summaryrefslogtreecommitdiff
path: root/target/linux/brcm2708/patches-3.10/001-Add-dwc_otg-driver.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/brcm2708/patches-3.10/001-Add-dwc_otg-driver.patch')
-rw-r--r--target/linux/brcm2708/patches-3.10/001-Add-dwc_otg-driver.patch57362
1 files changed, 57362 insertions, 0 deletions
diff --git a/target/linux/brcm2708/patches-3.10/001-Add-dwc_otg-driver.patch b/target/linux/brcm2708/patches-3.10/001-Add-dwc_otg-driver.patch
new file mode 100644
index 0000000..154ebaa
--- /dev/null
+++ b/target/linux/brcm2708/patches-3.10/001-Add-dwc_otg-driver.patch
@@ -0,0 +1,57362 @@
+diff -urN linux-3.10/drivers/usb/core/generic.c linux-rpi-3.10.y/drivers/usb/core/generic.c
+--- linux-3.10/drivers/usb/core/generic.c 2013-06-30 23:13:29.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/core/generic.c 2013-07-06 15:25:50.000000000 +0100
+@@ -152,6 +152,7 @@
+ dev_warn(&udev->dev,
+ "no configuration chosen from %d choice%s\n",
+ num_configs, plural(num_configs));
++ dev_warn(&udev->dev, "No support over %dmA\n", udev->bus_mA);
+ }
+ return i;
+ }
+diff -urN linux-3.10/drivers/usb/core/message.c linux-rpi-3.10.y/drivers/usb/core/message.c
+--- linux-3.10/drivers/usb/core/message.c 2013-06-30 23:13:29.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/core/message.c 2013-07-06 15:25:50.000000000 +0100
+@@ -1875,6 +1875,85 @@
+ if (cp->string == NULL &&
+ !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
+ cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
++/* Uncomment this define to enable the HS Electrical Test support */
++#define DWC_HS_ELECT_TST 1
++#ifdef DWC_HS_ELECT_TST
++ /* Here we implement the HS Electrical Test support. The
++ * tester uses a vendor ID of 0x1A0A to indicate we should
++ * run a special test sequence. The product ID tells us
++ * which sequence to run. We invoke the test sequence by
++ * sending a non-standard SetFeature command to our root
++ * hub port. Our dwc_otg_hcd_hub_control() routine will
++ * recognize the command and perform the desired test
++ * sequence.
++ */
++ if (dev->descriptor.idVendor == 0x1A0A) {
++ /* HSOTG Electrical Test */
++ dev_warn(&dev->dev, "VID from HSOTG Electrical Test Fixture\n");
++
++ if (dev->bus && dev->bus->root_hub) {
++ struct usb_device *hdev = dev->bus->root_hub;
++ dev_warn(&dev->dev, "Got PID 0x%x\n", dev->descriptor.idProduct);
++
++ switch (dev->descriptor.idProduct) {
++ case 0x0101: /* TEST_SE0_NAK */
++ dev_warn(&dev->dev, "TEST_SE0_NAK\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x300, NULL, 0, HZ);
++ break;
++
++ case 0x0102: /* TEST_J */
++ dev_warn(&dev->dev, "TEST_J\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x100, NULL, 0, HZ);
++ break;
++
++ case 0x0103: /* TEST_K */
++ dev_warn(&dev->dev, "TEST_K\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x200, NULL, 0, HZ);
++ break;
++
++ case 0x0104: /* TEST_PACKET */
++ dev_warn(&dev->dev, "TEST_PACKET\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x400, NULL, 0, HZ);
++ break;
++
++ case 0x0105: /* TEST_FORCE_ENABLE */
++ dev_warn(&dev->dev, "TEST_FORCE_ENABLE\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x500, NULL, 0, HZ);
++ break;
++
++ case 0x0106: /* HS_HOST_PORT_SUSPEND_RESUME */
++ dev_warn(&dev->dev, "HS_HOST_PORT_SUSPEND_RESUME\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x600, NULL, 0, 40 * HZ);
++ break;
++
++ case 0x0107: /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
++ dev_warn(&dev->dev, "SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x700, NULL, 0, 40 * HZ);
++ break;
++
++ case 0x0108: /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
++ dev_warn(&dev->dev, "SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute\n");
++ usb_control_msg(hdev, usb_sndctrlpipe(hdev, 0),
++ USB_REQ_SET_FEATURE, USB_RT_PORT,
++ USB_PORT_FEAT_TEST, 0x800, NULL, 0, 40 * HZ);
++ }
++ }
++ }
++#endif /* DWC_HS_ELECT_TST */
+
+ /* Now that the interfaces are installed, re-enable LPM. */
+ usb_unlocked_enable_lpm(dev);
+diff -urN linux-3.10/drivers/usb/core/otg_whitelist.h linux-rpi-3.10.y/drivers/usb/core/otg_whitelist.h
+--- linux-3.10/drivers/usb/core/otg_whitelist.h 2013-06-30 23:13:29.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/core/otg_whitelist.h 2013-07-06 15:25:50.000000000 +0100
+@@ -19,33 +19,82 @@
+ static struct usb_device_id whitelist_table [] = {
+
+ /* hubs are optional in OTG, but very handy ... */
++#define CERT_WITHOUT_HUBS
++#if defined(CERT_WITHOUT_HUBS)
++{ USB_DEVICE( 0x0000, 0x0000 ), }, /* Root HUB Only*/
++#else
+ { USB_DEVICE_INFO(USB_CLASS_HUB, 0, 0), },
+ { USB_DEVICE_INFO(USB_CLASS_HUB, 0, 1), },
++{ USB_DEVICE_INFO(USB_CLASS_HUB, 0, 2), },
++#endif
+
+ #ifdef CONFIG_USB_PRINTER /* ignoring nonstatic linkage! */
+ /* FIXME actually, printers are NOT supposed to use device classes;
+ * they're supposed to use interface classes...
+ */
+-{ USB_DEVICE_INFO(7, 1, 1) },
+-{ USB_DEVICE_INFO(7, 1, 2) },
+-{ USB_DEVICE_INFO(7, 1, 3) },
++//{ USB_DEVICE_INFO(7, 1, 1) },
++//{ USB_DEVICE_INFO(7, 1, 2) },
++//{ USB_DEVICE_INFO(7, 1, 3) },
+ #endif
+
+ #ifdef CONFIG_USB_NET_CDCETHER
+ /* Linux-USB CDC Ethernet gadget */
+-{ USB_DEVICE(0x0525, 0xa4a1), },
++//{ USB_DEVICE(0x0525, 0xa4a1), },
+ /* Linux-USB CDC Ethernet + RNDIS gadget */
+-{ USB_DEVICE(0x0525, 0xa4a2), },
++//{ USB_DEVICE(0x0525, 0xa4a2), },
+ #endif
+
+ #if defined(CONFIG_USB_TEST) || defined(CONFIG_USB_TEST_MODULE)
+ /* gadget zero, for testing */
+-{ USB_DEVICE(0x0525, 0xa4a0), },
++//{ USB_DEVICE(0x0525, 0xa4a0), },
+ #endif
++
++/* OPT Tester */
++{ USB_DEVICE( 0x1a0a, 0x0101 ), }, /* TEST_SE0_NAK */
++{ USB_DEVICE( 0x1a0a, 0x0102 ), }, /* Test_J */
++{ USB_DEVICE( 0x1a0a, 0x0103 ), }, /* Test_K */
++{ USB_DEVICE( 0x1a0a, 0x0104 ), }, /* Test_PACKET */
++{ USB_DEVICE( 0x1a0a, 0x0105 ), }, /* Test_FORCE_ENABLE */
++{ USB_DEVICE( 0x1a0a, 0x0106 ), }, /* HS_PORT_SUSPEND_RESUME */
++{ USB_DEVICE( 0x1a0a, 0x0107 ), }, /* SINGLE_STEP_GET_DESCRIPTOR setup */
++{ USB_DEVICE( 0x1a0a, 0x0108 ), }, /* SINGLE_STEP_GET_DESCRIPTOR execute */
++
++/* Sony cameras */
++{ USB_DEVICE_VER(0x054c,0x0010,0x0410, 0x0500), },
++
++/* Memory Devices */
++//{ USB_DEVICE( 0x0781, 0x5150 ), }, /* SanDisk */
++//{ USB_DEVICE( 0x05DC, 0x0080 ), }, /* Lexar */
++//{ USB_DEVICE( 0x4146, 0x9281 ), }, /* IOMEGA */
++//{ USB_DEVICE( 0x067b, 0x2507 ), }, /* Hammer 20GB External HD */
++{ USB_DEVICE( 0x0EA0, 0x2168 ), }, /* Ours Technology Inc. (BUFFALO ClipDrive)*/
++//{ USB_DEVICE( 0x0457, 0x0150 ), }, /* Silicon Integrated Systems Corp. */
++
++/* HP Printers */
++//{ USB_DEVICE( 0x03F0, 0x1102 ), }, /* HP Photosmart 245 */
++//{ USB_DEVICE( 0x03F0, 0x1302 ), }, /* HP Photosmart 370 Series */
++
++/* Speakers */
++//{ USB_DEVICE( 0x0499, 0x3002 ), }, /* YAMAHA YST-MS35D USB Speakers */
++//{ USB_DEVICE( 0x0672, 0x1041 ), }, /* Labtec USB Headset */
+
+ { } /* Terminating entry */
+ };
+
++static inline void report_errors(struct usb_device *dev)
++{
++ /* OTG MESSAGE: report errors here, customize to match your product */
++ dev_info(&dev->dev, "device Vendor:%04x Product:%04x is not supported\n",
++ le16_to_cpu(dev->descriptor.idVendor),
++ le16_to_cpu(dev->descriptor.idProduct));
++ if (USB_CLASS_HUB == dev->descriptor.bDeviceClass){
++ dev_printk(KERN_CRIT, &dev->dev, "Unsupported Hub Topology\n");
++ } else {
++ dev_printk(KERN_CRIT, &dev->dev, "Attached Device is not Supported\n");
++ }
++}
++
++
+ static int is_targeted(struct usb_device *dev)
+ {
+ struct usb_device_id *id = whitelist_table;
+@@ -55,58 +104,83 @@
+ return 1;
+
+ /* HNP test device is _never_ targeted (see OTG spec 6.6.6) */
+- if ((le16_to_cpu(dev->descriptor.idVendor) == 0x1a0a &&
+- le16_to_cpu(dev->descriptor.idProduct) == 0xbadd))
+- return 0;
++ if (dev->descriptor.idVendor == 0x1a0a &&
++ dev->descriptor.idProduct == 0xbadd) {
++ return 0;
++ } else if (!enable_whitelist) {
++ return 1;
++ } else {
+
+- /* NOTE: can't use usb_match_id() since interface caches
+- * aren't set up yet. this is cut/paste from that code.
+- */
+- for (id = whitelist_table; id->match_flags; id++) {
+- if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
+- id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
+- continue;
+-
+- if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
+- id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
+- continue;
+-
+- /* No need to test id->bcdDevice_lo != 0, since 0 is never
+- greater than any unsigned number. */
+- if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
+- (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
+- continue;
+-
+- if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
+- (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
+- continue;
+-
+- if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
+- (id->bDeviceClass != dev->descriptor.bDeviceClass))
+- continue;
+-
+- if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
+- (id->bDeviceSubClass != dev->descriptor.bDeviceSubClass))
+- continue;
+-
+- if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
+- (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
+- continue;
++#ifdef DEBUG
++ dev_dbg(&dev->dev, "device V:%04x P:%04x DC:%04x SC:%04x PR:%04x \n",
++ dev->descriptor.idVendor,
++ dev->descriptor.idProduct,
++ dev->descriptor.bDeviceClass,
++ dev->descriptor.bDeviceSubClass,
++ dev->descriptor.bDeviceProtocol);
++#endif
+
+ return 1;
++ /* NOTE: can't use usb_match_id() since interface caches
++ * aren't set up yet. this is cut/paste from that code.
++ */
++ for (id = whitelist_table; id->match_flags; id++) {
++#ifdef DEBUG
++ dev_dbg(&dev->dev,
++ "ID: V:%04x P:%04x DC:%04x SC:%04x PR:%04x \n",
++ id->idVendor,
++ id->idProduct,
++ id->bDeviceClass,
++ id->bDeviceSubClass,
++ id->bDeviceProtocol);
++#endif
++
++ if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
++ id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
++ continue;
++
++ if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
++ id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
++ continue;
++
++ /* No need to test id->bcdDevice_lo != 0, since 0 is never
++ greater than any unsigned number. */
++ if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
++ (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
++ continue;
++
++ if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
++ (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
++ continue;
++
++ if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
++ (id->bDeviceClass != dev->descriptor.bDeviceClass))
++ continue;
++
++ if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
++ (id->bDeviceSubClass != dev->descriptor.bDeviceSubClass))
++ continue;
++
++ if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
++ (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
++ continue;
++
++ return 1;
++ }
+ }
+
+ /* add other match criteria here ... */
+
+-
+- /* OTG MESSAGE: report errors here, customize to match your product */
+- dev_err(&dev->dev, "device v%04x p%04x is not supported\n",
+- le16_to_cpu(dev->descriptor.idVendor),
+- le16_to_cpu(dev->descriptor.idProduct));
+ #ifdef CONFIG_USB_OTG_WHITELIST
++ report_errors(dev);
+ return 0;
+ #else
+- return 1;
++ if (enable_whitelist) {
++ report_errors(dev);
++ return 0;
++ } else {
++ return 1;
++ }
+ #endif
+ }
+
+diff -urN linux-3.10/drivers/usb/gadget/file_storage.c linux-rpi-3.10.y/drivers/usb/gadget/file_storage.c
+--- linux-3.10/drivers/usb/gadget/file_storage.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/gadget/file_storage.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,3676 @@
++/*
++ * file_storage.c -- File-backed USB Storage Gadget, for USB development
++ *
++ * Copyright (C) 2003-2008 Alan Stern
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions, and the following disclaimer,
++ * without modification.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The names of the above-listed copyright holders may not be used
++ * to endorse or promote products derived from this software without
++ * specific prior written permission.
++ *
++ * ALTERNATIVELY, this software may be distributed under the terms of the
++ * GNU General Public License ("GPL") as published by the Free Software
++ * Foundation, either version 2 of that License or (at your option) any
++ * later version.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
++ * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
++ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
++ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
++ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
++ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
++ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
++ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ */
++
++
++/*
++ * The File-backed Storage Gadget acts as a USB Mass Storage device,
++ * appearing to the host as a disk drive or as a CD-ROM drive. In addition
++ * to providing an example of a genuinely useful gadget driver for a USB
++ * device, it also illustrates a technique of double-buffering for increased
++ * throughput. Last but not least, it gives an easy way to probe the
++ * behavior of the Mass Storage drivers in a USB host.
++ *
++ * Backing storage is provided by a regular file or a block device, specified
++ * by the "file" module parameter. Access can be limited to read-only by
++ * setting the optional "ro" module parameter. (For CD-ROM emulation,
++ * access is always read-only.) The gadget will indicate that it has
++ * removable media if the optional "removable" module parameter is set.
++ *
++ * The gadget supports the Control-Bulk (CB), Control-Bulk-Interrupt (CBI),
++ * and Bulk-Only (also known as Bulk-Bulk-Bulk or BBB) transports, selected
++ * by the optional "transport" module parameter. It also supports the
++ * following protocols: RBC (0x01), ATAPI or SFF-8020i (0x02), QIC-157 (0c03),
++ * UFI (0x04), SFF-8070i (0x05), and transparent SCSI (0x06), selected by
++ * the optional "protocol" module parameter. In addition, the default
++ * Vendor ID, Product ID, release number and serial number can be overridden.
++ *
++ * There is support for multiple logical units (LUNs), each of which has
++ * its own backing file. The number of LUNs can be set using the optional
++ * "luns" module parameter (anywhere from 1 to 8), and the corresponding
++ * files are specified using comma-separated lists for "file" and "ro".
++ * The default number of LUNs is taken from the number of "file" elements;
++ * it is 1 if "file" is not given. If "removable" is not set then a backing
++ * file must be specified for each LUN. If it is set, then an unspecified
++ * or empty backing filename means the LUN's medium is not loaded. Ideally
++ * each LUN would be settable independently as a disk drive or a CD-ROM
++ * drive, but currently all LUNs have to be the same type. The CD-ROM
++ * emulation includes a single data track and no audio tracks; hence there
++ * need be only one backing file per LUN.
++ *
++ * Requirements are modest; only a bulk-in and a bulk-out endpoint are
++ * needed (an interrupt-out endpoint is also needed for CBI). The memory
++ * requirement amounts to two 16K buffers, size configurable by a parameter.
++ * Support is included for both full-speed and high-speed operation.
++ *
++ * Note that the driver is slightly non-portable in that it assumes a
++ * single memory/DMA buffer will be useable for bulk-in, bulk-out, and
++ * interrupt-in endpoints. With most device controllers this isn't an
++ * issue, but there may be some with hardware restrictions that prevent
++ * a buffer from being used by more than one endpoint.
++ *
++ * Module options:
++ *
++ * file=filename[,filename...]
++ * Required if "removable" is not set, names of
++ * the files or block devices used for
++ * backing storage
++ * serial=HHHH... Required serial number (string of hex chars)
++ * ro=b[,b...] Default false, booleans for read-only access
++ * removable Default false, boolean for removable media
++ * luns=N Default N = number of filenames, number of
++ * LUNs to support
++ * nofua=b[,b...] Default false, booleans for ignore FUA flag
++ * in SCSI WRITE(10,12) commands
++ * stall Default determined according to the type of
++ * USB device controller (usually true),
++ * boolean to permit the driver to halt
++ * bulk endpoints
++ * cdrom Default false, boolean for whether to emulate
++ * a CD-ROM drive
++ * transport=XXX Default BBB, transport name (CB, CBI, or BBB)
++ * protocol=YYY Default SCSI, protocol name (RBC, 8020 or
++ * ATAPI, QIC, UFI, 8070, or SCSI;
++ * also 1 - 6)
++ * vendor=0xVVVV Default 0x0525 (NetChip), USB Vendor ID
++ * product=0xPPPP Default 0xa4a5 (FSG), USB Product ID
++ * release=0xRRRR Override the USB release number (bcdDevice)
++ * buflen=N Default N=16384, buffer size used (will be
++ * rounded down to a multiple of
++ * PAGE_CACHE_SIZE)
++ *
++ * If CONFIG_USB_FILE_STORAGE_TEST is not set, only the "file", "serial", "ro",
++ * "removable", "luns", "nofua", "stall", and "cdrom" options are available;
++ * default values are used for everything else.
++ *
++ * The pathnames of the backing files and the ro settings are available in
++ * the attribute files "file", "nofua", and "ro" in the lun<n> subdirectory of
++ * the gadget's sysfs directory. If the "removable" option is set, writing to
++ * these files will simulate ejecting/loading the medium (writing an empty
++ * line means eject) and adjusting a write-enable tab. Changes to the ro
++ * setting are not allowed when the medium is loaded or if CD-ROM emulation
++ * is being used.
++ *
++ * This gadget driver is heavily based on "Gadget Zero" by David Brownell.
++ * The driver's SCSI command interface was based on the "Information
++ * technology - Small Computer System Interface - 2" document from
++ * X3T9.2 Project 375D, Revision 10L, 7-SEP-93, available at
++ * <http://www.t10.org/ftp/t10/drafts/s2/s2-r10l.pdf>. The single exception
++ * is opcode 0x23 (READ FORMAT CAPACITIES), which was based on the
++ * "Universal Serial Bus Mass Storage Class UFI Command Specification"
++ * document, Revision 1.0, December 14, 1998, available at
++ * <http://www.usb.org/developers/devclass_docs/usbmass-ufi10.pdf>.
++ */
++
++
++/*
++ * Driver Design
++ *
++ * The FSG driver is fairly straightforward. There is a main kernel
++ * thread that handles most of the work. Interrupt routines field
++ * callbacks from the controller driver: bulk- and interrupt-request
++ * completion notifications, endpoint-0 events, and disconnect events.
++ * Completion events are passed to the main thread by wakeup calls. Many
++ * ep0 requests are handled at interrupt time, but SetInterface,
++ * SetConfiguration, and device reset requests are forwarded to the
++ * thread in the form of "exceptions" using SIGUSR1 signals (since they
++ * should interrupt any ongoing file I/O operations).
++ *
++ * The thread's main routine implements the standard command/data/status
++ * parts of a SCSI interaction. It and its subroutines are full of tests
++ * for pending signals/exceptions -- all this polling is necessary since
++ * the kernel has no setjmp/longjmp equivalents. (Maybe this is an
++ * indication that the driver really wants to be running in userspace.)
++ * An important point is that so long as the thread is alive it keeps an
++ * open reference to the backing file. This will prevent unmounting
++ * the backing file's underlying filesystem and could cause problems
++ * during system shutdown, for example. To prevent such problems, the
++ * thread catches INT, TERM, and KILL signals and converts them into
++ * an EXIT exception.
++ *
++ * In normal operation the main thread is started during the gadget's
++ * fsg_bind() callback and stopped during fsg_unbind(). But it can also
++ * exit when it receives a signal, and there's no point leaving the
++ * gadget running when the thread is dead. So just before the thread
++ * exits, it deregisters the gadget driver. This makes things a little
++ * tricky: The driver is deregistered at two places, and the exiting
++ * thread can indirectly call fsg_unbind() which in turn can tell the
++ * thread to exit. The first problem is resolved through the use of the
++ * REGISTERED atomic bitflag; the driver will only be deregistered once.
++ * The second problem is resolved by having fsg_unbind() check
++ * fsg->state; it won't try to stop the thread if the state is already
++ * FSG_STATE_TERMINATED.
++ *
++ * To provide maximum throughput, the driver uses a circular pipeline of
++ * buffer heads (struct fsg_buffhd). In principle the pipeline can be
++ * arbitrarily long; in practice the benefits don't justify having more
++ * than 2 stages (i.e., double buffering). But it helps to think of the
++ * pipeline as being a long one. Each buffer head contains a bulk-in and
++ * a bulk-out request pointer (since the buffer can be used for both
++ * output and input -- directions always are given from the host's
++ * point of view) as well as a pointer to the buffer and various state
++ * variables.
++ *
++ * Use of the pipeline follows a simple protocol. There is a variable
++ * (fsg->next_buffhd_to_fill) that points to the next buffer head to use.
++ * At any time that buffer head may still be in use from an earlier
++ * request, so each buffer head has a state variable indicating whether
++ * it is EMPTY, FULL, or BUSY. Typical use involves waiting for the
++ * buffer head to be EMPTY, filling the buffer either by file I/O or by
++ * USB I/O (during which the buffer head is BUSY), and marking the buffer
++ * head FULL when the I/O is complete. Then the buffer will be emptied
++ * (again possibly by USB I/O, during which it is marked BUSY) and
++ * finally marked EMPTY again (possibly by a completion routine).
++ *
++ * A module parameter tells the driver to avoid stalling the bulk
++ * endpoints wherever the transport specification allows. This is
++ * necessary for some UDCs like the SuperH, which cannot reliably clear a
++ * halt on a bulk endpoint. However, under certain circumstances the
++ * Bulk-only specification requires a stall. In such cases the driver
++ * will halt the endpoint and set a flag indicating that it should clear
++ * the halt in software during the next device reset. Hopefully this
++ * will permit everything to work correctly. Furthermore, although the
++ * specification allows the bulk-out endpoint to halt when the host sends
++ * too much data, implementing this would cause an unavoidable race.
++ * The driver will always use the "no-stall" approach for OUT transfers.
++ *
++ * One subtle point concerns sending status-stage responses for ep0
++ * requests. Some of these requests, such as device reset, can involve
++ * interrupting an ongoing file I/O operation, which might take an
++ * arbitrarily long time. During that delay the host might give up on
++ * the original ep0 request and issue a new one. When that happens the
++ * driver should not notify the host about completion of the original
++ * request, as the host will no longer be waiting for it. So the driver
++ * assigns to each ep0 request a unique tag, and it keeps track of the
++ * tag value of the request associated with a long-running exception
++ * (device-reset, interface-change, or configuration-change). When the
++ * exception handler is finished, the status-stage response is submitted
++ * only if the current ep0 request tag is equal to the exception request
++ * tag. Thus only the most recently received ep0 request will get a
++ * status-stage response.
++ *
++ * Warning: This driver source file is too long. It ought to be split up
++ * into a header file plus about 3 separate .c files, to handle the details
++ * of the Gadget, USB Mass Storage, and SCSI protocols.
++ */
++
++
++/* #define VERBOSE_DEBUG */
++/* #define DUMP_MSGS */
++
++
++#include <linux/blkdev.h>
++#include <linux/completion.h>
++#include <linux/dcache.h>
++#include <linux/delay.h>
++#include <linux/device.h>
++#include <linux/fcntl.h>
++#include <linux/file.h>
++#include <linux/fs.h>
++#include <linux/kref.h>
++#include <linux/kthread.h>
++#include <linux/limits.h>
++#include <linux/module.h>
++#include <linux/rwsem.h>
++#include <linux/slab.h>
++#include <linux/spinlock.h>
++#include <linux/string.h>
++#include <linux/freezer.h>
++#include <linux/utsname.h>
++
++#include <linux/usb/ch9.h>
++#include <linux/usb/gadget.h>
++
++#include "gadget_chips.h"
++
++
++
++/*
++ * Kbuild is not very cooperative with respect to linking separately
++ * compiled library objects into one module. So for now we won't use
++ * separate compilation ... ensuring init/exit sections work to shrink
++ * the runtime footprint, and giving us at least some parts of what
++ * a "gcc --combine ... part1.c part2.c part3.c ... " build would.
++ */
++#include "usbstring.c"
++#include "config.c"
++#include "epautoconf.c"
++
++/*-------------------------------------------------------------------------*/
++
++#define DRIVER_DESC "File-backed Storage Gadget"
++#define DRIVER_NAME "g_file_storage"
++#define DRIVER_VERSION "1 September 2010"
++
++static char fsg_string_manufacturer[64];
++static const char fsg_string_product[] = DRIVER_DESC;
++static const char fsg_string_config[] = "Self-powered";
++static const char fsg_string_interface[] = "Mass Storage";
++
++
++#include "storage_common.c"
++
++
++MODULE_DESCRIPTION(DRIVER_DESC);
++MODULE_AUTHOR("Alan Stern");
++MODULE_LICENSE("Dual BSD/GPL");
++
++/*
++ * This driver assumes self-powered hardware and has no way for users to
++ * trigger remote wakeup. It uses autoconfiguration to select endpoints
++ * and endpoint addresses.
++ */
++
++
++/*-------------------------------------------------------------------------*/
++
++
++/* Encapsulate the module parameter settings */
++
++static struct {
++ char *file[FSG_MAX_LUNS];
++ char *serial;
++ bool ro[FSG_MAX_LUNS];
++ bool nofua[FSG_MAX_LUNS];
++ unsigned int num_filenames;
++ unsigned int num_ros;
++ unsigned int num_nofuas;
++ unsigned int nluns;
++
++ bool removable;
++ bool can_stall;
++ bool cdrom;
++
++ char *transport_parm;
++ char *protocol_parm;
++ unsigned short vendor;
++ unsigned short product;
++ unsigned short release;
++ unsigned int buflen;
++
++ int transport_type;
++ char *transport_name;
++ int protocol_type;
++ char *protocol_name;
++
++} mod_data = { // Default values
++ .transport_parm = "BBB",
++ .protocol_parm = "SCSI",
++ .removable = 0,
++ .can_stall = 1,
++ .cdrom = 0,
++ .vendor = FSG_VENDOR_ID,
++ .product = FSG_PRODUCT_ID,
++ .release = 0xffff, // Use controller chip type
++ .buflen = 16384,
++ };
++
++
++module_param_array_named(file, mod_data.file, charp, &mod_data.num_filenames,
++ S_IRUGO);
++MODULE_PARM_DESC(file, "names of backing files or devices");
++
++module_param_named(serial, mod_data.serial, charp, S_IRUGO);
++MODULE_PARM_DESC(serial, "USB serial number");
++
++module_param_array_named(ro, mod_data.ro, bool, &mod_data.num_ros, S_IRUGO);
++MODULE_PARM_DESC(ro, "true to force read-only");
++
++module_param_array_named(nofua, mod_data.nofua, bool, &mod_data.num_nofuas,
++ S_IRUGO);
++MODULE_PARM_DESC(nofua, "true to ignore SCSI WRITE(10,12) FUA bit");
++
++module_param_named(luns, mod_data.nluns, uint, S_IRUGO);
++MODULE_PARM_DESC(luns, "number of LUNs");
++
++module_param_named(removable, mod_data.removable, bool, S_IRUGO);
++MODULE_PARM_DESC(removable, "true to simulate removable media");
++
++module_param_named(stall, mod_data.can_stall, bool, S_IRUGO);
++MODULE_PARM_DESC(stall, "false to prevent bulk stalls");
++
++module_param_named(cdrom, mod_data.cdrom, bool, S_IRUGO);
++MODULE_PARM_DESC(cdrom, "true to emulate cdrom instead of disk");
++
++/* In the non-TEST version, only the module parameters listed above
++ * are available. */
++#ifdef CONFIG_USB_FILE_STORAGE_TEST
++
++module_param_named(transport, mod_data.transport_parm, charp, S_IRUGO);
++MODULE_PARM_DESC(transport, "type of transport (BBB, CBI, or CB)");
++
++module_param_named(protocol, mod_data.protocol_parm, charp, S_IRUGO);
++MODULE_PARM_DESC(protocol, "type of protocol (RBC, 8020, QIC, UFI, "
++ "8070, or SCSI)");
++
++module_param_named(vendor, mod_data.vendor, ushort, S_IRUGO);
++MODULE_PARM_DESC(vendor, "USB Vendor ID");
++
++module_param_named(product, mod_data.product, ushort, S_IRUGO);
++MODULE_PARM_DESC(product, "USB Product ID");
++
++module_param_named(release, mod_data.release, ushort, S_IRUGO);
++MODULE_PARM_DESC(release, "USB release number");
++
++module_param_named(buflen, mod_data.buflen, uint, S_IRUGO);
++MODULE_PARM_DESC(buflen, "I/O buffer size");
++
++#endif /* CONFIG_USB_FILE_STORAGE_TEST */
++
++
++/*
++ * These definitions will permit the compiler to avoid generating code for
++ * parts of the driver that aren't used in the non-TEST version. Even gcc
++ * can recognize when a test of a constant expression yields a dead code
++ * path.
++ */
++
++#ifdef CONFIG_USB_FILE_STORAGE_TEST
++
++#define transport_is_bbb() (mod_data.transport_type == USB_PR_BULK)
++#define transport_is_cbi() (mod_data.transport_type == USB_PR_CBI)
++#define protocol_is_scsi() (mod_data.protocol_type == USB_SC_SCSI)
++
++#else
++
++#define transport_is_bbb() 1
++#define transport_is_cbi() 0
++#define protocol_is_scsi() 1
++
++#endif /* CONFIG_USB_FILE_STORAGE_TEST */
++
++
++/*-------------------------------------------------------------------------*/
++
++
++struct fsg_dev {
++ /* lock protects: state, all the req_busy's, and cbbuf_cmnd */
++ spinlock_t lock;
++ struct usb_gadget *gadget;
++
++ /* filesem protects: backing files in use */
++ struct rw_semaphore filesem;
++
++ /* reference counting: wait until all LUNs are released */
++ struct kref ref;
++
++ struct usb_ep *ep0; // Handy copy of gadget->ep0
++ struct usb_request *ep0req; // For control responses
++ unsigned int ep0_req_tag;
++ const char *ep0req_name;
++
++ struct usb_request *intreq; // For interrupt responses
++ int intreq_busy;
++ struct fsg_buffhd *intr_buffhd;
++
++ unsigned int bulk_out_maxpacket;
++ enum fsg_state state; // For exception handling
++ unsigned int exception_req_tag;
++
++ u8 config, new_config;
++
++ unsigned int running : 1;
++ unsigned int bulk_in_enabled : 1;
++ unsigned int bulk_out_enabled : 1;
++ unsigned int intr_in_enabled : 1;
++ unsigned int phase_error : 1;
++ unsigned int short_packet_received : 1;
++ unsigned int bad_lun_okay : 1;
++
++ unsigned long atomic_bitflags;
++#define REGISTERED 0
++#define IGNORE_BULK_OUT 1
++#define SUSPENDED 2
++
++ struct usb_ep *bulk_in;
++ struct usb_ep *bulk_out;
++ struct usb_ep *intr_in;
++
++ struct fsg_buffhd *next_buffhd_to_fill;
++ struct fsg_buffhd *next_buffhd_to_drain;
++
++ int thread_wakeup_needed;
++ struct completion thread_notifier;
++ struct task_struct *thread_task;
++
++ int cmnd_size;
++ u8 cmnd[MAX_COMMAND_SIZE];
++ enum data_direction data_dir;
++ u32 data_size;
++ u32 data_size_from_cmnd;
++ u32 tag;
++ unsigned int lun;
++ u32 residue;
++ u32 usb_amount_left;
++
++ /* The CB protocol offers no way for a host to know when a command
++ * has completed. As a result the next command may arrive early,
++ * and we will still have to handle it. For that reason we need
++ * a buffer to store new commands when using CB (or CBI, which
++ * does not oblige a host to wait for command completion either). */
++ int cbbuf_cmnd_size;
++ u8 cbbuf_cmnd[MAX_COMMAND_SIZE];
++
++ unsigned int nluns;
++ struct fsg_lun *luns;
++ struct fsg_lun *curlun;
++ /* Must be the last entry */
++ struct fsg_buffhd buffhds[];
++};
++
++typedef void (*fsg_routine_t)(struct fsg_dev *);
++
++static int exception_in_progress(struct fsg_dev *fsg)
++{
++ return (fsg->state > FSG_STATE_IDLE);
++}
++
++/* Make bulk-out requests be divisible by the maxpacket size */
++static void set_bulk_out_req_length(struct fsg_dev *fsg,
++ struct fsg_buffhd *bh, unsigned int length)
++{
++ unsigned int rem;
++
++ bh->bulk_out_intended_length = length;
++ rem = length % fsg->bulk_out_maxpacket;
++ if (rem > 0)
++ length += fsg->bulk_out_maxpacket - rem;
++ bh->outreq->length = length;
++}
++
++static struct fsg_dev *the_fsg;
++static struct usb_gadget_driver fsg_driver;
++
++
++/*-------------------------------------------------------------------------*/
++
++static int fsg_set_halt(struct fsg_dev *fsg, struct usb_ep *ep)
++{
++ const char *name;
++
++ if (ep == fsg->bulk_in)
++ name = "bulk-in";
++ else if (ep == fsg->bulk_out)
++ name = "bulk-out";
++ else
++ name = ep->name;
++ DBG(fsg, "%s set halt\n", name);
++ return usb_ep_set_halt(ep);
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++/*
++ * DESCRIPTORS ... most are static, but strings and (full) configuration
++ * descriptors are built on demand. Also the (static) config and interface
++ * descriptors are adjusted during fsg_bind().
