summaryrefslogtreecommitdiff
path: root/target/linux/sunxi/patches-4.1/160-dmaengine-add-sun4i-driver.patch
diff options
context:
space:
mode:
authorZoltan Herpai <wigyori@uid0.hu>2015-08-09 12:25:18 +0000
committerZoltan Herpai <wigyori@uid0.hu>2015-08-09 12:25:18 +0000
commit50018a752771efce3ae222457d4d231d1f80a1a5 (patch)
treeced2b9c1e216ce0e3d0bb204e359a7a9d6d2a3ef /target/linux/sunxi/patches-4.1/160-dmaengine-add-sun4i-driver.patch
parent0b8643af4fa7eebd55b63d6d547f85da1409f83d (diff)
downloadmtk-20170518-50018a752771efce3ae222457d4d231d1f80a1a5.zip
mtk-20170518-50018a752771efce3ae222457d4d231d1f80a1a5.tar.gz
mtk-20170518-50018a752771efce3ae222457d4d231d1f80a1a5.tar.bz2
sunxi: add support for 4.1
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu> SVN-Revision: 46571
Diffstat (limited to 'target/linux/sunxi/patches-4.1/160-dmaengine-add-sun4i-driver.patch')
-rw-r--r--target/linux/sunxi/patches-4.1/160-dmaengine-add-sun4i-driver.patch1381
1 files changed, 1381 insertions, 0 deletions
diff --git a/target/linux/sunxi/patches-4.1/160-dmaengine-add-sun4i-driver.patch b/target/linux/sunxi/patches-4.1/160-dmaengine-add-sun4i-driver.patch
new file mode 100644
index 0000000..ea1e100
--- /dev/null
+++ b/target/linux/sunxi/patches-4.1/160-dmaengine-add-sun4i-driver.patch
@@ -0,0 +1,1381 @@
+From 1a28c76f3965775854ed6f6229de457c3d0674ab Mon Sep 17 00:00:00 2001
+From: =?UTF-8?q?Emilio=20L=C3=B3pez?= <emilio@elopez.com.ar>
+Date: Sat, 4 Apr 2015 11:37:24 +0200
+Subject: [PATCH] dma: sun4i: Add support for the DMA engine on sun[457]i SoCs
+MIME-Version: 1.0
+Content-Type: text/plain; charset=UTF-8
+Content-Transfer-Encoding: 8bit
+
+This patch adds support for the DMA engine present on Allwinner A10,
+A13, A10S and A20 SoCs. This engine has two kinds of channels: normal
+and dedicated. The main difference is in the mode of operation;
+while a single normal channel may be operating at any given time,
+dedicated channels may operate simultaneously provided there is no
+overlap of source or destination.
+
+Hardware documentation can be found on A10 User Manual (section 12), A13
+User Manual (section 14) and A20 User Manual (section 1.12)
+
+Signed-off-by: Emilio López <emilio@elopez.com.ar>
+Signed-off-by: Hans de Goede <hdegoede@redhat.com>
+---
+
+Changes from v4:
+ * Fix for interrupt triggering after freeing a dma-channel, this fixed
+ the problems with jack
+ * Adjust to recent kernel dma API changes
+
+Changes from v3:
+ * Drop threaded IRQ to get lower latency
+ * Drop chancnt
+ * Fix crash on first use when using a DMA-aware bootloader (eg., one
+ that supports NAND)
+
+Changes from v2:
+ * Faster memcpy
+ * Quicker cyclic transfers
+ * Address some stylistic and locking comments from Maxime
+ * probably some more stuff I'm forgetting
+
+Changes from v1:
+ * address comments from Chen-Yu and Maxime
+ * fix issue converting bus width
+ * switch to using a threaded IRQ instead of a tasklet on
+ recommendation from Maxime
+ * fix issue setting magic timing parameter for SPI transfers
+ * fix an issue with list handling reported by the kbuild 0-DAY robot (thanks!)
+ * drop a lot of unused #define
+ * probably some more stuff I'm forgetting
+---
+ .../devicetree/bindings/dma/sun4i-dma.txt | 46 +
+ drivers/dma/Kconfig | 11 +
+ drivers/dma/Makefile | 1 +
+ drivers/dma/sun4i-dma.c | 1235 ++++++++++++++++++++
+ 4 files changed, 1293 insertions(+)
+ create mode 100644 Documentation/devicetree/bindings/dma/sun4i-dma.txt
+ create mode 100644 drivers/dma/sun4i-dma.c
+
+diff --git a/Documentation/devicetree/bindings/dma/sun4i-dma.txt b/Documentation/devicetree/bindings/dma/sun4i-dma.txt
+new file mode 100644
+index 0000000..f1634a2
+--- /dev/null
++++ b/Documentation/devicetree/bindings/dma/sun4i-dma.txt
+@@ -0,0 +1,46 @@
++Allwinner A10 DMA Controller
++
++This driver follows the generic DMA bindings defined in dma.txt.
++
++Required properties:
++
++- compatible: Must be "allwinner,sun4i-a10-dma"
++- reg: Should contain the registers base address and length
++- interrupts: Should contain a reference to the interrupt used by this device
++- clocks: Should contain a reference to the parent AHB clock
++- #dma-cells : Should be 2, first cell denoting normal or dedicated dma,
++ second cell holding the request line number.
++
++Example:
++ dma: dma-controller@01c02000 {
++ compatible = "allwinner,sun4i-a10-dma";
++ reg = <0x01c02000 0x1000>;
++ interrupts = <27>;
++ clocks = <&ahb_gates 6>;
++ #dma-cells = <2>;
++ };
++
++Clients:
++
++DMA clients connected to the Allwinner A10 DMA controller must use the
++format described in the dma.txt file, using a three-cell specifier for
++each channel: a phandle plus two integer cells.
++The three cells in order are:
++
++1. A phandle pointing to the DMA controller.
++2. Whether it is using normal (0) or dedicated (1) channels
++3. The port ID as specified in the datasheet
++
++Example:
++ spi2: spi@01c17000 {
++ compatible = "allwinner,sun4i-a10-spi";
++ reg = <0x01c17000 0x1000>;
++ interrupts = <0 12 4>;
++ clocks = <&ahb_gates 22>, <&spi2_clk>;
++ clock-names = "ahb", "mod";
++ dmas = <&dma 1 29>, <&dma 1 28>;
++ dma-names = "rx", "tx";
++ status = "disabled";
++ #address-cells = <1>;
++ #size-cells = <0>;
++ };
+diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig
+index fd7ac13..12372c2 100644
+--- a/drivers/dma/Kconfig
++++ b/drivers/dma/Kconfig
+@@ -443,6 +443,17 @@ config XGENE_DMA
+ help
+ Enable support for the APM X-Gene SoC DMA engine.
