_UP=y +CONFIG_SPI=y +CONFIG_SPI_BITBANG=y +CONFIG_SPI_CNS3XXX=y +CONFIG_SPI_MASTER=y +# CONFIG_STAGING is not set +CONFIG_STOP_MACHINE=y +CONFIG_SYS_SUPPORTS_APM_EMULATION=y +CONFIG_TREE_RCU=y +CONFIG_UID16=y +CONFIG_USB=y +CONFIG_USB_ANNOUNCE_NEW_DEVICES=y +CONFIG_USB_ARCH_HAS_XHCI=y +# CONFIG_USB_CDC_COMPOSITE is not set +CONFIG_USB_CNS3XXX_EHCI=y +CONFIG_USB_CNS3XXX_OHCI=y +CONFIG_USB_COMMON=y +CONFIG_USB_DWC_OTG=y +CONFIG_USB_EHCI_HCD=y +# CONFIG_USB_ETH is not set +# CONFIG_USB_FILE_STORAGE is not set +# CONFIG_USB_FUNCTIONFS is not set +CONFIG_USB_GADGET=y +# CONFIG_USB_GADGETFS is not set +# CONFIG_USB_GADGET_DEBUG_FILES is not set +# CONFIG_USB_GADGET_DEBUG_FS is not set +CONFIG_USB_GADGET_VBUS_DRAW=2 +# CONFIG_USB_G_DBGP is not set +# CONFIG_USB_G_HID is not set +# CONFIG_USB_G_NCM is not set +# CONFIG_USB_G_PRINTER is not set +# CONFIG_USB_G_SERIAL is not set +# CONFIG_USB_OHCI_BIG_ENDIAN_DESC is not set +# CONFIG_USB_OHCI_BIG_ENDIAN_MMIO is not set +CONFIG_USB_OHCI_HCD=y +CONFIG_USB_SUPPORT=y +# CONFIG_USB_UHCI_HCD is not set +# CONFIG_USB_ZERO is not set +CONFIG_USE_GENERIC_SMP_HELPERS=y +CONFIG_VECTORS_BASE=0xffff0000 +CONFIG_VFP=y +CONFIG_WATCHDOG_NOWAYOUT=y +CONFIG_XPS=y +CONFIG_XZ_DEC=y +CONFIG_ZBOOT_ROM_BSS=0 +CONFIG_ZBOOT_ROM_TEXT=0 +CONFIG_ZONE_DMA_FLAG=0 diff --git a/target/linux/cns3xxx/patches-3.3/001-cns3xxx-clkdev-support.patch b/target/linux/cns3xxx/patches-3.3/001-cns3xxx-clkdev-support.patch new file mode 100644 index 0000000..bc8773c --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/001-cns3xxx-clkdev-support.patch @@ -0,0 +1,69 @@ +--- a/arch/arm/Kconfig ++++ b/arch/arm/Kconfig +@@ -368,6 +368,7 @@ config ARCH_CNS3XXX + select CPU_V6K + select GENERIC_CLOCKEVENTS + select ARM_GIC ++ select CLKDEV_LOOKUP + select MIGHT_HAVE_CACHE_L2X0 + select MIGHT_HAVE_PCI + select PCI_DOMAINS if PCI +--- a/arch/arm/mach-cns3xxx/core.c ++++ b/arch/arm/mach-cns3xxx/core.c +@@ -9,8 +9,11 @@ + */ + + #include <linux/init.h> ++#include <linux/export.h> + #include <linux/interrupt.h> + #include <linux/clockchips.h> ++#include <linux/clk.h> ++#include <linux/clkdev.h> + #include <linux/io.h> + #include <asm/mach/map.h> + #include <asm/mach/time.h> +@@ -20,6 +23,10 @@ + #include <mach/cns3xxx.h> + #include "core.h" + ++struct clk { ++ unsigned long rate; ++}; ++ + static struct map_desc cns3xxx_io_desc[] __initdata = { + { + .virtual = CNS3XXX_TC11MP_TWD_BASE_VIRT, +@@ -287,3 +294,33 @@ void __init cns3xxx_l2x0_init(void) + } + + #endif /* CONFIG_CACHE_L2X0 */ ++ ++int clk_enable(struct clk *clk) ++{ ++ return 0; ++} ++EXPORT_SYMBOL(clk_enable); ++ ++void clk_disable(struct clk *clk) ++{ ++} ++EXPORT_SYMBOL(clk_disable); ++ ++unsigned long clk_get_rate(struct clk *clk) ++{ ++ return clk->rate; ++} ++EXPORT_SYMBOL(clk_get_rate); ++ ++static struct clk_lookup cns3xxx_clocks[] = { ++ { ++ /* TODO */ ++ }, ++}; ++ ++int __init cns3xxx_clocks_init(void) ++{ ++ clkdev_add_table(cns3xxx_clocks, ARRAY_SIZE(cns3xxx_clocks)); ++ return 0; ++} ++postcore_initcall(cns3xxx_clocks_init); diff --git a/target/linux/cns3xxx/patches-3.3/002-cns3xxx_wdt.patch b/target/linux/cns3xxx/patches-3.3/002-cns3xxx_wdt.patch new file mode 100644 index 0000000..d013334 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/002-cns3xxx_wdt.patch @@ -0,0 +1,69 @@ +1. Made the connection between CNS3xxx SOCs(ARCH_CNS3xxx) and MPcore watchdog + since the CNS3xxx SOCs have ARM11 MPcore CPU. +2. Enable mpcore_watchdog option as module to default configuration at + arch/arm/configs/cns3420vb_defconfig. + +Signed-off-by: Tommy Lin <tommy.lin@caviumnetworks.com> + +--- +arch/arm/Kconfig | 1 + + arch/arm/configs/cns3420vb_defconfig | 2 ++ + arch/arm/mach-cns3xxx/cns3420vb.c | 22 ++++++++++++++++++++++ + 3 files changed, 25 insertions(+), 0 deletions(-) + +--- a/arch/arm/Kconfig ++++ b/arch/arm/Kconfig +@@ -372,6 +372,7 @@ config ARCH_CNS3XXX + select MIGHT_HAVE_CACHE_L2X0 + select MIGHT_HAVE_PCI + select PCI_DOMAINS if PCI ++ select HAVE_ARM_TWD + help + Support for Cavium Networks CNS3XXX platform. + +--- a/arch/arm/configs/cns3420vb_defconfig ++++ b/arch/arm/configs/cns3420vb_defconfig +@@ -53,6 +53,8 @@ CONFIG_LEGACY_PTY_COUNT=16 + # CONFIG_HW_RANDOM is not set + # CONFIG_HWMON is not set + # CONFIG_VGA_CONSOLE is not set ++CONFIG_WATCHDOG=y ++CONFIG_MPCORE_WATCHDOG=m + # CONFIG_HID_SUPPORT is not set + # CONFIG_USB_SUPPORT is not set + CONFIG_MMC=y +--- a/arch/arm/mach-cns3xxx/cns3420vb.c ++++ b/arch/arm/mach-cns3xxx/cns3420vb.c +@@ -159,10 +159,32 @@ static struct platform_device cns3xxx_us + }, + }; + ++/* Watchdog */ ++static struct resource cns3xxx_watchdog_resources[] = { ++ [0] = { ++ .start = CNS3XXX_TC11MP_TWD_BASE, ++ .end = CNS3XXX_TC11MP_TWD_BASE + PAGE_SIZE - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .start = IRQ_LOCALWDOG, ++ .end = IRQ_LOCALWDOG, ++ .flags = IORESOURCE_IRQ, ++ } ++}; ++ ++static struct platform_device cns3xxx_watchdog_device = { ++ .name = "mpcore_wdt", ++ .id = -1, ++ .num_resources = ARRAY_SIZE(cns3xxx_watchdog_resources), ++ .resource = cns3xxx_watchdog_resources, ++}; ++ + /* + * Initialization + */ + static struct platform_device *cns3420_pdevs[] __initdata = { ++ &cns3xxx_watchdog_device, + &cns3420_nor_pdev, + &cns3xxx_usb_ehci_device, + &cns3xxx_usb_ohci_device, diff --git a/target/linux/cns3xxx/patches-3.3/049-cns3xxx_smp_support.patch b/target/linux/cns3xxx/patches-3.3/049-cns3xxx_smp_support.patch new file mode 100644 index 0000000..e751eb8 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/049-cns3xxx_smp_support.patch @@ -0,0 +1,414 @@ +--- a/arch/arm/mach-cns3xxx/Makefile ++++ b/arch/arm/mach-cns3xxx/Makefile +@@ -1,3 +1,6 @@ + obj-$(CONFIG_ARCH_CNS3XXX) += core.o pm.o devices.o + obj-$(CONFIG_PCI) += pcie.o + obj-$(CONFIG_MACH_CNS3420VB) += cns3420vb.o ++obj-$(CONFIG_SMP) += platsmp.o headsmp.o ++obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o ++obj-$(CONFIG_LOCAL_TIMERS) += localtimer.o +--- /dev/null ++++ b/arch/arm/mach-cns3xxx/headsmp.S +@@ -0,0 +1,42 @@ ++/* ++ * linux/arch/arm/mach-cns3xxx/headsmp.S ++ * ++ * Cloned from linux/arch/arm/plat-versatile/headsmp.S ++ * ++ * Copyright (c) 2003 ARM Limited ++ * All Rights Reserved ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++ */ ++#include <linux/linkage.h> ++#include <linux/init.h> ++ ++ __INIT ++ ++/* ++ * CNS3XXX specific entry point for secondary CPUs. This provides ++ * a "holding pen" into which all secondary cores are held until we're ++ * ready for them to initialise. ++ */ ++ENTRY(cns3xxx_secondary_startup) ++ mrc p15, 0, r0, c0, c0, 5 ++ and r0, r0, #15 ++ adr r4, 1f ++ ldmia r4, {r5, r6} ++ sub r4, r4, r5 ++ add r6, r6, r4 ++pen: ldr r7, [r6] ++ cmp r7, r0 ++ bne pen ++ ++ /* ++ * we've been released from the holding pen: secondary_stack ++ * should now contain the SVC stack for this core ++ */ ++ b secondary_startup ++ ++ .align ++1: .long . ++ .long pen_release +--- /dev/null ++++ b/arch/arm/mach-cns3xxx/hotplug.c +@@ -0,0 +1,130 @@ ++/* linux arch/arm/mach-cns3xxx/hotplug.c ++ * ++ * Cloned from linux/arch/arm/mach-realview/hotplug.c ++ * ++ * Copyright (C) 2002 ARM Ltd. ++ * All Rights Reserved ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++*/ ++ ++#include <linux/kernel.h> ++#include <linux/errno.h> ++#include <linux/smp.h> ++ ++#include <asm/cacheflush.h> ++ ++extern volatile int pen_release; ++ ++static inline void cpu_enter_lowpower(void) ++{ ++ unsigned int v; ++ ++ flush_cache_all(); ++ asm volatile( ++ " mcr p15, 0, %1, c7, c5, 0\n" ++ " mcr p15, 0, %1, c7, c10, 4\n" ++ /* ++ * Turn off coherency ++ */ ++ " mrc p15, 0, %0, c1, c0, 1\n" ++ " bic %0, %0, %3\n" ++ " mcr p15, 0, %0, c1, c0, 1\n" ++ " mrc p15, 0, %0, c1, c0, 0\n" ++ " bic %0, %0, %2\n" ++ " mcr p15, 0, %0, c1, c0, 0\n" ++ : "=&r" (v) ++ : "r" (0), "Ir" (CR_C), "Ir" (0x40) ++ : "cc"); ++} ++ ++static inline void cpu_leave_lowpower(void) ++{ ++ unsigned int v; ++ ++ asm volatile( ++ "mrc p15, 0, %0, c1, c0, 0\n" ++ " orr %0, %0, %1\n" ++ " mcr p15, 0, %0, c1, c0, 0\n" ++ " mrc p15, 0, %0, c1, c0, 1\n" ++ " orr %0, %0, %2\n" ++ " mcr p15, 0, %0, c1, c0, 1\n" ++ : "=&r" (v) ++ : "Ir" (CR_C), "Ir" (0x40) ++ : "cc"); ++} ++ ++static inline void platform_do_lowpower(unsigned int cpu, int *spurious) ++{ ++ /* ++ * there is no power-control hardware on this platform, so all ++ * we can do is put the core into WFI; this is safe as the calling ++ * code will have already disabled interrupts ++ */ ++ for (;;) { ++ /* ++ * here's the WFI ++ */ ++ asm(".word 0xe320f003\n" ++ : ++ : ++ : "memory", "cc"); ++ ++ if (pen_release == cpu) { ++ /* ++ * OK, proper wakeup, we're done ++ */ ++ break; ++ } ++ ++ /* ++ * Getting here, means that we have come out of WFI without ++ * having been woken up - this shouldn't happen ++ * ++ * Just note it happening - when we're woken, we can report ++ * its occurrence. ++ */ ++ (*spurious)++; ++ } ++} ++ ++int platform_cpu_kill(unsigned int cpu) ++{ ++ return 1; ++} ++ ++/* ++ * platform-specific code to shutdown a CPU ++ * ++ * Called with IRQs disabled ++ */ ++void platform_cpu_die(unsigned int cpu) ++{ ++ int spurious = 0; ++ ++ /* ++ * we're ready for shutdown now, so do it ++ */ ++ cpu_enter_lowpower(); ++ platform_do_lowpower(cpu, &spurious); ++ ++ /* ++ * bring this CPU back into the world of cache ++ * coherency, and then restore interrupts ++ */ ++ cpu_leave_lowpower(); ++ ++ if (spurious) ++ pr_warn("CPU%u: %u spurious wakeup calls\n", cpu, spurious); ++} ++ ++int platform_cpu_disable(unsigned int cpu) ++{ ++ /* ++ * we don't allow CPU 0 to be shutdown (it is still too special ++ * e.g. clock tick interrupts) ++ */ ++ return cpu == 0 ? -EPERM : 0; ++} +--- a/arch/arm/mach-cns3xxx/Kconfig ++++ b/arch/arm/mach-cns3xxx/Kconfig +@@ -3,6 +3,7 @@ menu "CNS3XXX platform type" + + config MACH_CNS3420VB + bool "Support for CNS3420 Validation Board" ++ select HAVE_ARM_SCU if SMP + select MIGHT_HAVE_PCI + help + Include support for the Cavium Networks CNS3420 MPCore Platform +--- /dev/null ++++ b/arch/arm/mach-cns3xxx/localtimer.c +@@ -0,0 +1,26 @@ ++/* linux/arch/arm/mach-cns3xxx/localtimer.c ++ * ++ * Cloned from linux/arch/arm/mach-realview/localtimer.c ++ * ++ * Copyright (C) 2002 ARM Ltd. ++ * All Rights Reserved ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++*/ ++ ++#include <linux/clockchips.h> ++ ++#include <asm/irq.h> ++#include <asm/localtimer.h> ++ ++/* ++ * Setup the local clock events for a CPU. ++ */ ++int __cpuinit local_timer_setup(struct clock_event_device *evt) ++{ ++ evt->irq = IRQ_LOCALTIMER; ++ twd_timer_setup(evt); ++ return 0; ++} +--- /dev/null ++++ b/arch/arm/mach-cns3xxx/platsmp.c +@@ -0,0 +1,175 @@ ++/* linux/arch/arm/mach-cns3xxx/platsmp.c ++ * ++ * Copyright 2011 Gateworks Corporation ++ * Chris Lang <clang@gateworks.com> ++ * ++ * Cloned from linux/arch/arm/mach-vexpress/platsmp.c ++ * ++ * Copyright (C) 2002 ARM Ltd. ++ * All Rights Reserved ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License version 2 as ++ * published by the Free Software Foundation. ++*/ ++ ++#include <linux/init.h> ++#include <linux/errno.h> ++#include <linux/delay.h> ++#include <linux/device.h> ++#include <linux/jiffies.h> ++#include <linux/smp.h> ++#include <linux/io.h> ++ ++#include <asm/cacheflush.h> ++#include <asm/hardware/gic.h> ++#include <asm/smp_scu.h> ++#include <asm/unified.h> ++ ++#include <mach/cns3xxx.h> ++ ++extern void cns3xxx_secondary_startup(void); ++ ++/* ++ * control for which core is the next to come out of the secondary ++ * boot "holding pen" ++ */ ++ ++volatile int __cpuinitdata pen_release = -1; ++ ++/* ++ * Write pen_release in a way that is guaranteed to be visible to all ++ * observers, irrespective of whether they're taking part in coherency ++ * or not. This is necessary for the hotplug code to work reliably. ++ */ ++static void write_pen_release(int val) ++{ ++ pen_release = val; ++ smp_wmb(); ++ __cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release)); ++ outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1)); ++} ++ ++static void __iomem *scu_base_addr(void) ++{ ++ return (void __iomem *)(CNS3XXX_TC11MP_SCU_BASE_VIRT); ++} ++ ++static DEFINE_SPINLOCK(boot_lock); ++ ++void __cpuinit platform_secondary_init(unsigned int cpu) ++{ ++ /* ++ * if any interrupts are already enabled for the primary ++ * core (e.g. timer irq), then they will not have been enabled ++ * for us: do so ++ */ ++ gic_secondary_init(0); ++ ++ /* ++ * let the primary processor know we're out of the ++ * pen, then head off into the C entry point ++ */ ++ write_pen_release(-1); ++ ++ /* ++ * Synchronise with the boot thread. ++ */ ++ spin_lock(&boot_lock); ++ spin_unlock(&boot_lock); ++} ++ ++int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle) ++{ ++ unsigned long timeout; ++ ++ /* ++ * Set synchronisation state between this boot processor ++ * and the secondary one ++ */ ++ spin_lock(&boot_lock); ++ ++ /* ++ * The secondary processor is waiting to be released from ++ * the holding pen - release it, then wait for it to flag ++ * that it has been released by resetting pen_release. ++ * ++ * Note that "pen_release" is the hardware CPU ID, whereas ++ * "cpu" is Linux's internal ID. ++ */ ++ write_pen_release(cpu); ++ ++ /* ++ * Send the secondary CPU a soft interrupt, thereby causing ++ * the boot monitor to read the system wide flags register, ++ * and branch to the address found there. ++ */ ++ gic_raise_softirq(cpumask_of(cpu), 1); ++ ++ timeout = jiffies + (1 * HZ); ++ while (time_before(jiffies, timeout)) { ++ smp_rmb(); ++ if (pen_release == -1) ++ break; ++ ++ udelay(10); ++ } ++ ++ /* ++ * now the secondary core is starting up let it run its ++ * calibrations, then wait for it to finish ++ */ ++ spin_unlock(&boot_lock); ++ ++ return pen_release != -1 ? -ENOSYS : 0; ++} ++ ++/* ++ * Initialise the CPU possible map early - this describes the CPUs ++ * which may be present or become present in the system. ++ */ ++ ++void __init smp_init_cpus(void) ++{ ++ void __iomem *scu_base = scu_base_addr(); ++ unsigned int i, ncores; ++ ++ ncores = scu_base ? scu_get_core_count(scu_base) : 1; ++ ++ /* sanity check */ ++ if (ncores > NR_CPUS) { ++ printk(KERN_WARNING ++ "cns3xxx: no. of cores (%d) greater than configured " ++ "maximum of %d - clipping\n", ++ ncores, NR_CPUS); ++ ncores = NR_CPUS; ++ } ++ ++ for (i = 0; i < ncores; i++) ++ set_cpu_possible(i, true); ++ ++ set_smp_cross_call(gic_raise_softirq); ++} ++ ++void __init platform_smp_prepare_cpus(unsigned int max_cpus) ++{ ++ int i; ++ ++ /* ++ * Initialise the present map, which describes the set of CPUs ++ * actually populated at the present time. ++ */ ++ for (i = 0; i < max_cpus; i++) ++ set_cpu_present(i, true); ++ ++ scu_enable(scu_base_addr()); ++ ++ /* ++ * Write the address of secondary startup into the ++ * system-wide flags register. The boot monitor waits ++ * until it receives a soft interrupt, and then the ++ * secondary CPU branches to this address. ++ */ ++ __raw_writel(virt_to_phys(cns3xxx_secondary_startup), ++ (void __iomem *)(CNS3XXX_MISC_BASE_VIRT + 0x0600)); ++} +--- a/arch/arm/Kconfig ++++ b/arch/arm/Kconfig +@@ -373,6 +373,7 @@ config ARCH_CNS3XXX + select MIGHT_HAVE_PCI + select PCI_DOMAINS if PCI + select HAVE_ARM_TWD ++ select HAVE_SMP + help + Support for Cavium Networks CNS3XXX platform. + diff --git a/target/linux/cns3xxx/patches-3.3/050-cns3xxx_i2c_controller.patch b/target/linux/cns3xxx/patches-3.3/050-cns3xxx_i2c_controller.patch new file mode 100644 index 0000000..1677cf3 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/050-cns3xxx_i2c_controller.patch @@ -0,0 +1,421 @@ +--- a/drivers/i2c/busses/Kconfig ++++ b/drivers/i2c/busses/Kconfig +@@ -326,6 +326,18 @@ config I2C_BLACKFIN_TWI_CLK_KHZ + help + The unit of the TWI clock is kHz. + ++config I2C_CNS3XXX ++ tristate "Cavium CNS3xxx I2C driver" ++ depends on ARCH_CNS3XXX ++ help ++ Support for Cavium CNS3xxx I2C controller driver. ++ ++ This driver can also be built as a module. If so, the module ++ will be called i2c-cns3xxx. ++ ++ Please note that this driver might be needed to bring up other ++ devices such as Cavium CNS3xxx Ethernet. ++ + config I2C_CPM + tristate "Freescale CPM1 or CPM2 (MPC8xx/826x)" + depends on (CPM1 || CPM2) && OF_I2C +--- a/drivers/i2c/busses/Makefile ++++ b/drivers/i2c/busses/Makefile +@@ -83,6 +83,7 @@ obj-$(CONFIG_I2C_ELEKTOR) += i2c-elektor + obj-$(CONFIG_I2C_PCA_ISA) += i2c-pca-isa.o + obj-$(CONFIG_I2C_SIBYTE) += i2c-sibyte.o + obj-$(CONFIG_I2C_STUB) += i2c-stub.o ++obj-$(CONFIG_I2C_CNS3XXX) += i2c-cns3xxx.o + obj-$(CONFIG_SCx200_ACB) += scx200_acb.o + obj-$(CONFIG_SCx200_I2C) += scx200_i2c.o + +--- /dev/null ++++ b/drivers/i2c/busses/i2c-cns3xxx.c +@@ -0,0 +1,387 @@ ++/* ++ * Cavium CNS3xxx I2C Host Controller ++ * ++ * Copyright 2010 Cavium Network ++ * Copyright 2011 Gateworks Corporation ++ * Chris Lang <clang@gateworks.com> ++ * ++ * This file is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License, Version 2, as ++ * published by the Free Software Foundation. ++ */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/init.h> ++#include <linux/platform_device.h> ++#include <asm/io.h> ++#include <linux/wait.h> ++#include <linux/interrupt.h> ++#include <linux/delay.h> ++#include <linux/i2c.h> ++#include <linux/slab.h> ++#include <mach/pm.h> ++#include <mach/cns3xxx.h> ++ ++/* ++ * We need the memory map ++ */ ++ ++ ++#define MISC_MEM_MAP_VALUE(reg_offset) (*((uint32_t volatile *)(CNS3XXX_MISC_BASE_VIRT + reg_offset))) ++#define MISC_IOCDB_CTRL MISC_MEM_MAP_VALUE(0x020) ++ ++#define I2C_MEM_MAP_ADDR(x) (CNS3XXX_SSP_BASE_VIRT + x) ++#define I2C_MEM_MAP_VALUE(x) (*((unsigned int volatile*)I2C_MEM_MAP_ADDR(x))) ++ ++#define I2C_CONTROLLER_REG I2C_MEM_MAP_VALUE(0x20) ++#define I2C_TIME_OUT_REG I2C_MEM_MAP_VALUE(0x24) ++#define I2C_SLAVE_ADDRESS_REG I2C_MEM_MAP_VALUE(0x28) ++#define I2C_WRITE_DATA_REG I2C_MEM_MAP_VALUE(0x2C) ++#define I2C_READ_DATA_REG I2C_MEM_MAP_VALUE(0x30) ++#define I2C_INTERRUPT_STATUS_REG I2C_MEM_MAP_VALUE(0x34) ++#define I2C_INTERRUPT_ENABLE_REG I2C_MEM_MAP_VALUE(0x38) ++#define I2C_TWI_OUT_DLY_REG I2C_MEM_MAP_VALUE(0x3C) ++ ++#define I2C_BUS_ERROR_FLAG (0x1) ++#define I2C_ACTION_DONE_FLAG (0x2) ++ ++#define CNS3xxx_I2C_ENABLE() (I2C_CONTROLLER_REG) |= ((unsigned int)0x1 << 31) ++#define CNS3xxx_I2C_DISABLE() (I2C_CONTROLLER_REG) &= ~((unsigned int)0x1 << 31) ++#define CNS3xxx_I2C_ENABLE_INTR() (I2C_INTERRUPT_ENABLE_REG) |= 0x03 ++#define CNS3xxx_I2C_DISABLE_INTR() (I2C_INTERRUPT_ENABLE_REG) &= 0xfc ++ ++#define TWI_TIMEOUT (10*HZ) ++#define I2C_100KHZ 100000 ++#define I2C_200KHZ 200000 ++#define I2C_300KHZ 300000 ++#define I2C_400KHZ 400000 ++ ++#define CNS3xxx_I2C_CLK I2C_100KHZ ++ ++#define STATE_DONE 1 ++#define STATE_ERROR 2 ++ ++struct cns3xxx_i2c { ++ void __iomem *base; ++ wait_queue_head_t wait; ++ struct i2c_adapter adap; ++ struct i2c_msg *msg; ++ int state; /* see STATE_ */ ++ int rd_wr_len; ++ u8 *buf; ++}; ++ ++static u32 cns3xxx_i2c_func(struct i2c_adapter *adap) ++{ ++ return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; ++} ++ ++static int ++cns3xxx_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg) ++{ ++ struct cns3xxx_i2c *i2c = i2c_get_adapdata(adap); ++ int i, j; ++ u8 buf[1] = { 0 }; ++ ++ if (msg->len == 0) { ++ /* ++ * We are probably doing a probe for a device here, ++ * so set the length to one, and data to 0 ++ */ ++ msg->len = 1; ++ i2c->buf = buf; ++ } else { ++ i2c->buf = msg->buf; ++ } ++ ++ if (msg->flags & I2C_M_TEN) { ++ printk ++ ("%s:%d: Presently the driver does not handle extended addressing\n", ++ __FUNCTION__, __LINE__); ++ return -EINVAL; ++ } ++ i2c->msg = msg; ++ ++ for (i = 0; i < msg->len; i++) { ++ if (msg->len - i >= 4) ++ i2c->rd_wr_len = 3; ++ else ++ i2c->rd_wr_len = msg->len - i - 1; ++ ++ // Set Data Width and TWI_EN ++ I2C_CONTROLLER_REG = 0x80000000 | (i2c->rd_wr_len << 2) | (i2c->rd_wr_len); ++ ++ // Clear Write Reg ++ I2C_WRITE_DATA_REG = 0; ++ ++ // Set the slave address ++ I2C_SLAVE_ADDRESS_REG = (msg->addr << 1); ++ ++ // Are we Writing ++ if (!(msg->flags & I2C_M_RD)) { ++ I2C_CONTROLLER_REG |= (1 << 4); ++ if (i != 0) { ++ /* ++ * We need to set the address in the first byte. ++ * The base address is going to be in buf[0] and then ++ * it needs to be incremented by i - 1. ++ */ ++ i2c->buf--; ++ *i2c->buf = buf[0] + i - 1; ++ ++ if (i2c->rd_wr_len < 3) { ++ i += i2c->rd_wr_len; ++ i2c->rd_wr_len++; ++ I2C_CONTROLLER_REG = 0x80000000 | (1 << 4) | (i2c->rd_wr_len << 2) | (i2c->rd_wr_len); ++ } else { ++ i += i2c->rd_wr_len - 1; ++ } ++ } else { ++ i += i2c->rd_wr_len; ++ buf[0] = *i2c->buf; ++ } ++ for (j = 0; j <= i2c->rd_wr_len; j++) { ++ I2C_WRITE_DATA_REG |= ((*i2c->buf++) << (8 * j)); ++ } ++ } else { ++ i += i2c->rd_wr_len; ++ } ++ ++ // Start the Transfer ++ i2c->state = 0; // Clear out the State ++ I2C_CONTROLLER_REG |= (1 << 6); ++ ++ if (wait_event_timeout(i2c->wait, (i2c->state == STATE_ERROR) || ++ (i2c->state == STATE_DONE), TWI_TIMEOUT)) { ++ if (i2c->state == STATE_ERROR) { ++ return -EIO; ++ } ++ } else { ++ return -ETIMEDOUT; ++ } ++ } ++ return 0; ++} ++ ++static int ++cns3xxx_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) ++{ ++ int i; ++ int ret; ++ for (i = 0; i < num; i++) ++ { ++ ret = cns3xxx_i2c_xfer_msg(adap, &msgs[i]); ++ if (ret < 0) { ++ return ret; ++ } ++ } ++ return num; ++} ++ ++ ++static struct i2c_algorithm cns3xxx_i2c_algo = { ++ .master_xfer = cns3xxx_i2c_xfer, ++ .functionality = cns3xxx_i2c_func, ++}; ++ ++static struct i2c_adapter cns3xxx_i2c_adapter = { ++ .owner = THIS_MODULE, ++ .algo = &cns3xxx_i2c_algo, ++ .algo_data = NULL, ++ .nr = 0, ++ .name = "CNS3xxx I2C 0", ++ .retries = 5, ++}; ++ ++static void cns3xxx_i2c_adapter_init(struct cns3xxx_i2c *i2c) ++{ ++ cns3xxx_pwr_clk_en(1 << PM_CLK_GATE_REG_OFFSET_SPI_PCM_I2C); ++ cns3xxx_pwr_power_up(1 << PM_CLK_GATE_REG_OFFSET_SPI_PCM_I2C); ++ cns3xxx_pwr_soft_rst(1 << PM_CLK_GATE_REG_OFFSET_SPI_PCM_I2C); ++ ++ /* Disable the I2C */ ++ I2C_CONTROLLER_REG = 0; /* Disabled the I2C */ ++ ++ //enable SCL and SDA which share pin with GPIOB_PIN_EN(0x18) ++ //GPIOB[12]: SCL ++ //GPIOB[13]: SDA ++ (*(u32*)(CNS3XXX_MISC_BASE_VIRT+0x18)) |= ((1<<12)|(1<<13)); ++ ++ MISC_IOCDB_CTRL &= ~0x300; ++ MISC_IOCDB_CTRL |= 0x300; //21mA... ++ ++ /* Check the Reg Dump when testing */ ++ I2C_TIME_OUT_REG = ++ ((((((cns3xxx_cpu_clock()*(1000000/8)) / (2 * CNS3xxx_I2C_CLK)) - ++ 1) & 0x3FF) << 8) | (1 << 7) | 0x7F); ++ I2C_TWI_OUT_DLY_REG |= 0x3; ++ ++ /* Enable The Interrupt */ ++ CNS3xxx_I2C_ENABLE_INTR(); ++ ++ /* Clear Interrupt Status (0x2 | 0x1) */ ++ I2C_INTERRUPT_STATUS_REG |= (I2C_ACTION_DONE_FLAG | I2C_BUS_ERROR_FLAG); ++ ++ /* Enable the I2C Controller */ ++ CNS3xxx_I2C_ENABLE(); ++} ++ ++static irqreturn_t cns3xxx_i2c_isr(int irq, void *dev_id) ++{ ++ struct cns3xxx_i2c *i2c = dev_id; ++ int i; ++ uint32_t stat = I2C_INTERRUPT_STATUS_REG; ++ ++ /* Clear Interrupt */ ++ I2C_INTERRUPT_STATUS_REG |= 0x1; ++ ++ if (stat & I2C_BUS_ERROR_FLAG) { ++ i2c->state = STATE_ERROR; ++ } else { ++ if (i2c->msg->flags & I2C_M_RD) { ++ for (i = 0; i <= i2c->rd_wr_len; i++) ++ { ++ *i2c->buf++ = ((I2C_READ_DATA_REG >> (8 * i)) & 0xff); ++ } ++ } ++ i2c->state = STATE_DONE; ++ } ++ wake_up(&i2c->wait); ++ return IRQ_HANDLED; ++} ++ ++static int __devinit cns3xxx_i2c_probe(struct platform_device *pdev) ++{ ++ struct cns3xxx_i2c *i2c; ++ struct resource *res, *res2; ++ int ret; ++ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (!res) { ++ printk("%s: IORESOURCE_MEM not defined \n", __FUNCTION__); ++ return -ENODEV; ++ } ++ ++ res2 = platform_get_resource(pdev, IORESOURCE_IRQ, 0); ++ if (!res2) { ++ printk("%s: IORESOURCE_IRQ not defined \n", __FUNCTION__); ++ return -ENODEV; ++ } ++ ++ i2c = kzalloc(sizeof(*i2c), GFP_KERNEL); ++ if (!i2c) ++ return -ENOMEM; ++ ++ if (!request_mem_region(res->start, res->end - res->start + 1, ++ pdev->name)) { ++ dev_err(&pdev->dev, "Memory region busy\n"); ++ ret = -EBUSY; ++ goto request_mem_failed; ++ } ++ ++ i2c->base = ioremap(res->start, res->end - res->start + 1); ++ if (!i2c->base) { ++ dev_err(&pdev->dev, "Unable to map registers\n"); ++ ret = -EIO; ++ goto map_failed; ++ } ++ ++ cns3xxx_i2c_adapter_init(i2c); ++ ++ init_waitqueue_head(&i2c->wait); ++ ret = request_irq(res2->start, cns3xxx_i2c_isr, 0, pdev->name, i2c); ++ if (ret) { ++ dev_err(&pdev->dev, "Cannot claim IRQ\n"); ++ goto request_irq_failed; ++ } ++ ++ platform_set_drvdata(pdev, i2c); ++ i2c->adap = cns3xxx_i2c_adapter; ++ i2c_set_adapdata(&i2c->adap, i2c); ++ i2c->adap.dev.parent = &pdev->dev; ++ ++ /* add i2c adapter to i2c tree */ ++ ret = i2c_add_numbered_adapter(&i2c->adap); ++ if (ret) { ++ dev_err(&pdev->dev, "Failed to add adapter\n"); ++ goto add_adapter_failed; ++ } ++ ++ return 0; ++ ++ add_adapter_failed: ++ free_irq(res2->start, i2c); ++ request_irq_failed: ++ iounmap(i2c->base); ++ map_failed: ++ release_mem_region(res->start, res->end - res->start + 1); ++ request_mem_failed: ++ kfree(i2c); ++ ++ return ret; ++} ++ ++static int __devexit cns3xxx_i2c_remove(struct platform_device *pdev) ++{ ++ struct cns3xxx_i2c *i2c = platform_get_drvdata(pdev); ++ struct resource *res; ++ ++ /* disable i2c logic */ ++ CNS3xxx_I2C_DISABLE_INTR(); ++ CNS3xxx_I2C_DISABLE(); ++ /* remove adapter & data */ ++ i2c_del_adapter(&i2c->adap); ++ platform_set_drvdata(pdev, NULL); ++ ++ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); ++ if (res) ++ free_irq(res->start, i2c); ++ ++ iounmap(i2c->base); ++ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (res) ++ release_mem_region(res->start, res->end - res->start + 1); ++ ++ kfree(i2c); ++ ++ return 0; ++} ++ ++#ifdef CONFIG_PM ++#warning "CONFIG_PM defined: suspend and resume not implemented" ++#define cns3xxx_i2c_suspend NULL ++#define cns3xxx_i2c_resume NULL ++#else ++#define cns3xxx_i2c_suspend NULL ++#define cns3xxx_i2c_resume NULL ++#endif ++ ++static struct platform_driver cns3xxx_i2c_driver = { ++ .probe = cns3xxx_i2c_probe, ++ .remove = cns3xxx_i2c_remove, ++ .suspend = cns3xxx_i2c_suspend, ++ .resume = cns3xxx_i2c_resume, ++ .driver = { ++ .owner = THIS_MODULE, ++ .name = "cns3xxx-i2c", ++ }, ++}; ++ ++static int __init cns3xxx_i2c_init(void) ++{ ++ return platform_driver_register(&cns3xxx_i2c_driver); ++} ++ ++static void __exit cns3xxx_i2c_exit(void) ++{ ++ platform_driver_unregister(&cns3xxx_i2c_driver); ++} ++ ++module_init(cns3xxx_i2c_init); ++module_exit(cns3xxx_i2c_exit); ++ ++MODULE_AUTHOR("Cavium Networks"); ++MODULE_DESCRIPTION("Cavium CNS3XXX I2C Controller"); ++MODULE_LICENSE("GPL"); diff --git a/target/linux/cns3xxx/patches-3.3/051-cns3xxx_gigabit.patch b/target/linux/cns3xxx/patches-3.3/051-cns3xxx_gigabit.patch new file mode 100644 index 0000000..72306d9 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/051-cns3xxx_gigabit.patch @@ -0,0 +1,1357 @@ +--- /dev/null ++++ b/drivers/net/ethernet/cavium/cns3xxx_eth.c +@@ -0,0 +1,1270 @@ ++/* ++ * Cavium CNS3xxx Gigabit driver for Linux ++ * ++ * Copyright 2011 Gateworks Corporation ++ * Chris Lang <clang@gateworks.com> ++ * ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of version 2 of the GNU General Public License ++ * as published by the Free Software Foundation. ++ * ++ */ ++ ++#include <linux/delay.h> ++#include <linux/module.h> ++#include <linux/dma-mapping.h> ++#include <linux/dmapool.h> ++#include <linux/etherdevice.h> ++#include <linux/interrupt.h> ++#include <linux/io.h> ++#include <linux/kernel.h> ++#include <linux/phy.h> ++#include <linux/platform_device.h> ++#include <linux/skbuff.h> ++#include <mach/irqs.h> ++#include <mach/platform.h> ++ ++#define DRV_NAME "cns3xxx_eth" ++ ++#define RX_DESCS 512 ++#define TX_DESCS 512 ++#define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES) ++ ++#define RX_POOL_ALLOC_SIZE (sizeof(struct rx_desc) * RX_DESCS) ++#define TX_POOL_ALLOC_SIZE (sizeof(struct tx_desc) * TX_DESCS) ++#define REGS_SIZE 336 ++#define MAX_MRU 9500 ++ ++#define NAPI_WEIGHT 64 ++ ++/* MDIO Defines */ ++#define MDIO_CMD_COMPLETE 0x00008000 ++#define MDIO_WRITE_COMMAND 0x00002000 ++#define MDIO_READ_COMMAND 0x00004000 ++#define MDIO_REG_OFFSET 8 ++#define MDIO_VALUE_OFFSET 16 ++ ++/* Descritor Defines */ ++#define END_OF_RING 0x40000000 ++#define FIRST_SEGMENT 0x20000000 ++#define LAST_SEGMENT 0x10000000 ++#define FORCE_ROUTE 0x04000000 ++#define IP_CHECKSUM 0x00040000 ++#define UDP_CHECKSUM 0x00020000 ++#define TCP_CHECKSUM 0x00010000 ++ ++/* Port Config Defines */ ++#define PORT_DISABLE 0x00040000 ++#define PROMISC_OFFSET 29 ++ ++/* Global Config Defines */ ++#define UNKNOWN_VLAN_TO_CPU 0x02000000 ++#define ACCEPT_CRC_PACKET 0x00200000 ++#define CRC_STRIPPING 0x00100000 ++ ++/* VLAN Config Defines */ ++#define NIC_MODE 0x00008000 ++#define VLAN_UNAWARE 0x00000001 ++ ++/* DMA AUTO Poll Defines */ ++#define TS_POLL_EN 0x00000020 ++#define TS_SUSPEND 0x00000010 ++#define FS_POLL_EN 0x00000002 ++#define FS_SUSPEND 0x00000001 ++ ++/* DMA Ring Control Defines */ ++#define QUEUE_THRESHOLD 0x000000f0 ++#define CLR_FS_STATE 0x80000000 ++ ++struct tx_desc ++{ ++ u32 sdp; /* segment data pointer */ ++ ++ union { ++ struct { ++ u32 sdl:16; /* segment data length */ ++ u32 tco:1; ++ u32 uco:1; ++ u32 ico:1; ++ u32 rsv_1:3; /* reserve */ ++ u32 pri:3; ++ u32 fp:1; /* force priority */ ++ u32 fr:1; ++ u32 interrupt:1; ++ u32 lsd:1; ++ u32 fsd:1; ++ u32 eor:1; ++ u32 cown:1; ++ }; ++ u32 config0; ++ }; ++ ++ union { ++ struct { ++ u32 ctv:1; ++ u32 stv:1; ++ u32 sid:4; ++ u32 inss:1; ++ u32 dels:1; ++ u32 rsv_2:9; ++ u32 pmap:5; ++ u32 mark:3; ++ u32 ewan:1; ++ u32 fewan:1; ++ u32 rsv_3:5; ++ }; ++ u32 config1; ++ }; ++ ++ union { ++ struct { ++ u32 c_vid:12; ++ u32 c_cfs:1; ++ u32 c_pri:3; ++ u32 s_vid:12; ++ u32 s_dei:1; ++ u32 s_pri:3; ++ }; ++ u32 config2; ++ }; ++ ++ u8 alignment[16]; /* for 32 byte */ ++}; ++ ++struct rx_desc ++{ ++ u32 sdp; /* segment data pointer */ ++ ++ union { ++ struct { ++ u32 sdl:16; /* segment data length */ ++ u32 l4f:1; ++ u32 ipf:1; ++ u32 prot:4; ++ u32 hr:6; ++ u32 lsd:1; ++ u32 fsd:1; ++ u32 eor:1; ++ u32 cown:1; ++ }; ++ u32 config0; ++ }; ++ ++ union { ++ struct { ++ u32 ctv:1; ++ u32 stv:1; ++ u32 unv:1; ++ u32 iwan:1; ++ u32 exdv:1; ++ u32 e_wan:1; ++ u32 rsv_1:2; ++ u32 sp:3; ++ u32 crc_err:1; ++ u32 un_eth:1; ++ u32 tc:2; ++ u32 rsv_2:1; ++ u32 ip_offset:5; ++ u32 rsv_3:11; ++ }; ++ u32 config1; ++ }; ++ ++ union { ++ struct { ++ u32 c_vid:12; ++ u32 c_cfs:1; ++ u32 c_pri:3; ++ u32 s_vid:12; ++ u32 s_dei:1; ++ u32 s_pri:3; ++ }; ++ u32 config2; ++ }; ++ ++ u8 alignment[16]; /* for 32 byte alignment */ ++}; ++ ++struct switch_regs { ++ u32 phy_control; ++ u32 phy_auto_addr; ++ u32 mac_glob_cfg; ++ u32 mac_cfg[4]; ++ u32 mac_pri_ctrl[5], __res; ++ u32 etype[2]; ++ u32 udp_range[4]; ++ u32 prio_etype_udp; ++ u32 prio_ipdscp[8]; ++ u32 tc_ctrl; ++ u32 rate_ctrl; ++ u32 fc_glob_thrs; ++ u32 fc_port_thrs; ++ u32 mc_fc_glob_thrs; ++ u32 dc_glob_thrs; ++ u32 arl_vlan_cmd; ++ u32 arl_ctrl[3]; ++ u32 vlan_cfg; ++ u32 pvid[2]; ++ u32 vlan_ctrl[3]; ++ u32 session_id[8]; ++ u32 intr_stat; ++ u32 intr_mask; ++ u32 sram_test; ++ u32 mem_queue; ++ u32 farl_ctrl; ++ u32 fc_input_thrs, __res1[2]; ++ u32 clk_skew_ctrl; ++ u32 mac_glob_cfg_ext, __res2[2]; ++ u32 dma_ring_ctrl; ++ u32 dma_auto_poll_cfg; ++ u32 delay_intr_cfg, __res3; ++ u32 ts_dma_ctrl0; ++ u32 ts_desc_ptr0; ++ u32 ts_desc_base_addr0, __res4; ++ u32 fs_dma_ctrl0; ++ u32 fs_desc_ptr0; ++ u32 fs_desc_base_addr0, __res5; ++ u32 ts_dma_ctrl1; ++ u32 ts_desc_ptr1; ++ u32 ts_desc_base_addr1, __res6; ++ u32 fs_dma_ctrl1; ++ u32 fs_desc_ptr1; ++ u32 fs_desc_base_addr1; ++}; ++ ++struct _tx_ring { ++ struct tx_desc *desc; ++ dma_addr_t phys_addr; ++ struct tx_desc *cur_addr; ++ struct sk_buff *buff_tab[TX_DESCS]; ++ u32 free_index; ++ u32 count_index; ++ u32 cur_index; ++ int num_used; ++ int num_count; ++}; ++ ++struct _rx_ring { ++ struct rx_desc *desc; ++ dma_addr_t phys_addr; ++ struct rx_desc *cur_addr; ++ struct sk_buff *buff_tab[RX_DESCS]; ++ u32 cur_index; ++ u32 alloc_index; ++ int alloc_count; ++}; ++ ++struct sw { ++ struct resource *mem_res; ++ struct switch_regs __iomem *regs; ++ struct napi_struct napi; ++ struct cns3xxx_plat_info *plat; ++ struct _tx_ring *tx_ring; ++ struct _rx_ring *rx_ring; ++ u32 mtu; ++}; ++ ++struct port { ++ struct net_device *netdev; ++ struct phy_device *phydev; ++ struct sw *sw; ++ int id; /* logical port ID */ ++ int speed, duplex; ++ u32 mtu; ++}; ++ ++static spinlock_t mdio_lock; ++static spinlock_t tx_lock; ++static spinlock_t stat_lock; ++static struct switch_regs __iomem *mdio_regs; /* mdio command and status only */ ++struct mii_bus *mdio_bus; ++static int ports_open; ++static struct port *switch_port_tab[3]; ++static struct dma_pool *rx_dma_pool; ++static struct dma_pool *tx_dma_pool; ++struct net_device *napi_dev; ++ ++static int cns3xxx_mdio_cmd(struct mii_bus *bus, int phy_id, int location, ++ int write, u16 cmd) ++{ ++ int cycles = 0; ++ u32 temp = 0; ++ ++ temp = __raw_readl(&mdio_regs->phy_control); ++ temp |= MDIO_CMD_COMPLETE; ++ __raw_writel(temp, &mdio_regs->phy_control); ++ udelay(10); ++ ++ if (write) { ++ temp = (cmd << MDIO_VALUE_OFFSET); ++ temp |= MDIO_WRITE_COMMAND; ++ } else { ++ temp = MDIO_READ_COMMAND; ++ } ++ temp |= ((location & 0x1f) << MDIO_REG_OFFSET); ++ temp |= (phy_id & 0x1f); ++ ++ __raw_writel(temp, &mdio_regs->phy_control); ++ ++ while (((__raw_readl(&mdio_regs->phy_control) & MDIO_CMD_COMPLETE) == 0) ++ && cycles < 5000) { ++ udelay(1); ++ cycles++; ++ } ++ ++ if (cycles == 5000) { ++ printk(KERN_ERR "%s #%i: MII transaction failed\n", bus->name, ++ phy_id); ++ return -1; ++ } ++ ++ temp = __raw_readl(&mdio_regs->phy_control); ++ temp |= MDIO_CMD_COMPLETE; ++ __raw_writel(temp, &mdio_regs->phy_control); ++ ++ if (write) ++ return 0; ++ ++ return ((temp >> MDIO_VALUE_OFFSET) & 0xFFFF); ++} ++ ++static int cns3xxx_mdio_read(struct mii_bus *bus, int phy_id, int location) ++{ ++ unsigned long flags; ++ int ret; ++ ++ spin_lock_irqsave(&mdio_lock, flags); ++ ret = cns3xxx_mdio_cmd(bus, phy_id, location, 0, 0); ++ spin_unlock_irqrestore(&mdio_lock, flags); ++ return ret; ++} ++ ++static int cns3xxx_mdio_write(struct mii_bus *bus, int phy_id, int location, ++ u16 val) ++{ ++ unsigned long flags; ++ int ret; ++ ++ spin_lock_irqsave(&mdio_lock, flags); ++ ret = cns3xxx_mdio_cmd(bus, phy_id, location, 1, val); ++ spin_unlock_irqrestore(&mdio_lock, flags); ++ return ret; ++} ++ ++static int cns3xxx_mdio_register(void) ++{ ++ int err; ++ ++ if (!(mdio_bus = mdiobus_alloc())) ++ return -ENOMEM; ++ ++ mdio_regs = (struct switch_regs __iomem *)CNS3XXX_SWITCH_BASE_VIRT; ++ ++ spin_lock_init(&mdio_lock); ++ mdio_bus->name = "CNS3xxx MII Bus"; ++ mdio_bus->read = &cns3xxx_mdio_read; ++ mdio_bus->write = &cns3xxx_mdio_write; ++ strcpy(mdio_bus->id, "0"); ++ ++ if ((err = mdiobus_register(mdio_bus))) ++ mdiobus_free(mdio_bus); ++ return err; ++} ++ ++static void cns3xxx_mdio_remove(void) ++{ ++ mdiobus_unregister(mdio_bus); ++ mdiobus_free(mdio_bus); ++} ++ ++static void cns3xxx_adjust_link(struct net_device *dev) ++{ ++ struct port *port = netdev_priv(dev); ++ struct phy_device *phydev = port->phydev; ++ ++ if (!phydev->link) { ++ if (port->speed) { ++ port->speed = 0; ++ printk(KERN_INFO "%s: link down\n", dev->name); ++ } ++ return; ++ } ++ ++ if (port->speed == phydev->speed && port->duplex == phydev->duplex) ++ return; ++ ++ port->speed = phydev->speed; ++ port->duplex = phydev->duplex; ++ ++ printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n", ++ dev->name, port->speed, port->duplex ? "full" : "half"); ++} ++ ++irqreturn_t eth_rx_irq(int irq, void *pdev) ++{ ++ struct net_device *dev = pdev; ++ struct sw *sw = netdev_priv(dev); ++ if (likely(napi_schedule_prep(&sw->napi))) { ++ disable_irq_nosync(IRQ_CNS3XXX_SW_R0RXC); ++ __napi_schedule(&sw->napi); ++ } ++ return (IRQ_HANDLED); ++} ++ ++static void cns3xxx_alloc_rx_buf(struct sw *sw, int received) ++{ ++ struct _rx_ring *rx_ring = sw->rx_ring; ++ unsigned int i = rx_ring->alloc_index; ++ struct rx_desc *desc; ++ struct sk_buff *skb; ++ u32 mtu = sw->mtu; ++ ++ rx_ring->alloc_count += received; ++ ++ for (received = rx_ring->alloc_count; received > 0; received--) { ++ desc = &(rx_ring)->desc[i]; ++ ++ if ((skb = dev_alloc_skb(mtu))) { ++ if (SKB_DMA_REALIGN) ++ skb_reserve(skb, SKB_DMA_REALIGN); ++ skb_reserve(skb, NET_IP_ALIGN); ++ desc->sdp = dma_map_single(NULL, skb->data, ++ mtu, DMA_FROM_DEVICE); ++ if (dma_mapping_error(NULL, desc->sdp)) { ++ dev_kfree_skb(skb); ++ /* Failed to map, better luck next time */ ++ goto out;; ++ } ++ } else { ++ /* Failed to allocate skb, try again next time */ ++ goto out; ++ } ++ ++ /* put the new buffer on RX-free queue */ ++ rx_ring->buff_tab[i] = skb; ++ ++ if (++i == RX_DESCS) { ++ i = 0; ++ desc->config0 = END_OF_RING | FIRST_SEGMENT | ++ LAST_SEGMENT | mtu; ++ } else { ++ desc->config0 = FIRST_SEGMENT | LAST_SEGMENT | mtu; ++ } ++ } ++out: ++ rx_ring->alloc_count = received; ++ rx_ring->alloc_index = i; ++} ++ ++static void update_tx_stats(struct sw *sw) ++{ ++ struct _tx_ring *tx_ring = sw->tx_ring; ++ struct tx_desc *desc; ++ struct tx_desc *next_desc; ++ struct sk_buff *skb; ++ int i; ++ int index; ++ int num_count; ++ ++ spin_lock_bh(&stat_lock); ++ ++ num_count = tx_ring->num_count; ++ ++ if (!num_count) { ++ spin_unlock_bh(&stat_lock); ++ return; ++ } ++ ++ index = tx_ring->count_index; ++ desc = &(tx_ring)->desc[index]; ++ for (i = 0; i < num_count; i++) { ++ skb = tx_ring->buff_tab[index]; ++ if (desc->cown) { ++ tx_ring->buff_tab[index] = 0; ++ if (unlikely(++index == TX_DESCS)) index = 0; ++ next_desc = &(tx_ring)->desc[index]; ++ prefetch(next_desc + 4); ++ if (likely(skb)) { ++ skb->dev->stats.tx_packets++; ++ skb->dev->stats.tx_bytes += skb->len; ++ dev_kfree_skb_any(skb); ++ } ++ desc = next_desc; ++ } else { ++ break; ++ } ++ } ++ tx_ring->num_count -= i; ++ tx_ring->count_index = index; ++ ++ spin_unlock_bh(&stat_lock); ++} ++ ++static void clear_tx_desc(struct sw *sw) ++{ ++ struct _tx_ring *tx_ring = sw->tx_ring; ++ struct tx_desc *desc; ++ struct tx_desc *next_desc; ++ int i; ++ int index; ++ int num_used = tx_ring->num_used - tx_ring->num_count; ++ ++ if (num_used < (TX_DESCS >> 1)) ++ return; ++ ++ index = tx_ring->free_index; ++ desc = &(tx_ring)->desc[index]; ++ for (i = 0; i < num_used; i++) { ++ if (desc->cown) { ++ if (unlikely(++index == TX_DESCS)) index = 0; ++ next_desc = &(tx_ring)->desc[index]; ++ prefetch(next_desc); ++ prefetch(next_desc + 4); ++ if (likely(desc->sdp)) ++ dma_unmap_single(NULL, desc->sdp, ++ desc->sdl, DMA_TO_DEVICE); ++ desc = next_desc; ++ } else { ++ break; ++ } ++ } ++ tx_ring->free_index = index; ++ tx_ring->num_used -= i; ++} ++ ++static int eth_poll(struct napi_struct *napi, int budget) ++{ ++ struct sw *sw = container_of(napi, struct sw, napi); ++ struct net_device *dev; ++ struct _rx_ring *rx_ring = sw->rx_ring; ++ int received = 0; ++ unsigned int length; ++ unsigned int i = rx_ring->cur_index; ++ struct rx_desc *next_desc; ++ struct rx_desc *desc = &(rx_ring)->desc[i]; ++ int port_id; ++ ++ while (desc->cown) { ++ struct sk_buff *skb; ++ ++ if (received >= budget) ++ break; ++ ++ skb = rx_ring->buff_tab[i]; ++ ++ if (++i == RX_DESCS) i = 0; ++ next_desc = &(rx_ring)->desc[i]; ++ prefetch(next_desc); ++ ++ port_id = desc->sp; ++ if (port_id == 4) ++ dev = switch_port_tab[2]->netdev; ++ else ++ dev = switch_port_tab[port_id]->netdev; ++ ++ length = desc->sdl; ++ /* process received frame */ ++ dma_unmap_single(&dev->dev, desc->sdp, ++ length, DMA_FROM_DEVICE); ++ ++ skb_put(skb, length); ++ ++ skb->dev = dev; ++ skb->protocol = eth_type_trans(skb, dev); ++ ++ dev->stats.rx_packets++; ++ dev->stats.rx_bytes += length; ++ ++ switch (desc->prot) { ++ case 1: ++ case 2: ++ case 5: ++ case 6: ++ case 13: ++ case 14: ++ if (desc->l4f) ++ skb->ip_summed = CHECKSUM_NONE; ++ else ++ skb->ip_summed = CHECKSUM_UNNECESSARY; ++ break; ++ default: ++ skb->ip_summed = CHECKSUM_NONE; ++ break; ++ } ++ ++ napi_gro_receive(napi, skb); ++ ++ received++; ++ desc = next_desc; ++ } ++ ++ cns3xxx_alloc_rx_buf(sw, received); ++ rx_ring->cur_index = i; ++ ++ if (received != budget) { ++ napi_complete(napi); ++ enable_irq(IRQ_CNS3XXX_SW_R0RXC); ++ } ++ ++ return received; ++} ++ ++static int eth_xmit(struct sk_buff *skb, struct net_device *dev) ++{ ++ struct port *port = netdev_priv(dev); ++ struct sw *sw = port->sw; ++ struct _tx_ring *tx_ring = sw->tx_ring; ++ struct tx_desc *tx_desc; ++ int index; ++ int len = skb->len; ++ char pmap = (1 << port->id); ++ ++ if (pmap == 8) ++ pmap = (1 << 4); ++ ++ if (unlikely(len > sw->mtu)) { ++ dev_kfree_skb(skb); ++ dev->stats.tx_errors++; ++ return NETDEV_TX_OK; ++ } ++ ++ update_tx_stats(sw); ++ ++ spin_lock_bh(&tx_lock); ++ ++ clear_tx_desc(sw); ++ ++ if (unlikely(tx_ring->num_used == TX_DESCS)) { ++ spin_unlock_bh(&tx_lock); ++ return NETDEV_TX_BUSY; ++ } ++ ++ index = tx_ring->cur_index; ++ ++ if (unlikely(++tx_ring->cur_index == TX_DESCS)) ++ tx_ring->cur_index = 0; ++ ++ tx_ring->num_used++; ++ tx_ring->num_count++; ++ ++ spin_unlock_bh(&tx_lock); ++ ++ tx_desc = &(tx_ring)->desc[index]; ++ ++ tx_desc->sdp = dma_map_single(NULL, skb->data, len, ++ DMA_TO_DEVICE); ++ ++ if (dma_mapping_error(NULL, tx_desc->sdp)) { ++ dev_kfree_skb(skb); ++ dev->stats.tx_errors++; ++ return NETDEV_TX_OK; ++ } ++ ++ tx_desc->pmap = pmap; ++ tx_ring->buff_tab[index] = skb; ++ ++ if (index == TX_DESCS - 1) { ++ tx_desc->config0 = END_OF_RING | FIRST_SEGMENT | LAST_SEGMENT | ++ FORCE_ROUTE | IP_CHECKSUM | UDP_CHECKSUM | ++ TCP_CHECKSUM | len; ++ } else { ++ tx_desc->config0 = FIRST_SEGMENT | LAST_SEGMENT | ++ FORCE_ROUTE | IP_CHECKSUM | UDP_CHECKSUM | ++ TCP_CHECKSUM | len; ++ } ++ ++ return NETDEV_TX_OK; ++} ++ ++static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd) ++{ ++ struct port *port = netdev_priv(dev); ++ ++ if (!netif_running(dev)) ++ return -EINVAL; ++ return phy_mii_ioctl(port->phydev, req, cmd); ++} ++ ++/* ethtool support */ ++ ++static void cns3xxx_get_drvinfo(struct net_device *dev, ++ struct ethtool_drvinfo *info) ++{ ++ strcpy(info->driver, DRV_NAME); ++ strcpy(info->bus_info, "internal"); ++} ++ ++static int cns3xxx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) ++{ ++ struct port *port = netdev_priv(dev); ++ return phy_ethtool_gset(port->phydev, cmd); ++} ++ ++static int cns3xxx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) ++{ ++ struct port *port = netdev_priv(dev); ++ return phy_ethtool_sset(port->phydev, cmd); ++} ++ ++static int cns3xxx_nway_reset(struct net_device *dev) ++{ ++ struct port *port = netdev_priv(dev); ++ return phy_start_aneg(port->phydev); ++} ++ ++static struct ethtool_ops cns3xxx_ethtool_ops = { ++ .get_drvinfo = cns3xxx_get_drvinfo, ++ .get_settings = cns3xxx_get_settings, ++ .set_settings = cns3xxx_set_settings, ++ .nway_reset = cns3xxx_nway_reset, ++ .get_link = ethtool_op_get_link, ++}; ++ ++ ++static int init_rings(struct sw *sw) ++{ ++ int i; ++ struct _rx_ring *rx_ring = sw->rx_ring; ++ struct _tx_ring *tx_ring = sw->tx_ring; ++ ++ __raw_writel(0, &sw->regs->fs_dma_ctrl0); ++ __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg); ++ __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl); ++ __raw_writel(CLR_FS_STATE | QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl); ++ ++ __raw_writel(QUEUE_THRESHOLD, &sw->regs->dma_ring_ctrl); ++ ++ if (!(rx_dma_pool = dma_pool_create(DRV_NAME, NULL, ++ RX_POOL_ALLOC_SIZE, 32, 0))) ++ return -ENOMEM; ++ ++ if (!(rx_ring->desc = dma_pool_alloc(rx_dma_pool, GFP_KERNEL, ++ &rx_ring->phys_addr))) ++ return -ENOMEM; ++ memset(rx_ring->desc, 0, RX_POOL_ALLOC_SIZE); ++ ++ /* Setup RX buffers */ ++ for (i = 0; i < RX_DESCS; i++) { ++ struct rx_desc *desc = &(rx_ring)->desc[i]; ++ struct sk_buff *skb; ++ if (!(skb = dev_alloc_skb(sw->mtu))) ++ return -ENOMEM; ++ if (SKB_DMA_REALIGN) ++ skb_reserve(skb, SKB_DMA_REALIGN); ++ skb_reserve(skb, NET_IP_ALIGN); ++ desc->sdl = sw->mtu; ++ if (i == (RX_DESCS - 1)) ++ desc->eor = 1; ++ desc->fsd = 1; ++ desc->lsd = 1; ++ ++ desc->sdp = dma_map_single(NULL, skb->data, ++ sw->mtu, DMA_FROM_DEVICE); ++ if (dma_mapping_error(NULL, desc->sdp)) { ++ return -EIO; ++ } ++ rx_ring->buff_tab[i] = skb; ++ desc->cown = 0; ++ } ++ __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_ptr0); ++ __raw_writel(rx_ring->phys_addr, &sw->regs->fs_desc_base_addr0); ++ ++ if (!(tx_dma_pool = dma_pool_create(DRV_NAME, NULL, ++ TX_POOL_ALLOC_SIZE, 32, 0))) ++ return -ENOMEM; ++ ++ if (!(tx_ring->desc = dma_pool_alloc(tx_dma_pool, GFP_KERNEL, ++ &tx_ring->phys_addr))) ++ return -ENOMEM; ++ memset(tx_ring->desc, 0, TX_POOL_ALLOC_SIZE); ++ ++ /* Setup TX buffers */ ++ for (i = 0; i < TX_DESCS; i++) { ++ struct tx_desc *desc = &(tx_ring)->desc[i]; ++ tx_ring->buff_tab[i] = 0; ++ ++ if (i == (TX_DESCS - 1)) ++ desc->eor = 1; ++ desc->cown = 1; ++ } ++ __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_ptr0); ++ __raw_writel(tx_ring->phys_addr, &sw->regs->ts_desc_base_addr0); ++ ++ return 0; ++} ++ ++static void destroy_rings(struct sw *sw) ++{ ++ int i; ++ if (sw->rx_ring->desc) { ++ for (i = 0; i < RX_DESCS; i++) { ++ struct _rx_ring *rx_ring = sw->rx_ring; ++ struct rx_desc *desc = &(rx_ring)->desc[i]; ++ struct sk_buff *skb = sw->rx_ring->buff_tab[i]; ++ if (skb) { ++ dma_unmap_single(NULL, ++ desc->sdp, ++ sw->mtu, DMA_FROM_DEVICE); ++ dev_kfree_skb(skb); ++ } ++ } ++ dma_pool_free(rx_dma_pool, sw->rx_ring->desc, sw->rx_ring->phys_addr); ++ dma_pool_destroy(rx_dma_pool); ++ rx_dma_pool = 0; ++ sw->rx_ring->desc = 0; ++ } ++ if (sw->tx_ring->desc) { ++ for (i = 0; i < TX_DESCS; i++) { ++ struct _tx_ring *tx_ring = sw->tx_ring; ++ struct tx_desc *desc = &(tx_ring)->desc[i]; ++ struct sk_buff *skb = sw->tx_ring->buff_tab[i]; ++ if (skb) { ++ dma_unmap_single(NULL, desc->sdp, ++ skb->len, DMA_TO_DEVICE); ++ dev_kfree_skb(skb); ++ } ++ } ++ dma_pool_free(tx_dma_pool, sw->tx_ring->desc, sw->tx_ring->phys_addr); ++ dma_pool_destroy(tx_dma_pool); ++ tx_dma_pool = 0; ++ sw->tx_ring->desc = 0; ++ } ++} ++ ++static int eth_open(struct net_device *dev) ++{ ++ struct port *port = netdev_priv(dev); ++ struct sw *sw = port->sw; ++ u32 temp; ++ ++ port->speed = 0; /* force "link up" message */ ++ phy_start(port->phydev); ++ ++ netif_start_queue(dev); ++ ++ if (!ports_open) { ++ request_irq(IRQ_CNS3XXX_SW_R0RXC, eth_rx_irq, IRQF_SHARED, "gig_switch", napi_dev); ++ napi_enable(&sw->napi); ++ netif_start_queue(napi_dev); ++ //enable_irq(IRQ_CNS3XXX_SW_R0RXC); ++ ++ temp = __raw_readl(&sw->regs->mac_cfg[2]); ++ temp &= ~(PORT_DISABLE); ++ __raw_writel(temp, &sw->regs->mac_cfg[2]); ++ ++ temp = __raw_readl(&sw->regs->dma_auto_poll_cfg); ++ temp &= ~(TS_SUSPEND | FS_SUSPEND); ++ __raw_writel(temp, &sw->regs->dma_auto_poll_cfg); ++ ++ __raw_writel((TS_POLL_EN | FS_POLL_EN), &sw->regs->dma_auto_poll_cfg); ++ } ++ temp = __raw_readl(&sw->regs->mac_cfg[port->id]); ++ temp &= ~(PORT_DISABLE); ++ __raw_writel(temp, &sw->regs->mac_cfg[port->id]); ++ ++ ports_open++; ++ netif_carrier_on(dev); ++ ++ return 0; ++} ++ ++static int eth_close(struct net_device *dev) ++{ ++ struct port *port = netdev_priv(dev); ++ struct sw *sw = port->sw; ++ u32 temp; ++ ++ ports_open--; ++ ++ temp = __raw_readl(&sw->regs->mac_cfg[port->id]); ++ temp |= (PORT_DISABLE); ++ __raw_writel(temp, &sw->regs->mac_cfg[port->id]); ++ ++ netif_stop_queue(dev); ++ ++ phy_stop(port->phydev); ++ ++ if (!ports_open) { ++ disable_irq(IRQ_CNS3XXX_SW_R0RXC); ++ free_irq(IRQ_CNS3XXX_SW_R0RXC, napi_dev); ++ napi_disable(&sw->napi); ++ netif_stop_queue(napi_dev); ++ temp = __raw_readl(&sw->regs->mac_cfg[2]); ++ temp |= (PORT_DISABLE); ++ __raw_writel(temp, &sw->regs->mac_cfg[2]); ++ ++ __raw_writel(TS_SUSPEND | FS_SUSPEND, ++ &sw->regs->dma_auto_poll_cfg); ++ } ++ ++ netif_carrier_off(dev); ++ return 0; ++} ++ ++static void eth_rx_mode(struct net_device *dev) ++{ ++ struct port *port = netdev_priv(dev); ++ struct sw *sw = port->sw; ++ u32 temp; ++ ++ temp = __raw_readl(&sw->regs->mac_glob_cfg); ++ ++ if (dev->flags & IFF_PROMISC) { ++ if (port->id == 3) ++ temp |= ((1 << 2) << PROMISC_OFFSET); ++ else ++ temp |= ((1 << port->id) << PROMISC_OFFSET); ++ } else { ++ if (port->id == 3) ++ temp &= ~((1 << 2) << PROMISC_OFFSET); ++ else ++ temp &= ~((1 << port->id) << PROMISC_OFFSET); ++ } ++ __raw_writel(temp, &sw->regs->mac_glob_cfg); ++} ++ ++static int eth_set_mac(struct net_device *netdev, void *p) ++{ ++ struct port *port = netdev_priv(netdev); ++ struct sw *sw = port->sw; ++ struct sockaddr *addr = p; ++ u32 cycles = 0; ++ ++ if (!is_valid_ether_addr(addr->sa_data)) ++ return -EADDRNOTAVAIL; ++ ++ /* Invalidate old ARL Entry */ ++ if (port->id == 3) ++ __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]); ++ else ++ __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]); ++ __raw_writel( ((netdev->dev_addr[0] << 24) | (netdev->dev_addr[1] << 16) | ++ (netdev->dev_addr[2] << 8) | (netdev->dev_addr[3])), ++ &sw->regs->arl_ctrl[1]); ++ ++ __raw_writel( ((netdev->dev_addr[4] << 24) | (netdev->dev_addr[5] << 16) | ++ (1 << 1)), ++ &sw->regs->arl_ctrl[2]); ++ __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd); ++ ++ while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0) ++ && cycles < 5000) { ++ udelay(1); ++ cycles++; ++ } ++ ++ cycles = 0; ++ memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); ++ ++ if (port->id == 3) ++ __raw_writel((port->id << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]); ++ else ++ __raw_writel(((port->id + 1) << 16) | (0x4 << 9), &sw->regs->arl_ctrl[0]); ++ __raw_writel( ((addr->sa_data[0] << 24) | (addr->sa_data[1] << 16) | ++ (addr->sa_data[2] << 8) | (addr->sa_data[3])), ++ &sw->regs->arl_ctrl[1]); ++ ++ __raw_writel( ((addr->sa_data[4] << 24) | (addr->sa_data[5] << 16) | ++ (7 << 4) | (1 << 1)), &sw->regs->arl_ctrl[2]); ++ __raw_writel((1 << 19), &sw->regs->arl_vlan_cmd); ++ ++ while (((__raw_readl(&sw->regs->arl_vlan_cmd) & (1 << 21)) == 0) ++ && cycles < 5000) { ++ udelay(1); ++ cycles++; ++ } ++ return 0; ++} ++ ++static int cns3xxx_change_mtu(struct net_device *netdev, int new_mtu) ++{ ++ struct port *port = netdev_priv(netdev); ++ struct sw *sw = port->sw; ++ u32 temp; ++ int i; ++ struct _rx_ring *rx_ring = sw->rx_ring; ++ struct rx_desc *desc; ++ struct sk_buff *skb; ++ ++ if (new_mtu > MAX_MRU) ++ return -EINVAL; ++ ++ netdev->mtu = new_mtu; ++ ++ new_mtu += 36 + SKB_DMA_REALIGN; ++ port->mtu = new_mtu; ++ ++ new_mtu = 0; ++ for (i = 0; i < 3; i++) { ++ if (switch_port_tab[i]) { ++ if (switch_port_tab[i]->mtu > new_mtu) ++ new_mtu = switch_port_tab[i]->mtu; ++ } ++ } ++ ++ ++ if (new_mtu == sw->mtu) ++ return 0; ++ ++ disable_irq(IRQ_CNS3XXX_SW_R0RXC); ++ ++ sw->mtu = new_mtu; ++ ++ /* Disable DMA */ ++ __raw_writel(TS_SUSPEND | FS_SUSPEND, &sw->regs->dma_auto_poll_cfg); ++ ++ for (i = 0; i < RX_DESCS; i++) { ++ desc = &(rx_ring)->desc[i]; ++ /* Check if we own it, if we do, it will get set correctly ++ * when it is re-used */ ++ if (!desc->cown) { ++ skb = rx_ring->buff_tab[i]; ++ dma_unmap_single(NULL, desc->sdp, desc->sdl, ++ DMA_FROM_DEVICE); ++ dev_kfree_skb(skb); ++ ++ if ((skb = dev_alloc_skb(new_mtu))) { ++ if (SKB_DMA_REALIGN) ++ skb_reserve(skb, SKB_DMA_REALIGN); ++ skb_reserve(skb, NET_IP_ALIGN); ++ desc->sdp = dma_map_single(NULL, skb->data, ++ new_mtu, DMA_FROM_DEVICE); ++ if (dma_mapping_error(NULL, desc->sdp)) { ++ dev_kfree_skb(skb); ++ skb = NULL; ++ } ++ } ++ ++ /* put the new buffer on RX-free queue */ ++ rx_ring->buff_tab[i] = skb; ++ ++ if (i == RX_DESCS - 1) ++ desc->config0 = END_OF_RING | FIRST_SEGMENT | ++ LAST_SEGMENT | new_mtu; ++ else ++ desc->config0 = FIRST_SEGMENT | ++ LAST_SEGMENT | new_mtu; ++ } ++ } ++ ++ /* Re-ENABLE DMA */ ++ temp = __raw_readl(&sw->regs->dma_auto_poll_cfg); ++ temp &= ~(TS_SUSPEND | FS_SUSPEND); ++ __raw_writel(temp, &sw->regs->dma_auto_poll_cfg); ++ ++ __raw_writel((TS_POLL_EN | FS_POLL_EN), &sw->regs->dma_auto_poll_cfg); ++ ++ enable_irq(IRQ_CNS3XXX_SW_R0RXC); ++ ++ return 0; ++} ++ ++static const struct net_device_ops cns3xxx_netdev_ops = { ++ .ndo_open = eth_open, ++ .ndo_stop = eth_close, ++ .ndo_start_xmit = eth_xmit, ++ .ndo_set_rx_mode = eth_rx_mode, ++ .ndo_do_ioctl = eth_ioctl, ++ .ndo_change_mtu = cns3xxx_change_mtu, ++ .ndo_set_mac_address = eth_set_mac, ++ .ndo_validate_addr = eth_validate_addr, ++}; ++ ++static int __devinit eth_init_one(struct platform_device *pdev) ++{ ++ int i; ++ struct port *port; ++ struct sw *sw; ++ struct net_device *dev; ++ struct cns3xxx_plat_info *plat = pdev->dev.platform_data; ++ u32 regs_phys; ++ char phy_id[MII_BUS_ID_SIZE + 3]; ++ int err; ++ u32 temp; ++ ++ spin_lock_init(&tx_lock); ++ spin_lock_init(&stat_lock); ++ ++ if (!(napi_dev = alloc_etherdev(sizeof(struct sw)))) ++ return -ENOMEM; ++ strcpy(napi_dev->name, "switch%d"); ++ ++ SET_NETDEV_DEV(napi_dev, &pdev->dev); ++ sw = netdev_priv(napi_dev); ++ memset(sw, 0, sizeof(struct sw)); ++ sw->regs = (struct switch_regs __iomem *)CNS3XXX_SWITCH_BASE_VIRT; ++ regs_phys = CNS3XXX_SWITCH_BASE; ++ sw->mem_res = request_mem_region(regs_phys, REGS_SIZE, napi_dev->name); ++ if (!sw->mem_res) { ++ err = -EBUSY; ++ goto err_free; ++ } ++ ++ sw->mtu = 1536 + SKB_DMA_REALIGN; ++ ++ for (i = 0; i < 4; i++) { ++ temp = __raw_readl(&sw->regs->mac_cfg[i]); ++ temp |= (PORT_DISABLE) | 0x80000000; ++ __raw_writel(temp, &sw->regs->mac_cfg[i]); ++ } ++ ++ temp = PORT_DISABLE; ++ __raw_writel(temp, &sw->regs->mac_cfg[2]); ++ ++ temp = __raw_readl(&sw->regs->vlan_cfg); ++ temp |= NIC_MODE | VLAN_UNAWARE; ++ __raw_writel(temp, &sw->regs->vlan_cfg); ++ ++ __raw_writel(UNKNOWN_VLAN_TO_CPU | ACCEPT_CRC_PACKET | ++ CRC_STRIPPING, &sw->regs->mac_glob_cfg); ++ ++ if (!(sw->rx_ring = kmalloc(sizeof(struct _rx_ring), GFP_KERNEL))) { ++ err = -ENOMEM; ++ goto err_free; ++ } ++ memset(sw->rx_ring, 0, sizeof(struct _rx_ring)); ++ ++ if (!(sw->tx_ring = kmalloc(sizeof(struct _tx_ring), GFP_KERNEL))) { ++ err = -ENOMEM; ++ goto err_free_rx; ++ } ++ memset(sw->tx_ring, 0, sizeof(struct _tx_ring)); ++ ++ if ((err = init_rings(sw)) != 0) { ++ destroy_rings(sw); ++ err = -ENOMEM; ++ goto err_free_rings; ++ } ++ platform_set_drvdata(pdev, napi_dev); ++ ++ netif_napi_add(napi_dev, &sw->napi, eth_poll, NAPI_WEIGHT); ++ ++ for (i = 0; i < 3; i++) { ++ if (!(plat->ports & (1 << i))) { ++ continue; ++ } ++ ++ if (!(dev = alloc_etherdev(sizeof(struct port)))) { ++ goto free_ports; ++ } ++ ++ //SET_NETDEV_DEV(dev, &pdev->dev); ++ port = netdev_priv(dev); ++ port->netdev = dev; ++ if (i == 2) ++ port->id = 3; ++ else ++ port->id = i; ++ port->sw = sw; ++ port->mtu = sw->mtu; ++ ++ temp = __raw_readl(&sw->regs->mac_cfg[port->id]); ++ temp |= (PORT_DISABLE); ++ __raw_writel(temp, &sw->regs->mac_cfg[port->id]); ++ ++ dev->netdev_ops = &cns3xxx_netdev_ops; ++ dev->ethtool_ops = &cns3xxx_ethtool_ops; ++ dev->tx_queue_len = 1000; ++ dev->features = NETIF_F_HW_CSUM; ++ ++ dev->vlan_features = NETIF_F_HW_CSUM; ++ ++ switch_port_tab[i] = port; ++ memcpy(dev->dev_addr, &plat->hwaddr[i], ETH_ALEN); ++ ++ snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy[i]); ++ port->phydev = phy_connect(dev, phy_id, &cns3xxx_adjust_link, 0, ++ PHY_INTERFACE_MODE_RGMII); ++ if ((err = IS_ERR(port->phydev))) { ++ switch_port_tab[i] = 0; ++ free_netdev(dev); ++ goto free_ports; ++ } ++ ++ port->phydev->irq = PHY_POLL; ++ ++ if ((err = register_netdev(dev))) { ++ phy_disconnect(port->phydev); ++ switch_port_tab[i] = 0; ++ free_netdev(dev); ++ goto free_ports; ++ } ++ ++ printk(KERN_INFO "%s: RGMII PHY %i on cns3xxx Switch\n", dev->name, plat->phy[i]); ++ netif_carrier_off(dev); ++ dev = 0; ++ } ++ ++ return 0; ++ ++free_ports: ++ err = -ENOMEM; ++ for (--i; i >= 0; i--) { ++ if (switch_port_tab[i]) { ++ port = switch_port_tab[i]; ++ dev = port->netdev; ++ unregister_netdev(dev); ++ phy_disconnect(port->phydev); ++ switch_port_tab[i] = 0; ++ free_netdev(dev); ++ } ++ } ++err_free_rings: ++ kfree(sw->tx_ring); ++err_free_rx: ++ kfree(sw->rx_ring); ++err_free: ++ free_netdev(napi_dev); ++ return err; ++} ++ ++static int __devexit eth_remove_one(struct platform_device *pdev) ++{ ++ struct net_device *dev = platform_get_drvdata(pdev); ++ struct sw *sw = netdev_priv(dev); ++ int i; ++ destroy_rings(sw); ++ ++ for (i = 2; i >= 0; i--) { ++ if (switch_port_tab[i]) { ++ struct port *port = switch_port_tab[i]; ++ struct net_device *dev = port->netdev; ++ unregister_netdev(dev); ++ phy_disconnect(port->phydev); ++ switch_port_tab[i] = 0; ++ free_netdev(dev); ++ } ++ } ++ ++ release_resource(sw->mem_res); ++ free_netdev(napi_dev); ++ return 0; ++} ++ ++static struct platform_driver cns3xxx_eth_driver = { ++ .driver.name = DRV_NAME, ++ .probe = eth_init_one, ++ .remove = eth_remove_one, ++}; ++ ++static int __init eth_init_module(void) ++{ ++ int err; ++ if ((err = cns3xxx_mdio_register())) ++ return err; ++ return platform_driver_register(&cns3xxx_eth_driver); ++} ++ ++static void __exit eth_cleanup_module(void) ++{ ++ platform_driver_unregister(&cns3xxx_eth_driver); ++ cns3xxx_mdio_remove(); ++} ++ ++module_init(eth_init_module); ++module_exit(eth_cleanup_module); ++ ++MODULE_AUTHOR("Chris Lang"); ++MODULE_DESCRIPTION("Cavium CNS3xxx Ethernet driver"); ++MODULE_LICENSE("GPL v2"); ++MODULE_ALIAS("platform:cns3xxx_eth"); +--- /dev/null ++++ b/arch/arm/mach-cns3xxx/include/mach/platform.h +@@ -0,0 +1,26 @@ ++/* ++ * arch/arm/mach-cns3xxx/include/mach/platform.h ++ * ++ * Copyright 2011 Gateworks Corporation ++ * Chris Lang <clang@gateworks.com ++ * ++ * This file is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License, Version 2, as ++ * published by the Free Software Foundation. ++ * ++ */ ++ ++#ifndef __ASM_ARCH_PLATFORM_H ++#define __ASM_ARCH_PLATFORM_H ++ ++#ifndef __ASSEMBLY__ ++ ++/* Information about built-in Ethernet MAC interfaces */ ++struct cns3xxx_plat_info { ++ u8 ports; /* Bitmap of enabled Ports */ ++ u8 hwaddr[4][6]; ++ u32 phy[3]; ++}; ++ ++#endif /* __ASM_ARCH_PLATFORM_H */ ++#endif +--- a/drivers/net/ethernet/Kconfig ++++ b/drivers/net/ethernet/Kconfig +@@ -32,6 +32,7 @@ source "drivers/net/ethernet/calxeda/Kco + source "drivers/net/ethernet/chelsio/Kconfig" + source "drivers/net/ethernet/cirrus/Kconfig" + source "drivers/net/ethernet/cisco/Kconfig" ++source "drivers/net/ethernet/cavium/Kconfig" + source "drivers/net/ethernet/davicom/Kconfig" + + config DNET +--- a/drivers/net/ethernet/Makefile ++++ b/drivers/net/ethernet/Makefile +@@ -15,6 +15,7 @@ obj-$(CONFIG_NET_BFIN) += adi/ + obj-$(CONFIG_NET_VENDOR_BROADCOM) += broadcom/ + obj-$(CONFIG_NET_VENDOR_BROCADE) += brocade/ + obj-$(CONFIG_NET_CALXEDA_XGMAC) += calxeda/ ++obj-$(CONFIG_NET_VENDOR_CAVIUM) += cavium/ + obj-$(CONFIG_NET_VENDOR_CHELSIO) += chelsio/ + obj-$(CONFIG_NET_VENDOR_CIRRUS) += cirrus/ + obj-$(CONFIG_NET_VENDOR_CISCO) += cisco/ +--- /dev/null ++++ b/drivers/net/ethernet/cavium/Kconfig +@@ -0,0 +1,24 @@ ++config NET_VENDOR_CAVIUM ++ bool "Cavium devices" ++ default y ++ depends on ARCH_CNS3XXX ++ ---help--- ++ If you have a network (Ethernet) chipset belonging to this class, ++ say Y. ++ ++ Note that the answer to this question does not directly affect ++ the kernel: saying N will just case the configurator to skip all ++ the questions regarding AMD chipsets. If you say Y, you will be asked ++ for your specific chipset/driver in the following questions. ++ ++if NET_VENDOR_CAVIUM ++ ++config CNS3XXX_ETH ++ tristate "Cavium CNS3xxx Ethernet support" ++ depends on ARCH_CNS3XXX ++ select PHYLIB ++ help ++ Say Y here if you want to use built-in Ethernet ports ++ on CNS3XXX processor. ++ ++endif +--- /dev/null ++++ b/drivers/net/ethernet/cavium/Makefile +@@ -0,0 +1,5 @@ ++# ++# Makefile for the Cavium ethernet device drivers. ++# ++ ++obj-$(CNS3XXX_ETH) += cns3xxx_eth.o diff --git a/target/linux/cns3xxx/patches-3.3/052-cns3xxx_spi.patch b/target/linux/cns3xxx/patches-3.3/052-cns3xxx_spi.patch new file mode 100644 index 0000000..2818b49 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/052-cns3xxx_spi.patch @@ -0,0 +1,509 @@ +--- a/drivers/spi/Kconfig ++++ b/drivers/spi/Kconfig +@@ -117,6 +117,13 @@ config SPI_BUTTERFLY + inexpensive battery powered microcontroller evaluation board. + This same cable can be used to flash new firmware. + ++config SPI_CNS3XXX ++ tristate "CNS3XXX SPI controller" ++ depends on ARCH_CNS3XXX && SPI_MASTER ++ select SPI_BITBANG ++ help ++ This enables using the CNS3XXX SPI controller in master mode. ++ + config SPI_COLDFIRE_QSPI + tristate "Freescale Coldfire QSPI controller" + depends on (M520x || M523x || M5249 || M527x || M528x || M532x) +--- a/drivers/spi/Makefile ++++ b/drivers/spi/Makefile +@@ -18,6 +18,7 @@ obj-$(CONFIG_SPI_BFIN) += spi-bfin5xx. + obj-$(CONFIG_SPI_BFIN_SPORT) += spi-bfin-sport.o + obj-$(CONFIG_SPI_BITBANG) += spi-bitbang.o + obj-$(CONFIG_SPI_BUTTERFLY) += spi-butterfly.o ++obj-$(CONFIG_SPI_CNS3XXX) += spi_cns3xxx.o + obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o + obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o + obj-$(CONFIG_SPI_DESIGNWARE) += spi-dw.o +--- /dev/null ++++ b/drivers/spi/spi_cns3xxx.c +@@ -0,0 +1,449 @@ ++/******************************************************************************* ++ * ++ * CNS3XXX SPI controller driver (master mode only) ++ * ++ * Copyright (c) 2008 Cavium Networks ++ * Copyright 2011 Gateworks Corporation ++ * Chris Lang <clang@gateworks.com> ++ * ++ * This file is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License, Version 2, as ++ * published by the Free Software Foundation. ++ * ++ * This file is distributed in the hope that it will be useful, ++ * but AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or ++ * NONINFRINGEMENT. See the GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this file; if not, write to the Free Software ++ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA or ++ * visit http://www.gnu.org/licenses/. ++ * ++ * This file may also be available under a different license from Cavium. ++ * Contact Cavium Networks for more information ++ * ++ ******************************************************************************/ ++ ++#include <linux/init.h> ++#include <linux/spinlock.h> ++#include <linux/workqueue.h> ++#include <linux/interrupt.h> ++#include <linux/delay.h> ++#include <linux/errno.h> ++#include <linux/err.h> ++#include <linux/clk.h> ++#include <linux/platform_device.h> ++ ++#include <linux/spi/spi.h> ++#include <linux/spi/spi_bitbang.h> ++#include <linux/mtd/partitions.h> ++#include <linux/dma-mapping.h> ++#include <linux/slab.h> ++ ++#include <asm/io.h> ++#include <asm/memory.h> ++#include <asm/dma.h> ++#include <asm/delay.h> ++#include <mach/cns3xxx.h> ++#include <linux/module.h> ++#include <mach/pm.h> ++ ++/* ++ * define access macros ++ */ ++#define SPI_MEM_MAP_VALUE(reg_offset) (*((u32 volatile *)(CNS3XXX_SSP_BASE_VIRT + reg_offset))) ++ ++#define SPI_CONFIGURATION_REG SPI_MEM_MAP_VALUE(0x40) ++#define SPI_SERVICE_STATUS_REG SPI_MEM_MAP_VALUE(0x44) ++#define SPI_BIT_RATE_CONTROL_REG SPI_MEM_MAP_VALUE(0x48) ++#define SPI_TRANSMIT_CONTROL_REG SPI_MEM_MAP_VALUE(0x4C) ++#define SPI_TRANSMIT_BUFFER_REG SPI_MEM_MAP_VALUE(0x50) ++#define SPI_RECEIVE_CONTROL_REG SPI_MEM_MAP_VALUE(0x54) ++#define SPI_RECEIVE_BUFFER_REG SPI_MEM_MAP_VALUE(0x58) ++#define SPI_FIFO_TRANSMIT_CONFIG_REG SPI_MEM_MAP_VALUE(0x5C) ++#define SPI_FIFO_TRANSMIT_CONTROL_REG SPI_MEM_MAP_VALUE(0x60) ++#define SPI_FIFO_RECEIVE_CONFIG_REG SPI_MEM_MAP_VALUE(0x64) ++#define SPI_INTERRUPT_STATUS_REG SPI_MEM_MAP_VALUE(0x68) ++#define SPI_INTERRUPT_ENABLE_REG SPI_MEM_MAP_VALUE(0x6C) ++ ++#define SPI_TRANSMIT_BUFFER_REG_ADDR (CNS3XXX_SSP_BASE +0x50) ++#define SPI_RECEIVE_BUFFER_REG_ADDR (CNS3XXX_SSP_BASE +0x58) ++ ++/* Structure for SPI controller of CNS3XXX SOCs */ ++struct cns3xxx_spi { ++ /* bitbang has to be first */ ++ struct spi_bitbang bitbang; ++ struct completion done; ++ wait_queue_head_t wait; ++ ++ int len; ++ int count; ++ int last_in_message_list; ++ ++ /* data buffers */ ++ const unsigned char *tx; ++ unsigned char *rx; ++ ++ struct spi_master *master; ++ struct platform_device *pdev; ++ struct device *dev; ++}; ++ ++static inline u8 cns3xxx_spi_bus_idle(void) ++{ ++ return ((SPI_SERVICE_STATUS_REG & 0x1) ? 0 : 1); ++} ++ ++static inline u8 cns3xxx_spi_tx_buffer_empty(void) ++{ ++ return ((SPI_INTERRUPT_STATUS_REG & (0x1 << 3)) ? 1 : 0); ++} ++ ++static inline u8 cns3xxx_spi_rx_buffer_full(void) ++{ ++ return ((SPI_INTERRUPT_STATUS_REG & (0x1 << 2)) ? 1 : 0); ++} ++ ++u8 cns3xxx_spi_tx_rx(u8 tx_channel, u8 tx_eof, u32 tx_data, ++ u32 * rx_data) ++{ ++ u8 rx_channel; ++ u8 rx_eof; ++ ++ while (!cns3xxx_spi_bus_idle()) ; // do nothing ++ ++ while (!cns3xxx_spi_tx_buffer_empty()) ; // do nothing ++ ++ SPI_TRANSMIT_CONTROL_REG &= ~(0x7); ++ SPI_TRANSMIT_CONTROL_REG |= (tx_channel & 0x3) | ((tx_eof & 0x1) << 2); ++ ++ SPI_TRANSMIT_BUFFER_REG = tx_data; ++ ++ while (!cns3xxx_spi_rx_buffer_full()) ; // do nothing ++ ++ rx_channel = SPI_RECEIVE_CONTROL_REG & 0x3; ++ rx_eof = (SPI_RECEIVE_CONTROL_REG & (0x1 << 2)) ? 1 : 0; ++ ++ *rx_data = SPI_RECEIVE_BUFFER_REG; ++ ++ if ((tx_channel != rx_channel) || (tx_eof != rx_eof)) { ++ return 0; ++ } else { ++ return 1; ++ } ++} ++ ++u8 cns3xxx_spi_tx(u8 tx_channel, u8 tx_eof, u32 tx_data) ++{ ++ ++ while (!cns3xxx_spi_bus_idle()) ; // do nothing ++ ++ while (!cns3xxx_spi_tx_buffer_empty()) ; // do nothing ++ ++ SPI_TRANSMIT_CONTROL_REG &= ~(0x7); ++ SPI_TRANSMIT_CONTROL_REG |= (tx_channel & 0x3) | ((tx_eof & 0x1) << 2); ++ ++ SPI_TRANSMIT_BUFFER_REG = tx_data; ++ ++ return 1; ++} ++ ++static inline struct cns3xxx_spi *to_hw(struct spi_device *sdev) ++{ ++ return spi_master_get_devdata(sdev->master); ++} ++ ++static int cns3xxx_spi_setup_transfer(struct spi_device *spi, ++ struct spi_transfer *t) ++{ ++ return 0; ++} ++ ++static void cns3xxx_spi_chipselect(struct spi_device *spi, int value) ++{ ++ unsigned int spi_config; ++ ++ switch (value) { ++ case BITBANG_CS_INACTIVE: ++ break; ++ ++ case BITBANG_CS_ACTIVE: ++ spi_config = SPI_CONFIGURATION_REG; ++ ++ if (spi->mode & SPI_CPHA) ++ spi_config |= (0x1 << 13); ++ else ++ spi_config &= ~(0x1 << 13); ++ ++ if (spi->mode & SPI_CPOL) ++ spi_config |= (0x1 << 14); ++ else ++ spi_config &= ~(0x1 << 14); ++ ++ /* write new configration */ ++ SPI_CONFIGURATION_REG = spi_config; ++ ++ SPI_TRANSMIT_CONTROL_REG &= ~(0x7); ++ SPI_TRANSMIT_CONTROL_REG |= (spi->chip_select & 0x3); ++ ++ break; ++ } ++} ++ ++static int cns3xxx_spi_setup(struct spi_device *spi) ++{ ++ if (!spi->bits_per_word) ++ spi->bits_per_word = 8; ++ ++ return 0; ++} ++ ++static int cns3xxx_spi_txrx(struct spi_device *spi, struct spi_transfer *t) ++{ ++ struct cns3xxx_spi *hw = to_hw(spi); ++ ++ dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n", t->tx_buf, t->rx_buf, ++ t->len); ++ ++ hw->tx = t->tx_buf; ++ hw->rx = t->rx_buf; ++ hw->len = t->len; ++ hw->count = 0; ++ hw->last_in_message_list = t->last_in_message_list; ++ ++ init_completion(&hw->done); ++ ++ if (hw->tx) { ++ int i; ++ u32 rx_data; ++ for (i = 0; i < (hw->len - 1); i++) { ++ dev_dbg(&spi->dev, ++ "[SPI_CNS3XXX_DEBUG] hw->tx[%02d]: 0x%02x\n", i, ++ hw->tx[i]); ++ cns3xxx_spi_tx_rx(spi->chip_select, 0, hw->tx[i], ++ &rx_data); ++ if (hw->rx) { ++ hw->rx[i] = rx_data; ++ dev_dbg(&spi->dev, ++ "[SPI_CNS3XXX_DEBUG] hw->rx[%02d]: 0x%02x\n", ++ i, hw->rx[i]); ++ } ++ } ++ ++ if (t->last_in_message_list) { ++ cns3xxx_spi_tx_rx(spi->chip_select, 1, hw->tx[i], ++ &rx_data); ++ if (hw->rx) { ++ hw->rx[i] = rx_data; ++ dev_dbg(&spi->dev, ++ "[SPI_CNS3XXX_DEBUG] hw->rx[%02d]: 0x%02x\n", ++ i, hw->rx[i]); ++ } ++ } else { ++ cns3xxx_spi_tx_rx(spi->chip_select, 0, hw->tx[i], ++ &rx_data); ++ } ++ goto done; ++ } ++ ++ if (hw->rx) { ++ int i; ++ u32 rx_data; ++ for (i = 0; i < (hw->len - 1); i++) { ++ cns3xxx_spi_tx_rx(spi->chip_select, 0, 0xff, &rx_data); ++ hw->rx[i] = rx_data; ++ dev_dbg(&spi->dev, ++ "[SPI_CNS3XXX_DEBUG] hw->rx[%02d]: 0x%02x\n", i, ++ hw->rx[i]); ++ } ++ ++ if (t->last_in_message_list) { ++ cns3xxx_spi_tx_rx(spi->chip_select, 1, 0xff, &rx_data); ++ } else { ++ cns3xxx_spi_tx_rx(spi->chip_select, 0, 0xff, &rx_data); ++ } ++ hw->rx[i] = rx_data; ++ dev_dbg(&spi->dev, "[SPI_CNS3XXX_DEBUG] hw->rx[%02d]: 0x%02x\n", ++ i, hw->rx[i]); ++ } ++done: ++ return hw->len; ++} ++ ++static void __init cns3xxx_spi_initial(void) ++{ ++ u32 __iomem *gpiob = __io(CNS3XXX_MISC_BASE_VIRT + 0x0018); ++ u32 gpiob_pins = __raw_readl(gpiob); ++ ++ /* MMC/SD pins share with GPIOA */ ++ gpiob_pins |= 0xf80; ++ __raw_writel(gpiob_pins, gpiob); ++ ++ /* share pin config. */ ++ //PM_PLL_HM_PD_CTRL_REG &= ~(0x1 << 5); ++ //HAL_MISC_ENABLE_SPI_PINS(); ++ cns3xxx_pwr_clk_en(CNS3XXX_PWR_CLK_EN(SPI_PCM_I2C)); ++ cns3xxx_pwr_soft_rst(CNS3XXX_PWR_SOFTWARE_RST(SPI_PCM_I2C)); ++ ++ SPI_CONFIGURATION_REG = (((0x0 & 0x3) << 0) | /* 8bits shift length */ ++ (0x0 << 9) | /* SPI mode */ ++ (0x0 << 10) | /* disable FIFO */ ++ (0x1 << 11) | /* SPI master mode */ ++ (0x0 << 12) | /* disable SPI loopback mode */ ++ (0x1 << 13) | /* clock phase */ ++ (0x1 << 14) | /* clock polarity */ ++ (0x0 << 24) | /* disable - SPI data swap */ ++ (0x1 << 29) | /* enable - 2IO Read mode */ ++ (0x0 << 30) | /* disable - SPI high speed read for system boot up */ ++ (0x0 << 31)); /* disable - SPI */ ++ ++ /* Set SPI bit rate PCLK/2 */ ++ SPI_BIT_RATE_CONTROL_REG = 0x1; ++ ++ /* Set SPI Tx channel 0 */ ++ SPI_TRANSMIT_CONTROL_REG = 0x0; ++ ++ /* Set Tx FIFO Threshold, Tx FIFO has 2 words */ ++ SPI_FIFO_TRANSMIT_CONFIG_REG &= ~(0x03 << 4); ++ SPI_FIFO_TRANSMIT_CONFIG_REG |= ((0x0 & 0x03) << 4); ++ ++ /* Set Rx FIFO Threshold, Rx FIFO has 2 words */ ++ SPI_FIFO_RECEIVE_CONFIG_REG &= ~(0x03 << 4); ++ SPI_FIFO_RECEIVE_CONFIG_REG |= ((0x0 & 0x03) << 4); ++ ++ /* Disable all interrupt */ ++ SPI_INTERRUPT_ENABLE_REG = 0x0; ++ ++ /* Clear spurious interrupt sources */ ++ SPI_INTERRUPT_STATUS_REG = (0x0F << 4); ++ ++ /* Enable SPI */ ++ SPI_CONFIGURATION_REG |= (0x1 << 31); ++ ++ return; ++} ++ ++static int __devinit cns3xxx_spi_probe(struct platform_device *pdev) ++{ ++ struct spi_master *master; ++ struct cns3xxx_spi *hw; ++ int err = 0; ++ ++ printk("%s: setup CNS3XXX SPI Controller\n", __FUNCTION__); ++ ++ /* Allocate master with space for cns3xxx_spi */ ++ master = spi_alloc_master(&pdev->dev, sizeof(struct cns3xxx_spi)); ++ if (master == NULL) { ++ dev_err(&pdev->dev, "No memory for spi_master\n"); ++ err = -ENOMEM; ++ goto err_nomem; ++ } ++ ++ hw = spi_master_get_devdata(master); ++ memset(hw, 0, sizeof(struct cns3xxx_spi)); ++ ++ hw->master = spi_master_get(master); ++ hw->dev = &pdev->dev; ++ ++ platform_set_drvdata(pdev, hw); ++ init_completion(&hw->done); ++ ++ /* setup the master state. */ ++ ++ master->num_chipselect = 4; ++ master->bus_num = 1; ++ ++ /* setup the state for the bitbang driver */ ++ ++ hw->bitbang.master = hw->master; ++ hw->bitbang.setup_transfer = cns3xxx_spi_setup_transfer; ++ hw->bitbang.chipselect = cns3xxx_spi_chipselect; ++ hw->bitbang.txrx_bufs = cns3xxx_spi_txrx; ++ hw->bitbang.master->setup = cns3xxx_spi_setup; ++ ++ dev_dbg(hw->dev, "bitbang at %p\n", &hw->bitbang); ++ ++ /* SPI controller initializations */ ++ cns3xxx_spi_initial(); ++ ++ /* register SPI controller */ ++ ++ err = spi_bitbang_start(&hw->bitbang); ++ if (err) { ++ dev_err(&pdev->dev, "Failed to register SPI master\n"); ++ goto err_register; ++ } ++ ++ return 0; ++ ++err_register: ++ spi_master_put(hw->master);; ++ ++err_nomem: ++ return err; ++} ++ ++static int __devexit cns3xxx_spi_remove(struct platform_device *dev) ++{ ++ struct cns3xxx_spi *hw = platform_get_drvdata(dev); ++ ++ platform_set_drvdata(dev, NULL); ++ ++ spi_unregister_master(hw->master); ++ ++ spi_master_put(hw->master); ++ return 0; ++} ++ ++#ifdef CONFIG_PM ++ ++static int cns3xxx_spi_suspend(struct platform_device *pdev, pm_message_t msg) ++{ ++ struct cns3xxx_spi *hw = platform_get_drvdata(pdev); ++ ++ return 0; ++} ++ ++static int cns3xxx_spi_resume(struct platform_device *pdev) ++{ ++ struct cns3xxx_spi *hw = platform_get_drvdata(pdev); ++ ++ return 0; ++} ++ ++#else ++#define cns3xxx_spi_suspend NULL ++#define cns3xxx_spi_resume NULL ++#endif ++ ++static struct platform_driver cns3xxx_spi_driver = { ++ .probe = cns3xxx_spi_probe, ++ .remove = __devexit_p(cns3xxx_spi_remove), ++ .suspend = cns3xxx_spi_suspend, ++ .resume = cns3xxx_spi_resume, ++ .driver = { ++ .name = "cns3xxx_spi", ++ .owner = THIS_MODULE, ++ }, ++}; ++ ++static int __init cns3xxx_spi_init(void) ++{ ++ return platform_driver_register(&cns3xxx_spi_driver); ++} ++ ++static void __exit cns3xxx_spi_exit(void) ++{ ++ platform_driver_unregister(&cns3xxx_spi_driver); ++} ++ ++module_init(cns3xxx_spi_init); ++module_exit(cns3xxx_spi_exit); ++ ++MODULE_AUTHOR("Cavium Networks"); ++MODULE_DESCRIPTION("CNS3XXX SPI Controller Driver"); ++MODULE_LICENSE("GPL"); ++MODULE_ALIAS("platform:cns3xxx_spi"); ++ ++EXPORT_SYMBOL_GPL(cns3xxx_spi_tx_rx); +--- a/include/linux/spi/spi.h ++++ b/include/linux/spi/spi.h +@@ -457,6 +457,13 @@ struct spi_transfer { + u32 speed_hz; + + struct list_head transfer_list; ++ ++#ifdef CONFIG_ARCH_CNS3XXX ++ unsigned last_in_message_list; ++#ifdef CONFIG_SPI_CNS3XXX_2IOREAD ++ u8 dio_read; ++#endif ++#endif + }; + + /** +--- a/drivers/spi/spi-bitbang.c ++++ b/drivers/spi/spi-bitbang.c +@@ -330,6 +330,12 @@ static void bitbang_work(struct work_str + */ + if (!m->is_dma_mapped) + t->rx_dma = t->tx_dma = 0; ++ ++ if (t->transfer_list.next == &m->transfers) ++ t->last_in_message_list = 1; ++ else ++ t->last_in_message_list = 0; ++ + status = bitbang->txrx_bufs(spi, t); + } + if (status > 0) diff --git a/target/linux/cns3xxx/patches-3.3/054-cns3xxx_pcie_clock.patch b/target/linux/cns3xxx/patches-3.3/054-cns3xxx_pcie_clock.patch new file mode 100644 index 0000000..0c6c525 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/054-cns3xxx_pcie_clock.patch @@ -0,0 +1,11 @@ +--- a/arch/arm/mach-cns3xxx/pcie.c ++++ b/arch/arm/mach-cns3xxx/pcie.c +@@ -378,8 +378,6 @@ static int __init cns3xxx_pcie_init(void + for (i = 0; i < ARRAY_SIZE(cns3xxx_pcie); i++) { + iotable_init(cns3xxx_pcie[i].cfg_bases, + ARRAY_SIZE(cns3xxx_pcie[i].cfg_bases)); +- cns3xxx_pwr_clk_en(0x1 << PM_CLK_GATE_REG_OFFSET_PCIE(i)); +- cns3xxx_pwr_soft_rst(0x1 << PM_SOFT_RST_REG_OFFST_PCIE(i)); + cns3xxx_pcie_check_link(&cns3xxx_pcie[i]); + cns3xxx_pcie_hw_init(&cns3xxx_pcie[i]); + pci_common_init(&cns3xxx_pcie[i].hw_pci); diff --git a/target/linux/cns3xxx/patches-3.3/100-laguna_support.patch b/target/linux/cns3xxx/patches-3.3/100-laguna_support.patch new file mode 100644 index 0000000..0137ae0 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/100-laguna_support.patch @@ -0,0 +1,992 @@ +--- /dev/null ++++ b/arch/arm/mach-cns3xxx/laguna.c +@@ -0,0 +1,761 @@ ++/* ++ * Gateworks Corporation Laguna Platform ++ * ++ * Copyright 2000 Deep Blue Solutions Ltd ++ * Copyright 2008 ARM Limited ++ * Copyright 2008 Cavium Networks ++ * Scott Shu ++ * Copyright 2010 MontaVista Software, LLC. ++ * Anton Vorontsov <avorontsov@mvista.com> ++ * Copyright 2011 Gateworks Corporation ++ * Chris Lang <clang@gateworks.com> ++ * ++ * This file is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License, Version 2, as ++ * published by the Free Software Foundation. ++ */ ++ ++#include <linux/init.h> ++#include <linux/kernel.h> ++#include <linux/compiler.h> ++#include <linux/io.h> ++#include <linux/dma-mapping.h> ++#include <linux/serial_core.h> ++#include <linux/serial_8250.h> ++#include <linux/platform_device.h> ++#include <linux/mtd/mtd.h> ++#include <linux/mtd/physmap.h> ++#include <linux/mtd/partitions.h> ++#include <linux/leds.h> ++#include <linux/i2c.h> ++#include <linux/i2c/at24.h> ++#include <linux/i2c/pca953x.h> ++#include <linux/spi/spi.h> ++#include <linux/spi/flash.h> ++#include <linux/if_ether.h> ++#include <asm/setup.h> ++#include <asm/mach-types.h> ++#include <asm/mach/arch.h> ++#include <asm/mach/map.h> ++#include <asm/mach/time.h> ++#include <mach/cns3xxx.h> ++#include <mach/irqs.h> ++#include <mach/platform.h> ++#include <mach/pm.h> ++#include "core.h" ++#include "devices.h" ++ ++// Config 1 Bitmap ++#define ETH0_LOAD BIT(0) ++#define ETH1_LOAD BIT(1) ++#define ETH2_LOAD BIT(2) ++#define SATA0_LOAD BIT(3) ++#define SATA1_LOAD BIT(4) ++#define PCM_LOAD BIT(5) ++#define I2S_LOAD BIT(6) ++#define SPI0_LOAD BIT(7) ++#define SPI1_LOAD BIT(8) ++#define PCIE0_LOAD BIT(9) ++#define PCIE1_LOAD BIT(10) ++#define USB0_LOAD BIT(11) ++#define USB1_LOAD BIT(12) ++#define USB1_ROUTE BIT(13) ++#define SD_LOAD BIT(14) ++#define UART0_LOAD BIT(15) ++#define UART1_LOAD BIT(16) ++#define UART2_LOAD BIT(17) ++#define MPCI0_LOAD BIT(18) ++#define MPCI1_LOAD BIT(19) ++#define MPCI2_LOAD BIT(20) ++#define MPCI3_LOAD BIT(21) ++#define FP_BUT_LOAD BIT(22) ++#define FP_BUT_HEADER_LOAD BIT(23) ++#define FP_LED_LOAD BIT(24) ++#define FP_LED_HEADER_LOAD BIT(25) ++#define FP_TAMPER_LOAD BIT(26) ++#define HEADER_33V_LOAD BIT(27) ++#define SATA_POWER_LOAD BIT(28) ++#define FP_POWER_LOAD BIT(29) ++#define GPIO_HEADER_LOAD BIT(30) ++#define GSP_BAT_LOAD BIT(31) ++ ++// Config 2 Bitmap ++#define FAN_LOAD BIT(0) ++#define SPI_FLASH_LOAD BIT(1) ++#define NOR_FLASH_LOAD BIT(2) ++#define GPS_LOAD BIT(3) ++#define SUPPLY_5V_LOAD BIT(6) ++#define SUPPLY_33V_LOAD BIT(7) ++ ++struct laguna_board_info { ++ char model[16]; ++ u32 config_bitmap; ++ u32 config2_bitmap; ++ u8 nor_flash_size; ++ u8 spi_flash_size; ++}; ++ ++static struct laguna_board_info laguna_info; ++ ++/* ++ * NOR Flash ++ */ ++static struct mtd_partition laguna_nor_partitions[] = { ++ { ++ .name = "uboot", ++ .size = SZ_256K, ++ .offset = 0, ++ .mask_flags = MTD_WRITEABLE, ++ }, { ++ .name = "params", ++ .size = SZ_128K, ++ .offset = SZ_256K, ++ }, { ++ .name = "kernel", ++ .size = SZ_2M, ++ .offset = SZ_256K + SZ_128K, ++ }, { ++ .name = "rootfs", ++ .size = SZ_16M - SZ_256K - SZ_128K - SZ_2M, ++ .offset = SZ_256K + SZ_128K + SZ_2M, ++ }, ++}; ++ ++static struct physmap_flash_data laguna_nor_pdata = { ++ .width = 2, ++ .parts = laguna_nor_partitions, ++ .nr_parts = ARRAY_SIZE(laguna_nor_partitions), ++}; ++ ++static struct resource laguna_nor_res = { ++ .start = CNS3XXX_FLASH_BASE, ++ .end = CNS3XXX_FLASH_BASE + SZ_128M - 1, ++ .flags = IORESOURCE_MEM | IORESOURCE_MEM_32BIT, ++}; ++ ++static struct platform_device laguna_nor_pdev = { ++ .name = "physmap-flash", ++ .id = 0, ++ .resource = &laguna_nor_res, ++ .num_resources = 1, ++ .dev = { ++ .platform_data = &laguna_nor_pdata, ++ }, ++}; ++ ++/* ++ * SPI ++ */ ++static struct mtd_partition laguna_spi_partitions[] = { ++ { ++ .name = "uboot", ++ .size = SZ_256K, ++ .offset = 0, ++ .mask_flags = MTD_WRITEABLE, ++ }, { ++ .name = "params", ++ .size = SZ_256K, ++ .offset = SZ_256K, ++ }, { ++ .name = "kernel", ++ .size = SZ_1M + SZ_512K, ++ .offset = SZ_512K, ++ }, { ++ .name = "rootfs", ++ .size = SZ_16M - SZ_2M, ++ .offset = SZ_2M, ++ }, ++}; ++ ++static struct flash_platform_data laguna_spi_pdata = { ++ .parts = laguna_spi_partitions, ++ .nr_parts = ARRAY_SIZE(laguna_spi_partitions), ++}; ++ ++static struct spi_board_info __initdata laguna_spi_devices[] = { ++ { ++ .modalias = "m25p80", ++ .platform_data = &laguna_spi_pdata, ++ .max_speed_hz = 50000000, ++ .bus_num = 1, ++ .chip_select = 0, ++ }, ++}; ++ ++static struct platform_device laguna_spi_controller = { ++ .name = "cns3xxx_spi", ++}; ++ ++/* ++ * LED's ++ */ ++static struct gpio_led laguna_gpio_leds[] = { ++ { ++ .name = "user1", /* Green Led */ ++ .gpio = 115, ++ .active_low = 1, ++ },{ ++ .name = "user2", /* Red Led */ ++ .gpio = 114, ++ .active_low = 1, ++ },{ ++ .name = "pwr1", /* Green Led */ ++ .gpio = 116, ++ .active_low = 1, ++ },{ ++ .name = "pwr2", /* Yellow Led */ ++ .gpio = 117, ++ .active_low = 1, ++ },{ ++ .name = "txd1", /* Green Led */ ++ .gpio = 118, ++ .active_low = 1, ++ },{ ++ .name = "txd2", /* Yellow Led */ ++ .gpio = 119, ++ .active_low = 1, ++ },{ ++ .name = "rxd1", /* Green Led */ ++ .gpio = 120, ++ .active_low = 1, ++ },{ ++ .name = "rxd2", /* Yellow Led */ ++ .gpio = 121, ++ .active_low = 1, ++ },{ ++ .name = "ser1", /* Green Led */ ++ .gpio = 122, ++ .active_low = 1, ++ },{ ++ .name = "ser2", /* Yellow Led */ ++ .gpio = 123, ++ .active_low = 1, ++ },{ ++ .name = "enet1", /* Green Led */ ++ .gpio = 124, ++ .active_low = 1, ++ },{ ++ .name = "enet2", /* Yellow Led */ ++ .gpio = 125, ++ .active_low = 1, ++ },{ ++ .name = "sig1_1", /* Green Led */ ++ .gpio = 126, ++ .active_low = 1, ++ },{ ++ .name = "sig1_2", /* Yellow Led */ ++ .gpio = 127, ++ .active_low = 1, ++ },{ ++ .name = "sig2_1", /* Green Led */ ++ .gpio = 128, ++ .active_low = 1, ++ },{ ++ .name = "sig2_2", /* Yellow Led */ ++ .gpio = 129, ++ .active_low = 1, ++ },{ ++ .name = "sig3_1", /* Green Led */ ++ .gpio = 130, ++ .active_low = 1, ++ },{ ++ .name = "sig3_2", /* Yellow Led */ ++ .gpio = 131, ++ .active_low = 1, ++ },{ ++ .name = "net1", /*Green Led */ ++ .gpio = 109, ++ .active_low = 1, ++ },{ ++ .name = "net2", /* Red Led */ ++ .gpio = 110, ++ .active_low = 1, ++ },{ ++ .name = "mod1", /* Green Led */ ++ .gpio = 111, ++ .active_low = 1, ++ },{ ++ .name = "mod2", /* Red Led */ ++ .gpio = 112, ++ .active_low = 1, ++ }, ++}; ++ ++static struct gpio_led_platform_data laguna_gpio_leds_data = { ++ .num_leds = 22, ++ .leds = laguna_gpio_leds, ++}; ++ ++static struct platform_device laguna_gpio_leds_device = { ++ .name = "leds-gpio", ++ .id = -1, ++ .dev.platform_data = &laguna_gpio_leds_data, ++}; ++ ++/* ++ * Ethernet ++ */ ++static struct cns3xxx_plat_info laguna_net_data = { ++ .ports = 0, ++ .phy = { ++ 0, ++ 1, ++ 2, ++ }, ++}; ++ ++static struct platform_device laguna_net_device = { ++ .name = "cns3xxx_eth", ++ .id = 0, ++ .dev.platform_data = &laguna_net_data, ++}; ++ ++/* ++ * UART ++ */ ++static void __init laguna_early_serial_setup(void) ++{ ++#ifdef CONFIG_SERIAL_8250_CONSOLE ++ static struct uart_port laguna_serial_port = { ++ .membase = (void __iomem *)CNS3XXX_UART0_BASE_VIRT, ++ .mapbase = CNS3XXX_UART0_BASE, ++ .irq = IRQ_CNS3XXX_UART0, ++ .iotype = UPIO_MEM, ++ .flags = UPF_BOOT_AUTOCONF | UPF_FIXED_TYPE, ++ .regshift = 2, ++ .uartclk = 24000000, ++ .line = 0, ++ .type = PORT_16550A, ++ .fifosize = 16, ++ }; ++ ++ early_serial_setup(&laguna_serial_port); ++#endif ++} ++ ++static struct resource laguna_uart_resources[] = { ++ { ++ .start = CNS3XXX_UART0_BASE, ++ .end = CNS3XXX_UART0_BASE + SZ_4K - 1, ++ .flags = IORESOURCE_MEM ++ },{ ++ .start = CNS3XXX_UART2_BASE, ++ .end = CNS3XXX_UART2_BASE + SZ_4K - 1, ++ .flags = IORESOURCE_MEM ++ },{ ++ .start = CNS3XXX_UART2_BASE, ++ .end = CNS3XXX_UART2_BASE + SZ_4K - 1, ++ .flags = IORESOURCE_MEM ++ }, ++}; ++ ++static struct plat_serial8250_port laguna_uart_data[] = { ++ { ++ .membase = (char*) (CNS3XXX_UART0_BASE_VIRT), ++ .mapbase = (CNS3XXX_UART0_BASE), ++ .irq = IRQ_CNS3XXX_UART0, ++ .iotype = UPIO_MEM, ++ .flags = UPF_BOOT_AUTOCONF | UPF_FIXED_TYPE | UPF_NO_TXEN_TEST, ++ .regshift = 2, ++ .uartclk = 24000000, ++ .type = PORT_16550A, ++ },{ ++ .membase = (char*) (CNS3XXX_UART1_BASE_VIRT), ++ .mapbase = (CNS3XXX_UART1_BASE), ++ .irq = IRQ_CNS3XXX_UART1, ++ .iotype = UPIO_MEM, ++ .flags = UPF_BOOT_AUTOCONF | UPF_FIXED_TYPE | UPF_NO_TXEN_TEST, ++ .regshift = 2, ++ .uartclk = 24000000, ++ .type = PORT_16550A, ++ },{ ++ .membase = (char*) (CNS3XXX_UART2_BASE_VIRT), ++ .mapbase = (CNS3XXX_UART2_BASE), ++ .irq = IRQ_CNS3XXX_UART2, ++ .iotype = UPIO_MEM, ++ .flags = UPF_BOOT_AUTOCONF | UPF_FIXED_TYPE | UPF_NO_TXEN_TEST, ++ .regshift = 2, ++ .uartclk = 24000000, ++ .type = PORT_16550A, ++ }, ++}; ++ ++static struct platform_device laguna_uart = { ++ .name = "serial8250", ++ .id = PLAT8250_DEV_PLATFORM, ++ .dev.platform_data = laguna_uart_data, ++ .num_resources = 3, ++ .resource = laguna_uart_resources ++}; ++ ++/* ++ * USB ++ */ ++static struct resource cns3xxx_usb_ehci_resources[] = { ++ [0] = { ++ .start = CNS3XXX_USB_BASE, ++ .end = CNS3XXX_USB_BASE + SZ_16M - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .start = IRQ_CNS3XXX_USB_EHCI, ++ .flags = IORESOURCE_IRQ, ++ }, ++}; ++ ++static u64 cns3xxx_usb_ehci_dma_mask = DMA_BIT_MASK(32); ++ ++static struct platform_device cns3xxx_usb_ehci_device = { ++ .name = "cns3xxx-ehci", ++ .num_resources = ARRAY_SIZE(cns3xxx_usb_ehci_resources), ++ .resource = cns3xxx_usb_ehci_resources, ++ .dev = { ++ .dma_mask = &cns3xxx_usb_ehci_dma_mask, ++ .coherent_dma_mask = DMA_BIT_MASK(32), ++ }, ++}; ++ ++static struct resource cns3xxx_usb_ohci_resources[] = { ++ [0] = { ++ .start = CNS3XXX_USB_OHCI_BASE, ++ .end = CNS3XXX_USB_OHCI_BASE + SZ_16M - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .start = IRQ_CNS3XXX_USB_OHCI, ++ .flags = IORESOURCE_IRQ, ++ }, ++}; ++ ++static u64 cns3xxx_usb_ohci_dma_mask = DMA_BIT_MASK(32); ++ ++static struct platform_device cns3xxx_usb_ohci_device = { ++ .name = "cns3xxx-ohci", ++ .num_resources = ARRAY_SIZE(cns3xxx_usb_ohci_resources), ++ .resource = cns3xxx_usb_ohci_resources, ++ .dev = { ++ .dma_mask = &cns3xxx_usb_ohci_dma_mask, ++ .coherent_dma_mask = DMA_BIT_MASK(32), ++ }, ++}; ++ ++static struct resource cns3xxx_usb_otg_resources[] = { ++ [0] = { ++ .start = CNS3XXX_USBOTG_BASE, ++ .end = CNS3XXX_USBOTG_BASE + SZ_16M - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .start = IRQ_CNS3XXX_USB_OTG, ++ .flags = IORESOURCE_IRQ, ++ }, ++}; ++ ++static u64 cns3xxx_usb_otg_dma_mask = DMA_BIT_MASK(32); ++ ++static struct platform_device cns3xxx_usb_otg_device = { ++ .name = "dwc_otg", ++ .num_resources = ARRAY_SIZE(cns3xxx_usb_otg_resources), ++ .resource = cns3xxx_usb_otg_resources, ++ .dev = { ++ .dma_mask = &cns3xxx_usb_otg_dma_mask, ++ .coherent_dma_mask = DMA_BIT_MASK(32), ++ }, ++}; ++ ++/* ++ * I2C ++ */ ++static struct resource laguna_i2c_resource[] = { ++ { ++ .start = CNS3XXX_SSP_BASE + 0x20, ++ .end = 0x7100003f, ++ .flags = IORESOURCE_MEM, ++ },{ ++ .start = IRQ_CNS3XXX_I2C, ++ .flags = IORESOURCE_IRQ, ++ }, ++}; ++ ++static struct platform_device laguna_i2c_controller = { ++ .name = "cns3xxx-i2c", ++ .num_resources = 2, ++ .resource = laguna_i2c_resource, ++}; ++ ++static struct memory_accessor *at24_mem_acc; ++ ++static void at24_setup(struct memory_accessor *mem_acc, void *context) ++{ ++ char buf[8]; ++ ++ at24_mem_acc = mem_acc; ++ ++ /* Read MAC addresses */ ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x100, 6) == 6) ++ memcpy(&laguna_net_data.hwaddr[0], buf, ETH_ALEN); ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x106, 6) == 6) ++ memcpy(&laguna_net_data.hwaddr[1], buf, ETH_ALEN); ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x10C, 6) == 6) ++ memcpy(&laguna_net_data.hwaddr[2], buf, ETH_ALEN); ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x112, 6) == 6) ++ memcpy(&laguna_net_data.hwaddr[3], buf, ETH_ALEN); ++ ++ /* Read out Model Information */ ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x130, 16) == 16) ++ memcpy(&laguna_info.model, buf, 16); ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x140, 1) == 1) ++ memcpy(&laguna_info.nor_flash_size, buf, 1); ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x141, 1) == 1) ++ memcpy(&laguna_info.spi_flash_size, buf, 1); ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x142, 4) == 4) ++ memcpy(&laguna_info.config_bitmap, buf, 4); ++ if (at24_mem_acc->read(at24_mem_acc, buf, 0x146, 4) == 4) ++ memcpy(&laguna_info.config2_bitmap, buf, 4); ++}; ++ ++static struct at24_platform_data laguna_eeprom_info = { ++ .byte_len = 1024, ++ .page_size = 16, ++ .flags = AT24_FLAG_READONLY, ++ .setup = at24_setup, ++}; ++ ++static struct pca953x_platform_data laguna_pca_data = { ++ .gpio_base = 100, ++ .irq_base = -1, ++}; ++ ++static struct pca953x_platform_data laguna_pca2_data = { ++ .gpio_base = 116, ++ .irq_base = -1, ++}; ++ ++static struct i2c_board_info __initdata laguna_i2c_devices[] = { ++ { ++ I2C_BOARD_INFO("pca9555", 0x23), ++ .platform_data = &laguna_pca_data, ++ },{ ++ I2C_BOARD_INFO("pca9555", 0x27), ++ .platform_data = &laguna_pca2_data, ++ },{ ++ I2C_BOARD_INFO("gsp", 0x29), ++ },{ ++ I2C_BOARD_INFO ("24c08",0x50), ++ .platform_data = &laguna_eeprom_info, ++ },{ ++ I2C_BOARD_INFO("ds1672", 0x68), ++ }, ++}; ++ ++/* ++ * Watchdog ++ */ ++ ++static struct resource laguna_watchdog_resources[] = { ++ [0] = { ++ .start = CNS3XXX_TC11MP_TWD_BASE, ++ .end = CNS3XXX_TC11MP_TWD_BASE + SZ_4K - 1, ++ .flags = IORESOURCE_MEM, ++ }, ++ [1] = { ++ .start = IRQ_LOCALWDOG, ++ .end = IRQ_LOCALWDOG, ++ .flags = IORESOURCE_IRQ, ++ } ++}; ++ ++static struct platform_device laguna_watchdog = { ++ .name = "mpcore_wdt", ++ .id = -1, ++ .num_resources = ARRAY_SIZE(laguna_watchdog_resources), ++ .resource = laguna_watchdog_resources, ++}; ++ ++/* ++ * Initialization ++ */ ++ ++static void __init laguna_init(void) ++{ ++ cns3xxx_l2x0_init(); ++ ++ platform_device_register(&laguna_watchdog); ++ ++ platform_device_register(&laguna_i2c_controller); ++ ++ i2c_register_board_info(0, laguna_i2c_devices, ++ ARRAY_SIZE(laguna_i2c_devices)); ++ ++ pm_power_off = cns3xxx_power_off; ++} ++ ++static struct map_desc laguna_io_desc[] __initdata = { ++ { ++ .virtual = CNS3XXX_UART0_BASE_VIRT, ++ .pfn = __phys_to_pfn(CNS3XXX_UART0_BASE), ++ .length = SZ_4K, ++ .type = MT_DEVICE, ++ },{ ++ .virtual = CNS3XXX_UART1_BASE_VIRT, ++ .pfn = __phys_to_pfn(CNS3XXX_UART1_BASE), ++ .length = SZ_4K, ++ .type = MT_DEVICE, ++ },{ ++ .virtual = CNS3XXX_UART2_BASE_VIRT, ++ .pfn = __phys_to_pfn(CNS3XXX_UART2_BASE), ++ .length = SZ_4K, ++ .type = MT_DEVICE, ++ }, ++}; ++ ++static void __init laguna_map_io(void) ++{ ++ cns3xxx_map_io(); ++ iotable_init(laguna_io_desc, ARRAY_SIZE(laguna_io_desc)); ++ laguna_early_serial_setup(); ++} ++ ++static int __init laguna_model_setup(void) ++{ ++ u32 __iomem *mem; ++ u32 reg; ++ u8 pcie_bitmap = 0; ++ ++ printk("Running on Gateworks Laguna %s\n", laguna_info.model); ++ ++ if (strncmp(laguna_info.model, "GW", 2) == 0) { ++ if (laguna_info.config_bitmap & ETH0_LOAD) ++ laguna_net_data.ports |= BIT(0); ++ if (laguna_info.config_bitmap & ETH1_LOAD) ++ laguna_net_data.ports |= BIT(1); ++ if (laguna_info.config_bitmap & ETH2_LOAD) ++ laguna_net_data.ports |= BIT(2); ++ if (laguna_net_data.ports) ++ platform_device_register(&laguna_net_device); ++ ++ if ((laguna_info.config_bitmap & SATA0_LOAD) || ++ (laguna_info.config_bitmap & SATA1_LOAD)) ++ cns3xxx_ahci_init(); ++ ++ if (laguna_info.config_bitmap & (PCIE0_LOAD)) ++ pcie_bitmap |= 0x1; ++ ++ if (laguna_info.config_bitmap & (PCIE1_LOAD)) ++ pcie_bitmap |= 0x2; ++ ++ cns3xxx_pcie_init(pcie_bitmap); ++ ++ if (laguna_info.config_bitmap & (USB0_LOAD)) { ++ cns3xxx_pwr_power_up(1 << PM_PLL_HM_PD_CTRL_REG_OFFSET_PLL_USB); ++ ++ /* DRVVBUS pins share with GPIOA */ ++ mem = (void __iomem *)(CNS3XXX_MISC_BASE_VIRT + 0x0014); ++ reg = __raw_readl(mem); ++ reg |= 0x8; ++ __raw_writel(reg, mem); ++ ++ /* Enable OTG */ ++ mem = (void __iomem *)(CNS3XXX_MISC_BASE_VIRT + 0x0808); ++ reg = __raw_readl(mem); ++ reg &= ~(1 << 10); ++ __raw_writel(reg, mem); ++ ++ platform_device_register(&cns3xxx_usb_otg_device); ++ } ++ ++ if (laguna_info.config_bitmap & (USB1_LOAD)) { ++ platform_device_register(&cns3xxx_usb_ehci_device); ++ platform_device_register(&cns3xxx_usb_ohci_device); ++ } ++ ++ if (laguna_info.config_bitmap & (SD_LOAD)) ++ cns3xxx_sdhci_init(); ++ ++ if (laguna_info.config_bitmap & (UART0_LOAD)) ++ laguna_uart.num_resources = 1; ++ if (laguna_info.config_bitmap & (UART1_LOAD)) ++ laguna_uart.num_resources = 2; ++ if (laguna_info.config_bitmap & (UART2_LOAD)) ++ laguna_uart.num_resources = 3; ++ platform_device_register(&laguna_uart); ++ ++ if (laguna_info.config2_bitmap & (NOR_FLASH_LOAD)) { ++ switch (laguna_info.nor_flash_size) { ++ case 1: ++ laguna_nor_partitions[3].size = SZ_8M - SZ_256K - SZ_128K - SZ_2M; ++ laguna_nor_res.end = CNS3XXX_FLASH_BASE + SZ_8M - 1; ++ break; ++ case 2: ++ laguna_nor_partitions[3].size = SZ_16M - SZ_256K - SZ_128K - SZ_2M; ++ laguna_nor_res.end = CNS3XXX_FLASH_BASE + SZ_16M - 1; ++ break; ++ case 3: ++ laguna_nor_partitions[3].size = SZ_32M - SZ_256K - SZ_128K - SZ_2M; ++ laguna_nor_res.end = CNS3XXX_FLASH_BASE + SZ_32M - 1; ++ break; ++ case 4: ++ laguna_nor_partitions[3].size = SZ_64M - SZ_256K - SZ_128K - SZ_2M; ++ laguna_nor_res.end = CNS3XXX_FLASH_BASE + SZ_64M - 1; ++ break; ++ case 5: ++ laguna_nor_partitions[3].size = SZ_128M - SZ_256K - SZ_128K - SZ_2M; ++ laguna_nor_res.end = CNS3XXX_FLASH_BASE + SZ_128M - 1; ++ break; ++ } ++ platform_device_register(&laguna_nor_pdev); ++ } ++ ++ if (laguna_info.config2_bitmap & (SPI_FLASH_LOAD)) { ++ switch (laguna_info.spi_flash_size) { ++ case 1: ++ laguna_spi_partitions[3].size = SZ_4M - SZ_2M; ++ break; ++ case 2: ++ laguna_spi_partitions[3].size = SZ_8M - SZ_2M; ++ break; ++ case 3: ++ laguna_spi_partitions[3].size = SZ_16M - SZ_2M; ++ break; ++ case 4: ++ laguna_spi_partitions[3].size = SZ_32M - SZ_2M; ++ break; ++ case 5: ++ laguna_spi_partitions[3].size = SZ_64M - SZ_2M; ++ break; ++ } ++ spi_register_board_info(laguna_spi_devices, ARRAY_SIZE(laguna_spi_devices)); ++ } ++ ++ if ((laguna_info.config_bitmap & SPI0_LOAD) || ++ (laguna_info.config_bitmap & SPI1_LOAD)) ++ platform_device_register(&laguna_spi_controller); ++ ++ /* ++ * Do any model specific setup not known by the bitmap by matching ++ * the first 6 characters of the model name ++ */ ++ ++ if (strncmp(laguna_info.model, "GW2388", 6) == 0) { ++ laguna_gpio_leds_data.num_leds = 2; ++ } else if (strncmp(laguna_info.model, "GW2380", 6) == 0) { ++ laguna_gpio_leds[0].gpio = 107; ++ laguna_gpio_leds[1].gpio = 106; ++ laguna_gpio_leds_data.num_leds = 2; ++ } ++ platform_device_register(&laguna_gpio_leds_device); ++ } else { ++ // Do some defaults here, not sure what yet ++ } ++ return 0; ++} ++ ++late_initcall(laguna_model_setup); ++ ++MACHINE_START(GW2388, "Gateworks Corporation Laguna Platform") ++ .atag_offset = 0x100, ++ .map_io = laguna_map_io, ++ .init_irq = cns3xxx_init_irq, ++ .timer = &cns3xxx_timer, ++ .init_machine = laguna_init, ++MACHINE_END +--- a/arch/arm/mach-cns3xxx/Kconfig ++++ b/arch/arm/mach-cns3xxx/Kconfig +@@ -11,4 +11,14 @@ config MACH_CNS3420VB + This is a platform with an on-board ARM11 MPCore and has support + for USB, USB-OTG, MMC/SD/SDIO, SATA, PCI-E, etc. + ++config MACH_GW2388 ++ bool "Support for Gateworks Laguna Platform" ++ select HAVE_ARM_SCU if SMP ++ select MIGHT_HAVE_PCI ++ help ++ Include support for the Gateworks Laguna Platform ++ ++ This is a platform with an on-board ARM11 MPCore and has support ++ for USB, USB-OTG, MMC/SD/SDIO, SATA, PCI-E, I2C, GIG, etc. ++ + endmenu +--- a/arch/arm/mach-cns3xxx/core.c ++++ b/arch/arm/mach-cns3xxx/core.c +@@ -19,6 +19,7 @@ + #include <asm/mach/time.h> + #include <asm/mach/irq.h> + #include <asm/hardware/gic.h> ++#include <asm/smp_twd.h> + #include <asm/hardware/cache-l2x0.h> + #include <mach/cns3xxx.h> + #include "core.h" +@@ -68,11 +69,24 @@ static struct map_desc cns3xxx_io_desc[] + .pfn = __phys_to_pfn(CNS3XXX_PM_BASE), + .length = SZ_4K, + .type = MT_DEVICE, ++ }, { ++ .virtual = CNS3XXX_SWITCH_BASE_VIRT, ++ .pfn = __phys_to_pfn(CNS3XXX_SWITCH_BASE), ++ .length = SZ_4K, ++ .type = MT_DEVICE, ++ }, { ++ .virtual = CNS3XXX_SSP_BASE_VIRT, ++ .pfn = __phys_to_pfn(CNS3XXX_SSP_BASE), ++ .length = SZ_4K, ++ .type = MT_DEVICE, + }, + }; + + void __init cns3xxx_map_io(void) + { ++#ifdef CONFIG_LOCAL_TIMERS ++ twd_base = (void __iomem *) CNS3XXX_TC11MP_TWD_BASE_VIRT; ++#endif + iotable_init(cns3xxx_io_desc, ARRAY_SIZE(cns3xxx_io_desc)); + } + +--- a/arch/arm/Kconfig ++++ b/arch/arm/Kconfig +@@ -366,6 +366,7 @@ config ARCH_CLPS711X + config ARCH_CNS3XXX + bool "Cavium Networks CNS3XXX family" + select CPU_V6K ++ select ARCH_WANT_OPTIONAL_GPIOLIB + select GENERIC_CLOCKEVENTS + select ARM_GIC + select CLKDEV_LOOKUP +--- /dev/null ++++ b/arch/arm/mach-cns3xxx/include/mach/gpio.h +@@ -0,0 +1,98 @@ ++/* ++ * arch/arm/mach-cns3xxx/include/mach/gpio.h ++ * ++ * CNS3xxx GPIO wrappers for arch-neutral GPIO calls ++ * ++ * Copyright 2011 Gateworks Corporation ++ * Chris Lang <clang@gateworks.com> ++ * ++ * Based on IXP implementation by Milan Svoboda <msvoboda@ra.rockwell.com> ++ * Based on PXA implementation by Philipp Zabel <philipp.zabel@gmail.com> ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License as published by ++ * the Free Software Foundation; either version 2 of the License, or ++ * (at your option) any later version. ++ * ++ * This program is distributed in the hope that it will be useful, ++ * but WITHOUT ANY WARRANTY; without even the implied warranty of ++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ * GNU General Public License for more details. ++ * ++ * You should have received a copy of the GNU General Public License ++ * along with this program; if not, write to the Free Software ++ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ++ * ++ */ ++ ++#ifndef __ASM_ARCH_CNS3XXX_GPIO_H ++#define __ASM_ARCH_CNS3XXX_GPIO_H ++ ++#include <linux/kernel.h> ++#include <linux/io.h> ++#include <mach/platform.h> ++#include <asm-generic/gpio.h> /* cansleep wrappers */ ++ ++#define NR_BUILTIN_GPIO 64 ++ ++#define CNS3XXX_GPIO_IN 0x0 ++#define CNS3XXX_GPIO_OUT 0x1 ++ ++#define CNS3XXX_GPIO_LO 0 ++#define CNS3XXX_GPIO_HI 1 ++ ++#define CNS3XXX_GPIO_OUTPUT 0x00 ++#define CNS3XXX_GPIO_INPUT 0x04 ++#define CNS3XXX_GPIO_DIR 0x08 ++#define CNS3XXX_GPIO_SET 0x10 ++#define CNS3XXX_GPIO_CLEAR 0x14 ++ ++static inline void gpio_line_get(u8 line, int *value) ++{ ++ if (line < 32) ++ *value = ((__raw_readl(CNS3XXX_GPIOA_BASE_VIRT + CNS3XXX_GPIO_INPUT) >> line) & 0x1); ++ else ++ *value = ((__raw_readl(CNS3XXX_GPIOB_BASE_VIRT + CNS3XXX_GPIO_INPUT) >> (line - 32)) & 0x1); ++} ++ ++static inline void gpio_line_set(u8 line, int value) ++{ ++ if (line < 32) { ++ if (value) ++ __raw_writel((1 << line), CNS3XXX_GPIOA_BASE_VIRT + CNS3XXX_GPIO_SET); ++ else ++ __raw_writel((1 << line), CNS3XXX_GPIOA_BASE_VIRT + CNS3XXX_GPIO_CLEAR); ++ } else { ++ if (value) ++ __raw_writel((1 << line), CNS3XXX_GPIOB_BASE_VIRT + CNS3XXX_GPIO_SET); ++ else ++ __raw_writel((1 << line), CNS3XXX_GPIOB_BASE_VIRT + CNS3XXX_GPIO_CLEAR); ++ } ++} ++ ++static inline int gpio_get_value(unsigned gpio) ++{ ++ if (gpio < NR_BUILTIN_GPIO) ++ { ++ int value; ++ gpio_line_get(gpio, &value); ++ return value; ++ } ++ else ++ return __gpio_get_value(gpio); ++} ++ ++static inline void gpio_set_value(unsigned gpio, int value) ++{ ++ if (gpio < NR_BUILTIN_GPIO) ++ gpio_line_set(gpio, value); ++ else ++ __gpio_set_value(gpio, value); ++} ++ ++#define gpio_cansleep __gpio_cansleep ++ ++extern int gpio_to_irq(int gpio); ++extern int irq_to_gpio(int gpio); ++ ++#endif +--- a/arch/arm/mach-cns3xxx/Makefile ++++ b/arch/arm/mach-cns3xxx/Makefile +@@ -1,6 +1,7 @@ + obj-$(CONFIG_ARCH_CNS3XXX) += core.o pm.o devices.o + obj-$(CONFIG_PCI) += pcie.o + obj-$(CONFIG_MACH_CNS3420VB) += cns3420vb.o ++obj-$(CONFIG_MACH_GW2388) += laguna.o + obj-$(CONFIG_SMP) += platsmp.o headsmp.o + obj-$(CONFIG_HOTPLUG_CPU) += hotplug.o + obj-$(CONFIG_LOCAL_TIMERS) += localtimer.o +--- a/arch/arm/mach-cns3xxx/pcie.c ++++ b/arch/arm/mach-cns3xxx/pcie.c +@@ -365,7 +365,7 @@ static int cns3xxx_pcie_abort_handler(un + return 0; + } + +-static int __init cns3xxx_pcie_init(void) ++int cns3xxx_pcie_init(u8 bitmap) + { + int i; + +@@ -376,6 +376,9 @@ static int __init cns3xxx_pcie_init(void + "imprecise external abort"); + + for (i = 0; i < ARRAY_SIZE(cns3xxx_pcie); i++) { ++ if (!