++ */
++
++/* There is only one configuration. */
++#define CONFIG_VALUE 1
++
++static struct usb_device_descriptor
++device_desc = {
++ .bLength = sizeof device_desc,
++ .bDescriptorType = USB_DT_DEVICE,
++
++ .bcdUSB = cpu_to_le16(0x0200),
++ .bDeviceClass = USB_CLASS_PER_INTERFACE,
++
++ /* The next three values can be overridden by module parameters */
++ .idVendor = cpu_to_le16(FSG_VENDOR_ID),
++ .idProduct = cpu_to_le16(FSG_PRODUCT_ID),
++ .bcdDevice = cpu_to_le16(0xffff),
++
++ .iManufacturer = FSG_STRING_MANUFACTURER,
++ .iProduct = FSG_STRING_PRODUCT,
++ .iSerialNumber = FSG_STRING_SERIAL,
++ .bNumConfigurations = 1,
++};
++
++static struct usb_config_descriptor
++config_desc = {
++ .bLength = sizeof config_desc,
++ .bDescriptorType = USB_DT_CONFIG,
++
++ /* wTotalLength computed by usb_gadget_config_buf() */
++ .bNumInterfaces = 1,
++ .bConfigurationValue = CONFIG_VALUE,
++ .iConfiguration = FSG_STRING_CONFIG,
++ .bmAttributes = USB_CONFIG_ATT_ONE | USB_CONFIG_ATT_SELFPOWER,
++ .bMaxPower = CONFIG_USB_GADGET_VBUS_DRAW / 2,
++};
++
++
++static struct usb_qualifier_descriptor
++dev_qualifier = {
++ .bLength = sizeof dev_qualifier,
++ .bDescriptorType = USB_DT_DEVICE_QUALIFIER,
++
++ .bcdUSB = cpu_to_le16(0x0200),
++ .bDeviceClass = USB_CLASS_PER_INTERFACE,
++
++ .bNumConfigurations = 1,
++};
++
++static int populate_bos(struct fsg_dev *fsg, u8 *buf)
++{
++ memcpy(buf, &fsg_bos_desc, USB_DT_BOS_SIZE);
++ buf += USB_DT_BOS_SIZE;
++
++ memcpy(buf, &fsg_ext_cap_desc, USB_DT_USB_EXT_CAP_SIZE);
++ buf += USB_DT_USB_EXT_CAP_SIZE;
++
++ memcpy(buf, &fsg_ss_cap_desc, USB_DT_USB_SS_CAP_SIZE);
++
++ return USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE
++ + USB_DT_USB_EXT_CAP_SIZE;
++}
++
++/*
++ * Config descriptors must agree with the code that sets configurations
++ * and with code managing interfaces and their altsettings. They must
++ * also handle different speeds and other-speed requests.
++ */
++static int populate_config_buf(struct usb_gadget *gadget,
++ u8 *buf, u8 type, unsigned index)
++{
++ enum usb_device_speed speed = gadget->speed;
++ int len;
++ const struct usb_descriptor_header **function;
++
++ if (index > 0)
++ return -EINVAL;
++
++ if (gadget_is_dualspeed(gadget) && type == USB_DT_OTHER_SPEED_CONFIG)
++ speed = (USB_SPEED_FULL + USB_SPEED_HIGH) - speed;
++ function = gadget_is_dualspeed(gadget) && speed == USB_SPEED_HIGH
++ ? (const struct usb_descriptor_header **)fsg_hs_function
++ : (const struct usb_descriptor_header **)fsg_fs_function;
++
++ /* for now, don't advertise srp-only devices */
++ if (!gadget_is_otg(gadget))
++ function++;
++
++ len = usb_gadget_config_buf(&config_desc, buf, EP0_BUFSIZE, function);
++ ((struct usb_config_descriptor *) buf)->bDescriptorType = type;
++ return len;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++/* These routines may be called in process context or in_irq */
++
++/* Caller must hold fsg->lock */
++static void wakeup_thread(struct fsg_dev *fsg)
++{
++ /* Tell the main thread that something has happened */
++ fsg->thread_wakeup_needed = 1;
++ if (fsg->thread_task)
++ wake_up_process(fsg->thread_task);
++}
++
++
++static void raise_exception(struct fsg_dev *fsg, enum fsg_state new_state)
++{
++ unsigned long flags;
++
++ /* Do nothing if a higher-priority exception is already in progress.
++ * If a lower-or-equal priority exception is in progress, preempt it
++ * and notify the main thread by sending it a signal. */
++ spin_lock_irqsave(&fsg->lock, flags);
++ if (fsg->state <= new_state) {
++ fsg->exception_req_tag = fsg->ep0_req_tag;
++ fsg->state = new_state;
++ if (fsg->thread_task)
++ send_sig_info(SIGUSR1, SEND_SIG_FORCED,
++ fsg->thread_task);
++ }
++ spin_unlock_irqrestore(&fsg->lock, flags);
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++/* The disconnect callback and ep0 routines. These always run in_irq,
++ * except that ep0_queue() is called in the main thread to acknowledge
++ * completion of various requests: set config, set interface, and
++ * Bulk-only device reset. */
++
++static void fsg_disconnect(struct usb_gadget *gadget)
++{
++ struct fsg_dev *fsg = get_gadget_data(gadget);
++
++ DBG(fsg, "disconnect or port reset\n");
++ raise_exception(fsg, FSG_STATE_DISCONNECT);
++}
++
++
++static int ep0_queue(struct fsg_dev *fsg)
++{
++ int rc;
++
++ rc = usb_ep_queue(fsg->ep0, fsg->ep0req, GFP_ATOMIC);
++ if (rc != 0 && rc != -ESHUTDOWN) {
++
++ /* We can't do much more than wait for a reset */
++ WARNING(fsg, "error in submission: %s --> %d\n",
++ fsg->ep0->name, rc);
++ }
++ return rc;
++}
++
++static void ep0_complete(struct usb_ep *ep, struct usb_request *req)
++{
++ struct fsg_dev *fsg = ep->driver_data;
++
++ if (req->actual > 0)
++ dump_msg(fsg, fsg->ep0req_name, req->buf, req->actual);
++ if (req->status || req->actual != req->length)
++ DBG(fsg, "%s --> %d, %u/%u\n", __func__,
++ req->status, req->actual, req->length);
++ if (req->status == -ECONNRESET) // Request was cancelled
++ usb_ep_fifo_flush(ep);
++
++ if (req->status == 0 && req->context)
++ ((fsg_routine_t) (req->context))(fsg);
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++/* Bulk and interrupt endpoint completion handlers.
++ * These always run in_irq. */
++
++static void bulk_in_complete(struct usb_ep *ep, struct usb_request *req)
++{
++ struct fsg_dev *fsg = ep->driver_data;
++ struct fsg_buffhd *bh = req->context;
++
++ if (req->status || req->actual != req->length)
++ DBG(fsg, "%s --> %d, %u/%u\n", __func__,
++ req->status, req->actual, req->length);
++ if (req->status == -ECONNRESET) // Request was cancelled
++ usb_ep_fifo_flush(ep);
++
++ /* Hold the lock while we update the request and buffer states */
++ smp_wmb();
++ spin_lock(&fsg->lock);
++ bh->inreq_busy = 0;
++ bh->state = BUF_STATE_EMPTY;
++ wakeup_thread(fsg);
++ spin_unlock(&fsg->lock);
++}
++
++static void bulk_out_complete(struct usb_ep *ep, struct usb_request *req)
++{
++ struct fsg_dev *fsg = ep->driver_data;
++ struct fsg_buffhd *bh = req->context;
++
++ dump_msg(fsg, "bulk-out", req->buf, req->actual);
++ if (req->status || req->actual != bh->bulk_out_intended_length)
++ DBG(fsg, "%s --> %d, %u/%u\n", __func__,
++ req->status, req->actual,
++ bh->bulk_out_intended_length);
++ if (req->status == -ECONNRESET) // Request was cancelled
++ usb_ep_fifo_flush(ep);
++
++ /* Hold the lock while we update the request and buffer states */
++ smp_wmb();
++ spin_lock(&fsg->lock);
++ bh->outreq_busy = 0;
++ bh->state = BUF_STATE_FULL;
++ wakeup_thread(fsg);
++ spin_unlock(&fsg->lock);
++}
++
++
++#ifdef CONFIG_USB_FILE_STORAGE_TEST
++static void intr_in_complete(struct usb_ep *ep, struct usb_request *req)
++{
++ struct fsg_dev *fsg = ep->driver_data;
++ struct fsg_buffhd *bh = req->context;
++
++ if (req->status || req->actual != req->length)
++ DBG(fsg, "%s --> %d, %u/%u\n", __func__,
++ req->status, req->actual, req->length);
++ if (req->status == -ECONNRESET) // Request was cancelled
++ usb_ep_fifo_flush(ep);
++
++ /* Hold the lock while we update the request and buffer states */
++ smp_wmb();
++ spin_lock(&fsg->lock);
++ fsg->intreq_busy = 0;
++ bh->state = BUF_STATE_EMPTY;
++ wakeup_thread(fsg);
++ spin_unlock(&fsg->lock);
++}
++
++#else
++static void intr_in_complete(struct usb_ep *ep, struct usb_request *req)
++{}
++#endif /* CONFIG_USB_FILE_STORAGE_TEST */
++
++
++/*-------------------------------------------------------------------------*/
++
++/* Ep0 class-specific handlers. These always run in_irq. */
++
++#ifdef CONFIG_USB_FILE_STORAGE_TEST
++static void received_cbi_adsc(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct usb_request *req = fsg->ep0req;
++ static u8 cbi_reset_cmnd[6] = {
++ SEND_DIAGNOSTIC, 4, 0xff, 0xff, 0xff, 0xff};
++
++ /* Error in command transfer? */
++ if (req->status || req->length != req->actual ||
++ req->actual < 6 || req->actual > MAX_COMMAND_SIZE) {
++
++ /* Not all controllers allow a protocol stall after
++ * receiving control-out data, but we'll try anyway. */
++ fsg_set_halt(fsg, fsg->ep0);
++ return; // Wait for reset
++ }
++
++ /* Is it the special reset command? */
++ if (req->actual >= sizeof cbi_reset_cmnd &&
++ memcmp(req->buf, cbi_reset_cmnd,
++ sizeof cbi_reset_cmnd) == 0) {
++
++ /* Raise an exception to stop the current operation
++ * and reinitialize our state. */
++ DBG(fsg, "cbi reset request\n");
++ raise_exception(fsg, FSG_STATE_RESET);
++ return;
++ }
++
++ VDBG(fsg, "CB[I] accept device-specific command\n");
++ spin_lock(&fsg->lock);
++
++ /* Save the command for later */
++ if (fsg->cbbuf_cmnd_size)
++ WARNING(fsg, "CB[I] overwriting previous command\n");
++ fsg->cbbuf_cmnd_size = req->actual;
++ memcpy(fsg->cbbuf_cmnd, req->buf, fsg->cbbuf_cmnd_size);
++
++ wakeup_thread(fsg);
++ spin_unlock(&fsg->lock);
++}
++
++#else
++static void received_cbi_adsc(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{}
++#endif /* CONFIG_USB_FILE_STORAGE_TEST */
++
++
++static int class_setup_req(struct fsg_dev *fsg,
++ const struct usb_ctrlrequest *ctrl)
++{
++ struct usb_request *req = fsg->ep0req;
++ int value = -EOPNOTSUPP;
++ u16 w_index = le16_to_cpu(ctrl->wIndex);
++ u16 w_value = le16_to_cpu(ctrl->wValue);
++ u16 w_length = le16_to_cpu(ctrl->wLength);
++
++ if (!fsg->config)
++ return value;
++
++ /* Handle Bulk-only class-specific requests */
++ if (transport_is_bbb()) {
++ switch (ctrl->bRequest) {
++
++ case US_BULK_RESET_REQUEST:
++ if (ctrl->bRequestType != (USB_DIR_OUT |
++ USB_TYPE_CLASS | USB_RECIP_INTERFACE))
++ break;
++ if (w_index != 0 || w_value != 0 || w_length != 0) {
++ value = -EDOM;
++ break;
++ }
++
++ /* Raise an exception to stop the current operation
++ * and reinitialize our state. */
++ DBG(fsg, "bulk reset request\n");
++ raise_exception(fsg, FSG_STATE_RESET);
++ value = DELAYED_STATUS;
++ break;
++
++ case US_BULK_GET_MAX_LUN:
++ if (ctrl->bRequestType != (USB_DIR_IN |
++ USB_TYPE_CLASS | USB_RECIP_INTERFACE))
++ break;
++ if (w_index != 0 || w_value != 0 || w_length != 1) {
++ value = -EDOM;
++ break;
++ }
++ VDBG(fsg, "get max LUN\n");
++ *(u8 *) req->buf = fsg->nluns - 1;
++ value = 1;
++ break;
++ }
++ }
++
++ /* Handle CBI class-specific requests */
++ else {
++ switch (ctrl->bRequest) {
++
++ case USB_CBI_ADSC_REQUEST:
++ if (ctrl->bRequestType != (USB_DIR_OUT |
++ USB_TYPE_CLASS | USB_RECIP_INTERFACE))
++ break;
++ if (w_index != 0 || w_value != 0) {
++ value = -EDOM;
++ break;
++ }
++ if (w_length > MAX_COMMAND_SIZE) {
++ value = -EOVERFLOW;
++ break;
++ }
++ value = w_length;
++ fsg->ep0req->context = received_cbi_adsc;
++ break;
++ }
++ }
++
++ if (value == -EOPNOTSUPP)
++ VDBG(fsg,
++ "unknown class-specific control req "
++ "%02x.%02x v%04x i%04x l%u\n",
++ ctrl->bRequestType, ctrl->bRequest,
++ le16_to_cpu(ctrl->wValue), w_index, w_length);
++ return value;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++/* Ep0 standard request handlers. These always run in_irq. */
++
++static int standard_setup_req(struct fsg_dev *fsg,
++ const struct usb_ctrlrequest *ctrl)
++{
++ struct usb_request *req = fsg->ep0req;
++ int value = -EOPNOTSUPP;
++ u16 w_index = le16_to_cpu(ctrl->wIndex);
++ u16 w_value = le16_to_cpu(ctrl->wValue);
++
++ /* Usually this just stores reply data in the pre-allocated ep0 buffer,
++ * but config change events will also reconfigure hardware. */
++ switch (ctrl->bRequest) {
++
++ case USB_REQ_GET_DESCRIPTOR:
++ if (ctrl->bRequestType != (USB_DIR_IN | USB_TYPE_STANDARD |
++ USB_RECIP_DEVICE))
++ break;
++ switch (w_value >> 8) {
++
++ case USB_DT_DEVICE:
++ VDBG(fsg, "get device descriptor\n");
++ device_desc.bMaxPacketSize0 = fsg->ep0->maxpacket;
++ value = sizeof device_desc;
++ memcpy(req->buf, &device_desc, value);
++ break;
++ case USB_DT_DEVICE_QUALIFIER:
++ VDBG(fsg, "get device qualifier\n");
++ if (!gadget_is_dualspeed(fsg->gadget) ||
++ fsg->gadget->speed == USB_SPEED_SUPER)
++ break;
++ /*
++ * Assume ep0 uses the same maxpacket value for both
++ * speeds
++ */
++ dev_qualifier.bMaxPacketSize0 = fsg->ep0->maxpacket;
++ value = sizeof dev_qualifier;
++ memcpy(req->buf, &dev_qualifier, value);
++ break;
++
++ case USB_DT_OTHER_SPEED_CONFIG:
++ VDBG(fsg, "get other-speed config descriptor\n");
++ if (!gadget_is_dualspeed(fsg->gadget) ||
++ fsg->gadget->speed == USB_SPEED_SUPER)
++ break;
++ goto get_config;
++ case USB_DT_CONFIG:
++ VDBG(fsg, "get configuration descriptor\n");
++get_config:
++ value = populate_config_buf(fsg->gadget,
++ req->buf,
++ w_value >> 8,
++ w_value & 0xff);
++ break;
++
++ case USB_DT_STRING:
++ VDBG(fsg, "get string descriptor\n");
++
++ /* wIndex == language code */
++ value = usb_gadget_get_string(&fsg_stringtab,
++ w_value & 0xff, req->buf);
++ break;
++
++ case USB_DT_BOS:
++ VDBG(fsg, "get bos descriptor\n");
++
++ if (gadget_is_superspeed(fsg->gadget))
++ value = populate_bos(fsg, req->buf);
++ break;
++ }
++
++ break;
++
++ /* One config, two speeds */
++ case USB_REQ_SET_CONFIGURATION:
++ if (ctrl->bRequestType != (USB_DIR_OUT | USB_TYPE_STANDARD |
++ USB_RECIP_DEVICE))
++ break;
++ VDBG(fsg, "set configuration\n");
++ if (w_value == CONFIG_VALUE || w_value == 0) {
++ fsg->new_config = w_value;
++
++ /* Raise an exception to wipe out previous transaction
++ * state (queued bufs, etc) and set the new config. */
++ raise_exception(fsg, FSG_STATE_CONFIG_CHANGE);
++ value = DELAYED_STATUS;
++ }
++ break;
++ case USB_REQ_GET_CONFIGURATION:
++ if (ctrl->bRequestType != (USB_DIR_IN | USB_TYPE_STANDARD |
++ USB_RECIP_DEVICE))
++ break;
++ VDBG(fsg, "get configuration\n");
++ *(u8 *) req->buf = fsg->config;
++ value = 1;
++ break;
++
++ case USB_REQ_SET_INTERFACE:
++ if (ctrl->bRequestType != (USB_DIR_OUT| USB_TYPE_STANDARD |
++ USB_RECIP_INTERFACE))
++ break;
++ if (fsg->config && w_index == 0) {
++
++ /* Raise an exception to wipe out previous transaction
++ * state (queued bufs, etc) and install the new
++ * interface altsetting. */
++ raise_exception(fsg, FSG_STATE_INTERFACE_CHANGE);
++ value = DELAYED_STATUS;
++ }
++ break;
++ case USB_REQ_GET_INTERFACE:
++ if (ctrl->bRequestType != (USB_DIR_IN | USB_TYPE_STANDARD |
++ USB_RECIP_INTERFACE))
++ break;
++ if (!fsg->config)
++ break;
++ if (w_index != 0) {
++ value = -EDOM;
++ break;
++ }
++ VDBG(fsg, "get interface\n");
++ *(u8 *) req->buf = 0;
++ value = 1;
++ break;
++
++ default:
++ VDBG(fsg,
++ "unknown control req %02x.%02x v%04x i%04x l%u\n",
++ ctrl->bRequestType, ctrl->bRequest,
++ w_value, w_index, le16_to_cpu(ctrl->wLength));
++ }
++
++ return value;
++}
++
++
++static int fsg_setup(struct usb_gadget *gadget,
++ const struct usb_ctrlrequest *ctrl)
++{
++ struct fsg_dev *fsg = get_gadget_data(gadget);
++ int rc;
++ int w_length = le16_to_cpu(ctrl->wLength);
++
++ ++fsg->ep0_req_tag; // Record arrival of a new request
++ fsg->ep0req->context = NULL;
++ fsg->ep0req->length = 0;
++ dump_msg(fsg, "ep0-setup", (u8 *) ctrl, sizeof(*ctrl));
++
++ if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_CLASS)
++ rc = class_setup_req(fsg, ctrl);
++ else
++ rc = standard_setup_req(fsg, ctrl);
++
++ /* Respond with data/status or defer until later? */
++ if (rc >= 0 && rc != DELAYED_STATUS) {
++ rc = min(rc, w_length);
++ fsg->ep0req->length = rc;
++ fsg->ep0req->zero = rc < w_length;
++ fsg->ep0req_name = (ctrl->bRequestType & USB_DIR_IN ?
++ "ep0-in" : "ep0-out");
++ rc = ep0_queue(fsg);
++ }
++
++ /* Device either stalls (rc < 0) or reports success */
++ return rc;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++/* All the following routines run in process context */
++
++
++/* Use this for bulk or interrupt transfers, not ep0 */
++static void start_transfer(struct fsg_dev *fsg, struct usb_ep *ep,
++ struct usb_request *req, int *pbusy,
++ enum fsg_buffer_state *state)
++{
++ int rc;
++
++ if (ep == fsg->bulk_in)
++ dump_msg(fsg, "bulk-in", req->buf, req->length);
++ else if (ep == fsg->intr_in)
++ dump_msg(fsg, "intr-in", req->buf, req->length);
++
++ spin_lock_irq(&fsg->lock);
++ *pbusy = 1;
++ *state = BUF_STATE_BUSY;
++ spin_unlock_irq(&fsg->lock);
++ rc = usb_ep_queue(ep, req, GFP_KERNEL);
++ if (rc != 0) {
++ *pbusy = 0;
++ *state = BUF_STATE_EMPTY;
++
++ /* We can't do much more than wait for a reset */
++
++ /* Note: currently the net2280 driver fails zero-length
++ * submissions if DMA is enabled. */
++ if (rc != -ESHUTDOWN && !(rc == -EOPNOTSUPP &&
++ req->length == 0))
++ WARNING(fsg, "error in submission: %s --> %d\n",
++ ep->name, rc);
++ }
++}
++
++
++static int sleep_thread(struct fsg_dev *fsg)
++{
++ int rc = 0;
++
++ /* Wait until a signal arrives or we are woken up */
++ for (;;) {
++ try_to_freeze();
++ set_current_state(TASK_INTERRUPTIBLE);
++ if (signal_pending(current)) {
++ rc = -EINTR;
++ break;
++ }
++ if (fsg->thread_wakeup_needed)
++ break;
++ schedule();
++ }
++ __set_current_state(TASK_RUNNING);
++ fsg->thread_wakeup_needed = 0;
++ return rc;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int do_read(struct fsg_dev *fsg)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ u32 lba;
++ struct fsg_buffhd *bh;
++ int rc;
++ u32 amount_left;
++ loff_t file_offset, file_offset_tmp;
++ unsigned int amount;
++ ssize_t nread;
++
++ /* Get the starting Logical Block Address and check that it's
++ * not too big */
++ if (fsg->cmnd[0] == READ_6)
++ lba = get_unaligned_be24(&fsg->cmnd[1]);
++ else {
++ lba = get_unaligned_be32(&fsg->cmnd[2]);
++
++ /* We allow DPO (Disable Page Out = don't save data in the
++ * cache) and FUA (Force Unit Access = don't read from the
++ * cache), but we don't implement them. */
++ if ((fsg->cmnd[1] & ~0x18) != 0) {
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++ }
++ if (lba >= curlun->num_sectors) {
++ curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
++ return -EINVAL;
++ }
++ file_offset = ((loff_t) lba) << curlun->blkbits;
++
++ /* Carry out the file reads */
++ amount_left = fsg->data_size_from_cmnd;
++ if (unlikely(amount_left == 0))
++ return -EIO; // No default reply
++
++ for (;;) {
++
++ /* Figure out how much we need to read:
++ * Try to read the remaining amount.
++ * But don't read more than the buffer size.
++ * And don't try to read past the end of the file.
++ */
++ amount = min((unsigned int) amount_left, mod_data.buflen);
++ amount = min((loff_t) amount,
++ curlun->file_length - file_offset);
++
++ /* Wait for the next buffer to become available */
++ bh = fsg->next_buffhd_to_fill;
++ while (bh->state != BUF_STATE_EMPTY) {
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++
++ /* If we were asked to read past the end of file,
++ * end with an empty buffer. */
++ if (amount == 0) {
++ curlun->sense_data =
++ SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
++ curlun->sense_data_info = file_offset >> curlun->blkbits;
++ curlun->info_valid = 1;
++ bh->inreq->length = 0;
++ bh->state = BUF_STATE_FULL;
++ break;
++ }
++
++ /* Perform the read */
++ file_offset_tmp = file_offset;
++ nread = vfs_read(curlun->filp,
++ (char __user *) bh->buf,
++ amount, &file_offset_tmp);
++ VLDBG(curlun, "file read %u @ %llu -> %d\n", amount,
++ (unsigned long long) file_offset,
++ (int) nread);
++ if (signal_pending(current))
++ return -EINTR;
++
++ if (nread < 0) {
++ LDBG(curlun, "error in file read: %d\n",
++ (int) nread);
++ nread = 0;
++ } else if (nread < amount) {
++ LDBG(curlun, "partial file read: %d/%u\n",
++ (int) nread, amount);
++ nread = round_down(nread, curlun->blksize);
++ }
++ file_offset += nread;
++ amount_left -= nread;
++ fsg->residue -= nread;
++
++ /* Except at the end of the transfer, nread will be
++ * equal to the buffer size, which is divisible by the
++ * bulk-in maxpacket size.
++ */
++ bh->inreq->length = nread;
++ bh->state = BUF_STATE_FULL;
++
++ /* If an error occurred, report it and its position */
++ if (nread < amount) {
++ curlun->sense_data = SS_UNRECOVERED_READ_ERROR;
++ curlun->sense_data_info = file_offset >> curlun->blkbits;
++ curlun->info_valid = 1;
++ break;
++ }
++
++ if (amount_left == 0)
++ break; // No more left to read
++
++ /* Send this buffer and go read some more */
++ bh->inreq->zero = 0;
++ start_transfer(fsg, fsg->bulk_in, bh->inreq,
++ &bh->inreq_busy, &bh->state);
++ fsg->next_buffhd_to_fill = bh->next;
++ }
++
++ return -EIO; // No default reply
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int do_write(struct fsg_dev *fsg)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ u32 lba;
++ struct fsg_buffhd *bh;
++ int get_some_more;
++ u32 amount_left_to_req, amount_left_to_write;
++ loff_t usb_offset, file_offset, file_offset_tmp;
++ unsigned int amount;
++ ssize_t nwritten;
++ int rc;
++
++ if (curlun->ro) {
++ curlun->sense_data = SS_WRITE_PROTECTED;
++ return -EINVAL;
++ }
++ spin_lock(&curlun->filp->f_lock);
++ curlun->filp->f_flags &= ~O_SYNC; // Default is not to wait
++ spin_unlock(&curlun->filp->f_lock);
++
++ /* Get the starting Logical Block Address and check that it's
++ * not too big */
++ if (fsg->cmnd[0] == WRITE_6)
++ lba = get_unaligned_be24(&fsg->cmnd[1]);
++ else {
++ lba = get_unaligned_be32(&fsg->cmnd[2]);
++
++ /* We allow DPO (Disable Page Out = don't save data in the
++ * cache) and FUA (Force Unit Access = write directly to the
++ * medium). We don't implement DPO; we implement FUA by
++ * performing synchronous output. */
++ if ((fsg->cmnd[1] & ~0x18) != 0) {
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++ /* FUA */
++ if (!curlun->nofua && (fsg->cmnd[1] & 0x08)) {
++ spin_lock(&curlun->filp->f_lock);
++ curlun->filp->f_flags |= O_DSYNC;
++ spin_unlock(&curlun->filp->f_lock);
++ }
++ }
++ if (lba >= curlun->num_sectors) {
++ curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
++ return -EINVAL;
++ }
++
++ /* Carry out the file writes */
++ get_some_more = 1;
++ file_offset = usb_offset = ((loff_t) lba) << curlun->blkbits;
++ amount_left_to_req = amount_left_to_write = fsg->data_size_from_cmnd;
++
++ while (amount_left_to_write > 0) {
++
++ /* Queue a request for more data from the host */
++ bh = fsg->next_buffhd_to_fill;
++ if (bh->state == BUF_STATE_EMPTY && get_some_more) {
++
++ /* Figure out how much we want to get:
++ * Try to get the remaining amount,
++ * but not more than the buffer size.
++ */
++ amount = min(amount_left_to_req, mod_data.buflen);
++
++ /* Beyond the end of the backing file? */
++ if (usb_offset >= curlun->file_length) {
++ get_some_more = 0;
++ curlun->sense_data =
++ SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
++ curlun->sense_data_info = usb_offset >> curlun->blkbits;
++ curlun->info_valid = 1;
++ continue;
++ }
++
++ /* Get the next buffer */
++ usb_offset += amount;
++ fsg->usb_amount_left -= amount;
++ amount_left_to_req -= amount;
++ if (amount_left_to_req == 0)
++ get_some_more = 0;
++
++ /* Except at the end of the transfer, amount will be
++ * equal to the buffer size, which is divisible by
++ * the bulk-out maxpacket size.
++ */
++ set_bulk_out_req_length(fsg, bh, amount);
++ start_transfer(fsg, fsg->bulk_out, bh->outreq,
++ &bh->outreq_busy, &bh->state);
++ fsg->next_buffhd_to_fill = bh->next;
++ continue;
++ }
++
++ /* Write the received data to the backing file */
++ bh = fsg->next_buffhd_to_drain;
++ if (bh->state == BUF_STATE_EMPTY && !get_some_more)
++ break; // We stopped early
++ if (bh->state == BUF_STATE_FULL) {
++ smp_rmb();
++ fsg->next_buffhd_to_drain = bh->next;
++ bh->state = BUF_STATE_EMPTY;
++
++ /* Did something go wrong with the transfer? */
++ if (bh->outreq->status != 0) {
++ curlun->sense_data = SS_COMMUNICATION_FAILURE;
++ curlun->sense_data_info = file_offset >> curlun->blkbits;
++ curlun->info_valid = 1;
++ break;
++ }
++
++ amount = bh->outreq->actual;
++ if (curlun->file_length - file_offset < amount) {
++ LERROR(curlun,
++ "write %u @ %llu beyond end %llu\n",
++ amount, (unsigned long long) file_offset,
++ (unsigned long long) curlun->file_length);
++ amount = curlun->file_length - file_offset;
++ }
++
++ /* Don't accept excess data. The spec doesn't say
++ * what to do in this case. We'll ignore the error.
++ */
++ amount = min(amount, bh->bulk_out_intended_length);
++
++ /* Don't write a partial block */
++ amount = round_down(amount, curlun->blksize);
++ if (amount == 0)
++ goto empty_write;
++
++ /* Perform the write */
++ file_offset_tmp = file_offset;
++ nwritten = vfs_write(curlun->filp,
++ (char __user *) bh->buf,
++ amount, &file_offset_tmp);
++ VLDBG(curlun, "file write %u @ %llu -> %d\n", amount,
++ (unsigned long long) file_offset,
++ (int) nwritten);
++ if (signal_pending(current))
++ return -EINTR; // Interrupted!