+
++config SUN4I_DMA
++ tristate "Allwinner A10 DMA support"
++ depends on (MACH_SUN4I || MACH_SUN5I || MACH_SUN7I || (COMPILE_TEST && OF && ARM))
++ default (MACH_SUN4I || MACH_SUN5I || MACH_SUN7I)
++ select DMA_ENGINE
++ select DMA_OF
++ select DMA_VIRTUAL_CHANNELS
++ help
++ Enable support for the DMA controller present in the sun4i,
++ sun5i and sun7i Allwinner ARM SoCs.
++
+ config DMA_ENGINE
+ bool
+
+diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile
+index 69f77d5..3eba5e9 100644
+--- a/drivers/dma/Makefile
++++ b/drivers/dma/Makefile
+@@ -54,3 +54,4 @@ obj-$(CONFIG_NBPFAXI_DMA) += nbpfaxi.o
+ obj-$(CONFIG_DMA_SUN6I) += sun6i-dma.o
+ obj-$(CONFIG_IMG_MDC_DMA) += img-mdc-dma.o
+ obj-$(CONFIG_XGENE_DMA) += xgene-dma.o
++obj-$(CONFIG_SUN4I_DMA) += sun4i-dma.o
+diff --git a/drivers/dma/sun4i-dma.c b/drivers/dma/sun4i-dma.c
+new file mode 100644
+index 0000000..a8d55518
+--- /dev/null
++++ b/drivers/dma/sun4i-dma.c
+@@ -0,0 +1,1235 @@
++/*
++ * Copyright (C) 2014 Emilio López
++ * Emilio López <emilio@elopez.com.ar>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ */
++
++#include <linux/bitmap.h>
++#include <linux/bitops.h>
++#include <linux/clk.h>
++#include <linux/dmaengine.h>
++#include <linux/dmapool.h>
++#include <linux/interrupt.h>
++#include <linux/module.h>
++#include <linux/of_dma.h>
++#include <linux/platform_device.h>
++#include <linux/slab.h>
++#include <linux/spinlock.h>
++
++#include "virt-dma.h"
++
++/** Normal DMA register values **/
++
++/* Normal DMA source/destination data request type values */
++#define NDMA_DRQ_TYPE_SDRAM 0x16
++#define NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
++
++/** Normal DMA register layout **/
++
++/* Normal DMA configuration register layout */
++#define NDMA_CFG_LOADING BIT(31)
++#define NDMA_CFG_CONT_MODE BIT(30)
++#define NDMA_CFG_WAIT_STATE(n) ((n) << 27)
++#define NDMA_CFG_DEST_DATA_WIDTH(width) ((width) << 25)
++#define NDMA_CFG_DEST_BURST_LENGTH(len) ((len) << 23)
++#define NDMA_CFG_DEST_NON_SECURE BIT(22)
++#define NDMA_CFG_DEST_FIXED_ADDR BIT(21)
++#define NDMA_CFG_DEST_DRQ_TYPE(type) ((type) << 16)
++#define NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
++#define NDMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
++#define NDMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
++#define NDMA_CFG_SRC_NON_SECURE BIT(6)
++#define NDMA_CFG_SRC_FIXED_ADDR BIT(5)
++#define NDMA_CFG_SRC_DRQ_TYPE(type) ((type) << 0)
++
++/** Dedicated DMA register values **/
++
++/* Dedicated DMA source/destination address mode values */
++#define DDMA_ADDR_MODE_LINEAR 0
++#define DDMA_ADDR_MODE_IO 1
++#define DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
++#define DDMA_ADDR_MODE_VERTICAL_PAGE 3
++
++/* Dedicated DMA source/destination data request type values */
++#define DDMA_DRQ_TYPE_SDRAM 0x1
++#define DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
++
++/** Dedicated DMA register layout **/
++
++/* Dedicated DMA configuration register layout */
++#define DDMA_CFG_LOADING BIT(31)
++#define DDMA_CFG_BUSY BIT(30)
++#define DDMA_CFG_CONT_MODE BIT(29)
++#define DDMA_CFG_DEST_NON_SECURE BIT(28)
++#define DDMA_CFG_DEST_DATA_WIDTH(width) ((width) << 25)
++#define DDMA_CFG_DEST_BURST_LENGTH(len) ((len) << 23)
++#define DDMA_CFG_DEST_ADDR_MODE(mode) ((mode) << 21)
++#define DDMA_CFG_DEST_DRQ_TYPE(type) ((type) << 16)
++#define DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
++#define DDMA_CFG_SRC_NON_SECURE BIT(12)
++#define DDMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
++#define DDMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
++#define DDMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
++#define DDMA_CFG_SRC_DRQ_TYPE(type) ((type) << 0)
++
++/* Dedicated DMA parameter register layout */
++#define DDMA_PARA_DEST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
++#define DDMA_PARA_DEST_WAIT_CYCLES(n) (((n) - 1) << 16)
++#define DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
++#define DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
++
++/** DMA register offsets **/
++
++/* General register offsets */
++#define DMA_IRQ_ENABLE_REG 0x0
++#define DMA_IRQ_PENDING_STATUS_REG 0x4
++
++/* Normal DMA register offsets */
++#define NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
++#define NDMA_CFG_REG 0x0
++#define NDMA_SRC_ADDR_REG 0x4
++#define NDMA_DEST_ADDR_REG 0x8
++#define NDMA_BYTE_COUNT_REG 0xC
++
++/* Dedicated DMA register offsets */
++#define DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
++#define DDMA_CFG_REG 0x0
++#define DDMA_SRC_ADDR_REG 0x4
++#define DDMA_DEST_ADDR_REG 0x8
++#define DDMA_BYTE_COUNT_REG 0xC
++#define DDMA_PARA_REG 0x18
++
++/** DMA Driver **/
++
++/*
++ * Normal DMA has 8 channels, and Dedicated DMA has another 8, so that's
++ * 16 channels. As for endpoints, there's 29 and 21 respectively. Given
++ * that the Normal DMA endpoints (other than SDRAM) can be used as tx/rx,
++ * we need 78 vchans in total
++ */
++#define NDMA_NR_MAX_CHANNELS 8
++#define DDMA_NR_MAX_CHANNELS 8
++#define DMA_NR_MAX_CHANNELS (NDMA_NR_MAX_CHANNELS + DDMA_NR_MAX_CHANNELS)
++#define NDMA_NR_MAX_VCHANS (29 * 2 - 1)
++#define DDMA_NR_MAX_VCHANS 21
++#define DMA_NR_MAX_VCHANS (NDMA_NR_MAX_VCHANS + DDMA_NR_MAX_VCHANS)
++
++/* This set of DDMA timing parameters were found experimentally while
++ * working with the SPI driver and seem to make it behave correctly */