(bitmap & (1 << i))) ++ continue; ++ + iotable_init(cns3xxx_pcie[i].cfg_bases, + ARRAY_SIZE(cns3xxx_pcie[i].cfg_bases)); + cns3xxx_pcie_check_link(&cns3xxx_pcie[i]); +@@ -387,4 +390,3 @@ static int __init cns3xxx_pcie_init(void + + return 0; + } +-device_initcall(cns3xxx_pcie_init); +--- a/arch/arm/mach-cns3xxx/cns3420vb.c ++++ b/arch/arm/mach-cns3xxx/cns3420vb.c +@@ -32,6 +32,7 @@ + #include <asm/mach/time.h> + #include <mach/cns3xxx.h> + #include <mach/irqs.h> ++#include <mach/platform.h> + #include "core.h" + #include "devices.h" + +@@ -199,6 +200,8 @@ static void __init cns3420_init(void) + cns3xxx_ahci_init(); + cns3xxx_sdhci_init(); + ++ cns3xxx_pcie_init(0x3); ++ + pm_power_off = cns3xxx_power_off; + } + +--- a/arch/arm/mach-cns3xxx/core.h ++++ b/arch/arm/mach-cns3xxx/core.h +@@ -12,6 +12,7 @@ + #define __CNS3XXX_CORE_H + + extern struct sys_timer cns3xxx_timer; ++extern int cns3xxx_pcie_init(u8 bitmap); + + #ifdef CONFIG_CACHE_L2X0 + void __init cns3xxx_l2x0_init(void); diff --git a/target/linux/cns3xxx/patches-3.3/101-laguna_sdhci_card_detect.patch b/target/linux/cns3xxx/patches-3.3/101-laguna_sdhci_card_detect.patch new file mode 100644 index 0000000..444c5d5 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/101-laguna_sdhci_card_detect.patch @@ -0,0 +1,16 @@ +--- a/drivers/mmc/host/sdhci-cns3xxx.c ++++ b/drivers/mmc/host/sdhci-cns3xxx.c +@@ -89,10 +89,11 @@ static struct sdhci_pltfm_data sdhci_cns + .ops = &sdhci_cns3xxx_ops, + .quirks = SDHCI_QUIRK_BROKEN_DMA | + SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK | +- SDHCI_QUIRK_INVERTED_WRITE_PROTECT | ++ //SDHCI_QUIRK_INVERTED_WRITE_PROTECT | + SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN | + SDHCI_QUIRK_BROKEN_TIMEOUT_VAL | +- SDHCI_QUIRK_NONSTANDARD_CLOCK, ++ SDHCI_QUIRK_NONSTANDARD_CLOCK | ++ SDHCI_QUIRK_BROKEN_CARD_DETECTION, + }; + + static int __devinit sdhci_cns3xxx_probe(struct platform_device *pdev) diff --git a/target/linux/cns3xxx/patches-3.3/102-cns3xxx_timers.patch b/target/linux/cns3xxx/patches-3.3/102-cns3xxx_timers.patch new file mode 100644 index 0000000..9adf007 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/102-cns3xxx_timers.patch @@ -0,0 +1,109 @@ +--- a/arch/arm/mach-cns3xxx/core.c ++++ b/arch/arm/mach-cns3xxx/core.c +@@ -125,12 +125,13 @@ static void cns3xxx_timer_set_mode(enum + + switch (mode) { + case CLOCK_EVT_MODE_PERIODIC: +- reload = pclk * 20 / (3 * HZ) * 0x25000; ++ reload = pclk * 1000000 / HZ; + writel(reload, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET); + ctrl |= (1 << 0) | (1 << 2) | (1 << 9); + break; + case CLOCK_EVT_MODE_ONESHOT: + /* period set, and timer enabled in 'next_event' hook */ ++ writel(0, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET); + ctrl |= (1 << 2) | (1 << 9); + break; + case CLOCK_EVT_MODE_UNUSED: +@@ -155,11 +156,11 @@ static int cns3xxx_timer_set_next_event( + + static struct clock_event_device cns3xxx_tmr1_clockevent = { + .name = "cns3xxx timer1", +- .shift = 8, ++ .shift = 32, + .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, + .set_mode = cns3xxx_timer_set_mode, + .set_next_event = cns3xxx_timer_set_next_event, +- .rating = 350, ++ .rating = 300, + .cpumask = cpu_all_mask, + }; + +@@ -201,6 +202,35 @@ static struct irqaction cns3xxx_timer_ir + .handler = cns3xxx_timer_interrupt, + }; + ++static cycle_t cns3xxx_get_cycles(struct clocksource *cs) ++{ ++ u64 val; ++ ++ val = readl(cns3xxx_tmr1 + TIMER_FREERUN_CONTROL_OFFSET); ++ val &= 0xffff; ++ ++ return ((val << 32) | readl(cns3xxx_tmr1 + TIMER_FREERUN_OFFSET)); ++} ++ ++static struct clocksource clocksource_cns3xxx = { ++ .name = "freerun", ++ .rating = 200, ++ .read = cns3xxx_get_cycles, ++ .mask = CLOCKSOURCE_MASK(48), ++ .shift = 16, ++ .flags = CLOCK_SOURCE_IS_CONTINUOUS, ++}; ++ ++static void __init cns3xxx_clocksource_init(void) ++{ ++ /* Reset the FreeRunning counter */ ++ writel((1 << 16), cns3xxx_tmr1 + TIMER_FREERUN_CONTROL_OFFSET); ++ ++ clocksource_cns3xxx.mult = ++ clocksource_khz2mult(100, clocksource_cns3xxx.shift); ++ clocksource_register(&clocksource_cns3xxx); ++} ++ + /* + * Set up the clock source and clock events devices + */ +@@ -218,13 +248,12 @@ static void __init __cns3xxx_timer_init( + /* stop free running timer3 */ + writel(0, cns3xxx_tmr1 + TIMER_FREERUN_CONTROL_OFFSET); + +- /* timer1 */ +- writel(0x5C800, cns3xxx_tmr1 + TIMER1_COUNTER_OFFSET); +- writel(0x5C800, cns3xxx_tmr1 + TIMER1_AUTO_RELOAD_OFFSET); +- + writel(0, cns3xxx_tmr1 + TIMER1_MATCH_V1_OFFSET); + writel(0, cns3xxx_tmr1 + TIMER1_MATCH_V2_OFFSET); + ++ val = (cns3xxx_cpu_clock() >> 3) * 1000000 / HZ; ++ writel(val, cns3xxx_tmr1 + TIMER1_COUNTER_OFFSET); ++ + /* mask irq, non-mask timer1 overflow */ + irq_mask = readl(cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET); + irq_mask &= ~(1 << 2); +@@ -236,23 +265,9 @@ static void __init __cns3xxx_timer_init( + val |= (1 << 9); + writel(val, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); + +- /* timer2 */ +- writel(0, cns3xxx_tmr1 + TIMER2_MATCH_V1_OFFSET); +- writel(0, cns3xxx_tmr1 + TIMER2_MATCH_V2_OFFSET); +- +- /* mask irq */ +- irq_mask = readl(cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET); +- irq_mask |= ((1 << 3) | (1 << 4) | (1 << 5)); +- writel(irq_mask, cns3xxx_tmr1 + TIMER1_2_INTERRUPT_MASK_OFFSET); +- +- /* down counter */ +- val = readl(cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); +- val |= (1 << 10); +- writel(val, cns3xxx_tmr1 + TIMER1_2_CONTROL_OFFSET); +- +- /* Make irqs happen for the system timer */ + setup_irq(timer_irq, &cns3xxx_timer_irq); + ++ cns3xxx_clocksource_init(); + cns3xxx_clockevents_init(timer_irq); + } + diff --git a/target/linux/cns3xxx/patches-3.3/104-cns3xxx_gpio.patch b/target/linux/cns3xxx/patches-3.3/104-cns3xxx_gpio.patch new file mode 100644 index 0000000..c5928e5 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/104-cns3xxx_gpio.patch @@ -0,0 +1,118 @@ +--- a/arch/arm/mach-cns3xxx/cns3420vb.c ++++ b/arch/arm/mach-cns3xxx/cns3420vb.c +@@ -216,7 +216,7 @@ static struct map_desc cns3420_io_desc[] + + static void __init cns3420_map_io(void) + { +- cns3xxx_map_io(); ++ cns3xxx_common_init(); + iotable_init(cns3420_io_desc, ARRAY_SIZE(cns3420_io_desc)); + + cns3420_early_serial_setup(); +--- a/arch/arm/mach-cns3xxx/core.c ++++ b/arch/arm/mach-cns3xxx/core.c +@@ -21,6 +21,7 @@ + #include <asm/hardware/gic.h> + #include <asm/smp_twd.h> + #include <asm/hardware/cache-l2x0.h> ++#include <asm/gpio.h> + #include <mach/cns3xxx.h> + #include "core.h" + +@@ -82,12 +83,73 @@ static struct map_desc cns3xxx_io_desc[] + }, + }; + +-void __init cns3xxx_map_io(void) ++static inline void gpio_line_config(u8 line, u32 direction) ++{ ++ u32 reg; ++ if (direction) { ++ if (line < 32) { ++ reg = __raw_readl(CNS3XXX_GPIOA_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ reg |= (1 << line); ++ __raw_writel(reg, CNS3XXX_GPIOA_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ } else { ++ reg = __raw_readl(CNS3XXX_GPIOB_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ reg |= (1 << (line - 32)); ++ __raw_writel(reg, CNS3XXX_GPIOB_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ } ++ } else { ++ if (line < 32) { ++ reg = __raw_readl(CNS3XXX_GPIOA_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ reg &= ~(1 << line); ++ __raw_writel(reg, CNS3XXX_GPIOA_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ } else { ++ reg = __raw_readl(CNS3XXX_GPIOB_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ reg &= ~(1 << (line - 32)); ++ __raw_writel(reg, CNS3XXX_GPIOB_BASE_VIRT + CNS3XXX_GPIO_DIR); ++ } ++ } ++} ++ ++static int cns3xxx_gpio_direction_input(struct gpio_chip *chip, unsigned gpio) ++{ ++ gpio_line_config(gpio, CNS3XXX_GPIO_IN); ++ return 0; ++} ++ ++static int cns3xxx_gpio_direction_output(struct gpio_chip *chip, unsigned gpio, int level) ++{ ++ gpio_line_set(gpio, level); ++ gpio_line_config(gpio, CNS3XXX_GPIO_OUT); ++ return 0; ++} ++ ++static int cns3xxx_gpio_get_value(struct gpio_chip *chip, unsigned gpio) ++{ ++ return gpio_get_value(gpio); ++} ++ ++static void cns3xxx_gpio_set_value(struct gpio_chip *chip, unsigned gpio, int value) ++{ ++ gpio_set_value(gpio, value); ++} ++ ++static struct gpio_chip cns3xxx_gpio_chip = { ++ .label = "CNS3XXX_GPIO_CHIP", ++ .direction_input = cns3xxx_gpio_direction_input, ++ .direction_output = cns3xxx_gpio_direction_output, ++ .get = cns3xxx_gpio_get_value, ++ .set = cns3xxx_gpio_set_value, ++ .base = 0, ++ .ngpio = 64, ++}; ++ ++void __init cns3xxx_common_init(void) + { + #ifdef CONFIG_LOCAL_TIMERS + twd_base = (void __iomem *) CNS3XXX_TC11MP_TWD_BASE_VIRT; + #endif + iotable_init(cns3xxx_io_desc, ARRAY_SIZE(cns3xxx_io_desc)); ++ ++ gpiochip_add(&cns3xxx_gpio_chip); + } + + /* used by entry-macro.S */ +--- a/arch/arm/mach-cns3xxx/core.h ++++ b/arch/arm/mach-cns3xxx/core.h +@@ -20,7 +20,7 @@ void __init cns3xxx_l2x0_init(void); + static inline void cns3xxx_l2x0_init(void) {} + #endif /* CONFIG_CACHE_L2X0 */ + +-void __init cns3xxx_map_io(void); ++void __init cns3xxx_common_init(void); + void __init cns3xxx_init_irq(void); + void cns3xxx_power_off(void); + void cns3xxx_restart(char, const char *); +--- a/arch/arm/mach-cns3xxx/laguna.c ++++ b/arch/arm/mach-cns3xxx/laguna.c +@@ -611,7 +611,7 @@ static struct map_desc laguna_io_desc[] + + static void __init laguna_map_io(void) + { +- cns3xxx_map_io(); ++ cns3xxx_common_init(); + iotable_init(laguna_io_desc, ARRAY_SIZE(laguna_io_desc)); + laguna_early_serial_setup(); + } diff --git a/target/linux/cns3xxx/patches-3.3/105-cns3xxx_pcie_io.patch b/target/linux/cns3xxx/patches-3.3/105-cns3xxx_pcie_io.patch new file mode 100644 index 0000000..e7fe0b1 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/105-cns3xxx_pcie_io.patch @@ -0,0 +1,88 @@ +--- a/arch/arm/mach-cns3xxx/core.c ++++ b/arch/arm/mach-cns3xxx/core.c +@@ -80,6 +80,16 @@ static struct map_desc cns3xxx_io_desc[] + .pfn = __phys_to_pfn(CNS3XXX_SSP_BASE), + .length = SZ_4K, + .type = MT_DEVICE, ++ }, { ++ .virtual = CNS3XXX_PCIE0_IO_BASE_VIRT, ++ .pfn = __phys_to_pfn(CNS3XXX_PCIE0_IO_BASE), ++ .length = SZ_16M, ++ .type = MT_DEVICE, ++ }, { ++ .virtual = CNS3XXX_PCIE1_IO_BASE_VIRT, ++ .pfn = __phys_to_pfn(CNS3XXX_PCIE1_IO_BASE), ++ .length = SZ_16M, ++ .type = MT_DEVICE, + }, + }; + +@@ -155,13 +165,13 @@ void __init cns3xxx_common_init(void) + /* used by entry-macro.S */ + void __init cns3xxx_init_irq(void) + { +- gic_init(0, 29, __io(CNS3XXX_TC11MP_GIC_DIST_BASE_VIRT), +- __io(CNS3XXX_TC11MP_GIC_CPU_BASE_VIRT)); ++ gic_init(0, 29, (void __iomem *) CNS3XXX_TC11MP_GIC_DIST_BASE_VIRT, ++ (void __iomem *) CNS3XXX_TC11MP_GIC_CPU_BASE_VIRT); + } + + void cns3xxx_power_off(void) + { +- u32 __iomem *pm_base = __io(CNS3XXX_PM_BASE_VIRT); ++ u32 __iomem *pm_base = (void __iomem *) CNS3XXX_PM_BASE_VIRT; + u32 clkctrl; + + printk(KERN_INFO "powering system down...\n"); +@@ -335,7 +345,7 @@ static void __init __cns3xxx_timer_init( + + static void __init cns3xxx_timer_init(void) + { +- cns3xxx_tmr1 = __io(CNS3XXX_TIMER1_2_3_BASE_VIRT); ++ cns3xxx_tmr1 = (void __iomem *) CNS3XXX_TIMER1_2_3_BASE_VIRT; + + __cns3xxx_timer_init(IRQ_CNS3XXX_TIMER0); + } +--- a/arch/arm/mach-cns3xxx/devices.c ++++ b/arch/arm/mach-cns3xxx/devices.c +@@ -98,7 +98,7 @@ static struct platform_device cns3xxx_sd + + void __init cns3xxx_sdhci_init(void) + { +- u32 __iomem *gpioa = __io(CNS3XXX_MISC_BASE_VIRT + 0x0014); ++ u32 __iomem *gpioa = (void __iomem *) (CNS3XXX_MISC_BASE_VIRT + 0x0014); + u32 gpioa_pins = __raw_readl(gpioa); + + /* MMC/SD pins share with GPIOA */ +--- a/arch/arm/mach-cns3xxx/include/mach/io.h ++++ b/arch/arm/mach-cns3xxx/include/mach/io.h +@@ -9,9 +9,17 @@ + #ifndef __MACH_IO_H + #define __MACH_IO_H + ++#include "cns3xxx.h" ++ + #define IO_SPACE_LIMIT 0xffffffff + +-#define __io(a) __typesafe_io(a) ++static inline void __iomem *__io(unsigned long addr) ++{ ++ return (void __iomem *)((addr - CNS3XXX_PCIE0_IO_BASE) ++ + CNS3XXX_PCIE0_IO_BASE_VIRT); ++} ++ ++#define __io(a) __io(a) + #define __mem_pci(a) (a) + + #endif +--- a/drivers/spi/spi_cns3xxx.c ++++ b/drivers/spi/spi_cns3xxx.c +@@ -273,7 +273,7 @@ done: + + static void __init cns3xxx_spi_initial(void) + { +- u32 __iomem *gpiob = __io(CNS3XXX_MISC_BASE_VIRT + 0x0018); ++ u32 __iomem *gpiob = (void __iomem *) (CNS3XXX_MISC_BASE_VIRT + 0x0018); + u32 gpiob_pins = __raw_readl(gpiob); + + /* MMC/SD pins share with GPIOA */ diff --git a/target/linux/cns3xxx/patches-3.3/106-cns3xxx_sata_support.patch b/target/linux/cns3xxx/patches-3.3/106-cns3xxx_sata_support.patch new file mode 100644 index 0000000..e614385 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/106-cns3xxx_sata_support.patch @@ -0,0 +1,97 @@ +--- a/arch/arm/mach-cns3xxx/devices.c ++++ b/arch/arm/mach-cns3xxx/devices.c +@@ -41,7 +41,7 @@ static struct resource cns3xxx_ahci_reso + static u64 cns3xxx_ahci_dmamask = DMA_BIT_MASK(32); + + static struct platform_device cns3xxx_ahci_pdev = { +- .name = "ahci", ++ .name = "ahci-cns3xxx", + .id = 0, + .resource = cns3xxx_ahci_resource, + .num_resources = ARRAY_SIZE(cns3xxx_ahci_resource), +--- a/drivers/ata/ahci_platform.c ++++ b/drivers/ata/ahci_platform.c +@@ -27,6 +27,7 @@ enum ahci_type { + AHCI, /* standard platform ahci */ + IMX53_AHCI, /* ahci on i.mx53 */ + STRICT_AHCI, /* delayed DMA engine start */ ++ CNS3XXX_AHCI, /* AHCI on cns3xxx */ + }; + + static struct platform_device_id ahci_devtype[] = { +@@ -40,11 +41,32 @@ static struct platform_device_id ahci_de + .name = "strict-ahci", + .driver_data = STRICT_AHCI, + }, { ++ .name = "ahci-cns3xxx", ++ .driver_data = CNS3XXX_AHCI, ++ }, { + /* sentinel */ + } + }; + MODULE_DEVICE_TABLE(platform, ahci_devtype); + ++static int ++cns3xxx_ahci_softreset(struct ata_link *link, unsigned int *class, ++ unsigned long deadline) ++{ ++ int pmp = sata_srst_pmp(link); ++ int ret; ++ ++ ret = ahci_do_softreset(link, class, pmp, deadline, ahci_check_ready); ++ if (pmp && ret) ++ return ahci_do_softreset(link, class, 0, deadline, ++ ahci_check_ready); ++ return ret; ++} ++ ++static struct ata_port_operations cns3xxx_ahci_ops = { ++ .inherits = &ahci_ops, ++ .softreset = cns3xxx_ahci_softreset, ++}; + + static const struct ata_port_info ahci_port_info[] = { + /* by features */ +@@ -67,13 +89,19 @@ static const struct ata_port_info ahci_p + .udma_mask = ATA_UDMA6, + .port_ops = &ahci_ops, + }, ++ [CNS3XXX_AHCI] = { ++ .flags = AHCI_FLAG_COMMON, ++ .pio_mask = ATA_PIO4, ++ .udma_mask = ATA_UDMA6, ++ .port_ops = &cns3xxx_ahci_ops, ++ } + }; + + static struct scsi_host_template ahci_platform_sht = { + AHCI_SHT("ahci_platform"), + }; + +-static int __init ahci_probe(struct platform_device *pdev) ++static int __devinit ahci_probe(struct platform_device *pdev) + { + struct device *dev = &pdev->dev; + struct ahci_platform_data *pdata = dev_get_platdata(dev); +@@ -285,6 +313,7 @@ static const struct of_device_id ahci_of + MODULE_DEVICE_TABLE(of, ahci_of_match); + + static struct platform_driver ahci_driver = { ++ .probe = ahci_probe, + .remove = __devexit_p(ahci_remove), + .driver = { + .name = "ahci", +@@ -299,7 +328,7 @@ static struct platform_driver ahci_drive + + static int __init ahci_init(void) + { +- return platform_driver_probe(&ahci_driver, ahci_probe); ++ return platform_driver_register(&ahci_driver); + } + module_init(ahci_init); + +@@ -312,4 +341,3 @@ module_exit(ahci_exit); + MODULE_DESCRIPTION("AHCI SATA platform driver"); + MODULE_AUTHOR("Anton Vorontsov <avorontsov@ru.mvista.com>"); + MODULE_LICENSE("GPL"); +-MODULE_ALIAS("platform:ahci"); diff --git a/target/linux/cns3xxx/patches-3.3/107-cns3xxx_pcie-section-mismatch-fixes.patch b/target/linux/cns3xxx/patches-3.3/107-cns3xxx_pcie-section-mismatch-fixes.patch new file mode 100644 index 0000000..d9095c7 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/107-cns3xxx_pcie-section-mismatch-fixes.patch @@ -0,0 +1,26 @@ +--- a/arch/arm/mach-cns3xxx/pcie.c ++++ b/arch/arm/mach-cns3xxx/pcie.c +@@ -161,12 +161,12 @@ static int cns3xxx_pci_setup(int nr, str + return 1; + } + +-static struct pci_ops cns3xxx_pcie_ops = { ++struct pci_ops cns3xxx_pcie_ops = { + .read = cns3xxx_pci_read_config, + .write = cns3xxx_pci_write_config, + }; + +-static struct pci_bus *cns3xxx_pci_scan_bus(int nr, struct pci_sys_data *sys) ++struct pci_bus * __devinit cns3xxx_pci_scan_bus(int nr, struct pci_sys_data *sys) + { + return pci_scan_root_bus(NULL, sys->busnr, &cns3xxx_pcie_ops, sys, + &sys->resources); +@@ -365,7 +365,7 @@ static int cns3xxx_pcie_abort_handler(un + return 0; + } + +-int cns3xxx_pcie_init(u8 bitmap) ++int __init cns3xxx_pcie_init(u8 bitmap) + { + int i; + diff --git a/target/linux/cns3xxx/patches-3.3/110-gateworks_gsp_support.patch b/target/linux/cns3xxx/patches-3.3/110-gateworks_gsp_support.patch new file mode 100644 index 0000000..02fbdab --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/110-gateworks_gsp_support.patch @@ -0,0 +1,339 @@ +--- a/drivers/hwmon/Kconfig ++++ b/drivers/hwmon/Kconfig +@@ -423,6 +423,15 @@ config SENSORS_GL520SM + This driver can also be built as a module. If so, the module + will be called gl520sm. + ++config SENSORS_GSP ++ tristate "Gateworks System Peripheral" ++ depends on I2C && EXPERIMENTAL ++ help ++ If you say yes here you get support for the Gateworks System Peripherals. ++ ++ This driver can also be built as a module. If so, the module ++ will be called gsp. ++ + config SENSORS_GPIO_FAN + tristate "GPIO fan" + depends on GENERIC_GPIO +--- a/drivers/hwmon/Makefile ++++ b/drivers/hwmon/Makefile +@@ -125,6 +125,7 @@ obj-$(CONFIG_SENSORS_W83L785TS) += w83l7 + obj-$(CONFIG_SENSORS_W83L786NG) += w83l786ng.o + obj-$(CONFIG_SENSORS_WM831X) += wm831x-hwmon.o + obj-$(CONFIG_SENSORS_WM8350) += wm8350-hwmon.o ++obj-$(CONFIG_SENSORS_GSP) += gsp.o + + obj-$(CONFIG_PMBUS) += pmbus/ + +--- /dev/null ++++ b/drivers/hwmon/gsp.c +@@ -0,0 +1,308 @@ ++/* ++ * A hwmon driver for the Gateworks System Peripheral ++ * Copyright (C) 2009 Gateworks Corporation ++ * ++ * Author: Chris Lang <clang@gateworks.com> ++ * ++ * This program is free software; you can redistribute it and/or modify ++ * it under the terms of the GNU General Public License, ++ * as published by the Free Software Foundation - version 2. ++ */ ++ ++#include <linux/module.h> ++#include <linux/i2c.h> ++#include <linux/hwmon.h> ++#include <linux/hwmon-sysfs.h> ++#include <linux/err.h> ++#include <linux/slab.h> ++ ++#define DRV_VERSION "0.2" ++ ++enum chips { gsp }; ++ ++/* AD7418 registers */ ++#define GSP_REG_TEMP_IN 0x00 ++#define GSP_REG_VIN 0x02 ++#define GSP_REG_3P3 0x05 ++#define GSP_REG_BAT 0x08 ++#define GSP_REG_5P0 0x0b ++#define GSP_REG_CORE 0x0e ++#define GSP_REG_CPU1 0x11 ++#define GSP_REG_CPU2 0x14 ++#define GSP_REG_DRAM 0x17 ++#define GSP_REG_EXT_BAT 0x1a ++#define GSP_REG_IO1 0x1d ++#define GSP_REG_IO2 0x20 ++#define GSP_REG_PCIE 0x23 ++#define GSP_REG_CURRENT 0x26 ++#define GSP_FAN_0 0x2C ++#define GSP_FAN_1 0x2E ++#define GSP_FAN_2 0x30 ++#define GSP_FAN_3 0x32 ++#define GSP_FAN_4 0x34 ++#define GSP_FAN_5 0x36 ++ ++struct gsp_sensor_info { ++ const char* name; ++ int reg; ++}; ++ ++static const struct gsp_sensor_info gsp_sensors[] = { ++ {"temp", GSP_REG_TEMP_IN}, ++ {"vin", GSP_REG_VIN}, ++ {"3p3", GSP_REG_3P3}, ++ {"bat", GSP_REG_BAT}, ++ {"5p0", GSP_REG_5P0}, ++ {"core", GSP_REG_CORE}, ++ {"cpu1", GSP_REG_CPU1}, ++ {"cpu2", GSP_REG_CPU2}, ++ {"dram", GSP_REG_DRAM}, ++ {"ext_bat", GSP_REG_EXT_BAT}, ++ {"io1", GSP_REG_IO1}, ++ {"io2", GSP_REG_IO2}, ++ {"pci2", GSP_REG_PCIE}, ++ {"current", GSP_REG_CURRENT}, ++ {"fan_point0", GSP_FAN_0}, ++ {"fan_point1", GSP_FAN_1}, ++ {"fan_point2", GSP_FAN_2}, ++ {"fan_point3", GSP_FAN_3}, ++ {"fan_point4", GSP_FAN_4}, ++ {"fan_point5", GSP_FAN_5}, ++}; ++ ++struct gsp_data { ++ struct device *hwmon_dev; ++ struct attribute_group attrs; ++ enum chips type; ++}; ++ ++static int gsp_probe(struct i2c_client *client, ++ const struct i2c_device_id *id); ++static int gsp_remove(struct i2c_client *client); ++ ++static const struct i2c_device_id gsp_id[] = { ++ { "gsp", 0 }, ++ { } ++}; ++MODULE_DEVICE_TABLE(i2c, gsp_id); ++ ++static struct i2c_driver gsp_driver = { ++ .driver = { ++ .name = "gsp", ++ }, ++ .probe = gsp_probe, ++ .remove = gsp_remove, ++ .id_table = gsp_id, ++}; ++ ++/* All registers are word-sized, except for the configuration registers. ++ * AD7418 uses a high-byte first convention. Do NOT use those functions to ++ * access the configuration registers CONF and CONF2, as they are byte-sized. ++ */ ++static inline int gsp_read(struct i2c_client *client, u8 reg) ++{ ++ unsigned int adc = 0; ++ if (reg == GSP_REG_TEMP_IN || reg > GSP_REG_CURRENT) ++ { ++ adc |= i2c_smbus_read_byte_data(client, reg); ++ adc |= i2c_smbus_read_byte_data(client, reg + 1) << 8; ++ return adc; ++ } ++ else ++ { ++ adc |= i2c_smbus_read_byte_data(client, reg); ++ adc |= i2c_smbus_read_byte_data(client, reg + 1) << 8; ++ adc |= i2c_smbus_read_byte_data(client, reg + 2) << 16; ++ return adc; ++ } ++} ++ ++static inline int gsp_write(struct i2c_client *client, u8 reg, u16 value) ++{ ++ i2c_smbus_write_byte_data(client, reg, value & 0xff); ++ i2c_smbus_write_byte_data(client, reg + 1, ((value >> 8) & 0xff)); ++ return 1; ++} ++ ++static ssize_t show_adc(struct device *dev, struct device_attribute *devattr, ++ char *buf) ++{ ++ struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); ++ struct i2c_client *client = to_i2c_client(dev); ++ return sprintf(buf, "%d\n", gsp_read(client, gsp_sensors[attr->index].reg)); ++} ++ ++static ssize_t show_label(struct device *dev, ++ struct device_attribute *devattr, char *buf) ++{ ++ struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); ++ ++ return sprintf(buf, "%s\n", gsp_sensors[attr->index].name); ++} ++ ++static ssize_t store_fan(struct device *dev, ++ struct device_attribute *devattr, const char *buf, size_t count) ++{ ++ u16 val; ++ struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); ++ struct i2c_client *client = to_i2c_client(dev); ++ val = simple_strtoul(buf, NULL, 10); ++ gsp_write(client, gsp_sensors[attr->index].reg, val); ++ return count; ++} ++ ++static SENSOR_DEVICE_ATTR(temp0_input, S_IRUGO, show_adc, NULL, 0); ++static SENSOR_DEVICE_ATTR(temp0_label, S_IRUGO, show_label, NULL, 0); ++ ++static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_adc, NULL, 1); ++static SENSOR_DEVICE_ATTR(in0_label, S_IRUGO, show_label, NULL, 1); ++static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_adc, NULL, 2); ++static SENSOR_DEVICE_ATTR(in1_label, S_IRUGO, show_label, NULL, 2); ++static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_adc, NULL, 3); ++static SENSOR_DEVICE_ATTR(in2_label, S_IRUGO, show_label, NULL, 3); ++static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_adc, NULL, 4); ++static SENSOR_DEVICE_ATTR(in3_label, S_IRUGO, show_label, NULL, 4); ++static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_adc, NULL, 5); ++static SENSOR_DEVICE_ATTR(in4_label, S_IRUGO, show_label, NULL, 5); ++static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_adc, NULL, 6); ++static SENSOR_DEVICE_ATTR(in5_label, S_IRUGO, show_label, NULL, 6); ++static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_adc, NULL, 7); ++static SENSOR_DEVICE_ATTR(in6_label, S_IRUGO, show_label, NULL, 7); ++static SENSOR_DEVICE_ATTR(in7_input, S_IRUGO, show_adc, NULL, 8); ++static SENSOR_DEVICE_ATTR(in7_label, S_IRUGO, show_label, NULL, 8); ++static SENSOR_DEVICE_ATTR(in8_input, S_IRUGO, show_adc, NULL, 9); ++static SENSOR_DEVICE_ATTR(in8_label, S_IRUGO, show_label, NULL, 9); ++static SENSOR_DEVICE_ATTR(in9_input, S_IRUGO, show_adc, NULL, 10); ++static SENSOR_DEVICE_ATTR(in9_label, S_IRUGO, show_label, NULL, 10); ++static SENSOR_DEVICE_ATTR(in10_input, S_IRUGO, show_adc, NULL, 11); ++static SENSOR_DEVICE_ATTR(in10_label, S_IRUGO, show_label, NULL, 11); ++static SENSOR_DEVICE_ATTR(in11_input, S_IRUGO, show_adc, NULL, 12); ++static SENSOR_DEVICE_ATTR(in11_label, S_IRUGO, show_label, NULL, 12); ++static SENSOR_DEVICE_ATTR(in12_input, S_IRUGO, show_adc, NULL, 13); ++static SENSOR_DEVICE_ATTR(in12_label, S_IRUGO, show_label, NULL, 13); ++ ++static SENSOR_DEVICE_ATTR(fan0_point0, S_IRUGO | S_IWUSR, show_adc, store_fan, 14); ++static SENSOR_DEVICE_ATTR(fan0_point1, S_IRUGO | S_IWUSR, show_adc, store_fan, 15); ++static SENSOR_DEVICE_ATTR(fan0_point2, S_IRUGO | S_IWUSR, show_adc, store_fan, 16); ++static SENSOR_DEVICE_ATTR(fan0_point3, S_IRUGO | S_IWUSR, show_adc, store_fan, 17); ++static SENSOR_DEVICE_ATTR(fan0_point4, S_IRUGO | S_IWUSR, show_adc, store_fan, 18); ++static SENSOR_DEVICE_ATTR(fan0_point5, S_IRUGO | S_IWUSR, show_adc, store_fan, 19); ++ ++static struct attribute *gsp_attributes[] = { ++ &sensor_dev_attr_temp0_input.dev_attr.attr, ++ &sensor_dev_attr_in0_input.dev_attr.attr, ++ &sensor_dev_attr_in1_input.dev_attr.attr, ++ &sensor_dev_attr_in2_input.dev_attr.attr, ++ &sensor_dev_attr_in3_input.dev_attr.attr, ++ &sensor_dev_attr_in4_input.dev_attr.attr, ++ &sensor_dev_attr_in5_input.dev_attr.attr, ++ &sensor_dev_attr_in6_input.dev_attr.attr, ++ &sensor_dev_attr_in7_input.dev_attr.attr, ++ &sensor_dev_attr_in8_input.dev_attr.attr, ++ &sensor_dev_attr_in9_input.dev_attr.attr, ++ &sensor_dev_attr_in10_input.dev_attr.attr, ++ &sensor_dev_attr_in11_input.dev_attr.attr, ++ &sensor_dev_attr_in12_input.dev_attr.attr, ++ ++ &sensor_dev_attr_temp0_label.dev_attr.attr, ++ &sensor_dev_attr_in0_label.dev_attr.attr, ++ &sensor_dev_attr_in1_label.dev_attr.attr, ++ &sensor_dev_attr_in2_label.dev_attr.attr, ++ &sensor_dev_attr_in3_label.dev_attr.attr, ++ &sensor_dev_attr_in4_label.dev_attr.attr, ++ &sensor_dev_attr_in5_label.dev_attr.attr, ++ &sensor_dev_attr_in6_label.dev_attr.attr, ++ &sensor_dev_attr_in7_label.dev_attr.attr, ++ &sensor_dev_attr_in8_label.dev_attr.attr, ++ &sensor_dev_attr_in9_label.dev_attr.attr, ++ &sensor_dev_attr_in10_label.dev_attr.attr, ++ &sensor_dev_attr_in11_label.dev_attr.attr, ++ &sensor_dev_attr_in12_label.dev_attr.attr, ++ ++ &sensor_dev_attr_fan0_point0.dev_attr.attr, ++ &sensor_dev_attr_fan0_point1.dev_attr.attr, ++ &sensor_dev_attr_fan0_point2.dev_attr.attr, ++ &sensor_dev_attr_fan0_point3.dev_attr.attr, ++ &sensor_dev_attr_fan0_point4.dev_attr.attr, ++ &sensor_dev_attr_fan0_point5.dev_attr.attr, ++ NULL ++}; ++ ++ ++static int gsp_probe(struct i2c_client *client, ++ const struct i2c_device_id *id) ++{ ++ struct i2c_adapter *adapter = client->adapter; ++ struct gsp_data *data; ++ int err; ++ ++ if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA | ++ I2C_FUNC_SMBUS_WORD_DATA)) { ++ err = -EOPNOTSUPP; ++ goto exit; ++ } ++ ++ if (!(data = kzalloc(sizeof(struct gsp_data), GFP_KERNEL))) { ++ err = -ENOMEM; ++ goto exit; ++ } ++ ++ i2c_set_clientdata(client, data); ++ ++ data->type = id->driver_data; ++ ++ switch (data->type) { ++ case 0: ++ data->attrs.attrs = gsp_attributes; ++ break; ++ } ++ ++ dev_info(&client->dev, "%s chip found\n", client->name); ++ ++ /* Register sysfs hooks */ ++ if ((err = sysfs_create_group(&client->dev.kobj, &data->attrs))) ++ goto exit_free; ++ ++ data->hwmon_dev = hwmon_device_register(&client->dev); ++ if (IS_ERR(data->hwmon_dev)) { ++ err = PTR_ERR(data->hwmon_dev); ++ goto exit_remove; ++ } ++ ++ return 0; ++ ++exit_remove: ++ sysfs_remove_group(&client->dev.kobj, &data->attrs); ++exit_free: ++ kfree(data); ++exit: ++ return err; ++} ++ ++static int gsp_remove(struct i2c_client *client) ++{ ++ struct gsp_data *data = i2c_get_clientdata(client); ++ hwmon_device_unregister(data->hwmon_dev); ++ sysfs_remove_group(&client->dev.kobj, &data->attrs); ++ kfree(data); ++ return 0; ++} ++ ++static int __init gsp_init(void) ++{ ++ return i2c_add_driver(&gsp_driver); ++} ++ ++static void __exit gsp_exit(void) ++{ ++ i2c_del_driver(&gsp_driver); ++} ++ ++module_init(gsp_init); ++module_exit(gsp_exit); ++ ++MODULE_AUTHOR("Chris Lang <clang@gateworks.com>"); ++MODULE_DESCRIPTION("GSP HWMON driver"); ++MODULE_LICENSE("GPL"); ++MODULE_VERSION(DRV_VERSION); ++ diff --git a/target/linux/cns3xxx/patches-3.3/200-dwc_otg.patch b/target/linux/cns3xxx/patches-3.3/200-dwc_otg.patch new file mode 100644 index 0000000..b53e508 --- /dev/null +++ b/target/linux/cns3xxx/patches-3.3/200-dwc_otg.patch @@ -0,0 +1,22702 @@ +--- a/drivers/Makefile ++++ b/drivers/Makefile +@@ -70,6 +70,7 @@ obj-$(CONFIG_PARIDE) += block/paride/ + obj-$(CONFIG_TC) += tc/ + obj-$(CONFIG_UWB) += uwb/ + obj-$(CONFIG_USB_OTG_UTILS) += usb/ ++obj-$(CONFIG_USB_DWC_OTG) += usb/dwc/ + obj-$(CONFIG_USB) += usb/ + obj-$(CONFIG_PCI) += usb/ + obj-$(CONFIG_USB_GADGET) += usb/ +--- a/drivers/usb/Kconfig ++++ b/drivers/usb/Kconfig +@@ -134,6 +134,8 @@ source "drivers/usb/musb/Kconfig" + + source "drivers/usb/renesas_usbhs/Kconfig" + ++source "drivers/usb/dwc/Kconfig" ++ + source "drivers/usb/class/Kconfig" + + source "drivers/usb/storage/Kconfig" +--- /dev/null ++++ b/drivers/usb/dwc/Kconfig +@@ -0,0 +1,44 @@ ++# ++# USB Dual Role (OTG-ready) Controller Drivers ++# for silicon based on Synopsys DesignWare IP ++# ++ ++comment "Enable Host or Gadget support for DesignWare OTG controller" ++depends on !USB && USB_GADGET=n ++ ++config USB_DWC_OTG ++ tristate "Synopsys DWC OTG Controller" ++ depends on USB ++ help ++ This driver provides USB Device Controller support for the ++ Synopsys DesignWare USB OTG Core used on the Cavium CNS34xx SOC. ++ ++config DWC_DEBUG ++ bool "Enable DWC Debugging" ++ depends on USB_DWC_OTG ++ default n ++ help ++ Enable DWC driver debugging ++ ++choice ++ prompt "DWC Mode Selection" ++ depends on USB_DWC_OTG ++ default DWC_HOST_ONLY ++ help ++ Select the DWC Core in OTG, Host only, or Device only mode. ++ ++config DWC_HOST_ONLY ++ bool "DWC Host Only Mode" ++ ++config DWC_OTG_MODE ++ bool "DWC OTG Mode" ++ select USB_GADGET ++ select USB_GADGET_SELECTED ++ ++config DWC_DEVICE_ONLY ++ bool "DWC Device Only Mode" ++ select USB_GADGET ++ select USB_GADGET_SELECTED ++ ++endchoice ++ +--- /dev/null ++++ b/drivers/usb/dwc/Makefile +@@ -0,0 +1,26 @@ ++# ++# Makefile for DWC_otg Highspeed USB controller driver ++# ++ ++EXTRA_CFLAGS += -DDWC_HS_ELECT_TST ++#EXTRA_CFLAGS += -Dlinux -DDWC_HS_ELECT_TST ++#EXTRA_CFLAGS += -DDWC_EN_ISOC ++ ++ifneq ($(CONFIG_DWC_HOST_ONLY),) ++EXTRA_CFLAGS += -DDWC_HOST_ONLY ++endif ++ ++ifneq ($(CONFIG_DWC_DEVICE_ONLY),) ++EXTRA_CFLAGS += -DDWC_DEVICE_ONLY ++endif ++ ++ifneq ($(CONFIG_DWC_DEBUG),) ++EXTRA_CFLAGS += -DDEBUG ++endif ++ ++obj-$(CONFIG_USB_DWC_OTG) := dwc_otg.o ++ ++dwc_otg-objs := otg_driver.o otg_attr.o ++dwc_otg-objs += otg_cil.o otg_cil_intr.o ++dwc_otg-objs += otg_pcd.o otg_pcd_intr.o ++dwc_otg-objs += otg_hcd.o otg_hcd_intr.o otg_hcd_queue.o +--- /dev/null ++++ b/drivers/usb/dwc/otg_attr.c +@@ -0,0 +1,886 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $ ++ * $Revision: #31 $ ++ * $Date: 2008/07/15 $ ++ * $Change: 1064918 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. The Linux driver attributes ++ * feature will be used to provide the Linux Diagnostic ++ * Interface. These attributes are accessed through sysfs. ++ */ ++ ++/** @page "Linux Module Attributes" ++ * ++ * The Linux module attributes feature is used to provide the Linux ++ * Diagnostic Interface. These attributes are accessed through sysfs. ++ * The diagnostic interface will provide access to the controller for ++ * bringing up the hardware and testing. ++ ++ ++ The following table shows the attributes. ++ <table> ++ <tr> ++ <td><b> Name</b></td> ++ <td><b> Description</b></td> ++ <td><b> Access</b></td> ++ </tr> ++ ++ <tr> ++ <td> mode </td> ++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hnpcapable </td> ++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srpcapable </td> ++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register. ++ Read returns the current value.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> hnp </td> ++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> srp </td> ++ <td> Initiates the Session Request Protocol. Read returns the status.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> buspower </td> ++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> bussuspend </td> ++ <td> Suspends the USB bus.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> busconnected </td> ++ <td> Gets the connection status of the bus</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> gotgctl </td> ++ <td> Gets or sets the Core Control Status Register.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gusbcfg </td> ++ <td> Gets or sets the Core USB Configuration Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> grxfsiz </td> ++ <td> Gets or sets the Receive FIFO Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gnptxfsiz </td> ++ <td> Gets or sets the non-periodic Transmit Size Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gpvndctl </td> ++ <td> Gets or sets the PHY Vendor Control Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> ggpio </td> ++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register ++ or sets the upper 16 bits.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> guid </td> ++ <td> Gets or sets the value of the User ID Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> gsnpsid </td> ++ <td> Gets the value of the Synopsys ID Regester</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> devspeed </td> ++ <td> Gets or sets the device speed setting in the DCFG register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> enumspeed </td> ++ <td> Gets the device enumeration Speed.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hptxfsiz </td> ++ <td> Gets the value of the Host Periodic Transmit FIFO</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hprt0 </td> ++ <td> Gets or sets the value in the Host Port Control and Status Register</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regoffset </td> ++ <td> Sets the register offset for the next Register Access</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regvalue </td> ++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> remote_wakeup </td> ++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote ++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote ++ Wakeup signalling bit in the Device Control Register is set for 1 ++ milli-second.</td> ++ <td> Read/Write</td> ++ </tr> ++ ++ <tr> ++ <td> regdump </td> ++ <td> Dumps the contents of core registers.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> spramdump </td> ++ <td> Dumps the contents of core registers.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcddump </td> ++ <td> Dumps the current HCD state.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> hcd_frrem </td> ++ <td> Shows the average value of the Frame Remaining ++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt ++ occurs. This can be used to determine the average interrupt latency. Also ++ shows the average Frame Remaining value for start_transfer and the "a" and ++ "b" sample points. The "a" and "b" sample points may be used during debugging ++ bto determine how long it takes to execute a section of the HCD code.</td> ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> rd_reg_test </td> ++ <td> Displays the time required to read the GNPTXFSIZ register many times ++ (the output shows the number of times the register is read). ++ <td> Read</td> ++ </tr> ++ ++ <tr> ++ <td> wr_reg_test </td> ++ <td> Displays the time required to write the GNPTXFSIZ register many times ++ (the output shows the number of times the register is written). ++ <td> Read</td> ++ </tr> ++ ++ </table> ++ ++ Example usage: ++ To get the current mode: ++ cat /sys/devices/lm0/mode ++ ++ To power down the USB: ++ echo 0 > /sys/devices/lm0/buspower ++ */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/platform_device.h> ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++#include <linux/version.h> ++ ++#include <asm/sizes.h> ++#include <asm/io.h> ++#include <asm/sizes.h> ++ ++#include "otg_plat.h" ++#include "otg_attr.h" ++#include "otg_driver.h" ++#include "otg_pcd.h" ++#include "otg_hcd.h" ++ ++/* ++ * MACROs for defining sysfs attribute ++ */ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ val = (val & (_mask_)) >> _shift_; \ ++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \ ++ const char *buf, size_t count) \ ++{ \ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t set = simple_strtoul(buf, NULL, 16); \ ++ uint32_t clear = set; \ ++ clear = ((~clear) << _shift_) & _mask_; \ ++ set = (set << _shift_) & _mask_; \ ++ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \ ++ dwc_modify_reg32(_addr_, clear, set); \ ++ return count; \ ++} ++ ++/* ++ * MACROs for defining sysfs attribute for 32-bit registers ++ */ ++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \ ++{ \ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t val; \ ++ val = dwc_read_reg32 (_addr_); \ ++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \ ++} ++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \ ++ const char *buf, size_t count) \ ++{ \ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t val = simple_strtoul(buf, NULL, 16); \ ++ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \ ++ dwc_write_reg32(_addr_, val); \ ++ return count; \ ++} ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store); ++ ++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \ ++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \ ++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL); ++ ++ ++/** @name Functions for Show/Store of Attributes */ ++/**@{*/ ++ ++/** ++ * Show the register offset of the Register Access. ++ */ ++static ssize_t regoffset_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset); ++} ++ ++/** ++ * Set the register offset for the next Register Access Read/Write ++ */ ++static ssize_t regoffset_store( struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, ++ size_t count ) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t offset = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x\n", offset); ++ if (offset < SZ_256K ) { ++ otg_dev->reg_offset = offset; ++ } ++ else { ++ dev_err( _dev, "invalid offset\n" ); ++ } ++ ++ return count; ++} ++DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store); ++ ++ ++/** ++ * Show the value of the register at the offset in the reg_offset ++ * attribute. ++ */ ++static ssize_t regvalue_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t val; ++ volatile uint32_t *addr; ++ ++ if (otg_dev->reg_offset != 0xFFFFFFFF && ++ 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ val = dwc_read_reg32( addr ); ++ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1, ++ "Reg@0x%06x = 0x%08x\n", ++ otg_dev->reg_offset, val); ++ } ++ else { ++ dev_err(_dev, "Invalid offset (0x%0x)\n", ++ otg_dev->reg_offset); ++ return sprintf(buf, "invalid offset\n" ); ++ } ++} ++ ++/** ++ * Store the value in the register at the offset in the reg_offset ++ * attribute. ++ * ++ */ ++static ssize_t regvalue_store( struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, ++ size_t count ) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ volatile uint32_t * addr; ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val); ++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) { ++ /* Calculate the address */ ++ addr = (uint32_t*)(otg_dev->reg_offset + ++ (uint8_t*)otg_dev->base); ++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr); ++ dwc_write_reg32( addr, val ); ++ } ++ else { ++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n", ++ otg_dev->reg_offset); ++ } ++ return count; ++} ++DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store); ++ ++/* ++ * Attributes ++ */ ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode"); ++ ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID"); ++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed"); ++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed"); ++ ++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ"); ++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0"); ++ ++ ++/** ++ * @todo Add code to initiate the HNP. ++ */ ++/** ++ * Show the HNP status bit ++ */ ++static ssize_t hnp_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs); ++} ++ ++/** ++ * Set the HNP Request bit ++ */ ++static ssize_t hnp_store( struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, ++ size_t count ) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl); ++ gotgctl_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.hnpreq = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store); ++ ++/** ++ * @todo Add code to initiate the SRP. ++ */ ++/** ++ * Show the SRP status bit ++ */ ++static ssize_t srp_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ gotgctl_data_t val; ++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl)); ++ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++ ++ ++ ++/** ++ * Set the SRP Request bit ++ */ ++static ssize_t srp_store( struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ dwc_otg_pcd_initiate_srp(otg_dev->pcd); ++#endif ++ return count; ++} ++DEVICE_ATTR(srp, 0644, srp_show, srp_store); ++ ++/** ++ * @todo Need to do more for power on/off? ++ */ ++/** ++ * Show the Bus Power status ++ */ ++static ssize_t buspower_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr); ++} ++ ++ ++/** ++ * Set the Bus Power status ++ */ ++static ssize_t buspower_store( struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, ++ size_t count ) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t on = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtpwr = on; ++ ++ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ ++ return count; ++} ++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store); ++ ++/** ++ * @todo Need to do more for suspend? ++ */ ++/** ++ * Show the Bus Suspend status ++ */ ++static ssize_t bussuspend_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ hprt0_data_t val; ++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0); ++ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp); ++} ++ ++/** ++ * Set the Bus Suspend status ++ */ ++static ssize_t bussuspend_store( struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, ++ size_t count ) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t in = simple_strtoul(buf, NULL, 16); ++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0; ++ hprt0_data_t mem; ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.prtsusp = in; ++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32); ++ dwc_write_reg32(addr, mem.d32); ++ return count; ++} ++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store); ++ ++/** ++ * Show the status of Remote Wakeup. ++ */ ++static ssize_t remote_wakeup_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++#ifndef DWC_HOST_ONLY ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ dctl_data_t val; ++ val.d32 = ++ dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl); ++ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n", ++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable); ++#else ++ return sprintf(buf, "Host Only Mode!\n"); ++#endif ++} ++/** ++ * Initiate a remote wakeup of the host. The Device control register ++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable ++ * flag is set. ++ * ++ */ ++static ssize_t remote_wakeup_store( struct device *_dev, ++ struct device_attribute *attr, ++ const char *buf, ++ size_t count ) ++{ ++#ifndef DWC_HOST_ONLY ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t val = simple_strtoul(buf, NULL, 16); ++ if (val&1) { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1); ++ } ++ else { ++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0); ++ } ++#endif ++ return count; ++} ++DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show, ++ remote_wakeup_store); ++ ++/** ++ * Dump global registers and either host or device registers (depending on the ++ * current mode of the core). ++ */ ++static ssize_t regdump_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ dwc_otg_dump_global_registers( otg_dev->core_if); ++ if (dwc_otg_is_host_mode(otg_dev->core_if)) { ++ dwc_otg_dump_host_registers( otg_dev->core_if); ++ } else { ++ dwc_otg_dump_dev_registers( otg_dev->core_if); ++ ++ } ++ return sprintf( buf, "Register Dump\n" ); ++} ++ ++DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0); ++ ++/** ++ * Dump global registers and either host or device registers (depending on the ++ * current mode of the core). ++ */ ++static ssize_t spramdump_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ dwc_otg_dump_spram( otg_dev->core_if); ++ ++ return sprintf( buf, "SPRAM Dump\n" ); ++} ++ ++DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0); ++ ++/** ++ * Dump the current hcd state. ++ */ ++static ssize_t hcddump_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ dwc_otg_hcd_dump_state(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump\n" ); ++} ++ ++DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0); ++ ++/** ++ * Dump the average frame remaining at SOF. This can be used to ++ * determine average interrupt latency. Frame remaining is also shown for ++ * start transfer and two additional sample points. ++ */ ++static ssize_t hcd_frrem_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++#ifndef DWC_DEVICE_ONLY ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ dwc_otg_hcd_dump_frrem(otg_dev->hcd); ++#endif ++ return sprintf( buf, "HCD Dump Frame Remaining\n" ); ++} ++ ++DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0); ++ ++/** ++ * Displays the time required to read the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is read). ++ */ ++#define RW_REG_COUNT 10000000 ++#define MSEC_PER_JIFFIE 1000/HZ ++static ssize_t rd_reg_test_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ int i; ++ int time; ++ int start_jiffies; ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time ); ++} ++ ++DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0); ++ ++/** ++ * Displays the time required to write the GNPTXFSIZ register many times (the ++ * output shows the number of times the register is written). ++ */ ++static ssize_t wr_reg_test_show( struct device *_dev, ++ struct device_attribute *attr, ++ char *buf) ++{ ++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \ ++ uint32_t reg_val; ++ int i; ++ int time; ++ int start_jiffies; ++ ++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n", ++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy); ++ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz); ++ start_jiffies = jiffies; ++ for (i = 0; i < RW_REG_COUNT; i++) { ++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val); ++ } ++ time = jiffies - start_jiffies; ++ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n", ++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time); ++} ++ ++DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0); ++/**@}*/ ++ ++/** ++ * Create the device files ++ */ ++void dwc_otg_attr_create (struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ int error; ++ ++ error = device_create_file(dev, &dev_attr_regoffset); ++ error = device_create_file(dev, &dev_attr_regvalue); ++ error = device_create_file(dev, &dev_attr_mode); ++ error = device_create_file(dev, &dev_attr_hnpcapable); ++ error = device_create_file(dev, &dev_attr_srpcapable); ++ error = device_create_file(dev, &dev_attr_hnp); ++ error = device_create_file(dev, &dev_attr_srp); ++ error = device_create_file(dev, &dev_attr_buspower); ++ error = device_create_file(dev, &dev_attr_bussuspend); ++ error = device_create_file(dev, &dev_attr_busconnected); ++ error = device_create_file(dev, &dev_attr_gotgctl); ++ error = device_create_file(dev, &dev_attr_gusbcfg); ++ error = device_create_file(dev, &dev_attr_grxfsiz); ++ error = device_create_file(dev, &dev_attr_gnptxfsiz); ++ error = device_create_file(dev, &dev_attr_gpvndctl); ++ error = device_create_file(dev, &dev_attr_ggpio); ++ error = device_create_file(dev, &dev_attr_guid); ++ error = device_create_file(dev, &dev_attr_gsnpsid); ++ error = device_create_file(dev, &dev_attr_devspeed); ++ error = device_create_file(dev, &dev_attr_enumspeed); ++ error = device_create_file(dev, &dev_attr_hptxfsiz); ++ error = device_create_file(dev, &dev_attr_hprt0); ++ error = device_create_file(dev, &dev_attr_remote_wakeup); ++ error = device_create_file(dev, &dev_attr_regdump); ++ error = device_create_file(dev, &dev_attr_spramdump); ++ error = device_create_file(dev, &dev_attr_hcddump); ++ error = device_create_file(dev, &dev_attr_hcd_frrem); ++ error = device_create_file(dev, &dev_attr_rd_reg_test); ++ error = device_create_file(dev, &dev_attr_wr_reg_test); ++} ++ ++/** ++ * Remove the device files ++ */ ++void dwc_otg_attr_remove (struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ ++ device_remove_file(dev, &dev_attr_regoffset); ++ device_remove_file(dev, &dev_attr_regvalue); ++ device_remove_file(dev, &dev_attr_mode); ++ device_remove_file(dev, &dev_attr_hnpcapable); ++ device_remove_file(dev, &dev_attr_srpcapable); ++ device_remove_file(dev, &dev_attr_hnp); ++ device_remove_file(dev, &dev_attr_srp); ++ device_remove_file(dev, &dev_attr_buspower); ++ device_remove_file(dev, &dev_attr_bussuspend); ++ device_remove_file(dev, &dev_attr_busconnected); ++ device_remove_file(dev, &dev_attr_gotgctl); ++ device_remove_file(dev, &dev_attr_gusbcfg); ++ device_remove_file(dev, &dev_attr_grxfsiz); ++ device_remove_file(dev, &dev_attr_gnptxfsiz); ++ device_remove_file(dev, &dev_attr_gpvndctl); ++ device_remove_file(dev, &dev_attr_ggpio); ++ device_remove_file(dev, &dev_attr_guid); ++ device_remove_file(dev, &dev_attr_gsnpsid); ++ device_remove_file(dev, &dev_attr_devspeed); ++ device_remove_file(dev, &dev_attr_enumspeed); ++ device_remove_file(dev, &dev_attr_hptxfsiz); ++ device_remove_file(dev, &dev_attr_hprt0); ++ device_remove_file(dev, &dev_attr_remote_wakeup); ++ device_remove_file(dev, &dev_attr_regdump); ++ device_remove_file(dev, &dev_attr_spramdump); ++ device_remove_file(dev, &dev_attr_hcddump); ++ device_remove_file(dev, &dev_attr_hcd_frrem); ++ device_remove_file(dev, &dev_attr_rd_reg_test); ++ device_remove_file(dev, &dev_attr_wr_reg_test); ++} +--- /dev/null ++++ b/drivers/usb/dwc/otg_attr.h +@@ -0,0 +1,67 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $ ++ * $Revision: #7 $ ++ * $Date: 2005/03/28 $ ++ * $Change: 477051 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_ATTR_H__) ++#define __DWC_OTG_ATTR_H__ ++ ++/** @file ++ * This file contains the interface to the Linux device attributes. ++ */ ++extern struct device_attribute dev_attr_regoffset; ++extern struct device_attribute dev_attr_regvalue; ++ ++extern struct device_attribute dev_attr_mode; ++extern struct device_attribute dev_attr_hnpcapable; ++extern struct device_attribute dev_attr_srpcapable; ++extern struct device_attribute dev_attr_hnp; ++extern struct device_attribute dev_attr_srp; ++extern struct device_attribute dev_attr_buspower; ++extern struct device_attribute dev_attr_bussuspend; ++extern struct device_attribute dev_attr_busconnected; ++extern struct device_attribute dev_attr_gotgctl; ++extern struct device_attribute dev_attr_gusbcfg; ++extern struct device_attribute dev_attr_grxfsiz; ++extern struct device_attribute dev_attr_gnptxfsiz; ++extern struct device_attribute dev_attr_gpvndctl; ++extern struct device_attribute dev_attr_ggpio; ++extern struct device_attribute dev_attr_guid; ++extern struct device_attribute dev_attr_gsnpsid; ++extern struct device_attribute dev_attr_devspeed; ++extern struct device_attribute dev_attr_enumspeed; ++extern struct device_attribute dev_attr_hptxfsiz; ++extern struct device_attribute dev_attr_hprt0; ++ ++void dwc_otg_attr_create (struct platform_device *pdev); ++void dwc_otg_attr_remove (struct platform_device *pdev); ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc/otg_cil.c +@@ -0,0 +1,3831 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $ ++ * $Revision: #147 $ ++ * $Date: 2008/10/16 $ ++ * $Change: 1117667 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * The CIL manages the memory map for the core so that the HCD and PCD ++ * don't have to do this separately. It also handles basic tasks like ++ * reading/writing the registers and data FIFOs in the controller. ++ * Some of the data access functions provide encapsulation of several ++ * operations required to perform a task, such as writing multiple ++ * registers to start a transfer. Finally, the CIL performs basic ++ * services that are not specific to either the host or device modes ++ * of operation. These services include management of the OTG Host ++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A ++ * Diagnostic API is also provided to allow testing of the controller ++ * hardware. ++ * ++ * The Core Interface Layer has the following requirements: ++ * - Provides basic controller operations. ++ * - Minimal use of OS services. ++ * - The OS services used will be abstracted by using inline functions ++ * or macros. ++ * ++ */ ++#include <asm/unaligned.h> ++#include <linux/dma-mapping.h> ++#ifdef DEBUG ++#include <linux/jiffies.h> ++#endif ++ ++#include "otg_plat.h" ++#include "otg_regs.h" ++#include "otg_cil.h" ++#include "otg_pcd.h" ++ ++ ++/** ++ * This function is called to initialize the DWC_otg CSR data ++ * structures. The register addresses in the device and host ++ * structures are initialized from the base address supplied by the ++ * caller. The calling function must make the OS calls to get the ++ * base address of the DWC_otg controller registers. The core_params ++ * argument holds the parameters that specify how the core should be ++ * configured. ++ * ++ * @param[in] reg_base_addr Base address of DWC_otg core registers ++ * @param[in] core_params Pointer to the core configuration parameters ++ * ++ */ ++dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr, ++ dwc_otg_core_params_t *core_params) ++{ ++ dwc_otg_core_if_t *core_if = 0; ++ dwc_otg_dev_if_t *dev_if = 0; ++ dwc_otg_host_if_t *host_if = 0; ++ uint8_t *reg_base = (uint8_t *)reg_base_addr; ++ int i = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params); ++ ++ core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL); ++ ++ if (core_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n"); ++ return 0; ++ } ++ ++ memset(core_if, 0, sizeof(dwc_otg_core_if_t)); ++ ++ core_if->core_params = core_params; ++ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base; ++ ++ /* ++ * Allocate the Device Mode structures. ++ */ ++ dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL); ++ ++ if (dev_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n"); ++ kfree(core_if); ++ return 0; ++ } ++ ++ dev_if->dev_global_regs = ++ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET); ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) ++ { ++ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *) ++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ ++ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *) ++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET + ++ (i * DWC_EP_REG_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n", ++ i, &dev_if->in_ep_regs[i]->diepctl); ++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n", ++ i, &dev_if->out_ep_regs[i]->doepctl); ++ } ++ ++ dev_if->speed = 0; // unknown ++ ++ core_if->dev_if = dev_if; ++ ++ /* ++ * Allocate the Host Mode structures. ++ */ ++ host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL); ++ ++ if (host_if == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n"); ++ kfree(dev_if); ++ kfree(core_if); ++ return 0; ++ } ++ ++ host_if->host_global_regs = (dwc_otg_host_global_regs_t *) ++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET); ++ ++ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET); ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) ++ { ++ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *) ++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET + ++ (i * DWC_OTG_CHAN_REGS_OFFSET)); ++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n", ++ i, &host_if->hc_regs[i]->hcchar); ++ } ++ ++ host_if->num_host_channels = MAX_EPS_CHANNELS; ++ core_if->host_if = host_if; ++ ++ for (i=0; i<MAX_EPS_CHANNELS; i++) ++ { ++ core_if->data_fifo[i] = ++ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET + ++ (i * DWC_OTG_DATA_FIFO_SIZE)); ++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n", ++ i, (unsigned)core_if->data_fifo[i]); ++ } ++ ++ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET); ++ ++ /* ++ * Store the contents of the hardware configuration registers here for ++ * easy access later. ++ */ ++ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1); ++ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2); ++ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3); ++ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4); ++ ++ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32); ++ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32); ++ ++ core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); ++ core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); ++ ++ DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32); ++ DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32); ++ ++ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode); ++ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture); ++ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep); ++ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan); ++ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth); ++ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth); ++ ++ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth); ++ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width); ++ ++ /* ++ * Set the SRP sucess bit for FS-I2c ++ */ ++ core_if->srp_success = 0; ++ core_if->srp_timer_started = 0; ++ ++ ++ /* ++ * Create new workqueue and init works ++ */ ++ core_if->wq_otg = create_singlethread_workqueue("dwc_otg"); ++ if(core_if->wq_otg == 0) { ++ DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n"); ++ kfree(host_if); ++ kfree(dev_if); ++ kfree(core_if); ++ return 0 * HZ; ++ } ++ INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change); ++ INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected); ++ ++ return core_if; ++} ++ ++/** ++ * This function frees the structures allocated by dwc_otg_cil_init(). ++ * ++ * @param[in] core_if The core interface pointer returned from ++ * dwc_otg_cil_init(). ++ * ++ */ ++void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if) ++{ ++ /* Disable all interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0); ++ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0); ++ ++ if (core_if->wq_otg) { ++ destroy_workqueue(core_if->wq_otg); ++ } ++ if (core_if->dev_if) { ++ kfree(core_if->dev_if); ++ } ++ if (core_if->host_if) { ++ kfree(core_if->host_if); ++ } ++ kfree(core_if); ++} ++ ++/** ++ * This function enables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32); ++} ++ ++/** ++ * This function disables the controller's Global Interrupt in the AHB Config ++ * register. ++ * ++ * @param[in] core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ gahbcfg_data_t ahbcfg = { .d32 = 0}; ++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */ ++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0); ++} ++ ++/** ++ * This function initializes the commmon interrupts, used in both ++ * device and host modes. ++ * ++ * @param[in] core_if Programming view of the DWC_otg controller ++ * ++ */ ++static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ /* Clear any pending OTG Interrupts */ ++ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF); ++ ++ /* Clear any pending interrupts */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* ++ * Enable the interrupts in the GINTMSK. ++ */ ++ intr_mask.b.modemismatch = 1; ++ intr_mask.b.otgintr = 1; ++ ++ if (!core_if->dma_enable) { ++ intr_mask.b.rxstsqlvl = 1; ++ } ++ ++ intr_mask.b.conidstschng = 1; ++ intr_mask.b.wkupintr = 1; ++ intr_mask.b.disconnect = 1; ++ intr_mask.b.usbsuspend = 1; ++ intr_mask.b.sessreqintr = 1; ++ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32); ++} ++ ++/** ++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY ++ * type. ++ */ ++static void init_fslspclksel(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t val; ++ hcfg_data_t hcfg; ++ ++ if (((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) || ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* Full speed PHY */ ++ val = DWC_HCFG_48_MHZ; ++ } ++ else { ++ /* High speed PHY running at full speed or high speed */ ++ val = DWC_HCFG_30_60_MHZ; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val); ++ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg); ++ hcfg.b.fslspclksel = val; ++ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32); ++} ++ ++/** ++ * Initializes the DevSpd field of the DCFG register depending on the PHY type ++ * and the enumeration speed of the device. ++ */ ++static void init_devspd(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t val; ++ dcfg_data_t dcfg; ++ ++ if (((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) || ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* Full speed PHY */ ++ val = 0x3; ++ } ++ else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) { ++ /* High speed PHY running at full speed */ ++ val = 0x1; ++ } ++ else { ++ /* High speed PHY running at high speed */ ++ val = 0x0; ++ } ++ ++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val); ++ ++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); ++ dcfg.b.devspd = val; ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32); ++} ++ ++/** ++ * This function calculates the number of IN EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param core_if Programming view of the DWC_otg controller ++ */ ++static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t num_in_eps = 0; ++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3; ++ uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps; ++ int i; ++ ++ ++ for(i = 0; i < num_eps; ++i) ++ { ++ if(!(hwcfg1 & 0x1)) ++ num_in_eps++; ++ ++ hwcfg1 >>= 2; ++ } ++ ++ if(core_if->hwcfg4.b.ded_fifo_en) { ++ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps; ++ } ++ ++ return num_in_eps; ++} ++ ++ ++/** ++ * This function calculates the number of OUT EPS ++ * using GHWCFG1 and GHWCFG2 registers values ++ * ++ * @param core_if Programming view of the DWC_otg controller ++ */ ++static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t num_out_eps = 0; ++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep; ++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2; ++ int i; ++ ++ for(i = 0; i < num_eps; ++i) ++ { ++ if(!(hwcfg1 & 0x2)) ++ num_out_eps++; ++ ++ hwcfg1 >>= 2; ++ } ++ return num_out_eps; ++} ++/** ++ * This function initializes the DWC_otg controller registers and ++ * prepares the core for device mode or host mode operation. ++ * ++ * @param core_if Programming view of the DWC_otg controller ++ * ++ */ ++void dwc_otg_core_init(dwc_otg_core_if_t *core_if) ++{ ++ int i = 0; ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ gahbcfg_data_t ahbcfg = { .d32 = 0 }; ++ gusbcfg_data_t usbcfg = { .d32 = 0 }; ++ gi2cctl_data_t i2cctl = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if); ++ ++ /* Common Initialization */ ++ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++// usbcfg.b.tx_end_delay = 1; ++ /* Program the ULPI External VBUS bit if needed */ ++ usbcfg.b.ulpi_ext_vbus_drv = ++ (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0; ++ ++ /* Set external TS Dline pulsing */ ++ usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ ++ /* Reset the Controller */ ++ dwc_otg_core_reset(core_if); ++ ++ /* Initialize parameters from Hardware configuration registers. */ ++ dev_if->num_in_eps = calc_num_in_eps(core_if); ++ dev_if->num_out_eps = calc_num_out_eps(core_if); ++ ++ ++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep); ++ ++ for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) ++ { ++ dev_if->perio_tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n", ++ i, dev_if->perio_tx_fifo_size[i]); ++ } ++ ++ for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++) ++ { ++ dev_if->tx_fifo_size[i] = ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16; ++ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n", ++ i, dev_if->perio_tx_fifo_size[i]); ++ } ++ ++ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth; ++ core_if->rx_fifo_size = ++ dwc_read_reg32(&global_regs->grxfsiz); ++ core_if->nperio_tx_fifo_size = ++ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16; ++ ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size); ++ ++ /* This programming sequence needs to happen in FS mode before any other ++ * programming occurs */ ++ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) && ++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) { ++ /* If FS mode with FS PHY */ ++ ++ /* core_init() is now called on every switch so only call the ++ * following for the first time through. */ ++ if (!core_if->phy_init_done) { ++ core_if->phy_init_done = 1; ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.physel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after a PHY select */ ++ dwc_otg_core_reset(core_if); ++ } ++ ++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also ++ * do this on HNP Dev/Host mode switches (done in dev_init and ++ * host_init). */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ init_fslspclksel(core_if); ++ } ++ else { ++ init_devspd(core_if); ++ } ++ ++ if (core_if->core_params->i2c_enable) { ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n"); ++ /* Program GUSBCFG.OtgUtmifsSel to I2C */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.otgutmifssel = 1; ++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Program GI2CCTL.I2CEn */ ++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl); ++ i2cctl.b.i2cdevaddr = 1; ++ i2cctl.b.i2cen = 0; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ i2cctl.b.i2cen = 1; ++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32); ++ } ++ ++ } /* endif speed == DWC_SPEED_PARAM_FULL */ ++ ++ else { ++ /* High speed PHY. */ ++ if (!core_if->phy_init_done) { ++ core_if->phy_init_done = 1; ++ /* HS PHY parameters. These parameters are preserved ++ * during soft reset so only program the first time. Do ++ * a soft reset immediately after setting phyif. */ ++ usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type; ++ if (usbcfg.b.ulpi_utmi_sel == 1) { ++ /* ULPI interface */ ++ usbcfg.b.phyif = 0; ++ usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr; ++ } ++ else { ++ /* UTMI+ interface */ ++ if (core_if->core_params->phy_utmi_width == 16) { ++ usbcfg.b.phyif = 1; ++ } ++ else { ++ usbcfg.b.phyif = 0; ++ } ++ } ++ ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Reset after setting the PHY parameters */ ++ dwc_otg_core_reset(core_if); ++ } ++ } ++ ++ if ((core_if->hwcfg2.b.hs_phy_type == 2) && ++ (core_if->hwcfg2.b.fs_phy_type == 1) && ++ (core_if->core_params->ulpi_fs_ls)) { ++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n"); ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 1; ++ usbcfg.b.ulpi_clk_sus_m = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } ++ else { ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ usbcfg.b.ulpi_fsls = 0; ++ usbcfg.b.ulpi_clk_sus_m = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ } ++ ++ /* Program the GAHBCFG Register.*/ ++ switch (core_if->hwcfg2.b.architecture) { ++ ++ case DWC_SLAVE_ONLY_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n"); ++ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY; ++ core_if->dma_enable = 0; ++ core_if->dma_desc_enable = 0; ++ break; ++ ++ case DWC_EXT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n"); ++ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size; ++ core_if->dma_enable = (core_if->core_params->dma_enable != 0); ++ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0); ++ break; ++ ++ case DWC_INT_DMA_ARCH: ++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n"); ++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR; ++ core_if->dma_enable = (core_if->core_params->dma_enable != 0); ++ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0); ++ break; ++ ++ } ++ ahbcfg.b.dmaenable = core_if->dma_enable; ++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32); ++ ++ core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en; ++ ++ core_if->pti_enh_enable = core_if->core_params->pti_enable != 0; ++ core_if->multiproc_int_enable = core_if->core_params->mpi_enable; ++ DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled")); ++ DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled")); ++ ++ /* ++ * Program the GUSBCFG register. ++ */ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++ switch (core_if->hwcfg2.b.op_mode) { ++ case DWC_MODE_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = (core_if->core_params->otg_cap == ++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE); ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_SRP_ONLY_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_HNP_SRP_CAPABLE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ ++ case DWC_MODE_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = (core_if->core_params->otg_cap != ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE); ++ break; ++ ++ case DWC_MODE_NO_SRP_CAPABLE_HOST: ++ usbcfg.b.hnpcap = 0; ++ usbcfg.b.srpcap = 0; ++ break; ++ } ++ ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ ++ /* Enable common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* Do device or host intialization based on mode during PCD ++ * and HCD initialization */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n"); ++ core_if->op_state = A_HOST; ++ } ++ else { ++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n"); ++ core_if->op_state = B_PERIPHERAL; ++#ifdef DWC_DEVICE_ONLY ++ dwc_otg_core_dev_init(core_if); ++#endif ++ } ++} ++ ++ ++/** ++ * This function enables the Device mode interrupts. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* Enable interrupts */ ++ intr_mask.b.usbreset = 1; ++ intr_mask.b.enumdone = 1; ++ ++ if(!core_if->multiproc_int_enable) { ++ intr_mask.b.inepintr = 1; ++ intr_mask.b.outepintr = 1; ++ } ++ ++ intr_mask.b.erlysuspend = 1; ++ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.epmismatch = 1; ++ } ++ ++ ++#ifdef DWC_EN_ISOC ++ if(core_if->dma_enable) { ++ if(core_if->dma_desc_enable == 0) { ++ if(core_if->pti_enh_enable) { ++ dctl_data_t dctl = { .d32 = 0 }; ++ dctl.b.ifrmnum = 1; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32); ++ } else { ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++ } ++ } ++ } else { ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++ } ++#endif // DWC_EN_ISOC ++ ++/** @todo NGS: Should this be a module parameter? */ ++#ifdef USE_PERIODIC_EP ++ intr_mask.b.isooutdrop = 1; ++ intr_mask.b.eopframe = 1; ++ intr_mask.b.incomplisoin = 1; ++ intr_mask.b.incomplisoout = 1; ++#endif ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__, ++ dwc_read_reg32(&global_regs->gintmsk)); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * device mode. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if) ++{ ++ int i,size; ++ u_int32_t *default_value_array; ++ ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dwc_otg_core_params_t *params = core_if->core_params; ++ dcfg_data_t dcfg = { .d32 = 0}; ++ grstctl_t resetctl = { .d32 = 0 }; ++ uint32_t rx_fifo_size; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t txfifosize; ++ dthrctl_data_t dthrctl; ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(core_if->pcgcctl, 0); ++ ++ /* Device configuration register */ ++ init_devspd(core_if); ++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); ++ dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0; ++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80; ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); ++ ++ /* Configure data FIFO sizes */ ++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ rx_fifo_size = params->dev_rx_fifo_size; ++ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size); ++ ++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /** Set Periodic Tx FIFO Mask all bits 0 */ ++ core_if->p_tx_msk = 0; ++ ++ /** Set Tx FIFO Mask all bits 0 */ ++ core_if->tx_msk = 0; ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size; ++ ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n", ++ dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ if(core_if->en_multiple_tx_fifo == 0) { ++ //core_if->hwcfg4.b.ded_fifo_en==0 ++ ++ /**@todo NGS: Fix Periodic FIFO Sizing! */ ++ /* ++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_perio_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz array run from 0 to 14. ++ */ ++ /** @todo Finish debug of this */ ++ size=core_if->hwcfg4.b.num_dev_perio_in_ep; ++ default_value_array=params->dev_perio_tx_fifo_size; ++ ++ } ++ else { ++ //core_if->hwcfg4.b.ded_fifo_en==1 ++ /* ++ * Tx FIFOs These FIFOs are numbered from 1 to 15. ++ * Indexes of the FIFO size module parameters in the ++ * dev_tx_fifo_size array and the FIFO size registers in ++ * the dptxfsiz_dieptxf array run from 0 to 14. ++ */ ++ ++ size=core_if->hwcfg4.b.num_in_eps; ++ default_value_array=params->dev_tx_fifo_size; ++ ++ } ++ for (i=0; i < size; i++) ++ { ++ ++ txfifosize.b.depth = default_value_array[i]; ++ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i], ++ txfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i, ++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i])); ++ txfifosize.b.startaddr += txfifosize.b.depth; ++ } ++ } ++ /* Flush the FIFOs */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */ ++ dwc_otg_flush_rx_fifo(core_if); ++ ++ /* Flush the Learning Queue. */ ++ resetctl.b.intknqflsh = 1; ++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); ++ ++ /* Clear all pending Device Interrupts */ ++ ++ if(core_if->multiproc_int_enable) { ++ } ++ ++ /** @todo - if the condition needed to be checked ++ * or in any case all pending interrutps should be cleared? ++ */ ++ if(core_if->multiproc_int_enable) { ++ for(i = 0; i < core_if->dev_if->num_in_eps; ++i) { ++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0); ++ } ++ ++ for(i = 0; i < core_if->dev_if->num_out_eps; ++i) { ++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0); ++ } ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF); ++ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0); ++ } else { ++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0); ++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0); ++ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF); ++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0); ++ } ++ ++ for (i=0; i <= dev_if->num_in_eps; i++) ++ { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } ++ else { ++ depctl.d32 = 0; ++ } ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32); ++ ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0); ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF); ++ } ++ ++ for (i=0; i <= dev_if->num_out_eps; i++) ++ { ++ depctl_data_t depctl; ++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); ++ if (depctl.b.epena) { ++ depctl.d32 = 0; ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ } ++ else { ++ depctl.d32 = 0; ++ } ++ ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32); ++ ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0); ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0); ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF); ++ } ++ ++ if(core_if->en_multiple_tx_fifo && core_if->dma_enable) { ++ dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1; ++ dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1; ++ dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1; ++ ++ dev_if->rx_thr_length = params->rx_thr_length; ++ dev_if->tx_thr_length = params->tx_thr_length; ++ ++ dev_if->setup_desc_index = 0; ++ ++ dthrctl.d32 = 0; ++ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en; ++ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en; ++ dthrctl.b.tx_thr_len = dev_if->tx_thr_length; ++ dthrctl.b.rx_thr_en = dev_if->rx_thr_en; ++ dthrctl.b.rx_thr_len = dev_if->rx_thr_length; ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32); ++ ++ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n", ++ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len); ++ ++ } ++ ++ dwc_otg_enable_device_interrupts(core_if); ++ ++ { ++ diepmsk_data_t msk = { .d32 = 0 }; ++ msk.b.txfifoundrn = 1; ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32); ++ } else { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32); ++ } ++ } ++ ++ ++ if(core_if->multiproc_int_enable) { ++ /* Set NAK on Babble */ ++ dctl_data_t dctl = { .d32 = 0}; ++ dctl.b.nakonbble = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32); ++ } ++} ++ ++/** ++ * This function enables the Host mode interrupts. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__); ++ ++ /* Disable all interrupts. */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Clear any pending interrupts. */ ++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF); ++ ++ /* Enable the common interrupts */ ++ dwc_otg_enable_common_interrupts(core_if); ++ ++ /* ++ * Enable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32); ++} ++ ++/** ++ * This function disables the Host Mode interrupts. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ */ ++void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ gintmsk_data_t intr_mask = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__); ++ ++ /* ++ * Disable host mode interrupts without disturbing common ++ * interrupts. ++ */ ++ intr_mask.b.sofintr = 1; ++ intr_mask.b.portintr = 1; ++ intr_mask.b.hcintr = 1; ++ intr_mask.b.ptxfempty = 1; ++ intr_mask.b.nptxfempty = 1; ++ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++} ++ ++/** ++ * This function initializes the DWC_otg controller registers for ++ * host mode. ++ * ++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the ++ * request queues. Host channels are reset to ensure that they are ready for ++ * performing transfers. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ * ++ */ ++void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = core_if->host_if; ++ dwc_otg_core_params_t *params = core_if->core_params; ++ hprt0_data_t hprt0 = { .d32 = 0 }; ++ fifosize_data_t nptxfifosize; ++ fifosize_data_t ptxfifosize; ++ int i; ++ hcchar_data_t hcchar; ++ hcfg_data_t hcfg; ++ dwc_otg_hc_regs_t *hc_regs; ++ int num_channels; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if); ++ ++ /* Restart the Phy Clock */ ++ dwc_write_reg32(core_if->pcgcctl, 0); ++ ++ /* Initialize Host Configuration Register */ ++ init_fslspclksel(core_if); ++ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) ++ { ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ hcfg.b.fslssupp = 1; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32); ++ } ++ ++ /* Configure data FIFO sizes */ ++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) { ++ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size); ++ ++ /* Rx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size); ++ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz)); ++ ++ /* Non-periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size; ++ nptxfifosize.b.startaddr = params->host_rx_fifo_size; ++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz)); ++ ++ /* Periodic Tx FIFO */ ++ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ ptxfifosize.b.depth = params->host_perio_tx_fifo_size; ++ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth; ++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32); ++ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz)); ++ } ++ ++ /* Clear Host Set HNP Enable in the OTG Control Register */ ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0); ++ ++ /* Make sure the FIFOs are flushed. */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */); ++ dwc_otg_flush_rx_fifo(core_if); ++ ++ /* Flush out any leftover queued requests. */ ++ num_channels = core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) ++ { ++ hc_regs = core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ /* Halt all channels to put them into a known state. */ ++ for (i = 0; i < num_channels; i++) ++ { ++ int count = 0; ++ hc_regs = core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i); ++ do { ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (++count > 1000) ++ { ++ DWC_ERROR("%s: Unable to clear halt on channel %d\n", ++ __func__, i); ++ break; ++ } ++ } ++ while (hcchar.b.chen); ++ } ++ ++ /* Turn on the vbus power. */ ++ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state); ++ if (core_if->op_state == A_HOST) { ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr); ++ if (hprt0.b.prtpwr == 0) { ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(host_if->hprt0, hprt0.d32); ++ } ++ } ++ ++ dwc_otg_enable_host_interrupts(core_if); ++} ++ ++/** ++ * Prepares a host channel for transferring packets to/from a specific ++ * endpoint. The HCCHARn register is set up with the characteristics specified ++ * in _hc. Host channel interrupts that may need to be serviced while this ++ * transfer is in progress are enabled. ++ * ++ * @param core_if Programming view of DWC_otg controller ++ * @param hc Information needed to initialize the host channel ++ */ ++void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ uint32_t intr_enable; ++ hcintmsk_data_t hc_intr_mask; ++ gintmsk_data_t gintmsk = { .d32 = 0 }; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ ++ uint8_t hc_num = hc->hc_num; ++ dwc_otg_host_if_t *host_if = core_if->host_if; ++ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num]; ++ ++ /* Clear old interrupt conditions for this host channel. */ ++ hc_intr_mask.d32 = 0xFFFFFFFF; ++ hc_intr_mask.b.reserved = 0; ++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32); ++ ++ /* Enable channel interrupts required for this transfer. */ ++ hc_intr_mask.d32 = 0; ++ hc_intr_mask.b.chhltd = 1; ++ if (core_if->dma_enable) { ++ hc_intr_mask.b.ahberr = 1; ++ if (hc->error_state && !hc->do_split && ++ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ hc_intr_mask.b.ack = 1; ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.datatglerr = 1; ++ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) { ++ hc_intr_mask.b.nak = 1; ++ } ++ } ++ } ++ } ++ else { ++ switch (hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } ++ else { ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.nyet = 1; ++ if (hc->do_ping) { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (hc->do_split) { ++ hc_intr_mask.b.nak = 1; ++ if (hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ ++ if (hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ break; ++ case DWC_OTG_EP_TYPE_INTR: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.nak = 1; ++ hc_intr_mask.b.stall = 1; ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.datatglerr = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.bblerr = 1; ++ } ++ if (hc->error_state) { ++ hc_intr_mask.b.ack = 1; ++ } ++ if (hc->do_split) { ++ if (hc->complete_split) { ++ hc_intr_mask.b.nyet = 1; ++ } ++ else { ++ hc_intr_mask.b.ack = 1; ++ } ++ } ++ break; ++ case DWC_OTG_EP_TYPE_ISOC: ++ hc_intr_mask.b.xfercompl = 1; ++ hc_intr_mask.b.frmovrun = 1; ++ hc_intr_mask.b.ack = 1; ++ ++ if (hc->ep_is_in) { ++ hc_intr_mask.b.xacterr = 1; ++ hc_intr_mask.b.bblerr = 1; ++ } ++ break; ++ } ++ } ++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32); ++ ++// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in) ++// hc->max_packet = 512; ++ /* Enable the top level host channel interrupt. */ ++ intr_enable = (1 << hc_num); ++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable); ++ ++ /* Make sure host channel interrupts are enabled. */ ++ gintmsk.b.hcintr = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32); ++ ++ /* ++ * Program the HCCHARn register with the endpoint characteristics for ++ * the current transfer. ++ */ ++ hcchar.d32 = 0; ++ hcchar.b.devaddr = hc->dev_addr; ++ hcchar.b.epnum = hc->ep_num; ++ hcchar.b.epdir = hc->ep_is_in; ++ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW); ++ hcchar.b.eptype = hc->ep_type; ++ hcchar.b.mps = hc->max_packet; ++ ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum); ++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir); ++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev); ++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt); ++ ++ /* ++ * Program the HCSPLIT register for SPLITs ++ */ ++ hcsplt.d32 = 0; ++ if (hc->do_split) { ++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num, ++ hc->complete_split ? "CSPLIT" : "SSPLIT"); ++ hcsplt.b.compsplt = hc->complete_split; ++ hcsplt.b.xactpos = hc->xact_pos; ++ hcsplt.b.hubaddr = hc->hub_addr; ++ hcsplt.b.prtaddr = hc->port_addr; ++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split); ++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos); ++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr); ++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr); ++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in); ++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps); ++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len); ++ } ++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32); ++ ++} ++ ++/** ++ * Attempts to halt a host channel. This function should only be called in ++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under ++ * normal circumstances in DMA mode, the controller halts the channel when the ++ * transfer is complete or a condition occurs that requires application ++ * intervention. ++ * ++ * In slave mode, checks for a free request queue entry, then sets the Channel ++ * Enable and Channel Disable bits of the Host Channel Characteristics ++ * register of the specified channel to intiate the halt. If there is no free ++ * request queue entry, sets only the Channel Disable bit of the HCCHARn ++ * register to flush requests for this channel. In the latter case, sets a ++ * flag to indicate that the host channel needs to be halted when a request ++ * queue slot is open. ++ * ++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the ++ * HCCHARn register. The controller ensures there is space in the request ++ * queue before submitting the halt request. ++ * ++ * Some time may elapse before the core flushes any posted requests for this ++ * host channel and halts. The Channel Halted interrupt handler completes the ++ * deactivation of the host channel. ++ * ++ * @param core_if Controller register interface. ++ * @param hc Host channel to halt. ++ * @param halt_status Reason for halting the channel. ++ */ ++void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if, ++ dwc_hc_t *hc, ++ dwc_otg_halt_status_e halt_status) ++{ ++ gnptxsts_data_t nptxsts; ++ hptxsts_data_t hptxsts; ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_core_global_regs_t *global_regs; ++ dwc_otg_host_global_regs_t *host_global_regs; ++ ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ global_regs = core_if->core_global_regs; ++ host_global_regs = core_if->host_if->host_global_regs; ++ ++ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS); ++ ++ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Disable all channel interrupts except Ch Halted. The QTD ++ * and QH state associated with this transfer has been cleared ++ * (in the case of URB_DEQUEUE), so the channel needs to be ++ * shut down carefully to prevent crashes. ++ */ ++ hcintmsk_data_t hcintmsk; ++ hcintmsk.d32 = 0; ++ hcintmsk.b.chhltd = 1; ++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32); ++ ++ /* ++ * Make sure no other interrupts besides halt are currently ++ * pending. Handling another interrupt could cause a crash due ++ * to the QTD and QH state. ++ */ ++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32); ++ ++ /* ++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR ++ * even if the channel was already halted for some other ++ * reason. ++ */ ++ hc->halt_status = halt_status; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen == 0) { ++ /* ++ * The channel is either already halted or it hasn't ++ * started yet. In DMA mode, the transfer may halt if ++ * it finishes normally or a condition occurs that ++ * requires driver intervention. Don't want to halt ++ * the channel again. In either Slave or DMA mode, ++ * it's possible that the transfer has been assigned ++ * to a channel, but not started yet when an URB is ++ * dequeued. Don't want to halt a channel that hasn't ++ * started yet. ++ */ ++ return; ++ } ++ } ++ ++ if (hc->halt_pending) { ++ /* ++ * A halt has already been issued for this channel. This might ++ * happen when a transfer is aborted by a higher level in ++ * the stack. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n", ++ __func__, hc->hc_num); ++ ++/* dwc_otg_dump_global_registers(core_if); */ ++/* dwc_otg_dump_host_registers(core_if); */ ++#endif ++ return; ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 1; ++ ++ if (!core_if->dma_enable) { ++ /* Check for space in the request queue to issue the halt. */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (nptxsts.b.nptxqspcavail == 0) { ++ hcchar.b.chen = 0; ++ } ++ } ++ else { ++ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts); ++ if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) { ++ hcchar.b.chen = 0; ++ } ++ } ++ } ++ ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ hc->halt_status = halt_status; ++ ++ if (hcchar.b.chen) { ++ hc->halt_pending = 1; ++ hc->halt_on_queue = 0; ++ } ++ else { ++ hc->halt_on_queue = 1; ++ } ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32); ++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending); ++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status); ++ ++ return; ++} ++ ++/** ++ * Clears the transfer state for a host channel. This function is normally ++ * called after a transfer is done and the host channel is being released. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param hc Identifies the host channel to clean up. ++ */ ++void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ dwc_otg_hc_regs_t *hc_regs; ++ ++ hc->xfer_started = 0; ++ ++ /* ++ * Clear channel interrupt enables and any unhandled channel interrupt ++ * conditions. ++ */ ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ dwc_write_reg32(&hc_regs->hcintmsk, 0); ++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF); ++ ++#ifdef DEBUG ++ del_timer(&core_if->hc_xfer_timer[hc->hc_num]); ++ { ++ hcchar_data_t hcchar; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, hc->hc_num, hcchar.d32); ++ } ++ } ++#endif ++} ++ ++/** ++ * Sets the channel property that indicates in which frame a periodic transfer ++ * should occur. This is always set to the _next_ frame. This function has no ++ * effect on non-periodic transfers. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param hc Identifies the host channel to set up and its properties. ++ * @param hcchar Current value of the HCCHAR register for the specified host ++ * channel. ++ */ ++static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if, ++ dwc_hc_t *hc, ++ hcchar_data_t *hcchar) ++{ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hfnum_data_t hfnum; ++ hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum); ++ ++ /* 1 if _next_ frame is odd, 0 if it's even */ ++ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1; ++#ifdef DEBUG ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) { ++ switch (hfnum.b.frnum & 0x7) { ++ case 7: ++ core_if->hfnum_7_samples++; ++ core_if->hfnum_7_frrem_accum += hfnum.b.frrem; ++ break; ++ case 0: ++ core_if->hfnum_0_samples++; ++ core_if->hfnum_0_frrem_accum += hfnum.b.frrem; ++ break; ++ default: ++ core_if->hfnum_other_samples++; ++ core_if->hfnum_other_frrem_accum += hfnum.b.frrem; ++ break; ++ } ++ } ++#endif ++ } ++} ++ ++#ifdef DEBUG ++static void hc_xfer_timeout(unsigned long ptr) ++{ ++ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr; ++ int hc_num = xfer_info->hc->hc_num; ++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num); ++ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]); ++} ++#endif ++ ++/* ++ * This function does the setup for a data transfer for a host channel and ++ * starts the transfer. May be called in either Slave mode or DMA mode. In ++ * Slave mode, the caller must ensure that there is sufficient space in the ++ * request queue and Tx Data FIFO. ++ * ++ * For an OUT transfer in Slave mode, it loads a data packet into the ++ * appropriate FIFO. If necessary, additional data packets will be loaded in ++ * the Host ISR. ++ * ++ * For an IN transfer in Slave mode, a data packet is requested. The data ++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, ++ * additional data packets are requested in the Host ISR. ++ * ++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ ++ * register along with a packet count of 1 and the channel is enabled. This ++ * causes a single PING transaction to occur. Other fields in HCTSIZ are ++ * simply set to 0 since no data transfer occurs in this case. ++ * ++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with ++ * all the information required to perform the subsequent data transfer. In ++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the ++ * controller performs the entire PING protocol, then starts the data ++ * transfer. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param hc Information needed to initialize the host channel. The xfer_len ++ * value may be reduced to accommodate the max widths of the XferSize and ++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed ++ * to reflect the final xfer_len value. ++ */ ++void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ uint16_t num_packets; ++ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size; ++ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count; ++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ hctsiz.d32 = 0; ++ ++ if (hc->do_ping) { ++ if (!core_if->dma_enable) { ++ dwc_otg_hc_do_ping(core_if, hc); ++ hc->xfer_started = 1; ++ return; ++ } ++ else { ++ hctsiz.b.dopng = 1; ++ } ++ } ++ ++ if (hc->do_split) { ++ num_packets = 1; ++ ++ if (hc->complete_split && !hc->ep_is_in) { ++ /* For CSPLIT OUT Transfer, set the size to 0 so the ++ * core doesn't expect any data written to the FIFO */ ++ hc->xfer_len = 0; ++ } ++ else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) { ++ hc->xfer_len = hc->max_packet; ++ } ++ else if (!hc->ep_is_in && (hc->xfer_len > 188)) { ++ hc->xfer_len = 188; ++ } ++ ++ hctsiz.b.xfersize = hc->xfer_len; ++ } ++ else { ++ /* ++ * Ensure that the transfer length and packet count will fit ++ * in the widths allocated for them in the HCTSIZn register. ++ */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure the transfer size is no larger than one ++ * (micro)frame's worth of data. (A check was done ++ * when the periodic transfer was accepted to ensure ++ * that a (micro)frame's worth of data can be ++ * programmed into a channel.) ++ */ ++ uint32_t max_periodic_len = hc->multi_count * hc->max_packet; ++ if (hc->xfer_len > max_periodic_len) { ++ hc->xfer_len = max_periodic_len; ++ } ++ else { ++ } ++ } ++ else if (hc->xfer_len > max_hc_xfer_size) { ++ /* Make sure that xfer_len is a multiple of max packet size. */ ++ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1; ++ } ++ ++ if (hc->xfer_len > 0) { ++ num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet; ++ if (num_packets > max_hc_pkt_count) { ++ num_packets = max_hc_pkt_count; ++ hc->xfer_len = num_packets * hc->max_packet; ++ } ++ } ++ else { ++ /* Need 1 packet for transfer length of 0. */ ++ num_packets = 1; ++ } ++ ++#if 0 ++//host testusb item 10, would do series of Control transfer ++//with URB_SHORT_NOT_OK set in transfer_flags , ++//changing the xfer_len would cause the test fail ++ if (hc->ep_is_in) { ++ /* Always program an integral # of max packets for IN transfers. */ ++ hc->xfer_len = num_packets * hc->max_packet; ++ } ++#endif ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * Make sure that the multi_count field matches the ++ * actual transfer length. ++ */ ++ hc->multi_count = num_packets; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* Set up the initial PID for the transfer. */ ++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) { ++ if (hc->ep_is_in) { ++ if (hc->multi_count == 1) { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ else if (hc->multi_count == 2) { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ } ++ else { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA2; ++ } ++ } ++ else { ++ if (hc->multi_count == 1) { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ else { ++ hc->data_pid_start = DWC_OTG_HC_PID_MDATA; ++ } ++ } ++ } ++ else { ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0; ++ } ++ } ++ ++ hctsiz.b.xfersize = hc->xfer_len; ++ } ++ ++ hc->start_pkt_count = num_packets; ++ hctsiz.b.pktcnt = num_packets; ++ hctsiz.b.pid = hc->data_pid_start; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid); ++ ++ if (core_if->dma_enable) { ++ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff); ++ } ++ ++ /* Start the split */ ++ if (hc->do_split) { ++ hcsplt_data_t hcsplt; ++ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt); ++ hcsplt.b.spltena = 1; ++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32); ++ } ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.multicnt = hc->multi_count; ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++#ifdef DEBUG ++ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32; ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n", ++ __func__, hc->hc_num, hcchar.d32); ++ } ++#endif ++ ++ /* Set host channel enable after all other setup is complete. */ ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ hc->xfer_started = 1; ++ hc->requests++; ++ ++ if (!core_if->dma_enable && ++ !hc->ep_is_in && hc->xfer_len > 0) { ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(core_if, hc); ++ } ++ ++#ifdef DEBUG ++ /* Start a timer for this transfer. */ ++ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout; ++ core_if->hc_xfer_info[hc->hc_num].core_if = core_if; ++ core_if->hc_xfer_info[hc->hc_num].hc = hc; ++ core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]); ++ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10); ++ add_timer(&core_if->hc_xfer_timer[hc->hc_num]); ++#endif ++} ++ ++/** ++ * This function continues a data transfer that was started by previous call ++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is ++ * sufficient space in the request queue and Tx Data FIFO. This function ++ * should only be called in Slave mode. In DMA mode, the controller acts ++ * autonomously to complete transfers programmed to a host channel. ++ * ++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO ++ * if there is any data remaining to be queued. For an IN transfer, another ++ * data packet is always requested. For the SETUP phase of a control transfer, ++ * this function does nothing. ++ * ++ * @return 1 if a new request is queued, 0 if no more requests are required ++ * for this transfer. ++ */ ++int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ ++ if (hc->do_split) { ++ /* SPLITs always queue just once per channel */ ++ return 0; ++ } ++ else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ /* SETUPs are queued only once since they can't be NAKed. */ ++ return 0; ++ } ++ else if (hc->ep_is_in) { ++ /* ++ * Always queue another request for other IN transfers. If ++ * back-to-back INs are issued and NAKs are received for both, ++ * the driver may still be processing the first NAK when the ++ * second NAK is received. When the interrupt handler clears ++ * the NAK interrupt for the first NAK, the second NAK will ++ * not be seen. So we can't depend on the NAK interrupt ++ * handler to requeue a NAKed request. Instead, IN requests ++ * are issued each time this function is called. When the ++ * transfer completes, the extra requests for the channel will ++ * be flushed. ++ */ ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32); ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ hc->requests++; ++ return 1; ++ } ++ else { ++ /* OUT transfers. */ ++ if (hc->xfer_count < hc->xfer_len) { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ hcchar_data_t hcchar; ++ dwc_otg_hc_regs_t *hc_regs; ++ hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hc_set_even_odd_frame(core_if, hc, &hcchar); ++ } ++ ++ /* Load OUT packet into the appropriate Tx FIFO. */ ++ dwc_otg_hc_write_packet(core_if, hc); ++ hc->requests++; ++ return 1; ++ } ++ else { ++ return 0; ++ } ++ } ++} ++ ++/** ++ * Starts a PING transfer. This function should only be called in Slave mode. ++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled. ++ */ ++void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num]; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num); ++ ++ hctsiz.d32 = 0; ++ hctsiz.b.dopng = 1; ++ hctsiz.b.pktcnt = 1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.chen = 1; ++ hcchar.b.chdis = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++} ++ ++/* ++ * This function writes a packet into the Tx FIFO associated with the Host ++ * Channel. For a channel associated with a non-periodic EP, the non-periodic ++ * Tx FIFO is written. For a channel associated with a periodic EP, the ++ * periodic Tx FIFO is written. This function should only be called in Slave ++ * mode. ++ * ++ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by ++ * then number of bytes written to the Tx FIFO. ++ */ ++void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc) ++{ ++ uint32_t i; ++ uint32_t remaining_count; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ ++ uint32_t *data_buff = (uint32_t *)(hc->xfer_buff); ++ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num]; ++ ++ remaining_count = hc->xfer_len - hc->xfer_count; ++ if (remaining_count > hc->max_packet) { ++ byte_count = hc->max_packet; ++ } ++ else { ++ byte_count = remaining_count; ++ } ++ ++ dword_count = (byte_count + 3) / 4; ++ ++ if ((((unsigned long)data_buff) & 0x3) == 0) { ++ /* xfer_buff is DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) ++ { ++ dwc_write_reg32(data_fifo, *data_buff); ++ } ++ } ++ else { ++ /* xfer_buff is not DWORD aligned. */ ++ for (i = 0; i < dword_count; i++, data_buff++) ++ { ++ dwc_write_reg32(data_fifo, get_unaligned(data_buff)); ++ } ++ } ++ ++ hc->xfer_count += byte_count; ++ hc->xfer_buff += byte_count; ++} ++ ++/** ++ * Gets the current USB frame number. This is the frame number from the last ++ * SOF packet. ++ */ ++uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if) ++{ ++ dsts_data_t dsts; ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ /* read current frame/microframe number from DSTS register */ ++ return dsts.b.soffn; ++} ++ ++/** ++ * This function reads a setup packet from the Rx FIFO into the destination ++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl) ++ * Interrupt routine when a SETUP packet has been received in Slave mode. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dest Destination buffer for packet data. ++ */ ++void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest) ++{ ++ /* Get the 8 bytes of a setup transaction data */ ++ ++ /* Pop 2 DWORDS off the receive data FIFO into memory */ ++ dest[0] = dwc_read_reg32(core_if->data_fifo[0]); ++ dest[1] = dwc_read_reg32(core_if->data_fifo[0]); ++} ++ ++ ++/** ++ * This function enables EP0 OUT to receive SETUP packets and configures EP0 ++ * IN for transmitting packets. It is normally called when the ++ * "Enumeration Done" interrupt occurs. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP0 data. ++ */ ++void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dsts_data_t dsts; ++ depctl_data_t diepctl; ++ depctl_data_t doepctl; ++ dctl_data_t dctl = { .d32 = 0 }; ++ ++ /* Read the Device Status and Endpoint 0 Control registers */ ++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts); ++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl); ++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl); ++ ++ /* Set the MPS of the IN EP based on the enumeration speed */ ++ switch (dsts.b.enumspd) { ++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_64; ++ break; ++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: ++ diepctl.b.mps = DWC_DEP0CTL_MPS_8; ++ break; ++ } ++ ++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32); ++ ++ /* Enable OUT EP for receive */ ++ doepctl.b.epena = 1; ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); ++#endif ++ dctl.b.cgnpinnak = 1; ++ ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->dctl)); ++} ++ ++/** ++ * This function activates an EP. The Device EP control register for ++ * the EP is configured as defined in the ep structure. Note: This ++ * function is not used for EP0. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to activate. ++ */ ++void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ depctl_data_t depctl; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num, ++ (ep->is_in?"IN":"OUT")); ++ ++ /* Read DEPCTLn register */ ++ if (ep->is_in == 1) { ++ addr = &dev_if->in_ep_regs[ep->num]->diepctl; ++ daintmsk.ep.in = 1<<ep->num; ++ } ++ else { ++ addr = &dev_if->out_ep_regs[ep->num]->doepctl; ++ daintmsk.ep.out = 1<<ep->num; ++ } ++ ++ /* If the EP is already active don't change the EP Control ++ * register. */ ++ depctl.d32 = dwc_read_reg32(addr); ++ if (!depctl.b.usbactep) { ++ depctl.b.mps = ep->maxpacket; ++ depctl.b.eptype = ep->type; ++ depctl.b.txfnum = ep->tx_fifo_num; ++ ++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ depctl.b.setd0pid = 1; // ??? ++ } ++ else { ++ depctl.b.setd0pid = 1; ++ } ++ depctl.b.usbactep = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr)); ++ } ++ ++ /* Enable the Interrupt for this EP */ ++ if(core_if->multiproc_int_enable) { ++ if (ep->is_in == 1) { ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ diepmsk.b.xfercompl = 1; ++ diepmsk.b.timeout = 1; ++ diepmsk.b.epdisabled = 1; ++ diepmsk.b.ahberr = 1; ++ diepmsk.b.intknepmis = 1; ++ diepmsk.b.txfifoundrn = 1; //????? ++ ++ ++ if(core_if->dma_desc_enable) { ++ diepmsk.b.bna = 1; ++ } ++/* ++ if(core_if->dma_enable) { ++ doepmsk.b.nak = 1; ++ } ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32); ++ ++ } else { ++ doepmsk_data_t doepmsk = { .d32 = 0}; ++ doepmsk.b.xfercompl = 1; ++ doepmsk.b.ahberr = 1; ++ doepmsk.b.epdisabled = 1; ++ ++ ++ if(core_if->dma_desc_enable) { ++ doepmsk.b.bna = 1; ++ } ++/* ++ doepmsk.b.babble = 1; ++ doepmsk.b.nyet = 1; ++ doepmsk.b.nak = 1; ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32); ++ } ++ dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk, ++ 0, daintmsk.d32); ++ } else { ++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, ++ 0, daintmsk.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n", ++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk)); ++ ++ ep->stall_clear_flag = 0; ++ return; ++} ++ ++/** ++ * This function deactivates an EP. This is done by clearing the USB Active ++ * EP bit in the Device EP control register. Note: This function is not used ++ * for EP0. EP0 cannot be deactivated. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to deactivate. ++ */ ++void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ daint_data_t daintmsk = { .d32 = 0}; ++ ++ /* Read DEPCTLn register */ ++ if (ep->is_in == 1) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ daintmsk.ep.in = 1<<ep->num; ++ } ++ else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ daintmsk.ep.out = 1<<ep->num; ++ } ++ ++ //disabled ep only when ep is enabled ++ //or got halt in the loop in test in cv9 ++ depctl.d32=dwc_read_reg32(addr); ++ if(depctl.b.epena){ ++ if (ep->is_in == 1) { ++ diepint_data_t diepint; ++ dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num]; ++ ++ //Set ep nak ++ depctl.d32=dwc_read_reg32(&in_reg->diepctl); ++ depctl.b.snak=1; ++ dwc_write_reg32(&in_reg->diepctl,depctl.d32); ++ ++ //wait for diepint.b.inepnakeff ++ diepint.d32=dwc_read_reg32(&in_reg->diepint); ++ while(!diepint.b.inepnakeff){ ++ udelay(1); ++ diepint.d32=dwc_read_reg32(&in_reg->diepint); ++ } ++ diepint.d32=0; ++ diepint.b.inepnakeff=1; ++ dwc_write_reg32(&in_reg->diepint,diepint.d32); ++ ++ //set ep disable and snak ++ depctl.d32=dwc_read_reg32(&in_reg->diepctl); ++ depctl.b.snak=1; ++ depctl.b.epdis=1; ++ dwc_write_reg32(&in_reg->diepctl,depctl.d32); ++ ++ //wait for diepint.b.epdisabled ++ diepint.d32=dwc_read_reg32(&in_reg->diepint); ++ while(!diepint.b.epdisabled){ ++ udelay(1); ++ diepint.d32=dwc_read_reg32(&in_reg->diepint); ++ } ++ diepint.d32=0; ++ diepint.b.epdisabled=1; ++ dwc_write_reg32(&in_reg->diepint,diepint.d32); ++ ++ //clear ep enable and disable bit ++ depctl.d32=dwc_read_reg32(&in_reg->diepctl); ++ depctl.b.epena=0; ++ depctl.b.epdis=0; ++ dwc_write_reg32(&in_reg->diepctl,depctl.d32); ++ ++ } ++#if 0 ++//following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint, ++//but this doesn't work, the old code do. ++ else { ++ doepint_data_t doepint; ++ dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num]; ++ dctl_data_t dctl; ++ gintsts_data_t gintsts; ++ ++ //set dctl global out nak ++ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl); ++ dctl.b.sgoutnak=1; ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32); ++ ++ //wait for gintsts.goutnakeff ++ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts); ++ while(!gintsts.b.goutnakeff){ ++ udelay(1); ++ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts); ++ } ++ gintsts.d32=0; ++ gintsts.b.goutnakeff=1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ //set ep disable and snak ++ depctl.d32=dwc_read_reg32(&out_reg->doepctl); ++ depctl.b.snak=1; ++ depctl.b.epdis=1; ++ dwc_write_reg32(&out_reg->doepctl,depctl.d32); ++ ++ //wait for diepint.b.epdisabled ++ doepint.d32=dwc_read_reg32(&out_reg->doepint); ++ while(!doepint.b.epdisabled){ ++ udelay(1); ++ doepint.d32=dwc_read_reg32(&out_reg->doepint); ++ } ++ doepint.d32=0; ++ doepint.b.epdisabled=1; ++ dwc_write_reg32(&out_reg->doepint,doepint.d32); ++ ++ //clear ep enable and disable bit ++ depctl.d32=dwc_read_reg32(&out_reg->doepctl); ++ depctl.b.epena=0; ++ depctl.b.epdis=0; ++ dwc_write_reg32(&out_reg->doepctl,depctl.d32); ++ } ++#endif ++ ++ depctl.d32=0; ++ depctl.b.usbactep = 0; ++ ++ if (ep->is_in == 0) { ++ if(core_if->dma_enable||core_if->dma_desc_enable) ++ depctl.b.epdis = 1; ++ } ++ ++ dwc_write_reg32(addr, depctl.d32); ++ } ++ ++ /* Disable the Interrupt for this EP */ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk, ++ daintmsk.d32, 0); ++ ++ if (ep->is_in == 1) { ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0); ++ } else { ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0); ++ } ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk, ++ daintmsk.d32, 0); ++ } ++ ++ if (ep->is_in == 1) { ++ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n", ++ (u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl, ++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl), ++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz), ++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint), ++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma), ++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&core_if->core_global_regs->gintmsk)); ++ } ++ else { ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n", ++ (u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl, ++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl), ++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz), ++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint), ++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma)); ++ ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&core_if->core_global_regs->gintmsk)); ++ } ++ ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dma_desc_t* dma_desc; ++ uint32_t offset; ++ uint32_t xfer_est; ++ int i; ++ ++ ep->desc_cnt = ( ep->total_len / ep->maxxfer) + ++ ((ep->total_len % ep->maxxfer) ? 1 : 0); ++ if(!ep->desc_cnt) ++ ep->desc_cnt = 1; ++ ++ dma_desc = ep->desc_addr; ++ xfer_est = ep->total_len; ++ offset = 0; ++ for( i = 0; i < ep->desc_cnt; ++i) { ++ /** DMA Descriptor Setup */ ++ if(xfer_est > ep->maxxfer) { ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 0; ++ dma_desc->status.b.ioc = 0; ++ dma_desc->status.b.sp = 0; ++ dma_desc->status.b.bytes = ep->maxxfer; ++ dma_desc->buf = ep->dma_addr + offset; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ xfer_est -= ep->maxxfer; ++ offset += ep->maxxfer; ++ } else { ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ if(ep->is_in) { ++ dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ? ++ 1 : ((ep->sent_zlp) ? 1 : 0); ++ dma_desc->status.b.bytes = xfer_est; ++ } else { ++ dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ; ++ } ++ ++ dma_desc->buf = ep->dma_addr + offset; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ } ++ dma_desc ++; ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++ ++void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ deptsiz_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p\n", ++ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len, ++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff); ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[ep->num]; ++ ++ gnptxsts_data_t gtxstatus; ++ ++ gtxstatus.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ ++ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32); ++#endif ++ return; ++ } ++ ++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); ++ ++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ? ++ ep->maxxfer : (ep->total_len - ep->xfer_len); ++ ++ /* Zero Length Packet? */ ++ if ((ep->xfer_len - ep->xfer_count) == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } ++ else { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count; ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ } ++ ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { ++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); ++ } ++ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr); ++ ++ if (core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ init_dma_desc_chain(core_if, ep); ++ /** DIEPDMAn Register write */ ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr); ++ dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr); ++ } ++ } ++ else ++ { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ if(ep->type != DWC_OTG_EP_TYPE_ISOC) { ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, ++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, ++ * the data will be written into the fifo by the ISR. ++ */ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ ++ } ++ } ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl); ++ depctl.b.nextep = ep->num; ++ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n", ++ (u32)&in_regs->diepctl, ++ dwc_read_reg32(&in_regs->diepctl), ++ dwc_read_reg32(&in_regs->dieptsiz), ++ dwc_read_reg32(&in_regs->diepint), ++ dwc_read_reg32(&in_regs->diepdma), ++ dwc_read_reg32(&in_regs->dtxfsts)); ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&core_if->core_global_regs->gintmsk)); ++ ++ } ++ else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); ++ ++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ? ++ ep->maxxfer : (ep->total_len - ep->xfer_len); ++ ++ /* Program the transfer size and packet count as follows: ++ * ++ * pktcnt = N ++ * xfersize = N * maxpacket ++ */ ++ if ((ep->xfer_len - ep->xfer_count) == 0) { ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ } ++ else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count; ++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count; ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n", ++ ep->num, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (core_if->dma_enable) { ++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { ++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); ++ } ++ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ++ ep->num, ++ ep->dma_addr); ++ if (!core_if->dma_desc_enable) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ init_dma_desc_chain(core_if, ep); ++ ++ /** DOEPDMAn Register write */ ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr); ++ dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n", ++ (u32)&out_regs->doepctl, ++ dwc_read_reg32(&out_regs->doepctl), ++ dwc_read_reg32(&out_regs->doeptsiz), ++ dwc_read_reg32(&out_regs->doepint), ++ dwc_read_reg32(&out_regs->doepdma)); ++ ++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk), ++ dwc_read_reg32(&core_if->core_global_regs->gintmsk)); ++ } ++} ++ ++/** ++ * This function setup a zero length transfer in Buffer DMA and ++ * Slave modes for usb requests with zero field set ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ ++ depctl_data_t depctl; ++ deptsiz_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__); ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz)); ++ ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { ++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); ++ } ++ if (core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, ++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode, ++ * the data will be written into the fifo by the ISR. ++ */ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk = 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl); ++ depctl.b.nextep = ep->num; ++ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32); ++ ++ } ++ else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[ep->num]; ++ ++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl)); ++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz)); ++ ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ ++ if (core_if->dma_enable) { ++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { ++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); ++ } ++ if (!core_if->dma_desc_enable) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for EP0 and starts ++ * the transfer. For an IN transfer, the packets will be loaded into ++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are ++ * unloaded from the Rx FIFO in the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP0 data. ++ */ ++void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_dma_desc_t* dma_desc; ++ ++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d " ++ "xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n", ++ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len, ++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr); ++ ++ ep->total_len = ep->xfer_len; ++ ++ /* IN endpoint */ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[0]; ++ ++ gnptxsts_data_t gtxstatus; ++ ++ gtxstatus.d32 = ++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ ++ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) { ++#ifdef DEBUG ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n", ++ dwc_read_reg32(&in_regs->diepctl)); ++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n", ++ deptsiz.d32, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n", ++ gtxstatus.d32); ++#endif ++ return; ++ } ++ ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Zero Length Packet? */ ++ if (ep->xfer_len == 0) { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 1; ++ } ++ else { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ if (ep->xfer_len > ep->maxpacket) { ++ ep->xfer_len = ep->maxpacket; ++ deptsiz.b.xfersize = ep->maxpacket; ++ } ++ else { ++ deptsiz.b.xfersize = ep->xfer_len; ++ } ++ deptsiz.b.pktcnt = 1; ++ ++ } ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { ++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); ++ } ++ if(core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(in_regs->diepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ dma_desc = core_if->dev_if->in_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1; ++ dma_desc->status.b.bytes = ep->xfer_len; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DIEPDMA0 Register write */ ++ ++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr); ++ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!core_if->dma_enable) { ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk |= 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ } ++ } ++ } ++ else { ++ /* OUT endpoint */ ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[0]; ++ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); ++ ++ /* Program the transfer size and packet count as follows: ++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4)) ++ * pktcnt = N */ ++ /* Zero Length Packet */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ ++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if (core_if->dma_enable) { ++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) { ++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE); ++ } ++ if(!core_if->dma_desc_enable) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(out_regs->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ else { ++ dma_desc = core_if->dev_if->out_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.bytes = ep->maxpacket; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DOEPDMA0 Register write */ ++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr); ++ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr); ++ } ++ } ++ else { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ ++ /* EP enable */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32); ++ } ++} ++ ++/** ++ * This function continues control IN transfers started by ++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a ++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one ++ * bit for the packet count. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP0 data. ++ */ ++void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ deptsiz0_data_t deptsiz; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ dwc_otg_dma_desc_t* dma_desc; ++ ++ if (ep->is_in == 1) { ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[0]; ++ gnptxsts_data_t tx_status = { .d32 = 0 }; ++ ++ tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts); ++ /** @todo Should there be check for room in the Tx ++ * Status Queue. If not remove the code above this comment. */ ++ ++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl); ++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz); ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ ++ ++ if(core_if->dma_desc_enable == 0) { ++ deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket : ++ (ep->total_len - ep->xfer_count); ++ deptsiz.b.pktcnt = 1; ++ if(core_if->dma_enable == 0) { ++ ep->xfer_len += deptsiz.b.xfersize; ++ } else { ++ ep->xfer_len = deptsiz.b.xfersize; ++ } ++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32); ++ } ++ else { ++ ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket : ++ (ep->total_len - ep->xfer_count); ++ ++ dma_desc = core_if->dev_if->in_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1; ++ dma_desc->status.b.bytes = ep->xfer_len; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ ++ /** DIEPDMA0 Register write */ ++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr); ++ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr); ++ } ++ ++ ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { ++ if(core_if->dma_desc_enable == 0){ ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr); ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&in_regs->diepctl, depctl.d32); ++ ++ /** ++ * Enable the Non-Periodic Tx FIFO empty interrupt, the ++ * data will be written into the fifo by the ISR. ++ */ ++ if (!core_if->dma_enable) { ++ if(core_if->en_multiple_tx_fifo == 0) { ++ /* First clear it from GINTSTS */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ intr_mask.d32, intr_mask.d32); ++ ++ } ++ else { ++ /* Enable the Tx FIFO Empty Interrupt for this EP */ ++ if(ep->xfer_len > 0) { ++ uint32_t fifoemptymsk = 0; ++ fifoemptymsk |= 1 << ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ 0, fifoemptymsk); ++ } ++ } ++ } ++ } ++ else { ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[0]; ++ ++ ++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl); ++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz); ++ ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ep->maxpacket; ++ deptsiz.b.pktcnt = 1; ++ ++ ++ if(core_if->dma_desc_enable == 0) { ++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32); ++ } ++ else { ++ dma_desc = core_if->dev_if->out_desc_addr; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.bytes = ep->maxpacket; ++ dma_desc->buf = ep->dma_addr; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DOEPDMA0 Register write */ ++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr); ++ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr); ++ } ++ ++ ++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n", ++ ep->xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) { ++ if(core_if->dma_desc_enable == 0){ ++ ++ VERIFY_PCD_DMA_ADDR(ep->dma_addr); ++ dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr); ++ } ++ } ++ ++ /* EP enable, IN data in FIFO */ ++ depctl.b.cnak = 1; ++ depctl.b.epena = 1; ++ dwc_write_reg32(&out_regs->doepctl, depctl.d32); ++ ++ } ++} ++ ++#ifdef DEBUG ++void dump_msg(const u8 *buf, unsigned int length) ++{ ++ unsigned int start, num, i; ++ char line[52], *p; ++ ++ if (length >= 512) ++ return; ++ start = 0; ++ while (length > 0) { ++ num = min(length, 16u); ++ p = line; ++ for (i = 0; i < num; ++i) ++ { ++ if (i == 8) ++ *p++ = ' '; ++ sprintf(p, " %02x", buf[i]); ++ p += 3; ++ } ++ *p = 0; ++ DWC_PRINT("%6x: %s\n", start, line); ++ buf += num; ++ start += num; ++ length -= num; ++ } ++} ++#else ++static inline void dump_msg(const u8 *buf, unsigned int length) ++{ ++} ++#endif ++ ++/** ++ * This function writes a packet into the Tx FIFO associated with the ++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For ++ * periodic EPs the periodic Tx FIFO associated with the EP is written ++ * with all packets for the next micro-frame. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to write packet for. ++ * @param dma Indicates if DMA is being used. ++ */ ++void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma) ++{ ++ /** ++ * The buffer is padded to DWORD on a per packet basis in ++ * slave/dma mode if the MPS is not DWORD aligned. The last ++ * packet, if short, is also padded to a multiple of DWORD. ++ * ++ * ep->xfer_buff always starts DWORD aligned in memory and is a ++ * multiple of DWORD in length ++ * ++ * ep->xfer_len can be any number of bytes ++ * ++ * ep->xfer_count is a multiple of ep->maxpacket until the last ++ * packet ++ * ++ * FIFO access is DWORD */ ++ ++ uint32_t i; ++ uint32_t byte_count; ++ uint32_t dword_count; ++ uint32_t *fifo; ++ uint32_t *data_buff = (uint32_t *)ep->xfer_buff; ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep); ++ if (ep->xfer_count >= ep->xfer_len) { ++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num); ++ return; ++ } ++ ++ /* Find the byte length of the packet either short packet or MPS */ ++ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) { ++ byte_count = ep->xfer_len - ep->xfer_count; ++ } ++ else { ++ byte_count = ep->maxpacket; ++ } ++ ++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS ++ * is not a multiple of DWORD */ ++ dword_count = (byte_count + 3) / 4; ++ ++#ifdef VERBOSE ++ dump_msg(ep->xfer_buff, byte_count); ++#endif ++ ++ /**@todo NGS Where are the Periodic Tx FIFO addresses ++ * intialized? What should this be? */ ++ ++ fifo = core_if->data_fifo[ep->num]; ++ ++ ++ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count); ++ ++ if (!dma) { ++ for (i=0; i<dword_count; i++, data_buff++) { ++ dwc_write_reg32(fifo, *data_buff); ++ } ++ } ++ ++ ep->xfer_count += byte_count; ++ ep->xfer_buff += byte_count; ++ ep->dma_addr += byte_count; ++} ++ ++/** ++ * Set the EP STALL. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to set the stall on. ++ */ ++void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num, ++ (ep->is_in?"IN":"OUT")); ++ ++ DWC_PRINT("%s ep%d-%s\n", __func__, ep->num, ++ (ep->is_in?"in":"out")); ++ ++ if (ep->is_in == 1) { ++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the disable and stall bits */ ++#if 0 ++//epdis is set here but not cleared at latter dwc_otg_ep_clear_stall, ++//which cause the testusb item 13 failed(Host:pc, device: otg device) ++ if (depctl.b.epena) { ++ depctl.b.epdis = 1; ++ } ++#endif ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ } ++ else { ++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* set the stall bit */ ++ depctl.b.stall = 1; ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr)); ++ ++ return; ++} ++ ++/** ++ * Clear the EP STALL. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to clear stall from. ++ */ ++void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl; ++ volatile uint32_t *depctl_addr; ++ ++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num, ++ (ep->is_in?"IN":"OUT")); ++ ++ if (ep->is_in == 1) { ++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl); ++ } ++ else { ++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl); ++ } ++ ++ depctl.d32 = dwc_read_reg32(depctl_addr); ++ ++ /* clear the stall bits */ ++ depctl.b.stall = 0; ++ ++ /* ++ * USB Spec 9.4.5: For endpoints using data toggle, regardless ++ * of whether an endpoint has the Halt feature set, a ++ * ClearFeature(ENDPOINT_HALT) request always results in the ++ * data toggle being reinitialized to DATA0. ++ */ ++ if (ep->type == DWC_OTG_EP_TYPE_INTR || ++ ep->type == DWC_OTG_EP_TYPE_BULK) { ++ depctl.b.setd0pid = 1; /* DATA0 */ ++ } ++ ++ dwc_write_reg32(depctl_addr, depctl.d32); ++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr)); ++ return; ++} ++ ++/** ++ * This function reads a packet from the Rx FIFO into the destination ++ * buffer. To read SETUP data use dwc_otg_read_setup_packet. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dest Destination buffer for the packet. ++ * @param bytes Number of bytes to copy to the destination. ++ */ ++void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, ++ uint8_t *dest, ++ uint16_t bytes) ++{ ++ int i; ++ int word_count = (bytes + 3) / 4; ++ ++ volatile uint32_t *fifo = core_if->data_fifo[0]; ++ uint32_t *data_buff = (uint32_t *)dest; ++ ++ /** ++ * @todo Account for the case where _dest is not dword aligned. This ++ * requires reading data from the FIFO into a uint32_t temp buffer, ++ * then moving it into the data buffer. ++ */ ++ ++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__, ++ core_if, dest, bytes); ++ ++ for (i=0; i<word_count; i++, data_buff++) ++ { ++ *data_buff = dwc_read_reg32(fifo); ++ } ++ ++ return; ++} ++ ++ ++ ++/** ++ * This functions reads the device registers and prints them ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Device Global Registers\n"); ++ addr=&core_if->dev_if->dev_global_regs->dcfg; ++ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->dctl; ++ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->dsts; ++ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->diepmsk; ++ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->doepmsk; ++ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->daint; ++ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->daintmsk; ++ DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->dtknqr1; ++ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ if (core_if->hwcfg2.b.dev_token_q_depth > 6) { ++ addr=&core_if->dev_if->dev_global_regs->dtknqr2; ++ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++ addr=&core_if->dev_if->dev_global_regs->dvbusdis; ++ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ addr=&core_if->dev_if->dev_global_regs->dvbuspulse; ++ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n", ++ (uint32_t)addr,dwc_read_reg32(addr)); ++ ++ if (core_if->hwcfg2.b.dev_token_q_depth > 14) { ++ addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl; ++ DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n", ++ (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++/* ++ if (core_if->hwcfg2.b.dev_token_q_depth > 22) { ++ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; ++ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n", ++ (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++*/ ++ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk; ++ DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr)); ++ ++ addr=&core_if->dev_if->dev_global_regs->deachint; ++ DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->dev_global_regs->deachintmsk; ++ DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<= core_if->dev_if->num_in_eps; i++) { ++ addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i]; ++ DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++ ++ ++ for (i=0; i<= core_if->dev_if->num_out_eps; i++) { ++ addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i]; ++ DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr)); ++ } ++ ++ for (i=0; i<= core_if->dev_if->num_in_eps; i++) { ++ DWC_PRINT("Device IN EP %d Registers\n", i); ++ addr=&core_if->dev_if->in_ep_regs[i]->diepctl; ++ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->diepint; ++ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz; ++ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->diepdma; ++ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts; ++ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ //reading depdmab in non desc dma mode would halt the ahb bus... ++ if(core_if->dma_desc_enable){ ++ addr=&core_if->dev_if->in_ep_regs[i]->diepdmab; ++ DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ } ++ ++ ++ for (i=0; i<= core_if->dev_if->num_out_eps; i++) { ++ DWC_PRINT("Device OUT EP %d Registers\n", i); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepctl; ++ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepfn; ++ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepint; ++ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz; ++ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->dev_if->out_ep_regs[i]->doepdma; ++ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ //reading depdmab in non desc dma mode would halt the ahb bus... ++ if(core_if->dma_desc_enable){ ++ addr=&core_if->dev_if->out_ep_regs[i]->doepdmab; ++ DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ ++ } ++ ++ ++ ++ return; ++} ++ ++/** ++ * This functions reads the SPRAM and prints its content ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if) ++{ ++ volatile uint8_t *addr, *start_addr, *end_addr; ++ ++ DWC_PRINT("SPRAM Data:\n"); ++ start_addr = (void*)core_if->core_global_regs; ++ DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr); ++ start_addr += 0x00028000; ++ end_addr=(void*)core_if->core_global_regs; ++ end_addr += 0x000280e0; ++ ++ for(addr = start_addr; addr < end_addr; addr+=16) ++ { ++ DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr, ++ addr[0], ++ addr[1], ++ addr[2], ++ addr[3], ++ addr[4], ++ addr[5], ++ addr[6], ++ addr[7], ++ addr[8], ++ addr[9], ++ addr[10], ++ addr[11], ++ addr[12], ++ addr[13], ++ addr[14], ++ addr[15] ++ ); ++ } ++ ++ return; ++} ++/** ++ * This function reads the host registers and prints them ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Host Global Registers\n"); ++ addr=&core_if->host_if->host_global_regs->hcfg; ++ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->hfir; ++ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->hfnum; ++ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->hptxsts; ++ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->haint; ++ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->host_global_regs->haintmsk; ++ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=core_if->host_if->hprt0; ++ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ for (i=0; i<core_if->core_params->host_channels; i++) ++ { ++ DWC_PRINT("Host Channel %d Specific Registers\n", i); ++ addr=&core_if->host_if->hc_regs[i]->hcchar; ++ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcsplt; ++ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcint; ++ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcintmsk; ++ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hctsiz; ++ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->host_if->hc_regs[i]->hcdma; ++ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++ return; ++} ++ ++/** ++ * This function reads the core global registers and prints them ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if) ++{ ++ int i,size; ++ char* str; ++ volatile uint32_t *addr; ++ ++ DWC_PRINT("Core Global Registers\n"); ++ addr=&core_if->core_global_regs->gotgctl; ++ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gotgint; ++ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gahbcfg; ++ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gusbcfg; ++ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->grstctl; ++ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gintsts; ++ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gintmsk; ++ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->grxstsr; ++ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ //addr=&core_if->core_global_regs->grxstsp; ++ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->grxfsiz; ++ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gnptxfsiz; ++ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gnptxsts; ++ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gi2cctl; ++ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gpvndctl; ++ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ggpio; ++ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->guid; ++ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->gsnpsid; ++ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg1; ++ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg2; ++ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg3; ++ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->ghwcfg4; ++ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ addr=&core_if->core_global_regs->hptxfsiz; ++ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr)); ++ ++ size=(core_if->hwcfg4.b.ded_fifo_en)? ++ core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep; ++ str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ"; ++ for (i=0; i<size; i++) ++ { ++ addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i]; ++ DWC_PRINT("%s[%d] @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr)); ++ } ++} ++ ++/** ++ * Flush a Tx FIFO. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param num Tx FIFO to flush. ++ */ ++void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if, ++ const int num) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num); ++ ++ greset.b.txfflsh = 1; ++ greset.b.txfnum = num; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n", ++ __func__, greset.d32, ++ dwc_read_reg32(&global_regs->gnptxsts)); ++ break; ++ } ++ } ++ while (greset.b.txfflsh == 1); ++ ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Flush Rx FIFO. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__); ++ /* ++ * ++ */ ++ greset.b.rxfflsh = 1; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ } ++ while (greset.b.rxfflsh == 1); ++ ++ /* Wait for 3 PHY Clocks*/ ++ UDELAY(1); ++} ++ ++/** ++ * Do core a soft reset of the core. Be careful with this because it ++ * resets all the internal state machines of the core. ++ */ ++void dwc_otg_core_reset(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ volatile grstctl_t greset = { .d32 = 0}; ++ int count = 0; ++ ++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__); ++ /* Wait for AHB master IDLE state. */ ++ do { ++ UDELAY(10); ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 100000) { ++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ return; ++ } ++ } ++ while (greset.b.ahbidle == 0); ++ ++ /* Core Soft Reset */ ++ count = 0; ++ greset.b.csftrst = 1; ++ dwc_write_reg32(&global_regs->grstctl, greset.d32); ++ do { ++ greset.d32 = dwc_read_reg32(&global_regs->grstctl); ++ if (++count > 10000) { ++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__, ++ greset.d32); ++ break; ++ } ++ } ++ while (greset.b.csftrst == 1); ++ ++ /* Wait for 3 PHY Clocks*/ ++ MDELAY(100); ++ ++ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts)); ++ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts)); ++ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts)); ++ ++} ++ ++ ++ ++/** ++ * Register HCD callbacks. The callbacks are used to start and stop ++ * the HCD for interrupt processing. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param cb the HCD callback structure. ++ * @param p pointer to be passed to callback function (usb_hcd*). ++ */ ++void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if, ++ dwc_otg_cil_callbacks_t *cb, ++ void *p) ++{ ++ core_if->hcd_cb = cb; ++ cb->p = p; ++} ++ ++/** ++ * Register PCD callbacks. The callbacks are used to start and stop ++ * the PCD for interrupt processing. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param cb the PCD callback structure. ++ * @param p pointer to be passed to callback function (pcd*). ++ */ ++void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if, ++ dwc_otg_cil_callbacks_t *cb, ++ void *p) ++{ ++ core_if->pcd_cb = cb; ++ cb->p = p; ++} ++ ++#ifdef DWC_EN_ISOC ++ ++/** ++ * This function writes isoc data per 1 (micro)frame into tx fifo ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ dwc_otg_dev_in_ep_regs_t *ep_regs; ++ dtxfsts_data_t txstatus = {.d32 = 0}; ++ uint32_t len = 0; ++ uint32_t dwords; ++ ++ ep->xfer_len = ep->data_per_frame; ++ ep->xfer_count = 0; ++ ++ ep_regs = core_if->dev_if->in_ep_regs[ep->num]; ++ ++ len = ep->xfer_len - ep->xfer_count; ++ ++ if (len > ep->maxpacket) { ++ len = ep->maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ ++ /* While there is space in the queue and space in the FIFO and ++ * More data to tranfer, Write packets to the Tx FIFO */ ++ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32); ++ ++ while (txstatus.b.txfspcavail > dwords && ++ ep->xfer_count < ep->xfer_len && ++ ep->xfer_len != 0) { ++ /* Write the FIFO */ ++ dwc_otg_ep_write_packet(core_if, ep, 0); ++ ++ len = ep->xfer_len - ep->xfer_count; ++ if (len > ep->maxpacket) { ++ len = ep->maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32); ++ } ++} ++ ++ ++/** ++ * This function initializes a descriptor chain for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ depctl_data_t depctl = { .d32 = 0 }; ++ dsts_data_t dsts = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ ++ if(ep->is_in) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ } else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ } ++ ++ ep->xfer_len = ep->data_per_frame; ++ ep->xfer_count = 0; ++ ep->xfer_buff = ep->cur_pkt_addr; ++ ep->dma_addr = ep->cur_pkt_dma_addr; ++ ++ if(ep->is_in) { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.xfersize = ep->xfer_len; ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ deptsiz.b.mc = deptsiz.b.pktcnt; ++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ if (core_if->dma_enable) { ++ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr); ++ } ++ } else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; ++ ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32); ++ ++ if (core_if->dma_enable) { ++ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), ++ (uint32_t)ep->dma_addr); ++ } ++ } ++ ++ ++ /** Enable endpoint, clear nak */ ++ ++ depctl.d32 = 0; ++ if(ep->bInterval == 1) { ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ep->next_frame = dsts.b.soffn + ep->bInterval; ++ ++ if(ep->next_frame & 0x1) { ++ depctl.b.setd1pid = 1; ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ } else { ++ ep->next_frame += ep->bInterval; ++ ++ if(ep->next_frame & 0x1) { ++ depctl.b.setd1pid = 1; ++ } else { ++ depctl.b.setd0pid = 1; ++ } ++ } ++ depctl.b.epena = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(addr, 0, depctl.d32); ++ depctl.d32 = dwc_read_reg32(addr); ++ ++ if(ep->is_in && core_if->dma_enable == 0) { ++ write_isoc_frame_data(core_if, ep); ++ } ++ ++} ++ ++#endif //DWC_EN_ISOC +--- /dev/null ++++ b/drivers/usb/dwc/otg_cil.h +@@ -0,0 +1,1106 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $ ++ * $Revision: #91 $ ++ * $Date: 2008/09/19 $ ++ * $Change: 1099526 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_CIL_H__) ++#define __DWC_CIL_H__ ++ ++#include <linux/workqueue.h> ++#include <linux/version.h> ++#include <asm/param.h> ++//#include <asm/arch/regs-irq.h> ++ ++#include "otg_plat.h" ++#include "otg_regs.h" ++#ifdef DEBUG ++#include "linux/timer.h" ++#endif ++ ++/** ++ * @file ++ * This file contains the interface to the Core Interface Layer. ++ */ ++ ++ ++/** Macros defined for DWC OTG HW Release verison */ ++#define OTG_CORE_REV_2_00 0x4F542000 ++#define OTG_CORE_REV_2_60a 0x4F54260A ++#define OTG_CORE_REV_2_71a 0x4F54271A ++#define OTG_CORE_REV_2_72a 0x4F54272A ++ ++/** ++*/ ++typedef struct iso_pkt_info ++{ ++ uint32_t offset; ++ uint32_t length; ++ int32_t status; ++} iso_pkt_info_t; ++/** ++ * The <code>dwc_ep</code> structure represents the state of a single ++ * endpoint when acting in device mode. It contains the data items ++ * needed for an endpoint to be activated and transfer packets. ++ */ ++typedef struct dwc_ep ++{ ++ /** EP number used for register address lookup */ ++ uint8_t num; ++ /** EP direction 0 = OUT */ ++ unsigned is_in : 1; ++ /** EP active. */ ++ unsigned active : 1; ++ ++ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO ++ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/ ++ unsigned tx_fifo_num : 4; ++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */ ++ unsigned type : 2; ++#define DWC_OTG_EP_TYPE_CONTROL 0 ++#define DWC_OTG_EP_TYPE_ISOC 1 ++#define DWC_OTG_EP_TYPE_BULK 2 ++#define DWC_OTG_EP_TYPE_INTR 3 ++ ++ /** DATA start PID for INTR and BULK EP */ ++ unsigned data_pid_start : 1; ++ /** Frame (even/odd) for ISOC EP */ ++ unsigned even_odd_frame : 1; ++ /** Max Packet bytes */ ++ unsigned maxpacket : 11; ++ ++ /** Max Transfer size */ ++ unsigned maxxfer : 16; ++ ++ /** @name Transfer state */ ++ /** @{ */ ++ ++ /** ++ * Pointer to the beginning of the transfer buffer -- do not modify ++ * during transfer. ++ */ ++ ++ uint32_t dma_addr; ++ ++ uint32_t dma_desc_addr; ++ dwc_otg_dma_desc_t* desc_addr; ++ ++ ++ uint8_t *start_xfer_buff; ++ /** pointer to the transfer buffer */ ++ uint8_t *xfer_buff; ++ /** Number of bytes to transfer */ ++ unsigned xfer_len : 19; ++ /** Number of bytes transferred. */ ++ unsigned xfer_count : 19; ++ /** Sent ZLP */ ++ unsigned sent_zlp : 1; ++ /** Total len for control transfer */ ++ unsigned total_len : 19; ++ ++ /** stall clear flag */ ++ unsigned stall_clear_flag : 1; ++ ++ /** Allocated DMA Desc count */ ++ uint32_t desc_cnt; ++ ++ uint32_t aligned_dma_addr; ++ uint32_t aligned_buf_size; ++ uint8_t *aligned_buf; ++ ++ ++#ifdef DWC_EN_ISOC ++ /** ++ * Variables specific for ISOC EPs ++ * ++ */ ++ /** DMA addresses of ISOC buffers */ ++ uint32_t dma_addr0; ++ uint32_t dma_addr1; ++ ++ uint32_t iso_dma_desc_addr; ++ dwc_otg_dma_desc_t* iso_desc_addr; ++ ++ /** pointer to the transfer buffers */ ++ uint8_t *xfer_buff0; ++ uint8_t *xfer_buff1; ++ ++ /** number of ISOC Buffer is processing */ ++ uint32_t proc_buf_num; ++ /** Interval of ISOC Buffer processing */ ++ uint32_t buf_proc_intrvl; ++ /** Data size for regular frame */ ++ uint32_t data_per_frame; ++ ++ /* todo - pattern data support is to be implemented in the future */ ++ /** Data size for pattern frame */ ++ uint32_t data_pattern_frame; ++ /** Frame number of pattern data */ ++ uint32_t sync_frame; ++ ++ /** bInterval */ ++ uint32_t bInterval; ++ /** ISO Packet number per frame */ ++ uint32_t pkt_per_frm; ++ /** Next frame num for which will be setup DMA Desc */ ++ uint32_t next_frame; ++ /** Number of packets per buffer processing */ ++ uint32_t pkt_cnt; ++ /** Info for all isoc packets */ ++ iso_pkt_info_t *pkt_info; ++ /** current pkt number */ ++ uint32_t cur_pkt; ++ /** current pkt number */ ++ uint8_t *cur_pkt_addr; ++ /** current pkt number */ ++ uint32_t cur_pkt_dma_addr; ++#endif //DWC_EN_ISOC ++/** @} */ ++} dwc_ep_t; ++ ++/* ++ * Reasons for halting a host channel. ++ */ ++typedef enum dwc_otg_halt_status ++{ ++ DWC_OTG_HC_XFER_NO_HALT_STATUS, ++ DWC_OTG_HC_XFER_COMPLETE, ++ DWC_OTG_HC_XFER_URB_COMPLETE, ++ DWC_OTG_HC_XFER_ACK, ++ DWC_OTG_HC_XFER_NAK, ++ DWC_OTG_HC_XFER_NYET, ++ DWC_OTG_HC_XFER_STALL, ++ DWC_OTG_HC_XFER_XACT_ERR, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN, ++ DWC_OTG_HC_XFER_BABBLE_ERR, ++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR, ++ DWC_OTG_HC_XFER_AHB_ERR, ++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE, ++ DWC_OTG_HC_XFER_URB_DEQUEUE ++} dwc_otg_halt_status_e; ++ ++/** ++ * Host channel descriptor. This structure represents the state of a single ++ * host channel when acting in host mode. It contains the data items needed to ++ * transfer packets to an endpoint via a host channel. ++ */ ++typedef struct dwc_hc ++{ ++ /** Host channel number used for register address lookup */ ++ uint8_t hc_num; ++ ++ /** Device to access */ ++ unsigned dev_addr : 7; ++ ++ /** EP to access */ ++ unsigned ep_num : 4; ++ ++ /** EP direction. 0: OUT, 1: IN */ ++ unsigned ep_is_in : 1; ++ ++ /** ++ * EP speed. ++ * One of the following values: ++ * - DWC_OTG_EP_SPEED_LOW ++ * - DWC_OTG_EP_SPEED_FULL ++ * - DWC_OTG_EP_SPEED_HIGH ++ */ ++ unsigned speed : 2; ++#define DWC_OTG_EP_SPEED_LOW 0 ++#define DWC_OTG_EP_SPEED_FULL 1 ++#define DWC_OTG_EP_SPEED_HIGH 2 ++ ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - DWC_OTG_EP_TYPE_CONTROL: 0 ++ * - DWC_OTG_EP_TYPE_ISOC: 1 ++ * - DWC_OTG_EP_TYPE_BULK: 2 ++ * - DWC_OTG_EP_TYPE_INTR: 3 ++ */ ++ unsigned ep_type : 2; ++ ++ /** Max packet size in bytes */ ++ unsigned max_packet : 11; ++ ++ /** ++ * PID for initial transaction. ++ * 0: DATA0,<br> ++ * 1: DATA2,<br> ++ * 2: DATA1,<br> ++ * 3: MDATA (non-Control EP), ++ * SETUP (Control EP) ++ */ ++ unsigned data_pid_start : 2; ++#define DWC_OTG_HC_PID_DATA0 0 ++#define DWC_OTG_HC_PID_DATA2 1 ++#define DWC_OTG_HC_PID_DATA1 2 ++#define DWC_OTG_HC_PID_MDATA 3 ++#define DWC_OTG_HC_PID_SETUP 3 ++ ++ /** Number of periodic transactions per (micro)frame */ ++ unsigned multi_count: 2; ++ ++ /** @name Transfer State */ ++ /** @{ */ ++ ++ /** Pointer to the current transfer buffer position. */ ++ uint8_t *xfer_buff; ++ /** Total number of bytes to transfer. */ ++ uint32_t xfer_len; ++ /** Number of bytes transferred so far. */ ++ uint32_t xfer_count; ++ /** Packet count at start of transfer.*/ ++ uint16_t start_pkt_count; ++ ++ /** ++ * Flag to indicate whether the transfer has been started. Set to 1 if ++ * it has been started, 0 otherwise. ++ */ ++ uint8_t xfer_started; ++ ++ /** ++ * Set to 1 to indicate that a PING request should be issued on this ++ * channel. If 0, process normally. ++ */ ++ uint8_t do_ping; ++ ++ /** ++ * Set to 1 to indicate that the error count for this transaction is ++ * non-zero. Set to 0 if the error count is 0. ++ */ ++ uint8_t error_state; ++ ++ /** ++ * Set to 1 to indicate that this channel should be halted the next ++ * time a request is queued for the channel. This is necessary in ++ * slave mode if no request queue space is available when an attempt ++ * is made to halt the channel. ++ */ ++ uint8_t halt_on_queue; ++ ++ /** ++ * Set to 1 if the host channel has been halted, but the core is not ++ * finished flushing queued requests. Otherwise 0. ++ */ ++ uint8_t halt_pending; ++ ++ /** ++ * Reason for halting the host channel. ++ */ ++ dwc_otg_halt_status_e halt_status; ++ ++ /* ++ * Split settings for the host channel ++ */ ++ uint8_t do_split; /**< Enable split for the channel */ ++ uint8_t complete_split; /**< Enable complete split */ ++ uint8_t hub_addr; /**< Address of high speed hub */ ++ ++ uint8_t port_addr; /**< Port of the low/full speed device */ ++ /** Split transaction position ++ * One of the following values: ++ * - DWC_HCSPLIT_XACTPOS_MID ++ * - DWC_HCSPLIT_XACTPOS_BEGIN ++ * - DWC_HCSPLIT_XACTPOS_END ++ * - DWC_HCSPLIT_XACTPOS_ALL */ ++ uint8_t xact_pos; ++ ++ /** Set when the host channel does a short read. */ ++ uint8_t short_read; ++ ++ /** ++ * Number of requests issued for this channel since it was assigned to ++ * the current transfer (not counting PINGs). ++ */ ++ uint8_t requests; ++ ++ /** ++ * Queue Head for the transfer being processed by this channel. ++ */ ++ struct dwc_otg_qh *qh; ++ ++ /** @} */ ++ ++ /** Entry in list of host channels. */ ++ struct list_head hc_list_entry; ++} dwc_hc_t; ++ ++/** ++ * The following parameters may be specified when starting the module. These ++ * parameters define how the DWC_otg controller should be configured. ++ * Parameter values are passed to the CIL initialization function ++ * dwc_otg_cil_init. ++ */ ++typedef struct dwc_otg_core_params ++{ ++ int32_t opt; ++#define dwc_param_opt_default 1 ++ ++ /** ++ * Specifies the OTG capabilities. The driver will automatically ++ * detect the value for this parameter if none is specified. ++ * 0 - HNP and SRP capable (default) ++ * 1 - SRP Only capable ++ * 2 - No HNP/SRP capable ++ */ ++ int32_t otg_cap; ++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0 ++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1 ++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2 ++//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE ++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE ++ ++ /** ++ * Specifies whether to use slave or DMA mode for accessing the data ++ * FIFOs. The driver will automatically detect the value for this ++ * parameter if none is specified. ++ * 0 - Slave ++ * 1 - DMA (default, if available) ++ */ ++ int32_t dma_enable; ++#define dwc_param_dma_enable_default 1 ++ ++ /** ++ * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data ++ * FIFOs in device mode. The driver will automatically detect the value for this ++ * parameter if none is specified. ++ * 0 - address DMA ++ * 1 - DMA Descriptor(default, if available) ++ */ ++ int32_t dma_desc_enable; ++#define dwc_param_dma_desc_enable_default 0 ++ /** The DMA Burst size (applicable only for External DMA ++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32) ++ */ ++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */ ++//#define dwc_param_dma_burst_size_default 32 ++#define dwc_param_dma_burst_size_default 1 ++ ++ /** ++ * Specifies the maximum speed of operation in host and device mode. ++ * The actual speed depends on the speed of the attached device and ++ * the value of phy_type. The actual speed depends on the speed of the ++ * attached device. ++ * 0 - High Speed (default) ++ * 1 - Full Speed ++ */ ++ int32_t speed; ++#define dwc_param_speed_default 0 ++#define DWC_SPEED_PARAM_HIGH 0 ++#define DWC_SPEED_PARAM_FULL 1 ++ ++ /** Specifies whether low power mode is supported when attached ++ * to a Full Speed or Low Speed device in host mode. ++ * 0 - Don't support low power mode (default) ++ * 1 - Support low power mode ++ */ ++ int32_t host_support_fs_ls_low_power; ++#define dwc_param_host_support_fs_ls_low_power_default 0 ++ ++ /** Specifies the PHY clock rate in low power mode when connected to a ++ * Low Speed device in host mode. This parameter is applicable only if ++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS ++ * then defaults to 6 MHZ otherwise 48 MHZ. ++ * ++ * 0 - 48 MHz ++ * 1 - 6 MHz ++ */ ++ int32_t host_ls_low_power_phy_clk; ++#define dwc_param_host_ls_low_power_phy_clk_default 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0 ++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1 ++ ++ /** ++ * 0 - Use cC FIFO size parameters ++ * 1 - Allow dynamic FIFO sizing (default) ++ */ ++ int32_t enable_dynamic_fifo; ++#define dwc_param_enable_dynamic_fifo_default 1 ++ ++ /** Total number of 4-byte words in the data FIFO memory. This ++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic ++ * Tx FIFOs. ++ * 32 to 32768 (default 8192) ++ * Note: The total FIFO memory depth in the FPGA configuration is 8192. ++ */ ++ int32_t data_fifo_size; ++#define dwc_param_data_fifo_size_default 8192 ++ ++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1064) ++ */ ++ int32_t dev_rx_fifo_size; ++//#define dwc_param_dev_rx_fifo_size_default 1064 ++#define dwc_param_dev_rx_fifo_size_default 0x100 ++ ++ /** ++ * Specifies whether dedicated transmit FIFOs are ++ * enabled for non periodic IN endpoints in device mode ++ * 0 - No ++ * 1 - Yes ++ */ ++ int32_t en_multiple_tx_fifo; ++#define dwc_param_en_multiple_tx_fifo_default 1 ++ ++ /** Number of 4-byte words in each of the Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS]; ++//#define dwc_param_dev_tx_fifo_size_default 256 ++#define dwc_param_dev_tx_fifo_size_default 0x80 ++ ++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode ++ * when dynamic FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t dev_nperio_tx_fifo_size; ++//#define dwc_param_dev_nperio_tx_fifo_size_default 1024 ++#define dwc_param_dev_nperio_tx_fifo_size_default 0x80 ++ ++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device ++ * mode when dynamic FIFO sizing is enabled. ++ * 4 to 768 (default 256) ++ */ ++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++//#define dwc_param_dev_perio_tx_fifo_size_default 256 ++#define dwc_param_dev_perio_tx_fifo_size_default 0x80 ++ ++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_rx_fifo_size; ++//#define dwc_param_host_rx_fifo_size_default 1024 ++#define dwc_param_host_rx_fifo_size_default 0x292 ++ ++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode ++ * when Dynamic FIFO sizing is enabled in the core. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_nperio_tx_fifo_size; ++//#define dwc_param_host_nperio_tx_fifo_size_default 1024 ++//#define dwc_param_host_nperio_tx_fifo_size_default 0x292 ++#define dwc_param_host_nperio_tx_fifo_size_default 0x80 ++ ++ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic ++ * FIFO sizing is enabled. ++ * 16 to 32768 (default 1024) ++ */ ++ int32_t host_perio_tx_fifo_size; ++//#define dwc_param_host_perio_tx_fifo_size_default 1024 ++#define dwc_param_host_perio_tx_fifo_size_default 0x292 ++ ++ /** The maximum transfer size supported in bytes. ++ * 2047 to 65,535 (default 65,535) ++ */ ++ int32_t max_transfer_size; ++#define dwc_param_max_transfer_size_default 65535 ++ ++ /** The maximum number of packets in a transfer. ++ * 15 to 511 (default 511) ++ */ ++ int32_t max_packet_count; ++#define dwc_param_max_packet_count_default 511 ++ ++ /** The number of host channel registers to use. ++ * 1 to 16 (default 12) ++ * Note: The FPGA configuration supports a maximum of 12 host channels. ++ */ ++ int32_t host_channels; ++//#define dwc_param_host_channels_default 12 ++#define dwc_param_host_channels_default 16 ++ ++ /** The number of endpoints in addition to EP0 available for device ++ * mode operations. ++ * 1 to 15 (default 6 IN and OUT) ++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT ++ * endpoints in addition to EP0. ++ */ ++ int32_t dev_endpoints; ++//#define dwc_param_dev_endpoints_default 6 ++#define dwc_param_dev_endpoints_default 8 ++ ++ /** ++ * Specifies the type of PHY interface to use. By default, the driver ++ * will automatically detect the phy_type. ++ * ++ * 0 - Full Speed PHY ++ * 1 - UTMI+ (default) ++ * 2 - ULPI ++ */ ++ int32_t phy_type; ++#define DWC_PHY_TYPE_PARAM_FS 0 ++#define DWC_PHY_TYPE_PARAM_UTMI 1 ++#define DWC_PHY_TYPE_PARAM_ULPI 2 ++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI ++ ++ /** ++ * Specifies the UTMI+ Data Width. This parameter is ++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI ++ * PHY_TYPE, this parameter indicates the data width between ++ * the MAC and the ULPI Wrapper.) Also, this parameter is ++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set ++ * to "8 and 16 bits", meaning that the core has been ++ * configured to work at either data path width. ++ * ++ * 8 or 16 bits (default 16) ++ */ ++ int32_t phy_utmi_width; ++#define dwc_param_phy_utmi_width_default 16 ++ ++ /** ++ * Specifies whether the ULPI operates at double or single ++ * data rate. This parameter is only applicable if PHY_TYPE is ++ * ULPI. ++ * ++ * 0 - single data rate ULPI interface with 8 bit wide data ++ * bus (default) ++ * 1 - double data rate ULPI interface with 4 bit wide data ++ * bus ++ */ ++ int32_t phy_ulpi_ddr; ++#define dwc_param_phy_ulpi_ddr_default 0 ++ ++ /** ++ * Specifies whether to use the internal or external supply to ++ * drive the vbus with a ULPI phy. ++ */ ++ int32_t phy_ulpi_ext_vbus; ++#define DWC_PHY_ULPI_INTERNAL_VBUS 0 ++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1 ++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS ++ ++ /** ++ * Specifies whether to use the I2Cinterface for full speed PHY. This ++ * parameter is only applicable if PHY_TYPE is FS. ++ * 0 - No (default) ++ * 1 - Yes ++ */ ++ int32_t i2c_enable; ++#define dwc_param_i2c_enable_default 0 ++ ++ int32_t ulpi_fs_ls; ++#define dwc_param_ulpi_fs_ls_default 0 ++ ++ int32_t ts_dline; ++#define dwc_param_ts_dline_default 0 ++ ++ /** Thresholding enable flag- ++ * bit 0 - enable non-ISO Tx thresholding ++ * bit 1 - enable ISO Tx thresholding ++ * bit 2 - enable Rx thresholding ++ */ ++ uint32_t thr_ctl; ++#define dwc_param_thr_ctl_default 0 ++ ++ /** Thresholding length for Tx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t tx_thr_length; ++#define dwc_param_tx_thr_length_default 64 ++ ++ /** Thresholding length for Rx ++ * FIFOs in 32 bit DWORDs ++ */ ++ uint32_t rx_thr_length; ++#define dwc_param_rx_thr_length_default 64 ++ ++ /** Per Transfer Interrupt ++ * mode enable flag ++ * 1 - Enabled ++ * 0 - Disabled ++ */ ++ uint32_t pti_enable; ++#define dwc_param_pti_enable_default 0 ++ ++ /** Molti Processor Interrupt ++ * mode enable flag ++ * 1 - Enabled ++ * 0 - Disabled ++ */ ++ uint32_t mpi_enable; ++#define dwc_param_mpi_enable_default 0 ++ ++} dwc_otg_core_params_t; ++ ++#ifdef DEBUG ++struct dwc_otg_core_if; ++typedef struct hc_xfer_info ++{ ++ struct dwc_otg_core_if *core_if; ++ dwc_hc_t *hc; ++} hc_xfer_info_t; ++#endif ++ ++/** ++ * The <code>dwc_otg_core_if</code> structure contains information needed to manage ++ * the DWC_otg controller acting in either host or device mode. It ++ * represents the programming view of the controller as a whole. ++ */ ++typedef struct dwc_otg_core_if ++{ ++ /** Parameters that define how the core should be configured.*/ ++ dwc_otg_core_params_t *core_params; ++ ++ /** Core Global registers starting at offset 000h. */ ++ dwc_otg_core_global_regs_t *core_global_regs; ++ ++ /** Device-specific information */ ++ dwc_otg_dev_if_t *dev_if; ++ /** Host-specific information */ ++ dwc_otg_host_if_t *host_if; ++ ++ /** Value from SNPSID register */ ++ uint32_t snpsid; ++ ++ /* ++ * Set to 1 if the core PHY interface bits in USBCFG have been ++ * initialized. ++ */ ++ uint8_t phy_init_done; ++ ++ /* ++ * SRP Success flag, set by srp success interrupt in FS I2C mode ++ */ ++ uint8_t srp_success; ++ uint8_t srp_timer_started; ++ ++ /* Common configuration information */ ++ /** Power and Clock Gating Control Register */ ++ volatile uint32_t *pcgcctl; ++#define DWC_OTG_PCGCCTL_OFFSET 0xE00 ++ ++ /** Push/pop addresses for endpoints or host channels.*/ ++ uint32_t *data_fifo[MAX_EPS_CHANNELS]; ++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000 ++#define DWC_OTG_DATA_FIFO_SIZE 0x1000 ++ ++ /** Total RAM for FIFOs (Bytes) */ ++ uint16_t total_fifo_size; ++ /** Size of Rx FIFO (Bytes) */ ++ uint16_t rx_fifo_size; ++ /** Size of Non-periodic Tx FIFO (Bytes) */ ++ uint16_t nperio_tx_fifo_size; ++ ++ ++ /** 1 if DMA is enabled, 0 otherwise. */ ++ uint8_t dma_enable; ++ ++ /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */ ++ uint8_t dma_desc_enable; ++ ++ /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */ ++ uint8_t pti_enh_enable; ++ ++ /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */ ++ uint8_t multiproc_int_enable; ++ ++ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */ ++ uint8_t en_multiple_tx_fifo; ++ ++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in ++ * process of being queued */ ++ uint8_t queuing_high_bandwidth; ++ ++ /** Hardware Configuration -- stored here for convenience.*/ ++ hwcfg1_data_t hwcfg1; ++ hwcfg2_data_t hwcfg2; ++ hwcfg3_data_t hwcfg3; ++ hwcfg4_data_t hwcfg4; ++ ++ /** Host and Device Configuration -- stored here for convenience.*/ ++ hcfg_data_t hcfg; ++ dcfg_data_t dcfg; ++ ++ /** The operational State, during transations ++ * (a_host>>a_peripherial and b_device=>b_host) this may not ++ * match the core but allows the software to determine ++ * transitions. ++ */ ++ uint8_t op_state; ++ ++ /** ++ * Set to 1 if the HCD needs to be restarted on a session request ++ * interrupt. This is required if no connector ID status change has ++ * occurred since the HCD was last disconnected. ++ */ ++ uint8_t restart_hcd_on_session_req; ++ ++ /** HCD callbacks */ ++ /** A-Device is a_host */ ++#define A_HOST (1) ++ /** A-Device is a_suspend */ ++#define A_SUSPEND (2) ++ /** A-Device is a_peripherial */ ++#define A_PERIPHERAL (3) ++ /** B-Device is operating as a Peripheral. */ ++#define B_PERIPHERAL (4) ++ /** B-Device is operating as a Host. */ ++#define B_HOST (5) ++ ++ /** HCD callbacks */ ++ struct dwc_otg_cil_callbacks *hcd_cb; ++ /** PCD callbacks */ ++ struct dwc_otg_cil_callbacks *pcd_cb; ++ ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t p_tx_msk; ++ /** Device mode Periodic Tx FIFO Mask */ ++ uint32_t tx_msk; ++ ++ /** Workqueue object used for handling several interrupts */ ++ struct workqueue_struct *wq_otg; ++ ++ /** Work object used for handling "Connector ID Status Change" Interrupt */ ++ struct work_struct w_conn_id; ++ ++ /** Work object used for handling "Wakeup Detected" Interrupt */ ++ struct delayed_work w_wkp; ++ ++#ifdef DEBUG ++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS]; ++ ++ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS]; ++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS]; ++ ++ uint32_t hfnum_7_samples; ++ uint64_t hfnum_7_frrem_accum; ++ uint32_t hfnum_0_samples; ++ uint64_t hfnum_0_frrem_accum; ++ uint32_t hfnum_other_samples; ++ uint64_t hfnum_other_frrem_accum; ++#endif ++ ++ ++} dwc_otg_core_if_t; ++ ++/*We must clear S3C24XX_EINTPEND external interrupt register ++ * because after clearing in this register trigerred IRQ from ++ * H/W core in kernel interrupt can be occured again before OTG ++ * handlers clear all IRQ sources of Core registers because of ++ * timing latencies and Low Level IRQ Type. ++ */ ++ ++#ifdef CONFIG_MACH_IPMATE ++#define S3C2410X_CLEAR_EINTPEND() \ ++do { \ ++ if (!dwc_otg_read_core_intr(core_if)) { \ ++ __raw_writel(1UL << 11,S3C24XX_EINTPEND); \ ++ } \ ++} while (0) ++#else ++#define S3C2410X_CLEAR_EINTPEND() do { } while (0) ++#endif ++ ++/* ++ * The following functions are functions for works ++ * using during handling some interrupts ++ */ ++extern void w_conn_id_status_change(struct work_struct *p); ++extern void w_wakeup_detected(struct work_struct *p); ++ ++ ++/* ++ * The following functions support initialization of the CIL driver component ++ * and the DWC_otg controller. ++ */ ++extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr, ++ dwc_otg_core_params_t *_core_params); ++extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if ); ++ ++/** @name Device CIL Functions ++ * The following functions support managing the DWC_otg controller in device ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest); ++extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma); ++extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep); ++extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if); ++#ifdef DWC_EN_ISOC ++extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep); ++extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep); ++#endif //DWC_EN_ISOC ++/**@}*/ ++ ++/** @name Host CIL Functions ++ * The following functions support managing the DWC_otg controller in host ++ * mode. ++ */ ++/**@{*/ ++extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if, ++ dwc_hc_t *_hc, ++ dwc_otg_halt_status_e _halt_status); ++extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc); ++extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if); ++extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if); ++ ++/** ++ * This function Reads HPRT0 in preparation to modify. It keeps the ++ * WC bits 0 so that if they are read as 1, they won't clear when you ++ * write it back ++ */ ++static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if) ++{ ++ hprt0_data_t hprt0; ++ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0); ++ hprt0.b.prtena = 0; ++ hprt0.b.prtconndet = 0; ++ hprt0.b.prtenchng = 0; ++ hprt0.b.prtovrcurrchng = 0; ++ return hprt0.d32; ++} ++ ++extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if); ++/**@}*/ ++ ++/** @name Common CIL Functions ++ * The following functions support managing the DWC_otg controller in either ++ * device or host mode. ++ */ ++/**@{*/ ++ ++extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if, ++ uint8_t *dest, ++ uint16_t bytes); ++ ++extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if); ++ ++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if, ++ const int _num ); ++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if ); ++extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if ); ++ ++extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count); ++extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count); ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) & ++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk)); ++} ++ ++/** ++ * This function returns the OTG Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint)); ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the IN endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t v; ++ ++ if(core_if->multiproc_int_enable) { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk); ++ } else { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); ++ } ++ return (v & 0xffff); ++ ++} ++ ++/** ++ * This function reads the Device All Endpoints Interrupt register and ++ * returns the OUT endpoint interrupt bits. ++ */ ++static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t v; ++ ++ if(core_if->multiproc_int_enable) { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk); ++ } else { ++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) & ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk); ++ } ++ ++ return ((v & 0xffff0000) >> 16); ++} ++ ++/** ++ * This function returns the Device IN EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if, ++ dwc_ep_t *ep) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ uint32_t v, msk, emp; ++ ++ if(core_if->multiproc_int_enable) { ++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]); ++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ msk |= ((emp >> ep->num) & 0x1) << 7; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk; ++ } else { ++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk); ++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ msk |= ((emp >> ep->num) & 0x1) << 7; ++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk; ++ } ++ ++ ++ return v; ++} ++/** ++ * This function returns the Device OUT EP Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if, ++ dwc_ep_t *_ep) ++{ ++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if; ++ uint32_t v; ++ doepmsk_data_t msk = { .d32 = 0 }; ++ ++ if(_core_if->multiproc_int_enable) { ++ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]); ++ if(_core_if->pti_enh_enable) { ++ msk.b.pktdrpsts = 1; ++ } ++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32; ++ } else { ++ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk); ++ if(_core_if->pti_enh_enable) { ++ msk.b.pktdrpsts = 1; ++ } ++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32; ++ } ++ return v; ++} ++ ++/** ++ * This function returns the Host All Channel Interrupt register ++ */ ++static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint)); ++} ++ ++static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc) ++{ ++ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint)); ++} ++ ++ ++/** ++ * This function returns the mode of the operation, host or device. ++ * ++ * @return 0 - Device Mode, 1 - Host Mode ++ */ ++static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1); ++} ++ ++static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE); ++} ++static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if) ++{ ++ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE); ++} ++ ++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if ); ++ ++ ++/**@}*/ ++ ++/** ++ * DWC_otg CIL callback structure. This structure allows the HCD and ++ * PCD to register functions used for starting and stopping the PCD ++ * and HCD for role change on for a DRD. ++ */ ++typedef struct dwc_otg_cil_callbacks ++{ ++ /** Start function for role change */ ++ int (*start) (void *_p); ++ /** Stop Function for role change */ ++ int (*stop) (void *_p); ++ /** Disconnect Function for role change */ ++ int (*disconnect) (void *_p); ++ /** Resume/Remote wakeup Function */ ++ int (*resume_wakeup) (void *_p); ++ /** Suspend function */ ++ int (*suspend) (void *_p); ++ /** Session Start (SRP) */ ++ int (*session_start) (void *_p); ++ /** Pointer passed to start() and stop() */ ++ void *p; ++} dwc_otg_cil_callbacks_t; ++ ++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if, ++ dwc_otg_cil_callbacks_t *_cb, ++ void *_p); ++#ifndef warn ++#define warn printk ++#endif ++ ++#endif ++ +--- /dev/null ++++ b/drivers/usb/dwc/otg_cil_intr.c +@@ -0,0 +1,852 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $ ++ * $Revision: #10 $ ++ * $Date: 2008/07/16 $ ++ * $Change: 1065567 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * ++ * The Core Interface Layer provides basic services for accessing and ++ * managing the DWC_otg hardware. These services are used by both the ++ * Host Controller Driver and the Peripheral Controller Driver. ++ * ++ * This file contains the Common Interrupt handlers. ++ */ ++#include "otg_plat.h" ++#include "otg_regs.h" ++#include "otg_cil.h" ++#include "otg_pcd.h" ++ ++#ifdef DEBUG ++inline const char *op_state_str(dwc_otg_core_if_t *core_if) ++{ ++ return (core_if->op_state==A_HOST?"a_host": ++ (core_if->op_state==A_SUSPEND?"a_suspend": ++ (core_if->op_state==A_PERIPHERAL?"a_peripheral": ++ (core_if->op_state==B_PERIPHERAL?"b_peripheral": ++ (core_if->op_state==B_HOST?"b_host": ++ "unknown"))))); ++} ++#endif ++ ++/** This function will log a debug message ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n", ++ dwc_otg_mode(core_if) ? "Host" : "Device"); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.modemismatch = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++ ++/** Start the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_start(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->start) { ++ core_if->hcd_cb->start(core_if->hcd_cb->p); ++ } ++} ++/** Stop the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_stop(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->stop) { ++ core_if->hcd_cb->stop(core_if->hcd_cb->p); ++ } ++} ++/** Disconnect the HCD. Helper function for using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_disconnect(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->disconnect) { ++ core_if->hcd_cb->disconnect(core_if->hcd_cb->p); ++ } ++} ++/** Inform the HCD the a New Session has begun. Helper function for ++ * using the HCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void hcd_session_start(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->hcd_cb && core_if->hcd_cb->session_start) { ++ core_if->hcd_cb->session_start(core_if->hcd_cb->p); ++ } ++} ++ ++/** Start the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_start(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->start) { ++ core_if->pcd_cb->start(core_if->pcd_cb->p); ++ } ++} ++/** Stop the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_stop(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->stop) { ++ core_if->pcd_cb->stop(core_if->pcd_cb->p); ++ } ++} ++/** Suspend the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_suspend(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->suspend) { ++ core_if->pcd_cb->suspend(core_if->pcd_cb->p); ++ } ++} ++/** Resume the PCD. Helper function for using the PCD callbacks. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static inline void pcd_resume(dwc_otg_core_if_t *core_if) ++{ ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) { ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++ } ++} ++ ++/** ++ * This function handles the OTG Interrupts. It reads the OTG ++ * Interrupt Register (GOTGINT) to determine what interrupt has ++ * occurred. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ gotgint_data_t gotgint; ++ gotgctl_data_t gotgctl; ++ gintmsk_data_t gintmsk; ++ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32, ++ op_state_str(core_if)); ++ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32); ++ ++ if (gotgint.b.sesenddet) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session End Detected++ (%s)\n", ++ op_state_str(core_if)); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ ++ if (core_if->op_state == B_HOST) { ++ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_start(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ core_if->op_state = B_PERIPHERAL; ++ } else { ++ dwc_otg_pcd_t *pcd; ++ ++ /* If not B_HOST and Device HNP still set. HNP ++ * Did not succeed!*/ ++ if (gotgctl.b.devhnpen) { ++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n"); ++ DWC_ERROR("Device Not Connected/Responding!\n"); ++ } ++ ++ /* If Session End Detected the B-Cable has ++ * been disconnected. */ ++ /* Reset PCD and Gadget driver to a ++ * clean state. */ ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_stop(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ } ++ gotgctl.d32 = 0; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ if (gotgint.b.sesreqsucstschng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Session Reqeust Success Status Change++\n"); ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.sesreqscs) { ++ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->core_params->i2c_enable)) { ++ core_if->srp_success = 1; ++ } ++ else { ++ dwc_otg_pcd_t *pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_resume(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ /* Clear Session Request */ ++ gotgctl.d32 = 0; ++ gotgctl.b.sesreq = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, ++ gotgctl.d32, 0); ++ } ++ } ++ } ++ if (gotgint.b.hstnegsucstschng) { ++ /* Print statements during the HNP interrupt handling ++ * can cause it to fail.*/ ++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl); ++ if (gotgctl.b.hstnegscs) { ++ if (dwc_otg_is_host_mode(core_if)) { ++ dwc_otg_pcd_t *pcd; ++ ++ core_if->op_state = B_HOST; ++ /* ++ * Need to disable SOF interrupt immediately. ++ * When switching from device to host, the PCD ++ * interrupt handler won't handle the ++ * interrupt if host mode is already set. The ++ * HCD interrupt handler won't get called if ++ * the HCD state is HALT. This means that the ++ * interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_stop(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ hcd_start(core_if); ++ core_if->op_state = B_HOST; ++ } ++ } else { ++ gotgctl.d32 = 0; ++ gotgctl.b.hnpreq = 1; ++ gotgctl.b.devhnpen = 1; ++ dwc_modify_reg32(&global_regs->gotgctl, ++ gotgctl.d32, 0); ++ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n"); ++ DWC_ERROR("Device Not Connected/Responding\n"); ++ } ++ } ++ if (gotgint.b.hstnegdet) { ++ /* The disconnect interrupt is set at the same time as ++ * Host Negotiation Detected. During the mode ++ * switch all interrupts are cleared so the disconnect ++ * interrupt handler will not get executed. ++ */ ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Host Negotiation Detected++ (%s)\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Device")); ++ if (dwc_otg_is_device_mode(core_if)){ ++ dwc_otg_pcd_t *pcd; ++ ++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state); ++ hcd_disconnect(core_if); ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_start(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ core_if->op_state = A_PERIPHERAL; ++ } else { ++ dwc_otg_pcd_t *pcd; ++ ++ /* ++ * Need to disable SOF interrupt immediately. When ++ * switching from device to host, the PCD interrupt ++ * handler won't handle the interrupt if host mode is ++ * already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that ++ * the interrupt does not get handled and Linux ++ * complains loudly. ++ */ ++ gintmsk.d32 = 0; ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, ++ gintmsk.d32, 0); ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_stop(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ hcd_start(core_if); ++ core_if->op_state = A_HOST; ++ } ++ } ++ if (gotgint.b.adevtoutchng) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "A-Device Timeout Change++\n"); ++ } ++ if (gotgint.b.debdone) { ++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " ++ "Debounce Done++\n"); ++ } ++ ++ /* Clear GOTGINT */ ++ dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32); ++ ++ return 1; ++} ++ ++ ++void w_conn_id_status_change(struct work_struct *p) ++{ ++ dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id); ++ ++ uint32_t count = 0; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32); ++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts); ++ ++ /* B-Device connector (Device Mode) */ ++ if (gotgctl.b.conidsts) { ++ dwc_otg_pcd_t *pcd; ++ ++ /* Wait for switch to device mode. */ ++ while (!dwc_otg_is_device_mode(core_if)){ ++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ core_if->op_state = B_PERIPHERAL; ++ dwc_otg_core_init(core_if); ++ dwc_otg_enable_global_interrupts(core_if); ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_start(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ } else { ++ /* A-Device connector (Host Mode) */ ++ while (!dwc_otg_is_host_mode(core_if)) { ++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral")); ++ MDELAY(100); ++ if (++count > 10000) *(uint32_t*)NULL=0; ++ } ++ core_if->op_state = A_HOST; ++ /* ++ * Initialize the Core for Host mode. ++ */ ++ dwc_otg_core_init(core_if); ++ dwc_otg_enable_global_interrupts(core_if); ++ hcd_start(core_if); ++ } ++} ++ ++ ++/** ++ * This function handles the Connector ID Status Change Interrupt. It ++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this ++ * is a Device to Host Mode transition or a Host Mode to Device ++ * Transition. ++ * ++ * This only occurs when the cable is connected/removed from the PHY ++ * connector. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if) ++{ ++ ++ /* ++ * Need to disable SOF interrupt immediately. If switching from device ++ * to host, the PCD interrupt handler won't handle the interrupt if ++ * host mode is already set. The HCD interrupt handler won't get ++ * called if the HCD state is HALT. This means that the interrupt does ++ * not get handled and Linux complains loudly. ++ */ ++ gintmsk_data_t gintmsk = { .d32 = 0 }; ++ gintsts_data_t gintsts = { .d32 = 0 }; ++ ++ gintmsk.b.sofintr = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0); ++ ++ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Device")); ++ ++ /* ++ * Need to schedule a work, as there are possible DELAY function calls ++ */ ++ queue_work(core_if->wq_otg, &core_if->w_conn_id); ++ ++ /* Set flag and clear interrupt */ ++ gintsts.b.conidstschng = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device is initiating the Session ++ * Request Protocol to request the host to turn on bus power so a new ++ * session can begin. The handler responds by turning on bus power. If ++ * the DWC_otg controller is in low power mode, the handler brings the ++ * controller out of low power mode before turning on bus power. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if) ++{ ++ hprt0_data_t hprt0; ++ gintsts_data_t gintsts; ++ ++#ifndef DWC_HOST_ONLY ++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ DWC_PRINT("SRP: Device mode\n"); ++ } else { ++ DWC_PRINT("SRP: Host mode\n"); ++ ++ /* Turn on the port power bit. */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Start the Connection timer. So a message can be displayed ++ * if connect does not occur within 10 seconds. */ ++ hcd_session_start(core_if); ++ } ++#endif ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.sessreqintr = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++void w_wakeup_detected(struct work_struct *p) ++{ ++ struct delayed_work *dw = container_of(p, struct delayed_work, work); ++ dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp); ++ ++ /* ++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms ++ * so that OPT tests pass with all PHYs). ++ */ ++ hprt0_data_t hprt0 = {.d32=0}; ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32); ++// MDELAY(70); ++ hprt0.b.prtres = 0; /* Resume */ ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0)); ++} ++/** ++ * This interrupt indicates that the DWC_otg controller has detected a ++ * resume or remote wakeup sequence. If the DWC_otg controller is in ++ * low power mode, the handler must brings the controller out of low ++ * power mode. The controller automatically begins resume ++ * signaling. The handler schedules a time to stop resume signaling. ++ */ ++int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ dctl_data_t dctl = {.d32=0}; ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", ++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts)); ++#ifdef PARTIAL_POWER_DOWN ++ if (core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ ++ power.d32 = dwc_read_reg32(core_if->pcgcctl); ++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32); ++ ++ power.b.stoppclk = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.pwrclmp = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 0; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ } ++#endif ++ /* Clear the Remote Wakeup Signalling */ ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, ++ dctl.d32, 0); ++ ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) { ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++ } ++ ++ } else { ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ ++ /* Restart the Phy Clock */ ++ pcgcctl.b.stoppclk = 1; ++ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0); ++ ++ queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1)); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.wkupintr = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that a device has been disconnected from ++ * the root port. ++ */ ++int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n", ++ (dwc_otg_is_host_mode(core_if)?"Host":"Device"), ++ op_state_str(core_if)); ++ ++/** @todo Consolidate this if statement. */ ++#ifndef DWC_HOST_ONLY ++ if (core_if->op_state == B_HOST) { ++ dwc_otg_pcd_t *pcd; ++ ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect(core_if); ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_start(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ core_if->op_state = B_PERIPHERAL; ++ } else if (dwc_otg_is_device_mode(core_if)) { ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl); ++ if (gotgctl.b.hstsethnpen==1) { ++ /* Do nothing, if HNP in process the OTG ++ * interrupt "Host Negotiation Detected" ++ * interrupt will do the mode switch. ++ */ ++ } else if (gotgctl.b.devhnpen == 0) { ++ dwc_otg_pcd_t *pcd; ++ ++ /* If in device mode Disconnect and stop the HCD, then ++ * start the PCD. */ ++ hcd_disconnect(core_if); ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_start(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ ++ core_if->op_state = B_PERIPHERAL; ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n"); ++ } ++ } else { ++ if (core_if->op_state == A_HOST) { ++ /* A-Cable still connected but device disconnected. */ ++ hcd_disconnect(core_if); ++ } ++ } ++#endif ++ ++ gintsts.d32 = 0; ++ gintsts.b.disconnect = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ return 1; ++} ++/** ++ * This interrupt indicates that SUSPEND state has been detected on ++ * the USB. ++ * ++ * For HNP the USB Suspend interrupt signals the change from ++ * "a_peripheral" to "a_host". ++ * ++ * When power management is enabled the core will be put in low power ++ * mode. ++ */ ++int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if) ++{ ++ dsts_data_t dsts; ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n"); ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ dwc_otg_pcd_t *pcd; ++ ++ /* Check the Device status register to determine if the Suspend ++ * state is active. */ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32); ++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d " ++ "HWCFG4.power Optimize=%d\n", ++ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz); ++ ++ ++#ifdef PARTIAL_POWER_DOWN ++/** @todo Add a module parameter for power management. */ ++ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) { ++ pcgcctl_data_t power = {.d32=0}; ++ DWC_DEBUGPL(DBG_CIL, "suspend\n"); ++ ++ power.b.pwrclmp = 1; ++ dwc_write_reg32(core_if->pcgcctl, power.d32); ++ ++ power.b.rstpdwnmodule = 1; ++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); ++ ++ power.b.stoppclk = 1; ++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32); ++ } else { ++ DWC_DEBUGPL(DBG_ANY,"disconnect?\n"); ++ } ++#endif ++ /* PCD callback for suspend. */ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_suspend(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ } else { ++ if (core_if->op_state == A_PERIPHERAL) { ++ dwc_otg_pcd_t *pcd; ++ ++ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n"); ++ /* Clear the a_peripheral flag, back to a_host. */ ++ ++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p; ++ if(unlikely(!pcd)) { ++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__); ++ BUG(); ++ } ++ SPIN_LOCK(&pcd->lock); ++ ++ pcd_stop(core_if); ++ ++ SPIN_UNLOCK(&pcd->lock); ++ ++ hcd_start(core_if); ++ core_if->op_state = A_HOST; ++ } ++ } ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.usbsuspend = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * This function returns the Core Interrupt register. ++ */ ++static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ gintmsk_data_t gintmsk; ++ gintmsk_data_t gintmsk_common = {.d32=0}; ++ gintmsk_common.b.wkupintr = 1; ++ gintmsk_common.b.sessreqintr = 1; ++ gintmsk_common.b.conidstschng = 1; ++ gintmsk_common.b.otgintr = 1; ++ gintmsk_common.b.modemismatch = 1; ++ gintmsk_common.b.disconnect = 1; ++ gintmsk_common.b.usbsuspend = 1; ++ /** @todo: The port interrupt occurs while in device ++ * mode. Added code to CIL to clear the interrupt for now! ++ */ ++ gintmsk_common.b.portintr = 1; ++ ++ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts); ++ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk); ++#ifdef DEBUG ++ /* if any common interrupts set */ ++ if (gintsts.d32 & gintmsk_common.d32) { ++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n", ++ gintsts.d32, gintmsk.d32); ++ } ++#endif ++ ++ return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32); ++ ++} ++ ++/** ++ * Common interrupt handler. ++ * ++ * The common interrupts are those that occur in both Host and Device mode. ++ * This handler handles the following interrupts: ++ * - Mode Mismatch Interrupt ++ * - Disconnect Interrupt ++ * - OTG Interrupt ++ * - Connector ID Status Change Interrupt ++ * - Session Request Interrupt. ++ * - Resume / Remote Wakeup Detected Interrupt. ++ * ++ */ ++int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if) ++{ ++ int retval = 0; ++ gintsts_data_t gintsts; ++ ++ gintsts.d32 = dwc_otg_read_common_intr(core_if); ++ ++ if (gintsts.b.modemismatch) { ++ retval |= dwc_otg_handle_mode_mismatch_intr(core_if); ++ } ++ if (gintsts.b.otgintr) { ++ retval |= dwc_otg_handle_otg_intr(core_if); ++ } ++ if (gintsts.b.conidstschng) { ++ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if); ++ } ++ if (gintsts.b.disconnect) { ++ retval |= dwc_otg_handle_disconnect_intr(core_if); ++ } ++ if (gintsts.b.sessreqintr) { ++ retval |= dwc_otg_handle_session_req_intr(core_if); ++ } ++ if (gintsts.b.wkupintr) { ++ retval |= dwc_otg_handle_wakeup_detected_intr(core_if); ++ } ++ if (gintsts.b.usbsuspend) { ++ retval |= dwc_otg_handle_usb_suspend_intr(core_if); ++ } ++ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) { ++ /* The port interrupt occurs while in device mode with HPRT0 ++ * Port Enable/Disable. ++ */ ++ gintsts.d32 = 0; ++ gintsts.b.portintr = 1; ++ dwc_write_reg32(&core_if->core_global_regs->gintsts, ++ gintsts.d32); ++ retval |= 1; ++ ++ } ++ ++ S3C2410X_CLEAR_EINTPEND(); ++ ++ return retval; ++} +--- /dev/null ++++ b/drivers/usb/dwc/otg_driver.c +@@ -0,0 +1,965 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $ ++ * $Revision: #63 $ ++ * $Date: 2008/09/24 $ ++ * $Change: 1101777 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++/** @file ++ * The dwc_otg_driver module provides the initialization and cleanup entry ++ * points for the DWC_otg driver. This module will be dynamically installed ++ * after Linux is booted using the insmod command. When the module is ++ * installed, the dwc_otg_driver_init function is called. When the module is ++ * removed (using rmmod), the dwc_otg_driver_cleanup function is called. ++ * ++ * This module also defines a data structure for the dwc_otg_driver, which is ++ * used in conjunction with the standard ARM lm_device structure. These ++ * structures allow the OTG driver to comply with the standard Linux driver ++ * model in which devices and drivers are registered with a bus driver. This ++ * has the benefit that Linux can expose attributes of the driver and device ++ * in its special sysfs file system. Users can then read or write files in ++ * this file system to perform diagnostics on the driver components or the ++ * device. ++ */ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/types.h> ++#include <linux/stat.h> /* permission constants */ ++#include <linux/version.h> ++#include <linux/platform_device.h> ++#include <linux/io.h> ++#include <linux/irq.h> ++#include <asm/io.h> ++ ++#include <asm/sizes.h> ++#include <mach/pm.h> ++ ++#include "otg_plat.h" ++#include "otg_attr.h" ++#include "otg_driver.h" ++#include "otg_cil.h" ++#include "otg_pcd.h" ++#include "otg_hcd.h" ++ ++#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008" ++#define DWC_DRIVER_DESC "HS OTG USB Controller driver" ++ ++static const char dwc_driver_name[] = "dwc_otg"; ++ ++/*-------------------------------------------------------------------------*/ ++/* Encapsulate the module parameter settings */ ++ ++static dwc_otg_core_params_t dwc_otg_module_params = { ++ .opt = -1, ++ .otg_cap = -1, ++ .dma_enable = -1, ++ .dma_desc_enable = -1, ++ .dma_burst_size = -1, ++ .speed = -1, ++ .host_support_fs_ls_low_power = -1, ++ .host_ls_low_power_phy_clk = -1, ++ .enable_dynamic_fifo = -1, ++ .data_fifo_size = -1, ++ .dev_rx_fifo_size = -1, ++ .dev_nperio_tx_fifo_size = -1, ++ .dev_perio_tx_fifo_size = { ++ /* dev_perio_tx_fifo_size_1 */ ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1 ++ /* 15 */ ++ }, ++ .host_rx_fifo_size = -1, ++ .host_nperio_tx_fifo_size = -1, ++ .host_perio_tx_fifo_size = -1, ++ .max_transfer_size = -1, ++ .max_packet_count = -1, ++ .host_channels = -1, ++ .dev_endpoints = -1, ++ .phy_type = -1, ++ .phy_utmi_width = -1, ++ .phy_ulpi_ddr = -1, ++ .phy_ulpi_ext_vbus = -1, ++ .i2c_enable = -1, ++ .ulpi_fs_ls = -1, ++ .ts_dline = -1, ++ .en_multiple_tx_fifo = -1, ++ .dev_tx_fifo_size = { ++ /* dev_tx_fifo_size */ ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1, ++ -1 ++ /* 15 */ ++ }, ++ .thr_ctl = -1, ++ .tx_thr_length = -1, ++ .rx_thr_length = -1, ++ .pti_enable = -1, ++ .mpi_enable = -1, ++}; ++ ++/** ++ * Global Debug Level Mask. ++ */ ++uint32_t g_dbg_lvl = 0; /* OFF */ ++ ++/** ++ * This function is called during module intialization to verify that ++ * the module parameters are in a valid state. ++ */ ++static int check_parameters(dwc_otg_core_if_t *core_if) ++{ ++ int i; ++ int retval = 0; ++ ++/* Checks if the parameter is outside of its valid range of values */ ++#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \ ++ ((dwc_otg_module_params._param_ < (_low_)) || \ ++ (dwc_otg_module_params._param_ > (_high_))) ++ ++/* If the parameter has been set by the user, check that the parameter value is ++ * within the value range of values. If not, report a module error. */ ++#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \ ++ do { \ ++ if (dwc_otg_module_params._param_ != -1) { \ ++ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \ ++ dwc_otg_module_params._param_, _string_); \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ retval++; \ ++ } \ ++ } \ ++ } while (0) ++ ++ DWC_OTG_PARAM_ERR(opt,0,1,"opt"); ++ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap"); ++ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable"); ++ DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable"); ++ DWC_OTG_PARAM_ERR(speed,0,1,"speed"); ++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power"); ++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk"); ++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo"); ++ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size"); ++ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size"); ++ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count"); ++ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels"); ++ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints"); ++ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr"); ++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus"); ++ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable"); ++ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls"); ++ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline"); ++ ++ if (dwc_otg_module_params.dma_burst_size != -1) { ++ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) && ++ DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) { ++ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n", ++ dwc_otg_module_params.dma_burst_size); ++ dwc_otg_module_params.dma_burst_size = 32; ++ retval++; ++ } ++ ++ { ++ uint8_t brst_sz = 0; ++ while(dwc_otg_module_params.dma_burst_size > 1) { ++ brst_sz ++; ++ dwc_otg_module_params.dma_burst_size >>= 1; ++ } ++ dwc_otg_module_params.dma_burst_size = brst_sz; ++ } ++ } ++ ++ if (dwc_otg_module_params.phy_utmi_width != -1) { ++ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) && ++ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) { ++ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n", ++ dwc_otg_module_params.phy_utmi_width); ++ dwc_otg_module_params.phy_utmi_width = 16; ++ retval++; ++ } ++ } ++ ++ for (i = 0; i < 15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i); ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ retval++; ++ } ++ } ++ } ++ ++ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo"); ++ ++ for (i = 0; i < 15; i++) { ++ /** @todo should be like above */ ++ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size"); ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) { ++ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) { ++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n", ++ dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i); ++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default; ++ retval++; ++ } ++ } ++ } ++ ++ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl"); ++ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length"); ++ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length"); ++ ++ DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable"); ++ DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable"); ++ ++ /* At this point, all module parameters that have been set by the user ++ * are valid, and those that have not are left unset. Now set their ++ * default values and/or check the parameters against the hardware ++ * configurations of the OTG core. */ ++ ++/* This sets the parameter to the default value if it has not been set by the ++ * user */ ++#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \ ++ ({ \ ++ int changed = 1; \ ++ if (dwc_otg_module_params._param_ == -1) { \ ++ changed = 0; \ ++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \ ++ } \ ++ changed; \ ++ }) ++ ++/* This checks the macro agains the hardware configuration to see if it is ++ * valid. It is possible that the default value could be invalid. In this ++ * case, it will report a module error if the user touched the parameter. ++ * Otherwise it will adjust the value without any error. */ ++#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \ ++ ({ \ ++ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \ ++ int error = 0; \ ++ if (!(_is_valid_)) { \ ++ if (changed) { \ ++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \ ++ error = 1; \ ++ } \ ++ dwc_otg_module_params._param_ = (_set_valid_); \ ++ } \ ++ error; \ ++ }) ++ ++ /* OTG Cap */ ++ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap", ++ ({ ++ int valid; ++ valid = 1; ++ switch (dwc_otg_module_params.otg_cap) { ++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE: ++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ++ valid = 0; ++ break; ++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE: ++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) && ++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) { ++ valid = 0; ++ } ++ break; ++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE: ++ /* always valid */ ++ break; ++ } ++ valid; ++ }), ++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) || ++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ? ++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : ++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable", ++ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable", ++ ((dwc_otg_module_params.dma_desc_enable == 1) && ++ ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power, ++ "host_support_fs_ls_low_power", ++ 1, 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo, ++ "enable_dynamic_fifo", ++ ((dwc_otg_module_params.enable_dynamic_fifo == 0) || ++ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size, ++ "data_fifo_size", ++ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth), ++ core_if->hwcfg3.b.dfifo_depth); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size, ++ "dev_rx_fifo_size", ++ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size, ++ "dev_nperio_tx_fifo_size", ++ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size, ++ "host_rx_fifo_size", ++ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)), ++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size, ++ "host_nperio_tx_fifo_size", ++ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)), ++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size, ++ "host_perio_tx_fifo_size", ++ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))), ++ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size, ++ "max_transfer_size", ++ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))), ++ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count, ++ "max_packet_count", ++ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))), ++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels, ++ "host_channels", ++ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)), ++ (core_if->hwcfg2.b.num_host_chan + 1)); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints, ++ "dev_endpoints", ++ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)), ++ core_if->hwcfg2.b.num_dev_ep); ++ ++/* ++ * Define the following to disable the FS PHY Hardware checking. This is for ++ * internal testing only. ++ * ++ * #define NO_FS_PHY_HW_CHECKS ++ */ ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type, ++ "phy_type", ++ ({ ++ int valid = 0; ++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 1) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ++ ((core_if->hwcfg2.b.hs_phy_type == 2) || ++ (core_if->hwcfg2.b.hs_phy_type == 3))) { ++ valid = 1; ++ } ++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->hwcfg2.b.fs_phy_type == 1)) { ++ valid = 1; ++ } ++ valid; ++ }), ++ ({ ++ int set = DWC_PHY_TYPE_PARAM_FS; ++ if (core_if->hwcfg2.b.hs_phy_type) { ++ if ((core_if->hwcfg2.b.hs_phy_type == 3) || ++ (core_if->hwcfg2.b.hs_phy_type == 1)) { ++ set = DWC_PHY_TYPE_PARAM_UTMI; ++ } ++ else { ++ set = DWC_PHY_TYPE_PARAM_ULPI; ++ } ++ } ++ set; ++ })); ++#endif ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed", ++ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1, ++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk, ++ "host_ls_low_power_phy_clk", ++ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1), ++ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ)); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus); ++ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width); ++ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls); ++ DWC_OTG_PARAM_SET_DEFAULT(ts_dline); ++ ++#ifdef NO_FS_PHY_HW_CHECKS ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0); ++#else ++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, ++ "i2c_enable", ++ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, ++ 0); ++#endif ++ ++ for (i = 0; i < 15; i++) { ++ int changed = 1; ++ int error = 0; ++ ++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo", ++ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1, ++ 0); ++ ++ for (i = 0; i < 15; i++) { ++ int changed = 1; ++ int error = 0; ++ ++ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) { ++ changed = 0; ++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default; ++ } ++ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) { ++ if (changed) { ++ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i); ++ error = 1; ++ } ++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]); ++ } ++ retval += error; ++ } ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl", ++ ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1, ++ 0); ++ ++ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length); ++ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable", ++ ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0, ++ 0); ++ ++ retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable", ++ ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0, ++ 0); ++ return retval; ++} ++ ++/** ++ * This function is the top level interrupt handler for the Common ++ * (Device and host modes) interrupts. ++ */ ++static irqreturn_t dwc_otg_common_irq(int irq, void *dev) ++{ ++ dwc_otg_device_t *otg_dev = dev; ++ int32_t retval = IRQ_NONE; ++ ++ retval = dwc_otg_handle_common_intr(otg_dev->core_if); ++ return IRQ_RETVAL(retval); ++} ++ ++/** ++ * This function is called when a lm_device is unregistered with the ++ * dwc_otg_driver. This happens, for example, when the rmmod command is ++ * executed. The device may or may not be electrically present. If it is ++ * present, the driver stops device processing. Any resources used on behalf ++ * of this device are freed. ++ * ++ * @param[in] lmdev ++ */ ++static int dwc_otg_driver_cleanup(struct platform_device *pdev) ++{ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); ++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev); ++ ++ if (!otg_dev) { ++ /* Memory allocation for the dwc_otg_device failed. */ ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__); ++ return 0; ++ } ++ ++ /* ++ * Free the IRQ ++ */ ++ if (otg_dev->common_irq_installed) { ++ free_irq(otg_dev->irq, otg_dev); ++ } ++ ++#ifndef DWC_DEVICE_ONLY ++ if (otg_dev->hcd) { ++ dwc_otg_hcd_remove(pdev); ++ } else { ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__); ++ return 0; ++ } ++#endif ++ ++#ifndef DWC_HOST_ONLY ++ if (otg_dev->pcd) { ++ dwc_otg_pcd_remove(pdev); ++ } ++#endif ++ if (otg_dev->core_if) { ++ dwc_otg_cil_remove(otg_dev->core_if); ++ } ++ ++ /* ++ * Remove the device attributes ++ */ ++ dwc_otg_attr_remove(pdev); ++ ++ /* ++ * Return the memory. ++ */ ++ if (otg_dev->base) { ++ iounmap(otg_dev->base); ++ } ++ kfree(otg_dev); ++ ++ /* ++ * Clear the drvdata pointer. ++ */ ++ platform_set_drvdata(pdev, 0); ++ ++ return 0; ++} ++ ++/** ++ * This function is called when an lm_device is bound to a ++ * dwc_otg_driver. It creates the driver components required to ++ * control the device (CIL, HCD, and PCD) and it initializes the ++ * device. The driver components are stored in a dwc_otg_device ++ * structure. A reference to the dwc_otg_device is saved in the ++ * lm_device. This allows the driver to access the dwc_otg_device ++ * structure on subsequent calls to driver methods for this device. ++ * ++ * @param[in] lmdev lm_device definition ++ */ ++static int __devinit dwc_otg_driver_probe(struct platform_device *pdev) ++{ ++ struct device *dev = &pdev->dev; ++ int retval = 0; ++ uint32_t snpsid; ++ dwc_otg_device_t *dwc_otg_device; ++ struct resource *res; ++ ++ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", pdev); ++ ++ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL); ++ ++ if (!dwc_otg_device) { ++ dev_err(dev, "kmalloc of dwc_otg_device failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ ++ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device)); ++ dwc_otg_device->reg_offset = 0xFFFFFFFF; ++ ++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ if (!res) { ++ dev_err(dev, "Found OTG with no register addr.\n"); ++ retval = -ENODEV; ++ goto fail; ++ } ++ dwc_otg_device->rsrc_start = res->start; ++ dwc_otg_device->rsrc_len = res->end - res->start + 1; ++ ++ dwc_otg_device->base = ioremap(dwc_otg_device->rsrc_start, dwc_otg_device->rsrc_len); ++ ++ if (!dwc_otg_device->base) { ++ dev_err(dev, "ioremap() failed\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ dev_dbg(dev, "base=0x%08x\n", (unsigned)dwc_otg_device->base); ++ ++ /* ++ * Attempt to ensure this device is really a DWC_otg Controller. ++ * Read and verify the SNPSID register contents. The value should be ++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX". ++ */ ++ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40)); ++ ++ if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) { ++ dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid); ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ DWC_PRINT("Core Release: %x.%x%x%x\n", ++ (snpsid >> 12 & 0xF), ++ (snpsid >> 8 & 0xF), ++ (snpsid >> 4 & 0xF), ++ (snpsid & 0xF)); ++ ++ /* ++ * Initialize driver data to point to the global DWC_otg ++ * Device structure. ++ */ ++ platform_set_drvdata(pdev, dwc_otg_device); ++ ++ dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device); ++ ++ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base, ++ &dwc_otg_module_params); ++ ++ dwc_otg_device->core_if->snpsid = snpsid; ++ ++ if (!dwc_otg_device->core_if) { ++ dev_err(dev, "CIL initialization failed!\n"); ++ retval = -ENOMEM; ++ goto fail; ++ } ++ ++ /* ++ * Validate parameter values. ++ */ ++ if (check_parameters(dwc_otg_device->core_if)) { ++ retval = -EINVAL; ++ goto fail; ++ } ++ ++ /* ++ * Create Device Attributes in sysfs ++ */ ++ dwc_otg_attr_create(pdev); ++ ++ /* ++ * Disable the global interrupt until all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if); ++ ++ /* ++ * Install the interrupt handler for the common interrupts before ++ * enabling common interrupts in core_init below. ++ */ ++ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); ++ if (!res) { ++ dev_err(dev, "Fount OTG with to IRQ.\n"); ++ retval = -ENODEV; ++ goto fail; ++ } ++ dwc_otg_device->irq = res->start; ++ ++ retval = request_irq(res->start, dwc_otg_common_irq, ++ IRQF_SHARED, "dwc_otg", dwc_otg_device); ++ if (retval) { ++ DWC_ERROR("request of irq%d failed\n", res->start); ++ retval = -EBUSY; ++ goto fail; ++ } else { ++ dwc_otg_device->common_irq_installed = 1; ++ } ++ ++ /* ++ * Initialize the DWC_otg core. ++ */ ++ dwc_otg_core_init(dwc_otg_device->core_if); ++ ++#ifndef DWC_HOST_ONLY ++ /* ++ * Initialize the PCD ++ */ ++ retval = dwc_otg_pcd_init(pdev); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_pcd_init failed\n"); ++ dwc_otg_device->pcd = NULL; ++ goto fail; ++ } ++#endif ++#ifndef DWC_DEVICE_ONLY ++ /* ++ * Initialize the HCD ++ */ ++ retval = dwc_otg_hcd_init(pdev); ++ if (retval != 0) { ++ DWC_ERROR("dwc_otg_hcd_init failed\n"); ++ dwc_otg_device->hcd = NULL; ++ goto fail; ++ } ++#endif ++ ++ /* ++ * Enable the global interrupt after all the interrupt ++ * handlers are installed. ++ */ ++ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if); ++ ++ return 0; ++ ++ fail: ++ dwc_otg_driver_cleanup(pdev); ++ return retval; ++} ++ ++static int __devexit dwc_otg_driver_remove(struct platform_device *pdev) ++{ ++ return dwc_otg_driver_cleanup(pdev); ++} ++ ++static struct platform_driver dwc_otg_platform_driver = { ++ .driver.name = "dwc_otg", ++ .probe = dwc_otg_driver_probe, ++ .remove = __devexit_p(dwc_otg_driver_remove), ++}; ++ ++static int __init dwc_otg_init_module(void) ++{ ++ return platform_driver_register(&dwc_otg_platform_driver); ++} ++ ++static void __exit dwc_otg_cleanup_module(void) ++{ ++ platform_driver_unregister(&dwc_otg_platform_driver); ++} ++ ++module_init(dwc_otg_init_module); ++module_exit(dwc_otg_cleanup_module); ++ ++/** ++ * This function is called when the driver is removed from the kernel ++ * with the rmmod command. The driver unregisters itself with its bus ++ * driver. ++ * ++ */ ++ ++MODULE_DESCRIPTION(DWC_DRIVER_DESC); ++MODULE_AUTHOR("Synopsys Inc."); ++MODULE_LICENSE("GPL"); ++ ++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444); ++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None"); ++module_param_named(opt, dwc_otg_module_params.opt, int, 0444); ++MODULE_PARM_DESC(opt, "OPT Mode"); ++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444); ++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled"); ++ ++module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444); ++MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled"); ++ ++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444); ++MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256"); ++module_param_named(speed, dwc_otg_module_params.speed, int, 0444); ++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed"); ++module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444); ++MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support"); ++module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444); ++MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz"); ++module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444); ++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing"); ++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444); ++MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768"); ++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768"); ++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768"); ++module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768"); ++module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444); ++MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768"); ++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444); ++/** @todo Set the max to 512K, modify checks */ ++MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535"); ++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444); ++MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511"); ++module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444); ++MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16"); ++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444); ++MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15"); ++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444); ++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI"); ++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444); ++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits"); ++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double"); ++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444); ++MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal"); ++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444); ++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface"); ++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444); ++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only"); ++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444); ++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs"); ++module_param_named(debug, g_dbg_lvl, int, 0444); ++MODULE_PARM_DESC(debug, ""); ++ ++module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444); ++MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled"); ++module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768"); ++module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444); ++MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768"); ++ ++module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444); ++MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled"); ++module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444); ++MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs"); ++module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444); ++MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs"); ++ ++module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444); ++MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled"); ++ ++module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444); ++MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled"); +--- /dev/null ++++ b/drivers/usb/dwc/otg_driver.h +@@ -0,0 +1,62 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $ ++ * $Revision: #12 $ ++ * $Date: 2008/07/15 $ ++ * $Change: 1064918 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_DRIVER_H__ ++#define __DWC_OTG_DRIVER_H__ ++ ++/** @file ++ * This file contains the interface to the Linux driver. ++ */ ++#include "otg_cil.h" ++ ++/* Type declarations */ ++struct dwc_otg_pcd; ++struct dwc_otg_hcd; ++ ++/** ++ * This structure is a wrapper that encapsulates the driver components used to ++ * manage a single DWC_otg controller. ++ */ ++typedef struct dwc_otg_device { ++ void *base; ++ dwc_otg_core_if_t *core_if; ++ uint32_t reg_offset; ++ struct dwc_otg_pcd *pcd; ++ struct dwc_otg_hcd *hcd; ++ uint8_t common_irq_installed; ++ int irq; ++ uint32_t rsrc_start; ++ uint32_t rsrc_len; ++} dwc_otg_device_t; ++ ++#endif +--- /dev/null ++++ b/drivers/usb/dwc/otg_hcd.c +@@ -0,0 +1,2735 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $ ++ * $Revision: #75 $ ++ * $Date: 2008/07/15 $ ++ * $Change: 1064940 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the implementation of the HCD. In Linux, the HCD ++ * implements the hc_driver API. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/platform_device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++#include <linux/dma-mapping.h> ++#include <linux/version.h> ++ ++#include <mach/irqs.h> ++ ++#include "otg_driver.h" ++#include "otg_hcd.h" ++#include "otg_regs.h" ++ ++static const char dwc_otg_hcd_name[] = "dwc_otg_hcd"; ++ ++static const struct hc_driver dwc_otg_hc_driver = { ++ ++ .description = dwc_otg_hcd_name, ++ .product_desc = "DWC OTG Controller", ++ .hcd_priv_size = sizeof(dwc_otg_hcd_t), ++ .irq = dwc_otg_hcd_irq, ++ .flags = HCD_MEMORY | HCD_USB2, ++ .start = dwc_otg_hcd_start, ++ .stop = dwc_otg_hcd_stop, ++ .urb_enqueue = dwc_otg_hcd_urb_enqueue, ++ .urb_dequeue = dwc_otg_hcd_urb_dequeue, ++ .endpoint_disable = dwc_otg_hcd_endpoint_disable, ++ .get_frame_number = dwc_otg_hcd_get_frame_number, ++ .hub_status_data = dwc_otg_hcd_hub_status_data, ++ .hub_control = dwc_otg_hcd_hub_control, ++}; ++ ++/** ++ * Work queue function for starting the HCD when A-Cable is connected. ++ * The dwc_otg_hcd_start() must be called in a process context. ++ */ ++static void hcd_start_func(struct work_struct *_work) ++{ ++ struct delayed_work *dw = container_of(_work, struct delayed_work, work); ++ struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work); ++ struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv); ++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd); ++ if (usb_hcd) { ++ dwc_otg_hcd_start(usb_hcd); ++ } ++} ++ ++/** ++ * HCD Callback function for starting the HCD when A-Cable is ++ * connected. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_start_cb(void *p) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p); ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ ++ if (core_if->op_state == B_HOST) { ++ /* ++ * Reset the port. During a HNP mode switch the reset ++ * needs to occur within 1ms and have a duration of at ++ * least 50ms. ++ */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ((struct usb_hcd *)p)->self.is_b_host = 1; ++ } else { ++ ((struct usb_hcd *)p)->self.is_b_host = 0; ++ } ++ ++ /* Need to start the HCD in a non-interrupt context. */ ++// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func); ++ INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func); ++// schedule_work(&dwc_otg_hcd->start_work); ++ queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000); ++ ++ return 1; ++} ++ ++/** ++ * HCD Callback function for stopping the HCD. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_stop_cb(void *p) ++{ ++ struct usb_hcd *usb_hcd = (struct usb_hcd *)p; ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p); ++ dwc_otg_hcd_stop(usb_hcd); ++ return 1; ++} ++ ++static void del_xfer_timers(dwc_otg_hcd_t *hcd) ++{ ++#ifdef DEBUG ++ int i; ++ int num_channels = hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ del_timer(&hcd->core_if->hc_xfer_timer[i]); ++ } ++#endif ++} ++ ++static void del_timers(dwc_otg_hcd_t *hcd) ++{ ++ del_xfer_timers(hcd); ++ del_timer(&hcd->conn_timer); ++} ++ ++/** ++ * Processes all the URBs in a single list of QHs. Completes them with ++ * -ETIMEDOUT and frees the QTD. ++ */ ++static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list) ++{ ++ struct list_head *qh_item; ++ dwc_otg_qh_t *qh; ++ struct list_head *qtd_item; ++ dwc_otg_qtd_t *qtd; ++ ++ list_for_each(qh_item, qh_list) { ++ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry); ++ for (qtd_item = qh->qtd_list.next; ++ qtd_item != &qh->qtd_list; ++ qtd_item = qh->qtd_list.next) { ++ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry); ++ if (qtd->urb != NULL) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, ++ -ETIMEDOUT); ++ } ++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd); ++ } ++ } ++} ++ ++/** ++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic ++ * and periodic schedules. The QTD associated with each URB is removed from ++ * the schedule and freed. This function may be called when a disconnect is ++ * detected or when the HCD is being stopped. ++ */ ++static void kill_all_urbs(dwc_otg_hcd_t *hcd) ++{ ++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive); ++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned); ++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_disconnect_cb(void *p) ++{ ++ gintsts_data_t intr; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p); ++ ++ //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p); ++ ++ /* ++ * Set status flags for the hub driver. ++ */ ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 0; ++ ++ /* ++ * Shutdown any transfers in process by clearing the Tx FIFO Empty ++ * interrupt mask and status bits and disabling subsequent host ++ * channel interrupts. ++ */ ++ intr.d32 = 0; ++ intr.b.nptxfempty = 1; ++ intr.b.ptxfempty = 1; ++ intr.b.hcintr = 1; ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0); ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* ++ * Turn off the vbus power only if the core has transitioned to device ++ * mode. If still in host mode, need to keep power on to detect a ++ * reconnection. ++ */ ++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) { ++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) { ++ hprt0_data_t hprt0 = { .d32=0 }; ++ DWC_PRINT("Disconnect: PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++ } ++ ++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); ++ } ++ ++ /* Respond with an error status to all URBs in the schedule. */ ++ kill_all_urbs(dwc_otg_hcd); ++ ++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) { ++ /* Clean up any host channels that were in use. */ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ /* Flush out any channel requests in slave mode. */ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ hcchar.b.chen = 0; ++ hcchar.b.chdis = 1; ++ hcchar.b.epdir = 0; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ } ++ } ++ } ++ ++ for (i = 0; i < num_channels; i++) { ++ channel = dwc_otg_hcd->hc_ptr_array[i]; ++ if (list_empty(&channel->hc_list_entry)) { ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ /* Halt the channel. */ ++ hcchar.b.chdis = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ } ++ ++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel); ++ list_add_tail(&channel->hc_list_entry, ++ &dwc_otg_hcd->free_hc_list); ++ } ++ } ++ } ++ ++ /* A disconnect will end the session so the B-Device is no ++ * longer a B-host. */ ++ ((struct usb_hcd *)p)->self.is_b_host = 0; ++ return 1; ++} ++ ++/** ++ * Connection timeout function. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. ++ */ ++void dwc_otg_hcd_connect_timeout(unsigned long ptr) ++{ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr); ++ DWC_PRINT("Connect Timeout\n"); ++ DWC_ERROR("Device Not Connected/Responding\n"); ++} ++ ++/** ++ * Start the connection timer. An OTG host is required to display a ++ * message if the device does not connect within 10 seconds. The ++ * timer is deleted if a port connect interrupt occurs before the ++ * timer expires. ++ */ ++static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd) ++{ ++ init_timer(&hcd->conn_timer); ++ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout; ++ hcd->conn_timer.data = 0; ++ hcd->conn_timer.expires = jiffies + (HZ * 10); ++ add_timer(&hcd->conn_timer); ++} ++ ++/** ++ * HCD Callback function for disconnect of the HCD. ++ * ++ * @param p void pointer to the <code>struct usb_hcd</code> ++ */ ++static int32_t dwc_otg_hcd_session_start_cb(void *p) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p); ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p); ++ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd); ++ return 1; ++} ++ ++/** ++ * HCD Callback structure for handling mode switching. ++ */ ++static dwc_otg_cil_callbacks_t hcd_cil_callbacks = { ++ .start = dwc_otg_hcd_start_cb, ++ .stop = dwc_otg_hcd_stop_cb, ++ .disconnect = dwc_otg_hcd_disconnect_cb, ++ .session_start = dwc_otg_hcd_session_start_cb, ++ .p = 0, ++}; ++ ++/** ++ * Reset tasklet function ++ */ ++static void reset_tasklet_func(unsigned long data) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data; ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ hprt0_data_t hprt0; ++ ++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n"); ++ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay(60); ++ ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++} ++ ++static struct tasklet_struct reset_tasklet = { ++ .next = NULL, ++ .state = 0, ++ .count = ATOMIC_INIT(0), ++ .func = reset_tasklet_func, ++ .data = 0, ++}; ++ ++/** ++ * Initializes the HCD. This function allocates memory for and initializes the ++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the ++ * USB bus with the core and calls the hc_driver->start() function. It returns ++ * a negative error on failure. ++ */ ++int dwc_otg_hcd_init(struct platform_device *pdev) ++{ ++ struct usb_hcd *hcd = NULL; ++ dwc_otg_hcd_t *dwc_otg_hcd = NULL; ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); ++ ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ int retval = 0; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n"); ++ ++ /* Set device flags indicating whether the HCD supports DMA. */ ++ if (otg_dev->core_if->dma_enable) { ++ DWC_PRINT("Using DMA mode\n"); ++ ++ if (otg_dev->core_if->dma_desc_enable) { ++ DWC_PRINT("Device using Descriptor DMA mode\n"); ++ } else { ++ DWC_PRINT("Device using Buffer DMA mode\n"); ++ } ++ } ++ /* ++ * Allocate memory for the base HCD plus the DWC OTG HCD. ++ * Initialize the base HCD. ++ */ ++ ++ hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget"); ++ if (!hcd) { ++ retval = -ENOMEM; ++ goto error1; ++ } ++ ++ hcd->regs = otg_dev->base; ++ hcd->self.otg_port = 1; ++ ++ /* Initialize the DWC OTG HCD. */ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_hcd->core_if = otg_dev->core_if; ++ otg_dev->hcd = dwc_otg_hcd; ++ ++ /* */ ++ spin_lock_init(&dwc_otg_hcd->lock); ++ ++ /* Register the HCD CIL Callbacks */ ++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if, ++ &hcd_cil_callbacks, hcd); ++ ++ /* Initialize the non-periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active); ++ ++ /* Initialize the periodic schedule. */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned); ++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued); ++ ++ /* ++ * Create a host channel descriptor for each host channel implemented ++ * in the controller. Initialize the channel descriptor array. ++ */ ++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list); ++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels; ++ memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array)); ++ for (i = 0; i < num_channels; i++) { ++ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL); ++ if (channel == NULL) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: host channel allocation failed\n", __func__); ++ goto error2; ++ } ++ memset(channel, 0, sizeof(dwc_hc_t)); ++ channel->hc_num = i; ++ dwc_otg_hcd->hc_ptr_array[i] = channel; ++#ifdef DEBUG ++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]); ++#endif ++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel); ++ } ++ ++ /* Initialize the Connection timeout timer. */ ++ init_timer(&dwc_otg_hcd->conn_timer); ++ ++ /* Initialize reset tasklet. */ ++ reset_tasklet.data = (unsigned long) dwc_otg_hcd; ++ dwc_otg_hcd->reset_tasklet = &reset_tasklet; ++ ++ /* ++ * Finish generic HCD initialization and start the HCD. This function ++ * allocates the DMA buffer pool, registers the USB bus, requests the ++ * IRQ line, and calls dwc_otg_hcd_start method. ++ */ ++ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED); ++ if (retval < 0) { ++ goto error2; ++ } ++ ++ /* ++ * Allocate space for storing data on status transactions. Normally no ++ * data is sent, but this space acts as a bit bucket. This must be ++ * done after usb_add_hcd since that function allocates the DMA buffer ++ * pool. ++ */ ++ if (otg_dev->core_if->dma_enable) { ++ dwc_otg_hcd->status_buf = ++ dma_alloc_coherent(&pdev->dev, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ &dwc_otg_hcd->status_buf_dma, ++ GFP_KERNEL | GFP_DMA); ++ } else { ++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE, ++ GFP_KERNEL); ++ } ++ if (!dwc_otg_hcd->status_buf) { ++ retval = -ENOMEM; ++ DWC_ERROR("%s: status_buf allocation failed\n", __func__); ++ goto error3; ++ } ++ ++ dwc_otg_hcd->otg_dev = otg_dev; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n", ++ hcd->self.busnum); ++ return 0; ++ ++ /* Error conditions */ ++ error3: ++ usb_remove_hcd(hcd); ++ error2: ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++ error1: ++ return retval; ++} ++ ++/** ++ * Removes the HCD. ++ * Frees memory and resources associated with the HCD and deregisters the bus. ++ */ ++void dwc_otg_hcd_remove(struct platform_device *pdev) ++{ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); ++ dwc_otg_hcd_t *dwc_otg_hcd; ++ struct usb_hcd *hcd; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n"); ++ ++ if (!otg_dev) { ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__); ++ return; ++ } ++ ++ dwc_otg_hcd = otg_dev->hcd; ++ ++ if (!dwc_otg_hcd) { ++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__); ++ return; ++ } ++ ++ hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd); ++ ++ if (!hcd) { ++ DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__); ++ return; ++ } ++ ++ /* Turn off all interrupts */ ++ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0); ++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0); ++ ++ usb_remove_hcd(hcd); ++ dwc_otg_hcd_free(hcd); ++ usb_put_hcd(hcd); ++} ++ ++/* ========================================================================= ++ * Linux HC Driver Functions ++ * ========================================================================= */ ++ ++/** ++ * Initializes dynamic portions of the DWC_otg HCD state. ++ */ ++static void hcd_reinit(dwc_otg_hcd_t *hcd) ++{ ++ struct list_head *item; ++ int num_channels; ++ int i; ++ dwc_hc_t *channel; ++ ++ hcd->flags.d32 = 0; ++ ++ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active; ++ hcd->non_periodic_channels = 0; ++ hcd->periodic_channels = 0; ++ ++ /* ++ * Put all channels in the free channel list and clean up channel ++ * states. ++ */ ++ item = hcd->free_hc_list.next; ++ while (item != &hcd->free_hc_list) { ++ list_del(item); ++ item = hcd->free_hc_list.next; ++ } ++ num_channels = hcd->core_if->core_params->host_channels; ++ for (i = 0; i < num_channels; i++) { ++ channel = hcd->hc_ptr_array[i]; ++ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list); ++ dwc_otg_hc_cleanup(hcd->core_if, channel); ++ } ++ ++ /* Initialize the DWC core for host mode operation. */ ++ dwc_otg_core_host_init(hcd->core_if); ++} ++ ++/** Initializes the DWC_otg controller and its root hub and prepares it for host ++ * mode operation. Activates the root port. Returns 0 on success and a negative ++ * error code on failure. */ ++int dwc_otg_hcd_start(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ struct usb_bus *bus; ++ ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n"); ++ ++ bus = hcd_to_bus(hcd); ++ ++ /* Initialize the bus state. If the core is in Device Mode ++ * HALT the USB bus and return. */ ++ if (dwc_otg_is_device_mode(core_if)) { ++ hcd->state = HC_STATE_RUNNING; ++ return 0; ++ } ++ hcd->state = HC_STATE_RUNNING; ++ ++ /* Initialize and connect root hub if one is not already attached */ ++ if (bus->root_hub) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n"); ++ /* Inform the HUB driver to resume. */ ++ usb_hcd_resume_root_hub(hcd); ++ } ++ else { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n"); ++ } ++ ++ hcd_reinit(dwc_otg_hcd); ++ ++ return 0; ++} ++ ++static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list) ++{ ++ struct list_head *item; ++ dwc_otg_qh_t *qh; ++ ++ if (!qh_list->next) { ++ /* The list hasn't been initialized yet. */ ++ return; ++ } ++ ++ /* Ensure there are no QTDs or URBs left. */ ++ kill_urbs_in_qh_list(hcd, qh_list); ++ ++ for (item = qh_list->next; item != qh_list; item = qh_list->next) { ++ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ dwc_otg_hcd_qh_remove_and_free(hcd, qh); ++ } ++} ++ ++/** ++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are ++ * stopped. ++ */ ++void dwc_otg_hcd_stop(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ hprt0_data_t hprt0 = { .d32=0 }; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n"); ++ ++ /* Turn off all host-specific interrupts. */ ++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if); ++ ++ /* ++ * The root hub should be disconnected before this function is called. ++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) ++ * and the QH lists (via ..._hcd_endpoint_disable). ++ */ ++ ++ /* Turn off the vbus power */ ++ DWC_PRINT("PortPower off\n"); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32); ++} ++ ++/** Returns the current frame number. */ ++int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ hfnum_data_t hfnum; ++ ++ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if-> ++ host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum); ++#endif ++ return hfnum.b.frnum; ++} ++ ++/** ++ * Frees secondary storage associated with the dwc_otg_hcd structure contained ++ * in the struct usb_hcd field. ++ */ ++void dwc_otg_hcd_free(struct usb_hcd *hcd) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ int i; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n"); ++ ++ del_timers(dwc_otg_hcd); ++ ++ /* Free memory for QH/QTD lists */ ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned); ++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued); ++ ++ /* Free memory for the host channels. */ ++ for (i = 0; i < MAX_EPS_CHANNELS; i++) { ++ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i]; ++ if (hc != NULL) { ++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc); ++ kfree(hc); ++ } ++ } ++ ++ if (dwc_otg_hcd->core_if->dma_enable) { ++ if (dwc_otg_hcd->status_buf_dma) { ++ dma_free_coherent(hcd->self.controller, ++ DWC_OTG_HCD_STATUS_BUF_SIZE, ++ dwc_otg_hcd->status_buf, ++ dwc_otg_hcd->status_buf_dma); ++ } ++ } else if (dwc_otg_hcd->status_buf != NULL) { ++ kfree(dwc_otg_hcd->status_buf); ++ } ++} ++ ++#ifdef DEBUG ++static void dump_urb_info(struct urb *urb, char* fn_name) ++{ ++ DWC_PRINT("%s, urb %p\n", fn_name, urb); ++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_PRINT(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_PRINT(" Speed: %s\n", ++ ({char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n", ++ urb->transfer_buffer, (void *)urb->transfer_dma); ++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n", ++ urb->setup_packet, (void *)urb->setup_dma); ++ DWC_PRINT(" Interval: %d\n", urb->interval); ++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d:\n", i); ++ DWC_PRINT(" offset: %d, length %d\n", ++ urb->iso_frame_desc[i].offset, ++ urb->iso_frame_desc[i].length); ++ } ++ } ++} ++ ++static void dump_channel_info(dwc_otg_hcd_t *hcd, ++ dwc_otg_qh_t *qh) ++{ ++ if (qh->channel != NULL) { ++ dwc_hc_t *hc = qh->channel; ++ struct list_head *item; ++ dwc_otg_qh_t *qh_item; ++ int num_channels = hcd->core_if->core_params->host_channels; ++ int i; ++ ++ dwc_otg_hc_regs_t *hc_regs; ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ ++ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num]; ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_PRINT(" Assigned to channel %p:\n", hc); ++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ DWC_PRINT(" NP inactive sched:\n"); ++ list_for_each(item, &hcd->non_periodic_sched_inactive) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } ++ DWC_PRINT(" NP active sched:\n"); ++ list_for_each(item, &hcd->non_periodic_sched_active) { ++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry); ++ DWC_PRINT(" %p\n", qh_item); ++ } ++ DWC_PRINT(" Channels: \n"); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = hcd->hc_ptr_array[i]; ++ DWC_PRINT(" %2d: %p\n", i, hc); ++ } ++ } ++} ++#endif ++ ++ ++//OTG host require the DMA addr is DWORD-aligned, ++//patch it if the buffer is not DWORD-aligned ++inline ++void hcd_check_and_patch_dma_addr(struct urb *urb){ ++ ++ if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff) ++ return; ++ ++ if(((u32)urb->transfer_buffer)& 0x3){ ++ /* ++ printk("%s: " ++ "urb(%.8x) " ++ "transfer_buffer=%.8x, " ++ "transfer_dma=%.8x, " ++ "transfer_buffer_length=%d, " ++ "actual_length=%d(%x), " ++ "\n", ++ ((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN", ++ urb, ++ urb->transfer_buffer, ++ urb->transfer_dma, ++ urb->transfer_buffer_length, ++ urb->actual_length,urb->actual_length ++ ); ++ */ ++ if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){ ++ urb->aligned_transfer_buffer_length=urb->transfer_buffer_length; ++ if(urb->aligned_transfer_buffer) { ++ kfree(urb->aligned_transfer_buffer); ++ } ++ urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC); ++ urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE); ++ if(!urb->aligned_transfer_buffer){ ++ DWC_ERROR("Cannot alloc required buffer!!