++
++ if (nwritten < 0) {
++ LDBG(curlun, "error in file write: %d\n",
++ (int) nwritten);
++ nwritten = 0;
++ } else if (nwritten < amount) {
++ LDBG(curlun, "partial file write: %d/%u\n",
++ (int) nwritten, amount);
++ nwritten = round_down(nwritten, curlun->blksize);
++ }
++ file_offset += nwritten;
++ amount_left_to_write -= nwritten;
++ fsg->residue -= nwritten;
++
++ /* If an error occurred, report it and its position */
++ if (nwritten < amount) {
++ curlun->sense_data = SS_WRITE_ERROR;
++ curlun->sense_data_info = file_offset >> curlun->blkbits;
++ curlun->info_valid = 1;
++ break;
++ }
++
++ empty_write:
++ /* Did the host decide to stop early? */
++ if (bh->outreq->actual < bh->bulk_out_intended_length) {
++ fsg->short_packet_received = 1;
++ break;
++ }
++ continue;
++ }
++
++ /* Wait for something to happen */
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++
++ return -EIO; // No default reply
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int do_synchronize_cache(struct fsg_dev *fsg)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ int rc;
++
++ /* We ignore the requested LBA and write out all file's
++ * dirty data buffers. */
++ rc = fsg_lun_fsync_sub(curlun);
++ if (rc)
++ curlun->sense_data = SS_WRITE_ERROR;
++ return 0;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static void invalidate_sub(struct fsg_lun *curlun)
++{
++ struct file *filp = curlun->filp;
++ struct inode *inode = filp->f_path.dentry->d_inode;
++ unsigned long rc;
++
++ rc = invalidate_mapping_pages(inode->i_mapping, 0, -1);
++ VLDBG(curlun, "invalidate_mapping_pages -> %ld\n", rc);
++}
++
++static int do_verify(struct fsg_dev *fsg)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ u32 lba;
++ u32 verification_length;
++ struct fsg_buffhd *bh = fsg->next_buffhd_to_fill;
++ loff_t file_offset, file_offset_tmp;
++ u32 amount_left;
++ unsigned int amount;
++ ssize_t nread;
++
++ /* Get the starting Logical Block Address and check that it's
++ * not too big */
++ lba = get_unaligned_be32(&fsg->cmnd[2]);
++ if (lba >= curlun->num_sectors) {
++ curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
++ return -EINVAL;
++ }
++
++ /* We allow DPO (Disable Page Out = don't save data in the
++ * cache) but we don't implement it. */
++ if ((fsg->cmnd[1] & ~0x10) != 0) {
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++
++ verification_length = get_unaligned_be16(&fsg->cmnd[7]);
++ if (unlikely(verification_length == 0))
++ return -EIO; // No default reply
++
++ /* Prepare to carry out the file verify */
++ amount_left = verification_length << curlun->blkbits;
++ file_offset = ((loff_t) lba) << curlun->blkbits;
++
++ /* Write out all the dirty buffers before invalidating them */
++ fsg_lun_fsync_sub(curlun);
++ if (signal_pending(current))
++ return -EINTR;
++
++ invalidate_sub(curlun);
++ if (signal_pending(current))
++ return -EINTR;
++
++ /* Just try to read the requested blocks */
++ while (amount_left > 0) {
++
++ /* Figure out how much we need to read:
++ * Try to read the remaining amount, but not more than
++ * the buffer size.
++ * And don't try to read past the end of the file.
++ */
++ amount = min((unsigned int) amount_left, mod_data.buflen);
++ amount = min((loff_t) amount,
++ curlun->file_length - file_offset);
++ if (amount == 0) {
++ curlun->sense_data =
++ SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
++ curlun->sense_data_info = file_offset >> curlun->blkbits;
++ curlun->info_valid = 1;
++ break;
++ }
++
++ /* Perform the read */
++ file_offset_tmp = file_offset;
++ nread = vfs_read(curlun->filp,
++ (char __user *) bh->buf,
++ amount, &file_offset_tmp);
++ VLDBG(curlun, "file read %u @ %llu -> %d\n", amount,
++ (unsigned long long) file_offset,
++ (int) nread);
++ if (signal_pending(current))
++ return -EINTR;
++
++ if (nread < 0) {
++ LDBG(curlun, "error in file verify: %d\n",
++ (int) nread);
++ nread = 0;
++ } else if (nread < amount) {
++ LDBG(curlun, "partial file verify: %d/%u\n",
++ (int) nread, amount);
++ nread = round_down(nread, curlun->blksize);
++ }
++ if (nread == 0) {
++ curlun->sense_data = SS_UNRECOVERED_READ_ERROR;
++ curlun->sense_data_info = file_offset >> curlun->blkbits;
++ curlun->info_valid = 1;
++ break;
++ }
++ file_offset += nread;
++ amount_left -= nread;
++ }
++ return 0;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int do_inquiry(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ u8 *buf = (u8 *) bh->buf;
++
++ static char vendor_id[] = "Linux ";
++ static char product_disk_id[] = "File-Stor Gadget";
++ static char product_cdrom_id[] = "File-CD Gadget ";
++
++ if (!fsg->curlun) { // Unsupported LUNs are okay
++ fsg->bad_lun_okay = 1;
++ memset(buf, 0, 36);
++ buf[0] = 0x7f; // Unsupported, no device-type
++ buf[4] = 31; // Additional length
++ return 36;
++ }
++
++ memset(buf, 0, 8);
++ buf[0] = (mod_data.cdrom ? TYPE_ROM : TYPE_DISK);
++ if (mod_data.removable)
++ buf[1] = 0x80;
++ buf[2] = 2; // ANSI SCSI level 2
++ buf[3] = 2; // SCSI-2 INQUIRY data format
++ buf[4] = 31; // Additional length
++ // No special options
++ sprintf(buf + 8, "%-8s%-16s%04x", vendor_id,
++ (mod_data.cdrom ? product_cdrom_id :
++ product_disk_id),
++ mod_data.release);
++ return 36;
++}
++
++
++static int do_request_sense(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ u8 *buf = (u8 *) bh->buf;
++ u32 sd, sdinfo;
++ int valid;
++
++ /*
++ * From the SCSI-2 spec., section 7.9 (Unit attention condition):
++ *
++ * If a REQUEST SENSE command is received from an initiator
++ * with a pending unit attention condition (before the target
++ * generates the contingent allegiance condition), then the
++ * target shall either:
++ * a) report any pending sense data and preserve the unit
++ * attention condition on the logical unit, or,
++ * b) report the unit attention condition, may discard any
++ * pending sense data, and clear the unit attention
++ * condition on the logical unit for that initiator.
++ *
++ * FSG normally uses option a); enable this code to use option b).
++ */
++#if 0
++ if (curlun && curlun->unit_attention_data != SS_NO_SENSE) {
++ curlun->sense_data = curlun->unit_attention_data;
++ curlun->unit_attention_data = SS_NO_SENSE;
++ }
++#endif
++
++ if (!curlun) { // Unsupported LUNs are okay
++ fsg->bad_lun_okay = 1;
++ sd = SS_LOGICAL_UNIT_NOT_SUPPORTED;
++ sdinfo = 0;
++ valid = 0;
++ } else {
++ sd = curlun->sense_data;
++ sdinfo = curlun->sense_data_info;
++ valid = curlun->info_valid << 7;
++ curlun->sense_data = SS_NO_SENSE;
++ curlun->sense_data_info = 0;
++ curlun->info_valid = 0;
++ }
++
++ memset(buf, 0, 18);
++ buf[0] = valid | 0x70; // Valid, current error
++ buf[2] = SK(sd);
++ put_unaligned_be32(sdinfo, &buf[3]); /* Sense information */
++ buf[7] = 18 - 8; // Additional sense length
++ buf[12] = ASC(sd);
++ buf[13] = ASCQ(sd);
++ return 18;
++}
++
++
++static int do_read_capacity(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ u32 lba = get_unaligned_be32(&fsg->cmnd[2]);
++ int pmi = fsg->cmnd[8];
++ u8 *buf = (u8 *) bh->buf;
++
++ /* Check the PMI and LBA fields */
++ if (pmi > 1 || (pmi == 0 && lba != 0)) {
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++
++ put_unaligned_be32(curlun->num_sectors - 1, &buf[0]);
++ /* Max logical block */
++ put_unaligned_be32(curlun->blksize, &buf[4]); /* Block length */
++ return 8;
++}
++
++
++static int do_read_header(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ int msf = fsg->cmnd[1] & 0x02;
++ u32 lba = get_unaligned_be32(&fsg->cmnd[2]);
++ u8 *buf = (u8 *) bh->buf;
++
++ if ((fsg->cmnd[1] & ~0x02) != 0) { /* Mask away MSF */
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++ if (lba >= curlun->num_sectors) {
++ curlun->sense_data = SS_LOGICAL_BLOCK_ADDRESS_OUT_OF_RANGE;
++ return -EINVAL;
++ }
++
++ memset(buf, 0, 8);
++ buf[0] = 0x01; /* 2048 bytes of user data, rest is EC */
++ store_cdrom_address(&buf[4], msf, lba);
++ return 8;
++}
++
++
++static int do_read_toc(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ int msf = fsg->cmnd[1] & 0x02;
++ int start_track = fsg->cmnd[6];
++ u8 *buf = (u8 *) bh->buf;
++
++ if ((fsg->cmnd[1] & ~0x02) != 0 || /* Mask away MSF */
++ start_track > 1) {
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++
++ memset(buf, 0, 20);
++ buf[1] = (20-2); /* TOC data length */
++ buf[2] = 1; /* First track number */
++ buf[3] = 1; /* Last track number */
++ buf[5] = 0x16; /* Data track, copying allowed */
++ buf[6] = 0x01; /* Only track is number 1 */
++ store_cdrom_address(&buf[8], msf, 0);
++
++ buf[13] = 0x16; /* Lead-out track is data */
++ buf[14] = 0xAA; /* Lead-out track number */
++ store_cdrom_address(&buf[16], msf, curlun->num_sectors);
++ return 20;
++}
++
++
++static int do_mode_sense(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ int mscmnd = fsg->cmnd[0];
++ u8 *buf = (u8 *) bh->buf;
++ u8 *buf0 = buf;
++ int pc, page_code;
++ int changeable_values, all_pages;
++ int valid_page = 0;
++ int len, limit;
++
++ if ((fsg->cmnd[1] & ~0x08) != 0) { // Mask away DBD
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++ pc = fsg->cmnd[2] >> 6;
++ page_code = fsg->cmnd[2] & 0x3f;
++ if (pc == 3) {
++ curlun->sense_data = SS_SAVING_PARAMETERS_NOT_SUPPORTED;
++ return -EINVAL;
++ }
++ changeable_values = (pc == 1);
++ all_pages = (page_code == 0x3f);
++
++ /* Write the mode parameter header. Fixed values are: default
++ * medium type, no cache control (DPOFUA), and no block descriptors.
++ * The only variable value is the WriteProtect bit. We will fill in
++ * the mode data length later. */
++ memset(buf, 0, 8);
++ if (mscmnd == MODE_SENSE) {
++ buf[2] = (curlun->ro ? 0x80 : 0x00); // WP, DPOFUA
++ buf += 4;
++ limit = 255;
++ } else { // MODE_SENSE_10
++ buf[3] = (curlun->ro ? 0x80 : 0x00); // WP, DPOFUA
++ buf += 8;
++ limit = 65535; // Should really be mod_data.buflen
++ }
++
++ /* No block descriptors */
++
++ /* The mode pages, in numerical order. The only page we support
++ * is the Caching page. */
++ if (page_code == 0x08 || all_pages) {
++ valid_page = 1;
++ buf[0] = 0x08; // Page code
++ buf[1] = 10; // Page length
++ memset(buf+2, 0, 10); // None of the fields are changeable
++
++ if (!changeable_values) {
++ buf[2] = 0x04; // Write cache enable,
++ // Read cache not disabled
++ // No cache retention priorities
++ put_unaligned_be16(0xffff, &buf[4]);
++ /* Don't disable prefetch */
++ /* Minimum prefetch = 0 */
++ put_unaligned_be16(0xffff, &buf[8]);
++ /* Maximum prefetch */
++ put_unaligned_be16(0xffff, &buf[10]);
++ /* Maximum prefetch ceiling */
++ }
++ buf += 12;
++ }
++
++ /* Check that a valid page was requested and the mode data length
++ * isn't too long. */
++ len = buf - buf0;
++ if (!valid_page || len > limit) {
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++
++ /* Store the mode data length */
++ if (mscmnd == MODE_SENSE)
++ buf0[0] = len - 1;
++ else
++ put_unaligned_be16(len - 2, buf0);
++ return len;
++}
++
++
++static int do_start_stop(struct fsg_dev *fsg)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ int loej, start;
++
++ if (!mod_data.removable) {
++ curlun->sense_data = SS_INVALID_COMMAND;
++ return -EINVAL;
++ }
++
++ // int immed = fsg->cmnd[1] & 0x01;
++ loej = fsg->cmnd[4] & 0x02;
++ start = fsg->cmnd[4] & 0x01;
++
++#ifdef CONFIG_USB_FILE_STORAGE_TEST
++ if ((fsg->cmnd[1] & ~0x01) != 0 || // Mask away Immed
++ (fsg->cmnd[4] & ~0x03) != 0) { // Mask LoEj, Start
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++
++ if (!start) {
++
++ /* Are we allowed to unload the media? */
++ if (curlun->prevent_medium_removal) {
++ LDBG(curlun, "unload attempt prevented\n");
++ curlun->sense_data = SS_MEDIUM_REMOVAL_PREVENTED;
++ return -EINVAL;
++ }
++ if (loej) { // Simulate an unload/eject
++ up_read(&fsg->filesem);
++ down_write(&fsg->filesem);
++ fsg_lun_close(curlun);
++ up_write(&fsg->filesem);
++ down_read(&fsg->filesem);
++ }
++ } else {
++
++ /* Our emulation doesn't support mounting; the medium is
++ * available for use as soon as it is loaded. */
++ if (!fsg_lun_is_open(curlun)) {
++ curlun->sense_data = SS_MEDIUM_NOT_PRESENT;
++ return -EINVAL;
++ }
++ }
++#endif
++ return 0;
++}
++
++
++static int do_prevent_allow(struct fsg_dev *fsg)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ int prevent;
++
++ if (!mod_data.removable) {
++ curlun->sense_data = SS_INVALID_COMMAND;
++ return -EINVAL;
++ }
++
++ prevent = fsg->cmnd[4] & 0x01;
++ if ((fsg->cmnd[4] & ~0x01) != 0) { // Mask away Prevent
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++
++ if (curlun->prevent_medium_removal && !prevent)
++ fsg_lun_fsync_sub(curlun);
++ curlun->prevent_medium_removal = prevent;
++ return 0;
++}
++
++
++static int do_read_format_capacities(struct fsg_dev *fsg,
++ struct fsg_buffhd *bh)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ u8 *buf = (u8 *) bh->buf;
++
++ buf[0] = buf[1] = buf[2] = 0;
++ buf[3] = 8; // Only the Current/Maximum Capacity Descriptor
++ buf += 4;
++
++ put_unaligned_be32(curlun->num_sectors, &buf[0]);
++ /* Number of blocks */
++ put_unaligned_be32(curlun->blksize, &buf[4]); /* Block length */
++ buf[4] = 0x02; /* Current capacity */
++ return 12;
++}
++
++
++static int do_mode_select(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++
++ /* We don't support MODE SELECT */
++ curlun->sense_data = SS_INVALID_COMMAND;
++ return -EINVAL;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int halt_bulk_in_endpoint(struct fsg_dev *fsg)
++{
++ int rc;
++
++ rc = fsg_set_halt(fsg, fsg->bulk_in);
++ if (rc == -EAGAIN)
++ VDBG(fsg, "delayed bulk-in endpoint halt\n");
++ while (rc != 0) {
++ if (rc != -EAGAIN) {
++ WARNING(fsg, "usb_ep_set_halt -> %d\n", rc);
++ rc = 0;
++ break;
++ }
++
++ /* Wait for a short time and then try again */
++ if (msleep_interruptible(100) != 0)
++ return -EINTR;
++ rc = usb_ep_set_halt(fsg->bulk_in);
++ }
++ return rc;
++}
++
++static int wedge_bulk_in_endpoint(struct fsg_dev *fsg)
++{
++ int rc;
++
++ DBG(fsg, "bulk-in set wedge\n");
++ rc = usb_ep_set_wedge(fsg->bulk_in);
++ if (rc == -EAGAIN)
++ VDBG(fsg, "delayed bulk-in endpoint wedge\n");
++ while (rc != 0) {
++ if (rc != -EAGAIN) {
++ WARNING(fsg, "usb_ep_set_wedge -> %d\n", rc);
++ rc = 0;
++ break;
++ }
++
++ /* Wait for a short time and then try again */
++ if (msleep_interruptible(100) != 0)
++ return -EINTR;
++ rc = usb_ep_set_wedge(fsg->bulk_in);
++ }
++ return rc;
++}
++
++static int throw_away_data(struct fsg_dev *fsg)
++{
++ struct fsg_buffhd *bh;
++ u32 amount;
++ int rc;
++
++ while ((bh = fsg->next_buffhd_to_drain)->state != BUF_STATE_EMPTY ||
++ fsg->usb_amount_left > 0) {
++
++ /* Throw away the data in a filled buffer */
++ if (bh->state == BUF_STATE_FULL) {
++ smp_rmb();
++ bh->state = BUF_STATE_EMPTY;
++ fsg->next_buffhd_to_drain = bh->next;
++
++ /* A short packet or an error ends everything */
++ if (bh->outreq->actual < bh->bulk_out_intended_length ||
++ bh->outreq->status != 0) {
++ raise_exception(fsg, FSG_STATE_ABORT_BULK_OUT);
++ return -EINTR;
++ }
++ continue;
++ }
++
++ /* Try to submit another request if we need one */
++ bh = fsg->next_buffhd_to_fill;
++ if (bh->state == BUF_STATE_EMPTY && fsg->usb_amount_left > 0) {
++ amount = min(fsg->usb_amount_left,
++ (u32) mod_data.buflen);
++
++ /* Except at the end of the transfer, amount will be
++ * equal to the buffer size, which is divisible by
++ * the bulk-out maxpacket size.
++ */
++ set_bulk_out_req_length(fsg, bh, amount);
++ start_transfer(fsg, fsg->bulk_out, bh->outreq,
++ &bh->outreq_busy, &bh->state);
++ fsg->next_buffhd_to_fill = bh->next;
++ fsg->usb_amount_left -= amount;
++ continue;
++ }
++
++ /* Otherwise wait for something to happen */
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++ return 0;
++}
++
++
++static int finish_reply(struct fsg_dev *fsg)
++{
++ struct fsg_buffhd *bh = fsg->next_buffhd_to_fill;
++ int rc = 0;
++
++ switch (fsg->data_dir) {
++ case DATA_DIR_NONE:
++ break; // Nothing to send
++
++ /* If we don't know whether the host wants to read or write,
++ * this must be CB or CBI with an unknown command. We mustn't
++ * try to send or receive any data. So stall both bulk pipes
++ * if we can and wait for a reset. */
++ case DATA_DIR_UNKNOWN:
++ if (mod_data.can_stall) {
++ fsg_set_halt(fsg, fsg->bulk_out);
++ rc = halt_bulk_in_endpoint(fsg);
++ }
++ break;
++
++ /* All but the last buffer of data must have already been sent */
++ case DATA_DIR_TO_HOST:
++ if (fsg->data_size == 0)
++ ; // Nothing to send
++
++ /* If there's no residue, simply send the last buffer */
++ else if (fsg->residue == 0) {
++ bh->inreq->zero = 0;
++ start_transfer(fsg, fsg->bulk_in, bh->inreq,
++ &bh->inreq_busy, &bh->state);
++ fsg->next_buffhd_to_fill = bh->next;
++ }
++
++ /* There is a residue. For CB and CBI, simply mark the end
++ * of the data with a short packet. However, if we are
++ * allowed to stall, there was no data at all (residue ==
++ * data_size), and the command failed (invalid LUN or
++ * sense data is set), then halt the bulk-in endpoint
++ * instead. */
++ else if (!transport_is_bbb()) {
++ if (mod_data.can_stall &&
++ fsg->residue == fsg->data_size &&
++ (!fsg->curlun || fsg->curlun->sense_data != SS_NO_SENSE)) {
++ bh->state = BUF_STATE_EMPTY;
++ rc = halt_bulk_in_endpoint(fsg);
++ } else {
++ bh->inreq->zero = 1;
++ start_transfer(fsg, fsg->bulk_in, bh->inreq,
++ &bh->inreq_busy, &bh->state);
++ fsg->next_buffhd_to_fill = bh->next;
++ }
++ }
++
++ /*
++ * For Bulk-only, mark the end of the data with a short
++ * packet. If we are allowed to stall, halt the bulk-in
++ * endpoint. (Note: This violates the Bulk-Only Transport
++ * specification, which requires us to pad the data if we
++ * don't halt the endpoint. Presumably nobody will mind.)
++ */
++ else {
++ bh->inreq->zero = 1;
++ start_transfer(fsg, fsg->bulk_in, bh->inreq,
++ &bh->inreq_busy, &bh->state);
++ fsg->next_buffhd_to_fill = bh->next;
++ if (mod_data.can_stall)
++ rc = halt_bulk_in_endpoint(fsg);
++ }
++ break;
++
++ /* We have processed all we want from the data the host has sent.
++ * There may still be outstanding bulk-out requests. */
++ case DATA_DIR_FROM_HOST:
++ if (fsg->residue == 0)
++ ; // Nothing to receive
++
++ /* Did the host stop sending unexpectedly early? */
++ else if (fsg->short_packet_received) {
++ raise_exception(fsg, FSG_STATE_ABORT_BULK_OUT);
++ rc = -EINTR;
++ }
++
++ /* We haven't processed all the incoming data. Even though
++ * we may be allowed to stall, doing so would cause a race.
++ * The controller may already have ACK'ed all the remaining
++ * bulk-out packets, in which case the host wouldn't see a
++ * STALL. Not realizing the endpoint was halted, it wouldn't
++ * clear the halt -- leading to problems later on. */
++#if 0
++ else if (mod_data.can_stall) {
++ fsg_set_halt(fsg, fsg->bulk_out);
++ raise_exception(fsg, FSG_STATE_ABORT_BULK_OUT);
++ rc = -EINTR;
++ }
++#endif
++
++ /* We can't stall. Read in the excess data and throw it
++ * all away. */
++ else
++ rc = throw_away_data(fsg);
++ break;
++ }
++ return rc;
++}
++
++
++static int send_status(struct fsg_dev *fsg)
++{
++ struct fsg_lun *curlun = fsg->curlun;
++ struct fsg_buffhd *bh;
++ int rc;
++ u8 status = US_BULK_STAT_OK;
++ u32 sd, sdinfo = 0;
++
++ /* Wait for the next buffer to become available */
++ bh = fsg->next_buffhd_to_fill;
++ while (bh->state != BUF_STATE_EMPTY) {
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++
++ if (curlun) {
++ sd = curlun->sense_data;
++ sdinfo = curlun->sense_data_info;
++ } else if (fsg->bad_lun_okay)
++ sd = SS_NO_SENSE;
++ else
++ sd = SS_LOGICAL_UNIT_NOT_SUPPORTED;
++
++ if (fsg->phase_error) {
++ DBG(fsg, "sending phase-error status\n");
++ status = US_BULK_STAT_PHASE;
++ sd = SS_INVALID_COMMAND;
++ } else if (sd != SS_NO_SENSE) {
++ DBG(fsg, "sending command-failure status\n");
++ status = US_BULK_STAT_FAIL;
++ VDBG(fsg, " sense data: SK x%02x, ASC x%02x, ASCQ x%02x;"
++ " info x%x\n",
++ SK(sd), ASC(sd), ASCQ(sd), sdinfo);
++ }
++
++ if (transport_is_bbb()) {
++ struct bulk_cs_wrap *csw = bh->buf;
++
++ /* Store and send the Bulk-only CSW */
++ csw->Signature = cpu_to_le32(US_BULK_CS_SIGN);
++ csw->Tag = fsg->tag;
++ csw->Residue = cpu_to_le32(fsg->residue);
++ csw->Status = status;
++
++ bh->inreq->length = US_BULK_CS_WRAP_LEN;
++ bh->inreq->zero = 0;
++ start_transfer(fsg, fsg->bulk_in, bh->inreq,
++ &bh->inreq_busy, &bh->state);
++
++ } else if (mod_data.transport_type == USB_PR_CB) {
++
++ /* Control-Bulk transport has no status phase! */
++ return 0;
++
++ } else { // USB_PR_CBI
++ struct interrupt_data *buf = bh->buf;
++
++ /* Store and send the Interrupt data. UFI sends the ASC
++ * and ASCQ bytes. Everything else sends a Type (which
++ * is always 0) and the status Value. */
++ if (mod_data.protocol_type == USB_SC_UFI) {
++ buf->bType = ASC(sd);
++ buf->bValue = ASCQ(sd);
++ } else {
++ buf->bType = 0;
++ buf->bValue = status;
++ }
++ fsg->intreq->length = CBI_INTERRUPT_DATA_LEN;
++
++ fsg->intr_buffhd = bh; // Point to the right buffhd
++ fsg->intreq->buf = bh->inreq->buf;
++ fsg->intreq->context = bh;
++ start_transfer(fsg, fsg->intr_in, fsg->intreq,
++ &fsg->intreq_busy, &bh->state);
++ }
++
++ fsg->next_buffhd_to_fill = bh->next;
++ return 0;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++/* Check whether the command is properly formed and whether its data size
++ * and direction agree with the values we already have. */
++static int check_command(struct fsg_dev *fsg, int cmnd_size,
++ enum data_direction data_dir, unsigned int mask,
++ int needs_medium, const char *name)
++{
++ int i;
++ int lun = fsg->cmnd[1] >> 5;
++ static const char dirletter[4] = {'u', 'o', 'i', 'n'};
++ char hdlen[20];
++ struct fsg_lun *curlun;
++
++ /* Adjust the expected cmnd_size for protocol encapsulation padding.
++ * Transparent SCSI doesn't pad. */
++ if (protocol_is_scsi())
++ ;
++
++ /* There's some disagreement as to whether RBC pads commands or not.
++ * We'll play it safe and accept either form. */
++ else if (mod_data.protocol_type == USB_SC_RBC) {
++ if (fsg->cmnd_size == 12)
++ cmnd_size = 12;
++
++ /* All the other protocols pad to 12 bytes */
++ } else
++ cmnd_size = 12;
++
++ hdlen[0] = 0;
++ if (fsg->data_dir != DATA_DIR_UNKNOWN)
++ sprintf(hdlen, ", H%c=%u", dirletter[(int) fsg->data_dir],
++ fsg->data_size);
++ VDBG(fsg, "SCSI command: %s; Dc=%d, D%c=%u; Hc=%d%s\n",
++ name, cmnd_size, dirletter[(int) data_dir],
++ fsg->data_size_from_cmnd, fsg->cmnd_size, hdlen);
++
++ /* We can't reply at all until we know the correct data direction
++ * and size. */
++ if (fsg->data_size_from_cmnd == 0)
++ data_dir = DATA_DIR_NONE;
++ if (fsg->data_dir == DATA_DIR_UNKNOWN) { // CB or CBI
++ fsg->data_dir = data_dir;
++ fsg->data_size = fsg->data_size_from_cmnd;
++
++ } else { // Bulk-only
++ if (fsg->data_size < fsg->data_size_from_cmnd) {
++
++ /* Host data size < Device data size is a phase error.
++ * Carry out the command, but only transfer as much
++ * as we are allowed. */
++ fsg->data_size_from_cmnd = fsg->data_size;
++ fsg->phase_error = 1;
++ }
++ }
++ fsg->residue = fsg->usb_amount_left = fsg->data_size;
++
++ /* Conflicting data directions is a phase error */
++ if (fsg->data_dir != data_dir && fsg->data_size_from_cmnd > 0) {
++ fsg->phase_error = 1;
++ return -EINVAL;
++ }
++
++ /* Verify the length of the command itself */
++ if (cmnd_size != fsg->cmnd_size) {
++
++ /* Special case workaround: There are plenty of buggy SCSI
++ * implementations. Many have issues with cbw->Length
++ * field passing a wrong command size. For those cases we
++ * always try to work around the problem by using the length
++ * sent by the host side provided it is at least as large
++ * as the correct command length.
++ * Examples of such cases would be MS-Windows, which issues
++ * REQUEST SENSE with cbw->Length == 12 where it should
++ * be 6, and xbox360 issuing INQUIRY, TEST UNIT READY and
++ * REQUEST SENSE with cbw->Length == 10 where it should
++ * be 6 as well.
++ */
++ if (cmnd_size <= fsg->cmnd_size) {
++ DBG(fsg, "%s is buggy! Expected length %d "
++ "but we got %d\n", name,
++ cmnd_size, fsg->cmnd_size);
++ cmnd_size = fsg->cmnd_size;
++ } else {
++ fsg->phase_error = 1;
++ return -EINVAL;
++ }
++ }
++
++ /* Check that the LUN values are consistent */
++ if (transport_is_bbb()) {
++ if (fsg->lun != lun)
++ DBG(fsg, "using LUN %d from CBW, "
++ "not LUN %d from CDB\n",
++ fsg->lun, lun);
++ }
++
++ /* Check the LUN */
++ curlun = fsg->curlun;
++ if (curlun) {
++ if (fsg->cmnd[0] != REQUEST_SENSE) {
++ curlun->sense_data = SS_NO_SENSE;
++ curlun->sense_data_info = 0;
++ curlun->info_valid = 0;
++ }
++ } else {
++ fsg->bad_lun_okay = 0;
++
++ /* INQUIRY and REQUEST SENSE commands are explicitly allowed
++ * to use unsupported LUNs; all others may not. */
++ if (fsg->cmnd[0] != INQUIRY &&
++ fsg->cmnd[0] != REQUEST_SENSE) {
++ DBG(fsg, "unsupported LUN %d\n", fsg->lun);
++ return -EINVAL;
++ }
++ }
++
++ /* If a unit attention condition exists, only INQUIRY and
++ * REQUEST SENSE commands are allowed; anything else must fail. */
++ if (curlun && curlun->unit_attention_data != SS_NO_SENSE &&
++ fsg->cmnd[0] != INQUIRY &&
++ fsg->cmnd[0] != REQUEST_SENSE) {
++ curlun->sense_data = curlun->unit_attention_data;
++ curlun->unit_attention_data = SS_NO_SENSE;
++ return -EINVAL;
++ }
++
++ /* Check that only command bytes listed in the mask are non-zero */
++ fsg->cmnd[1] &= 0x1f; // Mask away the LUN
++ for (i = 1; i < cmnd_size; ++i) {
++ if (fsg->cmnd[i] && !(mask & (1 << i))) {
++ if (curlun)
++ curlun->sense_data = SS_INVALID_FIELD_IN_CDB;
++ return -EINVAL;
++ }
++ }
++
++ /* If the medium isn't mounted and the command needs to access
++ * it, return an error. */
++ if (curlun && !fsg_lun_is_open(curlun) && needs_medium) {
++ curlun->sense_data = SS_MEDIUM_NOT_PRESENT;
++ return -EINVAL;
++ }
++
++ return 0;
++}
++
++/* wrapper of check_command for data size in blocks handling */
++static int check_command_size_in_blocks(struct fsg_dev *fsg, int cmnd_size,
++ enum data_direction data_dir, unsigned int mask,
++ int needs_medium, const char *name)
++{
++ if (fsg->curlun)
++ fsg->data_size_from_cmnd <<= fsg->curlun->blkbits;
++ return check_command(fsg, cmnd_size, data_dir,
++ mask, needs_medium, name);
++}
++
++static int do_scsi_command(struct fsg_dev *fsg)
++{
++ struct fsg_buffhd *bh;
++ int rc;
++ int reply = -EINVAL;
++ int i;
++ static char unknown[16];
++
++ dump_cdb(fsg);
++
++ /* Wait for the next buffer to become available for data or status */
++ bh = fsg->next_buffhd_to_drain = fsg->next_buffhd_to_fill;
++ while (bh->state != BUF_STATE_EMPTY) {
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++ fsg->phase_error = 0;
++ fsg->short_packet_received = 0;
++
++ down_read(&fsg->filesem); // We're using the backing file
++ switch (fsg->cmnd[0]) {
++
++ case INQUIRY:
++ fsg->data_size_from_cmnd = fsg->cmnd[4];
++ if ((reply = check_command(fsg, 6, DATA_DIR_TO_HOST,
++ (1<<4), 0,
++ "INQUIRY")) == 0)
++ reply = do_inquiry(fsg, bh);
++ break;
++
++ case MODE_SELECT:
++ fsg->data_size_from_cmnd = fsg->cmnd[4];
++ if ((reply = check_command(fsg, 6, DATA_DIR_FROM_HOST,
++ (1<<1) | (1<<4), 0,
++ "MODE SELECT(6)")) == 0)
++ reply = do_mode_select(fsg, bh);
++ break;
++
++ case MODE_SELECT_10:
++ fsg->data_size_from_cmnd = get_unaligned_be16(&fsg->cmnd[7]);
++ if ((reply = check_command(fsg, 10, DATA_DIR_FROM_HOST,
++ (1<<1) | (3<<7), 0,
++ "MODE SELECT(10)")) == 0)
++ reply = do_mode_select(fsg, bh);
++ break;
++
++ case MODE_SENSE:
++ fsg->data_size_from_cmnd = fsg->cmnd[4];
++ if ((reply = check_command(fsg, 6, DATA_DIR_TO_HOST,
++ (1<<1) | (1<<2) | (1<<4), 0,
++ "MODE SENSE(6)")) == 0)
++ reply = do_mode_sense(fsg, bh);
++ break;
++
++ case MODE_SENSE_10:
++ fsg->data_size_from_cmnd = get_unaligned_be16(&fsg->cmnd[7]);
++ if ((reply = check_command(fsg, 10, DATA_DIR_TO_HOST,
++ (1<<1) | (1<<2) | (3<<7), 0,
++ "MODE SENSE(10)")) == 0)
++ reply = do_mode_sense(fsg, bh);
++ break;
++
++ case ALLOW_MEDIUM_REMOVAL:
++ fsg->data_size_from_cmnd = 0;
++ if ((reply = check_command(fsg, 6, DATA_DIR_NONE,
++ (1<<4), 0,
++ "PREVENT-ALLOW MEDIUM REMOVAL")) == 0)
++ reply = do_prevent_allow(fsg);
++ break;
++
++ case READ_6:
++ i = fsg->cmnd[4];
++ fsg->data_size_from_cmnd = (i == 0) ? 256 : i;
++ if ((reply = check_command_size_in_blocks(fsg, 6,
++ DATA_DIR_TO_HOST,
++ (7<<1) | (1<<4), 1,
++ "READ(6)")) == 0)
++ reply = do_read(fsg);
++ break;
++
++ case READ_10:
++ fsg->data_size_from_cmnd = get_unaligned_be16(&fsg->cmnd[7]);
++ if ((reply = check_command_size_in_blocks(fsg, 10,
++ DATA_DIR_TO_HOST,
++ (1<<1) | (0xf<<2) | (3<<7), 1,
++ "READ(10)")) == 0)
++ reply = do_read(fsg);
++ break;
++
++ case READ_12:
++ fsg->data_size_from_cmnd = get_unaligned_be32(&fsg->cmnd[6]);
++ if ((reply = check_command_size_in_blocks(fsg, 12,
++ DATA_DIR_TO_HOST,
++ (1<<1) | (0xf<<2) | (0xf<<6), 1,
++ "READ(12)")) == 0)
++ reply = do_read(fsg);
++ break;
++
++ case READ_CAPACITY:
++ fsg->data_size_from_cmnd = 8;
++ if ((reply = check_command(fsg, 10, DATA_DIR_TO_HOST,
++ (0xf<<2) | (1<<8), 1,
++ "READ CAPACITY")) == 0)
++ reply = do_read_capacity(fsg, bh);
++ break;
++
++ case READ_HEADER:
++ if (!mod_data.cdrom)
++ goto unknown_cmnd;
++ fsg->data_size_from_cmnd = get_unaligned_be16(&fsg->cmnd[7]);
++ if ((reply = check_command(fsg, 10, DATA_DIR_TO_HOST,
++ (3<<7) | (0x1f<<1), 1,
++ "READ HEADER")) == 0)
++ reply = do_read_header(fsg, bh);
++ break;
++
++ case READ_TOC:
++ if (!mod_data.cdrom)
++ goto unknown_cmnd;
++ fsg->data_size_from_cmnd = get_unaligned_be16(&fsg->cmnd[7]);
++ if ((reply = check_command(fsg, 10, DATA_DIR_TO_HOST,
++ (7<<6) | (1<<1), 1,
++ "READ TOC")) == 0)
++ reply = do_read_toc(fsg, bh);
++ break;
++
++ case READ_FORMAT_CAPACITIES:
++ fsg->data_size_from_cmnd = get_unaligned_be16(&fsg->cmnd[7]);
++ if ((reply = check_command(fsg, 10, DATA_DIR_TO_HOST,
++ (3<<7), 1,
++ "READ FORMAT CAPACITIES")) == 0)
++ reply = do_read_format_capacities(fsg, bh);
++ break;
++
++ case REQUEST_SENSE:
++ fsg->data_size_from_cmnd = fsg->cmnd[4];
++ if ((reply = check_command(fsg, 6, DATA_DIR_TO_HOST,
++ (1<<4), 0,
++ "REQUEST SENSE")) == 0)
++ reply = do_request_sense(fsg, bh);
++ break;
++
++ case START_STOP:
++ fsg->data_size_from_cmnd = 0;
++ if ((reply = check_command(fsg, 6, DATA_DIR_NONE,
++ (1<<1) | (1<<4), 0,
++ "START-STOP UNIT")) == 0)
++ reply = do_start_stop(fsg);
++ break;
++
++ case SYNCHRONIZE_CACHE:
++ fsg->data_size_from_cmnd = 0;
++ if ((reply = check_command(fsg, 10, DATA_DIR_NONE,
++ (0xf<<2) | (3<<7), 1,
++ "SYNCHRONIZE CACHE")) == 0)
++ reply = do_synchronize_cache(fsg);
++ break;
++
++ case TEST_UNIT_READY:
++ fsg->data_size_from_cmnd = 0;
++ reply = check_command(fsg, 6, DATA_DIR_NONE,
++ 0, 1,
++ "TEST UNIT READY");
++ break;
++
++ /* Although optional, this command is used by MS-Windows. We
++ * support a minimal version: BytChk must be 0. */
++ case VERIFY:
++ fsg->data_size_from_cmnd = 0;
++ if ((reply = check_command(fsg, 10, DATA_DIR_NONE,
++ (1<<1) | (0xf<<2) | (3<<7), 1,
++ "VERIFY")) == 0)
++ reply = do_verify(fsg);
++ break;
++
++ case WRITE_6:
++ i = fsg->cmnd[4];
++ fsg->data_size_from_cmnd = (i == 0) ? 256 : i;
++ if ((reply = check_command_size_in_blocks(fsg, 6,
++ DATA_DIR_FROM_HOST,
++ (7<<1) | (1<<4), 1,
++ "WRITE(6)")) == 0)
++ reply = do_write(fsg);
++ break;
++
++ case WRITE_10:
++ fsg->data_size_from_cmnd = get_unaligned_be16(&fsg->cmnd[7]);
++ if ((reply = check_command_size_in_blocks(fsg, 10,
++ DATA_DIR_FROM_HOST,
++ (1<<1) | (0xf<<2) | (3<<7), 1,
++ "WRITE(10)")) == 0)
++ reply = do_write(fsg);
++ break;
++
++ case WRITE_12:
++ fsg->data_size_from_cmnd = get_unaligned_be32(&fsg->cmnd[6]);
++ if ((reply = check_command_size_in_blocks(fsg, 12,
++ DATA_DIR_FROM_HOST,
++ (1<<1) | (0xf<<2) | (0xf<<6), 1,
++ "WRITE(12)")) == 0)
++ reply = do_write(fsg);
++ break;
++
++ /* Some mandatory commands that we recognize but don't implement.