++#define DDMA_MAGIC_SPI_PARAMETERS (DDMA_PARA_DEST_DATA_BLK_SIZE(1) | \
++ DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
++ DDMA_PARA_DEST_WAIT_CYCLES(2) | \
++ DDMA_PARA_SRC_WAIT_CYCLES(2))
++
++struct sun4i_dma_pchan {
++ /* Register base of channel */
++ void __iomem *base;
++ /* vchan currently being serviced */
++ struct sun4i_dma_vchan *vchan;
++ /* Is this a dedicated pchan? */
++ int is_dedicated;
++};
++
++struct sun4i_dma_vchan {
++ struct virt_dma_chan vc;
++ struct dma_slave_config cfg;
++ struct sun4i_dma_pchan *pchan;
++ struct sun4i_dma_promise *processing;
++ struct sun4i_dma_contract *contract;
++ u8 endpoint;
++ int is_dedicated;
++};
++
++struct sun4i_dma_promise {
++ u32 cfg;
++ u32 para;
++ dma_addr_t src;
++ dma_addr_t dst;
++ size_t len;
++ struct list_head list;
++};
++
++/* A contract is a set of promises */
++struct sun4i_dma_contract {
++ struct virt_dma_desc vd;
++ struct list_head demands;
++ struct list_head completed_demands;
++ int is_cyclic;
++};
++
++struct sun4i_dma_dev {
++ DECLARE_BITMAP(pchans_used, DMA_NR_MAX_CHANNELS);
++ struct dma_device slave;
++ struct sun4i_dma_pchan *pchans;
++ struct sun4i_dma_vchan *vchans;
++ void __iomem *base;
++ struct clk *clk;
++ int irq;
++ spinlock_t lock;
++};
++
++static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
++{
++ return container_of(dev, struct sun4i_dma_dev, slave);
++}
++
++static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
++{
++ return container_of(chan, struct sun4i_dma_vchan, vc.chan);
++}
++
++static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
++{
++ return container_of(vd, struct sun4i_dma_contract, vd);
++}
++
++static struct device *chan2dev(struct dma_chan *chan)
++{
++ return &chan->dev->device;
++}
++
++static int convert_burst(u32 maxburst)
++{
++ if (maxburst > 8)
++ return -EINVAL;
++
++ /* 1 -> 0, 4 -> 1, 8 -> 2 */
++ return (maxburst >> 2);
++}
++
++static int convert_buswidth(enum dma_slave_buswidth addr_width)
++{
++ if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
++ return -EINVAL;
++
++ /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
++ return (addr_width >> 1);
++}
++
++static int choose_optimal_buswidth(dma_addr_t addr)
++{
++ /* On 32 bit aligned addresses, we can use a 32 bit bus width */
++ if (addr % 4 == 0)
++ return DMA_SLAVE_BUSWIDTH_4_BYTES;
++ /* On 16 bit aligned addresses, we can use a 16 bit bus width */
++ else if (addr % 2 == 0)
++ return DMA_SLAVE_BUSWIDTH_2_BYTES;
++
++ /* Worst-case scenario, we need to do byte aligned reads */
++ return DMA_SLAVE_BUSWIDTH_1_BYTE;
++}
++
++static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
++{
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++
++ vchan_free_chan_resources(&vchan->vc);
++}
++
++static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
++ struct sun4i_dma_vchan *vchan)
++{
++ struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
++ unsigned long flags;
++ int i, max;
++
++ /*
++ * pchans 0-NDMA_NR_MAX_CHANNELS are normal, and
++ * NDMA_NR_MAX_CHANNELS+ are dedicated ones
++ */
++ if (vchan->is_dedicated) {
++ i = NDMA_NR_MAX_CHANNELS;
++ max = DMA_NR_MAX_CHANNELS;
++ } else {
++ i = 0;
++ max = NDMA_NR_MAX_CHANNELS;
++ }
++
++ spin_lock_irqsave(&priv->lock, flags);
++ for_each_clear_bit_from(i, &priv->pchans_used, max) {
++ pchan = &pchans[i];
++ pchan->vchan = vchan;
++ set_bit(i, priv->pchans_used);
++ break;
++ }
++ spin_unlock_irqrestore(&priv->lock, flags);
++
++ return pchan;
++}
++
++static void release_pchan(struct sun4i_dma_dev *priv,
++ struct sun4i_dma_pchan *pchan)
++{
++ unsigned long flags;
++ int nr = pchan - priv->pchans;
++
++ spin_lock_irqsave(&priv->lock, flags);
++
++ pchan->vchan = NULL;
++ clear_bit(nr, priv->pchans_used);
++
++ spin_unlock_irqrestore(&priv->lock, flags);
++}
++
++static void configure_pchan(struct sun4i_dma_pchan *pchan,
++ struct sun4i_dma_promise *d)
++{
++ /*
++ * Configure addresses and misc parameters depending on type
++ * DDMA has an extra field with timing parameters
++ */
++ if (pchan->is_dedicated) {
++ writel_relaxed(d->src, pchan->base + DDMA_SRC_ADDR_REG);
++ writel_relaxed(d->dst, pchan->base + DDMA_DEST_ADDR_REG);
++ writel_relaxed(d->len, pchan->base + DDMA_BYTE_COUNT_REG);
++ writel_relaxed(d->para, pchan->base + DDMA_PARA_REG);
++ writel_relaxed(d->cfg, pchan->base + DDMA_CFG_REG);
++ } else {
++ writel_relaxed(d->src, pchan->base + NDMA_SRC_ADDR_REG);
++ writel_relaxed(d->dst, pchan->base + NDMA_DEST_ADDR_REG);
++ writel_relaxed(d->len, pchan->base + NDMA_BYTE_COUNT_REG);
++ writel_relaxed(d->cfg, pchan->base + NDMA_CFG_REG);
++ }
++}
++
++static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
++ struct sun4i_dma_pchan *pchan,
++ int half, int end)
++{
++ u32 reg;
++ int pchan_number = pchan - priv->pchans;
++ unsigned long flags;
++
++ spin_lock_irqsave(&priv->lock, flags);
++
++ reg = readl_relaxed(priv->base + DMA_IRQ_ENABLE_REG);
++
++ if (half)
++ reg |= BIT(pchan_number * 2);
++ else
++ reg &= ~BIT(pchan_number * 2);
++
++ if (end)
++ reg |= BIT(pchan_number * 2 + 1);
++ else
++ reg &= ~BIT(pchan_number * 2 + 1);
++
++ writel_relaxed(reg, priv->base + DMA_IRQ_ENABLE_REG);
++
++ spin_unlock_irqrestore(&priv->lock, flags);
++}
++
++/**
++ * Execute pending operations on a vchan
++ *
++ * When given a vchan, this function will try to acquire a suitable
++ * pchan and, if successful, will configure it to fulfill a promise
++ * from the next pending contract.