\n"); ++ BUG(); ++ } ++ //printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length); ++ } ++ urb->transfer_dma=urb->aligned_transfer_dma; ++ if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) { ++ memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length); ++ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE); ++ } ++ } ++} ++ ++ ++ ++/** Starts processing a USB transfer request specified by a USB Request Block ++ * (URB). mem_flags indicates the type of memory allocation to use while ++ * processing this URB. */ ++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++// struct usb_host_endpoint *ep, ++ struct urb *urb, ++ gfp_t mem_flags ++ ) ++{ ++ int retval = 0; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_qtd_t *qtd; ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue"); ++ } ++#endif ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* No longer connected. */ ++ return -ENODEV; ++ } ++ ++ hcd_check_and_patch_dma_addr(urb); ++ qtd = dwc_otg_hcd_qtd_create(urb); ++ if (qtd == NULL) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n"); ++ return -ENOMEM; ++ } ++ ++ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd); ++ if (retval < 0) { ++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. " ++ "Error status %d\n", retval); ++ dwc_otg_hcd_qtd_free(qtd); ++ } ++ ++ return retval; ++} ++ ++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate ++ * success. */ ++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, ++ struct urb *urb, int status) ++{ ++ unsigned long flags; ++ dwc_otg_hcd_t *dwc_otg_hcd; ++ dwc_otg_qtd_t *urb_qtd; ++ dwc_otg_qh_t *qh; ++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb); ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n"); ++ ++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags); ++ ++ urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv; ++ qh = (dwc_otg_qh_t *)ep->hcpriv; ++ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue"); ++ if (urb_qtd == qh->qtd_in_process) { ++ dump_channel_info(dwc_otg_hcd, qh); ++ } ++ } ++#endif ++ ++ if (urb_qtd == qh->qtd_in_process) { ++ /* The QTD is in process (it has been assigned to a channel). */ ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * If still connected (i.e. in host mode), halt the ++ * channel so it can be used for other transfers. If ++ * no longer connected, the host registers can't be ++ * written to halt the channel since the core is in ++ * device mode. ++ */ ++ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel, ++ DWC_OTG_HC_XFER_URB_DEQUEUE); ++ } ++ } ++ ++ /* ++ * Free the QTD and clean up the associated QH. Leave the QH in the ++ * schedule if it has any remaining QTDs. ++ */ ++ dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd); ++ if (urb_qtd == qh->qtd_in_process) { ++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0); ++ qh->channel = NULL; ++ qh->qtd_in_process = NULL; ++ } else if (list_empty(&qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh); ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ ++ urb->hcpriv = NULL; ++ ++ /* Higher layer software sets URB status. */ ++ usb_hcd_giveback_urb(hcd, urb, status); ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("Called usb_hcd_giveback_urb()\n"); ++ DWC_PRINT(" urb->status = %d\n", urb->status); ++ } ++ ++ return 0; ++} ++ ++/** Frees resources in the DWC_otg controller related to a given endpoint. Also ++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint ++ * must already be dequeued. */ ++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *ep) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_qh_t *qh; ++ ++ unsigned long flags; ++ int retry = 0; ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, " ++ "endpoint=%d\n", ep->desc.bEndpointAddress, ++ dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress)); ++ ++rescan: ++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags); ++ qh = (dwc_otg_qh_t *)(ep->hcpriv); ++ if (!qh) ++ goto done; ++ ++ /** Check that the QTD list is really empty */ ++ if (!list_empty(&qh->qtd_list)) { ++ if (retry++ < 250) { ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ schedule_timeout_uninterruptible(1); ++ goto rescan; ++ } ++ ++ DWC_WARN("DWC OTG HCD EP DISABLE:" ++ " QTD List for this endpoint is not empty\n"); ++ } ++ ++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh); ++ ep->hcpriv = NULL; ++done: ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ ++} ++ ++/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if ++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid ++ * interrupt. ++ * ++ * This function is called by the USB core when an interrupt occurs */ ++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd) ++{ ++ int retVal = 0; ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd); ++ if (dwc_otg_hcd->flags.b.port_connect_status_change == 1) ++ usb_hcd_poll_rh_status(hcd); ++ return IRQ_RETVAL(retVal); ++} ++ ++/** Creates Status Change bitmap for the root hub and root port. The bitmap is ++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 ++ * is the status change indicator for the single root port. Returns 1 if either ++ * change indicator is 1, otherwise returns 0. */ ++int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) ++{ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ ++ buf[0] = 0; ++ buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change || ++ dwc_otg_hcd->flags.b.port_reset_change || ++ dwc_otg_hcd->flags.b.port_enable_change || ++ dwc_otg_hcd->flags.b.port_suspend_change || ++ dwc_otg_hcd->flags.b.port_over_current_change) << 1; ++ ++#ifdef DEBUG ++ if (buf[0]) { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:" ++ " Root port status changed\n"); ++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n", ++ dwc_otg_hcd->flags.b.port_connect_status_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n", ++ dwc_otg_hcd->flags.b.port_reset_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n", ++ dwc_otg_hcd->flags.b.port_enable_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n", ++ dwc_otg_hcd->flags.b.port_suspend_change); ++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n", ++ dwc_otg_hcd->flags.b.port_over_current_change); ++ } ++#endif ++ return (buf[0] != 0); ++} ++ ++#ifdef DWC_HS_ELECT_TST ++/* ++ * Quick and dirty hack to implement the HS Electrical Test ++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature. ++ * ++ * This code was copied from our userspace app "hset". It sends a ++ * Get Device Descriptor control sequence in two parts, first the ++ * Setup packet by itself, followed some time later by the In and ++ * Ack packets. Rather than trying to figure out how to add this ++ * functionality to the normal driver code, we just hijack the ++ * hardware, using these two function to drive the hardware ++ * directly. ++ */ ++ ++dwc_otg_core_global_regs_t *global_regs; ++dwc_otg_host_global_regs_t *hc_global_regs; ++dwc_otg_hc_regs_t *hc_regs; ++uint32_t *data_fifo; ++ ++static void do_setup(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Send Setup packet (Get Device Descriptor) ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++// hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ /* Fill FIFO with Setup data for Get Device Descriptor */ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ dwc_write_reg32(data_fifo++, 0x01000680); ++ dwc_write_reg32(data_fifo++, 0x00080000); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++ ++static void do_in_ack(void) ++{ ++ gintsts_data_t gintsts; ++ hctsiz_data_t hctsiz; ++ hcchar_data_t hcchar; ++ haint_data_t haint; ++ hcint_data_t hcint; ++ host_grxsts_data_t grxsts; ++ ++ /* Enable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001); ++ ++ /* Enable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* ++ * Receive Control In packet ++ */ ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 8; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 1; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer */ ++ if (grxsts.b.bcnt > 0) { ++ int i; ++ int word_count = (grxsts.b.bcnt + 3) / 4; ++ ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ for (i = 0; i < word_count; i++) { ++ (void)dwc_read_reg32(data_fifo++); ++ } ++ } ++ ++ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt); ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for receive status queue interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.rxstsqlvl == 0); ++ ++ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read RXSTS */ ++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32); ++ ++ /* Clear RXSTSQLVL in GINTSTS */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ break; ++ ++ default: ++ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n"); ++ break; ++ } ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++// usleep(100000); ++// mdelay(100); ++ mdelay(1); ++ ++ /* ++ * Send handshake packet ++ */ ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Make sure channel is disabled */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chen) { ++ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32); ++ hcchar.b.chdis = 1; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ //sleep(1); ++ mdelay(1000); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //if (hcchar.b.chen) { ++ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32); ++ //} ++ } ++ ++ /* Set HCTSIZ */ ++ hctsiz.d32 = 0; ++ hctsiz.b.xfersize = 0; ++ hctsiz.b.pktcnt = 1; ++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1; ++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32); ++ ++ /* Set HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL; ++ hcchar.b.epdir = 0; ++ hcchar.b.epnum = 0; ++ hcchar.b.mps = 8; ++ hcchar.b.chen = 1; ++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32); ++ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Wait for host channel interrupt */ ++ do { ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ } while (gintsts.b.hcintr == 0); ++ ++ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32); ++ ++ /* Disable HCINTs */ ++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000); ++ ++ /* Disable HAINTs */ ++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000); ++ ++ /* Read HAINT */ ++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint); ++ //fprintf(stderr, "HAINT: %08x\n", haint.d32); ++ ++ /* Read HCINT */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32); ++ ++ /* Read HCCHAR */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32); ++ ++ /* Clear HCINT */ ++ dwc_write_reg32(&hc_regs->hcint, hcint.d32); ++ ++ /* Clear HAINT */ ++ dwc_write_reg32(&hc_global_regs->haint, haint.d32); ++ ++ /* Clear GINTSTS */ ++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32); ++ ++ /* Read GINTSTS */ ++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts); ++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32); ++} ++#endif /* DWC_HS_ELECT_TST */ ++ ++/** Handles hub class-specific requests. */ ++int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 typeReq, ++ u16 wValue, ++ u16 wIndex, ++ char *buf, ++ u16 wLength) ++{ ++ int retval = 0; ++ ++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd); ++ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if; ++ struct usb_hub_descriptor *desc; ++ hprt0_data_t hprt0 = {.d32 = 0}; ++ ++ uint32_t port_status; ++ ++ switch (typeReq) { ++ case ClearHubFeature: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearHubFeature 0x%x\n", wValue); ++ switch (wValue) { ++ case C_HUB_LOCAL_POWER: ++ case C_HUB_OVER_CURRENT: ++ /* Nothing required here */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "ClearHubFeature request %xh unknown\n", wValue); ++ } ++ break; ++ case ClearPortFeature: ++ if (!wIndex || wIndex > 1) ++ goto error; ++ ++ switch (wValue) { ++ case USB_PORT_FEAT_ENABLE: ++ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtena = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ /* Clear Resume bit */ ++ mdelay(100); ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); ++ /* Port inidicator not supported */ ++ break; ++ case USB_PORT_FEAT_C_CONNECTION: ++ /* Clears drivers internal connect status change ++ * flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 0; ++ break; ++ case USB_PORT_FEAT_C_RESET: ++ /* Clears the driver's internal Port Reset Change ++ * flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); ++ dwc_otg_hcd->flags.b.port_reset_change = 0; ++ break; ++ case USB_PORT_FEAT_C_ENABLE: ++ /* Clears the driver's internal Port ++ * Enable/Disable Change flag */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); ++ dwc_otg_hcd->flags.b.port_enable_change = 0; ++ break; ++ case USB_PORT_FEAT_C_SUSPEND: ++ /* Clears the driver's internal Port Suspend ++ * Change flag, which is set when resume signaling on ++ * the host port is complete */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); ++ dwc_otg_hcd->flags.b.port_suspend_change = 0; ++ break; ++ case USB_PORT_FEAT_C_OVER_CURRENT: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); ++ dwc_otg_hcd->flags.b.port_over_current_change = 0; ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "ClearPortFeature request %xh " ++ "unknown or unsupported\n", wValue); ++ } ++ break; ++ case GetHubDescriptor: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubDescriptor\n"); ++ desc = (struct usb_hub_descriptor *)buf; ++ desc->bDescLength = 9; ++ desc->bDescriptorType = 0x29; ++ desc->bNbrPorts = 1; ++ desc->wHubCharacteristics = 0x08; ++ desc->bPwrOn2PwrGood = 1; ++ desc->bHubContrCurrent = 0; ++ desc->u.hs.DeviceRemovable[0] = 0; ++ desc->u.hs.DeviceRemovable[1] = 0xff; ++ break; ++ case GetHubStatus: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetHubStatus\n"); ++ memset(buf, 0, 4); ++ break; ++ case GetPortStatus: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "GetPortStatus\n"); ++ ++ if (!wIndex || wIndex > 1) ++ goto error; ++ ++ port_status = 0; ++ ++ if (dwc_otg_hcd->flags.b.port_connect_status_change) ++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); ++ ++ if (dwc_otg_hcd->flags.b.port_enable_change) ++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE); ++ ++ if (dwc_otg_hcd->flags.b.port_suspend_change) ++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND); ++ ++ if (dwc_otg_hcd->flags.b.port_reset_change) ++ port_status |= (1 << USB_PORT_FEAT_C_RESET); ++ ++ if (dwc_otg_hcd->flags.b.port_over_current_change) { ++ DWC_ERROR("Device Not Supported\n"); ++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT); ++ } ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return 0's for the remainder of the port status ++ * since the port register can't be read if the core ++ * is in device mode. ++ */ ++ *((__le32 *) buf) = cpu_to_le32(port_status); ++ break; ++ } ++ ++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0); ++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32); ++ ++ if (hprt0.b.prtconnsts) ++ port_status |= (1 << USB_PORT_FEAT_CONNECTION); ++ ++ if (hprt0.b.prtena) ++ port_status |= (1 << USB_PORT_FEAT_ENABLE); ++ ++ if (hprt0.b.prtsusp) ++ port_status |= (1 << USB_PORT_FEAT_SUSPEND); ++ ++ if (hprt0.b.prtovrcurract) ++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); ++ ++ if (hprt0.b.prtrst) ++ port_status |= (1 << USB_PORT_FEAT_RESET); ++ ++ if (hprt0.b.prtpwr) ++ port_status |= (1 << USB_PORT_FEAT_POWER); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) ++ port_status |= (USB_PORT_STAT_HIGH_SPEED); ++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED) ++ port_status |= (USB_PORT_STAT_LOW_SPEED); ++ ++ if (hprt0.b.prttstctl) ++ port_status |= (1 << USB_PORT_FEAT_TEST); ++ ++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ ++ ++ *((__le32 *) buf) = cpu_to_le32(port_status); ++ ++ break; ++ case SetHubFeature: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetHubFeature\n"); ++ /* No HUB features supported */ ++ break; ++ case SetPortFeature: ++ if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1)) ++ goto error; ++ ++ if (!dwc_otg_hcd->flags.b.port_connect_status) { ++ /* ++ * The port is disconnected, which means the core is ++ * either in device mode or it soon will be. Just ++ * return without doing anything since the port ++ * register can't be written if the core is in device ++ * mode. ++ */ ++ break; ++ } ++ ++ switch (wValue) { ++ case USB_PORT_FEAT_SUSPEND: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); ++ if (hcd->self.otg_port == wIndex && ++ hcd->self.b_hnp_enable) { ++ gotgctl_data_t gotgctl = {.d32=0}; ++ gotgctl.b.hstsethnpen = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gotgctl, ++ 0, gotgctl.d32); ++ core_if->op_state = A_SUSPEND; ++ } ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32); ++ /* Suspend the Phy Clock */ ++ { ++ pcgcctl_data_t pcgcctl = {.d32=0}; ++ pcgcctl.b.stoppclk = 1; ++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32); ++ } ++ ++ /* For HNP the bus must be suspended for at least 200ms. */ ++ if (hcd->self.b_hnp_enable) { ++ mdelay(200); ++ //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state); ++ } ++ break; ++ case USB_PORT_FEAT_POWER: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_POWER\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtpwr = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ case USB_PORT_FEAT_RESET: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_RESET\n"); ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ /* When B-Host the Port reset bit is set in ++ * the Start HCD Callback function, so that ++ * the reset is started within 1ms of the HNP ++ * success interrupt. */ ++ if (!hcd->self.is_b_host) { ++ hprt0.b.prtrst = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } ++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ ++ MDELAY(60); ++ hprt0.b.prtrst = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ break; ++ ++#ifdef DWC_HS_ELECT_TST ++ case USB_PORT_FEAT_TEST: ++ { ++ uint32_t t; ++ gintmsk_data_t gintmsk; ++ ++ t = (wIndex >> 8); /* MSB wIndex USB */ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t); ++ warn("USB_PORT_FEAT_TEST %d\n", t); ++ if (t < 6) { ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prttstctl = t; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ } else { ++ /* Setup global vars with reg addresses (quick and ++ * dirty hack, should be cleaned up) ++ */ ++ global_regs = core_if->core_global_regs; ++ hc_global_regs = core_if->host_if->host_global_regs; ++ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500); ++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000); ++ ++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive suspend on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 1; ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Drive resume on the root port */ ++ hprt0.d32 = dwc_otg_read_hprt0(core_if); ++ hprt0.b.prtsusp = 0; ++ hprt0.b.prtres = 1; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ mdelay(100); ++ ++ /* Clear the resume bit */ ++ hprt0.b.prtres = 0; ++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* 15 second delay per the test spec */ ++ mdelay(15000); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */ ++ /* Save current interrupt mask */ ++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk); ++ ++ /* Disable all interrupts while we muck with ++ * the hardware directly ++ */ ++ dwc_write_reg32(&global_regs->gintmsk, 0); ++ ++ /* Send the Setup packet */ ++ do_setup(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Send the In and Ack packets */ ++ do_in_ack(); ++ ++ /* 15 second delay so nothing else happens for awhile */ ++ mdelay(15000); ++ ++ /* Restore interrupts */ ++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32); ++ } ++ } ++ break; ++ } ++#endif /* DWC_HS_ELECT_TST */ ++ ++ case USB_PORT_FEAT_INDICATOR: ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - " ++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); ++ /* Not supported */ ++ break; ++ default: ++ retval = -EINVAL; ++ DWC_ERROR("DWC OTG HCD - " ++ "SetPortFeature request %xh " ++ "unknown or unsupported\n", wValue); ++ break; ++ } ++ break; ++ default: ++ error: ++ retval = -EINVAL; ++ DWC_WARN("DWC OTG HCD - " ++ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n", ++ typeReq, wIndex, wValue); ++ break; ++ } ++ ++ return retval; ++} ++ ++/** ++ * Assigns transactions from a QTD to a free host channel and initializes the ++ * host channel to perform the transactions. The host channel is removed from ++ * the free list. ++ * ++ * @param hcd The HCD state structure. ++ * @param qh Transactions from the first QTD for this QH are selected and ++ * assigned to a free host channel. ++ */ ++static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ dwc_hc_t *hc; ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ ++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh); ++ ++ hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry); ++ ++ /* Remove the host channel from the free list. */ ++ list_del_init(&hc->hc_list_entry); ++ ++ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ urb = qtd->urb; ++ qh->channel = hc; ++ qh->qtd_in_process = qtd; ++ ++ /* ++ * Use usb_pipedevice to determine device address. This address is ++ * 0 before the SET_ADDRESS command and the correct address afterward. ++ */ ++ hc->dev_addr = usb_pipedevice(urb->pipe); ++ hc->ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (urb->dev->speed == USB_SPEED_LOW) { ++ hc->speed = DWC_OTG_EP_SPEED_LOW; ++ } else if (urb->dev->speed == USB_SPEED_FULL) { ++ hc->speed = DWC_OTG_EP_SPEED_FULL; ++ } else { ++ hc->speed = DWC_OTG_EP_SPEED_HIGH; ++ } ++ ++ hc->max_packet = dwc_max_packet(qh->maxp); ++ ++ hc->xfer_started = 0; ++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS; ++ hc->error_state = (qtd->error_count > 0); ++ hc->halt_on_queue = 0; ++ hc->halt_pending = 0; ++ hc->requests = 0; ++ ++ /* ++ * The following values may be modified in the transfer type section ++ * below. The xfer_len value may be reduced when the transfer is ++ * started to accommodate the max widths of the XferSize and PktCnt ++ * fields in the HCTSIZn register. ++ */ ++ hc->do_ping = qh->ping_state; ++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0); ++ hc->data_pid_start = qh->data_toggle; ++ hc->multi_count = 1; ++ ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length; ++ } ++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length; ++ hc->xfer_count = 0; ++ ++ /* ++ * Set the split attributes ++ */ ++ hc->do_split = 0; ++ if (qh->do_split) { ++ hc->do_split = 1; ++ hc->xact_pos = qtd->isoc_split_pos; ++ hc->complete_split = qtd->complete_split; ++ hc->hub_addr = urb->dev->tt->hub->devnum; ++ hc->port_addr = urb->dev->ttport; ++ } ++ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL; ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n"); ++ hc->do_ping = 0; ++ hc->ep_is_in = 0; ++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)urb->setup_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->setup_packet; ++ } ++ hc->xfer_len = 8; ++ break; ++ case DWC_OTG_CONTROL_DATA: ++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n"); ++ hc->data_pid_start = qtd->data_toggle; ++ break; ++ case DWC_OTG_CONTROL_STATUS: ++ /* ++ * Direction is opposite of data direction or IN if no ++ * data. ++ */ ++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n"); ++ if (urb->transfer_buffer_length == 0) { ++ hc->ep_is_in = 1; ++ } else { ++ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN); ++ } ++ if (hc->ep_is_in) { ++ hc->do_ping = 0; ++ } ++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1; ++ hc->xfer_len = 0; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)hcd->status_buf_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)hcd->status_buf; ++ } ++ break; ++ } ++ break; ++ case PIPE_BULK: ++ hc->ep_type = DWC_OTG_EP_TYPE_BULK; ++ break; ++ case PIPE_INTERRUPT: ++ hc->ep_type = DWC_OTG_EP_TYPE_INTR; ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ struct usb_iso_packet_descriptor *frame_desc; ++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC; ++ if (hcd->core_if->dma_enable) { ++ hc->xfer_buff = (uint8_t *)urb->transfer_dma; ++ } else { ++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer; ++ } ++ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset; ++ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset; ++ ++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ if (hc->xfer_len <= 188) { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ } ++ else { ++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN; ++ } ++ } ++ } ++ break; ++ } ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This value may be modified when the transfer is started to ++ * reflect the actual transfer length. ++ */ ++ hc->multi_count = dwc_hb_mult(qh->maxp); ++ } ++ ++ dwc_otg_hc_init(hcd->core_if, hc); ++ hc->qh = qh; ++} ++ ++/** ++ * This function selects transactions from the HCD transfer schedule and ++ * assigns them to available host channels. It is called from HCD interrupt ++ * handler functions. ++ * ++ * @param hcd The HCD state structure. ++ * ++ * @return The types of new transactions that were assigned to host channels. ++ */ ++dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd) ++{ ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int num_channels; ++ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE; ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n"); ++#endif ++ ++ /* Process entries in the periodic ready list. */ ++ qh_ptr = hcd->periodic_sched_ready.next; ++ while (qh_ptr != &hcd->periodic_sched_ready && ++ !list_empty(&hcd->free_hc_list)) { ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(hcd, qh); ++ ++ /* ++ * Move the QH from the periodic ready schedule to the ++ * periodic assigned schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned); ++ ++ ret_val = DWC_OTG_TRANSACTION_PERIODIC; ++ } ++ ++ /* ++ * Process entries in the inactive portion of the non-periodic ++ * schedule. Some free host channels may not be used if they are ++ * reserved for periodic transfers. ++ */ ++ qh_ptr = hcd->non_periodic_sched_inactive.next; ++ num_channels = hcd->core_if->core_params->host_channels; ++ while (qh_ptr != &hcd->non_periodic_sched_inactive && ++ (hcd->non_periodic_channels < ++ num_channels - hcd->periodic_channels) && ++ !list_empty(&hcd->free_hc_list)) { ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ assign_and_init_hc(hcd, qh); ++ ++ /* ++ * Move the QH from the non-periodic inactive schedule to the ++ * non-periodic active schedule. ++ */ ++ qh_ptr = qh_ptr->next; ++ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active); ++ ++ if (ret_val == DWC_OTG_TRANSACTION_NONE) { ++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC; ++ } else { ++ ret_val = DWC_OTG_TRANSACTION_ALL; ++ } ++ ++ hcd->non_periodic_channels++; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Attempts to queue a single transaction request for a host channel ++ * associated with either a periodic or non-periodic transfer. This function ++ * assumes that there is space available in the appropriate request queue. For ++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space ++ * is available in the appropriate Tx FIFO. ++ * ++ * @param hcd The HCD state structure. ++ * @param hc Host channel descriptor associated with either a periodic or ++ * non-periodic transfer. ++ * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx ++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic ++ * transfers. ++ * ++ * @return 1 if a request is queued and more requests may be needed to ++ * complete the transfer, 0 if no more requests are required for this ++ * transfer, -1 if there is insufficient space in the Tx FIFO. ++ */ ++static int queue_transaction(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ uint16_t fifo_dwords_avail) ++{ ++ int retval; ++ ++ if (hcd->core_if->dma_enable) { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ hc->qh->ping_state = 0; ++ } ++ retval = 0; ++ } else if (hc->halt_pending) { ++ /* Don't queue a request if the channel has been halted. */ ++ retval = 0; ++ } else if (hc->halt_on_queue) { ++ dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status); ++ retval = 0; ++ } else if (hc->do_ping) { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ } ++ retval = 0; ++ } else if (!hc->ep_is_in || ++ hc->data_pid_start == DWC_OTG_HC_PID_SETUP) { ++ if ((fifo_dwords_avail * 4) >= hc->max_packet) { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc); ++ } ++ } else { ++ retval = -1; ++ } ++ } else { ++ if (!hc->xfer_started) { ++ dwc_otg_hc_start_transfer(hcd->core_if, hc); ++ retval = 1; ++ } else { ++ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc); ++ } ++ } ++ ++ return retval; ++} ++ ++/** ++ * Processes active non-periodic channels and queues transactions for these ++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx ++ * FIFO Empty interrupt is enabled if there are more transactions to queue as ++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx ++ * FIFO Empty interrupt is disabled. ++ */ ++static void process_non_periodic_channels(dwc_otg_hcd_t *hcd) ++{ ++ gnptxsts_data_t tx_status; ++ struct list_head *orig_qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ int more_to_do = 0; ++ ++ dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ /* ++ * Keep track of the starting point. Skip over the start-of-list ++ * entry. ++ */ ++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) { ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ } ++ orig_qh_ptr = hcd->non_periodic_qh_ptr; ++ ++ /* ++ * Process once through the active list or until no more space is ++ * available in the request queue or the Tx FIFO. ++ */ ++ do { ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail); ++ ++ if (status > 0) { ++ more_to_do = 1; ++ } else if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* Advance to next QH, skipping start-of-list entry. */ ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) { ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ } ++ ++ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr); ++ ++ if (!hcd->core_if->dma_enable) { ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ intr_mask.b.nptxfempty = 1; ++ ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.nptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.nptxfspcavail); ++#endif ++ if (more_to_do || no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the non-periodic ++ * Tx FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Processes periodic channels for the next frame and queues transactions for ++ * these channels to the DWC_otg controller. After queueing transactions, the ++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions ++ * to queue as Periodic Tx FIFO or request queue space becomes available. ++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. ++ */ ++static void process_periodic_channels(dwc_otg_hcd_t *hcd) ++{ ++ hptxsts_data_t tx_status; ++ struct list_head *qh_ptr; ++ dwc_otg_qh_t *qh; ++ int status; ++ int no_queue_space = 0; ++ int no_fifo_space = 0; ++ ++ dwc_otg_host_global_regs_t *host_regs; ++ host_regs = hcd->core_if->host_if->host_global_regs; ++ ++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n"); ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ ++ qh_ptr = hcd->periodic_sched_assigned.next; ++ while (qh_ptr != &hcd->periodic_sched_assigned) { ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ if (tx_status.b.ptxqspcavail == 0) { ++ no_queue_space = 1; ++ break; ++ } ++ ++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry); ++ ++ /* ++ * Set a flag if we're queuing high-bandwidth in slave mode. ++ * The flag prevents any halts to get into the request queue in ++ * the middle of multiple high-bandwidth packets getting queued. ++ */ ++ if (!hcd->core_if->dma_enable && ++ qh->channel->multi_count > 1) ++ { ++ hcd->core_if->queuing_high_bandwidth = 1; ++ } ++ ++ status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail); ++ if (status < 0) { ++ no_fifo_space = 1; ++ break; ++ } ++ ++ /* ++ * In Slave mode, stay on the current transfer until there is ++ * nothing more to do or the high-bandwidth request count is ++ * reached. In DMA mode, only need to queue one request. The ++ * controller automatically handles multiple packets for ++ * high-bandwidth transfers. ++ */ ++ if (hcd->core_if->dma_enable || status == 0 || ++ qh->channel->requests == qh->channel->multi_count) { ++ qh_ptr = qh_ptr->next; ++ /* ++ * Move the QH from the periodic assigned schedule to ++ * the periodic queued schedule. ++ */ ++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued); ++ ++ /* done queuing high bandwidth */ ++ hcd->core_if->queuing_high_bandwidth = 0; ++ } ++ } ++ ++ if (!hcd->core_if->dma_enable) { ++ dwc_otg_core_global_regs_t *global_regs; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ global_regs = hcd->core_if->core_global_regs; ++ intr_mask.b.ptxfempty = 1; ++#ifdef DEBUG ++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n", ++ tx_status.b.ptxqspcavail); ++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n", ++ tx_status.b.ptxfspcavail); ++#endif ++ if (!list_empty(&hcd->periodic_sched_assigned) || ++ no_queue_space || no_fifo_space) { ++ /* ++ * May need to queue more transactions as the request ++ * queue or Tx FIFO empties. Enable the periodic Tx ++ * FIFO empty interrupt. (Always use the half-empty ++ * level to ensure that new requests are loaded as ++ * soon as possible.) ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32); ++ } else { ++ /* ++ * Disable the Tx FIFO empty interrupt since there are ++ * no more transactions that need to be queued right ++ * now. This function is called from interrupt ++ * handlers to queue more transactions as transfer ++ * states change. ++ */ ++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ } ++} ++ ++/** ++ * This function processes the currently active host channels and queues ++ * transactions for these channels to the DWC_otg controller. It is called ++ * from HCD interrupt handler functions. ++ * ++ * @param hcd The HCD state structure. ++ * @param tr_type The type(s) of transactions to queue (non-periodic, ++ * periodic, or both). ++ */ ++void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd, ++ dwc_otg_transaction_type_e tr_type) ++{ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n"); ++#endif ++ /* Process host channels associated with periodic transfers. */ ++ if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC || ++ tr_type == DWC_OTG_TRANSACTION_ALL) && ++ !list_empty(&hcd->periodic_sched_assigned)) { ++ ++ process_periodic_channels(hcd); ++ } ++ ++ /* Process host channels associated with non-periodic transfers. */ ++ if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC || ++ tr_type == DWC_OTG_TRANSACTION_ALL) { ++ if (!list_empty(&hcd->non_periodic_sched_active)) { ++ process_non_periodic_channels(hcd); ++ } else { ++ /* ++ * Ensure NP Tx FIFO empty interrupt is disabled when ++ * there are no non-periodic transfers to process. ++ */ ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk, ++ gintmsk.d32, 0); ++ } ++ } ++} ++ ++/** ++ * Sets the final status of an URB and returns it to the device driver. Any ++ * required cleanup of the URB is performed. ++ */ ++void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status) ++{ ++#ifdef DEBUG ++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) { ++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n", ++ __func__, urb, usb_pipedevice(urb->pipe), ++ usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT", status); ++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { ++ int i; ++ for (i = 0; i < urb->number_of_packets; i++) { ++ DWC_PRINT(" ISO Desc %d status: %d\n", ++ i, urb->iso_frame_desc[i].status); ++ } ++ } ++ } ++#endif ++ ++ //if we use the aligned buffer instead of the original unaligned buffer, ++ //for IN data, we have to move the data to the original buffer ++ if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){ ++ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE); ++ memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length); ++ } ++ ++ ++ urb->status = status; ++ urb->hcpriv = NULL; ++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status); ++} ++ ++/* ++ * Returns the Queue Head for an URB. ++ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb) ++{ ++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb); ++ return (dwc_otg_qh_t *)ep->hcpriv; ++} ++ ++#ifdef DEBUG ++void dwc_print_setup_data(uint8_t *setup) ++{ ++ int i; ++ if (CHK_DEBUG_LEVEL(DBG_HCD)){ ++ DWC_PRINT("Setup Data = MSB "); ++ for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]); ++ DWC_PRINT("\n"); ++ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device"); ++ DWC_PRINT(" bmRequestType Type = "); ++ switch ((setup[0] & 0x60) >> 5) { ++ case 0: DWC_PRINT("Standard\n"); break; ++ case 1: DWC_PRINT("Class\n"); break; ++ case 2: DWC_PRINT("Vendor\n"); break; ++ case 3: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bmRequestType Recipient = "); ++ switch (setup[0] & 0x1f) { ++ case 0: DWC_PRINT("Device\n"); break; ++ case 1: DWC_PRINT("Interface\n"); break; ++ case 2: DWC_PRINT("Endpoint\n"); break; ++ case 3: DWC_PRINT("Other\n"); break; ++ default: DWC_PRINT("Reserved\n"); break; ++ } ++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]); ++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2])); ++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4])); ++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6])); ++ } ++} ++#endif ++ ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) { ++} ++ ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd) ++{ ++#ifdef DEBUG ++ int num_channels; ++ int i; ++ gnptxsts_data_t np_tx_status; ++ hptxsts_data_t p_tx_status; ++ ++ num_channels = hcd->core_if->core_params->host_channels; ++ DWC_PRINT("\n"); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("HCD State:\n"); ++ DWC_PRINT(" Num channels: %d\n", num_channels); ++ for (i = 0; i < num_channels; i++) { ++ dwc_hc_t *hc = hcd->hc_ptr_array[i]; ++ DWC_PRINT(" Channel %d:\n", i); ++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n", ++ hc->dev_addr, hc->ep_num, hc->ep_is_in); ++ DWC_PRINT(" speed: %d\n", hc->speed); ++ DWC_PRINT(" ep_type: %d\n", hc->ep_type); ++ DWC_PRINT(" max_packet: %d\n", hc->max_packet); ++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start); ++ DWC_PRINT(" multi_count: %d\n", hc->multi_count); ++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started); ++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff); ++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len); ++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count); ++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue); ++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending); ++ DWC_PRINT(" halt_status: %d\n", hc->halt_status); ++ DWC_PRINT(" do_split: %d\n", hc->do_split); ++ DWC_PRINT(" complete_split: %d\n", hc->complete_split); ++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr); ++ DWC_PRINT(" port_addr: %d\n", hc->port_addr); ++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos); ++ DWC_PRINT(" requests: %d\n", hc->requests); ++ DWC_PRINT(" qh: %p\n", hc->qh); ++ if (hc->xfer_started) { ++ hfnum_data_t hfnum; ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum); ++ hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz); ++ hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk); ++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32); ++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32); ++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32); ++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32); ++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32); ++ } ++ if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) { ++ dwc_otg_qtd_t *qtd; ++ struct urb *urb; ++ qtd = hc->qh->qtd_in_process; ++ urb = qtd->urb; ++ DWC_PRINT(" URB Info:\n"); ++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb); ++ if (urb) { ++ DWC_PRINT(" Dev: %d, EP: %d %s\n", ++ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) ? "IN" : "OUT"); ++ DWC_PRINT(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer); ++ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma); ++ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length); ++ DWC_PRINT(" actual_length: %d\n", urb->actual_length); ++ } ++ } ++ } ++ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels); ++ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels); ++ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs); ++ np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts); ++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail); ++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail); ++ p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts); ++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail); ++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail); ++ dwc_otg_hcd_dump_frrem(hcd); ++ dwc_otg_dump_global_registers(hcd->core_if); ++ dwc_otg_dump_host_registers(hcd->core_if); ++ DWC_PRINT("************************************************************\n"); ++ DWC_PRINT("\n"); ++#endif ++} ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc/otg_hcd.h +@@ -0,0 +1,647 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $ ++ * $Revision: #45 $ ++ * $Date: 2008/07/15 $ ++ * $Change: 1064918 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++#ifndef __DWC_HCD_H__ ++#define __DWC_HCD_H__ ++ ++#include <linux/list.h> ++#include <linux/usb.h> ++#include <linux/usb/hcd.h> ++ ++struct dwc_otg_device; ++ ++#include "otg_cil.h" ++ ++/** ++ * @file ++ * ++ * This file contains the structures, constants, and interfaces for ++ * the Host Contoller Driver (HCD). ++ * ++ * The Host Controller Driver (HCD) is responsible for translating requests ++ * from the USB Driver into the appropriate actions on the DWC_otg controller. ++ * It isolates the USBD from the specifics of the controller by providing an ++ * API to the USBD. ++ */ ++ ++/** ++ * Phases for control transfers. ++ */ ++typedef enum dwc_otg_control_phase { ++ DWC_OTG_CONTROL_SETUP, ++ DWC_OTG_CONTROL_DATA, ++ DWC_OTG_CONTROL_STATUS ++} dwc_otg_control_phase_e; ++ ++/** Transaction types. */ ++typedef enum dwc_otg_transaction_type { ++ DWC_OTG_TRANSACTION_NONE, ++ DWC_OTG_TRANSACTION_PERIODIC, ++ DWC_OTG_TRANSACTION_NON_PERIODIC, ++ DWC_OTG_TRANSACTION_ALL ++} dwc_otg_transaction_type_e; ++ ++/** ++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control, ++ * interrupt, or isochronous transfer. A single QTD is created for each URB ++ * (of one of these types) submitted to the HCD. The transfer associated with ++ * a QTD may require one or multiple transactions. ++ * ++ * A QTD is linked to a Queue Head, which is entered in either the ++ * non-periodic or periodic schedule for execution. When a QTD is chosen for ++ * execution, some or all of its transactions may be executed. After ++ * execution, the state of the QTD is updated. The QTD may be retired if all ++ * its transactions are complete or if an error occurred. Otherwise, it ++ * remains in the schedule so more transactions can be executed later. ++ */ ++typedef struct dwc_otg_qtd { ++ /** ++ * Determines the PID of the next data packet for the data phase of ++ * control transfers. Ignored for other transfer types.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Current phase for control transfers (Setup, Data, or Status). */ ++ dwc_otg_control_phase_e control_phase; ++ ++ /** Keep track of the current split type ++ * for FS/LS endpoints on a HS Hub */ ++ uint8_t complete_split; ++ ++ /** How many bytes transferred during SSPLIT OUT */ ++ uint32_t ssplit_out_xfer_count; ++ ++ /** ++ * Holds the number of bus errors that have occurred for a transaction ++ * within this transfer. ++ */ ++ uint8_t error_count; ++ ++ /** ++ * Index of the next frame descriptor for an isochronous transfer. A ++ * frame descriptor describes the buffer position and length of the ++ * data to be transferred in the next scheduled (micro)frame of an ++ * isochronous transfer. It also holds status for that transaction. ++ * The frame index starts at 0. ++ */ ++ int isoc_frame_index; ++ ++ /** Position of the ISOC split on full/low speed */ ++ uint8_t isoc_split_pos; ++ ++ /** Position of the ISOC split in the buffer for the current frame */ ++ uint16_t isoc_split_offset; ++ ++ /** URB for this transfer */ ++ struct urb *urb; ++ ++ /** This list of QTDs */ ++ struct list_head qtd_list_entry; ++ ++} dwc_otg_qtd_t; ++ ++/** ++ * A Queue Head (QH) holds the static characteristics of an endpoint and ++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may ++ * be entered in either the non-periodic or periodic schedule. ++ */ ++typedef struct dwc_otg_qh { ++ /** ++ * Endpoint type. ++ * One of the following values: ++ * - USB_ENDPOINT_XFER_CONTROL ++ * - USB_ENDPOINT_XFER_ISOC ++ * - USB_ENDPOINT_XFER_BULK ++ * - USB_ENDPOINT_XFER_INT ++ */ ++ uint8_t ep_type; ++ uint8_t ep_is_in; ++ ++ /** wMaxPacketSize Field of Endpoint Descriptor. */ ++ uint16_t maxp; ++ ++ /** ++ * Determines the PID of the next data packet for non-control ++ * transfers. Ignored for control transfers.<br> ++ * One of the following values: ++ * - DWC_OTG_HC_PID_DATA0 ++ * - DWC_OTG_HC_PID_DATA1 ++ */ ++ uint8_t data_toggle; ++ ++ /** Ping state if 1. */ ++ uint8_t ping_state; ++ ++ /** ++ * List of QTDs for this QH. ++ */ ++ struct list_head qtd_list; ++ ++ /** Host channel currently processing transfers for this QH. */ ++ dwc_hc_t *channel; ++ ++ /** QTD currently assigned to a host channel for this QH. */ ++ dwc_otg_qtd_t *qtd_in_process; ++ ++ /** Full/low speed endpoint on high-speed hub requires split. */ ++ uint8_t do_split; ++ ++ /** @name Periodic schedule information */ ++ /** @{ */ ++ ++ /** Bandwidth in microseconds per (micro)frame. */ ++ uint8_t usecs; ++ ++ /** Interval between transfers in (micro)frames. */ ++ uint16_t interval; ++ ++ /** ++ * (micro)frame to initialize a periodic transfer. The transfer ++ * executes in the following (micro)frame. ++ */ ++ uint16_t sched_frame; ++ ++ /** (micro)frame at which last start split was initialized. */ ++ uint16_t start_split_frame; ++ ++ /** @} */ ++ ++ /** Entry for QH in either the periodic or non-periodic schedule. */ ++ struct list_head qh_list_entry; ++} dwc_otg_qh_t; ++ ++/** ++ * This structure holds the state of the HCD, including the non-periodic and ++ * periodic schedules. ++ */ ++typedef struct dwc_otg_hcd { ++ /** The DWC otg device pointer */ ++ struct dwc_otg_device *otg_dev; ++ ++ /** DWC OTG Core Interface Layer */ ++ dwc_otg_core_if_t *core_if; ++ ++ /** Internal DWC HCD Flags */ ++ volatile union dwc_otg_hcd_internal_flags { ++ uint32_t d32; ++ struct { ++ unsigned port_connect_status_change : 1; ++ unsigned port_connect_status : 1; ++ unsigned port_reset_change : 1; ++ unsigned port_enable_change : 1; ++ unsigned port_suspend_change : 1; ++ unsigned port_over_current_change : 1; ++ unsigned reserved : 27; ++ } b; ++ } flags; ++ ++ /** ++ * Inactive items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are not ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_inactive; ++ ++ /** ++ * Active items in the non-periodic schedule. This is a list of ++ * Queue Heads. Transfers associated with these Queue Heads are ++ * currently assigned to a host channel. ++ */ ++ struct list_head non_periodic_sched_active; ++ ++ /** ++ * Pointer to the next Queue Head to process in the active ++ * non-periodic schedule. ++ */ ++ struct list_head *non_periodic_qh_ptr; ++ ++ /** ++ * Inactive items in the periodic schedule. This is a list of QHs for ++ * periodic transfers that are _not_ scheduled for the next frame. ++ * Each QH in the list has an interval counter that determines when it ++ * needs to be scheduled for execution. This scheduling mechanism ++ * allows only a simple calculation for periodic bandwidth used (i.e. ++ * must assume that all periodic transfers may need to execute in the ++ * same frame). However, it greatly simplifies scheduling and should ++ * be sufficient for the vast majority of OTG hosts, which need to ++ * connect to a small number of peripherals at one time. ++ * ++ * Items move from this list to periodic_sched_ready when the QH ++ * interval counter is 0 at SOF. ++ */ ++ struct list_head periodic_sched_inactive; ++ ++ /** ++ * List of periodic QHs that are ready for execution in the next ++ * frame, but have not yet been assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_assigned as host ++ * channels become available during the current frame. ++ */ ++ struct list_head periodic_sched_ready; ++ ++ /** ++ * List of periodic QHs to be executed in the next frame that are ++ * assigned to host channels. ++ * ++ * Items move from this list to periodic_sched_queued as the ++ * transactions for the QH are queued to the DWC_otg controller. ++ */ ++ struct list_head periodic_sched_assigned; ++ ++ /** ++ * List of periodic QHs that have been queued for execution. ++ * ++ * Items move from this list to either periodic_sched_inactive or ++ * periodic_sched_ready when the channel associated with the transfer ++ * is released. If the interval for the QH is 1, the item moves to ++ * periodic_sched_ready because it must be rescheduled for the next ++ * frame. Otherwise, the item moves to periodic_sched_inactive. ++ */ ++ struct list_head periodic_sched_queued; ++ ++ /** ++ * Total bandwidth claimed so far for periodic transfers. This value ++ * is in microseconds per (micro)frame. The assumption is that all ++ * periodic transfers may occur in the same (micro)frame. ++ */ ++ uint16_t periodic_usecs; ++ ++ /** ++ * Frame number read from the core at SOF. The value ranges from 0 to ++ * DWC_HFNUM_MAX_FRNUM. ++ */ ++ uint16_t frame_number; ++ ++ /** ++ * Free host channels in the controller. This is a list of ++ * dwc_hc_t items. ++ */ ++ struct list_head free_hc_list; ++ ++ /** ++ * Number of host channels assigned to periodic transfers. Currently ++ * assuming that there is a dedicated host channel for each periodic ++ * transaction and at least one host channel available for ++ * non-periodic transactions. ++ */ ++ int periodic_channels; ++ ++ /** ++ * Number of host channels assigned to non-periodic transfers. ++ */ ++ int non_periodic_channels; ++ ++ /** ++ * Array of pointers to the host channel descriptors. Allows accessing ++ * a host channel descriptor given the host channel number. This is ++ * useful in interrupt handlers. ++ */ ++ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS]; ++ ++ /** ++ * Buffer to use for any data received during the status phase of a ++ * control transfer. Normally no data is transferred during the status ++ * phase. This buffer is used as a bit bucket. ++ */ ++ uint8_t *status_buf; ++ ++ /** ++ * DMA address for status_buf. ++ */ ++ dma_addr_t status_buf_dma; ++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64 ++ ++ /** ++ * Structure to allow starting the HCD in a non-interrupt context ++ * during an OTG role change. ++ */ ++ struct delayed_work start_work; ++ ++ /** ++ * Connection timer. An OTG host must display a message if the device ++ * does not connect. Started when the VBus power is turned on via ++ * sysfs attribute "buspower". ++ */ ++ struct timer_list conn_timer; ++ ++ /* Tasket to do a reset */ ++ struct tasklet_struct *reset_tasklet; ++ ++ /* */ ++ spinlock_t lock; ++ ++#ifdef DEBUG ++ uint32_t frrem_samples; ++ uint64_t frrem_accum; ++ ++ uint32_t hfnum_7_samples_a; ++ uint64_t hfnum_7_frrem_accum_a; ++ uint32_t hfnum_0_samples_a; ++ uint64_t hfnum_0_frrem_accum_a; ++ uint32_t hfnum_other_samples_a; ++ uint64_t hfnum_other_frrem_accum_a; ++ ++ uint32_t hfnum_7_samples_b; ++ uint64_t hfnum_7_frrem_accum_b; ++ uint32_t hfnum_0_samples_b; ++ uint64_t hfnum_0_frrem_accum_b; ++ uint32_t hfnum_other_samples_b; ++ uint64_t hfnum_other_frrem_accum_b; ++#endif ++} dwc_otg_hcd_t; ++ ++/** Gets the dwc_otg_hcd from a struct usb_hcd */ ++static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd) ++{ ++ return (dwc_otg_hcd_t *)(hcd->hcd_priv); ++} ++ ++/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */ ++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv); ++} ++ ++/** @name HCD Create/Destroy Functions */ ++/** @{ */ ++extern int dwc_otg_hcd_init(struct platform_device *pdev); ++extern void dwc_otg_hcd_remove(struct platform_device *pdev); ++/** @} */ ++ ++/** @name Linux HC Driver API Functions */ ++/** @{ */ ++ ++extern int dwc_otg_hcd_start(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd); ++extern void dwc_otg_hcd_free(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd, ++ // struct usb_host_endpoint *ep, ++ struct urb *urb, ++ gfp_t mem_flags ++ ); ++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, ++ struct urb *urb, int status); ++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd, ++ struct usb_host_endpoint *ep); ++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd); ++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, ++ char *buf); ++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd, ++ u16 typeReq, ++ u16 wValue, ++ u16 wIndex, ++ char *buf, ++ u16 wLength); ++ ++/** @} */ ++ ++/** @name Transaction Execution Functions */ ++/** @{ */ ++extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd); ++extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd, ++ dwc_otg_transaction_type_e tr_type); ++extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb, ++ int status); ++/** @} */ ++ ++/** @name Interrupt Handler Functions */ ++/** @{ */ ++extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num); ++extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd); ++/** @} */ ++ ++ ++/** @name Schedule Queue Functions */ ++/** @{ */ ++ ++/* Implemented in dwc_otg_hcd_queue.c */ ++extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb); ++extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb); ++extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh); ++extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh); ++extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh); ++extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit); ++ ++/** Remove and free a QH */ ++static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd, ++ dwc_otg_qh_t *qh) ++{ ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ dwc_otg_hcd_qh_free(hcd, qh); ++} ++ ++/** Allocates memory for a QH structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void) ++{ ++ return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL); ++} ++ ++extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb); ++extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb); ++extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd); ++ ++/** Allocates memory for a QTD structure. ++ * @return Returns the memory allocate or NULL on error. */ ++static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void) ++{ ++ return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL); ++} ++ ++/** Frees the memory for a QTD structure. QTD should already be removed from ++ * list. ++ * @param[in] qtd QTD to free.*/ ++static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd) ++{ ++ kfree(qtd); ++} ++ ++/** Removes a QTD from list. ++ * @param[in] hcd HCD instance. ++ * @param[in] qtd QTD to remove from list. */ ++static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd) ++{ ++ unsigned long flags; ++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags); ++ list_del(&qtd->qtd_list_entry); ++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags); ++} ++ ++/** Remove and free a QTD */ ++static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd) ++{ ++ dwc_otg_hcd_qtd_remove(hcd, qtd); ++ dwc_otg_hcd_qtd_free(qtd); ++} ++ ++/** @} */ ++ ++ ++/** @name Internal Functions */ ++/** @{ */ ++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb); ++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd); ++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd); ++/** @} */ ++ ++/** Gets the usb_host_endpoint associated with an URB. */ ++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb) ++{ ++ struct usb_device *dev = urb->dev; ++ int ep_num = usb_pipeendpoint(urb->pipe); ++ ++ if (usb_pipein(urb->pipe)) ++ return dev->ep_in[ep_num]; ++ else ++ return dev->ep_out[ep_num]; ++} ++ ++/** ++ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is ++ * qualified with its direction (possible 32 endpoints per device). ++ */ ++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \ ++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4) ++ ++/** Gets the QH that contains the list_head */ ++#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry) ++ ++/** Gets the QTD that contains the list_head */ ++#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry) ++ ++/** Check if QH is non-periodic */ ++#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \ ++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL)) ++ ++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */ ++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) ++ ++/** Packet size for any kind of endpoint descriptor */ ++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) ++ ++/** ++ * Returns true if _frame1 is less than or equal to _frame2. The comparison is ++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the ++ * frame number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2) ++{ ++ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <= ++ (DWC_HFNUM_MAX_FRNUM >> 1); ++} ++ ++/** ++ * Returns true if _frame1 is greater than _frame2. The comparison is done ++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame ++ * number when the max frame number is reached. ++ */ ++static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2) ++{ ++ return (frame1 != frame2) && ++ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) < ++ (DWC_HFNUM_MAX_FRNUM >> 1)); ++} ++ ++/** ++ * Increments _frame by the amount specified by _inc. The addition is done ++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value. ++ */ ++static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc) ++{ ++ return (frame + inc) & DWC_HFNUM_MAX_FRNUM; ++} ++ ++static inline uint16_t dwc_full_frame_num(uint16_t frame) ++{ ++ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3; ++} ++ ++static inline uint16_t dwc_micro_frame_num(uint16_t frame) ++{ ++ return frame & 0x7; ++} ++ ++#ifdef DEBUG ++/** ++ * Macro to sample the remaining PHY clocks left in the current frame. This ++ * may be used during debugging to determine the average time it takes to ++ * execute sections of code. There are two possible sample points, "a" and ++ * "b", so the _letter argument must be one of these values. ++ * ++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For ++ * example, "cat /sys/devices/lm0/hcd_frrem". ++ */ ++#define dwc_sample_frrem(_hcd, _qh, _letter) \ ++{ \ ++ hfnum_data_t hfnum; \ ++ dwc_otg_qtd_t *qtd; \ ++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \ ++ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \ ++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \ ++ switch (hfnum.b.frnum & 0x7) { \ ++ case 7: \ ++ _hcd->hfnum_7_samples_##_letter++; \ ++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ case 0: \ ++ _hcd->hfnum_0_samples_##_letter++; \ ++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ default: \ ++ _hcd->hfnum_other_samples_##_letter++; \ ++ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \ ++ break; \ ++ } \ ++ } \ ++} ++#else ++#define dwc_sample_frrem(_hcd, _qh, _letter) ++#endif ++#endif ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc/otg_hcd_intr.c +@@ -0,0 +1,1826 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $ ++ * $Revision: #70 $ ++ * $Date: 2008/10/16 $ ++ * $Change: 1117667 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++#include <linux/version.h> ++ ++#include "otg_driver.h" ++#include "otg_hcd.h" ++#include "otg_regs.h" ++ ++/** @file ++ * This file contains the implementation of the HCD Interrupt handlers. ++ */ ++ ++/** This function handles interrupts for the HCD. */ ++int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ int retval = 0; ++ ++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if; ++ gintsts_data_t gintsts; ++#ifdef DEBUG ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++#endif ++ ++ /* Check if HOST Mode */ ++ if (dwc_otg_is_host_mode(core_if)) { ++ gintsts.d32 = dwc_otg_read_core_intr(core_if); ++ if (!gintsts.d32) { ++ return 0; ++ } ++ ++#ifdef DEBUG ++ /* Don't print debug message in the interrupt handler on SOF */ ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "\n"); ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32); ++#endif ++ if (gintsts.b.usbreset) { ++ DWC_PRINT("Usb Reset In Host Mode\n"); ++ } ++ if (gintsts.b.sofintr) { ++ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.rxstsqlvl) { ++ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.nptxfempty) { ++ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.i2cintr) { ++ /** @todo Implement i2cintr handler. */ ++ } ++ if (gintsts.b.portintr) { ++ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.hcintr) { ++ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd); ++ } ++ if (gintsts.b.ptxfempty) { ++ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd); ++ } ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ { ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintsts)); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n", ++ dwc_read_reg32(&global_regs->gintmsk)); ++ } ++#endif ++ ++#ifdef DEBUG ++# ifndef DEBUG_SOF ++ if (gintsts.d32 != DWC_SOF_INTR_MASK) ++# endif ++ DWC_DEBUGPL(DBG_HCD, "\n"); ++#endif ++ ++ } ++ S3C2410X_CLEAR_EINTPEND(); ++ ++ return retval; ++} ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++#warning Compiling code to track missed SOFs ++#define FRAME_NUM_ARRAY_SIZE 1000 ++/** ++ * This function is for debug only. ++ */ ++static inline void track_missed_sofs(uint16_t curr_frame_number) ++{ ++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE]; ++ static int frame_num_idx = 0; ++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM; ++ static int dumped_frame_num_array = 0; ++ ++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) { ++ if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) { ++ frame_num_array[frame_num_idx] = curr_frame_number; ++ last_frame_num_array[frame_num_idx++] = last_frame_num; ++ } ++ } else if (!dumped_frame_num_array) { ++ int i; ++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n"); ++ printk(KERN_EMERG USB_DWC "----- ----------\n"); ++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) { ++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n", ++ frame_num_array[i], last_frame_num_array[i]); ++ } ++ dumped_frame_num_array = 1; ++ } ++ last_frame_num = curr_frame_number; ++} ++#endif ++ ++/** ++ * Handles the start-of-frame interrupt in host mode. Non-periodic ++ * transactions may be queued to the DWC_otg controller for the current ++ * (micro)frame. Periodic transactions may be queued to the controller for the ++ * next (micro)frame. ++ */ ++int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd) ++{ ++ hfnum_data_t hfnum; ++ struct list_head *qh_entry; ++ dwc_otg_qh_t *qh; ++ dwc_otg_transaction_type_e tr_type; ++ gintsts_data_t gintsts = {.d32 = 0}; ++ ++ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum); ++ ++#ifdef DEBUG_SOF ++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n"); ++#endif ++ hcd->frame_number = hfnum.b.frnum; ++ ++#ifdef DEBUG ++ hcd->frrem_accum += hfnum.b.frrem; ++ hcd->frrem_samples++; ++#endif ++ ++#ifdef DWC_TRACK_MISSED_SOFS ++ track_missed_sofs(hcd->frame_number); ++#endif ++ ++ /* Determine whether any periodic QHs should be executed. */ ++ qh_entry = hcd->periodic_sched_inactive.next; ++ while (qh_entry != &hcd->periodic_sched_inactive) { ++ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry); ++ qh_entry = qh_entry->next; ++ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) { ++ /* ++ * Move QH to the ready list to be executed next ++ * (micro)frame. ++ */ ++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready); ++ } ++ } ++ ++ tr_type = dwc_otg_hcd_select_transactions(hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(hcd, tr_type); ++ } ++ ++ /* Clear interrupt */ ++ gintsts.b.sofintr = 1; ++ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at ++ * least one packet in the Rx FIFO. The packets are moved from the FIFO to ++ * memory if the DWC_otg controller is operating in Slave mode. */ ++int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ host_grxsts_data_t grxsts; ++ dwc_hc_t *hc = NULL; ++ ++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n"); ++ ++ grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp); ++ ++ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum]; ++ ++ /* Packet Status */ ++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum); ++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt); ++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start); ++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts); ++ ++ switch (grxsts.b.pktsts) { ++ case DWC_GRXSTS_PKTSTS_IN: ++ /* Read the data into the host buffer. */ ++ if (grxsts.b.bcnt > 0) { ++ dwc_otg_read_packet(dwc_otg_hcd->core_if, ++ hc->xfer_buff, ++ grxsts.b.bcnt); ++ ++ /* Update the HC fields for the next packet received. */ ++ hc->xfer_count += grxsts.b.bcnt; ++ hc->xfer_buff += grxsts.b.bcnt; ++ } ++ ++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP: ++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR: ++ case DWC_GRXSTS_PKTSTS_CH_HALTED: ++ /* Handled in interrupt, just ignore data */ ++ break; ++ default: ++ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts); ++ break; ++ } ++ ++ return 1; ++} ++ ++/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More ++ * data packets may be written to the FIFO for OUT transfers. More requests ++ * may be written to the non-periodic request queue for IN transfers. This ++ * interrupt is enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_NON_PERIODIC); ++ return 1; ++} ++ ++/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data ++ * packets may be written to the FIFO for OUT transfers. More requests may be ++ * written to the periodic request queue for IN transfers. This interrupt is ++ * enabled only in Slave mode. */ ++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n"); ++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd, ++ DWC_OTG_TRANSACTION_PERIODIC); ++ return 1; ++} ++ ++/** There are multiple conditions that can cause a port interrupt. This function ++ * determines which interrupt conditions have occurred and handles them ++ * appropriately. */ ++int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ int retval = 0; ++ hprt0_data_t hprt0; ++ hprt0_data_t hprt0_modify; ++ ++ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); ++ hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0); ++ ++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in ++ * GINTSTS */ ++ ++ hprt0_modify.b.prtena = 0; ++ hprt0_modify.b.prtconndet = 0; ++ hprt0_modify.b.prtenchng = 0; ++ hprt0_modify.b.prtovrcurrchng = 0; ++ ++ /* Port Connect Detected ++ * Set flag and clear if detected */ ++ if (hprt0.b.prtconndet) { ++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x " ++ "Port Connect Detected--\n", hprt0.d32); ++ dwc_otg_hcd->flags.b.port_connect_status_change = 1; ++ dwc_otg_hcd->flags.b.port_connect_status = 1; ++ hprt0_modify.b.prtconndet = 1; ++ ++ /* B-Device has connected, Delete the connection timer. */ ++ del_timer( &dwc_otg_hcd->conn_timer ); ++ ++ /* The Hub driver asserts a reset when it sees port connect ++ * status change flag */ ++ retval |= 1; ++ } ++ ++ /* Port Enable Changed ++ * Clear if detected - Set internal flag if disabled */ ++ if (hprt0.b.prtenchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Enable Changed--\n", hprt0.d32); ++ hprt0_modify.b.prtenchng = 1; ++ if (hprt0.b.prtena == 1) { ++ int do_reset = 0; ++ dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params; ++ dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs; ++ dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if; ++ ++ /* Check if we need to adjust the PHY clock speed for ++ * low power and adjust it */ ++ if (params->host_support_fs_ls_low_power) { ++ gusbcfg_data_t usbcfg; ++ ++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED || ++ hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) { ++ /* ++ * Low power ++ */ ++ hcfg_data_t hcfg; ++ if (usbcfg.b.phylpwrclksel == 0) { ++ /* Set PHY low power clock select for FS/LS devices */ ++ usbcfg.b.phylpwrclksel = 1; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ ++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg); ++ ++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED && ++ params->host_ls_low_power_phy_clk == ++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) { ++ /* 6 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } else { ++ /* 48 MHZ */ ++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n"); ++ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) { ++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ; ++ dwc_write_reg32(&host_if->host_global_regs->hcfg, ++ hcfg.d32); ++ do_reset = 1; ++ } ++ } ++ } else { ++ /* ++ * Not low power ++ */ ++ if (usbcfg.b.phylpwrclksel == 1) { ++ usbcfg.b.phylpwrclksel = 0; ++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32); ++ do_reset = 1; ++ } ++ } ++ ++ if (do_reset) { ++ tasklet_schedule(dwc_otg_hcd->reset_tasklet); ++ } ++ } ++ ++ if (!do_reset) { ++ /* Port has been enabled set the reset change flag */ ++ dwc_otg_hcd->flags.b.port_reset_change = 1; ++ } ++ } else { ++ dwc_otg_hcd->flags.b.port_enable_change = 1; ++ } ++ retval |= 1; ++ } ++ ++ /** Overcurrent Change Interrupt */ ++ if (hprt0.b.prtovrcurrchng) { ++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x " ++ "Port Overcurrent Changed--\n", hprt0.d32); ++ dwc_otg_hcd->flags.b.port_over_current_change = 1; ++ hprt0_modify.b.prtovrcurrchng = 1; ++ retval |= 1; ++ } ++ ++ /* Clear Port Interrupts */ ++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32); ++ ++ return retval; ++} ++ ++/** This interrupt indicates that one or more host channels has a pending ++ * interrupt. There are multiple conditions that can cause each host channel ++ * interrupt. This function determines which conditions have occurred for each ++ * host channel interrupt and handles them appropriately. */ ++int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ int i; ++ int retval = 0; ++ haint_data_t haint; ++ ++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in ++ * GINTSTS */ ++ ++ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if); ++ ++ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) { ++ if (haint.b2.chint & (1 << i)) { ++ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i); ++ } ++ } ++ ++ return retval; ++} ++ ++/* Macro used to clear one channel interrupt */ ++#define clear_hc_int(_hc_regs_, _intr_) \ ++do { \ ++ hcint_data_t hcint_clear = {.d32 = 0}; \ ++ hcint_clear.b._intr_ = 1; \ ++ dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \ ++} while (0) ++ ++/* ++ * Macro used to disable one channel interrupt. Channel interrupts are ++ * disabled when the channel is halted or released by the interrupt handler. ++ * There is no need to handle further interrupts of that type until the ++ * channel is re-assigned. In fact, subsequent handling may cause crashes ++ * because the channel structures are cleaned up when the channel is released. ++ */ ++#define disable_hc_int(_hc_regs_, _intr_) \ ++do { \ ++ hcintmsk_data_t hcintmsk = {.d32 = 0}; \ ++ hcintmsk.b._intr_ = 1; \ ++ dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \ ++} while (0) ++ ++/** ++ * Gets the actual length of a transfer after the transfer halts. _halt_status ++ * holds the reason for the halt. ++ * ++ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE, ++ * *short_read is set to 1 upon return if less than the requested ++ * number of bytes were transferred. Otherwise, *short_read is set to 0 upon ++ * return. short_read may also be NULL on entry, in which case it remains ++ * unchanged. ++ */ ++static uint32_t get_actual_xfer_length(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status, ++ int *short_read) ++{ ++ hctsiz_data_t hctsiz; ++ uint32_t length; ++ ++ if (short_read != NULL) { ++ *short_read = 0; ++ } ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ ++ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) { ++ if (hc->ep_is_in) { ++ length = hc->xfer_len - hctsiz.b.xfersize; ++ if (short_read != NULL) { ++ *short_read = (hctsiz.b.xfersize != 0); ++ } ++ } else if (hc->qh->do_split) { ++ length = qtd->ssplit_out_xfer_count; ++ } else { ++ length = hc->xfer_len; ++ } ++ } else { ++ /* ++ * Must use the hctsiz.pktcnt field to determine how much data ++ * has been transferred. This field reflects the number of ++ * packets that have been transferred via the USB. This is ++ * always an integral number of packets if the transfer was ++ * halted before its normal completion. (Can't use the ++ * hctsiz.xfersize field because that reflects the number of ++ * bytes transferred via the AHB, not the USB). ++ */ ++ length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet; ++ } ++ ++ return length; ++} ++ ++/** ++ * Updates the state of the URB after a Transfer Complete interrupt on the ++ * host channel. Updates the actual_length field of the URB based on the ++ * number of bytes transferred via the host channel. Sets the URB status ++ * if the data transfer is finished. ++ * ++ * @return 1 if the data transfer specified by the URB is completely finished, ++ * 0 otherwise. ++ */ ++static int update_urb_state_xfer_comp(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ struct urb *urb, ++ dwc_otg_qtd_t *qtd) ++{ ++ int xfer_done = 0; ++ int short_read = 0; ++ ++ urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_COMPLETE, ++ &short_read); ++ ++ if (short_read || urb->actual_length == urb->transfer_buffer_length) { ++ xfer_done = 1; ++ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) { ++ urb->status = -EREMOTEIO; ++ } else { ++ urb->status = 0; ++ } ++ } ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ urb->transfer_buffer_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n", ++ short_read, xfer_done); ++ } ++#endif ++ ++ return xfer_done; ++} ++ ++/* ++ * Save the starting data toggle for the next transfer. The data toggle is ++ * saved in the QH for non-control transfers and it's saved in the QTD for ++ * control transfers. ++ */ ++static void save_data_toggle(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ ++ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) { ++ dwc_otg_qh_t *qh = hc->qh; ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ qh->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } else { ++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) { ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA0; ++ } else { ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ } ++ } ++} ++ ++/** ++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic ++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are ++ * still linked to the QH, the QH is added to the end of the inactive ++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic ++ * schedule if no more QTDs are linked to the QH. ++ */ ++static void deactivate_qh(dwc_otg_hcd_t *hcd, ++ dwc_otg_qh_t *qh, ++ int free_qtd) ++{ ++ int continue_split = 0; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd); ++ ++ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ if (qtd->complete_split) { ++ continue_split = 1; ++ } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID || ++ qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) { ++ continue_split = 1; ++ } ++ ++ if (free_qtd) { ++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd); ++ continue_split = 0; ++ } ++ ++ qh->channel = NULL; ++ qh->qtd_in_process = NULL; ++ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split); ++} ++ ++/** ++ * Updates the state of an Isochronous URB when the transfer is stopped for ++ * any reason. The fields of the current entry in the frame descriptor array ++ * are set based on the transfer state and the input _halt_status. Completes ++ * the Isochronous URB if all the URB frames have been completed. ++ * ++ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be ++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE. ++ */ ++static dwc_otg_halt_status_e ++update_isoc_urb_state(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ struct urb *urb = qtd->urb; ++ dwc_otg_halt_status_e ret_val = halt_status; ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index]; ++ switch (halt_status) { ++ case DWC_OTG_HC_XFER_COMPLETE: ++ frame_desc->status = 0; ++ frame_desc->actual_length = ++ get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ break; ++ case DWC_OTG_HC_XFER_FRAME_OVERRUN: ++ urb->error_count++; ++ if (hc->ep_is_in) { ++ frame_desc->status = -ENOSR; ++ } else { ++ frame_desc->status = -ECOMM; ++ } ++ frame_desc->actual_length = 0; ++ break; ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ urb->error_count++; ++ frame_desc->status = -EOVERFLOW; ++ /* Don't need to update actual_length in this case. */ ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ urb->error_count++; ++ frame_desc->status = -EPROTO; ++ frame_desc->actual_length = ++ get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ default: ++ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__, ++ halt_status); ++ BUG(); ++ break; ++ } ++ ++ if (++qtd->isoc_frame_index == urb->number_of_packets) { ++ /* ++ * urb->status is not used for isoc transfers. ++ * The individual frame_desc statuses are used instead. ++ */ ++ dwc_otg_hcd_complete_urb(hcd, urb, 0); ++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ ret_val = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ return ret_val; ++} ++ ++/** ++ * Releases a host channel for use by other transfers. Attempts to select and ++ * queue more transactions since at least one host channel is available. ++ * ++ * @param hcd The HCD state structure. ++ * @param hc The host channel to release. ++ * @param qtd The QTD associated with the host channel. This QTD may be freed ++ * if the transfer is complete or an error has occurred. ++ * @param halt_status Reason the channel is being released. This status ++ * determines the actions taken by this function. ++ */ ++static void release_channel(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ dwc_otg_transaction_type_e tr_type; ++ int free_qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n", ++ __func__, hc->hc_num, halt_status); ++ ++ switch (halt_status) { ++ case DWC_OTG_HC_XFER_URB_COMPLETE: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_AHB_ERR: ++ case DWC_OTG_HC_XFER_STALL: ++ case DWC_OTG_HC_XFER_BABBLE_ERR: ++ free_qtd = 1; ++ break; ++ case DWC_OTG_HC_XFER_XACT_ERR: ++ if (qtd->error_count >= 3) { ++ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n"); ++ free_qtd = 1; ++ qtd->urb->status = -EPROTO; ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO); ++ } else { ++ free_qtd = 0; ++ } ++ break; ++ case DWC_OTG_HC_XFER_URB_DEQUEUE: ++ /* ++ * The QTD has already been removed and the QH has been ++ * deactivated. Don't want to do anything except release the ++ * host channel and try to queue more transfers. ++ */ ++ goto cleanup; ++ case DWC_OTG_HC_XFER_NO_HALT_STATUS: ++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num); ++ free_qtd = 0; ++ break; ++ default: ++ free_qtd = 0; ++ break; ++ } ++ ++ deactivate_qh(hcd, hc->qh, free_qtd); ++ ++ cleanup: ++ /* ++ * Release the host channel for use by other transfers. The cleanup ++ * function clears the channel interrupt enables and conditions, so ++ * there's no need to clear the Channel Halted interrupt separately. ++ */ ++ dwc_otg_hc_cleanup(hcd->core_if, hc); ++ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list); ++ ++ switch (hc->ep_type) { ++ case DWC_OTG_EP_TYPE_CONTROL: ++ case DWC_OTG_EP_TYPE_BULK: ++ hcd->non_periodic_channels--; ++ break; ++ ++ default: ++ /* ++ * Don't release reservations for periodic channels here. ++ * That's done when a periodic transfer is descheduled (i.e. ++ * when the QH is removed from the periodic schedule). ++ */ ++ break; ++ } ++ ++ /* Try to queue more transfers now that there's a free channel. */ ++ tr_type = dwc_otg_hcd_select_transactions(hcd); ++ if (tr_type != DWC_OTG_TRANSACTION_NONE) { ++ dwc_otg_hcd_queue_transactions(hcd, tr_type); ++ } ++} ++ ++/** ++ * Halts a host channel. If the channel cannot be halted immediately because ++ * the request queue is full, this function ensures that the FIFO empty ++ * interrupt for the appropriate queue is enabled so that the halt request can ++ * be queued when there is space in the request queue. ++ * ++ * This function may also be called in DMA mode. In that case, the channel is ++ * simply released since the core always halts the channel automatically in ++ * DMA mode. ++ */ ++static void halt_channel(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ if (hcd->core_if->dma_enable) { ++ release_channel(hcd, hc, qtd, halt_status); ++ return; ++ } ++ ++ /* Slave mode processing... */ ++ dwc_otg_hc_halt(hcd->core_if, hc, halt_status); ++ ++ if (hc->halt_on_queue) { ++ gintmsk_data_t gintmsk = {.d32 = 0}; ++ dwc_otg_core_global_regs_t *global_regs; ++ global_regs = hcd->core_if->core_global_regs; ++ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) { ++ /* ++ * Make sure the Non-periodic Tx FIFO empty interrupt ++ * is enabled so that the non-periodic schedule will ++ * be processed. ++ */ ++ gintmsk.b.nptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } else { ++ /* ++ * Move the QH from the periodic queued schedule to ++ * the periodic assigned schedule. This allows the ++ * halt to be queued when the periodic schedule is ++ * processed. ++ */ ++ list_move(&hc->qh->qh_list_entry, ++ &hcd->periodic_sched_assigned); ++ ++ /* ++ * Make sure the Periodic Tx FIFO Empty interrupt is ++ * enabled so that the periodic schedule will be ++ * processed. ++ */ ++ gintmsk.b.ptxfempty = 1; ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32); ++ } ++ } ++} ++ ++/** ++ * Performs common cleanup for non-periodic transfers after a Transfer ++ * Complete interrupt. This function should be called after any endpoint type ++ * specific handling is finished to release the host channel. ++ */ ++static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ hcint_data_t hcint; ++ ++ qtd->error_count = 0; ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ if (hcint.b.nyet) { ++ /* ++ * Got a NYET on the last transaction of the transfer. This ++ * means that the endpoint should be in the PING state at the ++ * beginning of the next transfer. ++ */ ++ hc->qh->ping_state = 1; ++ clear_hc_int(hc_regs, nyet); ++ } ++ ++ /* ++ * Always halt and release the host channel to make it available for ++ * more transfers. There may still be more phases for a control ++ * transfer or more data packets for a bulk transfer at this point, ++ * but the host channel is still halted. A channel will be reassigned ++ * to the transfer when the non-periodic schedule is processed after ++ * the channel is released. This allows transactions to be queued ++ * properly via dwc_otg_hcd_queue_transactions, which also enables the ++ * Tx FIFO Empty interrupt if necessary. ++ */ ++ if (hc->ep_is_in) { ++ /* ++ * IN transfers in Slave mode require an explicit disable to ++ * halt the channel. (In DMA mode, this call simply releases ++ * the channel.) ++ */ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } else { ++ /* ++ * The channel is automatically disabled by the core for OUT ++ * transfers in Slave mode. ++ */ ++ release_channel(hcd, hc, qtd, halt_status); ++ } ++} ++ ++/** ++ * Performs common cleanup for periodic transfers after a Transfer Complete ++ * interrupt. This function should be called after any endpoint type specific ++ * handling is finished to release the host channel. ++ */ ++static void complete_periodic_xfer(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ hctsiz_data_t hctsiz; ++ qtd->error_count = 0; ++ ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) { ++ /* Core halts channel in these cases. */ ++ release_channel(hcd, hc, qtd, halt_status); ++ } else { ++ /* Flush any outstanding requests from the Tx queue. */ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++} ++ ++/** ++ * Handles a host channel Transfer Complete interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ int urb_xfer_done; ++ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ struct urb *urb = qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transfer Complete--\n", hc->hc_num); ++ ++ /* ++ * Handle xfer complete on CSPLIT. ++ */ ++ if (hc->qh->do_split) { ++ qtd->complete_split = 0; ++ } ++ ++ /* Update the QTD and URB states. */ ++ switch (pipe_type) { ++ case PIPE_CONTROL: ++ switch (qtd->control_phase) { ++ case DWC_OTG_CONTROL_SETUP: ++ if (urb->transfer_buffer_length > 0) { ++ qtd->control_phase = DWC_OTG_CONTROL_DATA; ++ } else { ++ qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ } ++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n"); ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ case DWC_OTG_CONTROL_DATA: { ++ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ if (urb_xfer_done) { ++ qtd->control_phase = DWC_OTG_CONTROL_STATUS; ++ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n"); ++ } else { ++ save_data_toggle(hc, hc_regs, qtd); ++ } ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ break; ++ } ++ case DWC_OTG_CONTROL_STATUS: ++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n"); ++ if (urb->status == -EINPROGRESS) { ++ urb->status = 0; ++ } ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ break; ++ } ++ ++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); ++ break; ++ case PIPE_BULK: ++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n"); ++ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ if (urb_xfer_done) { ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE; ++ } else { ++ halt_status = DWC_OTG_HC_XFER_COMPLETE; ++ } ++ ++ save_data_toggle(hc, hc_regs, qtd); ++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); ++ break; ++ case PIPE_INTERRUPT: ++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n"); ++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd); ++ ++ /* ++ * Interrupt URB is done on the first transfer complete ++ * interrupt. ++ */ ++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status); ++ save_data_toggle(hc, hc_regs, qtd); ++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_URB_COMPLETE); ++ break; ++ case PIPE_ISOCHRONOUS: ++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n"); ++ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) { ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_COMPLETE); ++ } ++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status); ++ break; ++ } ++ ++ disable_hc_int(hc_regs, xfercompl); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel STALL interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ struct urb *urb = qtd->urb; ++ int pipe_type = usb_pipetype(urb->pipe); ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "STALL Received--\n", hc->hc_num); ++ ++ if (pipe_type == PIPE_CONTROL) { ++ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE); ++ } ++ ++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) { ++ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE); ++ /* ++ * USB protocol requires resetting the data toggle for bulk ++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT) ++ * setup command is issued to the endpoint. Anticipate the ++ * CLEAR_FEATURE command since a STALL has occurred and reset ++ * the data toggle now. ++ */ ++ hc->qh->data_toggle = 0; ++ } ++ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL); ++ ++ disable_hc_int(hc_regs, stall); ++ ++ return 1; ++} ++ ++/* ++ * Updates the state of the URB when a transfer has been stopped due to an ++ * abnormal condition before the transfer completes. Modifies the ++ * actual_length field of the URB to reflect the number of bytes that have ++ * actually been transferred via the host channel. ++ */ ++static void update_urb_state_xfer_intr(dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ struct urb *urb, ++ dwc_otg_qtd_t *qtd, ++ dwc_otg_halt_status_e halt_status) ++{ ++ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd, ++ halt_status, NULL); ++ urb->actual_length += bytes_transferred; ++ ++#ifdef DEBUG ++ { ++ hctsiz_data_t hctsiz; ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n", ++ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num); ++ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count); ++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt); ++ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet); ++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred); ++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length); ++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n", ++ urb->transfer_buffer_length); ++ } ++#endif ++} ++ ++/** ++ * Handles a host channel NAK interrupt. This handler may be called in either ++ * DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NAK Received--\n", hc->hc_num); ++ ++ /* ++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and ++ * interrupt. Re-start the SSPLIT transfer. ++ */ ++ if (hc->do_split) { ++ if (hc->complete_split) { ++ qtd->error_count = 0; ++ } ++ qtd->complete_split = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ goto handle_nak_done; ++ } ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ if (hcd->core_if->dma_enable && hc->ep_is_in) { ++ /* ++ * NAK interrupts are enabled on bulk/control IN ++ * transfers in DMA mode for the sole purpose of ++ * resetting the error count after a transaction error ++ * occurs. The core will continue transferring data. ++ */ ++ qtd->error_count = 0; ++ goto handle_nak_done; ++ } ++ ++ /* ++ * NAK interrupts normally occur during OUT transfers in DMA ++ * or Slave mode. For IN transfers, more requests will be ++ * queued as request queue space is available. ++ */ ++ qtd->error_count = 0; ++ ++ if (!hc->qh->ping_state) { ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, ++ qtd, DWC_OTG_HC_XFER_NAK); ++ save_data_toggle(hc, hc_regs, qtd); ++ if (qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will ++ * start/continue. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ break; ++ case PIPE_INTERRUPT: ++ qtd->error_count = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK); ++ break; ++ case PIPE_ISOCHRONOUS: ++ /* Should never get called for isochronous transfers. */ ++ BUG(); ++ break; ++ } ++ ++ handle_nak_done: ++ disable_hc_int(hc_regs, nak); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel ACK interrupt. This interrupt is enabled when ++ * performing the PING protocol in Slave mode, when errors occur during ++ * either Slave mode or DMA mode, and during Start Split transactions. ++ */ ++static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "ACK Received--\n", hc->hc_num); ++ ++ if (hc->do_split) { ++ /* ++ * Handle ACK on SSPLIT. ++ * ACK should not occur in CSPLIT. ++ */ ++ if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) { ++ qtd->ssplit_out_xfer_count = hc->xfer_len; ++ } ++ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) { ++ /* Don't need complete for isochronous out transfers. */ ++ qtd->complete_split = 1; ++ } ++ ++ /* ISOC OUT */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) { ++ switch (hc->xact_pos) { ++ case DWC_HCSPLIT_XACTPOS_ALL: ++ break; ++ case DWC_HCSPLIT_XACTPOS_END: ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ qtd->isoc_split_offset = 0; ++ break; ++ case DWC_HCSPLIT_XACTPOS_BEGIN: ++ case DWC_HCSPLIT_XACTPOS_MID: ++ /* ++ * For BEGIN or MID, calculate the length for ++ * the next microframe to determine the correct ++ * SSPLIT token, either MID or END. ++ */ ++ { ++ struct usb_iso_packet_descriptor *frame_desc; ++ ++ frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index]; ++ qtd->isoc_split_offset += 188; ++ ++ if ((frame_desc->length - qtd->isoc_split_offset) <= 188) { ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END; ++ } else { ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID; ++ } ++ ++ } ++ break; ++ } ++ } else { ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); ++ } ++ } else { ++ qtd->error_count = 0; ++ ++ if (hc->qh->ping_state) { ++ hc->qh->ping_state = 0; ++ /* ++ * Halt the channel so the transfer can be re-started ++ * from the appropriate point. This only happens in ++ * Slave mode. In DMA mode, the ping_state is cleared ++ * when the transfer is started because the core ++ * automatically executes the PING, then the transfer. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK); ++ } ++ } ++ ++ /* ++ * If the ACK occurred when _not_ in the PING state, let the channel ++ * continue transferring data after clearing the error count. ++ */ ++ ++ disable_hc_int(hc_regs, ack); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel NYET interrupt. This interrupt should only occur on ++ * Bulk and Control OUT endpoints and for complete split transactions. If a ++ * NYET occurs at the same time as a Transfer Complete interrupt, it is ++ * handled in the xfercomp interrupt handler, not here. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "NYET Received--\n", hc->hc_num); ++ ++ /* ++ * NYET on CSPLIT ++ * re-do the CSPLIT immediately on non-periodic ++ */ ++ if (hc->do_split && hc->complete_split) { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd)); ++ ++ if (dwc_full_frame_num(frnum) != ++ dwc_full_frame_num(hc->qh->sched_frame)) { ++ /* ++ * No longer in the same full speed frame. ++ * Treat this as a transaction error. ++ */ ++#if 0 ++ /** @todo Fix system performance so this can ++ * be treated as an error. Right now complete ++ * splits cannot be scheduled precisely enough ++ * due to other system activity, so this error ++ * occurs regularly in Slave mode. ++ */ ++ qtd->error_count++; ++#endif ++ qtd->complete_split = 0; ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ /** @todo add support for isoc release */ ++ goto handle_nyet_done; ++ } ++ } ++ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); ++ goto handle_nyet_done; ++ } ++ ++ hc->qh->ping_state = 1; ++ qtd->error_count = 0; ++ ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd, ++ DWC_OTG_HC_XFER_NYET); ++ save_data_toggle(hc, hc_regs, qtd); ++ ++ /* ++ * Halt the channel and re-start the transfer so the PING ++ * protocol will start. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET); ++ ++handle_nyet_done: ++ disable_hc_int(hc_regs, nyet); ++ return 1; ++} ++ ++/** ++ * Handles a host channel babble interrupt. This handler may be called in ++ * either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Babble Error--\n", hc->hc_num); ++ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) { ++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW); ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR); ++ } else { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_BABBLE_ERR); ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ disable_hc_int(hc_regs, bblerr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel AHB error interrupt. This handler is only called in ++ * DMA mode. ++ */ ++static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hcchar_data_t hcchar; ++ hcsplt_data_t hcsplt; ++ hctsiz_data_t hctsiz; ++ uint32_t hcdma; ++ struct urb *urb = qtd->urb; ++ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "AHB Error--\n", hc->hc_num); ++ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcdma = dwc_read_reg32(&hc_regs->hcdma); ++ ++ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num); ++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32); ++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma); ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n"); ++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe)); ++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), ++ (usb_pipein(urb->pipe) ? "IN" : "OUT")); ++ DWC_ERROR(" Endpoint type: %s\n", ++ ({char *pipetype; ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: pipetype = "CONTROL"; break; ++ case PIPE_BULK: pipetype = "BULK"; break; ++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; ++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; ++ default: pipetype = "UNKNOWN"; break; ++ }; pipetype;})); ++ DWC_ERROR(" Speed: %s\n", ++ ({char *speed; ++ switch (urb->dev->speed) { ++ case USB_SPEED_HIGH: speed = "HIGH"; break; ++ case USB_SPEED_FULL: speed = "FULL"; break; ++ case USB_SPEED_LOW: speed = "LOW"; break; ++ default: speed = "UNKNOWN"; break; ++ }; speed;})); ++ DWC_ERROR(" Max packet size: %d\n", ++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))); ++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length); ++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n", ++ urb->transfer_buffer, (void *)urb->transfer_dma); ++ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n", ++ urb->setup_packet, (void *)urb->setup_dma); ++ DWC_ERROR(" Interval: %d\n", urb->interval); ++ ++ dwc_otg_hcd_complete_urb(hcd, urb, -EIO); ++ ++ /* ++ * Force a channel halt. Don't call halt_channel because that won't ++ * write to the HCCHARn register in DMA mode to force the halt. ++ */ ++ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR); ++ ++ disable_hc_int(hc_regs, ahberr); ++ return 1; ++} ++ ++/** ++ * Handles a host channel transaction error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Transaction Error--\n", hc->hc_num); ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ qtd->error_count++; ++ if (!hc->qh->ping_state) { ++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, ++ qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ save_data_toggle(hc, hc_regs, qtd); ++ if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) { ++ hc->qh->ping_state = 1; ++ } ++ } ++ ++ /* ++ * Halt the channel so the transfer can be re-started from ++ * the appropriate point or the PING protocol will start. ++ */ ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ break; ++ case PIPE_INTERRUPT: ++ qtd->error_count++; ++ if (hc->do_split && hc->complete_split) { ++ qtd->complete_split = 0; ++ } ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_XACT_ERR); ++ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ break; ++ } ++ ++ disable_hc_int(hc_regs, xacterr); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel frame overrun interrupt. This handler may be called ++ * in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Frame Overrun--\n", hc->hc_num); ++ ++ switch (usb_pipetype(qtd->urb->pipe)) { ++ case PIPE_CONTROL: ++ case PIPE_BULK: ++ break; ++ case PIPE_INTERRUPT: ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ break; ++ case PIPE_ISOCHRONOUS: ++ { ++ dwc_otg_halt_status_e halt_status; ++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd, ++ DWC_OTG_HC_XFER_FRAME_OVERRUN); ++ ++ halt_channel(hcd, hc, qtd, halt_status); ++ } ++ break; ++ } ++ ++ disable_hc_int(hc_regs, frmovrun); ++ ++ return 1; ++} ++ ++/** ++ * Handles a host channel data toggle error interrupt. This handler may be ++ * called in either DMA mode or Slave mode. ++ */ ++static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Data Toggle Error--\n", hc->hc_num); ++ ++ if (hc->ep_is_in) { ++ qtd->error_count = 0; ++ } else { ++ DWC_ERROR("Data Toggle Error on OUT transfer," ++ "channel %d\n", hc->hc_num); ++ } ++ ++ disable_hc_int(hc_regs, datatglerr); ++ ++ return 1; ++} ++ ++#ifdef DEBUG ++/** ++ * This function is for debug only. It checks that a valid halt status is set ++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is ++ * taken and a warning is issued. ++ * @return 1 if halt status is ok, 0 otherwise. ++ */ ++static inline int halt_status_ok(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hcchar_data_t hcchar; ++ hctsiz_data_t hctsiz; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ hcsplt_data_t hcsplt; ++ ++ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) { ++ /* ++ * This code is here only as a check. This condition should ++ * never happen. Ignore the halt if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz); ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt); ++ DWC_WARN("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, " ++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, " ++ "hcint 0x%08x, hcintmsk 0x%08x, " ++ "hcsplt 0x%08x, qtd->complete_split %d\n", ++ __func__, hc->hc_num, hcchar.d32, hctsiz.d32, ++ hcint.d32, hcintmsk.d32, ++ hcsplt.d32, qtd->complete_split); ++ ++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n", ++ __func__, hc->hc_num); ++ DWC_WARN("\n"); ++ clear_hc_int(hc_regs, chhltd); ++ return 0; ++ } ++ ++ /* ++ * This code is here only as a check. hcchar.chdis should ++ * never be set when the halt interrupt occurs. Halt the ++ * channel again if it does occur. ++ */ ++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar); ++ if (hcchar.b.chdis) { ++ DWC_WARN("%s: hcchar.chdis set unexpectedly, " ++ "hcchar 0x%08x, trying to halt again\n", ++ __func__, hcchar.d32); ++ clear_hc_int(hc_regs, chhltd); ++ hc->halt_pending = 0; ++ halt_channel(hcd, hc, qtd, hc->halt_status); ++ return 0; ++ } ++ ++ return 1; ++} ++#endif ++ ++/** ++ * Handles a host Channel Halted interrupt in DMA mode. This handler ++ * determines the reason the channel halted and proceeds accordingly. ++ */ ++static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ int out_nak_enh = 0; ++ ++ /* For core with OUT NAK enhancement, the flow for high- ++ * speed CONTROL/BULK OUT is handled a little differently. ++ */ ++ if (hcd->core_if->snpsid >= 0x4F54271A) { ++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in && ++ (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL || ++ hc->ep_type == DWC_OTG_EP_TYPE_BULK)) { ++ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement enabled\n"); ++ out_nak_enh = 1; ++ } else { ++ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n"); ++ } ++ } else { ++ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, no core support\n"); ++ } ++ ++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE || ++ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) { ++ /* ++ * Just release the channel. A dequeue can happen on a ++ * transfer timeout. In the case of an AHB Error, the channel ++ * was forced to halt because there's no way to gracefully ++ * recover. ++ */ ++ release_channel(hcd, hc, qtd, hc->halt_status); ++ return; ++ } ++ ++ /* Read the HCINTn register to determine the cause for the halt. */ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ ++ if (hcint.b.xfercomp) { ++ /** @todo This is here because of a possible hardware bug. Spec ++ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT ++ * interrupt w/ACK bit set should occur, but I only see the ++ * XFERCOMP bit, even with it masked out. This is a workaround ++ * for that behavior. Should fix this when hardware is fixed. ++ */ ++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) { ++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd); ++ } ++ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.stall) { ++ handle_hc_stall_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.xacterr) { ++ if (out_nak_enh) { ++ if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) { ++ printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n"); ++ qtd->error_count = 0; ++ } else { ++ printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n"); ++ } ++ } ++ ++ /* ++ * Must handle xacterr before nak or ack. Could get a xacterr ++ * at the same time as either of these on a BULK/CONTROL OUT ++ * that started with a PING. The xacterr takes precedence. ++ */ ++ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd); ++ } else if (!out_nak_enh) { ++ if (hcint.b.nyet) { ++ /* ++ * Must handle nyet before nak or ack. Could get a nyet at the ++ * same time as either of those on a BULK/CONTROL OUT that ++ * started with a PING. The nyet takes precedence. ++ */ ++ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.bblerr) { ++ handle_hc_babble_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.frmovrun) { ++ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.nak && !hcintmsk.b.nak) { ++ /* ++ * If nak is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the nak is handled by ++ * the nak interrupt handler, not here. Handle nak here for ++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow ++ * rewinding the buffer pointer. ++ */ ++ handle_hc_nak_intr(hcd, hc, hc_regs, qtd); ++ } else if (hcint.b.ack && !hcintmsk.b.ack) { ++ /* ++ * If ack is not masked, it's because a non-split IN transfer ++ * is in an error state. In that case, the ack is handled by ++ * the ack interrupt handler, not here. Handle ack here for ++ * split transfers. Start splits halt on ACK. ++ */ ++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd); ++ } else { ++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR || ++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * A periodic transfer halted with no other channel ++ * interrupts set. Assume it was halted by the core ++ * because it could not be completed in its scheduled ++ * (micro)frame. ++ */ ++#ifdef DEBUG ++ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n", ++ __func__, hc->hc_num); ++#endif ++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE); ++ } else { ++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason " ++ "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n", ++ __func__, hc->hc_num, hcint.d32, ++ dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts)); ++ } ++ } ++ } else { ++ printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32); ++ } ++} ++ ++/** ++ * Handles a host channel Channel Halted interrupt. ++ * ++ * In slave mode, this handler is called only when the driver specifically ++ * requests a halt. This occurs during handling other host channel interrupts ++ * (e.g. nak, xacterr, stall, nyet, etc.). ++ * ++ * In DMA mode, this is the interrupt that occurs when the core has finished ++ * processing a transfer on a channel. Other host channel interrupts (except ++ * ahberr) are disabled in DMA mode. ++ */ ++static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd, ++ dwc_hc_t *hc, ++ dwc_otg_hc_regs_t *hc_regs, ++ dwc_otg_qtd_t *qtd) ++{ ++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: " ++ "Channel Halted--\n", hc->hc_num); ++ ++ if (hcd->core_if->dma_enable) { ++ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd); ++ } else { ++#ifdef DEBUG ++ if (!halt_status_ok(hcd, hc, hc_regs, qtd)) { ++ return 1; ++ } ++#endif ++ release_channel(hcd, hc, qtd, hc->halt_status); ++ } ++ ++ return 1; ++} ++ ++/** Handles interrupt for a specific Host Channel */ ++int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num) ++{ ++ int retval = 0; ++ hcint_data_t hcint; ++ hcintmsk_data_t hcintmsk; ++ dwc_hc_t *hc; ++ dwc_otg_hc_regs_t *hc_regs; ++ dwc_otg_qtd_t *qtd; ++ ++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num); ++ ++ hc = dwc_otg_hcd->hc_ptr_array[num]; ++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num]; ++ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); ++ ++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint); ++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk); ++ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n", ++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32)); ++ hcint.d32 = hcint.d32 & hcintmsk.d32; ++ ++ if (!dwc_otg_hcd->core_if->dma_enable) { ++ if (hcint.b.chhltd && hcint.d32 != 0x2) { ++ hcint.b.chhltd = 0; ++ } ++ } ++ ++ if (hcint.b.xfercomp) { ++ retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ /* ++ * If NYET occurred at same time as Xfer Complete, the NYET is ++ * handled by the Xfer Complete interrupt handler. Don't want ++ * to call the NYET interrupt handler in this case. ++ */ ++ hcint.b.nyet = 0; ++ } ++ if (hcint.b.chhltd) { ++ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.ahberr) { ++ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.stall) { ++ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.nak) { ++ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.ack) { ++ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.nyet) { ++ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.xacterr) { ++ retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.bblerr) { ++ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.frmovrun) { ++ retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ if (hcint.b.datatglerr) { ++ retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd); ++ } ++ ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc/otg_hcd_queue.c +@@ -0,0 +1,713 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $ ++ * $Revision: #33 $ ++ * $Date: 2008/07/15 $ ++ * $Change: 1064918 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_DEVICE_ONLY ++ ++/** ++ * @file ++ * ++ * This file contains the functions to manage Queue Heads and Queue ++ * Transfer Descriptors. ++ */ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++#include <linux/version.h> ++ ++#include <mach/irqs.h> ++ ++#include "otg_driver.h" ++#include "otg_hcd.h" ++#include "otg_regs.h" ++ ++/** ++ * This function allocates and initializes a QH. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. ++ * ++ * @return Returns pointer to the newly allocated QH, or NULL on error. */ ++dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb) ++{ ++ dwc_otg_qh_t *qh; ++ ++ /* Allocate memory */ ++ /** @todo add memflags argument */ ++ qh = dwc_otg_hcd_qh_alloc (); ++ if (qh == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qh_init (hcd, qh, urb); ++ return qh; ++} ++ ++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be ++ * removed from a list. QTD list should already be empty if called from URB ++ * Dequeue. ++ * ++ * @param[in] hcd HCD instance. ++ * @param[in] qh The QH to free. ++ */ ++void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ dwc_otg_qtd_t *qtd; ++ struct list_head *pos; ++ //unsigned long flags; ++ ++ /* Free each QTD in the QTD list */ ++ ++#ifdef CONFIG_SMP ++ //the spinlock is locked before this function get called, ++ //but in case the lock is needed, the check function is preserved ++ ++ //but in non-SMP mode, all spinlock is lockable. ++ //don't do the test in non-SMP mode ++ ++ if(spin_trylock(&hcd->lock)) { ++ printk("%s: It is not supposed to be lockable!!\n",__func__); ++ BUG(); ++ } ++#endif ++// SPIN_LOCK_IRQSAVE(&hcd->lock, flags) ++ for (pos = qh->qtd_list.next; ++ pos != &qh->qtd_list; ++ pos = qh->qtd_list.next) ++ { ++ list_del (pos); ++ qtd = dwc_list_to_qtd (pos); ++ dwc_otg_hcd_qtd_free (qtd); ++ } ++// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags) ++ ++ kfree (qh); ++ return; ++} ++ ++/** Initializes a QH structure. ++ * ++ * @param[in] hcd The HCD state structure for the DWC OTG controller. ++ * @param[in] qh The QH to init. ++ * @param[in] urb Holds the information about the device/endpoint that we need ++ * to initialize the QH. */ ++#define SCHEDULE_SLOP 10 ++void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb) ++{ ++ char *speed, *type; ++ memset (qh, 0, sizeof (dwc_otg_qh_t)); ++ ++ /* Initialize QH */ ++ switch (usb_pipetype(urb->pipe)) { ++ case PIPE_CONTROL: ++ qh->ep_type = USB_ENDPOINT_XFER_CONTROL; ++ break; ++ case PIPE_BULK: ++ qh->ep_type = USB_ENDPOINT_XFER_BULK; ++ break; ++ case PIPE_ISOCHRONOUS: ++ qh->ep_type = USB_ENDPOINT_XFER_ISOC; ++ break; ++ case PIPE_INTERRUPT: ++ qh->ep_type = USB_ENDPOINT_XFER_INT; ++ break; ++ } ++ ++ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0; ++ ++ qh->data_toggle = DWC_OTG_HC_PID_DATA0; ++ qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe))); ++ INIT_LIST_HEAD(&qh->qtd_list); ++ INIT_LIST_HEAD(&qh->qh_list_entry); ++ qh->channel = NULL; ++ ++ /* FS/LS Enpoint on HS Hub ++ * NOT virtual root hub */ ++ qh->do_split = 0; ++ if (((urb->dev->speed == USB_SPEED_LOW) || ++ (urb->dev->speed == USB_SPEED_FULL)) && ++ (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1)) ++ { ++ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n", ++ usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum, ++ urb->dev->ttport); ++ qh->do_split = 1; ++ } ++ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT || ++ qh->ep_type == USB_ENDPOINT_XFER_ISOC) { ++ /* Compute scheduling parameters once and save them. */ ++ hprt0_data_t hprt; ++ ++ /** @todo Account for split transfers in the bus time. */ ++ int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp); ++ qh->usecs = usb_calc_bus_time(urb->dev->speed, ++ usb_pipein(urb->pipe), ++ (qh->ep_type == USB_ENDPOINT_XFER_ISOC), ++ bytecount); ++ ++ /* Start in a slightly future (micro)frame. */ ++ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number, ++ SCHEDULE_SLOP); ++ qh->interval = urb->interval; ++#if 0 ++ /* Increase interrupt polling rate for debugging. */ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ qh->interval = 8; ++ } ++#endif ++ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0); ++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) && ++ ((urb->dev->speed == USB_SPEED_LOW) || ++ (urb->dev->speed == USB_SPEED_FULL))) { ++ qh->interval *= 8; ++ qh->sched_frame |= 0x7; ++ qh->start_split_frame = qh->sched_frame; ++ } ++ ++ } ++ ++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n"); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n", ++ urb->dev->devnum); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n", ++ usb_pipeendpoint(urb->pipe), ++ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT"); ++ ++ switch(urb->dev->speed) { ++ case USB_SPEED_LOW: ++ speed = "low"; ++ break; ++ case USB_SPEED_FULL: ++ speed = "full"; ++ break; ++ case USB_SPEED_HIGH: ++ speed = "high"; ++ break; ++ default: ++ speed = "?"; ++ break; ++ } ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed); ++ ++ switch (qh->ep_type) { ++ case USB_ENDPOINT_XFER_ISOC: ++ type = "isochronous"; ++ break; ++ case USB_ENDPOINT_XFER_INT: ++ type = "interrupt"; ++ break; ++ case USB_ENDPOINT_XFER_CONTROL: ++ type = "control"; ++ break; ++ case USB_ENDPOINT_XFER_BULK: ++ type = "bulk"; ++ break; ++ default: ++ type = "?"; ++ break; ++ } ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type); ++ ++#ifdef DEBUG ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n", ++ qh->usecs); ++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n", ++ qh->interval); ++ } ++#endif ++ ++ return; ++} ++ ++/** ++ * Checks that a channel is available for a periodic transfer. ++ * ++ * @return 0 if successful, negative error code otherise. ++ */ ++static int periodic_channel_available(dwc_otg_hcd_t *hcd) ++{ ++ /* ++ * Currently assuming that there is a dedicated host channnel for each ++ * periodic transaction plus at least one host channel for ++ * non-periodic transactions. ++ */ ++ int status; ++ int num_channels; ++ ++ num_channels = hcd->core_if->core_params->host_channels; ++ if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels) && ++ (hcd->periodic_channels < num_channels - 1)) { ++ status = 0; ++ } ++ else { ++ DWC_NOTICE("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n", ++ __func__, num_channels, hcd->periodic_channels, ++ hcd->non_periodic_channels); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Checks that there is sufficient bandwidth for the specified QH in the ++ * periodic schedule. For simplicity, this calculation assumes that all the ++ * transfers in the periodic schedule may occur in the same (micro)frame. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH containing periodic bandwidth required. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int check_periodic_bandwidth(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ int status; ++ uint16_t max_claimed_usecs; ++ ++ status = 0; ++ ++ if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) { ++ /* ++ * High speed mode. ++ * Max periodic usecs is 80% x 125 usec = 100 usec. ++ */ ++ max_claimed_usecs = 100 - qh->usecs; ++ } else { ++ /* ++ * Full speed mode. ++ * Max periodic usecs is 90% x 1000 usec = 900 usec. ++ */ ++ max_claimed_usecs = 900 - qh->usecs; ++ } ++ ++ if (hcd->periodic_usecs > max_claimed_usecs) { ++ DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n", ++ __func__, hcd->periodic_usecs, qh->usecs); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Checks that the max transfer size allowed in a host channel is large enough ++ * to handle the maximum data transfer in a single (micro)frame for a periodic ++ * transfer. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH for a periodic endpoint. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ int status; ++ uint32_t max_xfer_size; ++ uint32_t max_channel_xfer_size; ++ ++ status = 0; ++ ++ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp); ++ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size; ++ ++ if (max_xfer_size > max_channel_xfer_size) { ++ DWC_NOTICE("%s: Periodic xfer length %d > " ++ "max xfer length for channel %d\n", ++ __func__, max_xfer_size, max_channel_xfer_size); ++ status = -ENOSPC; ++ } ++ ++ return status; ++} ++ ++/** ++ * Schedules an interrupt or isochronous transfer in the periodic schedule. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH for the periodic transfer. The QH should already contain the ++ * scheduling information. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ int status = 0; ++ ++ status = periodic_channel_available(hcd); ++ if (status) { ++ DWC_NOTICE("%s: No host channel available for periodic " ++ "transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_periodic_bandwidth(hcd, qh); ++ if (status) { ++ DWC_NOTICE("%s: Insufficient periodic bandwidth for " ++ "periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ status = check_max_xfer_size(hcd, qh); ++ if (status) { ++ DWC_NOTICE("%s: Channel max transfer size too small " ++ "for periodic transfer.\n", __func__); ++ return status; ++ } ++ ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive); ++ ++ /* Reserve the periodic channel. */ ++ hcd->periodic_channels++; ++ ++ /* Update claimed usecs per (micro)frame. */ ++ hcd->periodic_usecs += qh->usecs; ++ ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += qh->usecs / qh->interval; ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++; ++ DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } ++ ++ return status; ++} ++ ++/** ++ * This function adds a QH to either the non periodic or periodic schedule if ++ * it is not already in the schedule. If the QH is already in the schedule, no ++ * action is taken. ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ //unsigned long flags; ++ int status = 0; ++ ++#ifdef CONFIG_SMP ++ //the spinlock is locked before this function get called, ++ //but in case the lock is needed, the check function is preserved ++ //but in non-SMP mode, all spinlock is lockable. ++ //don't do the test in non-SMP mode ++ ++ if(spin_trylock(&hcd->lock)) { ++ printk("%s: It is not supposed to be lockable!!\n",__func__); ++ BUG(); ++ } ++#endif ++// SPIN_LOCK_IRQSAVE(&hcd->lock, flags) ++ ++ if (!list_empty(&qh->qh_list_entry)) { ++ /* QH already in a schedule. */ ++ goto done; ++ } ++ ++ /* Add the new QH to the appropriate schedule */ ++ if (dwc_qh_is_non_per(qh)) { ++ /* Always start in the inactive schedule. */ ++ list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive); ++ } else { ++ status = schedule_periodic(hcd, qh); ++ } ++ ++ done: ++// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags) ++ ++ return status; ++} ++ ++/** ++ * Removes an interrupt or isochronous transfer from the periodic schedule. ++ * ++ * @param hcd The HCD state structure for the DWC OTG controller. ++ * @param qh QH for the periodic transfer. ++ */ ++static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ list_del_init(&qh->qh_list_entry); ++ ++ /* Release the periodic channel reservation. */ ++ hcd->periodic_channels--; ++ ++ /* Update claimed usecs per (micro)frame. */ ++ hcd->periodic_usecs -= qh->usecs; ++ ++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */ ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= qh->usecs / qh->interval; ++ ++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } else { ++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--; ++ DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n", ++ qh, qh->usecs, qh->interval); ++ } ++} ++ ++/** ++ * Removes a QH from either the non-periodic or periodic schedule. Memory is ++ * not freed. ++ * ++ * @param[in] hcd The HCD state structure. ++ * @param[in] qh QH to remove from schedule. */ ++void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh) ++{ ++ //unsigned long flags; ++ ++#ifdef CONFIG_SMP ++ //the spinlock is locked before this function get called, ++ //but in case the lock is needed, the check function is preserved ++ //but in non-SMP mode, all spinlock is lockable. ++ //don't do the test in non-SMP mode ++ ++ if(spin_trylock(&hcd->lock)) { ++ printk("%s: It is not supposed to be lockable!!\n",__func__); ++ BUG(); ++ } ++#endif ++// SPIN_LOCK_IRQSAVE(&hcd->lock, flags); ++ ++ if (list_empty(&qh->qh_list_entry)) { ++ /* QH is not in a schedule. */ ++ goto done; ++ } ++ ++ if (dwc_qh_is_non_per(qh)) { ++ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) { ++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next; ++ } ++ list_del_init(&qh->qh_list_entry); ++ } else { ++ deschedule_periodic(hcd, qh); ++ } ++ ++ done: ++// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags); ++ return; ++} ++ ++/** ++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active ++ * non-periodic schedule. The QH is added to the inactive non-periodic ++ * schedule if any QTDs are still attached to the QH. ++ * ++ * For periodic QHs, the QH is removed from the periodic queued schedule. If ++ * there are any QTDs still attached to the QH, the QH is added to either the ++ * periodic inactive schedule or the periodic ready schedule and its next ++ * scheduled frame is calculated. The QH is placed in the ready schedule if ++ * the scheduled frame has been reached already. Otherwise it's placed in the ++ * inactive schedule. If there are no QTDs attached to the QH, the QH is ++ * completely removed from the periodic schedule. ++ */ ++void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split) ++{ ++ unsigned long flags; ++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags); ++ ++ if (dwc_qh_is_non_per(qh)) { ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ if (!list_empty(&qh->qtd_list)) { ++ /* Add back to inactive non-periodic schedule. */ ++ dwc_otg_hcd_qh_add(hcd, qh); ++ } ++ } else { ++ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd)); ++ ++ if (qh->do_split) { ++ /* Schedule the next continuing periodic split transfer */ ++ if (sched_next_periodic_split) { ++ ++ qh->sched_frame = frame_number; ++ if (dwc_frame_num_le(frame_number, ++ dwc_frame_num_inc(qh->start_split_frame, 1))) { ++ /* ++ * Allow one frame to elapse after start ++ * split microframe before scheduling ++ * complete split, but DONT if we are ++ * doing the next start split in the ++ * same frame for an ISOC out. ++ */ ++ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) { ++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1); ++ } ++ } ++ } else { ++ qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame, ++ qh->interval); ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) { ++ qh->sched_frame = frame_number; ++ } ++ qh->sched_frame |= 0x7; ++ qh->start_split_frame = qh->sched_frame; ++ } ++ } else { ++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval); ++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) { ++ qh->sched_frame = frame_number; ++ } ++ } ++ ++ if (list_empty(&qh->qtd_list)) { ++ dwc_otg_hcd_qh_remove(hcd, qh); ++ } else { ++ /* ++ * Remove from periodic_sched_queued and move to ++ * appropriate queue. ++ */ ++ if (qh->sched_frame == frame_number) { ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_ready); ++ } else { ++ list_move(&qh->qh_list_entry, ++ &hcd->periodic_sched_inactive); ++ } ++ } ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags); ++} ++ ++/** ++ * This function allocates and initializes a QTD. ++ * ++ * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up ++ * pointing to each other so each pair should have a unique correlation. ++ * ++ * @return Returns pointer to the newly allocated QTD, or NULL on error. */ ++dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb) ++{ ++ dwc_otg_qtd_t *qtd; ++ ++ qtd = dwc_otg_hcd_qtd_alloc (); ++ if (qtd == NULL) { ++ return NULL; ++ } ++ ++ dwc_otg_hcd_qtd_init (qtd, urb); ++ return qtd; ++} ++ ++/** ++ * Initializes a QTD structure. ++ * ++ * @param[in] qtd The QTD to initialize. ++ * @param[in] urb The URB to use for initialization. */ ++void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb) ++{ ++ memset (qtd, 0, sizeof (dwc_otg_qtd_t)); ++ qtd->urb = urb; ++ if (usb_pipecontrol(urb->pipe)) { ++ /* ++ * The only time the QTD data toggle is used is on the data ++ * phase of control transfers. This phase always starts with ++ * DATA1. ++ */ ++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1; ++ qtd->control_phase = DWC_OTG_CONTROL_SETUP; ++ } ++ ++ /* start split */ ++ qtd->complete_split = 0; ++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL; ++ qtd->isoc_split_offset = 0; ++ ++ /* Store the qtd ptr in the urb to reference what QTD. */ ++ urb->hcpriv = qtd; ++ return; ++} ++ ++/** ++ * This function adds a QTD to the QTD-list of a QH. It will find the correct ++ * QH to place the QTD into. If it does not find a QH, then it will create a ++ * new QH. If the QH to which the QTD is added is not currently scheduled, it ++ * is placed into the proper schedule based on its EP type. ++ * ++ * @param[in] qtd The QTD to add ++ * @param[in] dwc_otg_hcd The DWC HCD structure ++ * ++ * @return 0 if successful, negative error code otherwise. ++ */ ++int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd, ++ dwc_otg_hcd_t *dwc_otg_hcd) ++{ ++ struct usb_host_endpoint *ep; ++ dwc_otg_qh_t *qh; ++ unsigned long flags; ++ int retval = 0; ++ ++ struct urb *urb = qtd->urb; ++ ++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags); ++ ++ /* ++ * Get the QH which holds the QTD-list to insert to. Create QH if it ++ * doesn't exist. ++ */ ++ ep = dwc_urb_to_endpoint(urb); ++ qh = (dwc_otg_qh_t *)ep->hcpriv; ++ if (qh == NULL) { ++ qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb); ++ if (qh == NULL) { ++ goto done; ++ } ++ ep->hcpriv = qh; ++ } ++ ++ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh); ++ if (retval == 0) { ++ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list); ++ } ++ ++ done: ++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags); ++ ++ return retval; ++} ++ ++#endif /* DWC_DEVICE_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc/otg_pcd.c +@@ -0,0 +1,2502 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $ ++ * $Revision: #70 $ ++ * $Date: 2008/10/14 $ ++ * $Change: 1115682 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_HOST_ONLY ++ ++/** @file ++ * This file implements the Peripheral Controller Driver. ++ * ++ * The Peripheral Controller Driver (PCD) is responsible for ++ * translating requests from the Function Driver into the appropriate ++ * actions on the DWC_otg controller. It isolates the Function Driver ++ * from the specifics of the controller by providing an API to the ++ * Function Driver. ++ * ++ * The Peripheral Controller Driver for Linux will implement the ++ * Gadget API, so that the existing Gadget drivers can be used. ++ * (Gadget Driver is the Linux terminology for a Function Driver.) ++ * ++ * The Linux Gadget API is defined in the header file ++ * <code><linux/usb_gadget.h></code>. The USB EP operations API is ++ * defined in the structure <code>usb_ep_ops</code> and the USB ++ * Controller API is defined in the structure ++ * <code>usb_gadget_ops</code>. ++ * ++ * An important function of the PCD is managing interrupts generated ++ * by the DWC_otg controller. The implementation of the DWC_otg device ++ * mode interrupt service routines is in dwc_otg_pcd_intr.c. ++ * ++ * @todo Add Device Mode test modes (Test J mode, Test K mode, etc). ++ * @todo Does it work when the request size is greater than DEPTSIZ ++ * transfer size ++ * ++ */ ++ ++ ++#include <linux/kernel.h> ++#include <linux/module.h> ++#include <linux/moduleparam.h> ++#include <linux/init.h> ++#include <linux/device.h> ++#include <linux/platform_device.h> ++#include <linux/errno.h> ++#include <linux/list.h> ++#include <linux/interrupt.h> ++#include <linux/string.h> ++#include <linux/dma-mapping.h> ++#include <linux/version.h> ++ ++#include <mach/irqs.h> ++#include <linux/usb/ch9.h> ++ ++//#include <linux/usb_gadget.h> ++ ++#include "otg_driver.h" ++#include "otg_pcd.h" ++ ++ ++ ++/** ++ * Static PCD pointer for use in usb_gadget_register_driver and ++ * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init. ++ */ ++static dwc_otg_pcd_t *s_pcd = 0; ++ ++ ++/* Display the contents of the buffer */ ++extern void dump_msg(const u8 *buf, unsigned int length); ++ ++ ++/** ++ * This function completes a request. It call's the request call back. ++ */ ++void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req, ++ int status) ++{ ++ unsigned stopped = ep->stopped; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep); ++ list_del_init(&req->queue); ++ ++ if (req->req.status == -EINPROGRESS) { ++ req->req.status = status; ++ } else { ++ status = req->req.status; ++ } ++ ++ /* don't modify queue heads during completion callback */ ++ ep->stopped = 1; ++ SPIN_UNLOCK(&ep->pcd->lock); ++ req->req.complete(&ep->ep, &req->req); ++ SPIN_LOCK(&ep->pcd->lock); ++ ++ if (ep->pcd->request_pending > 0) { ++ --ep->pcd->request_pending; ++ } ++ ++ ep->stopped = stopped; ++} ++ ++/** ++ * This function terminates all the requsts in the EP request queue. ++ */ ++void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_pcd_request_t *req; ++ ++ ep->stopped = 1; ++ ++ /* called with irqs blocked?? */ ++ while (!list_empty(&ep->queue)) { ++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, ++ queue); ++ dwc_otg_request_done(ep, req, -ESHUTDOWN); ++ } ++} ++ ++/* USB Endpoint Operations */ ++/* ++ * The following sections briefly describe the behavior of the Gadget ++ * API endpoint operations implemented in the DWC_otg driver ++ * software. Detailed descriptions of the generic behavior of each of ++ * these functions can be found in the Linux header file ++ * include/linux/usb_gadget.h. ++ * ++ * The Gadget API provides wrapper functions for each of the function ++ * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper ++ * function, which then calls the underlying PCD function. The ++ * following sections are named according to the wrapper ++ * functions. Within each section, the corresponding DWC_otg PCD ++ * function name is specified. ++ * ++ */ ++ ++/** ++ * This function assigns periodic Tx FIFO to an periodic EP ++ * in shared Tx FIFO mode ++ */ ++static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t PerTxMsk = 1; ++ int i; ++ for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i) ++ { ++ if((PerTxMsk & core_if->p_tx_msk) == 0) { ++ core_if->p_tx_msk |= PerTxMsk; ++ return i + 1; ++ } ++ PerTxMsk <<= 1; ++ } ++ return 0; ++} ++/** ++ * This function releases periodic Tx FIFO ++ * in shared Tx FIFO mode ++ */ ++static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num) ++{ ++ core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk; ++} ++/** ++ * This function assigns periodic Tx FIFO to an periodic EP ++ * in shared Tx FIFO mode ++ */ ++static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if) ++{ ++ uint32_t TxMsk = 1; ++ int i; ++ ++ for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i) ++ { ++ if((TxMsk & core_if->tx_msk) == 0) { ++ core_if->tx_msk |= TxMsk; ++ return i + 1; ++ } ++ TxMsk <<= 1; ++ } ++ return 0; ++} ++/** ++ * This function releases periodic Tx FIFO ++ * in shared Tx FIFO mode ++ */ ++static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num) ++{ ++ core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk; ++} ++ ++/** ++ * This function is called by the Gadget Driver for each EP to be ++ * configured for the current configuration (SET_CONFIGURATION). ++ * ++ * This function initializes the dwc_otg_ep_t data structure, and then ++ * calls dwc_otg_ep_activate. ++ */ ++static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep, ++ const struct usb_endpoint_descriptor *ep_desc) ++{ ++ dwc_otg_pcd_ep_t *ep = 0; ++ dwc_otg_pcd_t *pcd = 0; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc); ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || !ep_desc || ep->desc || ++ ep_desc->bDescriptorType != USB_DT_ENDPOINT) { ++ DWC_WARN("%s, bad ep or descriptor\n", __func__); ++ return -EINVAL; ++ } ++ if (ep == &ep->pcd->ep0) { ++ DWC_WARN("%s, bad ep(0)\n", __func__); ++ return -EINVAL; ++ } ++ ++ /* Check FIFO size? */ ++ if (!ep_desc->wMaxPacketSize) { ++ DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name); ++ return -ERANGE; ++ } ++ ++ pcd = ep->pcd; ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ ++ ep->desc = ep_desc; ++ ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize); ++ ++ /* ++ * Activate the EP ++ */ ++ ep->stopped = 0; ++ ++ ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0; ++ ep->dwc_ep.maxpacket = ep->ep.maxpacket; ++ ++ ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; ++ ++ if(ep->dwc_ep.is_in) { ++ if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) { ++ ep->dwc_ep.tx_fifo_num = 0; ++ ++ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) { ++ /* ++ * if ISOC EP then assign a Periodic Tx FIFO. ++ */ ++ ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if); ++ } ++ } else { ++ /* ++ * if Dedicated FIFOs mode is on then assign a Tx FIFO. ++ */ ++ ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if); ++ ++ } ++ } ++ /* Set initial data PID. */ ++ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) { ++ ep->dwc_ep.data_pid_start = 0; ++ } ++ ++ DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n", ++ ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"), ++ ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc); ++ ++ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) { ++ ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT); ++ } ++ ++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep); ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ return 0; ++} ++ ++/** ++ * This function is called when an EP is disabled due to disconnect or ++ * change in configuration. Any pending requests will terminate with a ++ * status of -ESHUTDOWN. ++ * ++ * This function modifies the dwc_otg_ep_t data structure for this EP, ++ * and then calls dwc_otg_ep_deactivate. ++ */ ++static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd = 0; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep); ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || !ep->desc) { ++ DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__, ++ usb_ep ? ep->ep.name : NULL); ++ return -EINVAL; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ ++ dwc_otg_request_nuke(ep); ++ ++ dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep); ++ ep->desc = 0; ++ ep->stopped = 1; ++ ++ if(ep->dwc_ep.is_in) { ++ dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num); ++ release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num); ++ release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num); ++ } ++ ++ /* Free DMA Descriptors */ ++ pcd = ep->pcd; ++ ++ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags); ++ ++ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) { ++ dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT); ++ } ++ ++ DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name); ++ return 0; ++} ++ ++ ++/** ++ * This function allocates a request object to use with the specified ++ * endpoint. ++ * ++ * @param ep The endpoint to be used with with the request ++ * @param gfp_flags the GFP_* flags to use. ++ */ ++static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep, ++ gfp_t gfp_flags) ++{ ++ dwc_otg_pcd_request_t *req; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags); ++ if (0 == ep) { ++ DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n"); ++ return 0; ++ } ++ req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags); ++ if (0 == req) { ++ DWC_WARN("%s() %s\n", __func__, ++ "request allocation failed!\n"); ++ return 0; ++ } ++ memset(req, 0, sizeof(dwc_otg_pcd_request_t)); ++ req->req.dma = DMA_ADDR_INVALID; ++ INIT_LIST_HEAD(&req->queue); ++ return &req->req; ++} ++ ++/** ++ * This function frees a request object. ++ * ++ * @param ep The endpoint associated with the request ++ * @param req The request being freed ++ */ ++static void dwc_otg_pcd_free_request(struct usb_ep *ep, ++ struct usb_request *req) ++{ ++ dwc_otg_pcd_request_t *request; ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req); ++ ++ if (0 == ep || 0 == req) { ++ DWC_WARN("%s() %s\n", __func__, ++ "Invalid ep or req argument!\n"); ++ return; ++ } ++ ++ request = container_of(req, dwc_otg_pcd_request_t, req); ++ kfree(request); ++} ++ ++#if 0 ++/** ++ * This function allocates an I/O buffer to be used for a transfer ++ * to/from the specified endpoint. ++ * ++ * @param usb_ep The endpoint to be used with with the request ++ * @param bytes The desired number of bytes for the buffer ++ * @param dma Pointer to the buffer's DMA address; must be valid ++ * @param gfp_flags the GFP_* flags to use. ++ * @return address of a new buffer or null is buffer could not be allocated. ++ */ ++static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes, ++ dma_addr_t *dma, ++ gfp_t gfp_flags) ++{ ++ void *buf; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd = 0; ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ pcd = ep->pcd; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes, ++ dma, gfp_flags); ++ ++ /* Check dword alignment */ ++ if ((bytes & 0x3UL) != 0) { ++ DWC_WARN("%s() Buffer size is not a multiple of" ++ "DWORD size (%d)",__func__, bytes); ++ } ++ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags); ++ } ++ else { ++ buf = kmalloc(bytes, gfp_flags); ++ } ++ ++ /* Check dword alignment */ ++ if (((int)buf & 0x3UL) != 0) { ++ DWC_WARN("%s() Buffer is not DWORD aligned (%p)", ++ __func__, buf); ++ } ++ ++ return buf; ++} ++ ++/** ++ * This function frees an I/O buffer that was allocated by alloc_buffer. ++ * ++ * @param usb_ep the endpoint associated with the buffer ++ * @param buf address of the buffer ++ * @param dma The buffer's DMA address ++ * @param bytes The number of bytes of the buffer ++ */ ++static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf, ++ dma_addr_t dma, unsigned bytes) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd = 0; ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ pcd = ep->pcd; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes); ++ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ dma_free_coherent (NULL, bytes, buf, dma); ++ } ++ else { ++ kfree(buf); ++ } ++} ++#endif ++ ++/** ++ * This function is used to submit an I/O Request to an EP. ++ * ++ * - When the request completes the request's completion callback ++ * is called to return the request to the driver. ++ * - An EP, except control EPs, may have multiple requests ++ * pending. ++ * - Once submitted the request cannot be examined or modified. ++ * - Each request is turned into one or more packets. ++ * - A BULK EP can queue any amount of data; the transfer is ++ * packetized. ++ * - Zero length Packets are specified with the request 'zero' ++ * flag. ++ */ ++static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep, ++ struct usb_request *usb_req, ++ gfp_t gfp_flags) ++{ ++ int prevented = 0; ++ dwc_otg_pcd_request_t *req; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ unsigned long flags = 0; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n", ++ __func__, usb_ep, usb_req, gfp_flags); ++ ++ req = container_of(usb_req, dwc_otg_pcd_request_t, req); ++ if (!usb_req || !usb_req->complete || !usb_req->buf || ++ !list_empty(&req->queue)) { ++ DWC_WARN("%s, bad params\n", __func__); ++ return -EINVAL; ++ } ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ pcd = ep->pcd; ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed); ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ ++ DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n", ++ usb_ep->name, usb_req, usb_req->length, usb_req->buf); ++ ++ if (!GET_CORE_IF(pcd)->core_params->opt) { ++ if (ep->dwc_ep.num != 0) { ++ DWC_ERROR("%s queue req %p, len %d buf %p\n", ++ usb_ep->name, usb_req, usb_req->length, usb_req->buf); ++ } ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ ++#if defined(DEBUG) & defined(VERBOSE) ++ dump_msg(usb_req->buf, usb_req->length); ++#endif ++ ++ usb_req->status = -EINPROGRESS; ++ usb_req->actual = 0; ++ ++ /* ++ * For EP0 IN without premature status, zlp is required? ++ */ ++ if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) { ++ DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name); ++ //_req->zero = 1; ++ } ++ ++ /* Start the transfer */ ++ if (list_empty(&ep->queue) && !ep->stopped) { ++ /* EP0 Transfer? */ ++ if (ep->dwc_ep.num == 0) { ++ switch (pcd->ep0state) { ++ case EP0_IN_DATA_PHASE: ++ DWC_DEBUGPL(DBG_PCD, ++ "%s ep0: EP0_IN_DATA_PHASE\n", ++ __func__); ++ break; ++ ++ case EP0_OUT_DATA_PHASE: ++ DWC_DEBUGPL(DBG_PCD, ++ "%s ep0: EP0_OUT_DATA_PHASE\n", ++ __func__); ++ if (pcd->request_config) { ++ /* Complete STATUS PHASE */ ++ ep->dwc_ep.is_in = 1; ++ pcd->ep0state = EP0_IN_STATUS_PHASE; ++ } ++ break; ++ ++ case EP0_IN_STATUS_PHASE: ++ DWC_DEBUGPL(DBG_PCD, ++ "%s ep0: EP0_IN_STATUS_PHASE\n", ++ __func__); ++ break; ++ ++ default: ++ DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n", ++ pcd->ep0state); ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return -EL2HLT; ++ } ++ ep->dwc_ep.dma_addr = usb_req->dma; ++ ep->dwc_ep.start_xfer_buff = usb_req->buf; ++ ep->dwc_ep.xfer_buff = usb_req->buf; ++ ep->dwc_ep.xfer_len = usb_req->length; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len; ++ ++ if(usb_req->zero) { ++ if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0) ++ && (ep->dwc_ep.xfer_len != 0)) { ++ ep->dwc_ep.sent_zlp = 1; ++ } ++ ++ } ++ ++ ep_check_and_patch_dma_addr(ep); ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep); ++ } ++ else { ++ ++ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size; ++ ++ /* Setup and start the Transfer */ ++ ep->dwc_ep.dma_addr = usb_req->dma; ++ ep->dwc_ep.start_xfer_buff = usb_req->buf; ++ ep->dwc_ep.xfer_buff = usb_req->buf; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = usb_req->length; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ++ if(max_transfer > MAX_TRANSFER_SIZE) { ++ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket); ++ } else { ++ ep->dwc_ep.maxxfer = max_transfer; ++ } ++ ++ if(usb_req->zero) { ++ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0) ++ && (ep->dwc_ep.total_len != 0)) { ++ ep->dwc_ep.sent_zlp = 1; ++ } ++ ++ } ++ ++ ep_check_and_patch_dma_addr(ep); ++ dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep); ++ } ++ } ++ ++ if ((req != 0) || prevented) { ++ ++pcd->request_pending; ++ list_add_tail(&req->queue, &ep->queue); ++ if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) { ++ /** @todo NGS Create a function for this. */ ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ diepmsk.b.intktxfemp = 1; ++ if(&GET_CORE_IF(pcd)->multiproc_int_enable) { ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num], ++ 0, diepmsk.d32); ++ } else { ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32); ++ } ++ } ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return 0; ++} ++ ++/** ++ * This function cancels an I/O request from an EP. ++ */ ++static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep, ++ struct usb_request *usb_req) ++{ ++ dwc_otg_pcd_request_t *req; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ unsigned long flags; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req); ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) { ++ DWC_WARN("%s, bad argument\n", __func__); ++ return -EINVAL; ++ } ++ pcd = ep->pcd; ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name, ++ ep->dwc_ep.is_in ? "IN" : "OUT", ++ usb_req); ++ ++ /* make sure it's actually queued on this endpoint */ ++ list_for_each_entry(req, &ep->queue, queue) ++ { ++ if (&req->req == usb_req) { ++ break; ++ } ++ } ++ ++ if (&req->req != usb_req) { ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return -EINVAL; ++ } ++ ++ if (!list_empty(&req->queue)) { ++ dwc_otg_request_done(ep, req, -ECONNRESET); ++ } ++ else { ++ req = 0; ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ return req ? 0 : -EOPNOTSUPP; ++} ++ ++/** ++ * usb_ep_set_halt stalls an endpoint. ++ * ++ * usb_ep_clear_halt clears an endpoint halt and resets its data ++ * toggle. ++ * ++ * Both of these functions are implemented with the same underlying ++ * function. The behavior depends on the value argument. ++ * ++ * @param[in] usb_ep the Endpoint to halt or clear halt. ++ * @param[in] value ++ * - 0 means clear_halt. ++ * - 1 means set_halt, ++ * - 2 means clear stall lock flag. ++ * - 3 means set stall lock flag. ++ */ ++static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value) ++{ ++ int retval = 0; ++ unsigned long flags; ++ dwc_otg_pcd_ep_t *ep = 0; ++ ++ ++ DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value); ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ ++ if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) || ++ ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ if (!list_empty(&ep->queue)) { ++ DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name); ++ retval = -EAGAIN; ++ } ++ else if (value == 0) { ++ dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if, ++ &ep->dwc_ep); ++ } ++ else if(value == 1) { ++ if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) { ++ dtxfsts_data_t txstatus; ++ fifosize_data_t txfifosize; ++ ++ txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]); ++ txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts); ++ ++ if(txstatus.b.txfspcavail < txfifosize.b.depth) { ++ DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name); ++ retval = -EAGAIN; ++ } ++ else { ++ if (ep->dwc_ep.num == 0) { ++ ep->pcd->ep0state = EP0_STALL; ++ } ++ ++ ep->stopped = 1; ++ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if, ++ &ep->dwc_ep); ++ } ++ } ++ else { ++ if (ep->dwc_ep.num == 0) { ++ ep->pcd->ep0state = EP0_STALL; ++ } ++ ++ ep->stopped = 1; ++ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if, ++ &ep->dwc_ep); ++ } ++ } ++ else if (value == 2) { ++ ep->dwc_ep.stall_clear_flag = 0; ++ } ++ else if (value == 3) { ++ ep->dwc_ep.stall_clear_flag = 1; ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags); ++ return retval; ++} ++ ++/** ++ * This function allocates a DMA Descriptor chain for the Endpoint ++ * buffer to be used for a transfer to/from the specified endpoint. ++ */ ++dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count) ++{ ++ ++ return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL); ++} ++ ++LIST_HEAD(tofree_list); ++DEFINE_SPINLOCK(tofree_list_lock); ++ ++struct free_param { ++ struct list_head list; ++ ++ void* addr; ++ dma_addr_t dma_addr; ++ uint32_t size; ++}; ++void free_list_agent_fn(void *data){ ++ struct list_head free_list; ++ struct free_param *cur,*next; ++ ++ spin_lock(&tofree_list_lock); ++ list_add(&free_list,&tofree_list); ++ list_del_init(&tofree_list); ++ spin_unlock(&tofree_list_lock); ++ ++ list_for_each_entry_safe(cur,next,&free_list,list){ ++ if(cur==&free_list) break; ++ dma_free_coherent(NULL,cur->size,cur->addr,cur->dma_addr); ++ list_del(&cur->list); ++ kfree(cur); ++ } ++} ++DECLARE_WORK(free_list_agent,free_list_agent_fn); ++/** ++ * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc. ++ */ ++void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count) ++{ ++ if(irqs_disabled()){ ++ struct free_param* fp=kmalloc(sizeof(struct free_param),GFP_KERNEL); ++ fp->addr=desc_addr; ++ fp->dma_addr=dma_desc_addr; ++ fp->size=count*sizeof(dwc_otg_dma_desc_t); ++ ++ spin_lock(&tofree_list_lock); ++ list_add(&fp->list,&tofree_list); ++ spin_unlock(&tofree_list_lock); ++ ++ schedule_work(&free_list_agent); ++ return ; ++ } ++ dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr); ++} ++ ++#ifdef DWC_EN_ISOC ++ ++/** ++ * This function initializes a descriptor chain for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP to start the transfer on. ++ * ++ */ ++void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ ++ dsts_data_t dsts = { .d32 = 0}; ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ int i, j; ++ ++ if(dwc_ep->is_in) ++ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval; ++ else ++ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval; ++ ++ ++ /** Allocate descriptors for double buffering */ ++ dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2); ++ if(dwc_ep->desc_addr) { ++ DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__); ++ return; ++ } ++ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ /** ISO OUT EP */ ++ if(dwc_ep->is_in == 0) { ++ desc_sts_data_t sts = { .d32 =0 }; ++ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr; ++ dma_addr_t dma_ad; ++ uint32_t data_per_desc; ++ dwc_otg_dev_out_ep_regs_t *out_regs = ++ core_if->dev_if->out_ep_regs[dwc_ep->num]; ++ int offset; ++ ++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl; ++ dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma)); ++ ++ /** Buffer 0 descriptors setup */ ++ dma_ad = dwc_ep->dma_addr0; ++ ++ sts.b_iso_out.bs = BS_HOST_READY; ++ sts.b_iso_out.rxsts = 0; ++ sts.b_iso_out.l = 0; ++ sts.b_iso_out.sp = 0; ++ sts.b_iso_out.ioc = 0; ++ sts.b_iso_out.pid = 0; ++ sts.b_iso_out.framenum = 0; ++ ++ offset = 0; ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ //(uint32_t)dma_ad += data_per_desc; ++ dma_ad = (uint32_t)dma_ad + data_per_desc; ++ } ++ } ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ //(uint32_t)dma_ad += data_per_desc; ++ dma_ad = (uint32_t)dma_ad + data_per_desc; ++ } ++ ++ sts.b_iso_out.ioc = 1; ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ dma_desc ++; ++ ++ /** Buffer 1 descriptors setup */ ++ sts.b_iso_out.ioc = 0; ++ dma_ad = dwc_ep->dma_addr1; ++ ++ offset = 0; ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ //(uint32_t)dma_ad += data_per_desc; ++ dma_ad = (uint32_t)dma_ad + data_per_desc; ++ } ++ } ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ //(uint32_t)dma_ad += data_per_desc; ++ dma_ad = (uint32_t)dma_ad + data_per_desc; ++ } ++ ++ sts.b_iso_out.ioc = 1; ++ sts.b_iso_out.l = 1; ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dwc_ep->next_frame = 0; ++ ++ /** Write dma_ad into DOEPDMA register */ ++ dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr); ++ ++ } ++ /** ISO IN EP */ ++ else { ++ desc_sts_data_t sts = { .d32 =0 }; ++ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr; ++ dma_addr_t dma_ad; ++ dwc_otg_dev_in_ep_regs_t *in_regs = ++ core_if->dev_if->in_ep_regs[dwc_ep->num]; ++ unsigned int frmnumber; ++ fifosize_data_t txfifosize,rxfifosize; ++ ++ txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts); ++ rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz); ++ ++ ++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl; ++ ++ dma_ad = dwc_ep->dma_addr0; ++ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ sts.b_iso_in.bs = BS_HOST_READY; ++ sts.b_iso_in.txsts = 0; ++ sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0; ++ sts.b_iso_in.ioc = 0; ++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm; ++ ++ ++ frmnumber = dwc_ep->next_frame; ++ ++ sts.b_iso_in.framenum = frmnumber; ++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame; ++ sts.b_iso_in.l = 0; ++ ++ /** Buffer 0 descriptors setup */ ++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++) ++ { ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ dma_desc ++; ++ ++ //(uint32_t)dma_ad += dwc_ep->data_per_frame; ++ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame; ++ sts.b_iso_in.framenum += dwc_ep->bInterval; ++ } ++ ++ sts.b_iso_in.ioc = 1; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++dma_desc; ++ ++ /** Buffer 1 descriptors setup */ ++ sts.b_iso_in.ioc = 0; ++ dma_ad = dwc_ep->dma_addr1; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ dma_desc ++; ++ ++ //(uint32_t)dma_ad += dwc_ep->data_per_frame; ++ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame; ++ sts.b_iso_in.framenum += dwc_ep->bInterval; ++ ++ sts.b_iso_in.ioc = 0; ++ } ++ sts.b_iso_in.ioc = 1; ++ sts.b_iso_in.l = 1; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval; ++ ++ /** Write dma_ad into diepdma register */ ++ dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr); ++ } ++ /** Enable endpoint, clear nak */ ++ depctl.d32 = 0; ++ depctl.b.epena = 1; ++ depctl.b.usbactep = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(addr, depctl.d32,depctl.d32); ++ depctl.d32 = dwc_read_reg32(addr); ++} ++ ++/** ++ * This function initializes a descriptor chain for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++ ++void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ ++ ++ if(ep->is_in) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ } else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ } ++ ++ ++ if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) { ++ return; ++ } else { ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ ++ ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval; ++ ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ ep->xfer_count = 0; ++ ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0; ++ ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0; ++ ++ if(ep->is_in) { ++ /* Program the transfer size and packet count ++ * as follows: xfersize = N * maxpacket + ++ * short_packet pktcnt = N + (short_packet ++ * exist ? 1 : 0) ++ */ ++ deptsiz.b.mc = ep->pkt_per_frm; ++ deptsiz.b.xfersize = ep->xfer_len; ++ deptsiz.b.pktcnt = ++ (ep->xfer_len - 1 + ep->maxpacket) / ++ ep->maxpacket; ++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr); ++ ++ } else { ++ deptsiz.b.pktcnt = ++ (ep->xfer_len + (ep->maxpacket - 1)) / ++ ep->maxpacket; ++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket; ++ ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32); ++ ++ /* Write the DMA register */ ++ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr); ++ ++ } ++ /** Enable endpoint, clear nak */ ++ depctl.d32 = 0; ++ dwc_modify_reg32(addr, depctl.d32,depctl.d32); ++ ++ depctl.b.epena = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(addr, depctl.d32,depctl.d32); ++ } ++} ++ ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++ ++void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ if(core_if->dma_enable) { ++ if(core_if->dma_desc_enable) { ++ if(ep->is_in) { ++ ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm; ++ } else { ++ ep->desc_cnt = ep->pkt_cnt; ++ } ++ dwc_otg_iso_ep_start_ddma_transfer(core_if, ep); ++ } else { ++ if(core_if->pti_enh_enable) { ++ dwc_otg_iso_ep_start_buf_transfer(core_if, ep); ++ } else { ++ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0; ++ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0; ++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep); ++ } ++ } ++ } else { ++ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0; ++ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0; ++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep); ++ } ++} ++ ++/** ++ * This function does the setup for a data transfer for an EP and ++ * starts the transfer. For an IN transfer, the packets will be ++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers, ++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ */ ++ ++void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ depctl_data_t depctl = { .d32 = 0 }; ++ volatile uint32_t *addr; ++ ++ if(ep->is_in == 1) { ++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl; ++ } ++ else { ++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl; ++ } ++ ++ /* disable the ep */ ++ depctl.d32 = dwc_read_reg32(addr); ++ ++ depctl.b.epdis = 1; ++ depctl.b.snak = 1; ++ ++ dwc_write_reg32(addr, depctl.d32); ++ ++ if(core_if->dma_desc_enable && ++ ep->iso_desc_addr && ep->iso_dma_desc_addr) { ++ dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2); ++ } ++ ++ /* reset varibales */ ++ ep->dma_addr0 = 0; ++ ep->dma_addr1 = 0; ++ ep->xfer_buff0 = 0; ++ ep->xfer_buff1 = 0; ++ ep->data_per_frame = 0; ++ ep->data_pattern_frame = 0; ++ ep->sync_frame = 0; ++ ep->buf_proc_intrvl = 0; ++ ep->bInterval = 0; ++ ep->proc_buf_num = 0; ++ ep->pkt_per_frm = 0; ++ ep->pkt_per_frm = 0; ++ ep->desc_cnt = 0; ++ ep->iso_desc_addr = 0; ++ ep->iso_dma_desc_addr = 0; ++} ++ ++ ++/** ++ * This function is used to submit an ISOC Transfer Request to an EP. ++ * ++ * - Every time a sync period completes the request's completion callback ++ * is called to provide data to the gadget driver. ++ * - Once submitted the request cannot be modified. ++ * - Each request is turned into periodic data packets untill ISO ++ * Transfer is stopped.. ++ */ ++static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req, ++ gfp_t gfp_flags) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ dwc_ep_t *dwc_ep; ++ unsigned long flags = 0; ++ int32_t frm_data; ++ dwc_otg_core_if_t *core_if; ++ dcfg_data_t dcfg; ++ dsts_data_t dsts; ++ ++ ++ if (!req || !req->process_buffer || !req->buf0 || !req->buf1) { ++ DWC_WARN("%s, bad params\n", __func__); ++ return -EINVAL; ++ } ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ ++ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ pcd = ep->pcd; ++ core_if = GET_CORE_IF(pcd); ++ ++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg); ++ ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed); ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags); ++ ++ dwc_ep = &ep->dwc_ep; ++ ++ if(ep->iso_req) { ++ DWC_WARN("%s, iso request in progress\n", __func__); ++ } ++ req->status = -EINPROGRESS; ++ ++ dwc_ep->dma_addr0 = req->dma0; ++ dwc_ep->dma_addr1 = req->dma1; ++ ++ dwc_ep->xfer_buff0 = req->buf0; ++ dwc_ep->xfer_buff1 = req->buf1; ++ ++ ep->iso_req = req; ++ ++ dwc_ep->data_per_frame = req->data_per_frame; ++ ++ /** @todo - pattern data support is to be implemented in the future */ ++ dwc_ep->data_pattern_frame = req->data_pattern_frame; ++ dwc_ep->sync_frame = req->sync_frame; ++ ++ dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl; ++ ++ dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1); ++ ++ dwc_ep->proc_buf_num = 0; ++ ++ dwc_ep->pkt_per_frm = 0; ++ frm_data = ep->dwc_ep.data_per_frame; ++ while(frm_data > 0) { ++ dwc_ep->pkt_per_frm++; ++ frm_data -= ep->dwc_ep.maxpacket; ++ } ++ ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ if(req->flags & USB_REQ_ISO_ASAP) { ++ dwc_ep->next_frame = dsts.b.soffn + 1; ++ if(dwc_ep->bInterval != 1){ ++ dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval); ++ } ++ } else { ++ dwc_ep->next_frame = req->start_frame; ++ } ++ ++ ++ if(!core_if->pti_enh_enable) { ++ dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval; ++ } else { ++ dwc_ep->pkt_cnt = ++ (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval) ++ - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket; ++ } ++ ++ if(core_if->dma_desc_enable) { ++ dwc_ep->desc_cnt = ++ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval; ++ } ++ ++ dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL); ++ if(!dwc_ep->pkt_info) { ++ return -ENOMEM; ++ } ++ if(core_if->pti_enh_enable) { ++ memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt); ++ } ++ ++ dwc_ep->cur_pkt = 0; ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ dwc_otg_iso_ep_start_transfer(core_if, dwc_ep); ++ ++ return 0; ++} ++ ++/** ++ * This function stops ISO EP Periodic Data Transfer. ++ */ ++static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_t *pcd; ++ dwc_ep_t *dwc_ep; ++ unsigned long flags; ++ ++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep); ++ ++ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) { ++ DWC_WARN("%s, bad ep\n", __func__); ++ return -EINVAL; ++ } ++ ++ pcd = ep->pcd; ++ ++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) { ++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed); ++ DWC_WARN("%s, bogus device state\n", __func__); ++ return -ESHUTDOWN; ++ } ++ ++ dwc_ep = &ep->dwc_ep; ++ ++ dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep); ++ ++ kfree(dwc_ep->pkt_info); ++ ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ ++ if(ep->iso_req != req) { ++ return -EINVAL; ++ } ++ ++ req->status = -ECONNRESET; ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ ++ ++ ep->iso_req = 0; ++ ++ return 0; ++} ++ ++/** ++ * This function is used for perodical data exchnage between PCD and gadget drivers. ++ * for Isochronous EPs ++ * ++ * - Every time a sync period completes this function is called to ++ * perform data exchange between PCD and gadget ++ */ ++void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req) ++{ ++ int i; ++ struct usb_gadget_iso_packet_descriptor *iso_packet; ++ dwc_ep_t *dwc_ep; ++ ++ dwc_ep = &ep->dwc_ep; ++ ++ if(ep->iso_req->status == -ECONNRESET) { ++ DWC_PRINT("Device has already disconnected\n"); ++ /*Device has been disconnected*/ ++ return; ++ } ++ ++ if(dwc_ep->proc_buf_num != 0) { ++ iso_packet = ep->iso_req->iso_packet_desc0; ++ } ++ ++ else { ++ iso_packet = ep->iso_req->iso_packet_desc1; ++ } ++ ++ /* Fill in ISOC packets descriptors & pass to gadget driver*/ ++ ++ for(i = 0; i < dwc_ep->pkt_cnt; ++i) { ++ iso_packet[i].status = dwc_ep->pkt_info[i].status; ++ iso_packet[i].offset = dwc_ep->pkt_info[i].offset; ++ iso_packet[i].actual_length = dwc_ep->pkt_info[i].length; ++ dwc_ep->pkt_info[i].status = 0; ++ dwc_ep->pkt_info[i].offset = 0; ++ dwc_ep->pkt_info[i].length = 0; ++ } ++ ++ /* Call callback function to process data buffer */ ++ ep->iso_req->status = 0;/* success */ ++ ++ SPIN_UNLOCK(&ep->pcd->lock); ++ ep->iso_req->process_buffer(&ep->ep, ep->iso_req); ++ SPIN_LOCK(&ep->pcd->lock); ++} ++ ++ ++static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets, ++ gfp_t gfp_flags) ++{ ++ struct usb_iso_request *pReq = NULL; ++ uint32_t req_size; ++ ++ ++ req_size = sizeof(struct usb_iso_request); ++ req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor))); ++ ++ ++ pReq = kmalloc(req_size, gfp_flags); ++ if (!pReq) { ++ DWC_WARN("%s, can't allocate Iso Request\n", __func__); ++ return 0; ++ } ++ pReq->iso_packet_desc0 = (void*) (pReq + 1); ++ ++ pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets; ++ ++ return pReq; ++} ++ ++static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req) ++{ ++ kfree(req); ++} ++ ++static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops = ++{ ++ .ep_ops = ++ { ++ .enable = dwc_otg_pcd_ep_enable, ++ .disable = dwc_otg_pcd_ep_disable, ++ ++ .alloc_request = dwc_otg_pcd_alloc_request, ++ .free_request = dwc_otg_pcd_free_request, ++ ++ //.alloc_buffer = dwc_otg_pcd_alloc_buffer, ++ //.free_buffer = dwc_otg_pcd_free_buffer, ++ ++ .queue = dwc_otg_pcd_ep_queue, ++ .dequeue = dwc_otg_pcd_ep_dequeue, ++ ++ .set_halt = dwc_otg_pcd_ep_set_halt, ++ .fifo_status = 0, ++ .fifo_flush = 0, ++ }, ++ .iso_ep_start = dwc_otg_pcd_iso_ep_start, ++ .iso_ep_stop = dwc_otg_pcd_iso_ep_stop, ++ .alloc_iso_request = dwc_otg_pcd_alloc_iso_request, ++ .free_iso_request = dwc_otg_pcd_free_iso_request, ++}; ++ ++#else ++ ++ ++static struct usb_ep_ops dwc_otg_pcd_ep_ops = ++{ ++ .enable = dwc_otg_pcd_ep_enable, ++ .disable = dwc_otg_pcd_ep_disable, ++ ++ .alloc_request = dwc_otg_pcd_alloc_request, ++ .free_request = dwc_otg_pcd_free_request, ++ ++// .alloc_buffer = dwc_otg_pcd_alloc_buffer, ++// .free_buffer = dwc_otg_pcd_free_buffer, ++ ++ .queue = dwc_otg_pcd_ep_queue, ++ .dequeue = dwc_otg_pcd_ep_dequeue, ++ ++ .set_halt = dwc_otg_pcd_ep_set_halt, ++ .fifo_status = 0, ++ .fifo_flush = 0, ++ ++ ++}; ++ ++#endif /* DWC_EN_ISOC */ ++/* Gadget Operations */ ++/** ++ * The following gadget operations will be implemented in the DWC_otg ++ * PCD. Functions in the API that are not described below are not ++ * implemented. ++ * ++ * The Gadget API provides wrapper functions for each of the function ++ * pointers defined in usb_gadget_ops. The Gadget Driver calls the ++ * wrapper function, which then calls the underlying PCD function. The ++ * following sections are named according to the wrapper functions ++ * (except for ioctl, which doesn't have a wrapper function). Within ++ * each section, the corresponding DWC_otg PCD function name is ++ * specified. ++ * ++ */ ++ ++/** ++ *Gets the USB Frame number of the last SOF. ++ */ ++static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget) ++{ ++ dwc_otg_pcd_t *pcd; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget); ++ ++ if (gadget == 0) { ++ return -ENODEV; ++ } ++ else { ++ pcd = container_of(gadget, dwc_otg_pcd_t, gadget); ++ dwc_otg_get_frame_number(GET_CORE_IF(pcd)); ++ } ++ ++ return 0; ++} ++ ++void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd) ++{ ++ uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl); ++ gotgctl_data_t mem; ++ gotgctl_data_t val; ++ ++ val.d32 = dwc_read_reg32(addr); ++ if (val.b.sesreq) { ++ DWC_ERROR("Session Request Already active!\n"); ++ return; ++ } ++ ++ DWC_NOTICE("Session Request Initated\n"); ++ mem.d32 = dwc_read_reg32(addr); ++ mem.b.sesreq = 1; ++ dwc_write_reg32(addr, mem.d32); ++ ++ /* Start the SRP timer */ ++ dwc_otg_pcd_start_srp_timer(pcd); ++ return; ++} ++ ++void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set) ++{ ++ dctl_data_t dctl = {.d32=0}; ++ volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl); ++ ++ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) { ++ if (pcd->remote_wakeup_enable) { ++ if (set) { ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32(addr, 0, dctl.d32); ++ DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n"); ++ mdelay(1); ++ dwc_modify_reg32(addr, dctl.d32, 0); ++ DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n"); ++ } ++ else { ++ } ++ } ++ else { ++ DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n"); ++ } ++ } ++ return; ++} ++ ++/** ++ * Initiates Session Request Protocol (SRP) to wakeup the host if no ++ * session is in progress. If a session is already in progress, but ++ * the device is suspended, remote wakeup signaling is started. ++ * ++ */ ++static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget) ++{ ++ unsigned long flags; ++ dwc_otg_pcd_t *pcd; ++ dsts_data_t dsts; ++ gotgctl_data_t gotgctl; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget); ++ ++ if (gadget == 0) { ++ return -ENODEV; ++ } ++ else { ++ pcd = container_of(gadget, dwc_otg_pcd_t, gadget); ++ } ++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags); ++ ++ /* ++ * This function starts the Protocol if no session is in progress. If ++ * a session is already in progress, but the device is suspended, ++ * remote wakeup signaling is started. ++ */ ++ ++ /* Check if valid session */ ++ gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl)); ++ if (gotgctl.b.bsesvld) { ++ /* Check if suspend state */ ++ dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts)); ++ if (dsts.b.suspsts) { ++ dwc_otg_pcd_remote_wakeup(pcd, 1); ++ } ++ } ++ else { ++ dwc_otg_pcd_initiate_srp(pcd); ++ } ++ ++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags); ++ return 0; ++} ++ ++static const struct usb_gadget_ops dwc_otg_pcd_ops = ++{ ++ .get_frame = dwc_otg_pcd_get_frame, ++ .wakeup = dwc_otg_pcd_wakeup, ++ // current versions must always be self-powered ++}; ++ ++/** ++ * This function updates the otg values in the gadget structure. ++ */ ++void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset) ++{ ++ ++ if (!pcd->gadget.is_otg) ++ return; ++ ++ if (reset) { ++ pcd->b_hnp_enable = 0; ++ pcd->a_hnp_support = 0; ++ pcd->a_alt_hnp_support = 0; ++ } ++ ++ pcd->gadget.b_hnp_enable = pcd->b_hnp_enable; ++ pcd->gadget.a_hnp_support = pcd->a_hnp_support; ++ pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support; ++} ++ ++/** ++ * This function is the top level PCD interrupt handler. ++ */ ++static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev) ++{ ++ dwc_otg_pcd_t *pcd = dev; ++ int32_t retval = IRQ_NONE; ++ ++ retval = dwc_otg_pcd_handle_intr(pcd); ++ return IRQ_RETVAL(retval); ++} ++ ++/** ++ * PCD Callback function for initializing the PCD when switching to ++ * device mode. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_start_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ ++ /* ++ * Initialized the Core for Device mode. ++ */ ++ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) { ++ dwc_otg_core_dev_init(GET_CORE_IF(pcd)); ++ } ++ return 1; ++} ++ ++/** ++ * PCD Callback function for stopping the PCD when switching to Host ++ * mode. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_stop_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd); ++ ++ dwc_otg_pcd_stop(pcd); ++ return 1; ++} ++ ++ ++/** ++ * PCD Callback function for notifying the PCD when resuming from ++ * suspend. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_suspend_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ ++ if (pcd->driver && pcd->driver->resume) { ++ SPIN_UNLOCK(&pcd->lock); ++ pcd->driver->suspend(&pcd->gadget); ++ SPIN_LOCK(&pcd->lock); ++ } ++ ++ return 1; ++} ++ ++ ++/** ++ * PCD Callback function for notifying the PCD when resuming from ++ * suspend. ++ * ++ * @param p void pointer to the <code>dwc_otg_pcd_t</code> ++ */ ++static int32_t dwc_otg_pcd_resume_cb(void *p) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p; ++ ++ if (pcd->driver && pcd->driver->resume) { ++ SPIN_UNLOCK(&pcd->lock); ++ pcd->driver->resume(&pcd->gadget); ++ SPIN_LOCK(&pcd->lock); ++ } ++ ++ /* Stop the SRP timeout timer. */ ++ if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) || ++ (!GET_CORE_IF(pcd)->core_params->i2c_enable)) { ++ if (GET_CORE_IF(pcd)->srp_timer_started) { ++ GET_CORE_IF(pcd)->srp_timer_started = 0; ++ del_timer(&pcd->srp_timer); ++ } ++ } ++ return 1; ++} ++ ++ ++/** ++ * PCD Callback structure for handling mode switching. ++ */ ++static dwc_otg_cil_callbacks_t pcd_callbacks = ++{ ++ .start = dwc_otg_pcd_start_cb, ++ .stop = dwc_otg_pcd_stop_cb, ++ .suspend = dwc_otg_pcd_suspend_cb, ++ .resume_wakeup = dwc_otg_pcd_resume_cb, ++ .p = 0, /* Set at registration */ ++}; ++ ++/** ++ * This function is called when the SRP timer expires. The SRP should ++ * complete within 6 seconds. ++ */ ++static void srp_timeout(unsigned long ptr) ++{ ++ gotgctl_data_t gotgctl; ++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr; ++ volatile uint32_t *addr = &core_if->core_global_regs->gotgctl; ++ ++ gotgctl.d32 = dwc_read_reg32(addr); ++ ++ core_if->srp_timer_started = 0; ++ ++ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) && ++ (core_if->core_params->i2c_enable)) { ++ DWC_PRINT("SRP Timeout\n"); ++ ++ if ((core_if->srp_success) && ++ (gotgctl.b.bsesvld)) { ++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) { ++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p); ++ } ++ ++ /* Clear Session Request */ ++ gotgctl.d32 = 0; ++ gotgctl.b.sesreq = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gotgctl, ++ gotgctl.d32, 0); ++ ++ core_if->srp_success = 0; ++ } ++ else { ++ DWC_ERROR("Device not connected/responding\n"); ++ gotgctl.b.sesreq = 0; ++ dwc_write_reg32(addr, gotgctl.d32); ++ } ++ } ++ else if (gotgctl.b.sesreq) { ++ DWC_PRINT("SRP Timeout\n"); ++ ++ DWC_ERROR("Device not connected/responding\n"); ++ gotgctl.b.sesreq = 0; ++ dwc_write_reg32(addr, gotgctl.d32); ++ } ++ else { ++ DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32); ++ } ++} ++ ++/** ++ * Start the SRP timer to detect when the SRP does not complete within ++ * 6 seconds. ++ * ++ * @param pcd the pcd structure. ++ */ ++void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd) ++{ ++ struct timer_list *srp_timer = &pcd->srp_timer; ++ GET_CORE_IF(pcd)->srp_timer_started = 1; ++ init_timer(srp_timer); ++ srp_timer->function = srp_timeout; ++ srp_timer->data = (unsigned long)GET_CORE_IF(pcd); ++ srp_timer->expires = jiffies + (HZ*6); ++ add_timer(srp_timer); ++} ++ ++/** ++ * Tasklet ++ * ++ */ ++extern void start_next_request(dwc_otg_pcd_ep_t *ep); ++ ++static void start_xfer_tasklet_func (unsigned long data) ++{ ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data; ++ dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if; ++ ++ int i; ++ depctl_data_t diepctl; ++ ++ DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n"); ++ ++ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl); ++ ++ if (pcd->ep0.queue_sof) { ++ pcd->ep0.queue_sof = 0; ++ start_next_request (&pcd->ep0); ++ // break; ++ } ++ ++ for (i=0; i<core_if->dev_if->num_in_eps; i++) ++ { ++ depctl_data_t diepctl; ++ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl); ++ ++ if (pcd->in_ep[i].queue_sof) { ++ pcd->in_ep[i].queue_sof = 0; ++ start_next_request (&pcd->in_ep[i]); ++ // break; ++ } ++ } ++ ++ return; ++} ++ ++ ++ ++ ++ ++ ++ ++static struct tasklet_struct start_xfer_tasklet = { ++ .next = NULL, ++ .state = 0, ++ .count = ATOMIC_INIT(0), ++ .func = start_xfer_tasklet_func, ++ .data = 0, ++}; ++/** ++ * This function initialized the pcd Dp structures to there default ++ * state. ++ * ++ * @param pcd the pcd structure. ++ */ ++void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd) ++{ ++ static const char * names[] = ++ { ++ ++ "ep0", ++ "ep1in", ++ "ep2in", ++ "ep3in", ++ "ep4in", ++ "ep5in", ++ "ep6in", ++ "ep7in", ++ "ep8in", ++ "ep9in", ++ "ep10in", ++ "ep11in", ++ "ep12in", ++ "ep13in", ++ "ep14in", ++ "ep15in", ++ "ep1out", ++ "ep2out", ++ "ep3out", ++ "ep4out", ++ "ep5out", ++ "ep6out", ++ "ep7out", ++ "ep8out", ++ "ep9out", ++ "ep10out", ++ "ep11out", ++ "ep12out", ++ "ep13out", ++ "ep14out", ++ "ep15out" ++ ++ }; ++ ++ int i; ++ int in_ep_cntr, out_ep_cntr; ++ uint32_t hwcfg1; ++ uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps; ++ uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps; ++ dwc_otg_pcd_ep_t *ep; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd); ++ ++ INIT_LIST_HEAD (&pcd->gadget.ep_list); ++ pcd->gadget.ep0 = &pcd->ep0.ep; ++ pcd->gadget.speed = USB_SPEED_UNKNOWN; ++ ++ INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list); ++ ++ /** ++ * Initialize the EP0 structure. ++ */ ++ ep = &pcd->ep0; ++ ++ /* Init EP structure */ ++ ep->desc = 0; ++ ep->pcd = pcd; ++ ep->stopped = 1; ++ ++ /* Init DWC ep structure */ ++ ep->dwc_ep.num = 0; ++ ep->dwc_ep.active = 0; ++ ep->dwc_ep.tx_fifo_num = 0; ++ /* Control until ep is actvated */ ++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; ++ ep->dwc_ep.dma_addr = 0; ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = 0; ++ ep->queue_sof = 0; ++ ep->dwc_ep.desc_addr = 0; ++ ep->dwc_ep.dma_desc_addr = 0; ++ ++ ep->dwc_ep.aligned_buf=NULL; ++ ep->dwc_ep.aligned_buf_size=0; ++ ep->dwc_ep.aligned_dma_addr=0; ++ ++ ++ /* Init the usb_ep structure. */ ++ ep->ep.name = names[0]; ++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops; ++ ++ /** ++ * @todo NGS: What should the max packet size be set to ++ * here? Before EP type is set? ++ */ ++ ep->ep.maxpacket = MAX_PACKET_SIZE; ++ ++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list); ++ ++ INIT_LIST_HEAD (&ep->queue); ++ /** ++ * Initialize the EP structures. ++ */ ++ in_ep_cntr = 0; ++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3; ++ ++ for (i = 1; in_ep_cntr < num_in_eps; i++) ++ { ++ if((hwcfg1 & 0x1) == 0) { ++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr]; ++ in_ep_cntr ++; ++ ++ /* Init EP structure */ ++ ep->desc = 0; ++ ep->pcd = pcd; ++ ep->stopped = 1; ++ ++ /* Init DWC ep structure */ ++ ep->dwc_ep.is_in = 1; ++ ep->dwc_ep.num = i; ++ ep->dwc_ep.active = 0; ++ ep->dwc_ep.tx_fifo_num = 0; ++ ++ /* Control until ep is actvated */ ++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; ++ ep->dwc_ep.dma_addr = 0; ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = 0; ++ ep->queue_sof = 0; ++ ep->dwc_ep.desc_addr = 0; ++ ep->dwc_ep.dma_desc_addr = 0; ++ ++ /* Init the usb_ep structure. */ ++ ep->ep.name = names[i]; ++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops; ++ ++ /** ++ * @todo NGS: What should the max packet size be set to ++ * here? Before EP type is set? ++ */ ++ ep->ep.maxpacket = MAX_PACKET_SIZE; ++ ++ //add only even number ep as in ++ if((i%2)==1) ++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list); ++ ++ INIT_LIST_HEAD (&ep->queue); ++ } ++ hwcfg1 >>= 2; ++ } ++ ++ out_ep_cntr = 0; ++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2; ++ ++ for (i = 1; out_ep_cntr < num_out_eps; i++) ++ { ++ if((hwcfg1 & 0x1) == 0) { ++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr]; ++ out_ep_cntr++; ++ ++ /* Init EP structure */ ++ ep->desc = 0; ++ ep->pcd = pcd; ++ ep->stopped = 1; ++ ++ /* Init DWC ep structure */ ++ ep->dwc_ep.is_in = 0; ++ ep->dwc_ep.num = i; ++ ep->dwc_ep.active = 0; ++ ep->dwc_ep.tx_fifo_num = 0; ++ /* Control until ep is actvated */ ++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE; ++ ep->dwc_ep.dma_addr = 0; ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = 0; ++ ep->queue_sof = 0; ++ ++ /* Init the usb_ep structure. */ ++ ep->ep.name = names[15 + i]; ++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops; ++ /** ++ * @todo NGS: What should the max packet size be set to ++ * here? Before EP type is set? ++ */ ++ ep->ep.maxpacket = MAX_PACKET_SIZE; ++ ++ //add only odd number ep as out ++ if((i%2)==0) ++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list); ++ ++ INIT_LIST_HEAD (&ep->queue); ++ } ++ hwcfg1 >>= 2; ++ } ++ ++ /* remove ep0 from the list. There is a ep0 pointer.