++ * They don't mean much in this setting. It's left as an exercise
++ * for anyone interested to implement RESERVE and RELEASE in terms
++ * of Posix locks. */
++ case FORMAT_UNIT:
++ case RELEASE:
++ case RESERVE:
++ case SEND_DIAGNOSTIC:
++ // Fall through
++
++ default:
++ unknown_cmnd:
++ fsg->data_size_from_cmnd = 0;
++ sprintf(unknown, "Unknown x%02x", fsg->cmnd[0]);
++ if ((reply = check_command(fsg, fsg->cmnd_size,
++ DATA_DIR_UNKNOWN, ~0, 0, unknown)) == 0) {
++ fsg->curlun->sense_data = SS_INVALID_COMMAND;
++ reply = -EINVAL;
++ }
++ break;
++ }
++ up_read(&fsg->filesem);
++
++ if (reply == -EINTR || signal_pending(current))
++ return -EINTR;
++
++ /* Set up the single reply buffer for finish_reply() */
++ if (reply == -EINVAL)
++ reply = 0; // Error reply length
++ if (reply >= 0 && fsg->data_dir == DATA_DIR_TO_HOST) {
++ reply = min((u32) reply, fsg->data_size_from_cmnd);
++ bh->inreq->length = reply;
++ bh->state = BUF_STATE_FULL;
++ fsg->residue -= reply;
++ } // Otherwise it's already set
++
++ return 0;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int received_cbw(struct fsg_dev *fsg, struct fsg_buffhd *bh)
++{
++ struct usb_request *req = bh->outreq;
++ struct bulk_cb_wrap *cbw = req->buf;
++
++ /* Was this a real packet? Should it be ignored? */
++ if (req->status || test_bit(IGNORE_BULK_OUT, &fsg->atomic_bitflags))
++ return -EINVAL;
++
++ /* Is the CBW valid? */
++ if (req->actual != US_BULK_CB_WRAP_LEN ||
++ cbw->Signature != cpu_to_le32(
++ US_BULK_CB_SIGN)) {
++ DBG(fsg, "invalid CBW: len %u sig 0x%x\n",
++ req->actual,
++ le32_to_cpu(cbw->Signature));
++
++ /* The Bulk-only spec says we MUST stall the IN endpoint
++ * (6.6.1), so it's unavoidable. It also says we must
++ * retain this state until the next reset, but there's
++ * no way to tell the controller driver it should ignore
++ * Clear-Feature(HALT) requests.
++ *
++ * We aren't required to halt the OUT endpoint; instead
++ * we can simply accept and discard any data received
++ * until the next reset. */
++ wedge_bulk_in_endpoint(fsg);
++ set_bit(IGNORE_BULK_OUT, &fsg->atomic_bitflags);
++ return -EINVAL;
++ }
++
++ /* Is the CBW meaningful? */
++ if (cbw->Lun >= FSG_MAX_LUNS || cbw->Flags & ~US_BULK_FLAG_IN ||
++ cbw->Length <= 0 || cbw->Length > MAX_COMMAND_SIZE) {
++ DBG(fsg, "non-meaningful CBW: lun = %u, flags = 0x%x, "
++ "cmdlen %u\n",
++ cbw->Lun, cbw->Flags, cbw->Length);
++
++ /* We can do anything we want here, so let's stall the
++ * bulk pipes if we are allowed to. */
++ if (mod_data.can_stall) {
++ fsg_set_halt(fsg, fsg->bulk_out);
++ halt_bulk_in_endpoint(fsg);
++ }
++ return -EINVAL;
++ }
++
++ /* Save the command for later */
++ fsg->cmnd_size = cbw->Length;
++ memcpy(fsg->cmnd, cbw->CDB, fsg->cmnd_size);
++ if (cbw->Flags & US_BULK_FLAG_IN)
++ fsg->data_dir = DATA_DIR_TO_HOST;
++ else
++ fsg->data_dir = DATA_DIR_FROM_HOST;
++ fsg->data_size = le32_to_cpu(cbw->DataTransferLength);
++ if (fsg->data_size == 0)
++ fsg->data_dir = DATA_DIR_NONE;
++ fsg->lun = cbw->Lun;
++ fsg->tag = cbw->Tag;
++ return 0;
++}
++
++
++static int get_next_command(struct fsg_dev *fsg)
++{
++ struct fsg_buffhd *bh;
++ int rc = 0;
++
++ if (transport_is_bbb()) {
++
++ /* Wait for the next buffer to become available */
++ bh = fsg->next_buffhd_to_fill;
++ while (bh->state != BUF_STATE_EMPTY) {
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++
++ /* Queue a request to read a Bulk-only CBW */
++ set_bulk_out_req_length(fsg, bh, US_BULK_CB_WRAP_LEN);
++ start_transfer(fsg, fsg->bulk_out, bh->outreq,
++ &bh->outreq_busy, &bh->state);
++
++ /* We will drain the buffer in software, which means we
++ * can reuse it for the next filling. No need to advance
++ * next_buffhd_to_fill. */
++
++ /* Wait for the CBW to arrive */
++ while (bh->state != BUF_STATE_FULL) {
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++ smp_rmb();
++ rc = received_cbw(fsg, bh);
++ bh->state = BUF_STATE_EMPTY;
++
++ } else { // USB_PR_CB or USB_PR_CBI
++
++ /* Wait for the next command to arrive */
++ while (fsg->cbbuf_cmnd_size == 0) {
++ rc = sleep_thread(fsg);
++ if (rc)
++ return rc;
++ }
++
++ /* Is the previous status interrupt request still busy?
++ * The host is allowed to skip reading the status,
++ * so we must cancel it. */
++ if (fsg->intreq_busy)
++ usb_ep_dequeue(fsg->intr_in, fsg->intreq);
++
++ /* Copy the command and mark the buffer empty */
++ fsg->data_dir = DATA_DIR_UNKNOWN;
++ spin_lock_irq(&fsg->lock);
++ fsg->cmnd_size = fsg->cbbuf_cmnd_size;
++ memcpy(fsg->cmnd, fsg->cbbuf_cmnd, fsg->cmnd_size);
++ fsg->cbbuf_cmnd_size = 0;
++ spin_unlock_irq(&fsg->lock);
++
++ /* Use LUN from the command */
++ fsg->lun = fsg->cmnd[1] >> 5;
++ }
++
++ /* Update current lun */
++ if (fsg->lun >= 0 && fsg->lun < fsg->nluns)
++ fsg->curlun = &fsg->luns[fsg->lun];
++ else
++ fsg->curlun = NULL;
++
++ return rc;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int enable_endpoint(struct fsg_dev *fsg, struct usb_ep *ep,
++ const struct usb_endpoint_descriptor *d)
++{
++ int rc;
++
++ ep->driver_data = fsg;
++ ep->desc = d;
++ rc = usb_ep_enable(ep);
++ if (rc)
++ ERROR(fsg, "can't enable %s, result %d\n", ep->name, rc);
++ return rc;
++}
++
++static int alloc_request(struct fsg_dev *fsg, struct usb_ep *ep,
++ struct usb_request **preq)
++{
++ *preq = usb_ep_alloc_request(ep, GFP_ATOMIC);
++ if (*preq)
++ return 0;
++ ERROR(fsg, "can't allocate request for %s\n", ep->name);
++ return -ENOMEM;
++}
++
++/*
++ * Reset interface setting and re-init endpoint state (toggle etc).
++ * Call with altsetting < 0 to disable the interface. The only other
++ * available altsetting is 0, which enables the interface.
++ */
++static int do_set_interface(struct fsg_dev *fsg, int altsetting)
++{
++ int rc = 0;
++ int i;
++ const struct usb_endpoint_descriptor *d;
++
++ if (fsg->running)
++ DBG(fsg, "reset interface\n");
++
++reset:
++ /* Deallocate the requests */
++ for (i = 0; i < fsg_num_buffers; ++i) {
++ struct fsg_buffhd *bh = &fsg->buffhds[i];
++
++ if (bh->inreq) {
++ usb_ep_free_request(fsg->bulk_in, bh->inreq);
++ bh->inreq = NULL;
++ }
++ if (bh->outreq) {
++ usb_ep_free_request(fsg->bulk_out, bh->outreq);
++ bh->outreq = NULL;
++ }
++ }
++ if (fsg->intreq) {
++ usb_ep_free_request(fsg->intr_in, fsg->intreq);
++ fsg->intreq = NULL;
++ }
++
++ /* Disable the endpoints */
++ if (fsg->bulk_in_enabled) {
++ usb_ep_disable(fsg->bulk_in);
++ fsg->bulk_in_enabled = 0;
++ }
++ if (fsg->bulk_out_enabled) {
++ usb_ep_disable(fsg->bulk_out);
++ fsg->bulk_out_enabled = 0;
++ }
++ if (fsg->intr_in_enabled) {
++ usb_ep_disable(fsg->intr_in);
++ fsg->intr_in_enabled = 0;
++ }
++
++ fsg->running = 0;
++ if (altsetting < 0 || rc != 0)
++ return rc;
++
++ DBG(fsg, "set interface %d\n", altsetting);
++
++ /* Enable the endpoints */
++ d = fsg_ep_desc(fsg->gadget,
++ &fsg_fs_bulk_in_desc, &fsg_hs_bulk_in_desc,
++ &fsg_ss_bulk_in_desc);
++ if ((rc = enable_endpoint(fsg, fsg->bulk_in, d)) != 0)
++ goto reset;
++ fsg->bulk_in_enabled = 1;
++
++ d = fsg_ep_desc(fsg->gadget,
++ &fsg_fs_bulk_out_desc, &fsg_hs_bulk_out_desc,
++ &fsg_ss_bulk_out_desc);
++ if ((rc = enable_endpoint(fsg, fsg->bulk_out, d)) != 0)
++ goto reset;
++ fsg->bulk_out_enabled = 1;
++ fsg->bulk_out_maxpacket = usb_endpoint_maxp(d);
++ clear_bit(IGNORE_BULK_OUT, &fsg->atomic_bitflags);
++
++ if (transport_is_cbi()) {
++ d = fsg_ep_desc(fsg->gadget,
++ &fsg_fs_intr_in_desc, &fsg_hs_intr_in_desc,
++ &fsg_ss_intr_in_desc);
++ if ((rc = enable_endpoint(fsg, fsg->intr_in, d)) != 0)
++ goto reset;
++ fsg->intr_in_enabled = 1;
++ }
++
++ /* Allocate the requests */
++ for (i = 0; i < fsg_num_buffers; ++i) {
++ struct fsg_buffhd *bh = &fsg->buffhds[i];
++
++ if ((rc = alloc_request(fsg, fsg->bulk_in, &bh->inreq)) != 0)
++ goto reset;
++ if ((rc = alloc_request(fsg, fsg->bulk_out, &bh->outreq)) != 0)
++ goto reset;
++ bh->inreq->buf = bh->outreq->buf = bh->buf;
++ bh->inreq->context = bh->outreq->context = bh;
++ bh->inreq->complete = bulk_in_complete;
++ bh->outreq->complete = bulk_out_complete;
++ }
++ if (transport_is_cbi()) {
++ if ((rc = alloc_request(fsg, fsg->intr_in, &fsg->intreq)) != 0)
++ goto reset;
++ fsg->intreq->complete = intr_in_complete;
++ }
++
++ fsg->running = 1;
++ for (i = 0; i < fsg->nluns; ++i)
++ fsg->luns[i].unit_attention_data = SS_RESET_OCCURRED;
++ return rc;
++}
++
++
++/*
++ * Change our operational configuration. This code must agree with the code
++ * that returns config descriptors, and with interface altsetting code.
++ *
++ * It's also responsible for power management interactions. Some
++ * configurations might not work with our current power sources.
++ * For now we just assume the gadget is always self-powered.
++ */
++static int do_set_config(struct fsg_dev *fsg, u8 new_config)
++{
++ int rc = 0;
++
++ /* Disable the single interface */
++ if (fsg->config != 0) {
++ DBG(fsg, "reset config\n");
++ fsg->config = 0;
++ rc = do_set_interface(fsg, -1);
++ }
++
++ /* Enable the interface */
++ if (new_config != 0) {
++ fsg->config = new_config;
++ if ((rc = do_set_interface(fsg, 0)) != 0)
++ fsg->config = 0; // Reset on errors
++ else
++ INFO(fsg, "%s config #%d\n",
++ usb_speed_string(fsg->gadget->speed),
++ fsg->config);
++ }
++ return rc;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static void handle_exception(struct fsg_dev *fsg)
++{
++ siginfo_t info;
++ int sig;
++ int i;
++ int num_active;
++ struct fsg_buffhd *bh;
++ enum fsg_state old_state;
++ u8 new_config;
++ struct fsg_lun *curlun;
++ unsigned int exception_req_tag;
++ int rc;
++
++ /* Clear the existing signals. Anything but SIGUSR1 is converted
++ * into a high-priority EXIT exception. */
++ for (;;) {
++ sig = dequeue_signal_lock(current, &current->blocked, &info);
++ if (!sig)
++ break;
++ if (sig != SIGUSR1) {
++ if (fsg->state < FSG_STATE_EXIT)
++ DBG(fsg, "Main thread exiting on signal\n");
++ raise_exception(fsg, FSG_STATE_EXIT);
++ }
++ }
++
++ /* Cancel all the pending transfers */
++ if (fsg->intreq_busy)
++ usb_ep_dequeue(fsg->intr_in, fsg->intreq);
++ for (i = 0; i < fsg_num_buffers; ++i) {
++ bh = &fsg->buffhds[i];
++ if (bh->inreq_busy)
++ usb_ep_dequeue(fsg->bulk_in, bh->inreq);
++ if (bh->outreq_busy)
++ usb_ep_dequeue(fsg->bulk_out, bh->outreq);
++ }
++
++ /* Wait until everything is idle */
++ for (;;) {
++ num_active = fsg->intreq_busy;
++ for (i = 0; i < fsg_num_buffers; ++i) {
++ bh = &fsg->buffhds[i];
++ num_active += bh->inreq_busy + bh->outreq_busy;
++ }
++ if (num_active == 0)
++ break;
++ if (sleep_thread(fsg))
++ return;
++ }
++
++ /* Clear out the controller's fifos */
++ if (fsg->bulk_in_enabled)
++ usb_ep_fifo_flush(fsg->bulk_in);
++ if (fsg->bulk_out_enabled)
++ usb_ep_fifo_flush(fsg->bulk_out);
++ if (fsg->intr_in_enabled)
++ usb_ep_fifo_flush(fsg->intr_in);
++
++ /* Reset the I/O buffer states and pointers, the SCSI
++ * state, and the exception. Then invoke the handler. */
++ spin_lock_irq(&fsg->lock);
++
++ for (i = 0; i < fsg_num_buffers; ++i) {
++ bh = &fsg->buffhds[i];
++ bh->state = BUF_STATE_EMPTY;
++ }
++ fsg->next_buffhd_to_fill = fsg->next_buffhd_to_drain =
++ &fsg->buffhds[0];
++
++ exception_req_tag = fsg->exception_req_tag;
++ new_config = fsg->new_config;
++ old_state = fsg->state;
++
++ if (old_state == FSG_STATE_ABORT_BULK_OUT)
++ fsg->state = FSG_STATE_STATUS_PHASE;
++ else {
++ for (i = 0; i < fsg->nluns; ++i) {
++ curlun = &fsg->luns[i];
++ curlun->prevent_medium_removal = 0;
++ curlun->sense_data = curlun->unit_attention_data =
++ SS_NO_SENSE;
++ curlun->sense_data_info = 0;
++ curlun->info_valid = 0;
++ }
++ fsg->state = FSG_STATE_IDLE;
++ }
++ spin_unlock_irq(&fsg->lock);
++
++ /* Carry out any extra actions required for the exception */
++ switch (old_state) {
++ default:
++ break;
++
++ case FSG_STATE_ABORT_BULK_OUT:
++ send_status(fsg);
++ spin_lock_irq(&fsg->lock);
++ if (fsg->state == FSG_STATE_STATUS_PHASE)
++ fsg->state = FSG_STATE_IDLE;
++ spin_unlock_irq(&fsg->lock);
++ break;
++
++ case FSG_STATE_RESET:
++ /* In case we were forced against our will to halt a
++ * bulk endpoint, clear the halt now. (The SuperH UDC
++ * requires this.) */
++ if (test_and_clear_bit(IGNORE_BULK_OUT, &fsg->atomic_bitflags))
++ usb_ep_clear_halt(fsg->bulk_in);
++
++ if (transport_is_bbb()) {
++ if (fsg->ep0_req_tag == exception_req_tag)
++ ep0_queue(fsg); // Complete the status stage
++
++ } else if (transport_is_cbi())
++ send_status(fsg); // Status by interrupt pipe
++
++ /* Technically this should go here, but it would only be
++ * a waste of time. Ditto for the INTERFACE_CHANGE and
++ * CONFIG_CHANGE cases. */
++ // for (i = 0; i < fsg->nluns; ++i)
++ // fsg->luns[i].unit_attention_data = SS_RESET_OCCURRED;
++ break;
++
++ case FSG_STATE_INTERFACE_CHANGE:
++ rc = do_set_interface(fsg, 0);
++ if (fsg->ep0_req_tag != exception_req_tag)
++ break;
++ if (rc != 0) // STALL on errors
++ fsg_set_halt(fsg, fsg->ep0);
++ else // Complete the status stage
++ ep0_queue(fsg);
++ break;
++
++ case FSG_STATE_CONFIG_CHANGE:
++ rc = do_set_config(fsg, new_config);
++ if (fsg->ep0_req_tag != exception_req_tag)
++ break;
++ if (rc != 0) // STALL on errors
++ fsg_set_halt(fsg, fsg->ep0);
++ else // Complete the status stage
++ ep0_queue(fsg);
++ break;
++
++ case FSG_STATE_DISCONNECT:
++ for (i = 0; i < fsg->nluns; ++i)
++ fsg_lun_fsync_sub(fsg->luns + i);
++ do_set_config(fsg, 0); // Unconfigured state
++ break;
++
++ case FSG_STATE_EXIT:
++ case FSG_STATE_TERMINATED:
++ do_set_config(fsg, 0); // Free resources
++ spin_lock_irq(&fsg->lock);
++ fsg->state = FSG_STATE_TERMINATED; // Stop the thread
++ spin_unlock_irq(&fsg->lock);
++ break;
++ }
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static int fsg_main_thread(void *fsg_)
++{
++ struct fsg_dev *fsg = fsg_;
++
++ /* Allow the thread to be killed by a signal, but set the signal mask
++ * to block everything but INT, TERM, KILL, and USR1. */
++ allow_signal(SIGINT);
++ allow_signal(SIGTERM);
++ allow_signal(SIGKILL);
++ allow_signal(SIGUSR1);
++
++ /* Allow the thread to be frozen */
++ set_freezable();
++
++ /* Arrange for userspace references to be interpreted as kernel
++ * pointers. That way we can pass a kernel pointer to a routine
++ * that expects a __user pointer and it will work okay. */
++ set_fs(get_ds());
++
++ /* The main loop */
++ while (fsg->state != FSG_STATE_TERMINATED) {
++ if (exception_in_progress(fsg) || signal_pending(current)) {
++ handle_exception(fsg);
++ continue;
++ }
++
++ if (!fsg->running) {
++ sleep_thread(fsg);
++ continue;
++ }
++
++ if (get_next_command(fsg))
++ continue;
++
++ spin_lock_irq(&fsg->lock);
++ if (!exception_in_progress(fsg))
++ fsg->state = FSG_STATE_DATA_PHASE;
++ spin_unlock_irq(&fsg->lock);
++
++ if (do_scsi_command(fsg) || finish_reply(fsg))
++ continue;
++
++ spin_lock_irq(&fsg->lock);
++ if (!exception_in_progress(fsg))
++ fsg->state = FSG_STATE_STATUS_PHASE;
++ spin_unlock_irq(&fsg->lock);
++
++ if (send_status(fsg))
++ continue;
++
++ spin_lock_irq(&fsg->lock);
++ if (!exception_in_progress(fsg))
++ fsg->state = FSG_STATE_IDLE;
++ spin_unlock_irq(&fsg->lock);
++ }
++
++ spin_lock_irq(&fsg->lock);
++ fsg->thread_task = NULL;
++ spin_unlock_irq(&fsg->lock);
++
++ /* If we are exiting because of a signal, unregister the
++ * gadget driver. */
++ if (test_and_clear_bit(REGISTERED, &fsg->atomic_bitflags))
++ usb_gadget_unregister_driver(&fsg_driver);
++
++ /* Let the unbind and cleanup routines know the thread has exited */
++ complete_and_exit(&fsg->thread_notifier, 0);
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++
++/* The write permissions and store_xxx pointers are set in fsg_bind() */
++static DEVICE_ATTR(ro, 0444, fsg_show_ro, NULL);
++static DEVICE_ATTR(nofua, 0644, fsg_show_nofua, NULL);
++static DEVICE_ATTR(file, 0444, fsg_show_file, NULL);
++
++
++/*-------------------------------------------------------------------------*/
++
++static void fsg_release(struct kref *ref)
++{
++ struct fsg_dev *fsg = container_of(ref, struct fsg_dev, ref);
++
++ kfree(fsg->luns);
++ kfree(fsg);
++}
++
++static void lun_release(struct device *dev)
++{
++ struct rw_semaphore *filesem = dev_get_drvdata(dev);
++ struct fsg_dev *fsg =
++ container_of(filesem, struct fsg_dev, filesem);
++
++ kref_put(&fsg->ref, fsg_release);
++}
++
++static void /* __init_or_exit */ fsg_unbind(struct usb_gadget *gadget)
++{
++ struct fsg_dev *fsg = get_gadget_data(gadget);
++ int i;
++ struct fsg_lun *curlun;
++ struct usb_request *req = fsg->ep0req;
++
++ DBG(fsg, "unbind\n");
++ clear_bit(REGISTERED, &fsg->atomic_bitflags);
++
++ /* If the thread isn't already dead, tell it to exit now */
++ if (fsg->state != FSG_STATE_TERMINATED) {
++ raise_exception(fsg, FSG_STATE_EXIT);
++ wait_for_completion(&fsg->thread_notifier);
++
++ /* The cleanup routine waits for this completion also */
++ complete(&fsg->thread_notifier);
++ }
++
++ /* Unregister the sysfs attribute files and the LUNs */
++ for (i = 0; i < fsg->nluns; ++i) {
++ curlun = &fsg->luns[i];
++ if (curlun->registered) {
++ device_remove_file(&curlun->dev, &dev_attr_nofua);
++ device_remove_file(&curlun->dev, &dev_attr_ro);
++ device_remove_file(&curlun->dev, &dev_attr_file);
++ fsg_lun_close(curlun);
++ device_unregister(&curlun->dev);
++ curlun->registered = 0;
++ }
++ }
++
++ /* Free the data buffers */
++ for (i = 0; i < fsg_num_buffers; ++i)
++ kfree(fsg->buffhds[i].buf);
++
++ /* Free the request and buffer for endpoint 0 */
++ if (req) {
++ kfree(req->buf);
++ usb_ep_free_request(fsg->ep0, req);
++ }
++
++ set_gadget_data(gadget, NULL);
++}
++
++
++static int __init check_parameters(struct fsg_dev *fsg)
++{
++ int prot;
++ int gcnum;
++
++ /* Store the default values */
++ mod_data.transport_type = USB_PR_BULK;
++ mod_data.transport_name = "Bulk-only";
++ mod_data.protocol_type = USB_SC_SCSI;
++ mod_data.protocol_name = "Transparent SCSI";
++
++ /* Some peripheral controllers are known not to be able to
++ * halt bulk endpoints correctly. If one of them is present,
++ * disable stalls.
++ */
++ if (gadget_is_at91(fsg->gadget))
++ mod_data.can_stall = 0;
++
++ if (mod_data.release == 0xffff) { // Parameter wasn't set
++ gcnum = usb_gadget_controller_number(fsg->gadget);
++ if (gcnum >= 0)
++ mod_data.release = 0x0300 + gcnum;
++ else {
++ WARNING(fsg, "controller '%s' not recognized\n",
++ fsg->gadget->name);
++ mod_data.release = 0x0399;
++ }
++ }
++
++ prot = simple_strtol(mod_data.protocol_parm, NULL, 0);
++
++#ifdef CONFIG_USB_FILE_STORAGE_TEST
++ if (strnicmp(mod_data.transport_parm, "BBB", 10) == 0) {
++ ; // Use default setting
++ } else if (strnicmp(mod_data.transport_parm, "CB", 10) == 0) {
++ mod_data.transport_type = USB_PR_CB;
++ mod_data.transport_name = "Control-Bulk";
++ } else if (strnicmp(mod_data.transport_parm, "CBI", 10) == 0) {
++ mod_data.transport_type = USB_PR_CBI;
++ mod_data.transport_name = "Control-Bulk-Interrupt";
++ } else {
++ ERROR(fsg, "invalid transport: %s\n", mod_data.transport_parm);
++ return -EINVAL;
++ }
++
++ if (strnicmp(mod_data.protocol_parm, "SCSI", 10) == 0 ||
++ prot == USB_SC_SCSI) {
++ ; // Use default setting
++ } else if (strnicmp(mod_data.protocol_parm, "RBC", 10) == 0 ||
++ prot == USB_SC_RBC) {
++ mod_data.protocol_type = USB_SC_RBC;
++ mod_data.protocol_name = "RBC";
++ } else if (strnicmp(mod_data.protocol_parm, "8020", 4) == 0 ||
++ strnicmp(mod_data.protocol_parm, "ATAPI", 10) == 0 ||
++ prot == USB_SC_8020) {
++ mod_data.protocol_type = USB_SC_8020;
++ mod_data.protocol_name = "8020i (ATAPI)";
++ } else if (strnicmp(mod_data.protocol_parm, "QIC", 3) == 0 ||
++ prot == USB_SC_QIC) {
++ mod_data.protocol_type = USB_SC_QIC;
++ mod_data.protocol_name = "QIC-157";
++ } else if (strnicmp(mod_data.protocol_parm, "UFI", 10) == 0 ||
++ prot == USB_SC_UFI) {
++ mod_data.protocol_type = USB_SC_UFI;
++ mod_data.protocol_name = "UFI";
++ } else if (strnicmp(mod_data.protocol_parm, "8070", 4) == 0 ||
++ prot == USB_SC_8070) {
++ mod_data.protocol_type = USB_SC_8070;
++ mod_data.protocol_name = "8070i";
++ } else {
++ ERROR(fsg, "invalid protocol: %s\n", mod_data.protocol_parm);
++ return -EINVAL;
++ }
++
++ mod_data.buflen &= PAGE_CACHE_MASK;
++ if (mod_data.buflen <= 0) {
++ ERROR(fsg, "invalid buflen\n");
++ return -ETOOSMALL;
++ }
++
++#endif /* CONFIG_USB_FILE_STORAGE_TEST */
++
++ /* Serial string handling.
++ * On a real device, the serial string would be loaded
++ * from permanent storage. */
++ if (mod_data.serial) {
++ const char *ch;
++ unsigned len = 0;
++
++ /* Sanity check :
++ * The CB[I] specification limits the serial string to
++ * 12 uppercase hexadecimal characters.