++ *
++ * This function must be called with &vchan->vc.lock held.
++ */
++static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
++ struct sun4i_dma_vchan *vchan)
++{
++ struct sun4i_dma_promise *promise = NULL;
++ struct sun4i_dma_contract *contract = NULL;
++ struct sun4i_dma_pchan *pchan;
++ struct virt_dma_desc *vd;
++ int ret;
++
++ lockdep_assert_held(&vchan->vc.lock);
++
++ /* We need a pchan to do anything, so secure one if available */
++ pchan = find_and_use_pchan(priv, vchan);
++ if (!pchan)
++ return -EBUSY;
++
++ /*
++ * Channel endpoints must not be repeated, so if this vchan
++ * has already submitted some work, we can't do anything else
++ */
++ if (vchan->processing) {
++ dev_dbg(chan2dev(&vchan->vc.chan),
++ "processing something to this endpoint already\n");
++ ret = -EBUSY;
++ goto release_pchan;
++ }
++
++ do {
++ /* Figure out which contract we're working with today */
++ vd = vchan_next_desc(&vchan->vc);
++ if (!vd) {
++ dev_dbg(chan2dev(&vchan->vc.chan),
++ "No pending contract found");
++ ret = 0;
++ goto release_pchan;
++ }
++
++ contract = to_sun4i_dma_contract(vd);
++ if (list_empty(&contract->demands)) {
++ /* The contract has been completed so mark it as such */
++ list_del(&contract->vd.node);
++ vchan_cookie_complete(&contract->vd);
++ dev_dbg(chan2dev(&vchan->vc.chan),
++ "Empty contract found and marked complete");
++ }
++ } while (list_empty(&contract->demands));
++
++ /* Now find out what we need to do */
++ promise = list_first_entry(&contract->demands,
++ struct sun4i_dma_promise, list);
++ vchan->processing = promise;
++
++ /* ... and make it reality */
++ if (promise) {
++ vchan->contract = contract;
++ vchan->pchan = pchan;
++ set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
++ configure_pchan(pchan, promise);
++ }
++
++ return 0;
++
++release_pchan:
++ release_pchan(priv, pchan);
++ return ret;
++}
++
++/**
++ * Generate a promise, to be used in a normal DMA contract.
++ *
++ * A NDMA promise contains all the information required to program the
++ * normal part of the DMA Engine and get data copied. A non-executed
++ * promise will live in the demands list on a contract. Once it has been
++ * completed, it will be moved to the completed demands list for later freeing.
++ * All linked promises will be freed when the corresponding contract is freed
++ */
++static struct sun4i_dma_promise *
++generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
++ size_t len, struct dma_slave_config *sconfig)
++{
++ struct sun4i_dma_promise *promise;
++ int ret;
++
++ promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
++ if (!promise)
++ return NULL;
++
++ promise->src = src;
++ promise->dst = dest;
++ promise->len = len;
++ promise->cfg = NDMA_CFG_LOADING | NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
++
++ /* Use sensible default values if client is using undefined ones */
++ if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
++ sconfig->src_addr_width = sconfig->dst_addr_width;
++ if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
++ sconfig->dst_addr_width = sconfig->src_addr_width;
++ if (sconfig->src_maxburst == 0)
++ sconfig->src_maxburst = sconfig->dst_maxburst;
++ if (sconfig->dst_maxburst == 0)
++ sconfig->dst_maxburst = sconfig->src_maxburst;
++
++ dev_dbg(chan2dev(chan),
++ "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
++ sconfig->src_maxburst, sconfig->dst_maxburst,
++ sconfig->src_addr_width, sconfig->dst_addr_width);
++
++ /* Source burst */
++ ret = convert_burst(sconfig->src_maxburst);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= NDMA_CFG_SRC_BURST_LENGTH(ret);
++
++ /* Destination burst */
++ ret = convert_burst(sconfig->dst_maxburst);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= NDMA_CFG_DEST_BURST_LENGTH(ret);
++
++ /* Source bus width */
++ ret = convert_buswidth(sconfig->src_addr_width);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= NDMA_CFG_SRC_DATA_WIDTH(ret);
++
++ /* Destination bus width */
++ ret = convert_buswidth(sconfig->dst_addr_width);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= NDMA_CFG_DEST_DATA_WIDTH(ret);
++
++ return promise;
++
++fail:
++ kfree(promise);
++ return NULL;
++}
++
++/**
++ * Generate a promise, to be used in a dedicated DMA contract.
++ *
++ * A DDMA promise contains all the information required to program the
++ * Dedicated part of the DMA Engine and get data copied. A non-executed
++ * promise will live in the demands list on a contract. Once it has been
++ * completed, it will be moved to the completed demands list for later freeing.