*/ ++ list_del_init (&pcd->ep0.ep.ep_list); ++ ++ pcd->ep0state = EP0_DISCONNECT; ++ pcd->ep0.ep.maxpacket = MAX_EP0_SIZE; ++ pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE; ++ pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL; ++} ++ ++/** ++ * This function releases the Gadget device. ++ * required by device_unregister(). ++ * ++ * @todo Should this do something? Should it free the PCD? ++ */ ++static void dwc_otg_pcd_gadget_release(struct device *dev) ++{ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev); ++} ++ ++ ++ ++/** ++ * This function initialized the PCD portion of the driver. ++ * ++ */ ++u8 dev_id[]="gadget"; ++int dwc_otg_pcd_init(struct platform_device *pdev) ++{ ++ static char pcd_name[] = "dwc_otg_pcd"; ++ dwc_otg_pcd_t *pcd; ++ dwc_otg_core_if_t* core_if; ++ dwc_otg_dev_if_t* dev_if; ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); ++ int retval = 0; ++ ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, pdev); ++ /* ++ * Allocate PCD structure ++ */ ++ pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL); ++ ++ if (pcd == 0) { ++ return -ENOMEM; ++ } ++ ++ memset(pcd, 0, sizeof(dwc_otg_pcd_t)); ++ spin_lock_init(&pcd->lock); ++ ++ otg_dev->pcd = pcd; ++ s_pcd = pcd; ++ pcd->gadget.name = pcd_name; ++ ++ pcd->gadget.dev.init_name = dev_id; ++ pcd->otg_dev = platform_get_drvdata(pdev); ++ ++ pcd->gadget.dev.parent = &pdev->dev; ++ pcd->gadget.dev.release = dwc_otg_pcd_gadget_release; ++ pcd->gadget.ops = &dwc_otg_pcd_ops; ++ ++ core_if = GET_CORE_IF(pcd); ++ dev_if = core_if->dev_if; ++ ++ if(core_if->hwcfg4.b.ded_fifo_en) { ++ DWC_PRINT("Dedicated Tx FIFOs mode\n"); ++ } ++ else { ++ DWC_PRINT("Shared Tx FIFO mode\n"); ++ } ++ ++ /* If the module is set to FS or if the PHY_TYPE is FS then the gadget ++ * should not report as dual-speed capable. replace the following line ++ * with the block of code below it once the software is debugged for ++ * this. If is_dualspeed = 0 then the gadget driver should not report ++ * a device qualifier descriptor when queried. */ ++ if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) || ++ ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) && ++ (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) && ++ (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) { ++ pcd->gadget.max_speed = USB_SPEED_FULL; ++ } ++ else { ++ pcd->gadget.max_speed = USB_SPEED_HIGH; ++ } ++ ++ if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) || ++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) || ++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) || ++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) { ++ pcd->gadget.is_otg = 0; ++ } ++ else { ++ pcd->gadget.is_otg = 1; ++ } ++ ++ ++ pcd->driver = 0; ++ /* Register the gadget device */ ++printk("%s: 1\n",__func__); ++ retval = device_register(&pcd->gadget.dev); ++ if (retval != 0) { ++ kfree (pcd); ++printk("%s: 2\n",__func__); ++ return retval; ++ } ++ ++ ++ /* ++ * Initialized the Core for Device mode. ++ */ ++ if (dwc_otg_is_device_mode(core_if)) { ++ dwc_otg_core_dev_init(core_if); ++ } ++ ++ /* ++ * Initialize EP structures ++ */ ++ dwc_otg_pcd_reinit(pcd); ++ ++ /* ++ * Register the PCD Callbacks. ++ */ ++ dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks, ++ pcd); ++ /* ++ * Setup interupt handler ++ */ ++ DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq); ++ retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq, ++ IRQF_SHARED, pcd->gadget.name, pcd); ++ if (retval != 0) { ++ DWC_ERROR("request of irq%d failed\n", otg_dev->irq); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -EBUSY; ++ } ++ ++ /* ++ * Initialize the DMA buffer for SETUP packets ++ */ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0); ++ if (pcd->setup_pkt == 0) { ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ ++ pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0); ++ if (pcd->status_buf == 0) { ++ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle); ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ ++ if (GET_CORE_IF(pcd)->dma_desc_enable) { ++ dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1); ++ dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1); ++ dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1); ++ dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1); ++ ++ if(dev_if->setup_desc_addr[0] == 0 ++ || dev_if->setup_desc_addr[1] == 0 ++ || dev_if->in_desc_addr == 0 ++ || dev_if->out_desc_addr == 0 ) { ++ ++ if(dev_if->out_desc_addr) ++ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1); ++ if(dev_if->in_desc_addr) ++ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1); ++ if(dev_if->setup_desc_addr[1]) ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1); ++ if(dev_if->setup_desc_addr[0]) ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1); ++ ++ ++ dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle); ++ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle); ++ ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ ++ return -ENOMEM; ++ } ++ } ++ } ++ else { ++ pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL); ++ if (pcd->setup_pkt == 0) { ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ ++ pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL); ++ if (pcd->status_buf == 0) { ++ kfree(pcd->setup_pkt); ++ free_irq(otg_dev->irq, pcd); ++ device_unregister(&pcd->gadget.dev); ++ kfree (pcd); ++ return -ENOMEM; ++ } ++ } ++ ++ ++ /* Initialize tasklet */ ++ start_xfer_tasklet.data = (unsigned long)pcd; ++ pcd->start_xfer_tasklet = &start_xfer_tasklet; ++ ++ return 0; ++} ++ ++/** ++ * Cleanup the PCD. ++ */ ++void dwc_otg_pcd_remove(struct platform_device *pdev) ++{ ++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); ++ dwc_otg_pcd_t *pcd = otg_dev->pcd; ++ dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pdev); ++ ++ /* ++ * Free the IRQ ++ */ ++ free_irq(otg_dev->irq, pcd); ++ ++ /* start with the driver above us */ ++ if (pcd->driver) { ++ /* should have been done already by driver model core */ ++ DWC_WARN("driver '%s' is still registered\n", ++ pcd->driver->driver.name); ++ usb_gadget_unregister_driver(pcd->driver); ++ } ++ device_unregister(&pcd->gadget.dev); ++ ++ if (GET_CORE_IF(pcd)->dma_enable) { ++ dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle); ++ dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle); ++ if (GET_CORE_IF(pcd)->dma_desc_enable) { ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1); ++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1); ++ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1); ++ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1); ++ } ++ } ++ else { ++ kfree (pcd->setup_pkt); ++ kfree (pcd->status_buf); ++ } ++ ++ kfree(pcd); ++ otg_dev->pcd = 0; ++} ++ ++/** ++ * This function registers a gadget driver with the PCD. ++ * ++ * When a driver is successfully registered, it will receive control ++ * requests including set_configuration(), which enables non-control ++ * requests. then usb traffic follows until a disconnect is reported. ++ * then a host may connect again, or the driver might get unbound. ++ * ++ * @param driver The driver being registered ++ */ ++int usb_gadget_probe_driver(struct usb_gadget_driver *driver, ++ int (*bind)(struct usb_gadget *)) ++{ ++ int retval; ++ ++ DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name); ++ ++ if (!driver || driver->max_speed == USB_SPEED_UNKNOWN || ++ !bind || ++ !driver->unbind || ++ !driver->disconnect || ++ !driver->setup) { ++ DWC_DEBUGPL(DBG_PCDV,"EINVAL\n"); ++ return -EINVAL; ++ } ++ if (s_pcd == 0) { ++ DWC_DEBUGPL(DBG_PCDV,"ENODEV\n"); ++ return -ENODEV; ++ } ++ if (s_pcd->driver != 0) { ++ DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver); ++ return -EBUSY; ++ } ++ ++ /* hook up the driver */ ++ s_pcd->driver = driver; ++ s_pcd->gadget.dev.driver = &driver->driver; ++ ++ DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name); ++ retval = bind(&s_pcd->gadget); ++ if (retval) { ++ DWC_ERROR("bind to driver %s --> error %d\n", ++ driver->driver.name, retval); ++ s_pcd->driver = 0; ++ s_pcd->gadget.dev.driver = 0; ++ return retval; ++ } ++ DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n", ++ driver->driver.name); ++ return 0; ++} ++ ++EXPORT_SYMBOL(usb_gadget_probe_driver); ++ ++/** ++ * This function unregisters a gadget driver ++ * ++ * @param driver The driver being unregistered ++ */ ++int usb_gadget_unregister_driver(struct usb_gadget_driver *driver) ++{ ++ //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver); ++ ++ if (s_pcd == 0) { ++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__, ++ -ENODEV); ++ return -ENODEV; ++ } ++ if (driver == 0 || driver != s_pcd->driver) { ++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__, ++ -EINVAL); ++ return -EINVAL; ++ } ++ ++ driver->unbind(&s_pcd->gadget); ++ s_pcd->driver = 0; ++ ++ DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n", ++ driver->driver.name); ++ return 0; ++} ++EXPORT_SYMBOL(usb_gadget_unregister_driver); ++ ++#endif /* DWC_HOST_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc/otg_pcd.h +@@ -0,0 +1,292 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $ ++ * $Revision: #36 $ ++ * $Date: 2008/09/26 $ ++ * $Change: 1103515 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_HOST_ONLY ++#if !defined(__DWC_PCD_H__) ++#define __DWC_PCD_H__ ++ ++#include <linux/types.h> ++#include <linux/list.h> ++#include <linux/errno.h> ++#include <linux/device.h> ++#include <linux/platform_device.h> ++ ++#include <linux/usb/ch9.h> ++#include <linux/usb/gadget.h> ++ ++#include <linux/interrupt.h> ++#include <linux/dma-mapping.h> ++ ++struct dwc_otg_device; ++ ++#include "otg_cil.h" ++ ++/** ++ * @file ++ * ++ * This file contains the structures, constants, and interfaces for ++ * the Perpherial Contoller Driver (PCD). ++ * ++ * The Peripheral Controller Driver (PCD) for Linux will implement the ++ * Gadget API, so that the existing Gadget drivers can be used. For ++ * the Mass Storage Function driver the File-backed USB Storage Gadget ++ * (FBS) driver will be used. The FBS driver supports the ++ * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only ++ * transports. ++ * ++ */ ++ ++/** Invalid DMA Address */ ++#define DMA_ADDR_INVALID (~(dma_addr_t)0) ++/** Maxpacket size for EP0 */ ++#define MAX_EP0_SIZE 64 ++/** Maxpacket size for any EP */ ++#define MAX_PACKET_SIZE 1024 ++ ++/** Max Transfer size for any EP */ ++#define MAX_TRANSFER_SIZE 65535 ++ ++/** Max DMA Descriptor count for any EP */ ++#define MAX_DMA_DESC_CNT 64 ++ ++/** ++ * Get the pointer to the core_if from the pcd pointer. ++ */ ++#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if) ++ ++/** ++ * States of EP0. ++ */ ++typedef enum ep0_state ++{ ++ EP0_DISCONNECT, /* no host */ ++ EP0_IDLE, ++ EP0_IN_DATA_PHASE, ++ EP0_OUT_DATA_PHASE, ++ EP0_IN_STATUS_PHASE, ++ EP0_OUT_STATUS_PHASE, ++ EP0_STALL, ++} ep0state_e; ++ ++/** Fordward declaration.*/ ++struct dwc_otg_pcd; ++ ++/** DWC_otg iso request structure. ++ * ++ */ ++typedef struct usb_iso_request dwc_otg_pcd_iso_request_t; ++ ++/** PCD EP structure. ++ * This structure describes an EP, there is an array of EPs in the PCD ++ * structure. ++ */ ++typedef struct dwc_otg_pcd_ep ++{ ++ /** USB EP data */ ++ struct usb_ep ep; ++ /** USB EP Descriptor */ ++ const struct usb_endpoint_descriptor *desc; ++ ++ /** queue of dwc_otg_pcd_requests. */ ++ struct list_head queue; ++ unsigned stopped : 1; ++ unsigned disabling : 1; ++ unsigned dma : 1; ++ unsigned queue_sof : 1; ++ ++#ifdef DWC_EN_ISOC ++ /** DWC_otg Isochronous Transfer */ ++ struct usb_iso_request* iso_req; ++#endif //DWC_EN_ISOC ++ ++ /** DWC_otg ep data. */ ++ dwc_ep_t dwc_ep; ++ ++ /** Pointer to PCD */ ++ struct dwc_otg_pcd *pcd; ++}dwc_otg_pcd_ep_t; ++ ++ ++ ++/** DWC_otg PCD Structure. ++ * This structure encapsulates the data for the dwc_otg PCD. ++ */ ++typedef struct dwc_otg_pcd ++{ ++ /** USB gadget */ ++ struct usb_gadget gadget; ++ /** USB gadget driver pointer*/ ++ struct usb_gadget_driver *driver; ++ /** The DWC otg device pointer. */ ++ struct dwc_otg_device *otg_dev; ++ ++ /** State of EP0 */ ++ ep0state_e ep0state; ++ /** EP0 Request is pending */ ++ unsigned ep0_pending : 1; ++ /** Indicates when SET CONFIGURATION Request is in process */ ++ unsigned request_config : 1; ++ /** The state of the Remote Wakeup Enable. */ ++ unsigned remote_wakeup_enable : 1; ++ /** The state of the B-Device HNP Enable. */ ++ unsigned b_hnp_enable : 1; ++ /** The state of A-Device HNP Support. */ ++ unsigned a_hnp_support : 1; ++ /** The state of the A-Device Alt HNP support. */ ++ unsigned a_alt_hnp_support : 1; ++ /** Count of pending Requests */ ++ unsigned request_pending; ++ ++ /** SETUP packet for EP0 ++ * This structure is allocated as a DMA buffer on PCD initialization ++ * with enough space for up to 3 setup packets. ++ */ ++ union ++ { ++ struct usb_ctrlrequest req; ++ uint32_t d32[2]; ++ } *setup_pkt; ++ ++ dma_addr_t setup_pkt_dma_handle; ++ ++ /** 2-byte dma buffer used to return status from GET_STATUS */ ++ uint16_t *status_buf; ++ dma_addr_t status_buf_dma_handle; ++ ++ /** EP0 */ ++ dwc_otg_pcd_ep_t ep0; ++ ++ /** Array of IN EPs. */ ++ dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1]; ++ /** Array of OUT EPs. */ ++ dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1]; ++ /** number of valid EPs in the above array. */ ++// unsigned num_eps : 4; ++ spinlock_t lock; ++ /** Timer for SRP. If it expires before SRP is successful ++ * clear the SRP. */ ++ struct timer_list srp_timer; ++ ++ /** Tasklet to defer starting of TEST mode transmissions until ++ * Status Phase has been completed. ++ */ ++ struct tasklet_struct test_mode_tasklet; ++ ++ /** Tasklet to delay starting of xfer in DMA mode */ ++ struct tasklet_struct *start_xfer_tasklet; ++ ++ /** The test mode to enter when the tasklet is executed. */ ++ unsigned test_mode; ++ ++} dwc_otg_pcd_t; ++ ++ ++/** DWC_otg request structure. ++ * This structure is a list of requests. ++ */ ++typedef struct ++{ ++ struct usb_request req; /**< USB Request. */ ++ struct list_head queue; /**< queue of these requests. */ ++} dwc_otg_pcd_request_t; ++ ++ ++extern int dwc_otg_pcd_init(struct platform_device *pdev); ++ ++//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev ); ++extern void dwc_otg_pcd_remove( struct platform_device *pdev ); ++extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd ); ++extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd ); ++ ++extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd); ++extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set); ++ ++extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req); ++extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req, ++ int status); ++extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep); ++extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd, ++ const unsigned reset); ++#ifndef VERBOSE ++#define VERIFY_PCD_DMA_ADDR(_addr_) BUG_ON(((_addr_)==DMA_ADDR_INVALID)||\ ++ ((_addr_)==0)||\ ++ ((_addr_)&0x3)) ++#else ++#define VERIFY_PCD_DMA_ADDR(_addr_) {\ ++ if(((_addr_)==DMA_ADDR_INVALID)||\ ++ ((_addr_)==0)||\ ++ ((_addr_)&0x3)) {\ ++ printk("%s: Invalid DMA address "#_addr_"(%.8x)\n",__func__,_addr_);\ ++ BUG();\ ++ }\ ++ } ++#endif ++ ++ ++static inline void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){ ++//void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){ ++ dwc_ep_t *dwc_ep=&ep->dwc_ep; ++ ++DWC_DEBUGPL(DBG_PCDV,"%s: dwc_ep xfer_buf=%.8x, total_len=%d, dma_addr=%.8x\n",__func__,(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->dma_addr); ++ if (/*(core_if->dma_enable)&&*/(dwc_ep->dma_addr==DMA_ADDR_INVALID)) { ++ if((((u32)dwc_ep->xfer_buff)&0x3)==0){ ++ dwc_ep->dma_addr=dma_map_single(NULL,(void *)(dwc_ep->start_xfer_buff),(dwc_ep->total_len), DMA_TO_DEVICE); ++DWC_DEBUGPL(DBG_PCDV," got dma_addr=%.8x\n",dwc_ep->dma_addr); ++ }else{ ++DWC_DEBUGPL(DBG_PCDV," buf not aligned, use aligned_buf instead. xfer_buf=%.8x, total_len=%d, aligned_buf_size=%d\n",(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->aligned_buf_size); ++ if(dwc_ep->aligned_buf_size<dwc_ep->total_len){ ++ if(dwc_ep->aligned_buf){ ++//printk(" free buff dwc_ep aligned_buf_size=%d, aligned_buf(%.8x), aligned_dma_addr(%.8x));\n",dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr); ++ //dma_free_coherent(NULL,dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr); ++ kfree(dwc_ep->aligned_buf); ++ } ++ dwc_ep->aligned_buf_size=((1<<20)>(dwc_ep->total_len<<1))?(dwc_ep->total_len<<1):(1<<20); ++ //dwc_ep->aligned_buf = dma_alloc_coherent (NULL, dwc_ep->aligned_buf_size, &dwc_ep->aligned_dma_addr, GFP_KERNEL|GFP_DMA); ++ dwc_ep->aligned_buf=kmalloc(dwc_ep->aligned_buf_size,GFP_KERNEL|GFP_DMA|GFP_ATOMIC); ++ dwc_ep->aligned_dma_addr=dma_map_single(NULL,(void *)(dwc_ep->aligned_buf),(dwc_ep->aligned_buf_size),DMA_FROM_DEVICE); ++ if(!dwc_ep->aligned_buf){ ++ DWC_ERROR("Cannot alloc required buffer!!\n"); ++ BUG(); ++ } ++DWC_DEBUGPL(DBG_PCDV," dwc_ep allocated aligned buf=%.8x, dma_addr=%.8x, size=%d(0x%x)\n", (u32)dwc_ep->aligned_buf, dwc_ep->aligned_dma_addr, dwc_ep->aligned_buf_size, dwc_ep->aligned_buf_size); ++ } ++ dwc_ep->dma_addr=dwc_ep->aligned_dma_addr; ++ if(dwc_ep->is_in) { ++ memcpy(dwc_ep->aligned_buf,dwc_ep->xfer_buff,dwc_ep->total_len); ++ dma_sync_single_for_device(NULL,dwc_ep->dma_addr,dwc_ep->total_len,DMA_TO_DEVICE); ++ } ++ } ++ } ++} ++ ++#endif ++#endif /* DWC_HOST_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc/otg_pcd_intr.c +@@ -0,0 +1,3682 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $ ++ * $Revision: #83 $ ++ * $Date: 2008/10/14 $ ++ * $Change: 1115682 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++#ifndef DWC_HOST_ONLY ++#include <linux/interrupt.h> ++#include <linux/dma-mapping.h> ++#include <linux/version.h> ++#include <linux/pci.h> ++ ++#include "otg_driver.h" ++#include "otg_pcd.h" ++ ++ ++#define DEBUG_EP0 ++ ++ ++/* request functions defined in "dwc_otg_pcd.c" */ ++ ++/** @file ++ * This file contains the implementation of the PCD Interrupt handlers. ++ * ++ * The PCD handles the device interrupts. Many conditions can cause a ++ * device interrupt. When an interrupt occurs, the device interrupt ++ * service routine determines the cause of the interrupt and ++ * dispatches handling to the appropriate function. These interrupt ++ * handling functions are described below. ++ * All interrupt registers are processed from LSB to MSB. ++ */ ++ ++ ++/** ++ * This function prints the ep0 state for debug purposes. ++ */ ++static inline void print_ep0_state(dwc_otg_pcd_t *pcd) ++{ ++#ifdef DEBUG ++ char str[40]; ++ ++ switch (pcd->ep0state) { ++ case EP0_DISCONNECT: ++ strcpy(str, "EP0_DISCONNECT"); ++ break; ++ case EP0_IDLE: ++ strcpy(str, "EP0_IDLE"); ++ break; ++ case EP0_IN_DATA_PHASE: ++ strcpy(str, "EP0_IN_DATA_PHASE"); ++ break; ++ case EP0_OUT_DATA_PHASE: ++ strcpy(str, "EP0_OUT_DATA_PHASE"); ++ break; ++ case EP0_IN_STATUS_PHASE: ++ strcpy(str,"EP0_IN_STATUS_PHASE"); ++ break; ++ case EP0_OUT_STATUS_PHASE: ++ strcpy(str,"EP0_OUT_STATUS_PHASE"); ++ break; ++ case EP0_STALL: ++ strcpy(str,"EP0_STALL"); ++ break; ++ default: ++ strcpy(str,"EP0_INVALID"); ++ } ++ ++ DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state); ++#endif ++} ++ ++/** ++ * This function returns pointer to in ep struct with number ep_num ++ */ ++static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num) ++{ ++ int i; ++ int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps; ++ if(ep_num == 0) { ++ return &pcd->ep0; ++ } ++ else { ++ for(i = 0; i < num_in_eps; ++i) ++ { ++ if(pcd->in_ep[i].dwc_ep.num == ep_num) ++ return &pcd->in_ep[i]; ++ } ++ return 0; ++ } ++} ++/** ++ * This function returns pointer to out ep struct with number ep_num ++ */ ++static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num) ++{ ++ int i; ++ int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps; ++ if(ep_num == 0) { ++ return &pcd->ep0; ++ } ++ else { ++ for(i = 0; i < num_out_eps; ++i) ++ { ++ if(pcd->out_ep[i].dwc_ep.num == ep_num) ++ return &pcd->out_ep[i]; ++ } ++ return 0; ++ } ++} ++/** ++ * This functions gets a pointer to an EP from the wIndex address ++ * value of the control request. ++ */ ++static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex) ++{ ++ dwc_otg_pcd_ep_t *ep; ++ ++ if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0) ++ return &pcd->ep0; ++ list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list) ++ { ++ u8 bEndpointAddress; ++ ++ if (!ep->desc) ++ continue; ++ ++ bEndpointAddress = ep->desc->bEndpointAddress; ++ if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)) ++ == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))) ++ return ep; ++ } ++ return NULL; ++} ++ ++/** ++ * This function checks the EP request queue, if the queue is not ++ * empty the next request is started. ++ */ ++void start_next_request(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_pcd_request_t *req = 0; ++ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size; ++ if (!list_empty(&ep->queue)) { ++ req = list_entry(ep->queue.next, ++ dwc_otg_pcd_request_t, queue); ++ ++ /* Setup and start the Transfer */ ++ ep->dwc_ep.dma_addr = req->req.dma; ++ ep->dwc_ep.start_xfer_buff = req->req.buf; ++ ep->dwc_ep.xfer_buff = req->req.buf; ++ ep->dwc_ep.sent_zlp = 0; ++ ep->dwc_ep.total_len = req->req.length; ++ ep->dwc_ep.xfer_len = 0; ++ ep->dwc_ep.xfer_count = 0; ++ ++ if(max_transfer > MAX_TRANSFER_SIZE) { ++ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket); ++ } else { ++ ep->dwc_ep.maxxfer = max_transfer; ++ } ++ ++ if(req->req.zero) { ++ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0) ++ && (ep->dwc_ep.total_len != 0)) { ++ ep->dwc_ep.sent_zlp = 1; ++ } ++ ++ } ++ ep_check_and_patch_dma_addr(ep); ++ dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep); ++ } ++} ++ ++/** ++ * This function handles the SOF Interrupts. At this time the SOF ++ * Interrupt is disabled. ++ */ ++int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ ++ gintsts_data_t gintsts; ++ ++ DWC_DEBUGPL(DBG_PCD, "SOF\n"); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.sofintr = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * This function handles the Rx Status Queue Level Interrupt, which ++ * indicates that there is a least one packet in the Rx FIFO. The ++ * packets are moved from the FIFO to memory, where they will be ++ * processed when the Endpoint Interrupt Register indicates Transfer ++ * Complete or SETUP Phase Done. ++ * ++ * Repeat the following until the Rx Status Queue is empty: ++ * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet ++ * info ++ * -# If Receive FIFO is empty then skip to step Clear the interrupt ++ * and exit ++ * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the ++ * SETUP data to the buffer ++ * -# If OUT Data Packet call dwc_otg_read_packet to copy the data ++ * to the destination buffer ++ */ ++int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs; ++ gintmsk_data_t gintmask = {.d32=0}; ++ device_grxsts_data_t status; ++ dwc_otg_pcd_ep_t *ep; ++ gintsts_data_t gintsts; ++#ifdef DEBUG ++ static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" }; ++#endif ++ ++ //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd); ++ /* Disable the Rx Status Queue Level interrupt */ ++ gintmask.b.rxstsqlvl= 1; ++ dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0); ++ ++ /* Get the Status from the top of the FIFO */ ++ status.d32 = dwc_read_reg32(&global_regs->grxstsp); ++ ++ DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s " ++ "pktsts:%x Frame:%d(0x%0x)\n", ++ status.b.epnum, status.b.bcnt, ++ dpid_str[status.b.dpid], ++ status.b.pktsts, status.b.fn, status.b.fn); ++ /* Get pointer to EP structure */ ++ ep = get_out_ep(pcd, status.b.epnum); ++ ++ switch (status.b.pktsts) { ++ case DWC_DSTS_GOUT_NAK: ++ DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n"); ++ break; ++ case DWC_STS_DATA_UPDT: ++ DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n"); ++ if (status.b.bcnt && ep->dwc_ep.xfer_buff) { ++ /** @todo NGS Check for buffer overflow? */ ++ dwc_otg_read_packet(core_if, ++ ep->dwc_ep.xfer_buff, ++ status.b.bcnt); ++ ep->dwc_ep.xfer_count += status.b.bcnt; ++ ep->dwc_ep.xfer_buff += status.b.bcnt; ++ } ++ break; ++ case DWC_STS_XFER_COMP: ++ DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n"); ++ break; ++ case DWC_DSTS_SETUP_COMP: ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n"); ++#endif ++ break; ++case DWC_DSTS_SETUP_UPDT: ++ dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32); ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, ++ "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n", ++ pcd->setup_pkt->req.bRequestType, ++ pcd->setup_pkt->req.bRequest, ++ pcd->setup_pkt->req.wValue, ++ pcd->setup_pkt->req.wIndex, ++ pcd->setup_pkt->req.wLength); ++#endif ++ ep->dwc_ep.xfer_count += status.b.bcnt; ++ break; ++ default: ++ DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n", ++ status.b.pktsts); ++ break; ++ } ++ ++ /* Enable the Rx Status Queue Level interrupt */ ++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32); ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.rxstsqlvl = 1; ++ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32); ++ ++ //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__); ++ return 1; ++} ++/** ++ * This function examines the Device IN Token Learning Queue to ++ * determine the EP number of the last IN token received. This ++ * implementation is for the Mass Storage device where there are only ++ * 2 IN EPs (Control-IN and BULK-IN). ++ * ++ * The EP numbers for the first six IN Tokens are in DTKNQR1 and there ++ * are 8 EP Numbers in each of the other possible DTKNQ Registers. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * ++ */ ++static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if) ++{ ++ dwc_otg_device_global_regs_t *dev_global_regs = ++ core_if->dev_if->dev_global_regs; ++ const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth; ++ /* Number of Token Queue Registers */ ++ const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8; ++ dtknq1_data_t dtknqr1; ++ uint32_t in_tkn_epnums[4]; ++ int ndx = 0; ++ int i = 0; ++ volatile uint32_t *addr = &dev_global_regs->dtknqr1; ++ int epnum = 0; ++ ++ //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH); ++ ++ /* Read the DTKNQ Registers */ ++ for (i = 0; i < DTKNQ_REG_CNT; i++) ++ { ++ in_tkn_epnums[ i ] = dwc_read_reg32(addr); ++ DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1, ++ in_tkn_epnums[i]); ++ if (addr == &dev_global_regs->dvbusdis) { ++ addr = &dev_global_regs->dtknqr3_dthrctl; ++ } ++ else { ++ ++addr; ++ } ++ } ++ ++ /* Copy the DTKNQR1 data to the bit field. */ ++ dtknqr1.d32 = in_tkn_epnums[0]; ++ /* Get the EP numbers */ ++ in_tkn_epnums[0] = dtknqr1.b.epnums0_5; ++ ndx = dtknqr1.b.intknwptr - 1; ++ ++ //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx); ++ if (ndx == -1) { ++ /** @todo Find a simpler way to calculate the max ++ * queue position.*/ ++ int cnt = TOKEN_Q_DEPTH; ++ if (TOKEN_Q_DEPTH <= 6) { ++ cnt = TOKEN_Q_DEPTH - 1; ++ } ++ else if (TOKEN_Q_DEPTH <= 14) { ++ cnt = TOKEN_Q_DEPTH - 7; ++ } ++ else if (TOKEN_Q_DEPTH <= 22) { ++ cnt = TOKEN_Q_DEPTH - 15; ++ } ++ else { ++ cnt = TOKEN_Q_DEPTH - 23; ++ } ++ epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF; ++ } ++ else { ++ if (ndx <= 5) { ++ epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF; ++ } ++ else if (ndx <= 13) { ++ ndx -= 6; ++ epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF; ++ } ++ else if (ndx <= 21) { ++ ndx -= 14; ++ epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF; ++ } ++ else if (ndx <= 29) { ++ ndx -= 22; ++ epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF; ++ } ++ } ++ //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum); ++ return epnum; ++} ++ ++/** ++ * This interrupt occurs when the non-periodic Tx FIFO is half-empty. ++ * The active request is checked for the next packet to be loaded into ++ * the non-periodic Tx FIFO. ++ */ ++int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ dwc_otg_dev_in_ep_regs_t *ep_regs; ++ gnptxsts_data_t txstatus = {.d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ int epnum = 0; ++ dwc_otg_pcd_ep_t *ep = 0; ++ uint32_t len = 0; ++ int dwords; ++ ++ /* Get the epnum from the IN Token Learning Queue. */ ++ epnum = get_ep_of_last_in_token(core_if); ++ ep = get_in_ep(pcd, epnum); ++ ++ DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum); ++ ep_regs = core_if->dev_if->in_ep_regs[epnum]; ++ ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ dwords = (len + 3)/4; ++ ++ /* While there is space in the queue and space in the FIFO and ++ * More data to tranfer, Write packets to the Tx FIFO */ ++ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32); ++ ++ while (txstatus.b.nptxqspcavail > 0 && ++ txstatus.b.nptxfspcavail > dwords && ++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) { ++ /* Write the FIFO */ ++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts); ++ DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n", ++ dwc_read_reg32(&global_regs->gnptxsts)); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.nptxfempty = 1; ++ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function is called when dedicated Tx FIFO Empty interrupt occurs. ++ * The active request is checked for the next packet to be loaded into ++ * apropriate Tx FIFO. ++ */ ++static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t* dev_if = core_if->dev_if; ++ dwc_otg_dev_in_ep_regs_t *ep_regs; ++ dtxfsts_data_t txstatus = {.d32 = 0}; ++ dwc_otg_pcd_ep_t *ep = 0; ++ uint32_t len = 0; ++ int dwords; ++ ++ ep = get_in_ep(pcd, epnum); ++ ++ DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum); ++ ++ ep_regs = core_if->dev_if->in_ep_regs[epnum]; ++ ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ ++ /* While there is space in the queue and space in the FIFO and ++ * More data to tranfer, Write packets to the Tx FIFO */ ++ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32); ++ ++ while (txstatus.b.txfspcavail > dwords && ++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len && ++ ep->dwc_ep.xfer_len != 0) { ++ /* Write the FIFO */ ++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0); ++ ++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++ if (len > ep->dwc_ep.maxpacket) { ++ len = ep->dwc_ep.maxpacket; ++ } ++ ++ dwords = (len + 3)/4; ++ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts); ++ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32); ++ } ++ ++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts)); ++ ++ return 1; ++} ++ ++/** ++ * This function is called when the Device is disconnected. It stops ++ * any active requests and informs the Gadget driver of the ++ * disconnect. ++ */ ++void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd) ++{ ++ int i, num_in_eps, num_out_eps; ++ dwc_otg_pcd_ep_t *ep; ++ ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps; ++ num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__); ++ /* don't disconnect drivers more than once */ ++ if (pcd->ep0state == EP0_DISCONNECT) { ++ DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__); ++ return; ++ } ++ pcd->ep0state = EP0_DISCONNECT; ++ ++ /* Reset the OTG state. */ ++ dwc_otg_pcd_update_otg(pcd, 1); ++ ++ /* Disable the NP Tx Fifo Empty Interrupt. */ ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Flush the FIFOs */ ++ /**@todo NGS Flush Periodic FIFOs */ ++ dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10); ++ dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd)); ++ ++ /* prevent new request submissions, kill any outstanding requests */ ++ ep = &pcd->ep0; ++ dwc_otg_request_nuke(ep); ++ /* prevent new request submissions, kill any outstanding requests */ ++ for (i = 0; i < num_in_eps; i++) ++ { ++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i]; ++ dwc_otg_request_nuke(ep); ++ } ++ /* prevent new request submissions, kill any outstanding requests */ ++ for (i = 0; i < num_out_eps; i++) ++ { ++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i]; ++ dwc_otg_request_nuke(ep); ++ } ++ ++ /* report disconnect; the driver is already quiesced */ ++ if (pcd->driver && pcd->driver->disconnect) { ++ SPIN_UNLOCK(&pcd->lock); ++ pcd->driver->disconnect(&pcd->gadget); ++ SPIN_LOCK(&pcd->lock); ++ } ++} ++ ++/** ++ * This interrupt indicates that ... ++ */ ++int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr"); ++ intr_mask.b.i2cintr = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.i2cintr = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ return 1; ++} ++ ++ ++/** ++ * This interrupt indicates that ... ++ */ ++int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintsts_data_t gintsts; ++#if defined(VERBOSE) ++ DWC_PRINT("Early Suspend Detected\n"); ++#endif ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.erlysuspend = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ return 1; ++} ++ ++/** ++ * This function configures EPO to receive SETUP packets. ++ * ++ * @todo NGS: Update the comments from the HW FS. ++ * ++ * -# Program the following fields in the endpoint specific registers ++ * for Control OUT EP 0, in order to receive a setup packet ++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back ++ * setup packets) ++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back ++ * to back setup packets) ++ * - In DMA mode, DOEPDMA0 Register with a memory address to ++ * store any setup packets received ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param pcd Programming view of the PCD. ++ */ ++static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ deptsiz0_data_t doeptsize0 = { .d32 = 0}; ++ dwc_otg_dma_desc_t* dma_desc; ++ depctl_data_t doepctl = { .d32 = 0 }; ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__, ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++#endif ++ ++ doeptsize0.b.supcnt = 3; ++ doeptsize0.b.pktcnt = 1; ++ doeptsize0.b.xfersize = 8*3; ++ ++ if (core_if->dma_enable) { ++ if (!core_if->dma_desc_enable) { ++ /** put here as for Hermes mode deptisz register should not be written */ ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz, ++ doeptsize0.d32); ++ ++ /** @todo dma needs to handle multiple setup packets (up to 3) */ ++ VERIFY_PCD_DMA_ADDR(pcd->setup_pkt_dma_handle); ++ ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, ++ pcd->setup_pkt_dma_handle); ++ } else { ++ dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1; ++ dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index]; ++ ++ /** DMA Descriptor Setup */ ++ dma_desc->status.b.bs = BS_HOST_BUSY; ++ dma_desc->status.b.l = 1; ++ dma_desc->status.b.ioc = 1; ++ dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket; ++ dma_desc->buf = pcd->setup_pkt_dma_handle; ++ dma_desc->status.b.bs = BS_HOST_READY; ++ ++ /** DOEPDMA0 Register write */ ++ VERIFY_PCD_DMA_ADDR(dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]); ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]); ++ } ++ ++ } else { ++ /** put here as for Hermes mode deptisz register should not be written */ ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz, ++ doeptsize0.d32); ++ } ++ ++ /** DOEPCTL0 Register write */ ++ doepctl.b.epena = 1; ++ doepctl.b.cnak = 1; ++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32); ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl)); ++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n", ++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl)); ++#endif ++} ++ ++/** ++ * This interrupt occurs when a USB Reset is detected. When the USB ++ * Reset Interrupt occurs the device state is set to DEFAULT and the ++ * EP0 state is set to IDLE. ++ * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1) ++ * -# Unmask the following interrupt bits ++ * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint) ++ * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint) ++ * - DOEPMSK.SETUP = 1 ++ * - DOEPMSK.XferCompl = 1 ++ * - DIEPMSK.XferCompl = 1 ++ * - DIEPMSK.TimeOut = 1 ++ * -# Program the following fields in the endpoint specific registers ++ * for Control OUT EP 0, in order to receive a setup packet ++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back ++ * setup packets) ++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back ++ * to back setup packets) ++ * - In DMA mode, DOEPDMA0 Register with a memory address to ++ * store any setup packets received ++ * At this point, all the required initialization, except for enabling ++ * the control 0 OUT endpoint is done, for receiving SETUP packets. ++ */ ++int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ depctl_data_t doepctl = { .d32 = 0}; ++ ++ daint_data_t daintmsk = { .d32 = 0}; ++ doepmsk_data_t doepmsk = { .d32 = 0}; ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ ++ dcfg_data_t dcfg = { .d32=0 }; ++ grstctl_t resetctl = { .d32=0 }; ++ dctl_data_t dctl = {.d32=0}; ++ int i = 0; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("USB RESET\n"); ++#ifdef DWC_EN_ISOC ++ for(i = 1;i < 16; ++i) ++ { ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ ep = get_in_ep(pcd,i); ++ if(ep != 0){ ++ dwc_ep = &ep->dwc_ep; ++ dwc_ep->next_frame = 0xffffffff; ++ } ++ } ++#endif /* DWC_EN_ISOC */ ++ ++ /* reset the HNP settings */ ++ dwc_otg_pcd_update_otg(pcd, 1); ++ ++ /* Clear the Remote Wakeup Signalling */ ++ dctl.b.rmtwkupsig = 1; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, ++ dctl.d32, 0); ++ ++ /* Set NAK for all OUT EPs */ ++ doepctl.b.snak = 1; ++ for (i=0; i <= dev_if->num_out_eps; i++) ++ { ++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, ++ doepctl.d32); ++ } ++ ++ /* Flush the NP Tx FIFO */ ++ dwc_otg_flush_tx_fifo(core_if, 0x10); ++ /* Flush the Learning Queue */ ++ resetctl.b.intknqflsh = 1; ++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32); ++ ++ if(core_if->multiproc_int_enable) { ++ daintmsk.b.inep0 = 1; ++ daintmsk.b.outep0 = 1; ++ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32); ++ ++ doepmsk.b.setup = 1; ++ doepmsk.b.xfercompl = 1; ++ doepmsk.b.ahberr = 1; ++ doepmsk.b.epdisabled = 1; ++ ++ if(core_if->dma_desc_enable) { ++ doepmsk.b.stsphsercvd = 1; ++ doepmsk.b.bna = 1; ++ } ++/* ++ doepmsk.b.babble = 1; ++ doepmsk.b.nyet = 1; ++ ++ if(core_if->dma_enable) { ++ doepmsk.b.nak = 1; ++ } ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32); ++ ++ diepmsk.b.xfercompl = 1; ++ diepmsk.b.timeout = 1; ++ diepmsk.b.epdisabled = 1; ++ diepmsk.b.ahberr = 1; ++ diepmsk.b.intknepmis = 1; ++ ++ if(core_if->dma_desc_enable) { ++ diepmsk.b.bna = 1; ++ } ++/* ++ if(core_if->dma_enable) { ++ diepmsk.b.nak = 1; ++ } ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32); ++ } else{ ++ daintmsk.b.inep0 = 1; ++ daintmsk.b.outep0 = 1; ++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32); ++ ++ doepmsk.b.setup = 1; ++ doepmsk.b.xfercompl = 1; ++ doepmsk.b.ahberr = 1; ++ doepmsk.b.epdisabled = 1; ++ ++ if(core_if->dma_desc_enable) { ++ doepmsk.b.stsphsercvd = 1; ++ doepmsk.b.bna = 1; ++ } ++/* ++ doepmsk.b.babble = 1; ++ doepmsk.b.nyet = 1; ++ doepmsk.b.nak = 1; ++*/ ++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32); ++ ++ diepmsk.b.xfercompl = 1; ++ diepmsk.b.timeout = 1; ++ diepmsk.b.epdisabled = 1; ++ diepmsk.b.ahberr = 1; ++ diepmsk.b.intknepmis = 1; ++ ++ if(core_if->dma_desc_enable) { ++ diepmsk.b.bna = 1; ++ } ++ ++// diepmsk.b.nak = 1; ++ ++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32); ++ } ++ ++ /* Reset Device Address */ ++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg); ++ dcfg.b.devaddr = 0; ++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32); ++ ++ /* setup EP0 to receive SETUP packets */ ++ ep0_out_start(core_if, pcd); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.usbreset = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * Get the device speed from the device status register and convert it ++ * to USB speed constant. ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ */ ++static int get_device_speed(dwc_otg_core_if_t *core_if) ++{ ++ dsts_data_t dsts; ++ enum usb_device_speed speed = USB_SPEED_UNKNOWN; ++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts); ++ ++ switch (dsts.b.enumspd) { ++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ: ++ speed = USB_SPEED_HIGH; ++ break; ++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ: ++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ: ++ speed = USB_SPEED_FULL; ++ break; ++ ++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ: ++ speed = USB_SPEED_LOW; ++ break; ++ } ++ ++ return speed; ++} ++ ++/** ++ * Read the device status register and set the device speed in the ++ * data structure. ++ * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate. ++ */ ++int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ gintsts_data_t gintsts; ++ gusbcfg_data_t gusbcfg; ++ dwc_otg_core_global_regs_t *global_regs = ++ GET_CORE_IF(pcd)->core_global_regs; ++ uint8_t utmi16b, utmi8b; ++// DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n"); ++ DWC_PRINT("SPEED ENUM\n"); ++ ++ if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) { ++ utmi16b = 6; ++ utmi8b = 9; ++ } else { ++ utmi16b = 4; ++ utmi8b = 8; ++ } ++ dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ++#ifdef DEBUG_EP0 ++ print_ep0_state(pcd); ++#endif ++ ++ if (pcd->ep0state == EP0_DISCONNECT) { ++ pcd->ep0state = EP0_IDLE; ++ } ++ else if (pcd->ep0state == EP0_STALL) { ++ pcd->ep0state = EP0_IDLE; ++ } ++ ++ pcd->ep0state = EP0_IDLE; ++ ++ ep0->stopped = 0; ++ ++ pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd)); ++ ++ /* Set USB turnaround time based on device speed and PHY interface. */ ++ gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg); ++ if (pcd->gadget.speed == USB_SPEED_HIGH) { ++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) { ++ /* ULPI interface */ ++ gusbcfg.b.usbtrdtim = 9; ++ } ++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) { ++ /* UTMI+ interface */ ++ if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) { ++ gusbcfg.b.usbtrdtim = utmi8b; ++ } ++ else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) { ++ gusbcfg.b.usbtrdtim = utmi16b; ++ } ++ else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) { ++ gusbcfg.b.usbtrdtim = utmi8b; ++ } ++ else { ++ gusbcfg.b.usbtrdtim = utmi16b; ++ } ++ } ++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) { ++ /* UTMI+ OR ULPI interface */ ++ if (gusbcfg.b.ulpi_utmi_sel == 1) { ++ /* ULPI interface */ ++ gusbcfg.b.usbtrdtim = 9; ++ } ++ else { ++ /* UTMI+ interface */ ++ if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) { ++ gusbcfg.b.usbtrdtim = utmi16b; ++ } ++ else { ++ gusbcfg.b.usbtrdtim = utmi8b; ++ } ++ } ++ } ++ } ++ else { ++ /* Full or low speed */ ++ gusbcfg.b.usbtrdtim = 9; ++ } ++ dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.enumdone = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that the ISO OUT Packet was dropped due to ++ * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs ++ * read all the data from the Rx FIFO. ++ */ ++int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "ISOC Out Dropped"); ++ ++ intr_mask.b.isooutdrop = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ ++ gintsts.d32 = 0; ++ gintsts.b.isooutdrop = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates the end of the portion of the micro-frame ++ * for periodic transactions. If there is a periodic transaction for ++ * the next frame, load the packets into the EP periodic Tx FIFO. ++ */ ++int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP"); ++ ++ intr_mask.b.eopframe = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.eopframe = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that EP of the packet on the top of the ++ * non-periodic Tx FIFO does not match EP of the IN Token received. ++ * ++ * The "Device IN Token Queue" Registers are read to determine the ++ * order the IN Tokens have been received. The non-periodic Tx FIFO ++ * is flushed, so it can be reloaded in the order seen in the IN Token ++ * Queue. ++ */ ++int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if) ++{ ++ gintsts_data_t gintsts; ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.epmismatch = 1; ++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This funcion stalls EP0. ++ */ ++static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req; ++ DWC_WARN("req %02x.%02x protocol STALL; err %d\n", ++ ctrl->bRequestType, ctrl->bRequest, err_val); ++ ++ ep0->dwc_ep.is_in = 1; ++ dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep); ++ pcd->ep0.stopped = 1; ++ pcd->ep0state = EP0_IDLE; ++ ep0_out_start(GET_CORE_IF(pcd), pcd); ++} ++ ++/** ++ * This functions delegates the setup command to the gadget driver. ++ */ ++static inline void do_gadget_setup(dwc_otg_pcd_t *pcd, ++ struct usb_ctrlrequest * ctrl) ++{ ++ int ret = 0; ++ if (pcd->driver && pcd->driver->setup) { ++ SPIN_UNLOCK(&pcd->lock); ++ ret = pcd->driver->setup(&pcd->gadget, ctrl); ++ SPIN_LOCK(&pcd->lock); ++ if (ret < 0) { ++ ep0_do_stall(pcd, ret); ++ } ++ ++ /** @todo This is a g_file_storage gadget driver specific ++ * workaround: a DELAYED_STATUS result from the fsg_setup ++ * routine will result in the gadget queueing a EP0 IN status ++ * phase for a two-stage control transfer. Exactly the same as ++ * a SET_CONFIGURATION/SET_INTERFACE except that this is a class ++ * specific request. Need a generic way to know when the gadget ++ * driver will queue the status phase. Can we assume when we ++ * call the gadget driver setup() function that it will always ++ * queue and require the following flag? Need to look into ++ * this. ++ */ ++ ++ if (ret == 256 + 999) { ++ pcd->request_config = 1; ++ } ++ } ++} ++ ++/** ++ * This function starts the Zero-Length Packet for the IN status phase ++ * of a 2 stage control transfer. ++ */ ++static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ if (pcd->ep0state == EP0_STALL) { ++ return; ++ } ++ ++ pcd->ep0state = EP0_IN_STATUS_PHASE; ++ ++ /* Prepare for more SETUP Packets */ ++ DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n"); ++ ep0->dwc_ep.xfer_len = 0; ++ ep0->dwc_ep.xfer_count = 0; ++ ep0->dwc_ep.is_in = 1; ++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle; ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ++ /* Prepare for more SETUP Packets */ ++// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd); ++} ++ ++/** ++ * This function starts the Zero-Length Packet for the OUT status phase ++ * of a 2 stage control transfer. ++ */ ++static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ if (pcd->ep0state == EP0_STALL) { ++ DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n"); ++ return; ++ } ++ pcd->ep0state = EP0_OUT_STATUS_PHASE; ++ ++ DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n"); ++ ep0->dwc_ep.xfer_len = 0; ++ ep0->dwc_ep.xfer_count = 0; ++ ep0->dwc_ep.is_in = 0; ++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle; ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ++ /* Prepare for more SETUP Packets */ ++ if(GET_CORE_IF(pcd)->dma_enable == 0) { ++ ep0_out_start(GET_CORE_IF(pcd), pcd); ++ } ++} ++ ++/** ++ * Clear the EP halt (STALL) and if pending requests start the ++ * transfer. ++ */ ++static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep) ++{ ++ if(ep->dwc_ep.stall_clear_flag == 0) ++ dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep); ++ ++ /* Reactive the EP */ ++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep); ++ if (ep->stopped) { ++ ep->stopped = 0; ++ /* If there is a request in the EP queue start it */ ++ ++ /** @todo FIXME: this causes an EP mismatch in DMA mode. ++ * epmismatch not yet implemented. */ ++ ++ /* ++ * Above fixme is solved by implmenting a tasklet to call the ++ * start_next_request(), outside of interrupt context at some ++ * time after the current time, after a clear-halt setup packet. ++ * Still need to implement ep mismatch in the future if a gadget ++ * ever uses more than one endpoint at once ++ */ ++ ep->queue_sof = 1; ++ tasklet_schedule (pcd->start_xfer_tasklet); ++ } ++ /* Start Control Status Phase */ ++ do_setup_in_status_phase(pcd); ++} ++ ++/** ++ * This function is called when the SET_FEATURE TEST_MODE Setup packet ++ * is sent from the host. The Device Control register is written with ++ * the Test Mode bits set to the specified Test Mode. This is done as ++ * a tasklet so that the "Status" phase of the control transfer ++ * completes before transmitting the TEST packets. ++ * ++ * @todo This has not been tested since the tasklet struct was put ++ * into the PCD struct! ++ * ++ */ ++static void do_test_mode(unsigned long data) ++{ ++ dctl_data_t dctl; ++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data; ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ int test_mode = pcd->test_mode; ++ ++ ++// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__); ++ ++ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl); ++ switch (test_mode) { ++ case 1: // TEST_J ++ dctl.b.tstctl = 1; ++ break; ++ ++ case 2: // TEST_K ++ dctl.b.tstctl = 2; ++ break; ++ ++ case 3: // TEST_SE0_NAK ++ dctl.b.tstctl = 3; ++ break; ++ ++ case 4: // TEST_PACKET ++ dctl.b.tstctl = 4; ++ break; ++ ++ case 5: // TEST_FORCE_ENABLE ++ dctl.b.tstctl = 5; ++ break; ++ } ++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32); ++} ++ ++/** ++ * This function process the GET_STATUS Setup Commands. ++ */ ++static inline void do_get_status(dwc_otg_pcd_t *pcd) ++{ ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ uint16_t *status = pcd->status_buf; ++ ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, ++ "GET_STATUS %02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++#endif ++ ++ switch (ctrl.bRequestType & USB_RECIP_MASK) { ++ case USB_RECIP_DEVICE: ++ *status = 0x1; /* Self powered */ ++ *status |= pcd->remote_wakeup_enable << 1; ++ break; ++ ++ case USB_RECIP_INTERFACE: ++ *status = 0; ++ break; ++ ++ case USB_RECIP_ENDPOINT: ++ ep = get_ep_by_addr(pcd, ctrl.wIndex); ++ if (ep == 0 || ctrl.wLength > 2) { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ return; ++ } ++ /** @todo check for EP stall */ ++ *status = ep->stopped; ++ break; ++ } ++ pcd->ep0_pending = 1; ++ ep0->dwc_ep.start_xfer_buff = (uint8_t *)status; ++ ep0->dwc_ep.xfer_buff = (uint8_t *)status; ++ ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle; ++ ep0->dwc_ep.xfer_len = 2; ++ ep0->dwc_ep.xfer_count = 0; ++ ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len; ++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep); ++} ++/** ++ * This function process the SET_FEATURE Setup Commands. ++ */ ++static inline void do_set_feature(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep = 0; ++ int32_t otg_cap_param = core_if->core_params->otg_cap; ++ gotgctl_data_t gotgctl = { .d32 = 0 }; ++ ++ DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++ DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param); ++ ++ ++ switch (ctrl.bRequestType & USB_RECIP_MASK) { ++ case USB_RECIP_DEVICE: ++ switch (ctrl.wValue) { ++ case USB_DEVICE_REMOTE_WAKEUP: ++ pcd->remote_wakeup_enable = 1; ++ break; ++ ++ case USB_DEVICE_TEST_MODE: ++ /* Setup the Test Mode tasklet to do the Test ++ * Packet generation after the SETUP Status ++ * phase has completed. */ ++ ++ /** @todo This has not been tested since the ++ * tasklet struct was put into the PCD ++ * struct! */ ++ pcd->test_mode_tasklet.next = 0; ++ pcd->test_mode_tasklet.state = 0; ++ atomic_set(&pcd->test_mode_tasklet.count, 0); ++ pcd->test_mode_tasklet.func = do_test_mode; ++ pcd->test_mode_tasklet.data = (unsigned long)pcd; ++ pcd->test_mode = ctrl.wIndex >> 8; ++ tasklet_schedule(&pcd->test_mode_tasklet); ++ break; ++ ++ case USB_DEVICE_B_HNP_ENABLE: ++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n"); ++ ++ /* dev may initiate HNP */ ++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { ++ pcd->b_hnp_enable = 1; ++ dwc_otg_pcd_update_otg(pcd, 0); ++ DWC_DEBUGPL(DBG_PCD, "Request B HNP\n"); ++ /**@todo Is the gotgctl.devhnpen cleared ++ * by a USB Reset? */ ++ gotgctl.b.devhnpen = 1; ++ gotgctl.b.hnpreq = 1; ++ dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32); ++ } ++ else { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ } ++ break; ++ ++ case USB_DEVICE_A_HNP_SUPPORT: ++ /* RH port supports HNP */ ++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n"); ++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { ++ pcd->a_hnp_support = 1; ++ dwc_otg_pcd_update_otg(pcd, 0); ++ } ++ else { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ } ++ break; ++ ++ case USB_DEVICE_A_ALT_HNP_SUPPORT: ++ /* other RH port does */ ++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n"); ++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) { ++ pcd->a_alt_hnp_support = 1; ++ dwc_otg_pcd_update_otg(pcd, 0); ++ } ++ else { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ } ++ break; ++ } ++ do_setup_in_status_phase(pcd); ++ break; ++ ++ case USB_RECIP_INTERFACE: ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ ++ case USB_RECIP_ENDPOINT: ++ if (ctrl.wValue == USB_ENDPOINT_HALT) { ++ ep = get_ep_by_addr(pcd, ctrl.wIndex); ++ if (ep == 0) { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ return; ++ } ++ ep->stopped = 1; ++ dwc_otg_ep_set_stall(core_if, &ep->dwc_ep); ++ } ++ do_setup_in_status_phase(pcd); ++ break; ++ } ++} ++ ++/** ++ * This function process the CLEAR_FEATURE Setup Commands. ++ */ ++static inline void do_clear_feature(dwc_otg_pcd_t *pcd) ++{ ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep = 0; ++ ++ DWC_DEBUGPL(DBG_PCD, ++ "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++ ++ switch (ctrl.bRequestType & USB_RECIP_MASK) { ++ case USB_RECIP_DEVICE: ++ switch (ctrl.wValue) { ++ case USB_DEVICE_REMOTE_WAKEUP: ++ pcd->remote_wakeup_enable = 0; ++ break; ++ ++ case USB_DEVICE_TEST_MODE: ++ /** @todo Add CLEAR_FEATURE for TEST modes. */ ++ break; ++ } ++ do_setup_in_status_phase(pcd); ++ break; ++ ++ case USB_RECIP_ENDPOINT: ++ ep = get_ep_by_addr(pcd, ctrl.wIndex); ++ if (ep == 0) { ++ ep0_do_stall(pcd, -EOPNOTSUPP); ++ return; ++ } ++ ++ pcd_clear_halt(pcd, ep); ++ ++ break; ++ } ++} ++ ++/** ++ * This function process the SET_ADDRESS Setup Commands. ++ */ ++static inline void do_set_address(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if; ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ ++ if (ctrl.bRequestType == USB_RECIP_DEVICE) { ++ dcfg_data_t dcfg = {.d32=0}; ++ ++#ifdef DEBUG_EP0 ++// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue); ++#endif ++ dcfg.b.devaddr = ctrl.wValue; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32); ++ do_setup_in_status_phase(pcd); ++ } ++} ++ ++/** ++ * This function processes SETUP commands. In Linux, the USB Command ++ * processing is done in two places - the first being the PCD and the ++ * second in the Gadget Driver (for example, the File-Backed Storage ++ * Gadget Driver). ++ * ++ * <table> ++ * <tr><td>Command </td><td>Driver </td><td>Description</td></tr> ++ * ++ * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as ++ * defined in chapter 9 of the USB 2.0 Specification chapter 9 ++ * </td></tr> ++ * ++ * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint ++ * requests are the ENDPOINT_HALT feature is procesed, all others the ++ * interface requests are ignored.</td></tr> ++ * ++ * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint ++ * requests are processed by the PCD. Interface requests are passed ++ * to the Gadget Driver.</td></tr> ++ * ++ * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg, ++ * with device address received </td></tr> ++ * ++ * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the ++ * requested descriptor</td></tr> ++ * ++ * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional - ++ * not implemented by any of the existing Gadget Drivers.</td></tr> ++ * ++ * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable ++ * all EPs and enable EPs for new configuration.</td></tr> ++ * ++ * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return ++ * the current configuration</td></tr> ++ * ++ * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all ++ * EPs and enable EPs for new configuration.</td></tr> ++ * ++ * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the ++ * current interface.</td></tr> ++ * ++ * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug ++ * message.</td></tr> ++ * </table> ++ * ++ * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are ++ * processed by pcd_setup. Calling the Function Driver's setup function from ++ * pcd_setup processes the gadget SETUP commands. ++ */ ++static inline void pcd_setup(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req; ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ ++ deptsiz0_data_t doeptsize0 = { .d32 = 0}; ++ ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n", ++ ctrl.bRequestType, ctrl.bRequest, ++ ctrl.wValue, ctrl.wIndex, ctrl.wLength); ++#endif ++ ++ doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz); ++ ++ /** @todo handle > 1 setup packet , assert error for now */ ++ ++ if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) { ++ DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n"); ++ } ++ ++ /* Clean up the request queue */ ++ dwc_otg_request_nuke(ep0); ++ ep0->stopped = 0; ++ ++ if (ctrl.bRequestType & USB_DIR_IN) { ++ ep0->dwc_ep.is_in = 1; ++ pcd->ep0state = EP0_IN_DATA_PHASE; ++ } ++ else { ++ ep0->dwc_ep.is_in = 0; ++ pcd->ep0state = EP0_OUT_DATA_PHASE; ++ } ++ ++ if(ctrl.wLength == 0) { ++ ep0->dwc_ep.is_in = 1; ++ pcd->ep0state = EP0_IN_STATUS_PHASE; ++ } ++ ++ if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) { ++ /* handle non-standard (class/vendor) requests in the gadget driver */ ++ do_gadget_setup(pcd, &ctrl); ++ return; ++ } ++ ++ /** @todo NGS: Handle bad setup packet? */ ++ ++/////////////////////////////////////////// ++//// --- Standard Request handling --- //// ++ ++ switch (ctrl.bRequest) { ++ case USB_REQ_GET_STATUS: ++ do_get_status(pcd); ++ break; ++ ++ case USB_REQ_CLEAR_FEATURE: ++ do_clear_feature(pcd); ++ break; ++ ++ case USB_REQ_SET_FEATURE: ++ do_set_feature(pcd); ++ break; ++ ++ case USB_REQ_SET_ADDRESS: ++ do_set_address(pcd); ++ break; ++ ++ case USB_REQ_SET_INTERFACE: ++ case USB_REQ_SET_CONFIGURATION: ++// _pcd->request_config = 1; /* Configuration changed */ ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ ++ case USB_REQ_SYNCH_FRAME: ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ ++ default: ++ /* Call the Gadget Driver's setup functions */ ++ do_gadget_setup(pcd, &ctrl); ++ break; ++ } ++} ++ ++/** ++ * This function completes the ep0 control transfer. ++ */ ++static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs = ++ dev_if->in_ep_regs[ep->dwc_ep.num]; ++#ifdef DEBUG_EP0 ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs = ++ dev_if->out_ep_regs[ep->dwc_ep.num]; ++#endif ++ deptsiz0_data_t deptsiz; ++ desc_sts_data_t desc_sts; ++ dwc_otg_pcd_request_t *req; ++ int is_last = 0; ++ dwc_otg_pcd_t *pcd = ep->pcd; ++ ++ //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name); ++ ++ if (pcd->ep0_pending && list_empty(&ep->queue)) { ++ if (ep->dwc_ep.is_in) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n"); ++#endif ++ do_setup_out_status_phase(pcd); ++ } ++ else { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n"); ++#endif ++ do_setup_in_status_phase(pcd); ++ } ++ pcd->ep0_pending = 0; ++ return 1; ++ } ++ ++ if (list_empty(&ep->queue)) { ++ return 0; ++ } ++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue); ++ ++ ++ if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) { ++ is_last = 1; ++ } ++ else if (ep->dwc_ep.is_in) { ++ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz); ++ if(core_if->dma_desc_enable != 0) ++ desc_sts.d32 = readl(dev_if->in_desc_addr); ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++#endif ++ ++ if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) || ++ ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) { ++ req->req.actual = ep->dwc_ep.xfer_count; ++ /* Is a Zero Len Packet needed? */ ++ if (req->req.zero) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n"); ++#endif ++ req->req.zero = 0; ++ } ++ do_setup_out_status_phase(pcd); ++ } ++ } ++ else { ++ /* ep0-OUT */ ++#ifdef DEBUG_EP0 ++ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz); ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, ++ deptsiz.b.pktcnt); ++#endif ++ req->req.actual = ep->dwc_ep.xfer_count; ++ /* Is a Zero Len Packet needed? */ ++ if (req->req.zero) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n"); ++#endif ++ req->req.zero = 0; ++ } ++ if(core_if->dma_desc_enable == 0) ++ do_setup_in_status_phase(pcd); ++ } ++ ++ /* Complete the request */ ++ if (is_last) { ++ dwc_otg_request_done(ep, req, 0); ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ return 1; ++ } ++ return 0; ++} ++ ++inline void aligned_buf_patch_on_buf_dma_oep_completion(dwc_otg_pcd_ep_t *ep, uint32_t byte_count) ++{ ++ dwc_ep_t *dwc_ep = &ep->dwc_ep; ++ if(byte_count && dwc_ep->aligned_buf && ++ dwc_ep->dma_addr>=dwc_ep->aligned_dma_addr && ++ dwc_ep->dma_addr<=(dwc_ep->aligned_dma_addr+dwc_ep->aligned_buf_size))\ ++ { ++ //aligned buf used, apply complete patch ++ u32 offset=(dwc_ep->dma_addr-dwc_ep->aligned_dma_addr); ++ memcpy(dwc_ep->start_xfer_buff+offset, dwc_ep->aligned_buf+offset, byte_count); ++ } ++} ++ ++/** ++ * This function completes the request for the EP. If there are ++ * additional requests for the EP in the queue they will be started. ++ */ ++static void complete_ep(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs = ++ dev_if->in_ep_regs[ep->dwc_ep.num]; ++ deptsiz_data_t deptsiz; ++ desc_sts_data_t desc_sts; ++ dwc_otg_pcd_request_t *req = 0; ++ dwc_otg_dma_desc_t* dma_desc; ++ uint32_t byte_count = 0; ++ int is_last = 0; ++ int i; ++ ++ DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name, ++ (ep->dwc_ep.is_in?"IN":"OUT")); ++ ++ /* Get any pending requests */ ++ if (!list_empty(&ep->queue)) { ++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, ++ queue); ++ if (!req) { ++ printk("complete_ep 0x%p, req = NULL!\n", ep); ++ return; ++ } ++ } ++ else { ++ printk("complete_ep 0x%p, ep->queue empty!\n", ep); ++ return; ++ } ++ DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending); ++ ++ if (ep->dwc_ep.is_in) { ++ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz); ++ ++ if (core_if->dma_enable) { ++ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE); ++ if(core_if->dma_desc_enable == 0) { ++ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE); ++ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) { ++ byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count; ++DWC_DEBUGPL(DBG_PCDV,"byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x)\n", byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count ); ++ ++ ep->dwc_ep.xfer_buff += byte_count; ++ ep->dwc_ep.dma_addr += byte_count; ++ ep->dwc_ep.xfer_count += byte_count; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize); ++ } else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } else { ++ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n", ++ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"), ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ } ++ } else { ++ ++ dma_desc = ep->dwc_ep.desc_addr; ++ byte_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ ++ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) { ++ desc_sts.d32 = readl(dma_desc); ++ byte_count += desc_sts.b.bytes; ++ dma_desc++; ++ } ++ ++ if(byte_count == 0) { ++ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len; ++ is_last = 1; ++ } else { ++ DWC_WARN("Incomplete transfer\n"); ++ } ++ } ++ } else { ++ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) { ++ /* Check if the whole transfer was completed, ++ * if no, setup transfer for next portion of data ++ */ ++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n", ++ ep->ep.name, ep->dwc_ep.xfer_len, ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len ); ++ } else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } ++ else { ++ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n", ++ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"), ++ deptsiz.b.xfersize, deptsiz.b.pktcnt); ++ } ++ } ++ } else { ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs = ++ dev_if->out_ep_regs[ep->dwc_ep.num]; ++ desc_sts.d32 = 0; ++ if(core_if->dma_enable) { ++ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_FROM_DEVICE); ++ if(core_if->dma_desc_enable) { ++ DWC_WARN("\n\n%s: we need a cache invalidation here!!\n\n",__func__); ++ dma_desc = ep->dwc_ep.desc_addr; ++ byte_count = 0; ++ ep->dwc_ep.sent_zlp = 0; ++ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) { ++ desc_sts.d32 = readl(dma_desc); ++ byte_count += desc_sts.b.bytes; ++ dma_desc++; ++ } ++ ++ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len ++ - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3); ++ ++ //todo: invalidate cache & aligned buf patch on completion ++ // ++ ++ is_last = 1; ++ } else { ++ deptsiz.d32 = 0; ++ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz); ++ ++ byte_count = (ep->dwc_ep.xfer_len - ++ ep->dwc_ep.xfer_count - deptsiz.b.xfersize); ++ ++// dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE); ++ ++DWC_DEBUGPL(DBG_PCDV,"ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize); ++ //todo: invalidate cache & aligned buf patch on completion ++ dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE); ++ aligned_buf_patch_on_buf_dma_oep_completion(ep,byte_count); ++ ++ ep->dwc_ep.xfer_buff += byte_count; ++ ep->dwc_ep.dma_addr += byte_count; ++ ep->dwc_ep.xfer_count += byte_count; ++ ++ /* Check if the whole transfer was completed, ++ * if no, setup transfer for next portion of data ++ */ ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize); ++ } ++ else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } ++ } else { ++ /* Check if the whole transfer was completed, ++ * if no, setup transfer for next portion of data ++ */ ++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) { ++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len ); ++ } ++ else if(ep->dwc_ep.sent_zlp) { ++ /* ++ * This fragment of code should initiate 0 ++ * length trasfer in case if it is queued ++ * a trasfer with size divisible to EPs max ++ * packet size and with usb_request zero field ++ * is set, which means that after data is transfered, ++ * it is also should be transfered ++ * a 0 length packet at the end. For Slave and ++ * Buffer DMA modes in this case SW has ++ * to initiate 2 transfers one with transfer size, ++ * and the second with 0 size. For Desriptor ++ * DMA mode SW is able to initiate a transfer, ++ * which will handle all the packets including ++ * the last 0 legth. ++ */ ++ ep->dwc_ep.sent_zlp = 0; ++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep); ++ } else { ++ is_last = 1; ++ } ++ } ++ ++#ifdef DEBUG ++ ++ DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n", ++ &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len, ++ ep->dwc_ep.xfer_count, ++ deptsiz.b.xfersize, ++ deptsiz.b.pktcnt); ++#endif ++ } ++ ++ /* Complete the request */ ++ if (is_last) { ++ req->req.actual = ep->dwc_ep.xfer_count; ++ ++ dwc_otg_request_done(ep, req, 0); ++ ++ ep->dwc_ep.start_xfer_buff = 0; ++ ep->dwc_ep.xfer_buff = 0; ++ ep->dwc_ep.xfer_len = 0; ++ ++ /* If there is a request in the queue start it.*/ ++ start_next_request(ep); ++ } ++} ++ ++ ++#ifdef DWC_EN_ISOC ++ ++/** ++ * This function BNA interrupt for Isochronous EPs ++ * ++ */ ++static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_ep_t *dwc_ep = &ep->dwc_ep; ++ volatile uint32_t *addr; ++ depctl_data_t depctl = {.d32 = 0}; ++ dwc_otg_pcd_t *pcd = ep->pcd; ++ dwc_otg_dma_desc_t *dma_desc; ++ int i; ++ ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num); ++ ++ if(dwc_ep->is_in) { ++ desc_sts_data_t sts = {.d32 = 0}; ++ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc) ++ { ++ sts.d32 = readl(&dma_desc->status); ++ sts.b_iso_in.bs = BS_HOST_READY; ++ writel(sts.d32,&dma_desc->status); ++ } ++ } ++ else { ++ desc_sts_data_t sts = {.d32 = 0}; ++ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc) ++ { ++ sts.d32 = readl(&dma_desc->status); ++ sts.b_iso_out.bs = BS_HOST_READY; ++ writel(sts.d32,&dma_desc->status); ++ } ++ } ++ ++ if(dwc_ep->is_in == 0){ ++ addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl; ++ } ++ else{ ++ addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl; ++ } ++ depctl.b.epena = 1; ++ dwc_modify_reg32(addr,depctl.d32,depctl.d32); ++} ++ ++/** ++ * This function sets latest iso packet information(non-PTI mode) ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ dma_addr_t dma_addr; ++ uint32_t offset; ++ ++ if(ep->proc_buf_num) ++ dma_addr = ep->dma_addr1; ++ else ++ dma_addr = ep->dma_addr0; ++ ++ if(ep->is_in) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz); ++ offset = ep->data_per_frame; ++ } else { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz); ++ offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3))); ++ } ++ ++ if(!deptsiz.b.xfersize) { ++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame; ++ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr; ++ ep->pkt_info[ep->cur_pkt].status = 0; ++ } else { ++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame; ++ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr; ++ ep->pkt_info[ep->cur_pkt].status = -ENODATA; ++ } ++ ep->cur_pkt_addr += offset; ++ ep->cur_pkt_dma_addr += offset; ++ ep->cur_pkt++; ++} ++ ++/** ++ * This function sets latest iso packet information(DDMA mode) ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP to start the transfer on. ++ * ++ */ ++static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ dwc_otg_dma_desc_t* dma_desc; ++ desc_sts_data_t sts = {.d32 = 0}; ++ iso_pkt_info_t *iso_packet; ++ uint32_t data_per_desc; ++ uint32_t offset; ++ int i, j; ++ ++ iso_packet = dwc_ep->pkt_info; ++ ++ /** Reinit closed DMA Descriptors*/ ++ /** ISO OUT EP */ ++ if(dwc_ep->is_in == 0) { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ offset = 0; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso_packet_decsriptor */ ++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); ++ if(iso_packet->status) { ++ iso_packet->status = -ENODATA; ++ } ++ ++ /* Received data length */ ++ if(!sts.b_iso_out.rxbytes){ ++ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes; ++ } else { ++ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes + ++ (4 - dwc_ep->data_per_frame % 4); ++ } ++ ++ iso_packet->offset = offset; ++ ++ offset += data_per_desc; ++ dma_desc ++; ++ iso_packet ++; ++ } ++ } ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso_packet_decsriptor */ ++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); ++ if(iso_packet->status) { ++ iso_packet->status = -ENODATA; ++ } ++ ++ /* Received data length */ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes; ++ ++ iso_packet->offset = offset; ++ ++ offset += data_per_desc; ++ iso_packet++; ++ dma_desc++; ++ } ++ ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso_packet_decsriptor */ ++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE); ++ if(iso_packet->status) { ++ iso_packet->status = -ENODATA; ++ } ++ /* Received data length */ ++ if(!sts.b_iso_out.rxbytes){ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes; ++ } else { ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes + ++ (4 - dwc_ep->data_per_frame % 4); ++ } ++ ++ iso_packet->offset = offset; ++ } ++ else /** ISO IN EP */ ++ { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++) ++ { ++ sts.d32 = readl(&dma_desc->status); ++ ++ /* Write status in iso packet descriptor */ ++ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE); ++ if(iso_packet->status != 0) { ++ iso_packet->status = -ENODATA; ++ ++ } ++ /* Bytes has been transfered */ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes; ++ ++ dma_desc ++; ++ iso_packet++; ++ } ++ ++ sts.d32 = readl(&dma_desc->status); ++ while(sts.b_iso_in.bs == BS_DMA_BUSY) { ++ sts.d32 = readl(&dma_desc->status); ++ } ++ ++ /* Write status in iso packet descriptor ??? do be done with ERROR codes*/ ++ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE); ++ if(iso_packet->status != 0) { ++ iso_packet->status = -ENODATA; ++ } ++ ++ /* Bytes has been transfered */ ++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes; ++ } ++} ++ ++/** ++ * This function reinitialize DMA Descriptors for Isochronous transfer ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP to start the transfer on. ++ * ++ */ ++static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ int i, j; ++ dwc_otg_dma_desc_t* dma_desc; ++ dma_addr_t dma_ad; ++ volatile uint32_t *addr; ++ desc_sts_data_t sts = { .d32 =0 }; ++ uint32_t data_per_desc; ++ ++ if(dwc_ep->is_in == 0) { ++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl; ++ } ++ else { ++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl; ++ } ++ ++ ++ if(dwc_ep->proc_buf_num == 0) { ++ /** Buffer 0 descriptors setup */ ++ dma_ad = dwc_ep->dma_addr0; ++ } ++ else { ++ /** Buffer 1 descriptors setup */ ++ dma_ad = dwc_ep->dma_addr1; ++ } ++ ++ /** Reinit closed DMA Descriptors*/ ++ /** ISO OUT EP */ ++ if(dwc_ep->is_in == 0) { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ ++ sts.b_iso_out.bs = BS_HOST_READY; ++ sts.b_iso_out.rxsts = 0; ++ sts.b_iso_out.l = 0; ++ sts.b_iso_out.sp = 0; ++ sts.b_iso_out.ioc = 0; ++ sts.b_iso_out.pid = 0; ++ sts.b_iso_out.framenum = 0; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm) ++ { ++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j) ++ { ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ //(uint32_t)dma_ad += data_per_desc; ++ dma_ad = (uint32_t)dma_ad + data_per_desc; ++ dma_desc ++; ++ } ++ } ++ ++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) ++ { ++ ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dma_desc++; ++ //(uint32_t)dma_ad += data_per_desc; ++ dma_ad = (uint32_t)dma_ad + data_per_desc; ++ } ++ ++ sts.b_iso_out.ioc = 1; ++ sts.b_iso_out.l = dwc_ep->proc_buf_num; ++ ++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ? ++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket; ++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0; ++ sts.b_iso_out.rxbytes = data_per_desc; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ } ++ else /** ISO IN EP */ ++ { ++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num; ++ ++ sts.b_iso_in.bs = BS_HOST_READY; ++ sts.b_iso_in.txsts = 0; ++ sts.b_iso_in.sp = 0; ++ sts.b_iso_in.ioc = 0; ++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm; ++ sts.b_iso_in.framenum = dwc_ep->next_frame; ++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame; ++ sts.b_iso_in.l = 0; ++ ++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++) ++ { ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ sts.b_iso_in.framenum += dwc_ep->bInterval; ++ //(uint32_t)dma_ad += dwc_ep->data_per_frame; ++ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame; ++ dma_desc ++; ++ } ++ ++ sts.b_iso_in.ioc = 1; ++ sts.b_iso_in.l = dwc_ep->proc_buf_num; ++ ++ writel((uint32_t)dma_ad, &dma_desc->buf); ++ writel(sts.d32, &dma_desc->status); ++ ++ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1; ++ } ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++} ++ ++ ++/** ++ * This function is to handle Iso EP transfer complete interrupt ++ * in case Iso out packet was dropped ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param dwc_ep The EP for wihich transfer complete was asserted ++ * ++ */ ++static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep) ++{ ++ uint32_t dma_addr; ++ uint32_t drp_pkt; ++ uint32_t drp_pkt_cnt; ++ deptsiz_data_t deptsiz = { .d32 = 0 }; ++ depctl_data_t depctl = { .d32 = 0 }; ++ int i; ++ ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz); ++ ++ drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt; ++ drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm); ++ ++ /* Setting dropped packets status */ ++ for(i = 0; i < drp_pkt_cnt; ++i) { ++ dwc_ep->pkt_info[drp_pkt].status = -ENODATA; ++ drp_pkt ++; ++ deptsiz.b.pktcnt--; ++ } ++ ++ ++ if(deptsiz.b.pktcnt > 0) { ++ deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket; ++ } else { ++ deptsiz.b.xfersize = 0; ++ deptsiz.b.pktcnt = 0; ++ } ++ ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32); ++ ++ if(deptsiz.b.pktcnt > 0) { ++ if(dwc_ep->proc_buf_num) { ++ dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize; ++ } else { ++ dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;; ++ } ++ ++ VERIFY_PCD_DMA_ADDR(dma_addr); ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr); ++ ++ /** Re-enable endpoint, clear nak */ ++ depctl.d32 = 0; ++ depctl.b.epena = 1; ++ depctl.b.cnak = 1; ++ ++ dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl, ++ depctl.d32,depctl.d32); ++ return 0; ++ } else { ++ return 1; ++ } ++} ++ ++/** ++ * This function sets iso packets information(PTI mode) ++ * ++ * @param core_if Programming view of DWC_otg controller. ++ * @param ep The EP to start the transfer on. ++ * ++ */ ++static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep) ++{ ++ int i, j; ++ dma_addr_t dma_ad; ++ iso_pkt_info_t *packet_info = ep->pkt_info; ++ uint32_t offset; ++ uint32_t frame_data; ++ deptsiz_data_t deptsiz; ++ ++ if(ep->proc_buf_num == 0) { ++ /** Buffer 0 descriptors setup */ ++ dma_ad = ep->dma_addr0; ++ } ++ else { ++ /** Buffer 1 descriptors setup */ ++ dma_ad = ep->dma_addr1; ++ } ++ ++ if(ep->is_in) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz); ++ } else { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz); ++ } ++ ++ if(!deptsiz.b.xfersize) { ++ offset = 0; ++ for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm) ++ { ++ frame_data = ep->data_per_frame; ++ for(j = 0; j < ep->pkt_per_frm; ++j) { ++ ++ /* Packet status - is not set as initially ++ * it is set to 0 and if packet was sent ++ successfully, status field will remain 0*/ ++ ++ /* Bytes has been transfered */ ++ packet_info->length = (ep->maxpacket < frame_data) ? ++ ep->maxpacket : frame_data; ++ ++ /* Received packet offset */ ++ packet_info->offset = offset; ++ offset += packet_info->length; ++ frame_data -= packet_info->length; ++ ++ packet_info ++; ++ } ++ } ++ return 1; ++ } else { ++ /* This is a workaround for in case of Transfer Complete with ++ * PktDrpSts interrupts merging - in this case Transfer complete ++ * interrupt for Isoc Out Endpoint is asserted without PktDrpSts ++ * set and with DOEPTSIZ register non zero. Investigations showed, ++ * that this happens when Out packet is dropped, but because of ++ * interrupts merging during first interrupt handling PktDrpSts ++ * bit is cleared and for next merged interrupts it is not reset. ++ * In this case SW hadles the interrupt as if PktDrpSts bit is set. ++ */ ++ if(ep->is_in) { ++ return 1; ++ } else { ++ return handle_iso_out_pkt_dropped(core_if, ep); ++ } ++ } ++} ++ ++/** ++ * This function is to handle Iso EP transfer complete interrupt ++ * ++ * @param ep The EP for which transfer complete was asserted ++ * ++ */ ++static void complete_iso_ep(dwc_otg_pcd_ep_t *ep) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd); ++ dwc_ep_t *dwc_ep = &ep->dwc_ep; ++ uint8_t is_last = 0; ++ ++ if(core_if->dma_enable) { ++ if(core_if->dma_desc_enable) { ++ set_ddma_iso_pkts_info(core_if, dwc_ep); ++ reinit_ddma_iso_xfer(core_if, dwc_ep); ++ is_last = 1; ++ } else { ++ if(core_if->pti_enh_enable) { ++ if(set_iso_pkts_info(core_if, dwc_ep)) { ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep); ++ is_last = 1; ++ } ++ } else { ++ set_current_pkt_info(core_if, dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ is_last = 1; ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ } ++ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep); ++ } ++ } ++ } else { ++ set_current_pkt_info(core_if, dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ is_last = 1; ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ } ++ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep); ++ } ++ if(is_last) ++ dwc_otg_iso_buffer_done(ep, ep->iso_req); ++} ++ ++#endif //DWC_EN_ISOC ++ ++ ++/** ++ * This function handles EP0 Control transfers. ++ * ++ * The state of the control tranfers are tracked in ++ * <code>ep0state</code>. ++ */ ++static void handle_ep0(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0; ++ desc_sts_data_t desc_sts; ++ deptsiz0_data_t deptsiz; ++ uint32_t byte_count; ++ ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); ++ print_ep0_state(pcd); ++#endif ++ ++ switch (pcd->ep0state) { ++ case EP0_DISCONNECT: ++ break; ++ ++ case EP0_IDLE: ++ pcd->request_config = 0; ++ ++ pcd_setup(pcd); ++ break; ++ ++ case EP0_IN_DATA_PHASE: ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n", ++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"), ++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); ++#endif ++ ++ if (core_if->dma_enable != 0) { ++ /* ++ * For EP0 we can only program 1 packet at a time so we ++ * need to do the make calculations after each complete. ++ * Call write_packet to make the calculations, as in ++ * slave mode, and use those values to determine if we ++ * can complete. ++ */ ++ if(core_if->dma_desc_enable == 0) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz); ++ byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize; ++ } ++ else { ++ desc_sts.d32 = readl(core_if->dev_if->in_desc_addr); ++ byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes; ++ } ++ ++ ep0->dwc_ep.xfer_count += byte_count; ++ ep0->dwc_ep.xfer_buff += byte_count; ++ ep0->dwc_ep.dma_addr += byte_count; ++ } ++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else if(ep0->dwc_ep.sent_zlp) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ep0->dwc_ep.sent_zlp = 0; ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else { ++ ep0_complete_request(ep0); ++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n"); ++ } ++ break; ++ case EP0_OUT_DATA_PHASE: ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n", ++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"), ++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket); ++#endif ++ if (core_if->dma_enable != 0) { ++ if(core_if->dma_desc_enable == 0) { ++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz); ++ byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize; ++ ++ //todo: invalidate cache & aligned buf patch on completion ++ dma_sync_single_for_device(NULL,ep0->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE); ++ aligned_buf_patch_on_buf_dma_oep_completion(ep0,byte_count); ++ } ++ else { ++ desc_sts.d32 = readl(core_if->dev_if->out_desc_addr); ++ byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes; ++ ++ //todo: invalidate cache & aligned buf patch on completion ++ // ++ ++ } ++ ep0->dwc_ep.xfer_count += byte_count; ++ ep0->dwc_ep.xfer_buff += byte_count; ++ ep0->dwc_ep.dma_addr += byte_count; ++ } ++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else if(ep0->dwc_ep.sent_zlp) { ++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep); ++ ep0->dwc_ep.sent_zlp = 0; ++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n"); ++ } ++ else { ++ ep0_complete_request(ep0); ++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n"); ++ } ++ break; ++ ++ case EP0_IN_STATUS_PHASE: ++ case EP0_OUT_STATUS_PHASE: ++ DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n"); ++ ep0_complete_request(ep0); ++ pcd->ep0state = EP0_IDLE; ++ ep0->stopped = 1; ++ ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */ ++ ++ /* Prepare for more SETUP Packets */ ++ if(core_if->dma_enable) { ++ ep0_out_start(core_if, pcd); ++ } ++ break; ++ ++ case EP0_STALL: ++ DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n"); ++ break; ++ } ++#ifdef DEBUG_EP0 ++ print_ep0_state(pcd); ++#endif ++} ++ ++ ++/** ++ * Restart transfer ++ */ ++static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if; ++ dwc_otg_dev_if_t *dev_if; ++ deptsiz_data_t dieptsiz = {.d32=0}; ++ dwc_otg_pcd_ep_t *ep; ++ ++ ep = get_in_ep(pcd, epnum); ++ ++#ifdef DWC_EN_ISOC ++ if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) { ++ return; ++ } ++#endif /* DWC_EN_ISOC */ ++ ++ core_if = GET_CORE_IF(pcd); ++ dev_if = core_if->dev_if; ++ ++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz); ++ ++ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x" ++ " stopped=%d\n", ep->dwc_ep.xfer_buff, ++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len , ++ ep->stopped); ++ /* ++ * If xfersize is 0 and pktcnt in not 0, resend the last packet. ++ */ ++ if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 && ++ ep->dwc_ep.start_xfer_buff != 0) { ++ if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) { ++ ep->dwc_ep.xfer_count = 0; ++ ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff; ++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count; ++ } ++ else { ++ ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket; ++ /* convert packet size to dwords. */ ++ ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket; ++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count; ++ } ++ ep->stopped = 0; ++ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x " ++ "xfer_len=%0x stopped=%d\n", ++ ep->dwc_ep.xfer_buff, ++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len , ++ ep->stopped ++ ); ++ if (epnum == 0) { ++ dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep); ++ } ++ else { ++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep); ++ } ++ } ++} ++ ++ ++/** ++ * handle the IN EP disable interrupt. ++ */ ++static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ deptsiz_data_t dieptsiz = {.d32=0}; ++ dctl_data_t dctl = {.d32=0}; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ ++ ep = get_in_ep(pcd, epnum); ++ dwc_ep = &ep->dwc_ep; ++ ++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num); ++ return; ++ } ++ ++ DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum, ++ dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl)); ++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz); ++ ++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", ++ dieptsiz.b.pktcnt, ++ dieptsiz.b.xfersize); ++ ++ if (ep->stopped) { ++ /* Flush the Tx FIFO */ ++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num); ++ /* Clear the Global IN NP NAK */ ++ dctl.d32 = 0; ++ dctl.b.cgnpinnak = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, ++ dctl.d32, 0); ++ /* Restart the transaction */ ++ if (dieptsiz.b.pktcnt != 0 || ++ dieptsiz.b.xfersize != 0) { ++ restart_transfer(pcd, epnum); ++ } ++ } ++ else { ++ /* Restart the transaction */ ++ if (dieptsiz.b.pktcnt != 0 || ++ dieptsiz.b.xfersize != 0) { ++ restart_transfer(pcd, epnum); ++ } ++ DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n"); ++ } ++} ++ ++/** ++ * Handler for the IN EP timeout handshake interrupt. ++ */ ++static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ ++#ifdef DEBUG ++ deptsiz_data_t dieptsiz = {.d32=0}; ++ uint32_t num = 0; ++#endif ++ dctl_data_t dctl = {.d32=0}; ++ dwc_otg_pcd_ep_t *ep; ++ ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ ep = get_in_ep(pcd, epnum); ++ ++ /* Disable the NP Tx Fifo Empty Interrrupt */ ++ if (!core_if->dma_enable) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ /** @todo NGS Check EP type. ++ * Implement for Periodic EPs */ ++ /* ++ * Non-periodic EP ++ */ ++ /* Enable the Global IN NAK Effective Interrupt */ ++ intr_mask.b.ginnakeff = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, ++ 0, intr_mask.d32); ++ ++ /* Set Global IN NAK */ ++ dctl.b.sgnpinnak = 1; ++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, ++ dctl.d32, dctl.d32); ++ ++ ep->stopped = 1; ++ ++#ifdef DEBUG ++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz); ++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n", ++ dieptsiz.b.pktcnt, ++ dieptsiz.b.xfersize); ++#endif ++ ++#ifdef DISABLE_PERIODIC_EP ++ /* ++ * Set the NAK bit for this EP to ++ * start the disable process. ++ */ ++ diepctl.d32 = 0; ++ diepctl.b.snak = 1; ++ dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32); ++ ep->disabling = 1; ++ ep->stopped = 1; ++#endif ++} ++ ++/** ++ * Handler for the IN EP NAK interrupt. ++ */ ++static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ diepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.nak = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * Handler for the OUT EP Babble interrupt. ++ */ ++static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ doepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.babble = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * Handler for the OUT EP NAK interrupt. ++ */ ++static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ doepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.nak = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * Handler for the OUT EP NYET interrupt. ++ */ ++static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd, ++ const uint32_t epnum) ++{ ++ /** @todo implement ISR */ ++ dwc_otg_core_if_t* core_if; ++ doepmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET"); ++ core_if = GET_CORE_IF(pcd); ++ intr_mask.b.nyet = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum], ++ intr_mask.d32, 0); ++ } else { ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk, ++ intr_mask.d32, 0); ++ } ++ ++ return 1; ++} ++ ++/** ++ * This interrupt indicates that an IN EP has a pending Interrupt. ++ * The sequence for handling the IN EP interrupt is shown below: ++ * -# Read the Device All Endpoint Interrupt register ++ * -# Repeat the following for each IN EP interrupt bit set (from ++ * LSB to MSB). ++ * -# Read the Device Endpoint Interrupt (DIEPINTn) register ++ * -# If "Transfer Complete" call the request complete function ++ * -# If "Endpoint Disabled" complete the EP disable procedure. ++ * -# If "AHB Error Interrupt" log error ++ * -# If "Time-out Handshake" log error ++ * -# If "IN Token Received when TxFIFO Empty" write packet to Tx ++ * FIFO. ++ * -# If "IN Token EP Mismatch" (disable, this is handled by EP ++ * Mismatch Interrupt) ++ */ ++static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd) ++{ ++#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \ ++do { \ ++ diepint_data_t diepint = {.d32=0}; \ ++ diepint.b.