++ * BBB need at least 12 uppercase hexadecimal characters,
++ * with a maximum of 126. */
++ for (ch = mod_data.serial; *ch; ++ch) {
++ ++len;
++ if ((*ch < '0' || *ch > '9') &&
++ (*ch < 'A' || *ch > 'F')) { /* not uppercase hex */
++ WARNING(fsg,
++ "Invalid serial string character: %c\n",
++ *ch);
++ goto no_serial;
++ }
++ }
++ if (len > 126 ||
++ (mod_data.transport_type == USB_PR_BULK && len < 12) ||
++ (mod_data.transport_type != USB_PR_BULK && len > 12)) {
++ WARNING(fsg, "Invalid serial string length!\n");
++ goto no_serial;
++ }
++ fsg_strings[FSG_STRING_SERIAL - 1].s = mod_data.serial;
++ } else {
++ WARNING(fsg, "No serial-number string provided!\n");
++ no_serial:
++ device_desc.iSerialNumber = 0;
++ }
++
++ return 0;
++}
++
++
++static int __init fsg_bind(struct usb_gadget *gadget)
++{
++ struct fsg_dev *fsg = the_fsg;
++ int rc;
++ int i;
++ struct fsg_lun *curlun;
++ struct usb_ep *ep;
++ struct usb_request *req;
++ char *pathbuf, *p;
++
++ fsg->gadget = gadget;
++ set_gadget_data(gadget, fsg);
++ fsg->ep0 = gadget->ep0;
++ fsg->ep0->driver_data = fsg;
++
++ if ((rc = check_parameters(fsg)) != 0)
++ goto out;
++
++ if (mod_data.removable) { // Enable the store_xxx attributes
++ dev_attr_file.attr.mode = 0644;
++ dev_attr_file.store = fsg_store_file;
++ if (!mod_data.cdrom) {
++ dev_attr_ro.attr.mode = 0644;
++ dev_attr_ro.store = fsg_store_ro;
++ }
++ }
++
++ /* Only for removable media? */
++ dev_attr_nofua.attr.mode = 0644;
++ dev_attr_nofua.store = fsg_store_nofua;
++
++ /* Find out how many LUNs there should be */
++ i = mod_data.nluns;
++ if (i == 0)
++ i = max(mod_data.num_filenames, 1u);
++ if (i > FSG_MAX_LUNS) {
++ ERROR(fsg, "invalid number of LUNs: %d\n", i);
++ rc = -EINVAL;
++ goto out;
++ }
++
++ /* Create the LUNs, open their backing files, and register the
++ * LUN devices in sysfs. */
++ fsg->luns = kzalloc(i * sizeof(struct fsg_lun), GFP_KERNEL);
++ if (!fsg->luns) {
++ rc = -ENOMEM;
++ goto out;
++ }
++ fsg->nluns = i;
++
++ for (i = 0; i < fsg->nluns; ++i) {
++ curlun = &fsg->luns[i];
++ curlun->cdrom = !!mod_data.cdrom;
++ curlun->ro = mod_data.cdrom || mod_data.ro[i];
++ curlun->initially_ro = curlun->ro;
++ curlun->removable = mod_data.removable;
++ curlun->nofua = mod_data.nofua[i];
++ curlun->dev.release = lun_release;
++ curlun->dev.parent = &gadget->dev;
++ curlun->dev.driver = &fsg_driver.driver;
++ dev_set_drvdata(&curlun->dev, &fsg->filesem);
++ dev_set_name(&curlun->dev,"%s-lun%d",
++ dev_name(&gadget->dev), i);
++
++ kref_get(&fsg->ref);
++ rc = device_register(&curlun->dev);
++ if (rc) {
++ INFO(fsg, "failed to register LUN%d: %d\n", i, rc);
++ put_device(&curlun->dev);
++ goto out;
++ }
++ curlun->registered = 1;
++
++ rc = device_create_file(&curlun->dev, &dev_attr_ro);
++ if (rc)
++ goto out;
++ rc = device_create_file(&curlun->dev, &dev_attr_nofua);
++ if (rc)
++ goto out;
++ rc = device_create_file(&curlun->dev, &dev_attr_file);
++ if (rc)
++ goto out;
++
++ if (mod_data.file[i] && *mod_data.file[i]) {
++ rc = fsg_lun_open(curlun, mod_data.file[i]);
++ if (rc)
++ goto out;
++ } else if (!mod_data.removable) {
++ ERROR(fsg, "no file given for LUN%d\n", i);
++ rc = -EINVAL;
++ goto out;
++ }
++ }
++
++ /* Find all the endpoints we will use */
++ usb_ep_autoconfig_reset(gadget);
++ ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_in_desc);
++ if (!ep)
++ goto autoconf_fail;
++ ep->driver_data = fsg; // claim the endpoint
++ fsg->bulk_in = ep;
++
++ ep = usb_ep_autoconfig(gadget, &fsg_fs_bulk_out_desc);
++ if (!ep)
++ goto autoconf_fail;
++ ep->driver_data = fsg; // claim the endpoint
++ fsg->bulk_out = ep;
++
++ if (transport_is_cbi()) {
++ ep = usb_ep_autoconfig(gadget, &fsg_fs_intr_in_desc);
++ if (!ep)
++ goto autoconf_fail;
++ ep->driver_data = fsg; // claim the endpoint
++ fsg->intr_in = ep;
++ }
++
++ /* Fix up the descriptors */
++ device_desc.idVendor = cpu_to_le16(mod_data.vendor);
++ device_desc.idProduct = cpu_to_le16(mod_data.product);
++ device_desc.bcdDevice = cpu_to_le16(mod_data.release);
++
++ i = (transport_is_cbi() ? 3 : 2); // Number of endpoints
++ fsg_intf_desc.bNumEndpoints = i;
++ fsg_intf_desc.bInterfaceSubClass = mod_data.protocol_type;
++ fsg_intf_desc.bInterfaceProtocol = mod_data.transport_type;
++ fsg_fs_function[i + FSG_FS_FUNCTION_PRE_EP_ENTRIES] = NULL;
++
++ if (gadget_is_dualspeed(gadget)) {
++ fsg_hs_function[i + FSG_HS_FUNCTION_PRE_EP_ENTRIES] = NULL;
++
++ /* Assume endpoint addresses are the same for both speeds */
++ fsg_hs_bulk_in_desc.bEndpointAddress =
++ fsg_fs_bulk_in_desc.bEndpointAddress;
++ fsg_hs_bulk_out_desc.bEndpointAddress =
++ fsg_fs_bulk_out_desc.bEndpointAddress;
++ fsg_hs_intr_in_desc.bEndpointAddress =
++ fsg_fs_intr_in_desc.bEndpointAddress;
++ }
++
++ if (gadget_is_superspeed(gadget)) {
++ unsigned max_burst;
++
++ fsg_ss_function[i + FSG_SS_FUNCTION_PRE_EP_ENTRIES] = NULL;
++
++ /* Calculate bMaxBurst, we know packet size is 1024 */
++ max_burst = min_t(unsigned, mod_data.buflen / 1024, 15);
++
++ /* Assume endpoint addresses are the same for both speeds */
++ fsg_ss_bulk_in_desc.bEndpointAddress =
++ fsg_fs_bulk_in_desc.bEndpointAddress;
++ fsg_ss_bulk_in_comp_desc.bMaxBurst = max_burst;
++
++ fsg_ss_bulk_out_desc.bEndpointAddress =
++ fsg_fs_bulk_out_desc.bEndpointAddress;
++ fsg_ss_bulk_out_comp_desc.bMaxBurst = max_burst;
++ }
++
++ if (gadget_is_otg(gadget))
++ fsg_otg_desc.bmAttributes |= USB_OTG_HNP;
++
++ rc = -ENOMEM;
++
++ /* Allocate the request and buffer for endpoint 0 */
++ fsg->ep0req = req = usb_ep_alloc_request(fsg->ep0, GFP_KERNEL);
++ if (!req)
++ goto out;
++ req->buf = kmalloc(EP0_BUFSIZE, GFP_KERNEL);
++ if (!req->buf)
++ goto out;
++ req->complete = ep0_complete;
++
++ /* Allocate the data buffers */
++ for (i = 0; i < fsg_num_buffers; ++i) {
++ struct fsg_buffhd *bh = &fsg->buffhds[i];
++
++ /* Allocate for the bulk-in endpoint. We assume that
++ * the buffer will also work with the bulk-out (and
++ * interrupt-in) endpoint. */
++ bh->buf = kmalloc(mod_data.buflen, GFP_KERNEL);
++ if (!bh->buf)
++ goto out;
++ bh->next = bh + 1;
++ }
++ fsg->buffhds[fsg_num_buffers - 1].next = &fsg->buffhds[0];
++
++ /* This should reflect the actual gadget power source */
++ usb_gadget_set_selfpowered(gadget);
++
++ snprintf(fsg_string_manufacturer, sizeof fsg_string_manufacturer,
++ "%s %s with %s",
++ init_utsname()->sysname, init_utsname()->release,
++ gadget->name);
++
++ fsg->thread_task = kthread_create(fsg_main_thread, fsg,
++ "file-storage-gadget");
++ if (IS_ERR(fsg->thread_task)) {
++ rc = PTR_ERR(fsg->thread_task);
++ goto out;
++ }
++
++ INFO(fsg, DRIVER_DESC ", version: " DRIVER_VERSION "\n");
++ INFO(fsg, "NOTE: This driver is deprecated. "
++ "Consider using g_mass_storage instead.\n");
++ INFO(fsg, "Number of LUNs=%d\n", fsg->nluns);
++
++ pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
++ for (i = 0; i < fsg->nluns; ++i) {
++ curlun = &fsg->luns[i];
++ if (fsg_lun_is_open(curlun)) {
++ p = NULL;
++ if (pathbuf) {
++ p = d_path(&curlun->filp->f_path,
++ pathbuf, PATH_MAX);
++ if (IS_ERR(p))
++ p = NULL;
++ }
++ LINFO(curlun, "ro=%d, nofua=%d, file: %s\n",
++ curlun->ro, curlun->nofua, (p ? p : "(error)"));
++ }
++ }
++ kfree(pathbuf);
++
++ DBG(fsg, "transport=%s (x%02x)\n",
++ mod_data.transport_name, mod_data.transport_type);
++ DBG(fsg, "protocol=%s (x%02x)\n",
++ mod_data.protocol_name, mod_data.protocol_type);
++ DBG(fsg, "VendorID=x%04x, ProductID=x%04x, Release=x%04x\n",
++ mod_data.vendor, mod_data.product, mod_data.release);
++ DBG(fsg, "removable=%d, stall=%d, cdrom=%d, buflen=%u\n",
++ mod_data.removable, mod_data.can_stall,
++ mod_data.cdrom, mod_data.buflen);
++ DBG(fsg, "I/O thread pid: %d\n", task_pid_nr(fsg->thread_task));
++
++ set_bit(REGISTERED, &fsg->atomic_bitflags);
++
++ /* Tell the thread to start working */
++ wake_up_process(fsg->thread_task);
++ return 0;
++
++autoconf_fail:
++ ERROR(fsg, "unable to autoconfigure all endpoints\n");
++ rc = -ENOTSUPP;
++
++out:
++ fsg->state = FSG_STATE_TERMINATED; // The thread is dead
++ fsg_unbind(gadget);
++ complete(&fsg->thread_notifier);
++ return rc;
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static void fsg_suspend(struct usb_gadget *gadget)
++{
++ struct fsg_dev *fsg = get_gadget_data(gadget);
++
++ DBG(fsg, "suspend\n");
++ set_bit(SUSPENDED, &fsg->atomic_bitflags);
++}
++
++static void fsg_resume(struct usb_gadget *gadget)
++{
++ struct fsg_dev *fsg = get_gadget_data(gadget);
++
++ DBG(fsg, "resume\n");
++ clear_bit(SUSPENDED, &fsg->atomic_bitflags);
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static struct usb_gadget_driver fsg_driver = {
++ .max_speed = USB_SPEED_SUPER,
++ .function = (char *) fsg_string_product,
++ .unbind = fsg_unbind,
++ .disconnect = fsg_disconnect,
++ .setup = fsg_setup,
++ .suspend = fsg_suspend,
++ .resume = fsg_resume,
++
++ .driver = {
++ .name = DRIVER_NAME,
++ .owner = THIS_MODULE,
++ // .release = ...
++ // .suspend = ...
++ // .resume = ...
++ },
++};
++
++
++static int __init fsg_alloc(void)
++{
++ struct fsg_dev *fsg;
++
++ fsg = kzalloc(sizeof *fsg +
++ fsg_num_buffers * sizeof *(fsg->buffhds), GFP_KERNEL);
++
++ if (!fsg)
++ return -ENOMEM;
++ spin_lock_init(&fsg->lock);
++ init_rwsem(&fsg->filesem);
++ kref_init(&fsg->ref);
++ init_completion(&fsg->thread_notifier);
++
++ the_fsg = fsg;
++ return 0;
++}
++
++
++static int __init fsg_init(void)
++{
++ int rc;
++ struct fsg_dev *fsg;
++
++ rc = fsg_num_buffers_validate();
++ if (rc != 0)
++ return rc;
++
++ if ((rc = fsg_alloc()) != 0)
++ return rc;
++ fsg = the_fsg;
++ if ((rc = usb_gadget_probe_driver(&fsg_driver, fsg_bind)) != 0)
++ kref_put(&fsg->ref, fsg_release);
++ return rc;
++}
++module_init(fsg_init);
++
++
++static void __exit fsg_cleanup(void)
++{
++ struct fsg_dev *fsg = the_fsg;
++
++ /* Unregister the driver iff the thread hasn't already done so */
++ if (test_and_clear_bit(REGISTERED, &fsg->atomic_bitflags))
++ usb_gadget_unregister_driver(&fsg_driver);
++
++ /* Wait for the thread to finish up */
++ wait_for_completion(&fsg->thread_notifier);
++
++ kref_put(&fsg->ref, fsg_release);
++}
++module_exit(fsg_cleanup);
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/changes.txt linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/changes.txt
+--- linux-3.10/drivers/usb/host/dwc_common_port/changes.txt 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/changes.txt 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,174 @@
++
++dwc_read_reg32() and friends now take an additional parameter, a pointer to an
++IO context struct. The IO context struct should live in an os-dependent struct
++in your driver. As an example, the dwc_usb3 driver has an os-dependent struct
++named 'os_dep' embedded in the main device struct. So there these calls look
++like this:
++
++ dwc_read_reg32(&usb3_dev->os_dep.ioctx, &pcd->dev_global_regs->dcfg);
++
++ dwc_write_reg32(&usb3_dev->os_dep.ioctx,
++ &pcd->dev_global_regs->dcfg, 0);
++
++Note that for the existing Linux driver ports, it is not necessary to actually
++define the 'ioctx' member in the os-dependent struct. Since Linux does not
++require an IO context, its macros for dwc_read_reg32() and friends do not
++use the context pointer, so it is optimized away by the compiler. But it is
++necessary to add the pointer parameter to all of the call sites, to be ready
++for any future ports (such as FreeBSD) which do require an IO context.
++
++
++Similarly, dwc_alloc(), dwc_alloc_atomic(), dwc_strdup(), and dwc_free() now
++take an additional parameter, a pointer to a memory context. Examples:
++
++ addr = dwc_alloc(&usb3_dev->os_dep.memctx, size);
++
++ dwc_free(&usb3_dev->os_dep.memctx, addr);
++
++Again, for the Linux ports, it is not necessary to actually define the memctx
++member, but it is necessary to add the pointer parameter to all of the call
++sites.
++
++
++Same for dwc_dma_alloc() and dwc_dma_free(). Examples:
++
++ virt_addr = dwc_dma_alloc(&usb3_dev->os_dep.dmactx, size, &phys_addr);
++
++ dwc_dma_free(&usb3_dev->os_dep.dmactx, size, virt_addr, phys_addr);
++
++
++Same for dwc_mutex_alloc() and dwc_mutex_free(). Examples:
++
++ mutex = dwc_mutex_alloc(&usb3_dev->os_dep.mtxctx);
++
++ dwc_mutex_free(&usb3_dev->os_dep.mtxctx, mutex);
++
++
++Same for dwc_spinlock_alloc() and dwc_spinlock_free(). Examples:
++
++ lock = dwc_spinlock_alloc(&usb3_dev->osdep.splctx);
++
++ dwc_spinlock_free(&usb3_dev->osdep.splctx, lock);
++
++
++Same for dwc_timer_alloc(). Example:
++
++ timer = dwc_timer_alloc(&usb3_dev->os_dep.tmrctx, "dwc_usb3_tmr1",
++ cb_func, cb_data);
++
++
++Same for dwc_waitq_alloc(). Example:
++
++ waitq = dwc_waitq_alloc(&usb3_dev->os_dep.wtqctx);
++
++
++Same for dwc_thread_run(). Example:
++
++ thread = dwc_thread_run(&usb3_dev->os_dep.thdctx, func,
++ "dwc_usb3_thd1", data);
++
++
++Same for dwc_workq_alloc(). Example:
++
++ workq = dwc_workq_alloc(&usb3_dev->osdep.wkqctx, "dwc_usb3_wkq1");
++
++
++Same for dwc_task_alloc(). Example:
++
++ task = dwc_task_alloc(&usb3_dev->os_dep.tskctx, "dwc_usb3_tsk1",
++ cb_func, cb_data);
++
++
++In addition to the context pointer additions, a few core functions have had
++other changes made to their parameters:
++
++The 'flags' parameter to dwc_spinlock_irqsave() and dwc_spinunlock_irqrestore()
++has been changed from a uint64_t to a dwc_irqflags_t.
++
++dwc_thread_should_stop() now takes a 'dwc_thread_t *' parameter, because the
++FreeBSD equivalent of that function requires it.
++
++And, in addition to the context pointer, dwc_task_alloc() also adds a
++'char *name' parameter, to be consistent with dwc_thread_run() and
++dwc_workq_alloc(), and because the FreeBSD equivalent of that function
++requires a unique name.
++
++
++Here is a complete list of the core functions that now take a pointer to a
++context as their first parameter:
++
++ dwc_read_reg32
++ dwc_read_reg64
++ dwc_write_reg32
++ dwc_write_reg64
++ dwc_modify_reg32
++ dwc_modify_reg64
++ dwc_alloc
++ dwc_alloc_atomic
++ dwc_strdup
++ dwc_free
++ dwc_dma_alloc
++ dwc_dma_free
++ dwc_mutex_alloc
++ dwc_mutex_free
++ dwc_spinlock_alloc
++ dwc_spinlock_free
++ dwc_timer_alloc
++ dwc_waitq_alloc
++ dwc_thread_run
++ dwc_workq_alloc
++ dwc_task_alloc Also adds a 'char *name' as its 2nd parameter
++
++And here are the core functions that have other changes to their parameters:
++
++ dwc_spinlock_irqsave 'flags' param is now a 'dwc_irqflags_t *'
++ dwc_spinunlock_irqrestore 'flags' param is now a 'dwc_irqflags_t'
++ dwc_thread_should_stop Adds a 'dwc_thread_t *' parameter
++
++
++
++The changes to the core functions also require some of the other library
++functions to change:
++
++ dwc_cc_if_alloc() and dwc_cc_if_free() now take a 'void *memctx'
++ (for memory allocation) as the 1st param and a 'void *mtxctx'
++ (for mutex allocation) as the 2nd param.
++
++ dwc_cc_clear(), dwc_cc_add(), dwc_cc_change(), dwc_cc_remove(),
++ dwc_cc_data_for_save(), and dwc_cc_restore_from_data() now take a
++ 'void *memctx' as the 1st param.
++
++ dwc_dh_modpow(), dwc_dh_pk(), and dwc_dh_derive_keys() now take a
++ 'void *memctx' as the 1st param.
++
++ dwc_modpow() now takes a 'void *memctx' as the 1st param.
++
++ dwc_alloc_notification_manager() now takes a 'void *memctx' as the
++ 1st param and a 'void *wkqctx' (for work queue allocation) as the 2nd
++ param, and also now returns an integer value that is non-zero if
++ allocation of its data structures or work queue fails.
++
++ dwc_register_notifier() now takes a 'void *memctx' as the 1st param.
++
++ dwc_memory_debug_start() now takes a 'void *mem_ctx' as the first
++ param, and also now returns an integer value that is non-zero if
++ allocation of its data structures fails.
++
++
++
++Other miscellaneous changes:
++
++The DEBUG_MEMORY and DEBUG_REGS #define's have been renamed to
++DWC_DEBUG_MEMORY and DWC_DEBUG_REGS.
++
++The following #define's have been added to allow selectively compiling library
++features:
++
++ DWC_CCLIB
++ DWC_CRYPTOLIB
++ DWC_NOTIFYLIB
++ DWC_UTFLIB
++
++A DWC_LIBMODULE #define has also been added. If this is not defined, then the
++module code in dwc_common_linux.c is not compiled in. This allows linking the
++library code directly into a driver module, instead of as a standalone module.
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/doc/doxygen.cfg linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/doc/doxygen.cfg
+--- linux-3.10/drivers/usb/host/dwc_common_port/doc/doxygen.cfg 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/doc/doxygen.cfg 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,270 @@
++# Doxyfile 1.4.5
++
++#---------------------------------------------------------------------------
++# Project related configuration options
++#---------------------------------------------------------------------------
++PROJECT_NAME = "Synopsys DWC Portability and Common Library for UWB"
++PROJECT_NUMBER =
++OUTPUT_DIRECTORY = doc
++CREATE_SUBDIRS = NO
++OUTPUT_LANGUAGE = English
++BRIEF_MEMBER_DESC = YES
++REPEAT_BRIEF = YES
++ABBREVIATE_BRIEF = "The $name class" \
++ "The $name widget" \
++ "The $name file" \
++ is \
++ provides \
++ specifies \
++ contains \
++ represents \
++ a \
++ an \
++ the
++ALWAYS_DETAILED_SEC = YES
++INLINE_INHERITED_MEMB = NO
++FULL_PATH_NAMES = NO
++STRIP_FROM_PATH = ..
++STRIP_FROM_INC_PATH =
++SHORT_NAMES = NO
++JAVADOC_AUTOBRIEF = YES
++MULTILINE_CPP_IS_BRIEF = NO
++DETAILS_AT_TOP = YES
++INHERIT_DOCS = YES
++SEPARATE_MEMBER_PAGES = NO
++TAB_SIZE = 8
++ALIASES =
++OPTIMIZE_OUTPUT_FOR_C = YES
++OPTIMIZE_OUTPUT_JAVA = NO
++BUILTIN_STL_SUPPORT = NO
++DISTRIBUTE_GROUP_DOC = NO
++SUBGROUPING = NO
++#---------------------------------------------------------------------------
++# Build related configuration options
++#---------------------------------------------------------------------------
++EXTRACT_ALL = NO
++EXTRACT_PRIVATE = NO
++EXTRACT_STATIC = YES
++EXTRACT_LOCAL_CLASSES = NO
++EXTRACT_LOCAL_METHODS = NO
++HIDE_UNDOC_MEMBERS = NO
++HIDE_UNDOC_CLASSES = NO
++HIDE_FRIEND_COMPOUNDS = NO
++HIDE_IN_BODY_DOCS = NO
++INTERNAL_DOCS = NO
++CASE_SENSE_NAMES = YES
++HIDE_SCOPE_NAMES = NO
++SHOW_INCLUDE_FILES = NO
++INLINE_INFO = YES
++SORT_MEMBER_DOCS = NO
++SORT_BRIEF_DOCS = NO
++SORT_BY_SCOPE_NAME = NO
++GENERATE_TODOLIST = YES
++GENERATE_TESTLIST = YES
++GENERATE_BUGLIST = YES
++GENERATE_DEPRECATEDLIST= YES
++ENABLED_SECTIONS =
++MAX_INITIALIZER_LINES = 30
++SHOW_USED_FILES = YES
++SHOW_DIRECTORIES = YES
++FILE_VERSION_FILTER =
++#---------------------------------------------------------------------------
++# configuration options related to warning and progress messages
++#---------------------------------------------------------------------------
++QUIET = YES
++WARNINGS = YES
++WARN_IF_UNDOCUMENTED = NO
++WARN_IF_DOC_ERROR = YES
++WARN_NO_PARAMDOC = YES
++WARN_FORMAT = "$file:$line: $text"
++WARN_LOGFILE =
++#---------------------------------------------------------------------------
++# configuration options related to the input files
++#---------------------------------------------------------------------------
++INPUT = .
++FILE_PATTERNS = *.c \
++ *.cc \
++ *.cxx \
++ *.cpp \
++ *.c++ \
++ *.d \
++ *.java \
++ *.ii \
++ *.ixx \
++ *.ipp \
++ *.i++ \
++ *.inl \
++ *.h \
++ *.hh \
++ *.hxx \
++ *.hpp \
++ *.h++ \
++ *.idl \
++ *.odl \
++ *.cs \
++ *.php \
++ *.php3 \
++ *.inc \
++ *.m \
++ *.mm \
++ *.dox \
++ *.py \
++ *.C \
++ *.CC \
++ *.C++ \
++ *.II \
++ *.I++ \
++ *.H \
++ *.HH \
++ *.H++ \
++ *.CS \
++ *.PHP \
++ *.PHP3 \
++ *.M \
++ *.MM \
++ *.PY
++RECURSIVE = NO
++EXCLUDE =
++EXCLUDE_SYMLINKS = NO
++EXCLUDE_PATTERNS =
++EXAMPLE_PATH =
++EXAMPLE_PATTERNS = *
++EXAMPLE_RECURSIVE = NO
++IMAGE_PATH =
++INPUT_FILTER =
++FILTER_PATTERNS =
++FILTER_SOURCE_FILES = NO
++#---------------------------------------------------------------------------
++# configuration options related to source browsing
++#---------------------------------------------------------------------------
++SOURCE_BROWSER = NO
++INLINE_SOURCES = NO
++STRIP_CODE_COMMENTS = YES
++REFERENCED_BY_RELATION = YES
++REFERENCES_RELATION = YES
++USE_HTAGS = NO
++VERBATIM_HEADERS = NO
++#---------------------------------------------------------------------------
++# configuration options related to the alphabetical class index
++#---------------------------------------------------------------------------
++ALPHABETICAL_INDEX = NO
++COLS_IN_ALPHA_INDEX = 5
++IGNORE_PREFIX =
++#---------------------------------------------------------------------------
++# configuration options related to the HTML output
++#---------------------------------------------------------------------------
++GENERATE_HTML = YES
++HTML_OUTPUT = html
++HTML_FILE_EXTENSION = .html
++HTML_HEADER =
++HTML_FOOTER =
++HTML_STYLESHEET =
++HTML_ALIGN_MEMBERS = YES
++GENERATE_HTMLHELP = NO
++CHM_FILE =
++HHC_LOCATION =
++GENERATE_CHI = NO
++BINARY_TOC = NO
++TOC_EXPAND = NO
++DISABLE_INDEX = NO
++ENUM_VALUES_PER_LINE = 4
++GENERATE_TREEVIEW = YES
++TREEVIEW_WIDTH = 250
++#---------------------------------------------------------------------------
++# configuration options related to the LaTeX output
++#---------------------------------------------------------------------------
++GENERATE_LATEX = NO
++LATEX_OUTPUT = latex
++LATEX_CMD_NAME = latex
++MAKEINDEX_CMD_NAME = makeindex
++COMPACT_LATEX = NO
++PAPER_TYPE = a4wide
++EXTRA_PACKAGES =
++LATEX_HEADER =
++PDF_HYPERLINKS = NO
++USE_PDFLATEX = NO
++LATEX_BATCHMODE = NO
++LATEX_HIDE_INDICES = NO
++#---------------------------------------------------------------------------
++# configuration options related to the RTF output
++#---------------------------------------------------------------------------
++GENERATE_RTF = NO
++RTF_OUTPUT = rtf
++COMPACT_RTF = NO
++RTF_HYPERLINKS = NO
++RTF_STYLESHEET_FILE =
++RTF_EXTENSIONS_FILE =
++#---------------------------------------------------------------------------
++# configuration options related to the man page output
++#---------------------------------------------------------------------------
++GENERATE_MAN = NO
++MAN_OUTPUT = man
++MAN_EXTENSION = .3
++MAN_LINKS = NO
++#---------------------------------------------------------------------------
++# configuration options related to the XML output
++#---------------------------------------------------------------------------
++GENERATE_XML = NO
++XML_OUTPUT = xml
++XML_SCHEMA =
++XML_DTD =
++XML_PROGRAMLISTING = YES
++#---------------------------------------------------------------------------
++# configuration options for the AutoGen Definitions output
++#---------------------------------------------------------------------------
++GENERATE_AUTOGEN_DEF = NO
++#---------------------------------------------------------------------------
++# configuration options related to the Perl module output
++#---------------------------------------------------------------------------
++GENERATE_PERLMOD = NO
++PERLMOD_LATEX = NO
++PERLMOD_PRETTY = YES
++PERLMOD_MAKEVAR_PREFIX =
++#---------------------------------------------------------------------------
++# Configuration options related to the preprocessor
++#---------------------------------------------------------------------------
++ENABLE_PREPROCESSING = YES
++MACRO_EXPANSION = NO
++EXPAND_ONLY_PREDEF = NO
++SEARCH_INCLUDES = YES
++INCLUDE_PATH =
++INCLUDE_FILE_PATTERNS =
++PREDEFINED = DEBUG DEBUG_MEMORY
++EXPAND_AS_DEFINED =
++SKIP_FUNCTION_MACROS = YES
++#---------------------------------------------------------------------------
++# Configuration::additions related to external references
++#---------------------------------------------------------------------------
++TAGFILES =
++GENERATE_TAGFILE =
++ALLEXTERNALS = NO
++EXTERNAL_GROUPS = YES
++PERL_PATH = /usr/bin/perl
++#---------------------------------------------------------------------------
++# Configuration options related to the dot tool
++#---------------------------------------------------------------------------
++CLASS_DIAGRAMS = YES
++HIDE_UNDOC_RELATIONS = YES
++HAVE_DOT = NO
++CLASS_GRAPH = YES
++COLLABORATION_GRAPH = YES
++GROUP_GRAPHS = YES
++UML_LOOK = NO
++TEMPLATE_RELATIONS = NO
++INCLUDE_GRAPH = NO
++INCLUDED_BY_GRAPH = YES
++CALL_GRAPH = NO
++GRAPHICAL_HIERARCHY = YES
++DIRECTORY_GRAPH = YES
++DOT_IMAGE_FORMAT = png
++DOT_PATH =
++DOTFILE_DIRS =
++MAX_DOT_GRAPH_DEPTH = 1000
++DOT_TRANSPARENT = NO
++DOT_MULTI_TARGETS = NO
++GENERATE_LEGEND = YES
++DOT_CLEANUP = YES
++#---------------------------------------------------------------------------
++# Configuration::additions related to the search engine
++#---------------------------------------------------------------------------
++SEARCHENGINE = NO
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_cc.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_cc.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_cc.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_cc.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,532 @@
++/* =========================================================================
++ * $File: //dwh/usb_iip/dev/software/dwc_common_port_2/dwc_cc.c $
++ * $Revision: #4 $
++ * $Date: 2010/11/04 $
++ * $Change: 1621692 $
++ *
++ * Synopsys Portability Library Software and documentation
++ * (hereinafter, "Software") is an Unsupported proprietary work of
++ * Synopsys, Inc. unless otherwise expressly agreed to in writing
++ * between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product
++ * under any End User Software License Agreement or Agreement for
++ * Licensed Product with Synopsys or any supplement thereto. You are
++ * permitted to use and redistribute this Software in source and binary
++ * forms, with or without modification, provided that redistributions
++ * of source code must retain this notice. You may not view, use,
++ * disclose, copy or distribute this file or any information contained
++ * herein except pursuant to this license grant from Synopsys. If you
++ * do not agree with this notice, including the disclaimer below, then
++ * you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
++ * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
++ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
++ * FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
++ * SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
++ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
++ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================= */
++#ifdef DWC_CCLIB
++
++#include "dwc_cc.h"
++
++typedef struct dwc_cc
++{
++ uint32_t uid;
++ uint8_t chid[16];
++ uint8_t cdid[16];
++ uint8_t ck[16];
++ uint8_t *name;
++ uint8_t length;
++ DWC_CIRCLEQ_ENTRY(dwc_cc) list_entry;
++} dwc_cc_t;
++
++DWC_CIRCLEQ_HEAD(context_list, dwc_cc);
++
++/** The main structure for CC management. */
++struct dwc_cc_if
++{
++ dwc_mutex_t *mutex;
++ char *filename;
++
++ unsigned is_host:1;
++
++ dwc_notifier_t *notifier;
++
++ struct context_list list;
++};
++
++#ifdef DEBUG
++static inline void dump_bytes(char *name, uint8_t *bytes, int len)
++{
++ int i;
++ DWC_PRINTF("%s: ", name);
++ for (i=0; i<len; i++) {
++ DWC_PRINTF("%02x ", bytes[i]);
++ }
++ DWC_PRINTF("\n");
++}
++#else
++#define dump_bytes(x...)