++ * All linked promises will be freed when the corresponding contract is freed
++ */
++static struct sun4i_dma_promise *
++generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
++ size_t len, struct dma_slave_config *sconfig)
++{
++ struct sun4i_dma_promise *promise;
++ int ret;
++
++ promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
++ if (!promise)
++ return NULL;
++
++ promise->src = src;
++ promise->dst = dest;
++ promise->len = len;
++ promise->cfg = DDMA_CFG_LOADING | DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
++
++ /* Source burst */
++ ret = convert_burst(sconfig->src_maxburst);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= DDMA_CFG_SRC_BURST_LENGTH(ret);
++
++ /* Destination burst */
++ ret = convert_burst(sconfig->dst_maxburst);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= DDMA_CFG_DEST_BURST_LENGTH(ret);
++
++ /* Source bus width */
++ ret = convert_buswidth(sconfig->src_addr_width);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= DDMA_CFG_SRC_DATA_WIDTH(ret);
++
++ /* Destination bus width */
++ ret = convert_buswidth(sconfig->dst_addr_width);
++ if (IS_ERR_VALUE(ret))
++ goto fail;
++ promise->cfg |= DDMA_CFG_DEST_DATA_WIDTH(ret);
++
++ return promise;
++
++fail:
++ kfree(promise);
++ return NULL;
++}
++
++/**
++ * Generate a contract
++ *
++ * Contracts function as DMA descriptors. As our hardware does not support
++ * linked lists, we need to implement SG via software. We use a contract
++ * to hold all the pieces of the request and process them serially one
++ * after another. Each piece is represented as a promise.
++ */
++static struct sun4i_dma_contract *generate_dma_contract(void)
++{
++ struct sun4i_dma_contract *contract;
++
++ contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
++ if (!contract)
++ return NULL;
++
++ INIT_LIST_HEAD(&contract->demands);
++ INIT_LIST_HEAD(&contract->completed_demands);
++
++ return contract;
++}
++
++/**
++ * Get next promise on a cyclic transfer
++ *
++ * Cyclic contracts contain a series of promises which are executed on a
++ * loop. This function returns the next promise from a cyclic contract,
++ * so it can be programmed into the hardware.
++ */
++static struct sun4i_dma_promise *
++get_next_cyclic_promise(struct sun4i_dma_contract *contract)
++{
++ struct sun4i_dma_promise *promise;
++
++ promise = list_first_entry_or_null(&contract->demands,
++ struct sun4i_dma_promise, list);
++ if (!promise) {
++ list_splice_init(&contract->completed_demands,
++ &contract->demands);
++ promise = list_first_entry(&contract->demands,
++ struct sun4i_dma_promise, list);
++ }
++
++ return promise;
++}
++
++/**
++ * Free a contract and all its associated promises
++ */
++static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
++{
++ struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
++ struct sun4i_dma_promise *promise;
++
++ /* Free all the demands and completed demands */
++ list_for_each_entry(promise, &contract->demands, list)
++ kfree(promise);
++
++ list_for_each_entry(promise, &contract->completed_demands, list)
++ kfree(promise);
++
++ kfree(contract);
++}
++
++static struct dma_async_tx_descriptor *
++sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
++ dma_addr_t src, size_t len, unsigned long flags)
++{
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++ struct dma_slave_config *sconfig = &vchan->cfg;
++ struct sun4i_dma_promise *promise;
++ struct sun4i_dma_contract *contract;
++
++ contract = generate_dma_contract();
++ if (!contract)
++ return NULL;
++
++ /*
++ * We can only do the copy to bus aligned addresses, so
++ * choose the best one so we get decent performance. We also
++ * maximize the burst size for this same reason.
++ */
++ sconfig->src_addr_width = choose_optimal_buswidth(src);
++ sconfig->dst_addr_width = choose_optimal_buswidth(dest);
++ sconfig->src_maxburst = 8;
++ sconfig->dst_maxburst = 8;
++
++ if (vchan->is_dedicated)
++ promise = generate_ddma_promise(chan, src, dest, len, sconfig);
++ else
++ promise = generate_ndma_promise(chan, src, dest, len, sconfig);
++
++ if (!promise) {
++ kfree(contract);
++ return NULL;
++ }
++
++ /* Configure memcpy mode */
++ if (vchan->is_dedicated) {
++ promise->cfg |= DDMA_CFG_SRC_DRQ_TYPE(DDMA_DRQ_TYPE_SDRAM) |
++ DDMA_CFG_DEST_DRQ_TYPE(DDMA_DRQ_TYPE_SDRAM);
++ } else {
++ promise->cfg |= NDMA_CFG_SRC_DRQ_TYPE(NDMA_DRQ_TYPE_SDRAM) |
++ NDMA_CFG_DEST_DRQ_TYPE(NDMA_DRQ_TYPE_SDRAM);
++ }
++
++ /* Fill the contract with our only promise */
++ list_add_tail(&promise->list, &contract->demands);
++
++ /* And add it to the vchan */
++ return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
++}
++
++static struct dma_async_tx_descriptor *
++sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
++ size_t period_len, enum dma_transfer_direction dir,
++ unsigned long flags)
++{
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++ struct dma_slave_config *sconfig = &vchan->cfg;
++ struct sun4i_dma_promise *promise;
++ struct sun4i_dma_contract *contract;
++ dma_addr_t src, dest;
++ u32 endpoints;
++ int nr_periods, offset, plength, i;
++
++ if (!is_slave_direction(dir)) {
++ dev_err(chan2dev(chan), "Invalid DMA direction\n");
++ return NULL;
++ }
++
++ if (vchan->is_dedicated) {
++ /*
++ * As we are using this just for audio data, we need to use
++ * normal DMA. There is nothing stopping us from supporting
++ * dedicated DMA here as well, so if a client comes up and
++ * requires it, it will be simple to implement it.