__intr = 1; \ ++ dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \ ++ diepint.d32); \ ++} while (0) ++ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ diepint_data_t diepint = {.d32=0}; ++ dctl_data_t dctl = {.d32=0}; ++ depctl_data_t depctl = {.d32=0}; ++ uint32_t ep_intr; ++ uint32_t epnum = 0; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ gintmsk_data_t intr_mask = {.d32 = 0}; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd); ++ ++ /* Read in the device interrupt bits */ ++ ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if); ++ ++ /* Service the Device IN interrupts for each endpoint */ ++ while(ep_intr) { ++ if (ep_intr&0x1) { ++ uint32_t empty_msk; ++ /* Get EP pointer */ ++ ep = get_in_ep(pcd, epnum); ++ dwc_ep = &ep->dwc_ep; ++ ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl); ++ empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk); ++ ++ DWC_DEBUGPL(DBG_PCDV, ++ "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n", ++ epnum, ++ empty_msk, ++ depctl.d32); ++ ++ DWC_DEBUGPL(DBG_PCD, ++ "EP%d-%s: type=%d, mps=%d\n", ++ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"), ++ dwc_ep->type, dwc_ep->maxpacket); ++ ++ diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep); ++ ++ DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32); ++ /* Transfer complete */ ++ if (diepint.b.xfercompl) { ++ /* Disable the NP Tx FIFO Empty ++ * Interrrupt */ ++ if(core_if->en_multiple_tx_fifo == 0) { ++ intr_mask.b.nptxfempty = 1; ++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0); ++ } ++ else { ++ /* Disable the Tx FIFO Empty Interrupt for this EP */ ++ uint32_t fifoemptymsk = 0x1 << dwc_ep->num; ++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk, ++ fifoemptymsk, 0); ++ } ++ /* Clear the bit in DIEPINTn for this interrupt */ ++ CLEAR_IN_EP_INTR(core_if,epnum,xfercompl); ++ ++ /* Complete the transfer */ ++ if (epnum == 0) { ++ handle_ep0(pcd); ++ } ++#ifdef DWC_EN_ISOC ++ else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ if(!ep->stopped) ++ complete_iso_ep(ep); ++ } ++#endif //DWC_EN_ISOC ++ else { ++ ++ complete_ep(ep); ++ } ++ } ++ /* Endpoint disable */ ++ if (diepint.b.epdisabled) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum); ++ handle_in_ep_disable_intr(pcd, epnum); ++ ++ /* Clear the bit in DIEPINTn for this interrupt */ ++ CLEAR_IN_EP_INTR(core_if,epnum,epdisabled); ++ } ++ /* AHB Error */ ++ if (diepint.b.ahberr) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum); ++ /* Clear the bit in DIEPINTn for this interrupt */ ++ CLEAR_IN_EP_INTR(core_if,epnum,ahberr); ++ } ++ /* TimeOUT Handshake (non-ISOC IN EPs) */ ++ if (diepint.b.timeout) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum); ++ handle_in_ep_timeout_intr(pcd, epnum); ++ ++ CLEAR_IN_EP_INTR(core_if,epnum,timeout); ++ } ++ /** IN Token received with TxF Empty */ ++ if (diepint.b.intktxfemp) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n", ++ epnum); ++ if (!ep->stopped && epnum != 0) { ++ ++ diepmsk_data_t diepmsk = { .d32 = 0}; ++ diepmsk.b.intktxfemp = 1; ++ ++ if(core_if->multiproc_int_enable) { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum], ++ diepmsk.d32, 0); ++ } else { ++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0); ++ } ++ start_next_request(ep); ++ } ++ else if(core_if->dma_desc_enable && epnum == 0 && ++ pcd->ep0state == EP0_OUT_STATUS_PHASE) { ++ // EP0 IN set STALL ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl); ++ ++ /* set the disable and stall bits */ ++ if (depctl.b.epena) { ++ depctl.b.epdis = 1; ++ } ++ depctl.b.stall = 1; ++ dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32); ++ } ++ CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp); ++ } ++ /** IN Token Received with EP mismatch */ ++ if (diepint.b.intknepmis) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum); ++ CLEAR_IN_EP_INTR(core_if,epnum,intknepmis); ++ } ++ /** IN Endpoint NAK Effective */ ++ if (diepint.b.inepnakeff) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum); ++ /* Periodic EP */ ++ if (ep->disabling) { ++ depctl.d32 = 0; ++ depctl.b.snak = 1; ++ depctl.b.epdis = 1; ++ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32); ++ } ++ CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff); ++ ++ } ++ ++ /** IN EP Tx FIFO Empty Intr */ ++ if (diepint.b.emptyintr) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum); ++ write_empty_tx_fifo(pcd, epnum); ++ ++ CLEAR_IN_EP_INTR(core_if,epnum,emptyintr); ++ } ++ ++ /** IN EP BNA Intr */ ++ if (diepint.b.bna) { ++ CLEAR_IN_EP_INTR(core_if,epnum,bna); ++ if(core_if->dma_desc_enable) { ++#ifdef DWC_EN_ISOC ++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This checking is performed to prevent first "false" BNA ++ * handling occuring right after reconnect ++ */ ++ if(dwc_ep->next_frame != 0xffffffff) ++ dwc_otg_pcd_handle_iso_bna(ep); ++ } ++ else ++#endif //DWC_EN_ISOC ++ { ++ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl); ++ ++ /* If Global Continue on BNA is disabled - disable EP */ ++ if(!dctl.b.gcontbna) { ++ depctl.d32 = 0; ++ depctl.b.snak = 1; ++ depctl.b.epdis = 1; ++ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32); ++ } else { ++ start_next_request(ep); ++ } ++ } ++ } ++ } ++ /* NAK Interrutp */ ++ if (diepint.b.nak) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum); ++ handle_in_ep_nak_intr(pcd, epnum); ++ ++ CLEAR_IN_EP_INTR(core_if,epnum,nak); ++ } ++ } ++ epnum++; ++ ep_intr >>=1; ++ } ++ ++ return 1; ++#undef CLEAR_IN_EP_INTR ++} ++ ++/** ++ * This interrupt indicates that an OUT EP has a pending Interrupt. ++ * The sequence for handling the OUT EP interrupt is shown below: ++ * -# Read the Device All Endpoint Interrupt register ++ * -# Repeat the following for each OUT EP interrupt bit set (from ++ * LSB to MSB). ++ * -# Read the Device Endpoint Interrupt (DOEPINTn) register ++ * -# If "Transfer Complete" call the request complete function ++ * -# If "Endpoint Disabled" complete the EP disable procedure. ++ * -# If "AHB Error Interrupt" log error ++ * -# If "Setup Phase Done" process Setup Packet (See Standard USB ++ * Command Processing) ++ */ ++static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd) ++{ ++#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \ ++do { \ ++ doepint_data_t doepint = {.d32=0}; \ ++ doepint.b.__intr = 1; \ ++ dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \ ++ doepint.d32); \ ++} while (0) ++ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++ dwc_otg_dev_if_t *dev_if = core_if->dev_if; ++ uint32_t ep_intr; ++ doepint_data_t doepint = {.d32=0}; ++ dctl_data_t dctl = {.d32=0}; ++ depctl_data_t doepctl = {.d32=0}; ++ uint32_t epnum = 0; ++ dwc_otg_pcd_ep_t *ep; ++ dwc_ep_t *dwc_ep; ++ ++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__); ++ ++ /* Read in the device interrupt bits */ ++ ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if); ++ ++ while(ep_intr) { ++ if (ep_intr&0x1) { ++ /* Get EP pointer */ ++ ep = get_out_ep(pcd, epnum); ++ dwc_ep = &ep->dwc_ep; ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV, ++ "EP%d-%s: type=%d, mps=%d\n", ++ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"), ++ dwc_ep->type, dwc_ep->maxpacket); ++#endif ++ doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep); ++ ++ /* Transfer complete */ ++ if (doepint.b.xfercompl) { ++ if (epnum == 0) { ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); ++ if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE) ++ handle_ep0(pcd); ++#ifdef DWC_EN_ISOC ++ } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ if (doepint.b.pktdrpsts == 0) { ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); ++ complete_iso_ep(ep); ++ } else { ++ doepint_data_t doepint = {.d32=0}; ++ doepint.b.xfercompl = 1; ++ doepint.b.pktdrpsts = 1; ++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint, ++ doepint.d32); ++ if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) { ++ complete_iso_ep(ep); ++ } ++ } ++#endif //DWC_EN_ISOC ++ } else { ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl); ++ complete_ep(ep); ++ } ++ ++ } ++ ++ /* Endpoint disable */ ++ if (doepint.b.epdisabled) { ++ /* Clear the bit in DOEPINTn for this interrupt */ ++ CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled); ++ } ++ /* AHB Error */ ++ if (doepint.b.ahberr) { ++ DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum); ++ DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma); ++ CLEAR_OUT_EP_INTR(core_if,epnum,ahberr); ++ } ++ /* Setup Phase Done (contorl EPs) */ ++ if (doepint.b.setup) { ++#ifdef DEBUG_EP0 ++ DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n", ++ epnum); ++#endif ++ CLEAR_OUT_EP_INTR(core_if,epnum,setup); ++ handle_ep0(pcd); ++ } ++ ++ /** OUT EP BNA Intr */ ++ if (doepint.b.bna) { ++ CLEAR_OUT_EP_INTR(core_if,epnum,bna); ++ if(core_if->dma_desc_enable) { ++#ifdef DWC_EN_ISOC ++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) { ++ /* ++ * This checking is performed to prevent first "false" BNA ++ * handling occuring right after reconnect ++ */ ++ if(dwc_ep->next_frame != 0xffffffff) ++ dwc_otg_pcd_handle_iso_bna(ep); ++ } ++ else ++#endif //DWC_EN_ISOC ++ { ++ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl); ++ ++ /* If Global Continue on BNA is disabled - disable EP*/ ++ if(!dctl.b.gcontbna) { ++ doepctl.d32 = 0; ++ doepctl.b.snak = 1; ++ doepctl.b.epdis = 1; ++ dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32); ++ } else { ++ start_next_request(ep); ++ } ++ } ++ } ++ } ++ if (doepint.b.stsphsercvd) { ++ CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd); ++ if(core_if->dma_desc_enable) { ++ do_setup_in_status_phase(pcd); ++ } ++ } ++ /* Babble Interrutp */ ++ if (doepint.b.babble) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum); ++ handle_out_ep_babble_intr(pcd, epnum); ++ ++ CLEAR_OUT_EP_INTR(core_if,epnum,babble); ++ } ++ /* NAK Interrutp */ ++ if (doepint.b.nak) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum); ++ handle_out_ep_nak_intr(pcd, epnum); ++ ++ CLEAR_OUT_EP_INTR(core_if,epnum,nak); ++ } ++ /* NYET Interrutp */ ++ if (doepint.b.nyet) { ++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum); ++ handle_out_ep_nyet_intr(pcd, epnum); ++ ++ CLEAR_OUT_EP_INTR(core_if,epnum,nyet); ++ } ++ } ++ ++ epnum++; ++ ep_intr >>=1; ++ } ++ ++ return 1; ++ ++#undef CLEAR_OUT_EP_INTR ++} ++ ++ ++/** ++ * Incomplete ISO IN Transfer Interrupt. ++ * This interrupt indicates one of the following conditions occurred ++ * while transmitting an ISOC transaction. ++ * - Corrupted IN Token for ISOC EP. ++ * - Packet not complete in FIFO. ++ * The follow actions will be taken: ++ * -# Determine the EP ++ * -# Set incomplete flag in dwc_ep structure ++ * -# Disable EP; when "Endpoint Disabled" interrupt is received ++ * Flush FIFO ++ */ ++int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd) ++{ ++ gintsts_data_t gintsts; ++ ++ ++#ifdef DWC_EN_ISOC ++ dwc_otg_dev_if_t *dev_if; ++ deptsiz_data_t deptsiz = { .d32 = 0}; ++ depctl_data_t depctl = { .d32 = 0}; ++ dsts_data_t dsts = { .d32 = 0}; ++ dwc_ep_t *dwc_ep; ++ int i; ++ ++ dev_if = GET_CORE_IF(pcd)->dev_if; ++ ++ for(i = 1; i <= dev_if->num_in_eps; ++i) { ++ dwc_ep = &pcd->in_ep[i].dwc_ep; ++ if(dwc_ep->active && ++ dwc_ep->type == USB_ENDPOINT_XFER_ISOC) ++ { ++ deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz); ++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ ++ if(depctl.b.epdis && deptsiz.d32) { ++ set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ } ++ ++ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts); ++ dwc_ep->next_frame = dsts.b.soffn; ++ ++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep); ++ } ++ } ++ } ++ ++#else ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "IN ISOC Incomplete"); ++ ++ intr_mask.b.incomplisoin = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++#endif //DWC_EN_ISOC ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.incomplisoin = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * Incomplete ISO OUT Transfer Interrupt. ++ * ++ * This interrupt indicates that the core has dropped an ISO OUT ++ * packet. The following conditions can be the cause: ++ * - FIFO Full, the entire packet would not fit in the FIFO. ++ * - CRC Error ++ * - Corrupted Token ++ * The follow actions will be taken: ++ * -# Determine the EP ++ * -# Set incomplete flag in dwc_ep structure ++ * -# Read any data from the FIFO ++ * -# Disable EP. when "Endpoint Disabled" interrupt is received ++ * re-enable EP. ++ */ ++int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd) ++{ ++ /* @todo implement ISR */ ++ gintsts_data_t gintsts; ++ ++#ifdef DWC_EN_ISOC ++ dwc_otg_dev_if_t *dev_if; ++ deptsiz_data_t deptsiz = { .d32 = 0}; ++ depctl_data_t depctl = { .d32 = 0}; ++ dsts_data_t dsts = { .d32 = 0}; ++ dwc_ep_t *dwc_ep; ++ int i; ++ ++ dev_if = GET_CORE_IF(pcd)->dev_if; ++ ++ for(i = 1; i <= dev_if->num_out_eps; ++i) { ++ dwc_ep = &pcd->in_ep[i].dwc_ep; ++ if(pcd->out_ep[i].dwc_ep.active && ++ pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC) ++ { ++ deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz); ++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl); ++ ++ if(depctl.b.epdis && deptsiz.d32) { ++ set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep); ++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) { ++ dwc_ep->cur_pkt = 0; ++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1; ++ ++ if(dwc_ep->proc_buf_num) { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1; ++ } else { ++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0; ++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0; ++ } ++ } ++ ++ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts); ++ dwc_ep->next_frame = dsts.b.soffn; ++ ++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep); ++ } ++ } ++ } ++#else ++ /** @todo implement ISR */ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "OUT ISOC Incomplete"); ++ ++ intr_mask.b.incomplisoout = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++#endif // DWC_EN_ISOC ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.incomplisoout = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * This function handles the Global IN NAK Effective interrupt. ++ * ++ */ ++int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if; ++ depctl_data_t diepctl = { .d32 = 0}; ++ depctl_data_t diepctl_rd = { .d32 = 0}; ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ int i; ++ ++ DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n"); ++ ++ /* Disable all active IN EPs */ ++ diepctl.b.epdis = 1; ++ diepctl.b.snak = 1; ++ ++ for (i=0; i <= dev_if->num_in_eps; i++) ++ { ++ diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl); ++ if (diepctl_rd.b.epena) { ++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, ++ diepctl.d32); ++ } ++ } ++ /* Disable the Global IN NAK Effective Interrupt */ ++ intr_mask.b.ginnakeff = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.ginnakeff = 1; ++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++/** ++ * OUT NAK Effective. ++ * ++ */ ++int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd) ++{ ++ gintmsk_data_t intr_mask = { .d32 = 0}; ++ gintsts_data_t gintsts; ++ ++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", ++ "Global IN NAK Effective\n"); ++ /* Disable the Global IN NAK Effective Interrupt */ ++ intr_mask.b.goutnakeff = 1; ++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk, ++ intr_mask.d32, 0); ++ ++ /* Clear interrupt */ ++ gintsts.d32 = 0; ++ gintsts.b.goutnakeff = 1; ++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts, ++ gintsts.d32); ++ ++ return 1; ++} ++ ++ ++/** ++ * PCD interrupt handler. ++ * ++ * The PCD handles the device interrupts. Many conditions can cause a ++ * device interrupt. When an interrupt occurs, the device interrupt ++ * service routine determines the cause of the interrupt and ++ * dispatches handling to the appropriate function. These interrupt ++ * handling functions are described below. ++ * ++ * All interrupt registers are processed from LSB to MSB. ++ * ++ */ ++int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd) ++{ ++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd); ++#ifdef VERBOSE ++ dwc_otg_core_global_regs_t *global_regs = ++ core_if->core_global_regs; ++#endif ++ gintsts_data_t gintr_status; ++ int32_t retval = 0; ++ ++ ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n", ++ __func__, ++ dwc_read_reg32(&global_regs->gintsts), ++ dwc_read_reg32(&global_regs->gintmsk)); ++#endif ++ ++ if (dwc_otg_is_device_mode(core_if)) { ++ SPIN_LOCK(&pcd->lock); ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n", ++ __func__, ++ dwc_read_reg32(&global_regs->gintsts), ++ dwc_read_reg32(&global_regs->gintmsk)); ++#endif ++ ++ gintr_status.d32 = dwc_otg_read_core_intr(core_if); ++/* ++ if (!gintr_status.d32) { ++ SPIN_UNLOCK(&pcd->lock); ++ return 0; ++ } ++*/ ++ DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n", ++ __func__, gintr_status.d32); ++ ++ if (gintr_status.b.sofintr) { ++ retval |= dwc_otg_pcd_handle_sof_intr(pcd); ++ } ++ if (gintr_status.b.rxstsqlvl) { ++ retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd); ++ } ++ if (gintr_status.b.nptxfempty) { ++ retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd); ++ } ++ if (gintr_status.b.ginnakeff) { ++ retval |= dwc_otg_pcd_handle_in_nak_effective(pcd); ++ } ++ if (gintr_status.b.goutnakeff) { ++ retval |= dwc_otg_pcd_handle_out_nak_effective(pcd); ++ } ++ if (gintr_status.b.i2cintr) { ++ retval |= dwc_otg_pcd_handle_i2c_intr(pcd); ++ } ++ if (gintr_status.b.erlysuspend) { ++ retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd); ++ } ++ if (gintr_status.b.usbreset) { ++ retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd); ++ } ++ if (gintr_status.b.enumdone) { ++ retval |= dwc_otg_pcd_handle_enum_done_intr(pcd); ++ } ++ if (gintr_status.b.isooutdrop) { ++ retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd); ++ } ++ if (gintr_status.b.eopframe) { ++ retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd); ++ } ++ if (gintr_status.b.epmismatch) { ++ retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if); ++ } ++ if (gintr_status.b.inepint) { ++ if(!core_if->multiproc_int_enable) { ++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd); ++ } ++ } ++ if (gintr_status.b.outepintr) { ++ if(!core_if->multiproc_int_enable) { ++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd); ++ } ++ } ++ if (gintr_status.b.incomplisoin) { ++ retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd); ++ } ++ if (gintr_status.b.incomplisoout) { ++ retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd); ++ } ++ ++ /* In MPI mode De vice Endpoints intterrupts are asserted ++ * without setting outepintr and inepint bits set, so these ++ * Interrupt handlers are called without checking these bit-fields ++ */ ++ if(core_if->multiproc_int_enable) { ++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd); ++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd); ++ } ++#ifdef VERBOSE ++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__, ++ dwc_read_reg32(&global_regs->gintsts)); ++#endif ++ SPIN_UNLOCK(&pcd->lock); ++ } ++ S3C2410X_CLEAR_EINTPEND(); ++ ++ return retval; ++} ++ ++#endif /* DWC_HOST_ONLY */ +--- /dev/null ++++ b/drivers/usb/dwc/otg_plat.h +@@ -0,0 +1,266 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $ ++ * $Revision: #23 $ ++ * $Date: 2008/07/15 $ ++ * $Change: 1064915 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#if !defined(__DWC_OTG_PLAT_H__) ++#define __DWC_OTG_PLAT_H__ ++ ++#include <linux/types.h> ++#include <linux/slab.h> ++#include <linux/list.h> ++#include <linux/delay.h> ++#include <asm/io.h> ++ ++/* Changed all readl and writel to __raw_readl, __raw_writel */ ++ ++/** ++ * @file ++ * ++ * This file contains the Platform Specific constants, interfaces ++ * (functions and macros) for Linux. ++ * ++ */ ++//#if !defined(__LINUX_ARM_ARCH__) ++//#error "The contents of this file is Linux specific!!!" ++//#endif ++ ++/** ++ * Reads the content of a register. ++ * ++ * @param reg address of register to read. ++ * @return contents of the register. ++ * ++ ++ * Usage:<br> ++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code> ++ */ ++static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg) ++{ ++ return __raw_readl(reg); ++ // return readl(reg); ++}; ++ ++/** ++ * Writes a register with a 32 bit value. ++ * ++ * @param reg address of register to read. ++ * @param value to write to _reg. ++ * ++ * Usage:<br> ++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code> ++ */ ++static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value) ++{ ++ // writel( value, reg ); ++ __raw_writel(value, reg); ++ ++}; ++ ++/** ++ * This function modifies bit values in a register. Using the ++ * algorithm: (reg_contents & ~clear_mask) | set_mask. ++ * ++ * @param reg address of register to read. ++ * @param clear_mask bit mask to be cleared. ++ * @param set_mask bit mask to be set. ++ * ++ * Usage:<br> ++ * <code> // Clear the SOF Interrupt Mask bit and <br> ++ * // set the OTG Interrupt mask bit, leaving all others as they were. ++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code> ++ */ ++static __inline__ ++ void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask) ++{ ++ // writel( (readl(reg) & ~clear_mask) | set_mask, reg ); ++ __raw_writel( (__raw_readl(reg) & ~clear_mask) | set_mask, reg ); ++}; ++ ++ ++/** ++ * Wrapper for the OS micro-second delay function. ++ * @param[in] usecs Microseconds of delay ++ */ ++static __inline__ void UDELAY( const uint32_t usecs ) ++{ ++ udelay( usecs ); ++} ++ ++/** ++ * Wrapper for the OS milli-second delay function. ++ * @param[in] msecs milliseconds of delay ++ */ ++static __inline__ void MDELAY( const uint32_t msecs ) ++{ ++ mdelay( msecs ); ++} ++ ++/** ++ * Wrapper for the Linux spin_lock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_LOCK( spinlock_t *lock ) ++{ ++ spin_lock(lock); ++} ++ ++/** ++ * Wrapper for the Linux spin_unlock. On the ARM (Integrator) ++ * spin_lock() is a nop. ++ * ++ * @param lock Pointer to the spinlock. ++ */ ++static __inline__ void SPIN_UNLOCK( spinlock_t *lock ) ++{ ++ spin_unlock(lock); ++} ++ ++/** ++ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param l Pointer to the spinlock. ++ * @param f unsigned long for irq flags storage. ++ */ ++#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f); ++ ++/** ++ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM ++ * (Integrator) spin_lock() is a nop. ++ * ++ * @param l Pointer to the spinlock. ++ * @param f unsigned long for irq flags storage. ++ */ ++#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f); ++ ++/* ++ * Debugging support vanishes in non-debug builds. ++ */ ++ ++ ++/** ++ * The Debug Level bit-mask variable. ++ */ ++extern uint32_t g_dbg_lvl; ++/** ++ * Set the Debug Level variable. ++ */ ++static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new ) ++{ ++ uint32_t old = g_dbg_lvl; ++ g_dbg_lvl = new; ++ return old; ++} ++ ++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */ ++#define DBG_CIL (0x2) ++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug ++ * messages */ ++#define DBG_CILV (0x20) ++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug ++ * messages */ ++#define DBG_PCD (0x4) ++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug ++ * messages */ ++#define DBG_PCDV (0x40) ++/** When debug level has the DBG_HCD bit set, display Host debug messages */ ++#define DBG_HCD (0x8) ++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug ++ * messages */ ++#define DBG_HCDV (0x80) ++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host ++ * mode. */ ++#define DBG_HCD_URB (0x800) ++ ++/** When debug level has any bit set, display debug messages */ ++#define DBG_ANY (0xFF) ++ ++/** All debug messages off */ ++#define DBG_OFF 0 ++ ++/** Prefix string for DWC_DEBUG print macros. */ ++#define USB_DWC "DWC_otg: " ++ ++/** ++ * Print a debug message when the Global debug level variable contains ++ * the bit defined in <code>lvl</code>. ++ * ++ * @param[in] lvl - Debug level, use one of the DBG_ constants above. ++ * @param[in] x - like printf ++ * ++ * Example:<p> ++ * <code> ++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr); ++ * </code> ++ * <br> ++ * results in:<br> ++ * <code> ++ * usb-DWC_otg: dwc_otg_cil_init(ca867000) ++ * </code> ++ */ ++#ifdef DEBUG ++ ++# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0) ++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x ) ++ ++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl) ++ ++#else ++ ++# define DWC_DEBUGPL(lvl, x...) do{}while(0) ++# define DWC_DEBUGP(x...) ++ ++# define CHK_DEBUG_LEVEL(level) (0) ++ ++#endif /*DEBUG*/ ++ ++/** ++ * Print an Error message. ++ */ ++#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x ) ++/** ++ * Print a Warning message. ++ */ ++#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x ) ++/** ++ * Print a notice (normal but significant message). ++ */ ++#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x ) ++/** ++ * Basic message printing. ++ */ ++#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x ) ++ ++#endif ++ +--- /dev/null ++++ b/drivers/usb/dwc/otg_regs.h +@@ -0,0 +1,2059 @@ ++/* ========================================================================== ++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $ ++ * $Revision: #72 $ ++ * $Date: 2008/09/19 $ ++ * $Change: 1099526 $ ++ * ++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter, ++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless ++ * otherwise expressly agreed to in writing between Synopsys and you. ++ * ++ * The Software IS NOT an item of Licensed Software or Licensed Product under ++ * any End User Software License Agreement or Agreement for Licensed Product ++ * with Synopsys or any supplement thereto. You are permitted to use and ++ * redistribute this Software in source and binary forms, with or without ++ * modification, provided that redistributions of source code must retain this ++ * notice. You may not view, use, disclose, copy or distribute this file or ++ * any information contained herein except pursuant to this license grant from ++ * Synopsys. If you do not agree with this notice, including the disclaimer ++ * below, then you are not authorized to use the Software. ++ * ++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS ++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, ++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH ++ * DAMAGE. ++ * ========================================================================== */ ++ ++#ifndef __DWC_OTG_REGS_H__ ++#define __DWC_OTG_REGS_H__ ++ ++/** ++ * @file ++ * ++ * This file contains the data structures for accessing the DWC_otg core registers. ++ * ++ * The application interfaces with the HS OTG core by reading from and ++ * writing to the Control and Status Register (CSR) space through the ++ * AHB Slave interface. These registers are 32 bits wide, and the ++ * addresses are 32-bit-block aligned. ++ * CSRs are classified as follows: ++ * - Core Global Registers ++ * - Device Mode Registers ++ * - Device Global Registers ++ * - Device Endpoint Specific Registers ++ * - Host Mode Registers ++ * - Host Global Registers ++ * - Host Port CSRs ++ * - Host Channel Specific Registers ++ * ++ * Only the Core Global registers can be accessed in both Device and ++ * Host modes. When the HS OTG core is operating in one mode, either ++ * Device or Host, the application must not access registers from the ++ * other mode. When the core switches from one mode to another, the ++ * registers in the new mode of operation must be reprogrammed as they ++ * would be after a power-on reset. ++ */ ++ ++/** Maximum number of Periodic FIFOs */ ++#define MAX_PERIO_FIFOS 15 ++/** Maximum number of Transmit FIFOs */ ++#define MAX_TX_FIFOS 15 ++ ++/** Maximum number of Endpoints/HostChannels */ ++#define MAX_EPS_CHANNELS 16 ++ ++/****************************************************************************/ ++/** DWC_otg Core registers . ++ * The dwc_otg_core_global_regs structure defines the size ++ * and relative field offsets for the Core Global registers. ++ */ ++typedef struct dwc_otg_core_global_regs ++{ ++ /** OTG Control and Status Register. <i>Offset: 000h</i> */ ++ volatile uint32_t gotgctl; ++ /** OTG Interrupt Register. <i>Offset: 004h</i> */ ++ volatile uint32_t gotgint; ++ /**Core AHB Configuration Register. <i>Offset: 008h</i> */ ++ volatile uint32_t gahbcfg; ++ ++#define DWC_GLBINTRMASK 0x0001 ++#define DWC_DMAENABLE 0x0020 ++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080 ++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000 ++#define DWC_PTXEMPTYLVL_EMPTY 0x0100 ++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000 ++ ++ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */ ++ volatile uint32_t gusbcfg; ++ /**Core Reset Register. <i>Offset: 010h</i> */ ++ volatile uint32_t grstctl; ++ /**Core Interrupt Register. <i>Offset: 014h</i> */ ++ volatile uint32_t gintsts; ++ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */ ++ volatile uint32_t gintmsk; ++ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */ ++ volatile uint32_t grxstsr; ++ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/ ++ volatile uint32_t grxstsp; ++ /**Receive FIFO Size Register. <i>Offset: 024h</i> */ ++ volatile uint32_t grxfsiz; ++ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */ ++ volatile uint32_t gnptxfsiz; ++ /**Non Periodic Transmit FIFO/Queue Status Register (Read ++ * Only). <i>Offset: 02Ch</i> */ ++ volatile uint32_t gnptxsts; ++ /**I2C Access Register. <i>Offset: 030h</i> */ ++ volatile uint32_t gi2cctl; ++ /**PHY Vendor Control Register. <i>Offset: 034h</i> */ ++ volatile uint32_t gpvndctl; ++ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */ ++ volatile uint32_t ggpio; ++ /**User ID Register. <i>Offset: 03Ch</i> */ ++ volatile uint32_t guid; ++ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */ ++ volatile uint32_t gsnpsid; ++ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */ ++ volatile uint32_t ghwcfg1; ++ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */ ++ volatile uint32_t ghwcfg2; ++#define DWC_SLAVE_ONLY_ARCH 0 ++#define DWC_EXT_DMA_ARCH 1 ++#define DWC_INT_DMA_ARCH 2 ++ ++#define DWC_MODE_HNP_SRP_CAPABLE 0 ++#define DWC_MODE_SRP_ONLY_CAPABLE 1 ++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2 ++#define DWC_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6 ++ ++ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */ ++ volatile uint32_t ghwcfg3; ++ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/ ++ volatile uint32_t ghwcfg4; ++ /** Reserved <i>Offset: 054h-0FFh</i> */ ++ volatile uint32_t reserved[43]; ++ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */ ++ volatile uint32_t hptxfsiz; ++ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled, ++ otherwise Device Transmit FIFO#n Register. ++ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */ ++ volatile uint32_t dptxfsiz_dieptxf[15]; ++} dwc_otg_core_global_regs_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Control ++ * and Status Register (GOTGCTL). Set the bits using the bit ++ * fields then write the <i>d32</i> value to the register. ++ */ ++typedef union gotgctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned sesreqscs : 1; ++ unsigned sesreq : 1; ++ unsigned reserved2_7 : 6; ++ unsigned hstnegscs : 1; ++ unsigned hnpreq : 1; ++ unsigned hstsethnpen : 1; ++ unsigned devhnpen : 1; ++ unsigned reserved12_15 : 4; ++ unsigned conidsts : 1; ++ unsigned reserved17 : 1; ++ unsigned asesvld : 1; ++ unsigned bsesvld : 1; ++ unsigned currmod : 1; ++ unsigned reserved21_31 : 11; ++ } b; ++} gotgctl_data_t; ++ ++/** ++ * This union represents the bit fields of the Core OTG Interrupt Register ++ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i> ++ * value to the register. ++ */ ++typedef union gotgint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Current Mode */ ++ unsigned reserved0_1 : 2; ++ ++ /** Session End Detected */ ++ unsigned sesenddet : 1; ++ ++ unsigned reserved3_7 : 5; ++ ++ /** Session Request Success Status Change */ ++ unsigned sesreqsucstschng : 1; ++ /** Host Negotiation Success Status Change */ ++ unsigned hstnegsucstschng : 1; ++ ++ unsigned reserver10_16 : 7; ++ ++ /** Host Negotiation Detected */ ++ unsigned hstnegdet : 1; ++ /** A-Device Timeout Change */ ++ unsigned adevtoutchng : 1; ++ /** Debounce Done */ ++ unsigned debdone : 1; ++ ++ unsigned reserved31_20 : 12; ++ ++ } b; ++} gotgint_data_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core AHB Configuration ++ * Register (GAHBCFG). Set/clear the bits using the bit fields then ++ * write the <i>d32</i> value to the register. ++ */ ++typedef union gahbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned glblintrmsk : 1; ++#define DWC_GAHBCFG_GLBINT_ENABLE 1 ++ ++ unsigned hburstlen : 4; ++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5 ++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7 ++ ++ unsigned dmaenable : 1; ++#define DWC_GAHBCFG_DMAENABLE 1 ++ unsigned reserved : 1; ++ unsigned nptxfemplvl_txfemplvl : 1; ++ unsigned ptxfemplvl : 1; ++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1 ++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0 ++ unsigned reserved9_31 : 23; ++ } b; ++} gahbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core USB Configuration ++ * Register (GUSBCFG). Set the bits using the bit fields then write ++ * the <i>d32</i> value to the register. ++ */ ++typedef union gusbcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned toutcal : 3; ++ unsigned phyif : 1; ++ unsigned ulpi_utmi_sel : 1; ++ unsigned fsintf : 1; ++ unsigned physel : 1; ++ unsigned ddrsel : 1; ++ unsigned srpcap : 1; ++ unsigned hnpcap : 1; ++ unsigned usbtrdtim : 4; ++ unsigned nptxfrwnden : 1; ++ unsigned phylpwrclksel : 1; ++ unsigned otgutmifssel : 1; ++ unsigned ulpi_fsls : 1; ++ unsigned ulpi_auto_res : 1; ++ unsigned ulpi_clk_sus_m : 1; ++ unsigned ulpi_ext_vbus_drv : 1; ++ unsigned ulpi_int_vbus_indicator : 1; ++ unsigned term_sel_dl_pulse : 1; ++ unsigned reserved23_27 : 5; ++ unsigned tx_end_delay : 1; ++ unsigned reserved29_31 : 3; ++ } b; ++} gusbcfg_data_t; ++ ++/** ++ * This union represents the bit fields of the Core Reset Register ++ * (GRSTCTL). Set/clear the bits using the bit fields then write the ++ * <i>d32</i> value to the register. ++ */ ++typedef union grstctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Core Soft Reset (CSftRst) (Device and Host) ++ * ++ * The application can flush the control logic in the ++ * entire core using this bit. This bit resets the ++ * pipelines in the AHB Clock domain as well as the ++ * PHY Clock domain. ++ * ++ * The state machines are reset to an IDLE state, the ++ * control bits in the CSRs are cleared, all the ++ * transmit FIFOs and the receive FIFO are flushed. ++ * ++ * The status mask bits that control the generation of ++ * the interrupt, are cleared, to clear the ++ * interrupt. The interrupt status bits are not ++ * cleared, so the application can get the status of ++ * any events that occurred in the core after it has ++ * set this bit. ++ * ++ * Any transactions on the AHB are terminated as soon ++ * as possible following the protocol. Any ++ * transactions on the USB are terminated immediately. ++ * ++ * The configuration settings in the CSRs are ++ * unchanged, so the software doesn't have to ++ * reprogram these registers (Device ++ * Configuration/Host Configuration/Core System ++ * Configuration/Core PHY Configuration). ++ * ++ * The application can write to this bit, any time it ++ * wants to reset the core. This is a self clearing ++ * bit and the core clears this bit after all the ++ * necessary logic is reset in the core, which may ++ * take several clocks, depending on the current state ++ * of the core. ++ */ ++ unsigned csftrst : 1; ++ /** Hclk Soft Reset ++ * ++ * The application uses this bit to reset the control logic in ++ * the AHB clock domain. Only AHB clock domain pipelines are ++ * reset. ++ */ ++ unsigned hsftrst : 1; ++ /** Host Frame Counter Reset (Host Only)<br> ++ * ++ * The application can reset the (micro)frame number ++ * counter inside the core, using this bit. When the ++ * (micro)frame counter is reset, the subsequent SOF ++ * sent out by the core, will have a (micro)frame ++ * number of 0. ++ */ ++ unsigned hstfrm : 1; ++ /** In Token Sequence Learning Queue Flush ++ * (INTknQFlsh) (Device Only) ++ */ ++ unsigned intknqflsh : 1; ++ /** RxFIFO Flush (RxFFlsh) (Device and Host) ++ * ++ * The application can flush the entire Receive FIFO ++ * using this bit. <p>The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is reading from the RxFIFO nor the MAC ++ * is writing the data in to the FIFO. <p>The ++ * application should wait until the bit is cleared ++ * before performing any other operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned rxfflsh : 1; ++ /** TxFIFO Flush (TxFFlsh) (Device and Host). ++ * ++ * This bit is used to selectively flush a single or ++ * all transmit FIFOs. The application must first ++ * ensure that the core is not in the middle of a ++ * transaction. <p>The application should write into ++ * this bit, only after making sure that neither the ++ * DMA engine is writing into the TxFIFO nor the MAC ++ * is reading the data out of the FIFO. <p>The ++ * application should wait until the core clears this ++ * bit, before performing any operations. This bit ++ * will takes 8 clocks (slowest of PHY or AHB clock) ++ * to clear. ++ */ ++ unsigned txfflsh : 1; ++ /** TxFIFO Number (TxFNum) (Device and Host). ++ * ++ * This is the FIFO number which needs to be flushed, ++ * using the TxFIFO Flush bit. This field should not ++ * be changed until the TxFIFO Flush bit is cleared by ++ * the core. ++ * - 0x0 : Non Periodic TxFIFO Flush ++ * - 0x1 : Periodic TxFIFO #1 Flush in device mode ++ * or Periodic TxFIFO in host mode ++ * - 0x2 : Periodic TxFIFO #2 Flush in device mode. ++ * - ... ++ * - 0xF : Periodic TxFIFO #15 Flush in device mode ++ * - 0x10: Flush all the Transmit NonPeriodic and ++ * Transmit Periodic FIFOs in the core ++ */ ++ unsigned txfnum : 5; ++ /** Reserved */ ++ unsigned reserved11_29 : 19; ++ /** DMA Request Signal. Indicated DMA request is in ++ * probress. Used for debug purpose. */ ++ unsigned dmareq : 1; ++ /** AHB Master Idle. Indicates the AHB Master State ++ * Machine is in IDLE condition. */ ++ unsigned ahbidle : 1; ++ } b; ++} grstctl_t; ++ ++ ++/** ++ * This union represents the bit fields of the Core Interrupt Mask ++ * Register (GINTMSK). Set/clear the bits using the bit fields then ++ * write the <i>d32</i> value to the register. ++ */ ++typedef union gintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned reserved0 : 1; ++ unsigned modemismatch : 1; ++ unsigned otgintr : 1; ++ unsigned sofintr : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned nptxfempty : 1; ++ unsigned ginnakeff : 1; ++ unsigned goutnakeff : 1; ++ unsigned reserved8 : 1; ++ unsigned i2cintr : 1; ++ unsigned erlysuspend : 1; ++ unsigned usbsuspend : 1; ++ unsigned usbreset : 1; ++ unsigned enumdone : 1; ++ unsigned isooutdrop : 1; ++ unsigned eopframe : 1; ++ unsigned reserved16 : 1; ++ unsigned epmismatch : 1; ++ unsigned inepintr : 1; ++ unsigned outepintr : 1; ++ unsigned incomplisoin : 1; ++ unsigned incomplisoout : 1; ++ unsigned reserved22_23 : 2; ++ unsigned portintr : 1; ++ unsigned hcintr : 1; ++ unsigned ptxfempty : 1; ++ unsigned reserved27 : 1; ++ unsigned conidstschng : 1; ++ unsigned disconnect : 1; ++ unsigned sessreqintr : 1; ++ unsigned wkupintr : 1; ++ } b; ++} gintmsk_data_t; ++/** ++ * This union represents the bit fields of the Core Interrupt Register ++ * (GINTSTS). Set/clear the bits using the bit fields then write the ++ * <i>d32</i> value to the register. ++ */ ++typedef union gintsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++#define DWC_SOF_INTR_MASK 0x0008 ++ /** register bits */ ++ struct ++ { ++#define DWC_HOST_MODE 1 ++ unsigned curmode : 1; ++ unsigned modemismatch : 1; ++ unsigned otgintr : 1; ++ unsigned sofintr : 1; ++ unsigned rxstsqlvl : 1; ++ unsigned nptxfempty : 1; ++ unsigned ginnakeff : 1; ++ unsigned goutnakeff : 1; ++ unsigned reserved8 : 1; ++ unsigned i2cintr : 1; ++ unsigned erlysuspend : 1; ++ unsigned usbsuspend : 1; ++ unsigned usbreset : 1; ++ unsigned enumdone : 1; ++ unsigned isooutdrop : 1; ++ unsigned eopframe : 1; ++ unsigned intokenrx : 1; ++ unsigned epmismatch : 1; ++ unsigned inepint: 1; ++ unsigned outepintr : 1; ++ unsigned incomplisoin : 1; ++ unsigned incomplisoout : 1; ++ unsigned reserved22_23 : 2; ++ unsigned portintr : 1; ++ unsigned hcintr : 1; ++ unsigned ptxfempty : 1; ++ unsigned reserved27 : 1; ++ unsigned conidstschng : 1; ++ unsigned disconnect : 1; ++ unsigned sessreqintr : 1; ++ unsigned wkupintr : 1; ++ } b; ++} gintsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> ++ * element then read out the bits using the <i>b</i>it elements. ++ */ ++typedef union device_grxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned epnum : 4; ++ unsigned bcnt : 11; ++ unsigned dpid : 2; ++#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet ++#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete ++ ++#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK ++#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete ++#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet ++ unsigned pktsts : 4; ++ unsigned fn : 4; ++ unsigned reserved : 7; ++ } b; ++} device_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Receive Status Read and ++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i> ++ * element then read out the bits using the <i>b</i>it elements. ++ */ ++typedef union host_grxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned chnum : 4; ++ unsigned bcnt : 11; ++ unsigned dpid : 2; ++ unsigned pktsts : 4; ++#define DWC_GRXSTS_PKTSTS_IN 0x2 ++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3 ++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5 ++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7 ++ unsigned reserved : 11; ++ } b; ++} host_grxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ, ++ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then ++ * read out the bits using the <i>b</i>it elements. ++ */ ++typedef union fifosize_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned startaddr : 16; ++ unsigned depth : 16; ++ } b; ++} fifosize_data_t; ++ ++/** ++ * This union represents the bit fields in the Non-Periodic Transmit ++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the ++ * <i>d32</i> element then read out the bits using the <i>b</i>it ++ * elements. ++ */ ++typedef union gnptxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned nptxfspcavail : 16; ++ unsigned nptxqspcavail : 8; ++ /** Top of the Non-Periodic Transmit Request Queue ++ * - bit 24 - Terminate (Last entry for the selected ++ * channel/EP) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - IN/OUT ++ * - 2'b01 - Zero Length OUT ++ * - 2'b10 - PING/Complete Split ++ * - 2'b11 - Channel Halt ++ * - bits 30:27 - Channel/EP Number ++ */ ++ unsigned nptxqtop_terminate : 1; ++ unsigned nptxqtop_token : 2; ++ unsigned nptxqtop_chnep : 4; ++ unsigned reserved : 1; ++ } b; ++} gnptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Transmit ++ * FIFO Status Register (DTXFSTS). Read the register into the ++ * <i>d32</i> element then read out the bits using the <i>b</i>it ++ * elements. ++ */ ++typedef union dtxfsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned txfspcavail : 16; ++ unsigned reserved : 16; ++ } b; ++} dtxfsts_data_t; ++ ++/** ++ * This union represents the bit fields in the I2C Control Register ++ * (I2CCTL). Read the register into the <i>d32</i> element then read out the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union gi2cctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned rwdata : 8; ++ unsigned regaddr : 8; ++ unsigned addr : 7; ++ unsigned i2cen : 1; ++ unsigned ack : 1; ++ unsigned i2csuspctl : 1; ++ unsigned i2cdevaddr : 2; ++ unsigned reserved : 2; ++ unsigned rw : 1; ++ unsigned bsydne : 1; ++ } b; ++} gi2cctl_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config1 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg1_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned ep_dir0 : 2; ++ unsigned ep_dir1 : 2; ++ unsigned ep_dir2 : 2; ++ unsigned ep_dir3 : 2; ++ unsigned ep_dir4 : 2; ++ unsigned ep_dir5 : 2; ++ unsigned ep_dir6 : 2; ++ unsigned ep_dir7 : 2; ++ unsigned ep_dir8 : 2; ++ unsigned ep_dir9 : 2; ++ unsigned ep_dir10 : 2; ++ unsigned ep_dir11 : 2; ++ unsigned ep_dir12 : 2; ++ unsigned ep_dir13 : 2; ++ unsigned ep_dir14 : 2; ++ unsigned ep_dir15 : 2; ++ } b; ++} hwcfg1_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config2 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg2_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /* GHWCFG2 */ ++ unsigned op_mode : 3; ++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0 ++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1 ++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4 ++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5 ++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6 ++ ++ unsigned architecture : 2; ++ unsigned point2point : 1; ++ unsigned hs_phy_type : 2; ++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1 ++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2 ++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3 ++ ++ unsigned fs_phy_type : 2; ++ unsigned num_dev_ep : 4; ++ unsigned num_host_chan : 4; ++ unsigned perio_ep_supported : 1; ++ unsigned dynamic_fifo : 1; ++ unsigned multi_proc_int : 1; ++ unsigned reserved21 : 1; ++ unsigned nonperio_tx_q_depth : 2; ++ unsigned host_perio_tx_q_depth : 2; ++ unsigned dev_token_q_depth : 5; ++ unsigned reserved31 : 1; ++ } b; ++} hwcfg2_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config3 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg3_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /* GHWCFG3 */ ++ unsigned xfer_size_cntr_width : 4; ++ unsigned packet_size_cntr_width : 3; ++ unsigned otg_func : 1; ++ unsigned i2c : 1; ++ unsigned vendor_ctrl_if : 1; ++ unsigned optional_features : 1; ++ unsigned synch_reset_type : 1; ++ unsigned ahb_phy_clock_synch : 1; ++ unsigned reserved15_13 : 3; ++ unsigned dfifo_depth : 16; ++ } b; ++} hwcfg3_data_t; ++ ++/** ++ * This union represents the bit fields in the User HW Config4 ++ * Register. Read the register into the <i>d32</i> element then read ++ * out the bits using the <i>b</i>it elements. ++ */ ++typedef union hwcfg4_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned num_dev_perio_in_ep : 4; ++ unsigned power_optimiz : 1; ++ unsigned min_ahb_freq : 9; ++ unsigned utmi_phy_data_width : 2; ++ unsigned num_dev_mode_ctrl_ep : 4; ++ unsigned iddig_filt_en : 1; ++ unsigned vbus_valid_filt_en : 1; ++ unsigned a_valid_filt_en : 1; ++ unsigned b_valid_filt_en : 1; ++ unsigned session_end_filt_en : 1; ++ unsigned ded_fifo_en : 1; ++ unsigned num_in_eps : 4; ++ unsigned desc_dma : 1; ++ unsigned desc_dma_dyn : 1; ++ } b; ++} hwcfg4_data_t; ++ ++//////////////////////////////////////////// ++// Device Registers ++/** ++ * Device Global Registers. <i>Offsets 800h-BFFh</i> ++ * ++ * The following structures define the size and relative field offsets ++ * for the Device Mode Registers. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_global_regs ++{ ++ /** Device Configuration Register. <i>Offset 800h</i> */ ++ volatile uint32_t dcfg; ++ /** Device Control Register. <i>Offset: 804h</i> */ ++ volatile uint32_t dctl; ++ /** Device Status Register (Read Only). <i>Offset: 808h</i> */ ++ volatile uint32_t dsts; ++ /** Reserved. <i>Offset: 80Ch</i> */ ++ uint32_t unused; ++ /** Device IN Endpoint Common Interrupt Mask ++ * Register. <i>Offset: 810h</i> */ ++ volatile uint32_t diepmsk; ++ /** Device OUT Endpoint Common Interrupt Mask ++ * Register. <i>Offset: 814h</i> */ ++ volatile uint32_t doepmsk; ++ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */ ++ volatile uint32_t daint; ++ /** Device All Endpoints Interrupt Mask Register. <i>Offset: ++ * 81Ch</i> */ ++ volatile uint32_t daintmsk; ++ /** Device IN Token Queue Read Register-1 (Read Only). ++ * <i>Offset: 820h</i> */ ++ volatile uint32_t dtknqr1; ++ /** Device IN Token Queue Read Register-2 (Read Only). ++ * <i>Offset: 824h</i> */ ++ volatile uint32_t dtknqr2; ++ /** Device VBUS discharge Register. <i>Offset: 828h</i> */ ++ volatile uint32_t dvbusdis; ++ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */ ++ volatile uint32_t dvbuspulse; ++ /** Device IN Token Queue Read Register-3 (Read Only). / ++ * Device Thresholding control register (Read/Write) ++ * <i>Offset: 830h</i> */ ++ volatile uint32_t dtknqr3_dthrctl; ++ /** Device IN Token Queue Read Register-4 (Read Only). / ++ * Device IN EPs empty Inr. Mask Register (Read/Write) ++ * <i>Offset: 834h</i> */ ++ volatile uint32_t dtknqr4_fifoemptymsk; ++ /** Device Each Endpoint Interrupt Register (Read Only). / ++ * <i>Offset: 838h</i> */ ++ volatile uint32_t deachint; ++ /** Device Each Endpoint Interrupt mask Register (Read/Write). / ++ * <i>Offset: 83Ch</i> */ ++ volatile uint32_t deachintmsk; ++ /** Device Each In Endpoint Interrupt mask Register (Read/Write). / ++ * <i>Offset: 840h</i> */ ++ volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS]; ++ /** Device Each Out Endpoint Interrupt mask Register (Read/Write). / ++ * <i>Offset: 880h</i> */ ++ volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS]; ++} dwc_otg_device_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device Configuration ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. Write the ++ * <i>d32</i> member to the dcfg register. ++ */ ++typedef union dcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Device Speed */ ++ unsigned devspd : 2; ++ /** Non Zero Length Status OUT Handshake */ ++ unsigned nzstsouthshk : 1; ++#define DWC_DCFG_SEND_STALL 1 ++ ++ unsigned reserved3 : 1; ++ /** Device Addresses */ ++ unsigned devaddr : 7; ++ /** Periodic Frame Interval */ ++ unsigned perfrint : 2; ++#define DWC_DCFG_FRAME_INTERVAL_80 0 ++#define DWC_DCFG_FRAME_INTERVAL_85 1 ++#define DWC_DCFG_FRAME_INTERVAL_90 2 ++#define DWC_DCFG_FRAME_INTERVAL_95 3 ++ ++ unsigned reserved13_17 : 5; ++ /** In Endpoint Mis-match count */ ++ unsigned epmscnt : 5; ++ /** Enable Descriptor DMA in Device mode */ ++ unsigned descdma : 1; ++ } b; ++} dcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Control ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union dctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Remote Wakeup */ ++ unsigned rmtwkupsig : 1; ++ /** Soft Disconnect */ ++ unsigned sftdiscon : 1; ++ /** Global Non-Periodic IN NAK Status */ ++ unsigned gnpinnaksts : 1; ++ /** Global OUT NAK Status */ ++ unsigned goutnaksts : 1; ++ /** Test Control */ ++ unsigned tstctl : 3; ++ /** Set Global Non-Periodic IN NAK */ ++ unsigned sgnpinnak : 1; ++ /** Clear Global Non-Periodic IN NAK */ ++ unsigned cgnpinnak : 1; ++ /** Set Global OUT NAK */ ++ unsigned sgoutnak : 1; ++ /** Clear Global OUT NAK */ ++ unsigned cgoutnak : 1; ++ ++ /** Power-On Programming Done */ ++ unsigned pwronprgdone : 1; ++ /** Global Continue on BNA */ ++ unsigned gcontbna : 1; ++ /** Global Multi Count */ ++ unsigned gmc : 2; ++ /** Ignore Frame Number for ISOC EPs */ ++ unsigned ifrmnum : 1; ++ /** NAK on Babble */ ++ unsigned nakonbble : 1; ++ ++ unsigned reserved16_31 : 16; ++ } b; ++} dctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device Status ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union dsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Suspend Status */ ++ unsigned suspsts : 1; ++ /** Enumerated Speed */ ++ unsigned enumspd : 2; ++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0 ++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1 ++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2 ++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3 ++ /** Erratic Error */ ++ unsigned errticerr : 1; ++ unsigned reserved4_7: 4; ++ /** Frame or Microframe Number of the received SOF */ ++ unsigned soffn : 14; ++ unsigned reserved22_31 : 10; ++ } b; ++} dsts_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Device IN EP Interrupt ++ * Register and the Device IN EP Common Mask Register. ++ * ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union diepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Transfer complete mask */ ++ unsigned xfercompl : 1; ++ /** Endpoint disable mask */ ++ unsigned epdisabled : 1; ++ /** AHB Error mask */ ++ unsigned ahberr : 1; ++ /** TimeOUT Handshake mask (non-ISOC EPs) */ ++ unsigned timeout : 1; ++ /** IN Token received with TxF Empty mask */ ++ unsigned intktxfemp : 1; ++ /** IN Token Received with EP mismatch mask */ ++ unsigned intknepmis : 1; ++ /** IN Endpoint HAK Effective mask */ ++ unsigned inepnakeff : 1; ++ /** IN Endpoint HAK Effective mask */ ++ unsigned emptyintr : 1; ++ unsigned txfifoundrn : 1; ++ ++ /** BNA Interrupt mask */ ++ unsigned bna : 1; ++ unsigned reserved10_12 : 3; ++ /** BNA Interrupt mask */ ++ unsigned nak : 1; ++ unsigned reserved14_31 : 18; ++ } b; ++} diepint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device IN EP ++ * Common/Dedicated Interrupt Mask Register. ++ */ ++typedef union diepint_data diepmsk_data_t; ++ ++/** ++ * This union represents the bit fields in the Device OUT EP Interrupt ++ * Registerand Device OUT EP Common Interrupt Mask Register. ++ * ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union doepint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Transfer complete */ ++ unsigned xfercompl : 1; ++ /** Endpoint disable */ ++ unsigned epdisabled : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** Setup Phase Done (contorl EPs) */ ++ unsigned setup : 1; ++ /** OUT Token Received when Endpoint Disabled */ ++ unsigned outtknepdis : 1; ++ unsigned stsphsercvd : 1; ++ /** Back-to-Back SETUP Packets Received */ ++ unsigned back2backsetup : 1; ++ unsigned reserved7 : 1; ++ /** OUT packet Error */ ++ unsigned outpkterr : 1; ++ /** BNA Interrupt */ ++ unsigned bna : 1; ++ unsigned reserved10 : 1; ++ /** Packet Drop Status */ ++ unsigned pktdrpsts : 1; ++ /** Babble Interrupt */ ++ unsigned babble : 1; ++ /** NAK Interrupt */ ++ unsigned nak : 1; ++ /** NYET Interrupt */ ++ unsigned nyet : 1; ++ ++ unsigned reserved15_31 : 17; ++ } b; ++} doepint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device OUT EP ++ * Common/Dedicated Interrupt Mask Register. ++ */ ++typedef union doepint_data doepmsk_data_t; ++ ++/** ++ * This union represents the bit fields in the Device All EP Interrupt ++ * and Mask Registers. ++ * - Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union daint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** IN Endpoint bits */ ++ unsigned in : 16; ++ /** OUT Endpoint bits */ ++ unsigned out : 16; ++ } ep; ++ struct ++ { ++ /** IN Endpoint bits */ ++ unsigned inep0 : 1; ++ unsigned inep1 : 1; ++ unsigned inep2 : 1; ++ unsigned inep3 : 1; ++ unsigned inep4 : 1; ++ unsigned inep5 : 1; ++ unsigned inep6 : 1; ++ unsigned inep7 : 1; ++ unsigned inep8 : 1; ++ unsigned inep9 : 1; ++ unsigned inep10 : 1; ++ unsigned inep11 : 1; ++ unsigned inep12 : 1; ++ unsigned inep13 : 1; ++ unsigned inep14 : 1; ++ unsigned inep15 : 1; ++ /** OUT Endpoint bits */ ++ unsigned outep0 : 1; ++ unsigned outep1 : 1; ++ unsigned outep2 : 1; ++ unsigned outep3 : 1; ++ unsigned outep4 : 1; ++ unsigned outep5 : 1; ++ unsigned outep6 : 1; ++ unsigned outep7 : 1; ++ unsigned outep8 : 1; ++ unsigned outep9 : 1; ++ unsigned outep10 : 1; ++ unsigned outep11 : 1; ++ unsigned outep12 : 1; ++ unsigned outep13 : 1; ++ unsigned outep14 : 1; ++ unsigned outep15 : 1; ++ } b; ++} daint_data_t; ++ ++/** ++ * This union represents the bit fields in the Device IN Token Queue ++ * Read Registers. ++ * - Read the register into the <i>d32</i> member. ++ * - READ-ONLY Register ++ */ ++typedef union dtknq1_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** In Token Queue Write Pointer */ ++ unsigned intknwptr : 5; ++ /** Reserved */ ++ unsigned reserved05_06 : 2; ++ /** write pointer has wrapped. */ ++ unsigned wrap_bit : 1; ++ /** EP Numbers of IN Tokens 0 ... 4 */ ++ unsigned epnums0_5 : 24; ++ }b; ++} dtknq1_data_t; ++ ++/** ++ * This union represents Threshold control Register ++ * - Read and write the register into the <i>d32</i> member. ++ * - READ-WRITABLE Register ++ */ ++typedef union dthrctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** non ISO Tx Thr. Enable */ ++ unsigned non_iso_thr_en : 1; ++ /** ISO Tx Thr. Enable */ ++ unsigned iso_thr_en : 1; ++ /** Tx Thr. Length */ ++ unsigned tx_thr_len : 9; ++ /** Reserved */ ++ unsigned reserved11_15 : 5; ++ /** Rx Thr. Enable */ ++ unsigned rx_thr_en : 1; ++ /** Rx Thr. Length */ ++ unsigned rx_thr_len : 9; ++ /** Reserved */ ++ unsigned reserved26_31 : 6; ++ }b; ++} dthrctl_data_t; ++ ++ ++/** ++ * Device Logical IN Endpoint-Specific Registers. <i>Offsets ++ * 900h-AFCh</i> ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_in_ep_regs ++{ ++ /** Device IN Endpoint Control Register. <i>Offset:900h + ++ * (ep_num * 20h) + 00h</i> */ ++ volatile uint32_t diepctl; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */ ++ uint32_t reserved04; ++ /** Device IN Endpoint Interrupt Register. <i>Offset:900h + ++ * (ep_num * 20h) + 08h</i> */ ++ volatile uint32_t diepint; ++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */ ++ uint32_t reserved0C; ++ /** Device IN Endpoint Transfer Size ++ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */ ++ volatile uint32_t dieptsiz; ++ /** Device IN Endpoint DMA Address Register. <i>Offset:900h + ++ * (ep_num * 20h) + 14h</i> */ ++ volatile uint32_t diepdma; ++ /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h + ++ * (ep_num * 20h) + 18h</i> */ ++ volatile uint32_t dtxfsts; ++ /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h + ++ * (ep_num * 20h) + 1Ch</i> */ ++ volatile uint32_t diepdmab; ++} dwc_otg_dev_in_ep_regs_t; ++ ++/** ++ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets: ++ * B00h-CFCh</i> ++ * ++ * There will be one set of endpoint registers per logical endpoint ++ * implemented. ++ * ++ * <i>These registers are visible only in Device mode and must not be ++ * accessed in Host mode, as the results are unknown.</i> ++ */ ++typedef struct dwc_otg_dev_out_ep_regs ++{ ++ /** Device OUT Endpoint Control Register. <i>Offset:B00h + ++ * (ep_num * 20h) + 00h</i> */ ++ volatile uint32_t doepctl; ++ /** Device OUT Endpoint Frame number Register. <i>Offset: ++ * B00h + (ep_num * 20h) + 04h</i> */ ++ volatile uint32_t doepfn; ++ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h + ++ * (ep_num * 20h) + 08h</i> */ ++ volatile uint32_t doepint; ++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */ ++ uint32_t reserved0C; ++ /** Device OUT Endpoint Transfer Size Register. <i>Offset: ++ * B00h + (ep_num * 20h) + 10h</i> */ ++ volatile uint32_t doeptsiz; ++ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h ++ * + (ep_num * 20h) + 14h</i> */ ++ volatile uint32_t doepdma; ++ /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */ ++ uint32_t unused; ++ /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h ++ * + (ep_num * 20h) + 1Ch</i> */ ++ uint32_t doepdmab; ++} dwc_otg_dev_out_ep_regs_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Control ++ * Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union depctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Maximum Packet Size ++ * IN/OUT EPn ++ * IN/OUT EP0 - 2 bits ++ * 2'b00: 64 Bytes ++ * 2'b01: 32 ++ * 2'b10: 16 ++ * 2'b11: 8 */ ++ unsigned mps : 11; ++#define DWC_DEP0CTL_MPS_64 0 ++#define DWC_DEP0CTL_MPS_32 1 ++#define DWC_DEP0CTL_MPS_16 2 ++#define DWC_DEP0CTL_MPS_8 3 ++ ++ /** Next Endpoint ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned nextep : 4; ++ ++ /** USB Active Endpoint */ ++ unsigned usbactep : 1; ++ ++ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints) ++ * This field contains the PID of the packet going to ++ * be received or transmitted on this endpoint. The ++ * application should program the PID of the first ++ * packet going to be received or transmitted on this ++ * endpoint , after the endpoint is ++ * activated. Application use the SetD1PID and ++ * SetD0PID fields of this register to program either ++ * D0 or D1 PID. ++ * ++ * The encoding for this field is ++ * - 0: D0 ++ * - 1: D1 ++ */ ++ unsigned dpid : 1; ++ ++ /** NAK Status */ ++ unsigned naksts : 1; ++ ++ /** Endpoint Type ++ * 2'b00: Control ++ * 2'b01: Isochronous ++ * 2'b10: Bulk ++ * 2'b11: Interrupt */ ++ unsigned eptype : 2; ++ ++ /** Snoop Mode ++ * OUT EPn/OUT EP0 ++ * IN EPn/IN EP0 - reserved */ ++ unsigned snp : 1; ++ ++ /** Stall Handshake */ ++ unsigned stall : 1; ++ ++ /** Tx Fifo Number ++ * IN EPn/IN EP0 ++ * OUT EPn/OUT EP0 - reserved */ ++ unsigned txfnum : 4; ++ ++ /** Clear NAK */ ++ unsigned cnak : 1; ++ /** Set NAK */ ++ unsigned snak : 1; ++ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA0. Set Even ++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to even (micro) ++ * frame. ++ */ ++ unsigned setd0pid : 1; ++ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints) ++ * Writing to this field sets the Endpoint DPID (DPID) ++ * field in this register to DATA1 Set Odd ++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints) ++ * Writing to this field sets the Even/Odd ++ * (micro)frame (EO_FrNum) field to odd (micro) frame. ++ */ ++ unsigned setd1pid : 1; ++ /** Endpoint Disable */ ++ unsigned epdis : 1; ++ /** Endpoint Enable */ ++ unsigned epena : 1; ++ } b; ++} depctl_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP Transfer ++ * Size Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union deptsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Transfer size */ ++ unsigned xfersize : 19; ++ /** Packet Count */ ++ unsigned pktcnt : 10; ++ /** Multi Count - Periodic IN endpoints */ ++ unsigned mc : 2; ++ unsigned reserved : 1; ++ } b; ++} deptsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Device EP 0 Transfer ++ * Size Register. Read the register into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it elements. ++ */ ++typedef union deptsiz0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct { ++ /** Transfer size */ ++ unsigned xfersize : 7; ++ /** Reserved */ ++ unsigned reserved7_18 : 12; ++ /** Packet Count */ ++ unsigned pktcnt : 1; ++ /** Reserved */ ++ unsigned reserved20_28 : 9; ++ /**Setup Packet Count (DOEPTSIZ0 Only) */ ++ unsigned supcnt : 2; ++ unsigned reserved31; ++ } b; ++} deptsiz0_data_t; ++ ++ ++///////////////////////////////////////////////// ++// DMA Descriptor Specific Structures ++// ++ ++/** Buffer status definitions */ ++ ++#define BS_HOST_READY 0x0 ++#define BS_DMA_BUSY 0x1 ++#define BS_DMA_DONE 0x2 ++#define BS_HOST_BUSY 0x3 ++ ++/** Receive/Transmit status definitions */ ++ ++#define RTS_SUCCESS 0x0 ++#define RTS_BUFFLUSH 0x1 ++#define RTS_RESERVED 0x2 ++#define RTS_BUFERR 0x3 ++ ++ ++/** ++ * This union represents the bit fields in the DMA Descriptor ++ * status quadlet. Read the quadlet into the <i>d32</i> member then ++ * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and ++ * <i>b_iso_in</i> elements. ++ */ ++typedef union desc_sts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** quadlet bits */ ++ struct { ++ /** Received number of bytes */ ++ unsigned bytes : 16; ++ ++ unsigned reserved16_22 : 7; ++ /** Multiple Transfer - only for OUT EPs */ ++ unsigned mtrf : 1; ++ /** Setup Packet received - only for OUT EPs */ ++ unsigned sr : 1; ++ /** Interrupt On Complete */ ++ unsigned ioc : 1; ++ /** Short Packet */ ++ unsigned sp : 1; ++ /** Last */ ++ unsigned l : 1; ++ /** Receive Status */ ++ unsigned sts : 2; ++ /** Buffer Status */ ++ unsigned bs : 2; ++ } b; ++ ++#ifdef DWC_EN_ISOC ++ /** iso out quadlet bits */ ++ struct { ++ /** Received number of bytes */ ++ unsigned rxbytes : 11; ++ ++ unsigned reserved11 : 1; ++ /** Frame Number */ ++ unsigned framenum : 11; ++ /** Received ISO Data PID */ ++ unsigned pid : 2; ++ /** Interrupt On Complete */ ++ unsigned ioc : 1; ++ /** Short Packet */ ++ unsigned sp : 1; ++ /** Last */ ++ unsigned l : 1; ++ /** Receive Status */ ++ unsigned rxsts : 2; ++ /** Buffer Status */ ++ unsigned bs : 2; ++ } b_iso_out; ++ ++ /** iso in quadlet bits */ ++ struct { ++ /** Transmited number of bytes */ ++ unsigned txbytes : 12; ++ /** Frame Number */ ++ unsigned framenum : 11; ++ /** Transmited ISO Data PID */ ++ unsigned pid : 2; ++ /** Interrupt On Complete */ ++ unsigned ioc : 1; ++ /** Short Packet */ ++ unsigned sp : 1; ++ /** Last */ ++ unsigned l : 1; ++ /** Transmit Status */ ++ unsigned txsts : 2; ++ /** Buffer Status */ ++ unsigned bs : 2; ++ } b_iso_in; ++#endif //DWC_EN_ISOC ++} desc_sts_data_t; ++ ++/** ++ * DMA Descriptor structure ++ * ++ * DMA Descriptor structure contains two quadlets: ++ * Status quadlet and Data buffer pointer. ++ */ ++typedef struct dwc_otg_dma_desc ++{ ++ /** DMA Descriptor status quadlet */ ++ desc_sts_data_t status; ++ /** DMA Descriptor data buffer pointer */ ++ dma_addr_t buf; ++} dwc_otg_dma_desc_t; ++ ++/** ++ * The dwc_otg_dev_if structure contains information needed to manage ++ * the DWC_otg controller acting in device mode. It represents the ++ * programming view of the device-specific aspects of the controller. ++ */ ++typedef struct dwc_otg_dev_if ++{ ++ /** Pointer to device Global registers. ++ * Device Global Registers starting at offset 800h ++ */ ++ dwc_otg_device_global_regs_t *dev_global_regs; ++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800 ++ ++ /** ++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh ++ */ ++ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_IN_EP_REG_OFFSET 0x900 ++#define DWC_EP_REG_OFFSET 0x20 ++ ++ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */ ++ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS]; ++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00 ++ ++ /* Device configuration information*/ ++ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */ ++ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */ ++ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/ ++ ++ /** Size of periodic FIFOs (Bytes) */ ++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS]; ++ ++ /** Size of Tx FIFOs (Bytes) */ ++ uint16_t tx_fifo_size[MAX_TX_FIFOS]; ++ ++ /** Thresholding enable flags and length varaiables **/ ++ uint16_t rx_thr_en; ++ uint16_t iso_tx_thr_en; ++ uint16_t non_iso_tx_thr_en; ++ ++ uint16_t rx_thr_length; ++ uint16_t tx_thr_length; ++ ++ /** ++ * Pointers to the DMA Descriptors for EP0 Control ++ * transfers (virtual and physical) ++ */ ++ /** 2 descriptors for SETUP packets */ ++ uint32_t dma_setup_desc_addr[2]; ++ dwc_otg_dma_desc_t* setup_desc_addr[2]; ++ ++ /** Pointer to Descriptor with latest SETUP packet */ ++ dwc_otg_dma_desc_t* psetup; ++ ++ /** Index of current SETUP handler descriptor */ ++ uint32_t setup_desc_index; ++ ++ /** Descriptor for Data In or Status In phases */ ++ uint32_t dma_in_desc_addr; ++ dwc_otg_dma_desc_t* in_desc_addr;; ++ ++ /** Descriptor for Data Out or Status Out phases */ ++ uint32_t dma_out_desc_addr; ++ dwc_otg_dma_desc_t* out_desc_addr; ++} dwc_otg_dev_if_t; ++ ++ ++ ++ ++///////////////////////////////////////////////// ++// Host Mode Register Structures ++// ++/** ++ * The Host Global Registers structure defines the size and relative ++ * field offsets for the Host Mode Global Registers. Host Global ++ * Registers offsets 400h-7FFh. ++*/ ++typedef struct dwc_otg_host_global_regs ++{ ++ /** Host Configuration Register. <i>Offset: 400h</i> */ ++ volatile uint32_t hcfg; ++ /** Host Frame Interval Register. <i>Offset: 404h</i> */ ++ volatile uint32_t hfir; ++ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */ ++ volatile uint32_t hfnum; ++ /** Reserved. <i>Offset: 40Ch</i> */ ++ uint32_t reserved40C; ++ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */ ++ volatile uint32_t hptxsts; ++ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */ ++ volatile uint32_t haint; ++ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */ ++ volatile uint32_t haintmsk; ++} dwc_otg_host_global_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Configuration Register. ++ * Read the register into the <i>d32</i> member then set/clear the bits using ++ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register. ++ */ ++typedef union hcfg_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** FS/LS Phy Clock Select */ ++ unsigned fslspclksel : 2; ++#define DWC_HCFG_30_60_MHZ 0 ++#define DWC_HCFG_48_MHZ 1 ++#define DWC_HCFG_6_MHZ 2 ++ ++ /** FS/LS Only Support */ ++ unsigned fslssupp : 1; ++ } b; ++} hcfg_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfir_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned frint : 16; ++ unsigned reserved : 16; ++ } b; ++} hfir_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Frame Remaing/Number ++ * Register. ++ */ ++typedef union hfnum_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned frnum : 16; ++#define DWC_HFNUM_MAX_FRNUM 0x3FFF ++ unsigned frrem : 16; ++ } b; ++} hfnum_data_t; ++ ++typedef union hptxsts_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned ptxfspcavail : 16; ++ unsigned ptxqspcavail : 8; ++ /** Top of the Periodic Transmit Request Queue ++ * - bit 24 - Terminate (last entry for the selected channel) ++ * - bits 26:25 - Token Type ++ * - 2'b00 - Zero length ++ * - 2'b01 - Ping ++ * - 2'b10 - Disable ++ * - bits 30:27 - Channel Number ++ * - bit 31 - Odd/even microframe ++ */ ++ unsigned ptxqtop_terminate : 1; ++ unsigned ptxqtop_token : 2; ++ unsigned ptxqtop_chnum : 4; ++ unsigned ptxqtop_odd : 1; ++ } b; ++} hptxsts_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Port Control and Status ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hprt0 register. ++ */ ++typedef union hprt0_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned prtconnsts : 1; ++ unsigned prtconndet : 1; ++ unsigned prtena : 1; ++ unsigned prtenchng : 1; ++ unsigned prtovrcurract : 1; ++ unsigned prtovrcurrchng : 1; ++ unsigned prtres : 1; ++ unsigned prtsusp : 1; ++ unsigned prtrst : 1; ++ unsigned reserved9 : 1; ++ unsigned prtlnsts : 2; ++ unsigned prtpwr : 1; ++ unsigned prttstctl : 4; ++ unsigned prtspd : 2; ++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0 ++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1 ++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2 ++ unsigned reserved19_31 : 13; ++ } b; ++} hprt0_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned ch0 : 1; ++ unsigned ch1 : 1; ++ unsigned ch2 : 1; ++ unsigned ch3 : 1; ++ unsigned ch4 : 1; ++ unsigned ch5 : 1; ++ unsigned ch6 : 1; ++ unsigned ch7 : 1; ++ unsigned ch8 : 1; ++ unsigned ch9 : 1; ++ unsigned ch10 : 1; ++ unsigned ch11 : 1; ++ unsigned ch12 : 1; ++ unsigned ch13 : 1; ++ unsigned ch14 : 1; ++ unsigned ch15 : 1; ++ unsigned reserved : 16; ++ } b; ++ ++ struct ++ { ++ unsigned chint : 16; ++ unsigned reserved : 16; ++ } b2; ++} haint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union haintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ unsigned ch0 : 1; ++ unsigned ch1 : 1; ++ unsigned ch2 : 1; ++ unsigned ch3 : 1; ++ unsigned ch4 : 1; ++ unsigned ch5 : 1; ++ unsigned ch6 : 1; ++ unsigned ch7 : 1; ++ unsigned ch8 : 1; ++ unsigned ch9 : 1; ++ unsigned ch10 : 1; ++ unsigned ch11 : 1; ++ unsigned ch12 : 1; ++ unsigned ch13 : 1; ++ unsigned ch14 : 1; ++ unsigned ch15 : 1; ++ unsigned reserved : 16; ++ } b; ++ ++ struct ++ { ++ unsigned chint : 16; ++ unsigned reserved : 16; ++ } b2; ++} haintmsk_data_t; ++ ++/** ++ * Host Channel Specific Registers. <i>500h-5FCh</i> ++ */ ++typedef struct dwc_otg_hc_regs ++{ ++ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */ ++ volatile uint32_t hcchar; ++ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */ ++ volatile uint32_t hcsplt; ++ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */ ++ volatile uint32_t hcint; ++ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */ ++ volatile uint32_t hcintmsk; ++ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */ ++ volatile uint32_t hctsiz; ++ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */ ++ volatile uint32_t hcdma; ++ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */ ++ uint32_t reserved[2]; ++} dwc_otg_hc_regs_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Characteristics ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcchar register. ++ */ ++typedef union hcchar_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Maximum packet size in bytes */ ++ unsigned mps : 11; ++ ++ /** Endpoint number */ ++ unsigned epnum : 4; ++ ++ /** 0: OUT, 1: IN */ ++ unsigned epdir : 1; ++ ++ unsigned reserved : 1; ++ ++ /** 0: Full/high speed device, 1: Low speed device */ ++ unsigned lspddev : 1; ++ ++ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */ ++ unsigned eptype : 2; ++ ++ /** Packets per frame for periodic transfers. 0 is reserved. */ ++ unsigned multicnt : 2; ++ ++ /** Device address */ ++ unsigned devaddr : 7; ++ ++ /** ++ * Frame to transmit periodic transaction. ++ * 0: even, 1: odd ++ */ ++ unsigned oddfrm : 1; ++ ++ /** Channel disable */ ++ unsigned chdis : 1; ++ ++ /** Channel enable */ ++ unsigned chen : 1; ++ } b; ++} hcchar_data_t; ++ ++typedef union hcsplt_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Port Address */ ++ unsigned prtaddr : 7; ++ ++ /** Hub Address */ ++ unsigned hubaddr : 7; ++ ++ /** Transaction Position */ ++ unsigned xactpos : 2; ++#define DWC_HCSPLIT_XACTPOS_MID 0 ++#define DWC_HCSPLIT_XACTPOS_END 1 ++#define DWC_HCSPLIT_XACTPOS_BEGIN 2 ++#define DWC_HCSPLIT_XACTPOS_ALL 3 ++ ++ /** Do Complete Split */ ++ unsigned compsplt : 1; ++ ++ /** Reserved */ ++ unsigned reserved : 14; ++ ++ /** Split Enble */ ++ unsigned spltena : 1; ++ } b; ++} hcsplt_data_t; ++ ++ ++/** ++ * This union represents the bit fields in the Host All Interrupt ++ * Register. ++ */ ++typedef union hcint_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ /** register bits */ ++ struct ++ { ++ /** Transfer Complete */ ++ unsigned xfercomp : 1; ++ /** Channel Halted */ ++ unsigned chhltd : 1; ++ /** AHB Error */ ++ unsigned ahberr : 1; ++ /** STALL Response Received */ ++ unsigned stall : 1; ++ /** NAK Response Received */ ++ unsigned nak : 1; ++ /** ACK Response Received */ ++ unsigned ack : 1; ++ /** NYET Response Received */ ++ unsigned nyet : 1; ++ /** Transaction Err */ ++ unsigned xacterr : 1; ++ /** Babble Error */ ++ unsigned bblerr : 1; ++ /** Frame Overrun */ ++ unsigned frmovrun : 1; ++ /** Data Toggle Error */ ++ unsigned datatglerr : 1; ++ /** Reserved */ ++ unsigned reserved : 21; ++ } b; ++} hcint_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Transfer Size ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcchar register. ++ */ ++typedef union hctsiz_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Total transfer size in bytes */ ++ unsigned xfersize : 19; ++ ++ /** Data packets to transfer */ ++ unsigned pktcnt : 10; ++ ++ /** ++ * Packet ID for next data packet ++ * 0: DATA0 ++ * 1: DATA2 ++ * 2: DATA1 ++ * 3: MDATA (non-Control), SETUP (Control) ++ */ ++ unsigned pid : 2; ++#define DWC_HCTSIZ_DATA0 0 ++#define DWC_HCTSIZ_DATA1 2 ++#define DWC_HCTSIZ_DATA2 1 ++#define DWC_HCTSIZ_MDATA 3 ++#define DWC_HCTSIZ_SETUP 3 ++ ++ /** Do PING protocol when 1 */ ++ unsigned dopng : 1; ++ } b; ++} hctsiz_data_t; ++ ++/** ++ * This union represents the bit fields in the Host Channel Interrupt Mask ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the ++ * hcintmsk register. ++ */ ++typedef union hcintmsk_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ unsigned xfercompl : 1; ++ unsigned chhltd : 1; ++ unsigned ahberr : 1; ++ unsigned stall : 1; ++ unsigned nak : 1; ++ unsigned ack : 1; ++ unsigned nyet : 1; ++ unsigned xacterr : 1; ++ unsigned bblerr : 1; ++ unsigned frmovrun : 1; ++ unsigned datatglerr : 1; ++ unsigned reserved : 21; ++ } b; ++} hcintmsk_data_t; ++ ++/** OTG Host Interface Structure. ++ * ++ * The OTG Host Interface Structure structure contains information ++ * needed to manage the DWC_otg controller acting in host mode. It ++ * represents the programming view of the host-specific aspects of the ++ * controller. ++ */ ++typedef struct dwc_otg_host_if ++{ ++ /** Host Global Registers starting at offset 400h.*/ ++ dwc_otg_host_global_regs_t *host_global_regs; ++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400 ++ ++ /** Host Port 0 Control and Status Register */ ++ volatile uint32_t *hprt0; ++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440 ++ ++ /** Host Channel Specific Registers at offsets 500h-5FCh. */ ++ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS]; ++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500 ++#define DWC_OTG_CHAN_REGS_OFFSET 0x20 ++ ++ ++ /* Host configuration information */ ++ /** Number of Host Channels (range: 1-16) */ ++ uint8_t num_host_channels; ++ /** Periodic EPs supported (0: no, 1: yes) */ ++ uint8_t perio_eps_supported; ++ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */ ++ uint16_t perio_tx_fifo_size; ++} dwc_otg_host_if_t; ++ ++ ++/** ++ * This union represents the bit fields in the Power and Clock Gating Control ++ * Register. Read the register into the <i>d32</i> member then set/clear the ++ * bits using the <i>b</i>it elements. ++ */ ++typedef union pcgcctl_data ++{ ++ /** raw register data */ ++ uint32_t d32; ++ ++ /** register bits */ ++ struct ++ { ++ /** Stop Pclk */ ++ unsigned stoppclk : 1; ++ /** Gate Hclk */ ++ unsigned gatehclk : 1; ++ /** Power Clamp */ ++ unsigned pwrclmp : 1; ++ /** Reset Power Down Modules */ ++ unsigned rstpdwnmodule : 1; ++ /** PHY Suspended */ ++ unsigned physuspended : 1; ++ unsigned reserved : 27; ++ } b; ++} pcgcctl_data_t; ++ ++ ++#endif +--- a/drivers/usb/core/urb.c ++++ b/drivers/usb/core/urb.c +@@ -17,7 +17,11 @@ static void urb_destroy(struct kref *kre + + if (urb->transfer_flags & URB_FREE_BUFFER) + kfree(urb->transfer_buffer); +- ++ if (urb->aligned_transfer_buffer) { ++ kfree(urb->aligned_transfer_buffer); ++ urb->aligned_transfer_buffer = 0; ++ urb->aligned_transfer_dma = 0; ++ } + kfree(urb); + } + +--- a/include/linux/usb.h ++++ b/include/linux/usb.h +@@ -1234,6 +1234,9 @@ struct urb { + unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ + void *transfer_buffer; /* (in) associated data buffer */ + dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ ++ void *aligned_transfer_buffer; /* (in) associeated data buffer */ ++ dma_addr_t aligned_transfer_dma;/* (in) dma addr for transfer_buffer */ ++ u32 aligned_transfer_buffer_length; /* (in) data buffer length */ + struct scatterlist *sg; /* (in) scatter gather buffer list */ + int num_mapped_sgs; /* (internal) mapped sg entries */ + int num_sgs; /* (in) number of entries in the sg list */ +--- a/drivers/usb/gadget/Kconfig ++++ b/drivers/usb/gadget/Kconfig +@@ -125,6 +125,7 @@ config USB_GADGET_STORAGE_NUM_BUFFERS + # + choice + prompt "USB Peripheral Controller" ++ depends on !USB_DWC_OTG + help + A USB device uses a controller to talk to its host. + Systems should have only one such upstream link. +@@ -616,7 +617,7 @@ config USB_ETH + help + This driver implements Ethernet style communication, in one of + several ways: +- ++ + - The "Communication Device Class" (CDC) Ethernet Control Model. + That protocol is often avoided with pure Ethernet adapters, in + favor of simpler vendor-specific hardware, but is widely +@@ -656,7 +657,7 @@ config USB_ETH_RNDIS + If you say "y" here, the Ethernet gadget driver will try to provide + a second device configuration, supporting RNDIS to talk to such + Microsoft USB hosts. +- ++ + To make MS-Windows work with this, use Documentation/usb/linux.inf + as the "driver info file". For versions of MS-Windows older than + XP, you'll need to download drivers from Microsoft's website; a URL +--- a/drivers/usb/gadget/Makefile ++++ b/drivers/usb/gadget/Makefile +@@ -3,7 +3,7 @@ + # + ccflags-$(CONFIG_USB_GADGET_DEBUG) := -DDEBUG + +-obj-$(CONFIG_USB_GADGET) += udc-core.o ++#obj-$(CONFIG_USB_GADGET) += udc-core.o + obj-$(CONFIG_USB_DUMMY_HCD) += dummy_hcd.o + obj-$(CONFIG_USB_NET2272) += net2272.o + obj-$(CONFIG_USB_NET2280) += net2280.o |