++#endif
++
++static dwc_cc_t *alloc_cc(void *mem_ctx, uint8_t *name, uint32_t length)
++{
++ dwc_cc_t *cc = dwc_alloc(mem_ctx, sizeof(dwc_cc_t));
++ if (!cc) {
++ return NULL;
++ }
++ DWC_MEMSET(cc, 0, sizeof(dwc_cc_t));
++
++ if (name) {
++ cc->length = length;
++ cc->name = dwc_alloc(mem_ctx, length);
++ if (!cc->name) {
++ dwc_free(mem_ctx, cc);
++ return NULL;
++ }
++
++ DWC_MEMCPY(cc->name, name, length);
++ }
++
++ return cc;
++}
++
++static void free_cc(void *mem_ctx, dwc_cc_t *cc)
++{
++ if (cc->name) {
++ dwc_free(mem_ctx, cc->name);
++ }
++ dwc_free(mem_ctx, cc);
++}
++
++static uint32_t next_uid(dwc_cc_if_t *cc_if)
++{
++ uint32_t uid = 0;
++ dwc_cc_t *cc;
++ DWC_CIRCLEQ_FOREACH(cc, &cc_if->list, list_entry) {
++ if (cc->uid > uid) {
++ uid = cc->uid;
++ }
++ }
++
++ if (uid == 0) {
++ uid = 255;
++ }
++
++ return uid + 1;
++}
++
++static dwc_cc_t *cc_find(dwc_cc_if_t *cc_if, uint32_t uid)
++{
++ dwc_cc_t *cc;
++ DWC_CIRCLEQ_FOREACH(cc, &cc_if->list, list_entry) {
++ if (cc->uid == uid) {
++ return cc;
++ }
++ }
++ return NULL;
++}
++
++static unsigned int cc_data_size(dwc_cc_if_t *cc_if)
++{
++ unsigned int size = 0;
++ dwc_cc_t *cc;
++ DWC_CIRCLEQ_FOREACH(cc, &cc_if->list, list_entry) {
++ size += (48 + 1);
++ if (cc->name) {
++ size += cc->length;
++ }
++ }
++ return size;
++}
++
++static uint32_t cc_match_chid(dwc_cc_if_t *cc_if, uint8_t *chid)
++{
++ uint32_t uid = 0;
++ dwc_cc_t *cc;
++
++ DWC_CIRCLEQ_FOREACH(cc, &cc_if->list, list_entry) {
++ if (DWC_MEMCMP(cc->chid, chid, 16) == 0) {
++ uid = cc->uid;
++ break;
++ }
++ }
++ return uid;
++}
++static uint32_t cc_match_cdid(dwc_cc_if_t *cc_if, uint8_t *cdid)
++{
++ uint32_t uid = 0;
++ dwc_cc_t *cc;
++
++ DWC_CIRCLEQ_FOREACH(cc, &cc_if->list, list_entry) {
++ if (DWC_MEMCMP(cc->cdid, cdid, 16) == 0) {
++ uid = cc->uid;
++ break;
++ }
++ }
++ return uid;
++}
++
++/* Internal cc_add */
++static int32_t cc_add(void *mem_ctx, dwc_cc_if_t *cc_if, uint8_t *chid,
++ uint8_t *cdid, uint8_t *ck, uint8_t *name, uint8_t length)
++{
++ dwc_cc_t *cc;
++ uint32_t uid;
++
++ if (cc_if->is_host) {
++ uid = cc_match_cdid(cc_if, cdid);
++ }
++ else {
++ uid = cc_match_chid(cc_if, chid);
++ }
++
++ if (uid) {
++ DWC_DEBUGC("Replacing previous connection context id=%d name=%p name_len=%d", uid, name, length);
++ cc = cc_find(cc_if, uid);
++ }
++ else {
++ cc = alloc_cc(mem_ctx, name, length);
++ cc->uid = next_uid(cc_if);
++ DWC_CIRCLEQ_INSERT_TAIL(&cc_if->list, cc, list_entry);
++ }
++
++ DWC_MEMCPY(&(cc->chid[0]), chid, 16);
++ DWC_MEMCPY(&(cc->cdid[0]), cdid, 16);
++ DWC_MEMCPY(&(cc->ck[0]), ck, 16);
++
++ DWC_DEBUGC("Added connection context id=%d name=%p name_len=%d", cc->uid, name, length);
++ dump_bytes("CHID", cc->chid, 16);
++ dump_bytes("CDID", cc->cdid, 16);
++ dump_bytes("CK", cc->ck, 16);
++ return cc->uid;
++}
++
++/* Internal cc_clear */
++static void cc_clear(void *mem_ctx, dwc_cc_if_t *cc_if)
++{
++ while (!DWC_CIRCLEQ_EMPTY(&cc_if->list)) {
++ dwc_cc_t *cc = DWC_CIRCLEQ_FIRST(&cc_if->list);
++ DWC_CIRCLEQ_REMOVE_INIT(&cc_if->list, cc, list_entry);
++ free_cc(mem_ctx, cc);
++ }
++}
++
++dwc_cc_if_t *dwc_cc_if_alloc(void *mem_ctx, void *mtx_ctx,
++ dwc_notifier_t *notifier, unsigned is_host)
++{
++ dwc_cc_if_t *cc_if = NULL;
++
++ /* Allocate a common_cc_if structure */
++ cc_if = dwc_alloc(mem_ctx, sizeof(dwc_cc_if_t));
++
++ if (!cc_if)
++ return NULL;
++
++#if (defined(DWC_LINUX) && defined(CONFIG_DEBUG_MUTEXES))
++ DWC_MUTEX_ALLOC_LINUX_DEBUG(cc_if->mutex);
++#else
++ cc_if->mutex = dwc_mutex_alloc(mtx_ctx);
++#endif
++ if (!cc_if->mutex) {
++ dwc_free(mem_ctx, cc_if);
++ return NULL;
++ }
++
++ DWC_CIRCLEQ_INIT(&cc_if->list);
++ cc_if->is_host = is_host;
++ cc_if->notifier = notifier;
++ return cc_if;
++}
++
++void dwc_cc_if_free(void *mem_ctx, void *mtx_ctx, dwc_cc_if_t *cc_if)
++{
++#if (defined(DWC_LINUX) && defined(CONFIG_DEBUG_MUTEXES))
++ DWC_MUTEX_FREE(cc_if->mutex);
++#else
++ dwc_mutex_free(mtx_ctx, cc_if->mutex);
++#endif
++ cc_clear(mem_ctx, cc_if);
++ dwc_free(mem_ctx, cc_if);
++}
++
++static void cc_changed(dwc_cc_if_t *cc_if)
++{
++ if (cc_if->notifier) {
++ dwc_notify(cc_if->notifier, DWC_CC_LIST_CHANGED_NOTIFICATION, cc_if);
++ }
++}
++
++void dwc_cc_clear(void *mem_ctx, dwc_cc_if_t *cc_if)
++{
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ cc_clear(mem_ctx, cc_if);
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ cc_changed(cc_if);
++}
++
++int32_t dwc_cc_add(void *mem_ctx, dwc_cc_if_t *cc_if, uint8_t *chid,
++ uint8_t *cdid, uint8_t *ck, uint8_t *name, uint8_t length)
++{
++ uint32_t uid;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ uid = cc_add(mem_ctx, cc_if, chid, cdid, ck, name, length);
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ cc_changed(cc_if);
++
++ return uid;
++}
++
++void dwc_cc_change(void *mem_ctx, dwc_cc_if_t *cc_if, int32_t id, uint8_t *chid,
++ uint8_t *cdid, uint8_t *ck, uint8_t *name, uint8_t length)
++{
++ dwc_cc_t* cc;
++
++ DWC_DEBUGC("Change connection context %d", id);
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ cc = cc_find(cc_if, id);
++ if (!cc) {
++ DWC_ERROR("Uid %d not found in cc list\n", id);
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ return;
++ }
++
++ if (chid) {
++ DWC_MEMCPY(&(cc->chid[0]), chid, 16);
++ }
++ if (cdid) {
++ DWC_MEMCPY(&(cc->cdid[0]), cdid, 16);
++ }
++ if (ck) {
++ DWC_MEMCPY(&(cc->ck[0]), ck, 16);
++ }
++
++ if (name) {
++ if (cc->name) {
++ dwc_free(mem_ctx, cc->name);
++ }
++ cc->name = dwc_alloc(mem_ctx, length);
++ if (!cc->name) {
++ DWC_ERROR("Out of memory in dwc_cc_change()\n");
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ return;
++ }
++ cc->length = length;
++ DWC_MEMCPY(cc->name, name, length);
++ }
++
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++
++ cc_changed(cc_if);
++
++ DWC_DEBUGC("Changed connection context id=%d\n", id);
++ dump_bytes("New CHID", cc->chid, 16);
++ dump_bytes("New CDID", cc->cdid, 16);
++ dump_bytes("New CK", cc->ck, 16);
++}
++
++void dwc_cc_remove(void *mem_ctx, dwc_cc_if_t *cc_if, int32_t id)
++{
++ dwc_cc_t *cc;
++
++ DWC_DEBUGC("Removing connection context %d", id);
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ cc = cc_find(cc_if, id);
++ if (!cc) {
++ DWC_ERROR("Uid %d not found in cc list\n", id);
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ return;
++ }
++
++ DWC_CIRCLEQ_REMOVE_INIT(&cc_if->list, cc, list_entry);
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ free_cc(mem_ctx, cc);
++
++ cc_changed(cc_if);
++}
++
++uint8_t *dwc_cc_data_for_save(void *mem_ctx, dwc_cc_if_t *cc_if, unsigned int *length)
++{
++ uint8_t *buf, *x;
++ uint8_t zero = 0;
++ dwc_cc_t *cc;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ *length = cc_data_size(cc_if);
++ if (!(*length)) {
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ return NULL;
++ }
++
++ DWC_DEBUGC("Creating data for saving (length=%d)", *length);
++
++ buf = dwc_alloc(mem_ctx, *length);
++ if (!buf) {
++ *length = 0;
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ return NULL;
++ }
++
++ x = buf;
++ DWC_CIRCLEQ_FOREACH(cc, &cc_if->list, list_entry) {
++ DWC_MEMCPY(x, cc->chid, 16);
++ x += 16;
++ DWC_MEMCPY(x, cc->cdid, 16);
++ x += 16;
++ DWC_MEMCPY(x, cc->ck, 16);
++ x += 16;
++ if (cc->name) {
++ DWC_MEMCPY(x, &cc->length, 1);
++ x += 1;
++ DWC_MEMCPY(x, cc->name, cc->length);
++ x += cc->length;
++ }
++ else {
++ DWC_MEMCPY(x, &zero, 1);
++ x += 1;
++ }
++ }
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++
++ return buf;
++}
++
++void dwc_cc_restore_from_data(void *mem_ctx, dwc_cc_if_t *cc_if, uint8_t *data, uint32_t length)
++{
++ uint8_t name_length;
++ uint8_t *name;
++ uint8_t *chid;
++ uint8_t *cdid;
++ uint8_t *ck;
++ uint32_t i = 0;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ cc_clear(mem_ctx, cc_if);
++
++ while (i < length) {
++ chid = &data[i];
++ i += 16;
++ cdid = &data[i];
++ i += 16;
++ ck = &data[i];
++ i += 16;
++
++ name_length = data[i];
++ i ++;
++
++ if (name_length) {
++ name = &data[i];
++ i += name_length;
++ }
++ else {
++ name = NULL;
++ }
++
++ /* check to see if we haven't overflown the buffer */
++ if (i > length) {
++ DWC_ERROR("Data format error while attempting to load CCs "
++ "(nlen=%d, iter=%d, buflen=%d).\n", name_length, i, length);
++ break;
++ }
++
++ cc_add(mem_ctx, cc_if, chid, cdid, ck, name, name_length);
++ }
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++
++ cc_changed(cc_if);
++}
++
++uint32_t dwc_cc_match_chid(dwc_cc_if_t *cc_if, uint8_t *chid)
++{
++ uint32_t uid = 0;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ uid = cc_match_chid(cc_if, chid);
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ return uid;
++}
++uint32_t dwc_cc_match_cdid(dwc_cc_if_t *cc_if, uint8_t *cdid)
++{
++ uint32_t uid = 0;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ uid = cc_match_cdid(cc_if, cdid);
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++ return uid;
++}
++
++uint8_t *dwc_cc_ck(dwc_cc_if_t *cc_if, int32_t id)
++{
++ uint8_t *ck = NULL;
++ dwc_cc_t *cc;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ cc = cc_find(cc_if, id);
++ if (cc) {
++ ck = cc->ck;
++ }
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++
++ return ck;
++
++}
++
++uint8_t *dwc_cc_chid(dwc_cc_if_t *cc_if, int32_t id)
++{
++ uint8_t *retval = NULL;
++ dwc_cc_t *cc;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ cc = cc_find(cc_if, id);
++ if (cc) {
++ retval = cc->chid;
++ }
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++
++ return retval;
++}
++
++uint8_t *dwc_cc_cdid(dwc_cc_if_t *cc_if, int32_t id)
++{
++ uint8_t *retval = NULL;
++ dwc_cc_t *cc;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ cc = cc_find(cc_if, id);
++ if (cc) {
++ retval = cc->cdid;
++ }
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++
++ return retval;
++}
++
++uint8_t *dwc_cc_name(dwc_cc_if_t *cc_if, int32_t id, uint8_t *length)
++{
++ uint8_t *retval = NULL;
++ dwc_cc_t *cc;
++
++ DWC_MUTEX_LOCK(cc_if->mutex);
++ *length = 0;
++ cc = cc_find(cc_if, id);
++ if (cc) {
++ *length = cc->length;
++ retval = cc->name;
++ }
++ DWC_MUTEX_UNLOCK(cc_if->mutex);
++
++ return retval;
++}
++
++#endif /* DWC_CCLIB */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_cc.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_cc.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_cc.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_cc.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,225 @@
++/* =========================================================================
++ * $File: //dwh/usb_iip/dev/software/dwc_common_port_2/dwc_cc.h $
++ * $Revision: #4 $
++ * $Date: 2010/09/28 $
++ * $Change: 1596182 $
++ *
++ * Synopsys Portability Library Software and documentation
++ * (hereinafter, "Software") is an Unsupported proprietary work of
++ * Synopsys, Inc. unless otherwise expressly agreed to in writing
++ * between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product
++ * under any End User Software License Agreement or Agreement for
++ * Licensed Product with Synopsys or any supplement thereto. You are
++ * permitted to use and redistribute this Software in source and binary
++ * forms, with or without modification, provided that redistributions
++ * of source code must retain this notice. You may not view, use,
++ * disclose, copy or distribute this file or any information contained
++ * herein except pursuant to this license grant from Synopsys. If you
++ * do not agree with this notice, including the disclaimer below, then
++ * you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
++ * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
++ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
++ * FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
++ * SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
++ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
++ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================= */
++#ifndef _DWC_CC_H_
++#define _DWC_CC_H_
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/** @file
++ *
++ * This file defines the Context Context library.
++ *
++ * The main data structure is dwc_cc_if_t which is returned by either the
++ * dwc_cc_if_alloc function or returned by the module to the user via a provided
++ * function. The data structure is opaque and should only be manipulated via the
++ * functions provied in this API.
++ *
++ * It manages a list of connection contexts and operations can be performed to
++ * add, remove, query, search, and change, those contexts. Additionally,
++ * a dwc_notifier_t object can be requested from the manager so that
++ * the user can be notified whenever the context list has changed.
++ */
++
++#include "dwc_os.h"
++#include "dwc_list.h"
++#include "dwc_notifier.h"
++
++
++/* Notifications */
++#define DWC_CC_LIST_CHANGED_NOTIFICATION "DWC_CC_LIST_CHANGED_NOTIFICATION"
++
++struct dwc_cc_if;
++typedef struct dwc_cc_if dwc_cc_if_t;
++
++
++/** @name Connection Context Operations */
++/** @{ */
++
++/** This function allocates memory for a dwc_cc_if_t structure, initializes
++ * fields to default values, and returns a pointer to the structure or NULL on
++ * error. */
++extern dwc_cc_if_t *dwc_cc_if_alloc(void *mem_ctx, void *mtx_ctx,
++ dwc_notifier_t *notifier, unsigned is_host);
++
++/** Frees the memory for the specified CC structure allocated from
++ * dwc_cc_if_alloc(). */
++extern void dwc_cc_if_free(void *mem_ctx, void *mtx_ctx, dwc_cc_if_t *cc_if);
++
++/** Removes all contexts from the connection context list */
++extern void dwc_cc_clear(void *mem_ctx, dwc_cc_if_t *cc_if);
++
++/** Adds a connection context (CHID, CK, CDID, Name) to the connection context list.
++ * If a CHID already exists, the CK and name are overwritten. Statistics are
++ * not overwritten.
++ *
++ * @param cc_if The cc_if structure.
++ * @param chid A pointer to the 16-byte CHID. This value will be copied.
++ * @param ck A pointer to the 16-byte CK. This value will be copied.
++ * @param cdid A pointer to the 16-byte CDID. This value will be copied.
++ * @param name An optional host friendly name as defined in the association model
++ * spec. Must be a UTF16-LE unicode string. Can be NULL to indicated no name.
++ * @param length The length othe unicode string.
++ * @return A unique identifier used to refer to this context that is valid for
++ * as long as this context is still in the list. */
++extern int32_t dwc_cc_add(void *mem_ctx, dwc_cc_if_t *cc_if, uint8_t *chid,
++ uint8_t *cdid, uint8_t *ck, uint8_t *name,
++ uint8_t length);
++
++/** Changes the CHID, CK, CDID, or Name values of a connection context in the
++ * list, preserving any accumulated statistics. This would typically be called
++ * if the host decideds to change the context with a SET_CONNECTION request.
++ *
++ * @param cc_if The cc_if structure.
++ * @param id The identifier of the connection context.
++ * @param chid A pointer to the 16-byte CHID. This value will be copied. NULL
++ * indicates no change.
++ * @param cdid A pointer to the 16-byte CDID. This value will be copied. NULL
++ * indicates no change.
++ * @param ck A pointer to the 16-byte CK. This value will be copied. NULL
++ * indicates no change.
++ * @param name Host friendly name UTF16-LE. NULL indicates no change.
++ * @param length Length of name. */
++extern void dwc_cc_change(void *mem_ctx, dwc_cc_if_t *cc_if, int32_t id,
++ uint8_t *chid, uint8_t *cdid, uint8_t *ck,
++ uint8_t *name, uint8_t length);
++
++/** Remove the specified connection context.
++ * @param cc_if The cc_if structure.
++ * @param id The identifier of the connection context to remove. */
++extern void dwc_cc_remove(void *mem_ctx, dwc_cc_if_t *cc_if, int32_t id);
++
++/** Get a binary block of data for the connection context list and attributes.
++ * This data can be used by the OS specific driver to save the connection
++ * context list into non-volatile memory.
++ *
++ * @param cc_if The cc_if structure.
++ * @param length Return the length of the data buffer.
++ * @return A pointer to the data buffer. The memory for this buffer should be
++ * freed with DWC_FREE() after use. */
++extern uint8_t *dwc_cc_data_for_save(void *mem_ctx, dwc_cc_if_t *cc_if,
++ unsigned int *length);
++
++/** Restore the connection context list from the binary data that was previously
++ * returned from a call to dwc_cc_data_for_save. This can be used by the OS specific
++ * driver to load a connection context list from non-volatile memory.
++ *
++ * @param cc_if The cc_if structure.
++ * @param data The data bytes as returned from dwc_cc_data_for_save.
++ * @param length The length of the data. */
++extern void dwc_cc_restore_from_data(void *mem_ctx, dwc_cc_if_t *cc_if,
++ uint8_t *data, unsigned int length);
++
++/** Find the connection context from the specified CHID.
++ *
++ * @param cc_if The cc_if structure.
++ * @param chid A pointer to the CHID data.
++ * @return A non-zero identifier of the connection context if the CHID matches.
++ * Otherwise returns 0. */
++extern uint32_t dwc_cc_match_chid(dwc_cc_if_t *cc_if, uint8_t *chid);
++
++/** Find the connection context from the specified CDID.
++ *
++ * @param cc_if The cc_if structure.
++ * @param cdid A pointer to the CDID data.
++ * @return A non-zero identifier of the connection context if the CHID matches.
++ * Otherwise returns 0. */
++extern uint32_t dwc_cc_match_cdid(dwc_cc_if_t *cc_if, uint8_t *cdid);
++
++/** Retrieve the CK from the specified connection context.
++ *
++ * @param cc_if The cc_if structure.
++ * @param id The identifier of the connection context.
++ * @return A pointer to the CK data. The memory does not need to be freed. */
++extern uint8_t *dwc_cc_ck(dwc_cc_if_t *cc_if, int32_t id);
++
++/** Retrieve the CHID from the specified connection context.
++ *
++ * @param cc_if The cc_if structure.
++ * @param id The identifier of the connection context.
++ * @return A pointer to the CHID data. The memory does not need to be freed. */
++extern uint8_t *dwc_cc_chid(dwc_cc_if_t *cc_if, int32_t id);
++
++/** Retrieve the CDID from the specified connection context.
++ *
++ * @param cc_if The cc_if structure.
++ * @param id The identifier of the connection context.
++ * @return A pointer to the CDID data. The memory does not need to be freed. */
++extern uint8_t *dwc_cc_cdid(dwc_cc_if_t *cc_if, int32_t id);
++
++extern uint8_t *dwc_cc_name(dwc_cc_if_t *cc_if, int32_t id, uint8_t *length);
++
++/** Checks a buffer for non-zero.
++ * @param id A pointer to a 16 byte buffer.
++ * @return true if the 16 byte value is non-zero. */
++static inline unsigned dwc_assoc_is_not_zero_id(uint8_t *id) {
++ int i;
++ for (i=0; i<16; i++) {
++ if (id[i]) return 1;
++ }
++ return 0;
++}
++
++/** Checks a buffer for zero.
++ * @param id A pointer to a 16 byte buffer.
++ * @return true if the 16 byte value is zero. */
++static inline unsigned dwc_assoc_is_zero_id(uint8_t *id) {
++ return !dwc_assoc_is_not_zero_id(id);
++}
++
++/** Prints an ASCII representation for the 16-byte chid, cdid, or ck, into
++ * buffer. */
++static inline int dwc_print_id_string(char *buffer, uint8_t *id) {
++ char *ptr = buffer;
++ int i;
++ for (i=0; i<16; i++) {
++ ptr += DWC_SPRINTF(ptr, "%02x", id[i]);
++ if (i < 15) {
++ ptr += DWC_SPRINTF(ptr, " ");
++ }
++ }
++ return ptr - buffer;
++}
++
++/** @} */
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* _DWC_CC_H_ */
++
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_common_fbsd.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_common_fbsd.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_common_fbsd.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_common_fbsd.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1308 @@
++#include "dwc_os.h"
++#include "dwc_list.h"
++
++#ifdef DWC_CCLIB
++# include "dwc_cc.h"
++#endif
++
++#ifdef DWC_CRYPTOLIB
++# include "dwc_modpow.h"
++# include "dwc_dh.h"
++# include "dwc_crypto.h"
++#endif
++
++#ifdef DWC_NOTIFYLIB
++# include "dwc_notifier.h"
++#endif
++
++/* OS-Level Implementations */
++
++/* This is the FreeBSD 7.0 kernel implementation of the DWC platform library. */
++
++
++/* MISC */
++
++void *DWC_MEMSET(void *dest, uint8_t byte, uint32_t size)
++{
++ return memset(dest, byte, size);
++}
++
++void *DWC_MEMCPY(void *dest, void const *src, uint32_t size)
++{
++ return memcpy(dest, src, size);
++}
++
++void *DWC_MEMMOVE(void *dest, void *src, uint32_t size)
++{
++ bcopy(src, dest, size);
++ return dest;
++}
++
++int DWC_MEMCMP(void *m1, void *m2, uint32_t size)
++{
++ return memcmp(m1, m2, size);
++}
++
++int DWC_STRNCMP(void *s1, void *s2, uint32_t size)
++{
++ return strncmp(s1, s2, size);
++}
++
++int DWC_STRCMP(void *s1, void *s2)
++{
++ return strcmp(s1, s2);
++}
++
++int DWC_STRLEN(char const *str)
++{
++ return strlen(str);
++}
++
++char *DWC_STRCPY(char *to, char const *from)
++{
++ return strcpy(to, from);
++}
++
++char *DWC_STRDUP(char const *str)
++{
++ int len = DWC_STRLEN(str) + 1;
++ char *new = DWC_ALLOC_ATOMIC(len);
++
++ if (!new) {
++ return NULL;
++ }
++
++ DWC_MEMCPY(new, str, len);
++ return new;
++}
++
++int DWC_ATOI(char *str, int32_t *value)
++{
++ char *end = NULL;
++
++ *value = strtol(str, &end, 0);
++ if (*end == '\0') {
++ return 0;
++ }
++
++ return -1;
++}
++
++int DWC_ATOUI(char *str, uint32_t *value)
++{
++ char *end = NULL;
++
++ *value = strtoul(str, &end, 0);
++ if (*end == '\0') {
++ return 0;
++ }
++
++ return -1;
++}
++
++
++#ifdef DWC_UTFLIB
++/* From usbstring.c */
++
++int DWC_UTF8_TO_UTF16LE(uint8_t const *s, uint16_t *cp, unsigned len)
++{
++ int count = 0;
++ u8 c;
++ u16 uchar;
++
++ /* this insists on correct encodings, though not minimal ones.
++ * BUT it currently rejects legit 4-byte UTF-8 code points,
++ * which need surrogate pairs. (Unicode 3.1 can use them.)
++ */
++ while (len != 0 && (c = (u8) *s++) != 0) {
++ if (unlikely(c & 0x80)) {
++ // 2-byte sequence:
++ // 00000yyyyyxxxxxx = 110yyyyy 10xxxxxx
++ if ((c & 0xe0) == 0xc0) {
++ uchar = (c & 0x1f) << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ // 3-byte sequence (most CJKV characters):
++ // zzzzyyyyyyxxxxxx = 1110zzzz 10yyyyyy 10xxxxxx
++ } else if ((c & 0xf0) == 0xe0) {
++ uchar = (c & 0x0f) << 12;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ /* no bogus surrogates */
++ if (0xd800 <= uchar && uchar <= 0xdfff)
++ goto fail;
++
++ // 4-byte sequence (surrogate pairs, currently rare):
++ // 11101110wwwwzzzzyy + 110111yyyyxxxxxx
++ // = 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
++ // (uuuuu = wwww + 1)
++ // FIXME accept the surrogate code points (only)
++ } else
++ goto fail;
++ } else
++ uchar = c;
++ put_unaligned (cpu_to_le16 (uchar), cp++);
++ count++;
++ len--;
++ }
++ return count;
++fail:
++ return -1;
++}
++
++#endif /* DWC_UTFLIB */
++
++
++/* dwc_debug.h */
++
++dwc_bool_t DWC_IN_IRQ(void)
++{
++// return in_irq();
++ return 0;
++}
++
++dwc_bool_t DWC_IN_BH(void)
++{
++// return in_softirq();
++ return 0;
++}
++
++void DWC_VPRINTF(char *format, va_list args)
++{
++ vprintf(format, args);
++}
++
++int DWC_VSNPRINTF(char *str, int size, char *format, va_list args)
++{
++ return vsnprintf(str, size, format, args);
++}
++
++void DWC_PRINTF(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++int DWC_SPRINTF(char *buffer, char *format, ...)
++{
++ int retval;
++ va_list args;
++
++ va_start(args, format);
++ retval = vsprintf(buffer, format, args);
++ va_end(args);
++ return retval;
++}
++
++int DWC_SNPRINTF(char *buffer, int size, char *format, ...)
++{
++ int retval;
++ va_list args;
++
++ va_start(args, format);
++ retval = vsnprintf(buffer, size, format, args);
++ va_end(args);
++ return retval;
++}
++
++void __DWC_WARN(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++void __DWC_ERROR(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++void DWC_EXCEPTION(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++// BUG_ON(1); ???
++}
++
++#ifdef DEBUG
++void __DWC_DEBUG(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++#endif
++
++
++/* dwc_mem.h */
++
++#if 0
++dwc_pool_t *DWC_DMA_POOL_CREATE(uint32_t size,
++ uint32_t align,
++ uint32_t alloc)
++{
++ struct dma_pool *pool = dma_pool_create("Pool", NULL,
++ size, align, alloc);
++ return (dwc_pool_t *)pool;
++}
++
++void DWC_DMA_POOL_DESTROY(dwc_pool_t *pool)
++{
++ dma_pool_destroy((struct dma_pool *)pool);
++}
++
++void *DWC_DMA_POOL_ALLOC(dwc_pool_t *pool, uint64_t *dma_addr)
++{
++// return dma_pool_alloc((struct dma_pool *)pool, GFP_KERNEL, dma_addr);
++ return dma_pool_alloc((struct dma_pool *)pool, M_WAITOK, dma_addr);
++}
++
++void *DWC_DMA_POOL_ZALLOC(dwc_pool_t *pool, uint64_t *dma_addr)
++{
++ void *vaddr = DWC_DMA_POOL_ALLOC(pool, dma_addr);
++ memset(..);
++}
++
++void DWC_DMA_POOL_FREE(dwc_pool_t *pool, void *vaddr, void *daddr)
++{
++ dma_pool_free(pool, vaddr, daddr);
++}
++#endif
++
++static void dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
++{
++ if (error)
++ return;
++ *(bus_addr_t *)arg = segs[0].ds_addr;
++}
++
++void *__DWC_DMA_ALLOC(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr)
++{
++ dwc_dmactx_t *dma = (dwc_dmactx_t *)dma_ctx;
++ int error;
++
++ error = bus_dma_tag_create(
++#if __FreeBSD_version >= 700000
++ bus_get_dma_tag(dma->dev), /* parent */
++#else
++ NULL, /* parent */
++#endif
++ 4, 0, /* alignment, bounds */
++ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
++ BUS_SPACE_MAXADDR, /* highaddr */
++ NULL, NULL, /* filter, filterarg */
++ size, /* maxsize */
++ 1, /* nsegments */
++ size, /* maxsegsize */
++ 0, /* flags */
++ NULL, /* lockfunc */
++ NULL, /* lockarg */
++ &dma->dma_tag);
++ if (error) {
++ device_printf(dma->dev, "%s: bus_dma_tag_create failed: %d\n",
++ __func__, error);
++ goto fail_0;
++ }
++
++ error = bus_dmamem_alloc(dma->dma_tag, &dma->dma_vaddr,
++ BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &dma->dma_map);
++ if (error) {
++ device_printf(dma->dev, "%s: bus_dmamem_alloc(%ju) failed: %d\n",
++ __func__, (uintmax_t)size, error);
++ goto fail_1;
++ }
++
++ dma->dma_paddr = 0;
++ error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr, size,
++ dmamap_cb, &dma->dma_paddr, BUS_DMA_NOWAIT);
++ if (error || dma->dma_paddr == 0) {
++ device_printf(dma->dev, "%s: bus_dmamap_load failed: %d\n",
++ __func__, error);
++ goto fail_2;
++ }
++
++ *dma_addr = dma->dma_paddr;
++ return dma->dma_vaddr;
++
++fail_2:
++ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
++fail_1:
++ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
++ bus_dma_tag_destroy(dma->dma_tag);
++fail_0:
++ dma->dma_map = NULL;
++ dma->dma_tag = NULL;
++
++ return NULL;
++}
++
++void __DWC_DMA_FREE(void *dma_ctx, uint32_t size, void *virt_addr, dwc_dma_t dma_addr)
++{
++ dwc_dmactx_t *dma = (dwc_dmactx_t *)dma_ctx;
++
++ if (dma->dma_tag == NULL)
++ return;
++ if (dma->dma_map != NULL) {
++ bus_dmamap_sync(dma->dma_tag, dma->dma_map,
++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
++ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
++ bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
++ dma->dma_map = NULL;
++ }
++
++ bus_dma_tag_destroy(dma->dma_tag);
++ dma->dma_tag = NULL;
++}
++
++void *__DWC_ALLOC(void *mem_ctx, uint32_t size)
++{
++ return malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
++}
++
++void *__DWC_ALLOC_ATOMIC(void *mem_ctx, uint32_t size)
++{
++ return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
++}
++
++void __DWC_FREE(void *mem_ctx, void *addr)
++{
++ free(addr, M_DEVBUF);
++}
++
++
++#ifdef DWC_CRYPTOLIB
++/* dwc_crypto.h */
++
++void DWC_RANDOM_BYTES(uint8_t *buffer, uint32_t length)
++{
++ get_random_bytes(buffer, length);
++}
++
++int DWC_AES_CBC(uint8_t *message, uint32_t messagelen, uint8_t *key, uint32_t keylen, uint8_t iv[16], uint8_t *out)
++{
++ struct crypto_blkcipher *tfm;
++ struct blkcipher_desc desc;
++ struct scatterlist sgd;
++ struct scatterlist sgs;
++
++ tfm = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
++ if (tfm == NULL) {
++ printk("failed to load transform for aes CBC\n");
++ return -1;
++ }
++
++ crypto_blkcipher_setkey(tfm, key, keylen);
++ crypto_blkcipher_set_iv(tfm, iv, 16);
++
++ sg_init_one(&sgd, out, messagelen);
++ sg_init_one(&sgs, message, messagelen);
++
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ if (crypto_blkcipher_encrypt(&desc, &sgd, &sgs, messagelen)) {
++ crypto_free_blkcipher(tfm);
++ DWC_ERROR("AES CBC encryption failed");
++ return -1;
++ }
++
++ crypto_free_blkcipher(tfm);
++ return 0;
++}
++
++int DWC_SHA256(uint8_t *message, uint32_t len, uint8_t *out)
++{
++ struct crypto_hash *tfm;
++ struct hash_desc desc;
++ struct scatterlist sg;
++
++ tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
++ if (IS_ERR(tfm)) {
++ DWC_ERROR("Failed to load transform for sha256: %ld", PTR_ERR(tfm));
++ return 0;
++ }
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ sg_init_one(&sg, message, len);
++ crypto_hash_digest(&desc, &sg, len, out);
++ crypto_free_hash(tfm);
++
++ return 1;
++}
++
++int DWC_HMAC_SHA256(uint8_t *message, uint32_t messagelen,
++ uint8_t *key, uint32_t keylen, uint8_t *out)
++{
++ struct crypto_hash *tfm;
++ struct hash_desc desc;
++ struct scatterlist sg;
++
++ tfm = crypto_alloc_hash("hmac(sha256)", 0, CRYPTO_ALG_ASYNC);
++ if (IS_ERR(tfm)) {
++ DWC_ERROR("Failed to load transform for hmac(sha256): %ld", PTR_ERR(tfm));
++ return 0;
++ }
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ sg_init_one(&sg, message, messagelen);
++ crypto_hash_setkey(tfm, key, keylen);
++ crypto_hash_digest(&desc, &sg, messagelen, out);
++ crypto_free_hash(tfm);
++
++ return 1;
++}
++
++#endif /* DWC_CRYPTOLIB */
++
++
++/* Byte Ordering Conversions */
++
++uint32_t DWC_CPU_TO_LE32(uint32_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_CPU_TO_BE32(uint32_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_LE32_TO_CPU(uint32_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_BE32_TO_CPU(uint32_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint16_t DWC_CPU_TO_LE16(uint16_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_CPU_TO_BE16(uint16_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_LE16_TO_CPU(uint16_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_BE16_TO_CPU(uint16_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++
++/* Registers */
++
++uint32_t DWC_READ_REG32(void *io_ctx, uint32_t volatile *reg)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ return bus_space_read_4(io->iot, io->ioh, ior);
++}
++
++#if 0
++uint64_t DWC_READ_REG64(void *io_ctx, uint64_t volatile *reg)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ return bus_space_read_8(io->iot, io->ioh, ior);
++}
++#endif
++
++void DWC_WRITE_REG32(void *io_ctx, uint32_t volatile *reg, uint32_t value)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_4(io->iot, io->ioh, ior, value);
++}
++
++#if 0
++void DWC_WRITE_REG64(void *io_ctx, uint64_t volatile *reg, uint64_t value)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_8(io->iot, io->ioh, ior, value);
++}
++#endif
++
++void DWC_MODIFY_REG32(void *io_ctx, uint32_t volatile *reg, uint32_t clear_mask,
++ uint32_t set_mask)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_4(io->iot, io->ioh, ior,
++ (bus_space_read_4(io->iot, io->ioh, ior) &
++ ~clear_mask) | set_mask);
++}
++
++#if 0
++void DWC_MODIFY_REG64(void *io_ctx, uint64_t volatile *reg, uint64_t clear_mask,
++ uint64_t set_mask)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_8(io->iot, io->ioh, ior,
++ (bus_space_read_8(io->iot, io->ioh, ior) &
++ ~clear_mask) | set_mask);
++}
++#endif
++
++
++/* Locking */
++
++dwc_spinlock_t *DWC_SPINLOCK_ALLOC(void)
++{
++ struct mtx *sl = DWC_ALLOC(sizeof(*sl));
++
++ if (!sl) {
++ DWC_ERROR("Cannot allocate memory for spinlock");
++ return NULL;
++ }
++
++ mtx_init(sl, "dw3spn", NULL, MTX_SPIN);
++ return (dwc_spinlock_t *)sl;
++}
++
++void DWC_SPINLOCK_FREE(dwc_spinlock_t *lock)
++{
++ struct mtx *sl = (struct mtx *)lock;
++
++ mtx_destroy(sl);
++ DWC_FREE(sl);
++}
++
++void DWC_SPINLOCK(dwc_spinlock_t *lock)
++{
++ mtx_lock_spin((struct mtx *)lock); // ???