++ */
++ dev_err(chan2dev(chan),
++ "Cyclic transfers are only supported on Normal DMA\n");
++ return NULL;
++ }
++
++ contract = generate_dma_contract();
++ if (!contract)
++ return NULL;
++
++ contract->is_cyclic = 1;
++
++ /* Figure out the endpoints and the address we need */
++ if (dir == DMA_MEM_TO_DEV) {
++ src = buf;
++ dest = sconfig->dst_addr;
++ endpoints = NDMA_CFG_SRC_DRQ_TYPE(NDMA_DRQ_TYPE_SDRAM) |
++ NDMA_CFG_DEST_DRQ_TYPE(vchan->endpoint) |
++ NDMA_CFG_DEST_FIXED_ADDR;
++ } else {
++ src = sconfig->src_addr;
++ dest = buf;
++ endpoints = NDMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
++ NDMA_CFG_SRC_FIXED_ADDR |
++ NDMA_CFG_DEST_DRQ_TYPE(NDMA_DRQ_TYPE_SDRAM);
++ }
++
++ /*
++ * We will be using half done interrupts to make two periods
++ * out of a promise, so we need to program the DMA engine less
++ * often
++ */
++ nr_periods = DIV_ROUND_UP(len / period_len, 2);
++ for (i = 0; i < nr_periods; i++) {
++ /* Calculate the offset in the buffer and the length needed */
++ offset = i * period_len * 2;
++ plength = min((len - offset), (period_len * 2));
++ if (dir == DMA_MEM_TO_DEV)
++ src = buf + offset;
++ else
++ dest = buf + offset;
++
++ /* Make the promise */
++ promise = generate_ndma_promise(chan, src, dest,
++ plength, sconfig);
++ if (!promise) {
++ /* TODO: should we free everything? */
++ return NULL;
++ }
++ promise->cfg |= endpoints;
++
++ /* Then add it to the contract */
++ list_add_tail(&promise->list, &contract->demands);
++ }
++
++ /* And add it to the vchan */
++ return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
++}
++
++static struct dma_async_tx_descriptor *
++sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
++ unsigned int sg_len, enum dma_transfer_direction dir,
++ unsigned long flags, void *context)
++{
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++ struct dma_slave_config *sconfig = &vchan->cfg;
++ struct sun4i_dma_promise *promise;
++ struct sun4i_dma_contract *contract;
++ struct scatterlist *sg;
++ dma_addr_t srcaddr, dstaddr;
++ u32 endpoints, para;
++ int i;
++
++ if (!sgl)
++ return NULL;
++
++ if (!is_slave_direction(dir)) {
++ dev_err(chan2dev(chan), "Invalid DMA direction\n");
++ return NULL;
++ }
++
++ contract = generate_dma_contract();
++ if (!contract)
++ return NULL;
++
++ /* Figure out endpoints */
++ if (vchan->is_dedicated && dir == DMA_MEM_TO_DEV) {
++ endpoints = DDMA_CFG_SRC_DRQ_TYPE(DDMA_DRQ_TYPE_SDRAM) |
++ DDMA_CFG_SRC_ADDR_MODE(DDMA_ADDR_MODE_LINEAR) |
++ DDMA_CFG_DEST_DRQ_TYPE(vchan->endpoint) |
++ DDMA_CFG_DEST_ADDR_MODE(DDMA_ADDR_MODE_IO);
++ } else if (!vchan->is_dedicated && dir == DMA_MEM_TO_DEV) {
++ endpoints = NDMA_CFG_SRC_DRQ_TYPE(NDMA_DRQ_TYPE_SDRAM) |
++ NDMA_CFG_DEST_DRQ_TYPE(vchan->endpoint) |
++ NDMA_CFG_DEST_FIXED_ADDR;
++ } else if (vchan->is_dedicated) {
++ endpoints = DDMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
++ DDMA_CFG_SRC_ADDR_MODE(DDMA_ADDR_MODE_IO) |
++ DDMA_CFG_DEST_DRQ_TYPE(DDMA_DRQ_TYPE_SDRAM) |
++ DDMA_CFG_DEST_ADDR_MODE(DDMA_ADDR_MODE_LINEAR);
++ } else {
++ endpoints = NDMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
++ NDMA_CFG_SRC_FIXED_ADDR |
++ NDMA_CFG_DEST_DRQ_TYPE(NDMA_DRQ_TYPE_SDRAM);
++ }
++
++ for_each_sg(sgl, sg, sg_len, i) {
++ /* Figure out addresses */
++ if (dir == DMA_MEM_TO_DEV) {
++ srcaddr = sg_dma_address(sg);
++ dstaddr = sconfig->dst_addr;
++ } else {
++ srcaddr = sconfig->src_addr;
++ dstaddr = sg_dma_address(sg);
++ }
++
++ /*
++ * These are the magic DMA engine timings that keep SPI going.
++ * I haven't seen any interface on DMAEngine to configure
++ * timings, and so far they seem to work for everything we
++ * support, so I've kept them here. I don't know if other
++ * devices need different timings because, as usual, we only
++ * have the "para" bitfield meanings, but no comment on what
++ * the values should be when doing a certain operation :|
++ */
++ para = DDMA_MAGIC_SPI_PARAMETERS;
++
++ /* And make a suitable promise */
++ if (vchan->is_dedicated)
++ promise = generate_ddma_promise(chan, srcaddr, dstaddr,
++ sg_dma_len(sg), sconfig);
++ else
++ promise = generate_ndma_promise(chan, srcaddr, dstaddr,
++ sg_dma_len(sg), sconfig);
++
++ if (!promise)
++ return NULL; /* TODO: should we free everything? */
++
++ promise->cfg |= endpoints;
++ promise->para = para;
++
++ /* Then add it to the contract */
++ list_add_tail(&promise->list, &contract->demands);
++ }
++
++ /*
++ * Once we've got all the promises ready, add the contract
++ * to the pending list on the vchan
++ */
++ return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
++}
++
++static int sun4i_dma_terminate_all(struct dma_chan *chan)
++{
++ struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++ struct sun4i_dma_pchan *pchan = vchan->pchan;
++ LIST_HEAD(head);
++ unsigned long flags;
++
++ spin_lock_irqsave(&vchan->vc.lock, flags);
++ vchan_get_all_descriptors(&vchan->vc, &head);
++ spin_unlock_irqrestore(&vchan->vc.lock, flags);
++
++ /*
++ * Clearing the configuration register will halt the pchan. Interrupts
++ * may still trigger, so don't forget to disable them.