++}
++
++void DWC_SPINUNLOCK(dwc_spinlock_t *lock)
++{
++ mtx_unlock_spin((struct mtx *)lock); // ???
++}
++
++void DWC_SPINLOCK_IRQSAVE(dwc_spinlock_t *lock, dwc_irqflags_t *flags)
++{
++ mtx_lock_spin((struct mtx *)lock);
++}
++
++void DWC_SPINUNLOCK_IRQRESTORE(dwc_spinlock_t *lock, dwc_irqflags_t flags)
++{
++ mtx_unlock_spin((struct mtx *)lock);
++}
++
++dwc_mutex_t *DWC_MUTEX_ALLOC(void)
++{
++ struct mtx *m;
++ dwc_mutex_t *mutex = (dwc_mutex_t *)DWC_ALLOC(sizeof(struct mtx));
++
++ if (!mutex) {
++ DWC_ERROR("Cannot allocate memory for mutex");
++ return NULL;
++ }
++
++ m = (struct mtx *)mutex;
++ mtx_init(m, "dw3mtx", NULL, MTX_DEF);
++ return mutex;
++}
++
++#if (defined(DWC_LINUX) && defined(CONFIG_DEBUG_MUTEXES))
++#else
++void DWC_MUTEX_FREE(dwc_mutex_t *mutex)
++{
++ mtx_destroy((struct mtx *)mutex);
++ DWC_FREE(mutex);
++}
++#endif
++
++void DWC_MUTEX_LOCK(dwc_mutex_t *mutex)
++{
++ struct mtx *m = (struct mtx *)mutex;
++
++ mtx_lock(m);
++}
++
++int DWC_MUTEX_TRYLOCK(dwc_mutex_t *mutex)
++{
++ struct mtx *m = (struct mtx *)mutex;
++
++ return mtx_trylock(m);
++}
++
++void DWC_MUTEX_UNLOCK(dwc_mutex_t *mutex)
++{
++ struct mtx *m = (struct mtx *)mutex;
++
++ mtx_unlock(m);
++}
++
++
++/* Timing */
++
++void DWC_UDELAY(uint32_t usecs)
++{
++ DELAY(usecs);
++}
++
++void DWC_MDELAY(uint32_t msecs)
++{
++ do {
++ DELAY(1000);
++ } while (--msecs);
++}
++
++void DWC_MSLEEP(uint32_t msecs)
++{
++ struct timeval tv;
++
++ tv.tv_sec = msecs / 1000;
++ tv.tv_usec = (msecs - tv.tv_sec * 1000) * 1000;
++ pause("dw3slp", tvtohz(&tv));
++}
++
++uint32_t DWC_TIME(void)
++{
++ struct timeval tv;
++
++ microuptime(&tv); // or getmicrouptime? (less precise, but faster)
++ return tv.tv_sec * 1000 + tv.tv_usec / 1000;
++}
++
++
++/* Timers */
++
++struct dwc_timer {
++ struct callout t;
++ char *name;
++ dwc_spinlock_t *lock;
++ dwc_timer_callback_t cb;
++ void *data;
++};
++
++dwc_timer_t *DWC_TIMER_ALLOC(char *name, dwc_timer_callback_t cb, void *data)
++{
++ dwc_timer_t *t = DWC_ALLOC(sizeof(*t));
++
++ if (!t) {
++ DWC_ERROR("Cannot allocate memory for timer");
++ return NULL;
++ }
++
++ callout_init(&t->t, 1);
++
++ t->name = DWC_STRDUP(name);
++ if (!t->name) {
++ DWC_ERROR("Cannot allocate memory for timer->name");
++ goto no_name;
++ }
++
++ t->lock = DWC_SPINLOCK_ALLOC();
++ if (!t->lock) {
++ DWC_ERROR("Cannot allocate memory for lock");
++ goto no_lock;
++ }
++
++ t->cb = cb;
++ t->data = data;
++
++ return t;
++
++ no_lock:
++ DWC_FREE(t->name);
++ no_name:
++ DWC_FREE(t);
++
++ return NULL;
++}
++
++void DWC_TIMER_FREE(dwc_timer_t *timer)
++{
++ callout_stop(&timer->t);
++ DWC_SPINLOCK_FREE(timer->lock);
++ DWC_FREE(timer->name);
++ DWC_FREE(timer);
++}
++
++void DWC_TIMER_SCHEDULE(dwc_timer_t *timer, uint32_t time)
++{
++ struct timeval tv;
++
++ tv.tv_sec = time / 1000;
++ tv.tv_usec = (time - tv.tv_sec * 1000) * 1000;
++ callout_reset(&timer->t, tvtohz(&tv), timer->cb, timer->data);
++}
++
++void DWC_TIMER_CANCEL(dwc_timer_t *timer)
++{
++ callout_stop(&timer->t);
++}
++
++
++/* Wait Queues */
++
++struct dwc_waitq {
++ struct mtx lock;
++ int abort;
++};
++
++dwc_waitq_t *DWC_WAITQ_ALLOC(void)
++{
++ dwc_waitq_t *wq = DWC_ALLOC(sizeof(*wq));
++
++ if (!wq) {
++ DWC_ERROR("Cannot allocate memory for waitqueue");
++ return NULL;
++ }
++
++ mtx_init(&wq->lock, "dw3wtq", NULL, MTX_DEF);
++ wq->abort = 0;
++
++ return wq;
++}
++
++void DWC_WAITQ_FREE(dwc_waitq_t *wq)
++{
++ mtx_destroy(&wq->lock);
++ DWC_FREE(wq);
++}
++
++int32_t DWC_WAITQ_WAIT(dwc_waitq_t *wq, dwc_waitq_condition_t cond, void *data)
++{
++// intrmask_t ipl;
++ int result = 0;
++
++ mtx_lock(&wq->lock);
++// ipl = splbio();
++
++ /* Skip the sleep if already aborted or triggered */
++ if (!wq->abort && !cond(data)) {
++// splx(ipl);
++ result = msleep(wq, &wq->lock, PCATCH, "dw3wat", 0); // infinite timeout
++// ipl = splbio();
++ }
++
++ if (result == ERESTART) { // signaled - restart
++ result = -DWC_E_RESTART;
++
++ } else if (result == EINTR) { // signaled - interrupt
++ result = -DWC_E_ABORT;
++
++ } else if (wq->abort) {
++ result = -DWC_E_ABORT;
++
++ } else {
++ result = 0;
++ }
++
++ wq->abort = 0;
++// splx(ipl);
++ mtx_unlock(&wq->lock);
++ return result;
++}
++
++int32_t DWC_WAITQ_WAIT_TIMEOUT(dwc_waitq_t *wq, dwc_waitq_condition_t cond,
++ void *data, int32_t msecs)
++{
++ struct timeval tv, tv1, tv2;
++// intrmask_t ipl;
++ int result = 0;
++
++ tv.tv_sec = msecs / 1000;
++ tv.tv_usec = (msecs - tv.tv_sec * 1000) * 1000;
++
++ mtx_lock(&wq->lock);
++// ipl = splbio();
++
++ /* Skip the sleep if already aborted or triggered */
++ if (!wq->abort && !cond(data)) {
++// splx(ipl);
++ getmicrouptime(&tv1);
++ result = msleep(wq, &wq->lock, PCATCH, "dw3wto", tvtohz(&tv));
++ getmicrouptime(&tv2);
++// ipl = splbio();
++ }
++
++ if (result == 0) { // awoken
++ if (wq->abort) {
++ result = -DWC_E_ABORT;
++ } else {
++ tv2.tv_usec -= tv1.tv_usec;
++ if (tv2.tv_usec < 0) {
++ tv2.tv_usec += 1000000;
++ tv2.tv_sec--;
++ }
++
++ tv2.tv_sec -= tv1.tv_sec;
++ result = tv2.tv_sec * 1000 + tv2.tv_usec / 1000;
++ result = msecs - result;
++ if (result <= 0)
++ result = 1;
++ }
++ } else if (result == ERESTART) { // signaled - restart
++ result = -DWC_E_RESTART;
++
++ } else if (result == EINTR) { // signaled - interrupt
++ result = -DWC_E_ABORT;
++
++ } else { // timed out
++ result = -DWC_E_TIMEOUT;
++ }
++
++ wq->abort = 0;
++// splx(ipl);
++ mtx_unlock(&wq->lock);
++ return result;
++}
++
++void DWC_WAITQ_TRIGGER(dwc_waitq_t *wq)
++{
++ wakeup(wq);
++}
++
++void DWC_WAITQ_ABORT(dwc_waitq_t *wq)
++{
++// intrmask_t ipl;
++
++ mtx_lock(&wq->lock);
++// ipl = splbio();
++ wq->abort = 1;
++ wakeup(wq);
++// splx(ipl);
++ mtx_unlock(&wq->lock);
++}
++
++
++/* Threading */
++
++struct dwc_thread {
++ struct proc *proc;
++ int abort;
++};
++
++dwc_thread_t *DWC_THREAD_RUN(dwc_thread_function_t func, char *name, void *data)
++{
++ int retval;
++ dwc_thread_t *thread = DWC_ALLOC(sizeof(*thread));
++
++ if (!thread) {
++ return NULL;
++ }
++
++ thread->abort = 0;
++ retval = kthread_create((void (*)(void *))func, data, &thread->proc,
++ RFPROC | RFNOWAIT, 0, "%s", name);
++ if (retval) {
++ DWC_FREE(thread);
++ return NULL;
++ }
++
++ return thread;
++}
++
++int DWC_THREAD_STOP(dwc_thread_t *thread)
++{
++ int retval;
++
++ thread->abort = 1;
++ retval = tsleep(&thread->abort, 0, "dw3stp", 60 * hz);
++
++ if (retval == 0) {
++ /* DWC_THREAD_EXIT() will free the thread struct */
++ return 0;
++ }
++
++ /* NOTE: We leak the thread struct if thread doesn't die */
++
++ if (retval == EWOULDBLOCK) {
++ return -DWC_E_TIMEOUT;
++ }
++
++ return -DWC_E_UNKNOWN;
++}
++
++dwc_bool_t DWC_THREAD_SHOULD_STOP(dwc_thread_t *thread)
++{
++ return thread->abort;
++}
++
++void DWC_THREAD_EXIT(dwc_thread_t *thread)
++{
++ wakeup(&thread->abort);
++ DWC_FREE(thread);
++ kthread_exit(0);
++}
++
++
++/* tasklets
++ - Runs in interrupt context (cannot sleep)
++ - Each tasklet runs on a single CPU [ How can we ensure this on FreeBSD? Does it matter? ]
++ - Different tasklets can be running simultaneously on different CPUs [ shouldn't matter ]
++ */
++struct dwc_tasklet {
++ struct task t;
++ dwc_tasklet_callback_t cb;
++ void *data;
++};
++
++static void tasklet_callback(void *data, int pending) // what to do with pending ???
++{
++ dwc_tasklet_t *task = (dwc_tasklet_t *)data;
++
++ task->cb(task->data);
++}
++
++dwc_tasklet_t *DWC_TASK_ALLOC(char *name, dwc_tasklet_callback_t cb, void *data)
++{
++ dwc_tasklet_t *task = DWC_ALLOC(sizeof(*task));
++
++ if (task) {
++ task->cb = cb;
++ task->data = data;
++ TASK_INIT(&task->t, 0, tasklet_callback, task);
++ } else {
++ DWC_ERROR("Cannot allocate memory for tasklet");
++ }
++
++ return task;
++}
++
++void DWC_TASK_FREE(dwc_tasklet_t *task)
++{
++ taskqueue_drain(taskqueue_fast, &task->t); // ???
++ DWC_FREE(task);
++}
++
++void DWC_TASK_SCHEDULE(dwc_tasklet_t *task)
++{
++ /* Uses predefined system queue */
++ taskqueue_enqueue_fast(taskqueue_fast, &task->t);
++}
++
++
++/* workqueues
++ - Runs in process context (can sleep)
++ */
++typedef struct work_container {
++ dwc_work_callback_t cb;
++ void *data;
++ dwc_workq_t *wq;
++ char *name;
++ int hz;
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_ENTRY(work_container) entry;
++#endif
++ struct task task;
++} work_container_t;
++
++#ifdef DEBUG
++DWC_CIRCLEQ_HEAD(work_container_queue, work_container);
++#endif
++
++struct dwc_workq {
++ struct taskqueue *taskq;
++ dwc_spinlock_t *lock;
++ dwc_waitq_t *waitq;
++ int pending;
++
++#ifdef DEBUG
++ struct work_container_queue entries;
++#endif
++};
++
++static void do_work(void *data, int pending) // what to do with pending ???
++{
++ work_container_t *container = (work_container_t *)data;
++ dwc_workq_t *wq = container->wq;
++ dwc_irqflags_t flags;
++
++ if (container->hz) {
++ pause("dw3wrk", container->hz);
++ }
++
++ container->cb(container->data);
++ DWC_DEBUG("Work done: %s, container=%p", container->name, container);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_REMOVE(&wq->entries, container, entry);
++#endif
++ if (container->name)
++ DWC_FREE(container->name);
++ DWC_FREE(container);
++ wq->pending--;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++}
++
++static int work_done(void *data)
++{
++ dwc_workq_t *workq = (dwc_workq_t *)data;
++
++ return workq->pending == 0;
++}
++
++int DWC_WORKQ_WAIT_WORK_DONE(dwc_workq_t *workq, int timeout)
++{
++ return DWC_WAITQ_WAIT_TIMEOUT(workq->waitq, work_done, workq, timeout);
++}
++
++dwc_workq_t *DWC_WORKQ_ALLOC(char *name)
++{
++ dwc_workq_t *wq = DWC_ALLOC(sizeof(*wq));
++
++ if (!wq) {
++ DWC_ERROR("Cannot allocate memory for workqueue");
++ return NULL;
++ }
++
++ wq->taskq = taskqueue_create(name, M_NOWAIT, taskqueue_thread_enqueue, &wq->taskq);
++ if (!wq->taskq) {
++ DWC_ERROR("Cannot allocate memory for taskqueue");
++ goto no_taskq;
++ }
++
++ wq->pending = 0;
++
++ wq->lock = DWC_SPINLOCK_ALLOC();
++ if (!wq->lock) {
++ DWC_ERROR("Cannot allocate memory for spinlock");
++ goto no_lock;
++ }
++
++ wq->waitq = DWC_WAITQ_ALLOC();
++ if (!wq->waitq) {
++ DWC_ERROR("Cannot allocate memory for waitqueue");
++ goto no_waitq;
++ }
++
++ taskqueue_start_threads(&wq->taskq, 1, PWAIT, "%s taskq", "dw3tsk");
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_INIT(&wq->entries);
++#endif
++ return wq;
++
++ no_waitq:
++ DWC_SPINLOCK_FREE(wq->lock);
++ no_lock:
++ taskqueue_free(wq->taskq);
++ no_taskq:
++ DWC_FREE(wq);
++
++ return NULL;
++}
++
++void DWC_WORKQ_FREE(dwc_workq_t *wq)
++{
++#ifdef DEBUG
++ dwc_irqflags_t flags;
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++
++ if (wq->pending != 0) {
++ struct work_container *container;
++
++ DWC_ERROR("Destroying work queue with pending work");
++
++ DWC_CIRCLEQ_FOREACH(container, &wq->entries, entry) {
++ DWC_ERROR("Work %s still pending", container->name);
++ }
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++#endif
++ DWC_WAITQ_FREE(wq->waitq);
++ DWC_SPINLOCK_FREE(wq->lock);
++ taskqueue_free(wq->taskq);
++ DWC_FREE(wq);
++}
++
++void DWC_WORKQ_SCHEDULE(dwc_workq_t *wq, dwc_work_callback_t cb, void *data,
++ char *format, ...)
++{
++ dwc_irqflags_t flags;
++ work_container_t *container;
++ static char name[128];
++ va_list args;
++
++ va_start(args, format);
++ DWC_VSNPRINTF(name, 128, format, args);
++ va_end(args);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ wq->pending++;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++
++ container = DWC_ALLOC_ATOMIC(sizeof(*container));
++ if (!container) {
++ DWC_ERROR("Cannot allocate memory for container");
++ return;
++ }
++
++ container->name = DWC_STRDUP(name);
++ if (!container->name) {
++ DWC_ERROR("Cannot allocate memory for container->name");
++ DWC_FREE(container);
++ return;
++ }
++
++ container->cb = cb;
++ container->data = data;
++ container->wq = wq;
++ container->hz = 0;
++
++ DWC_DEBUG("Queueing work: %s, container=%p", container->name, container);
++
++ TASK_INIT(&container->task, 0, do_work, container);
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_INSERT_TAIL(&wq->entries, container, entry);
++#endif
++ taskqueue_enqueue_fast(wq->taskq, &container->task);
++}
++
++void DWC_WORKQ_SCHEDULE_DELAYED(dwc_workq_t *wq, dwc_work_callback_t cb,
++ void *data, uint32_t time, char *format, ...)
++{
++ dwc_irqflags_t flags;
++ work_container_t *container;
++ static char name[128];
++ struct timeval tv;
++ va_list args;
++
++ va_start(args, format);
++ DWC_VSNPRINTF(name, 128, format, args);
++ va_end(args);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ wq->pending++;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++
++ container = DWC_ALLOC_ATOMIC(sizeof(*container));
++ if (!container) {
++ DWC_ERROR("Cannot allocate memory for container");
++ return;
++ }
++
++ container->name = DWC_STRDUP(name);
++ if (!container->name) {
++ DWC_ERROR("Cannot allocate memory for container->name");
++ DWC_FREE(container);
++ return;
++ }
++
++ container->cb = cb;
++ container->data = data;
++ container->wq = wq;
++
++ tv.tv_sec = time / 1000;
++ tv.tv_usec = (time - tv.tv_sec * 1000) * 1000;
++ container->hz = tvtohz(&tv);
++
++ DWC_DEBUG("Queueing work: %s, container=%p", container->name, container);
++
++ TASK_INIT(&container->task, 0, do_work, container);
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_INSERT_TAIL(&wq->entries, container, entry);
++#endif
++ taskqueue_enqueue_fast(wq->taskq, &container->task);
++}
++
++int DWC_WORKQ_PENDING(dwc_workq_t *wq)
++{
++ return wq->pending;
++}
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_common_linux.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_common_linux.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_common_linux.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_common_linux.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1426 @@
++#include <linux/kernel.h>
++#include <linux/init.h>
++#include <linux/module.h>
++#include <linux/kthread.h>
++
++#ifdef DWC_CCLIB
++# include "dwc_cc.h"
++#endif
++
++#ifdef DWC_CRYPTOLIB
++# include "dwc_modpow.h"
++# include "dwc_dh.h"
++# include "dwc_crypto.h"
++#endif
++
++#ifdef DWC_NOTIFYLIB
++# include "dwc_notifier.h"
++#endif
++
++/* OS-Level Implementations */
++
++/* This is the Linux kernel implementation of the DWC platform library. */
++#include <linux/moduleparam.h>
++#include <linux/ctype.h>
++#include <linux/crypto.h>
++#include <linux/delay.h>
++#include <linux/device.h>
++#include <linux/dma-mapping.h>
++#include <linux/cdev.h>
++#include <linux/errno.h>
++#include <linux/interrupt.h>
++#include <linux/jiffies.h>
++#include <linux/list.h>
++#include <linux/pci.h>
++#include <linux/random.h>
++#include <linux/scatterlist.h>
++#include <linux/slab.h>
++#include <linux/stat.h>
++#include <linux/string.h>
++#include <linux/timer.h>
++#include <linux/usb.h>
++
++#include <linux/version.h>
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24)
++# include <linux/usb/gadget.h>
++#else
++# include <linux/usb_gadget.h>
++#endif
++
++#include <asm/io.h>
++#include <asm/page.h>
++#include <asm/uaccess.h>
++#include <asm/unaligned.h>
++
++#include "dwc_os.h"
++#include "dwc_list.h"
++
++
++/* MISC */
++
++void *DWC_MEMSET(void *dest, uint8_t byte, uint32_t size)
++{
++ return memset(dest, byte, size);
++}
++
++void *DWC_MEMCPY(void *dest, void const *src, uint32_t size)
++{
++ return memcpy(dest, src, size);
++}
++
++void *DWC_MEMMOVE(void *dest, void *src, uint32_t size)
++{
++ return memmove(dest, src, size);
++}
++
++int DWC_MEMCMP(void *m1, void *m2, uint32_t size)
++{
++ return memcmp(m1, m2, size);
++}
++
++int DWC_STRNCMP(void *s1, void *s2, uint32_t size)
++{
++ return strncmp(s1, s2, size);
++}
++
++int DWC_STRCMP(void *s1, void *s2)
++{
++ return strcmp(s1, s2);
++}
++
++int DWC_STRLEN(char const *str)
++{
++ return strlen(str);
++}
++
++char *DWC_STRCPY(char *to, char const *from)
++{
++ return strcpy(to, from);
++}
++
++char *DWC_STRDUP(char const *str)
++{
++ int len = DWC_STRLEN(str) + 1;
++ char *new = DWC_ALLOC_ATOMIC(len);
++
++ if (!new) {
++ return NULL;
++ }
++
++ DWC_MEMCPY(new, str, len);
++ return new;
++}
++
++int DWC_ATOI(const char *str, int32_t *value)
++{
++ char *end = NULL;
++
++ *value = simple_strtol(str, &end, 0);
++ if (*end == '\0') {
++ return 0;
++ }
++
++ return -1;
++}
++
++int DWC_ATOUI(const char *str, uint32_t *value)
++{
++ char *end = NULL;
++
++ *value = simple_strtoul(str, &end, 0);
++ if (*end == '\0') {
++ return 0;
++ }
++
++ return -1;
++}
++
++
++#ifdef DWC_UTFLIB
++/* From usbstring.c */
++
++int DWC_UTF8_TO_UTF16LE(uint8_t const *s, uint16_t *cp, unsigned len)
++{
++ int count = 0;
++ u8 c;
++ u16 uchar;
++
++ /* this insists on correct encodings, though not minimal ones.
++ * BUT it currently rejects legit 4-byte UTF-8 code points,
++ * which need surrogate pairs. (Unicode 3.1 can use them.)
++ */
++ while (len != 0 && (c = (u8) *s++) != 0) {
++ if (unlikely(c & 0x80)) {
++ // 2-byte sequence:
++ // 00000yyyyyxxxxxx = 110yyyyy 10xxxxxx
++ if ((c & 0xe0) == 0xc0) {
++ uchar = (c & 0x1f) << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ // 3-byte sequence (most CJKV characters):
++ // zzzzyyyyyyxxxxxx = 1110zzzz 10yyyyyy 10xxxxxx
++ } else if ((c & 0xf0) == 0xe0) {
++ uchar = (c & 0x0f) << 12;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ /* no bogus surrogates */
++ if (0xd800 <= uchar && uchar <= 0xdfff)
++ goto fail;
++
++ // 4-byte sequence (surrogate pairs, currently rare):
++ // 11101110wwwwzzzzyy + 110111yyyyxxxxxx
++ // = 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
++ // (uuuuu = wwww + 1)
++ // FIXME accept the surrogate code points (only)
++ } else
++ goto fail;
++ } else
++ uchar = c;
++ put_unaligned (cpu_to_le16 (uchar), cp++);
++ count++;
++ len--;
++ }
++ return count;
++fail:
++ return -1;
++}
++#endif /* DWC_UTFLIB */
++
++
++/* dwc_debug.h */
++
++dwc_bool_t DWC_IN_IRQ(void)
++{
++ return in_irq();
++}
++
++dwc_bool_t DWC_IN_BH(void)
++{
++ return in_softirq();
++}
++
++void DWC_VPRINTF(char *format, va_list args)
++{
++ vprintk(format, args);
++}
++
++int DWC_VSNPRINTF(char *str, int size, char *format, va_list args)
++{
++ return vsnprintf(str, size, format, args);
++}
++
++void DWC_PRINTF(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++int DWC_SPRINTF(char *buffer, char *format, ...)
++{
++ int retval;
++ va_list args;
++
++ va_start(args, format);
++ retval = vsprintf(buffer, format, args);
++ va_end(args);
++ return retval;
++}
++
++int DWC_SNPRINTF(char *buffer, int size, char *format, ...)