++ */
++ if (pchan) {
++ if (pchan->is_dedicated)
++ writel(0, pchan->base + DDMA_CFG_REG);
++ else
++ writel(0, pchan->base + NDMA_CFG_REG);
++ set_pchan_interrupt(priv, pchan, 0, 0);
++ release_pchan(priv, pchan);
++ }
++
++ spin_lock_irqsave(&vchan->vc.lock, flags);
++ vchan_dma_desc_free_list(&vchan->vc, &head);
++ /* Clear these so the vchan is usable again */
++ vchan->processing = NULL;
++ vchan->pchan = NULL;
++ spin_unlock_irqrestore(&vchan->vc.lock, flags);
++
++ return 0;
++}
++
++static int sun4i_dma_config(struct dma_chan *chan,
++ struct dma_slave_config *config)
++{
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++
++ memcpy(&vchan->cfg, config, sizeof(*config));
++
++ return 0;
++}
++
++static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
++ struct of_dma *ofdma)
++{
++ struct sun4i_dma_dev *priv = ofdma->of_dma_data;
++ struct sun4i_dma_vchan *vchan;
++ struct dma_chan *chan;
++ u8 is_dedicated = dma_spec->args[0];
++ u8 endpoint = dma_spec->args[1];
++
++ /* Check if type is Normal or Dedicated */
++ if (is_dedicated != 0 && is_dedicated != 1)
++ return NULL;
++
++ /* Make sure the endpoint looks sane */
++ if ((is_dedicated && endpoint >= DDMA_DRQ_TYPE_LIMIT) ||
++ (!is_dedicated && endpoint >= NDMA_DRQ_TYPE_LIMIT))
++ return NULL;
++
++ chan = dma_get_any_slave_channel(&priv->slave);
++ if (!chan)
++ return NULL;
++
++ /* Assign the endpoint to the vchan */
++ vchan = to_sun4i_dma_vchan(chan);
++ vchan->is_dedicated = is_dedicated;
++ vchan->endpoint = endpoint;
++
++ return chan;
++}
++
++static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
++ dma_cookie_t cookie,
++ struct dma_tx_state *state)
++{
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++ struct sun4i_dma_pchan *pchan = vchan->pchan;
++ struct sun4i_dma_contract *contract;
++ struct sun4i_dma_promise *promise;
++ struct virt_dma_desc *vd;
++ unsigned long flags;
++ enum dma_status ret;
++ size_t bytes = 0;
++
++ ret = dma_cookie_status(chan, cookie, state);
++ if (ret == DMA_COMPLETE)
++ return ret;
++
++ spin_lock_irqsave(&vchan->vc.lock, flags);
++ vd = vchan_find_desc(&vchan->vc, cookie);
++ if (!vd)
++ goto exit;
++ contract = to_sun4i_dma_contract(vd);
++
++ list_for_each_entry(promise, &contract->demands, list)
++ bytes += promise->len;
++
++ /*
++ * The hardware is configured to return the remaining byte
++ * quantity. If possible, replace the first listed element's
++ * full size with the actual remaining amount
++ */
++ promise = list_first_entry_or_null(&contract->demands,
++ struct sun4i_dma_promise, list);
++ if (promise && pchan) {
++ bytes -= promise->len;
++ if (pchan->is_dedicated)
++ bytes += readl(pchan->base + DDMA_BYTE_COUNT_REG);
++ else
++ bytes += readl(pchan->base + NDMA_BYTE_COUNT_REG);
++ }
++
++exit:
++
++ dma_set_residue(state, bytes);
++ spin_unlock_irqrestore(&vchan->vc.lock, flags);
++
++ return ret;
++}
++
++static void sun4i_dma_issue_pending(struct dma_chan *chan)
++{
++ struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
++ struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
++ unsigned long flags;
++
++ spin_lock_irqsave(&vchan->vc.lock, flags);
++
++ /*
++ * If there are pending transactions for this vchan, push one of
++ * them into the engine to get the ball rolling.
++ */
++ if (vchan_issue_pending(&vchan->vc))
++ __execute_vchan_pending(priv, vchan);
++
++ spin_unlock_irqrestore(&vchan->vc.lock, flags);
++}
++
++static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
++{
++ struct sun4i_dma_dev *priv = dev_id;
++ struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
++ struct sun4i_dma_vchan *vchan;
++ struct sun4i_dma_contract *contract;
++ struct sun4i_dma_promise *promise;
++ unsigned long pendirq, irqs, disableirqs;
++ int bit, i, free_room, allow_mitigation = 1;
++
++ pendirq = readl_relaxed(priv->base + DMA_IRQ_PENDING_STATUS_REG);
++
++handle_pending:
++
++ disableirqs = 0;
++ free_room = 0;
++
++ for_each_set_bit(bit, &pendirq, 32) {
++ pchan = &pchans[bit >> 1];
++ vchan = pchan->vchan;
++ if (!vchan) /* a terminated channel may still interrupt */
++ continue;
++ contract = vchan->contract;
++
++ /*
++ * Disable the IRQ and free the pchan if it's an end
++ * interrupt (odd bit)
++ */
++ if (bit & 1) {
++ spin_lock(&vchan->vc.lock);
++
++ /*
++ * Move the promise into the completed list now that
++ * we're done with it
++ */
++ list_del(&vchan->processing->list);
++ list_add_tail(&vchan->processing->list,
++ &contract->completed_demands);
++
++ /*
++ * Cyclic DMA transfers are special:
++ * - There's always something we can dispatch
++ * - We need to run the callback
++ * - Latency is very important, as this is used by audio
++ * We therefore just cycle through the list and dispatch
++ * whatever we have here, reusing the pchan. There's
++ * no need to run the thread after this.
++ *
++ * For non-cyclic transfers we need to look around,
++ * so we can program some more work, or notify the
++ * client that their transfers have been completed.
++ */
++ if (contract->is_cyclic) {
++ promise = get_next_cyclic_promise(contract);
++ vchan->processing = promise;
++ configure_pchan(pchan, promise);
++ vchan_cyclic_callback(&contract->vd);
++ } else {
++ vchan->processing = NULL;
++ vchan->pchan = NULL;
++
++ free_room = 1;
++ disableirqs |= BIT(bit);
++ release_pchan(priv, pchan);
++ }
++
++ spin_unlock(&vchan->vc.lock);
++ } else {
++ /* Half done interrupt */
++ if (contract->is_cyclic)
++ vchan_cyclic_callback(&contract->vd);
++ else
++ disableirqs |= BIT(bit);
++ }
++ }
++
++ /* Disable the IRQs for events we handled */
++ spin_lock(&priv->lock);
++ irqs = readl_relaxed(priv->base + DMA_IRQ_ENABLE_REG);
++ writel_relaxed(irqs & ~disableirqs, priv->base + DMA_IRQ_ENABLE_REG);
++ spin_unlock(&priv->lock);
++
++ /* Writing 1 to the pending field will clear the pending interrupt */
++ writel_relaxed(pendirq, priv->base + DMA_IRQ_PENDING_STATUS_REG);
++
++ /*
++ * If a pchan was freed, we may be able to schedule something else,
++ * so have a look around
++ */
++ if (free_room) {
++ for (i = 0; i < DMA_NR_MAX_VCHANS; i++) {
++ vchan = &priv->vchans[i];
++ spin_lock(&vchan->vc.lock);
++ __execute_vchan_pending(priv, vchan);
++ spin_unlock(&vchan->vc.lock);
++ }
++ }
++
++ /*
++ * Handle newer interrupts if some showed up, but only do it once
++ * to avoid a too long a loop
++ */
++ if (allow_mitigation) {
++ pendirq = readl_relaxed(priv->base + DMA_IRQ_PENDING_STATUS_REG);
++ if (pendirq) {
++ allow_mitigation = 0;
++ goto handle_pending;
++ }
++ }
++
++ return IRQ_HANDLED;
++}
++
++static int sun4i_dma_probe(struct platform_device *pdev)
++{
++ struct sun4i_dma_dev *priv;
++ struct resource *res;
++ int i, j, ret;
++
++ priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
++ if (!priv)
++ return -ENOMEM;
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ priv->base = devm_ioremap_resource(&pdev->dev, res);
++ if (IS_ERR(priv->base))
++ return PTR_ERR(priv->base);
++
++ priv->irq = platform_get_irq(pdev, 0);
++ if (priv->irq < 0) {
++ dev_err(&pdev->dev, "Cannot claim IRQ\n");
++ return priv->irq;
++ }
++
++ priv->clk = devm_clk_get(&pdev->dev, NULL);
++ if (IS_ERR(priv->clk)) {
++ dev_err(&pdev->dev, "No clock specified\n");
++ return PTR_ERR(priv->clk);
++ }
++
++ platform_set_drvdata(pdev, priv);
++ spin_lock_init(&priv->lock);
++
++ dma_cap_zero(priv->slave.cap_mask);
++ dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
++ dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
++ dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
++ dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
++
++ INIT_LIST_HEAD(&priv->slave.channels);
++ priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources;
++ priv->slave.device_tx_status = sun4i_dma_tx_status;
++ priv->slave.device_issue_pending = sun4i_dma_issue_pending;
++ priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg;
++ priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy;
++ priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic;
++ priv->slave.device_config = sun4i_dma_config;
++ priv->slave.device_terminate_all = sun4i_dma_terminate_all;
++ priv->slave.copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES;
++ priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
++ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
++ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
++ priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
++ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
++ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
++ priv->slave.directions = BIT(DMA_DEV_TO_MEM) |
++ BIT(DMA_MEM_TO_DEV);
++ priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
++
++ priv->slave.dev = &pdev->dev;
++
++ priv->pchans = devm_kcalloc(&pdev->dev, DMA_NR_MAX_CHANNELS,
++ sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
++ priv->vchans = devm_kcalloc(&pdev->dev, DMA_NR_MAX_VCHANS,
++ sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
++ if (!priv->vchans || !priv->pchans)
++ return -ENOMEM;
++
++ /*
++ * [0..NDMA_NR_MAX_CHANNELS) are normal pchans, and
++ * [NDMA_NR_MAX_CHANNELS..DMA_NR_MAX_CHANNELS) are dedicated ones
++ */
++ for (i = 0; i < NDMA_NR_MAX_CHANNELS; i++)
++ priv->pchans[i].base = priv->base + NDMA_CHANNEL_REG_BASE(i);
++
++ for (j = 0; i < DMA_NR_MAX_CHANNELS; i++, j++) {
++ priv->pchans[i].base = priv->base + DDMA_CHANNEL_REG_BASE(j);
++ priv->pchans[i].is_dedicated = 1;
++ }
++
++ for (i = 0; i < DMA_NR_MAX_VCHANS; i++) {
++ struct sun4i_dma_vchan *vchan = &priv->vchans[i];
++
++ spin_lock_init(&vchan->vc.lock);
++ vchan->vc.desc_free = sun4i_dma_free_contract;
++ vchan_init(&vchan->vc, &priv->slave);
++ }
++
++ ret = clk_prepare_enable(priv->clk);
++ if (ret) {
++ dev_err(&pdev->dev, "Couldn't enable the clock\n");
++ return ret;
++ }
++
++ /*
++ * Make sure the IRQs are all disabled and accounted for. The bootloader
++ * likes to leave these dirty
++ */
++ writel(0, priv->base + DMA_IRQ_ENABLE_REG);
++ writel(0xFFFFFFFF, priv->base + DMA_IRQ_PENDING_STATUS_REG);
++
++ ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
++ 0, dev_name(&pdev->dev), priv);
++ if (ret) {
++ dev_err(&pdev->dev, "Cannot request IRQ\n");
++ goto err_clk_disable;
++ }
++
++ ret = dma_async_device_register(&priv->slave);
++ if (ret) {
++ dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
++ goto err_clk_disable;
++ }
++
++ ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
++ priv);
++ if (ret) {
++ dev_err(&pdev->dev, "of_dma_controller_register failed\n");
++ goto err_dma_unregister;
++ }
++
++ dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
++
++ return 0;
++
++err_dma_unregister:
++ dma_async_device_unregister(&priv->slave);
++err_clk_disable:
++ clk_disable_unprepare(priv->clk);
++ return ret;
++}
++
++static int sun4i_dma_remove(struct platform_device *pdev)
++{
++ struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
++
++ /* Disable IRQ so no more work is scheduled */
++ disable_irq(priv->irq);
++
++ of_dma_controller_free(pdev->dev.of_node);
++ dma_async_device_unregister(&priv->slave);
++
++ clk_disable_unprepare(priv->clk);
++
++ return 0;
++}
++
++static struct of_device_id sun4i_dma_match[] = {
++ { .compatible = "allwinner,sun4i-a10-dma" },
++ { /* sentinel */ },
++};
++
++static struct platform_driver sun4i_dma_driver = {
++ .probe = sun4i_dma_probe,
++ .remove = sun4i_dma_remove,
++ .driver = {
++ .name = "sun4i-dma",
++ .of_match_table = sun4i_dma_match,
++ },
++};
++
++module_platform_driver(sun4i_dma_driver);
++
++MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
++MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
++MODULE_LICENSE("GPL");