++{
++ int retval;
++ va_list args;
++
++ va_start(args, format);
++ retval = vsnprintf(buffer, size, format, args);
++ va_end(args);
++ return retval;
++}
++
++void __DWC_WARN(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_PRINTF(KERN_WARNING);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++void __DWC_ERROR(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_PRINTF(KERN_ERR);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++void DWC_EXCEPTION(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_PRINTF(KERN_ERR);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++ BUG_ON(1);
++}
++
++#ifdef DEBUG
++void __DWC_DEBUG(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_PRINTF(KERN_DEBUG);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++#endif
++
++
++/* dwc_mem.h */
++
++#if 0
++dwc_pool_t *DWC_DMA_POOL_CREATE(uint32_t size,
++ uint32_t align,
++ uint32_t alloc)
++{
++ struct dma_pool *pool = dma_pool_create("Pool", NULL,
++ size, align, alloc);
++ return (dwc_pool_t *)pool;
++}
++
++void DWC_DMA_POOL_DESTROY(dwc_pool_t *pool)
++{
++ dma_pool_destroy((struct dma_pool *)pool);
++}
++
++void *DWC_DMA_POOL_ALLOC(dwc_pool_t *pool, uint64_t *dma_addr)
++{
++ return dma_pool_alloc((struct dma_pool *)pool, GFP_KERNEL, dma_addr);
++}
++
++void *DWC_DMA_POOL_ZALLOC(dwc_pool_t *pool, uint64_t *dma_addr)
++{
++ void *vaddr = DWC_DMA_POOL_ALLOC(pool, dma_addr);
++ memset(..);
++}
++
++void DWC_DMA_POOL_FREE(dwc_pool_t *pool, void *vaddr, void *daddr)
++{
++ dma_pool_free(pool, vaddr, daddr);
++}
++#endif
++
++void *__DWC_DMA_ALLOC(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr)
++{
++#ifdef xxCOSIM /* Only works for 32-bit cosim */
++ void *buf = dma_alloc_coherent(dma_ctx, (size_t)size, dma_addr, GFP_KERNEL);
++#else
++ void *buf = dma_alloc_coherent(dma_ctx, (size_t)size, dma_addr, GFP_KERNEL | GFP_DMA32);
++#endif
++ if (!buf) {
++ return NULL;
++ }
++
++ memset(buf, 0, (size_t)size);
++ return buf;
++}
++
++void *__DWC_DMA_ALLOC_ATOMIC(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr)
++{
++ void *buf = dma_alloc_coherent(NULL, (size_t)size, dma_addr, GFP_ATOMIC);
++ if (!buf) {
++ return NULL;
++ }
++ memset(buf, 0, (size_t)size);
++ return buf;
++}
++
++void __DWC_DMA_FREE(void *dma_ctx, uint32_t size, void *virt_addr, dwc_dma_t dma_addr)
++{
++ dma_free_coherent(dma_ctx, size, virt_addr, dma_addr);
++}
++
++void *__DWC_ALLOC(void *mem_ctx, uint32_t size)
++{
++ return kzalloc(size, GFP_KERNEL);
++}
++
++void *__DWC_ALLOC_ATOMIC(void *mem_ctx, uint32_t size)
++{
++ return kzalloc(size, GFP_ATOMIC);
++}
++
++void __DWC_FREE(void *mem_ctx, void *addr)
++{
++ kfree(addr);
++}
++
++
++#ifdef DWC_CRYPTOLIB
++/* dwc_crypto.h */
++
++void DWC_RANDOM_BYTES(uint8_t *buffer, uint32_t length)
++{
++ get_random_bytes(buffer, length);
++}
++
++int DWC_AES_CBC(uint8_t *message, uint32_t messagelen, uint8_t *key, uint32_t keylen, uint8_t iv[16], uint8_t *out)
++{
++ struct crypto_blkcipher *tfm;
++ struct blkcipher_desc desc;
++ struct scatterlist sgd;
++ struct scatterlist sgs;
++
++ tfm = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
++ if (tfm == NULL) {
++ printk("failed to load transform for aes CBC\n");
++ return -1;
++ }
++
++ crypto_blkcipher_setkey(tfm, key, keylen);
++ crypto_blkcipher_set_iv(tfm, iv, 16);
++
++ sg_init_one(&sgd, out, messagelen);
++ sg_init_one(&sgs, message, messagelen);
++
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ if (crypto_blkcipher_encrypt(&desc, &sgd, &sgs, messagelen)) {
++ crypto_free_blkcipher(tfm);
++ DWC_ERROR("AES CBC encryption failed");
++ return -1;
++ }
++
++ crypto_free_blkcipher(tfm);
++ return 0;
++}
++
++int DWC_SHA256(uint8_t *message, uint32_t len, uint8_t *out)
++{
++ struct crypto_hash *tfm;
++ struct hash_desc desc;
++ struct scatterlist sg;
++
++ tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
++ if (IS_ERR(tfm)) {
++ DWC_ERROR("Failed to load transform for sha256: %ld\n", PTR_ERR(tfm));
++ return 0;
++ }
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ sg_init_one(&sg, message, len);
++ crypto_hash_digest(&desc, &sg, len, out);
++ crypto_free_hash(tfm);
++
++ return 1;
++}
++
++int DWC_HMAC_SHA256(uint8_t *message, uint32_t messagelen,
++ uint8_t *key, uint32_t keylen, uint8_t *out)
++{
++ struct crypto_hash *tfm;
++ struct hash_desc desc;
++ struct scatterlist sg;
++
++ tfm = crypto_alloc_hash("hmac(sha256)", 0, CRYPTO_ALG_ASYNC);
++ if (IS_ERR(tfm)) {
++ DWC_ERROR("Failed to load transform for hmac(sha256): %ld\n", PTR_ERR(tfm));
++ return 0;
++ }
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ sg_init_one(&sg, message, messagelen);
++ crypto_hash_setkey(tfm, key, keylen);
++ crypto_hash_digest(&desc, &sg, messagelen, out);
++ crypto_free_hash(tfm);
++
++ return 1;
++}
++#endif /* DWC_CRYPTOLIB */
++
++
++/* Byte Ordering Conversions */
++
++uint32_t DWC_CPU_TO_LE32(uint32_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_CPU_TO_BE32(uint32_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_LE32_TO_CPU(uint32_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_BE32_TO_CPU(uint32_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint16_t DWC_CPU_TO_LE16(uint16_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_CPU_TO_BE16(uint16_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_LE16_TO_CPU(uint16_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_BE16_TO_CPU(uint16_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++
++/* Registers */
++
++uint32_t DWC_READ_REG32(uint32_t volatile *reg)
++{
++ return readl(reg);
++}
++
++#if 0
++uint64_t DWC_READ_REG64(uint64_t volatile *reg)
++{
++}
++#endif
++
++void DWC_WRITE_REG32(uint32_t volatile *reg, uint32_t value)
++{
++ writel(value, reg);
++}
++
++#if 0
++void DWC_WRITE_REG64(uint64_t volatile *reg, uint64_t value)
++{
++}
++#endif
++
++void DWC_MODIFY_REG32(uint32_t volatile *reg, uint32_t clear_mask, uint32_t set_mask)
++{
++ writel((readl(reg) & ~clear_mask) | set_mask, reg);
++}
++
++#if 0
++void DWC_MODIFY_REG64(uint64_t volatile *reg, uint64_t clear_mask, uint64_t set_mask)
++{
++}
++#endif
++
++
++/* Locking */
++
++dwc_spinlock_t *DWC_SPINLOCK_ALLOC(void)
++{
++ spinlock_t *sl = (spinlock_t *)1;
++
++#if defined(CONFIG_PREEMPT) || defined(CONFIG_SMP)
++ sl = DWC_ALLOC(sizeof(*sl));
++ if (!sl) {
++ DWC_ERROR("Cannot allocate memory for spinlock\n");
++ return NULL;
++ }
++
++ spin_lock_init(sl);
++#endif
++ return (dwc_spinlock_t *)sl;
++}
++
++void DWC_SPINLOCK_FREE(dwc_spinlock_t *lock)
++{
++#if defined(CONFIG_PREEMPT) || defined(CONFIG_SMP)
++ DWC_FREE(lock);
++#endif
++}
++
++void DWC_SPINLOCK(dwc_spinlock_t *lock)
++{
++#if defined(CONFIG_PREEMPT) || defined(CONFIG_SMP)
++ spin_lock((spinlock_t *)lock);
++#endif
++}
++
++void DWC_SPINUNLOCK(dwc_spinlock_t *lock)
++{
++#if defined(CONFIG_PREEMPT) || defined(CONFIG_SMP)
++ spin_unlock((spinlock_t *)lock);
++#endif
++}
++
++void DWC_SPINLOCK_IRQSAVE(dwc_spinlock_t *lock, dwc_irqflags_t *flags)
++{
++ dwc_irqflags_t f;
++
++#if defined(CONFIG_PREEMPT) || defined(CONFIG_SMP)
++ spin_lock_irqsave((spinlock_t *)lock, f);
++#else
++ local_irq_save(f);
++#endif
++ *flags = f;
++}
++
++void DWC_SPINUNLOCK_IRQRESTORE(dwc_spinlock_t *lock, dwc_irqflags_t flags)
++{
++#if defined(CONFIG_PREEMPT) || defined(CONFIG_SMP)
++ spin_unlock_irqrestore((spinlock_t *)lock, flags);
++#else
++ local_irq_restore(flags);
++#endif
++}
++
++dwc_mutex_t *DWC_MUTEX_ALLOC(void)
++{
++ struct mutex *m;
++ dwc_mutex_t *mutex = (dwc_mutex_t *)DWC_ALLOC(sizeof(struct mutex));
++
++ if (!mutex) {
++ DWC_ERROR("Cannot allocate memory for mutex\n");
++ return NULL;
++ }
++
++ m = (struct mutex *)mutex;
++ mutex_init(m);
++ return mutex;
++}
++
++#if (defined(DWC_LINUX) && defined(CONFIG_DEBUG_MUTEXES))
++#else
++void DWC_MUTEX_FREE(dwc_mutex_t *mutex)
++{
++ mutex_destroy((struct mutex *)mutex);
++ DWC_FREE(mutex);
++}
++#endif
++
++void DWC_MUTEX_LOCK(dwc_mutex_t *mutex)
++{
++ struct mutex *m = (struct mutex *)mutex;
++ mutex_lock(m);
++}
++
++int DWC_MUTEX_TRYLOCK(dwc_mutex_t *mutex)
++{
++ struct mutex *m = (struct mutex *)mutex;
++ return mutex_trylock(m);
++}
++
++void DWC_MUTEX_UNLOCK(dwc_mutex_t *mutex)
++{
++ struct mutex *m = (struct mutex *)mutex;
++ mutex_unlock(m);
++}
++
++
++/* Timing */
++
++void DWC_UDELAY(uint32_t usecs)
++{
++ udelay(usecs);
++}
++
++void DWC_MDELAY(uint32_t msecs)
++{
++ mdelay(msecs);
++}
++
++void DWC_MSLEEP(uint32_t msecs)
++{
++ msleep(msecs);
++}
++
++uint32_t DWC_TIME(void)
++{
++ return jiffies_to_msecs(jiffies);
++}
++
++
++/* Timers */
++
++struct dwc_timer {
++ struct timer_list *t;
++ char *name;
++ dwc_timer_callback_t cb;
++ void *data;
++ uint8_t scheduled;
++ dwc_spinlock_t *lock;
++};
++
++static void timer_callback(unsigned long data)
++{
++ dwc_timer_t *timer = (dwc_timer_t *)data;
++ dwc_irqflags_t flags;
++
++ DWC_SPINLOCK_IRQSAVE(timer->lock, &flags);
++ timer->scheduled = 0;
++ DWC_SPINUNLOCK_IRQRESTORE(timer->lock, flags);
++ DWC_DEBUGC("Timer %s callback", timer->name);
++ timer->cb(timer->data);
++}
++
++dwc_timer_t *DWC_TIMER_ALLOC(char *name, dwc_timer_callback_t cb, void *data)
++{
++ dwc_timer_t *t = DWC_ALLOC(sizeof(*t));
++
++ if (!t) {
++ DWC_ERROR("Cannot allocate memory for timer");
++ return NULL;
++ }
++
++ t->t = DWC_ALLOC(sizeof(*t->t));
++ if (!t->t) {
++ DWC_ERROR("Cannot allocate memory for timer->t");
++ goto no_timer;
++ }
++
++ t->name = DWC_STRDUP(name);
++ if (!t->name) {
++ DWC_ERROR("Cannot allocate memory for timer->name");
++ goto no_name;
++ }
++
++ t->lock = DWC_SPINLOCK_ALLOC();
++ if (!t->lock) {
++ DWC_ERROR("Cannot allocate memory for lock");
++ goto no_lock;
++ }
++
++ t->scheduled = 0;
++ t->t->base = &boot_tvec_bases;
++ t->t->expires = jiffies;
++ setup_timer(t->t, timer_callback, (unsigned long)t);
++
++ t->cb = cb;
++ t->data = data;
++
++ return t;
++
++ no_lock:
++ DWC_FREE(t->name);
++ no_name:
++ DWC_FREE(t->t);
++ no_timer:
++ DWC_FREE(t);
++ return NULL;
++}
++
++void DWC_TIMER_FREE(dwc_timer_t *timer)
++{
++ dwc_irqflags_t flags;
++
++ DWC_SPINLOCK_IRQSAVE(timer->lock, &flags);
++
++ if (timer->scheduled) {
++ del_timer(timer->t);
++ timer->scheduled = 0;
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(timer->lock, flags);
++ DWC_SPINLOCK_FREE(timer->lock);
++ DWC_FREE(timer->t);
++ DWC_FREE(timer->name);
++ DWC_FREE(timer);
++}
++
++void DWC_TIMER_SCHEDULE(dwc_timer_t *timer, uint32_t time)
++{
++ dwc_irqflags_t flags;
++
++ DWC_SPINLOCK_IRQSAVE(timer->lock, &flags);
++
++ if (!timer->scheduled) {
++ timer->scheduled = 1;
++ DWC_DEBUGC("Scheduling timer %s to expire in +%d msec", timer->name, time);
++ timer->t->expires = jiffies + msecs_to_jiffies(time);
++ add_timer(timer->t);
++ } else {
++ DWC_DEBUGC("Modifying timer %s to expire in +%d msec", timer->name, time);
++ mod_timer(timer->t, jiffies + msecs_to_jiffies(time));
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(timer->lock, flags);
++}
++
++void DWC_TIMER_CANCEL(dwc_timer_t *timer)
++{
++ del_timer(timer->t);
++}
++
++
++/* Wait Queues */
++
++struct dwc_waitq {
++ wait_queue_head_t queue;
++ int abort;
++};
++
++dwc_waitq_t *DWC_WAITQ_ALLOC(void)
++{
++ dwc_waitq_t *wq = DWC_ALLOC(sizeof(*wq));
++
++ if (!wq) {
++ DWC_ERROR("Cannot allocate memory for waitqueue\n");
++ return NULL;
++ }
++
++ init_waitqueue_head(&wq->queue);
++ wq->abort = 0;
++ return wq;
++}
++
++void DWC_WAITQ_FREE(dwc_waitq_t *wq)
++{
++ DWC_FREE(wq);
++}
++
++int32_t DWC_WAITQ_WAIT(dwc_waitq_t *wq, dwc_waitq_condition_t cond, void *data)
++{
++ int result = wait_event_interruptible(wq->queue,
++ cond(data) || wq->abort);
++ if (result == -ERESTARTSYS) {
++ wq->abort = 0;
++ return -DWC_E_RESTART;
++ }
++
++ if (wq->abort == 1) {
++ wq->abort = 0;
++ return -DWC_E_ABORT;
++ }
++
++ wq->abort = 0;
++
++ if (result == 0) {
++ return 0;
++ }
++
++ return -DWC_E_UNKNOWN;
++}
++
++int32_t DWC_WAITQ_WAIT_TIMEOUT(dwc_waitq_t *wq, dwc_waitq_condition_t cond,
++ void *data, int32_t msecs)
++{
++ int32_t tmsecs;
++ int result = wait_event_interruptible_timeout(wq->queue,
++ cond(data) || wq->abort,
++ msecs_to_jiffies(msecs));
++ if (result == -ERESTARTSYS) {
++ wq->abort = 0;
++ return -DWC_E_RESTART;
++ }
++
++ if (wq->abort == 1) {
++ wq->abort = 0;
++ return -DWC_E_ABORT;
++ }
++
++ wq->abort = 0;
++
++ if (result > 0) {
++ tmsecs = jiffies_to_msecs(result);
++ if (!tmsecs) {
++ return 1;
++ }
++
++ return tmsecs;
++ }
++
++ if (result == 0) {
++ return -DWC_E_TIMEOUT;
++ }
++
++ return -DWC_E_UNKNOWN;
++}
++
++void DWC_WAITQ_TRIGGER(dwc_waitq_t *wq)
++{
++ wq->abort = 0;
++ wake_up_interruptible(&wq->queue);
++}
++
++void DWC_WAITQ_ABORT(dwc_waitq_t *wq)
++{
++ wq->abort = 1;
++ wake_up_interruptible(&wq->queue);
++}
++
++
++/* Threading */
++
++dwc_thread_t *DWC_THREAD_RUN(dwc_thread_function_t func, char *name, void *data)
++{
++ struct task_struct *thread = kthread_run(func, data, name);
++
++ if (thread == ERR_PTR(-ENOMEM)) {
++ return NULL;
++ }
++
++ return (dwc_thread_t *)thread;
++}
++
++int DWC_THREAD_STOP(dwc_thread_t *thread)
++{
++ return kthread_stop((struct task_struct *)thread);
++}
++
++dwc_bool_t DWC_THREAD_SHOULD_STOP(void)
++{
++ return kthread_should_stop();
++}
++
++
++/* tasklets
++ - run in interrupt context (cannot sleep)
++ - each tasklet runs on a single CPU
++ - different tasklets can be running simultaneously on different CPUs
++ */
++struct dwc_tasklet {
++ struct tasklet_struct t;
++ dwc_tasklet_callback_t cb;
++ void *data;
++};
++
++static void tasklet_callback(unsigned long data)
++{
++ dwc_tasklet_t *t = (dwc_tasklet_t *)data;
++ t->cb(t->data);
++}
++
++dwc_tasklet_t *DWC_TASK_ALLOC(char *name, dwc_tasklet_callback_t cb, void *data)
++{
++ dwc_tasklet_t *t = DWC_ALLOC(sizeof(*t));
++
++ if (t) {
++ t->cb = cb;
++ t->data = data;
++ tasklet_init(&t->t, tasklet_callback, (unsigned long)t);
++ } else {
++ DWC_ERROR("Cannot allocate memory for tasklet\n");
++ }
++
++ return t;
++}
++
++void DWC_TASK_FREE(dwc_tasklet_t *task)
++{
++ DWC_FREE(task);
++}
++
++void DWC_TASK_SCHEDULE(dwc_tasklet_t *task)
++{
++ tasklet_schedule(&task->t);
++}
++
++void DWC_TASK_HI_SCHEDULE(dwc_tasklet_t *task)
++{
++ tasklet_hi_schedule(&task->t);
++}
++
++
++/* workqueues
++ - run in process context (can sleep)
++ */
++typedef struct work_container {
++ dwc_work_callback_t cb;
++ void *data;
++ dwc_workq_t *wq;
++ char *name;
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_ENTRY(work_container) entry;
++#endif
++ struct delayed_work work;
++} work_container_t;
++
++#ifdef DEBUG
++DWC_CIRCLEQ_HEAD(work_container_queue, work_container);
++#endif
++
++struct dwc_workq {
++ struct workqueue_struct *wq;
++ dwc_spinlock_t *lock;
++ dwc_waitq_t *waitq;
++ int pending;
++
++#ifdef DEBUG
++ struct work_container_queue entries;
++#endif
++};
++
++static void do_work(struct work_struct *work)
++{
++ dwc_irqflags_t flags;
++ struct delayed_work *dw = container_of(work, struct delayed_work, work);
++ work_container_t *container = container_of(dw, struct work_container, work);
++ dwc_workq_t *wq = container->wq;
++
++ container->cb(container->data);
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_REMOVE(&wq->entries, container, entry);
++#endif
++ DWC_DEBUGC("Work done: %s, container=%p", container->name, container);
++ if (container->name) {
++ DWC_FREE(container->name);
++ }
++ DWC_FREE(container);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ wq->pending--;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++}
++
++static int work_done(void *data)
++{
++ dwc_workq_t *workq = (dwc_workq_t *)data;
++ return workq->pending == 0;
++}
++
++int DWC_WORKQ_WAIT_WORK_DONE(dwc_workq_t *workq, int timeout)
++{
++ return DWC_WAITQ_WAIT_TIMEOUT(workq->waitq, work_done, workq, timeout);
++}
++
++dwc_workq_t *DWC_WORKQ_ALLOC(char *name)
++{
++ dwc_workq_t *wq = DWC_ALLOC(sizeof(*wq));
++
++ if (!wq) {
++ return NULL;
++ }
++
++ wq->wq = create_singlethread_workqueue(name);
++ if (!wq->wq) {
++ goto no_wq;
++ }
++
++ wq->pending = 0;
++
++ wq->lock = DWC_SPINLOCK_ALLOC();
++ if (!wq->lock) {
++ goto no_lock;
++ }
++
++ wq->waitq = DWC_WAITQ_ALLOC();
++ if (!wq->waitq) {
++ goto no_waitq;
++ }
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_INIT(&wq->entries);
++#endif
++ return wq;
++
++ no_waitq:
++ DWC_SPINLOCK_FREE(wq->lock);
++ no_lock:
++ destroy_workqueue(wq->wq);
++ no_wq:
++ DWC_FREE(wq);
++
++ return NULL;
++}
++
++void DWC_WORKQ_FREE(dwc_workq_t *wq)
++{
++#ifdef DEBUG
++ if (wq->pending != 0) {
++ struct work_container *wc;
++ DWC_ERROR("Destroying work queue with pending work");
++ DWC_CIRCLEQ_FOREACH(wc, &wq->entries, entry) {
++ DWC_ERROR("Work %s still pending", wc->name);
++ }
++ }
++#endif
++ destroy_workqueue(wq->wq);
++ DWC_SPINLOCK_FREE(wq->lock);
++ DWC_WAITQ_FREE(wq->waitq);
++ DWC_FREE(wq);
++}
++
++void DWC_WORKQ_SCHEDULE(dwc_workq_t *wq, dwc_work_callback_t cb, void *data,
++ char *format, ...)
++{
++ dwc_irqflags_t flags;
++ work_container_t *container;
++ static char name[128];
++ va_list args;
++
++ va_start(args, format);
++ DWC_VSNPRINTF(name, 128, format, args);
++ va_end(args);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ wq->pending++;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++
++ container = DWC_ALLOC_ATOMIC(sizeof(*container));
++ if (!container) {
++ DWC_ERROR("Cannot allocate memory for container\n");
++ return;
++ }
++
++ container->name = DWC_STRDUP(name);
++ if (!container->name) {
++ DWC_ERROR("Cannot allocate memory for container->name\n");
++ DWC_FREE(container);
++ return;
++ }
++
++ container->cb = cb;
++ container->data = data;
++ container->wq = wq;
++ DWC_DEBUGC("Queueing work: %s, container=%p", container->name, container);
++ INIT_WORK(&container->work.work, do_work);
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_INSERT_TAIL(&wq->entries, container, entry);
++#endif
++ queue_work(wq->wq, &container->work.work);
++}
++
++void DWC_WORKQ_SCHEDULE_DELAYED(dwc_workq_t *wq, dwc_work_callback_t cb,
++ void *data, uint32_t time, char *format, ...)
++{
++ dwc_irqflags_t flags;
++ work_container_t *container;
++ static char name[128];
++ va_list args;
++
++ va_start(args, format);
++ DWC_VSNPRINTF(name, 128, format, args);
++ va_end(args);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ wq->pending++;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++
++ container = DWC_ALLOC_ATOMIC(sizeof(*container));
++ if (!container) {
++ DWC_ERROR("Cannot allocate memory for container\n");
++ return;
++ }
++
++ container->name = DWC_STRDUP(name);
++ if (!container->name) {
++ DWC_ERROR("Cannot allocate memory for container->name\n");
++ DWC_FREE(container);
++ return;
++ }
++
++ container->cb = cb;
++ container->data = data;
++ container->wq = wq;
++ DWC_DEBUGC("Queueing work: %s, container=%p", container->name, container);
++ INIT_DELAYED_WORK(&container->work, do_work);
++
++#ifdef DEBUG
++ DWC_CIRCLEQ_INSERT_TAIL(&wq->entries, container, entry);
++#endif
++ queue_delayed_work(wq->wq, &container->work, msecs_to_jiffies(time));
++}
++
++int DWC_WORKQ_PENDING(dwc_workq_t *wq)
++{
++ return wq->pending;
++}
++
++
++#ifdef DWC_LIBMODULE
++
++#ifdef DWC_CCLIB
++/* CC */
++EXPORT_SYMBOL(dwc_cc_if_alloc);
++EXPORT_SYMBOL(dwc_cc_if_free);
++EXPORT_SYMBOL(dwc_cc_clear);
++EXPORT_SYMBOL(dwc_cc_add);
++EXPORT_SYMBOL(dwc_cc_remove);
++EXPORT_SYMBOL(dwc_cc_change);
++EXPORT_SYMBOL(dwc_cc_data_for_save);
++EXPORT_SYMBOL(dwc_cc_restore_from_data);
++EXPORT_SYMBOL(dwc_cc_match_chid);
++EXPORT_SYMBOL(dwc_cc_match_cdid);
++EXPORT_SYMBOL(dwc_cc_ck);
++EXPORT_SYMBOL(dwc_cc_chid);
++EXPORT_SYMBOL(dwc_cc_cdid);
++EXPORT_SYMBOL(dwc_cc_name);
++#endif /* DWC_CCLIB */
++
++#ifdef DWC_CRYPTOLIB
++# ifndef CONFIG_MACH_IPMATE
++/* Modpow */
++EXPORT_SYMBOL(dwc_modpow);
++
++/* DH */
++EXPORT_SYMBOL(dwc_dh_modpow);
++EXPORT_SYMBOL(dwc_dh_derive_keys);
++EXPORT_SYMBOL(dwc_dh_pk);
++# endif /* CONFIG_MACH_IPMATE */
++
++/* Crypto */
++EXPORT_SYMBOL(dwc_wusb_aes_encrypt);
++EXPORT_SYMBOL(dwc_wusb_cmf);
++EXPORT_SYMBOL(dwc_wusb_prf);
++EXPORT_SYMBOL(dwc_wusb_fill_ccm_nonce);
++EXPORT_SYMBOL(dwc_wusb_gen_nonce);
++EXPORT_SYMBOL(dwc_wusb_gen_key);
++EXPORT_SYMBOL(dwc_wusb_gen_mic);
++#endif /* DWC_CRYPTOLIB */
++
++/* Notification */
++#ifdef DWC_NOTIFYLIB
++EXPORT_SYMBOL(dwc_alloc_notification_manager);
++EXPORT_SYMBOL(dwc_free_notification_manager);
++EXPORT_SYMBOL(dwc_register_notifier);
++EXPORT_SYMBOL(dwc_unregister_notifier);
++EXPORT_SYMBOL(dwc_add_observer);
++EXPORT_SYMBOL(dwc_remove_observer);
++EXPORT_SYMBOL(dwc_notify);
++#endif
++
++/* Memory Debugging Routines */
++#ifdef DWC_DEBUG_MEMORY
++EXPORT_SYMBOL(dwc_alloc_debug);
++EXPORT_SYMBOL(dwc_alloc_atomic_debug);
++EXPORT_SYMBOL(dwc_free_debug);
++EXPORT_SYMBOL(dwc_dma_alloc_debug);
++EXPORT_SYMBOL(dwc_dma_free_debug);
++#endif
++
++EXPORT_SYMBOL(DWC_MEMSET);
++EXPORT_SYMBOL(DWC_MEMCPY);
++EXPORT_SYMBOL(DWC_MEMMOVE);
++EXPORT_SYMBOL(DWC_MEMCMP);
++EXPORT_SYMBOL(DWC_STRNCMP);
++EXPORT_SYMBOL(DWC_STRCMP);
++EXPORT_SYMBOL(DWC_STRLEN);
++EXPORT_SYMBOL(DWC_STRCPY);
++EXPORT_SYMBOL(DWC_STRDUP);
++EXPORT_SYMBOL(DWC_ATOI);
++EXPORT_SYMBOL(DWC_ATOUI);
++
++#ifdef DWC_UTFLIB
++EXPORT_SYMBOL(DWC_UTF8_TO_UTF16LE);
++#endif /* DWC_UTFLIB */
++
++EXPORT_SYMBOL(DWC_IN_IRQ);
++EXPORT_SYMBOL(DWC_IN_BH);
++EXPORT_SYMBOL(DWC_VPRINTF);
++EXPORT_SYMBOL(DWC_VSNPRINTF);
++EXPORT_SYMBOL(DWC_PRINTF);
++EXPORT_SYMBOL(DWC_SPRINTF);
++EXPORT_SYMBOL(DWC_SNPRINTF);
++EXPORT_SYMBOL(__DWC_WARN);
++EXPORT_SYMBOL(__DWC_ERROR);
++EXPORT_SYMBOL(DWC_EXCEPTION);
++
++#ifdef DEBUG
++EXPORT_SYMBOL(__DWC_DEBUG);
++#endif
++
++EXPORT_SYMBOL(__DWC_DMA_ALLOC);
++EXPORT_SYMBOL(__DWC_DMA_ALLOC_ATOMIC);
++EXPORT_SYMBOL(__DWC_DMA_FREE);
++EXPORT_SYMBOL(__DWC_ALLOC);
++EXPORT_SYMBOL(__DWC_ALLOC_ATOMIC);
++EXPORT_SYMBOL(__DWC_FREE);
++
++#ifdef DWC_CRYPTOLIB
++EXPORT_SYMBOL(DWC_RANDOM_BYTES);
++EXPORT_SYMBOL(DWC_AES_CBC);
++EXPORT_SYMBOL(DWC_SHA256);
++EXPORT_SYMBOL(DWC_HMAC_SHA256);
++#endif
++
++EXPORT_SYMBOL(DWC_CPU_TO_LE32);
++EXPORT_SYMBOL(DWC_CPU_TO_BE32);
++EXPORT_SYMBOL(DWC_LE32_TO_CPU);
++EXPORT_SYMBOL(DWC_BE32_TO_CPU);
++EXPORT_SYMBOL(DWC_CPU_TO_LE16);
++EXPORT_SYMBOL(DWC_CPU_TO_BE16);
++EXPORT_SYMBOL(DWC_LE16_TO_CPU);
++EXPORT_SYMBOL(DWC_BE16_TO_CPU);
++EXPORT_SYMBOL(DWC_READ_REG32);
++EXPORT_SYMBOL(DWC_WRITE_REG32);
++EXPORT_SYMBOL(DWC_MODIFY_REG32);
++
++#if 0
++EXPORT_SYMBOL(DWC_READ_REG64);
++EXPORT_SYMBOL(DWC_WRITE_REG64);
++EXPORT_SYMBOL(DWC_MODIFY_REG64);
++#endif
++
++EXPORT_SYMBOL(DWC_SPINLOCK_ALLOC);
++EXPORT_SYMBOL(DWC_SPINLOCK_FREE);
++EXPORT_SYMBOL(DWC_SPINLOCK);
++EXPORT_SYMBOL(DWC_SPINUNLOCK);
++EXPORT_SYMBOL(DWC_SPINLOCK_IRQSAVE);
++EXPORT_SYMBOL(DWC_SPINUNLOCK_IRQRESTORE);
++EXPORT_SYMBOL(DWC_MUTEX_ALLOC);
++
++#if (!defined(DWC_LINUX) || !defined(CONFIG_DEBUG_MUTEXES))
++EXPORT_SYMBOL(DWC_MUTEX_FREE);
++#endif
++
++EXPORT_SYMBOL(DWC_MUTEX_LOCK);
++EXPORT_SYMBOL(DWC_MUTEX_TRYLOCK);
++EXPORT_SYMBOL(DWC_MUTEX_UNLOCK);
++EXPORT_SYMBOL(DWC_UDELAY);
++EXPORT_SYMBOL(DWC_MDELAY);
++EXPORT_SYMBOL(DWC_MSLEEP);
++EXPORT_SYMBOL(DWC_TIME);
++EXPORT_SYMBOL(DWC_TIMER_ALLOC);
++EXPORT_SYMBOL(DWC_TIMER_FREE);
++EXPORT_SYMBOL(DWC_TIMER_SCHEDULE);
++EXPORT_SYMBOL(DWC_TIMER_CANCEL);
++EXPORT_SYMBOL(DWC_WAITQ_ALLOC);
++EXPORT_SYMBOL(DWC_WAITQ_FREE);
++EXPORT_SYMBOL(DWC_WAITQ_WAIT);
++EXPORT_SYMBOL(DWC_WAITQ_WAIT_TIMEOUT);
++EXPORT_SYMBOL(DWC_WAITQ_TRIGGER);
++EXPORT_SYMBOL(DWC_WAITQ_ABORT);
++EXPORT_SYMBOL(DWC_THREAD_RUN);
++EXPORT_SYMBOL(DWC_THREAD_STOP);
++EXPORT_SYMBOL(DWC_THREAD_SHOULD_STOP);
++EXPORT_SYMBOL(DWC_TASK_ALLOC);
++EXPORT_SYMBOL(DWC_TASK_FREE);
++EXPORT_SYMBOL(DWC_TASK_SCHEDULE);
++EXPORT_SYMBOL(DWC_WORKQ_WAIT_WORK_DONE);
++EXPORT_SYMBOL(DWC_WORKQ_ALLOC);
++EXPORT_SYMBOL(DWC_WORKQ_FREE);
++EXPORT_SYMBOL(DWC_WORKQ_SCHEDULE);
++EXPORT_SYMBOL(DWC_WORKQ_SCHEDULE_DELAYED);
++EXPORT_SYMBOL(DWC_WORKQ_PENDING);
++
++static int dwc_common_port_init_module(void)
++{
++ int result = 0;
++
++ printk(KERN_DEBUG "Module dwc_common_port init\n" );
++
++#ifdef DWC_DEBUG_MEMORY
++ result = dwc_memory_debug_start(NULL);
++ if (result) {
++ printk(KERN_ERR
++ "dwc_memory_debug_start() failed with error %d\n",
++ result);
++ return result;
++ }
++#endif
++
++#ifdef DWC_NOTIFYLIB
++ result = dwc_alloc_notification_manager(NULL, NULL);
++ if (result) {
++ printk(KERN_ERR
++ "dwc_alloc_notification_manager() failed with error %d\n",
++ result);
++ return result;
++ }
++#endif
++ return result;
++}
++
++static void dwc_common_port_exit_module(void)
++{
++ printk(KERN_DEBUG "Module dwc_common_port exit\n" );
++
++#ifdef DWC_NOTIFYLIB
++ dwc_free_notification_manager();
++#endif
++
++#ifdef DWC_DEBUG_MEMORY
++ dwc_memory_debug_stop();
++#endif
++}
++
++module_init(dwc_common_port_init_module);
++module_exit(dwc_common_port_exit_module);
++
++MODULE_DESCRIPTION("DWC Common Library - Portable version");
++MODULE_AUTHOR("Synopsys Inc.");
++MODULE_LICENSE ("GPL");
++
++#endif /* DWC_LIBMODULE */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_common_nbsd.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_common_nbsd.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_common_nbsd.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_common_nbsd.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1275 @@
++#include "dwc_os.h"
++#include "dwc_list.h"
++
++#ifdef DWC_CCLIB
++# include "dwc_cc.h"
++#endif
++
++#ifdef DWC_CRYPTOLIB
++# include "dwc_modpow.h"
++# include "dwc_dh.h"
++# include "dwc_crypto.h"
++#endif
++
++#ifdef DWC_NOTIFYLIB
++# include "dwc_notifier.h"
++#endif
++
++/* OS-Level Implementations */
++
++/* This is the NetBSD 4.0.1 kernel implementation of the DWC platform library. */
++
++
++/* MISC */
++
++void *DWC_MEMSET(void *dest, uint8_t byte, uint32_t size)
++{
++ return memset(dest, byte, size);
++}
++
++void *DWC_MEMCPY(void *dest, void const *src, uint32_t size)
++{
++ return memcpy(dest, src, size);
++}
++
++void *DWC_MEMMOVE(void *dest, void *src, uint32_t size)
++{
++ bcopy(src, dest, size);
++ return dest;
++}
++
++int DWC_MEMCMP(void *m1, void *m2, uint32_t size)
++{
++ return memcmp(m1, m2, size);
++}
++
++int DWC_STRNCMP(void *s1, void *s2, uint32_t size)
++{
++ return strncmp(s1, s2, size);
++}
++
++int DWC_STRCMP(void *s1, void *s2)
++{
++ return strcmp(s1, s2);
++}
++
++int DWC_STRLEN(char const *str)
++{
++ return strlen(str);
++}
++
++char *DWC_STRCPY(char *to, char const *from)
++{
++ return strcpy(to, from);
++}
++
++char *DWC_STRDUP(char const *str)
++{
++ int len = DWC_STRLEN(str) + 1;
++ char *new = DWC_ALLOC_ATOMIC(len);
++
++ if (!new) {
++ return NULL;
++ }
++
++ DWC_MEMCPY(new, str, len);
++ return new;
++}
++
++int DWC_ATOI(char *str, int32_t *value)
++{
++ char *end = NULL;
++
++ /* NetBSD doesn't have 'strtol' in the kernel, but 'strtoul'
++ * should be equivalent on 2's complement machines
++ */
++ *value = strtoul(str, &end, 0);
++ if (*end == '\0') {
++ return 0;
++ }
++
++ return -1;
++}
++
++int DWC_ATOUI(char *str, uint32_t *value)
++{
++ char *end = NULL;
++
++ *value = strtoul(str, &end, 0);
++ if (*end == '\0') {
++ return 0;
++ }
++
++ return -1;
++}
++
++
++#ifdef DWC_UTFLIB
++/* From usbstring.c */
++
++int DWC_UTF8_TO_UTF16LE(uint8_t const *s, uint16_t *cp, unsigned len)
++{
++ int count = 0;
++ u8 c;
++ u16 uchar;
++
++ /* this insists on correct encodings, though not minimal ones.
++ * BUT it currently rejects legit 4-byte UTF-8 code points,
++ * which need surrogate pairs. (Unicode 3.1 can use them.)
++ */
++ while (len != 0 && (c = (u8) *s++) != 0) {
++ if (unlikely(c & 0x80)) {
++ // 2-byte sequence:
++ // 00000yyyyyxxxxxx = 110yyyyy 10xxxxxx
++ if ((c & 0xe0) == 0xc0) {
++ uchar = (c & 0x1f) << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ // 3-byte sequence (most CJKV characters):
++ // zzzzyyyyyyxxxxxx = 1110zzzz 10yyyyyy 10xxxxxx
++ } else if ((c & 0xf0) == 0xe0) {
++ uchar = (c & 0x0f) << 12;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ /* no bogus surrogates */
++ if (0xd800 <= uchar && uchar <= 0xdfff)
++ goto fail;
++
++ // 4-byte sequence (surrogate pairs, currently rare):
++ // 11101110wwwwzzzzyy + 110111yyyyxxxxxx
++ // = 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
++ // (uuuuu = wwww + 1)
++ // FIXME accept the surrogate code points (only)
++ } else
++ goto fail;
++ } else
++ uchar = c;
++ put_unaligned (cpu_to_le16 (uchar), cp++);
++ count++;
++ len--;
++ }
++ return count;
++fail:
++ return -1;
++}
++
++#endif /* DWC_UTFLIB */
++
++
++/* dwc_debug.h */
++
++dwc_bool_t DWC_IN_IRQ(void)
++{
++// return in_irq();
++ return 0;
++}
++
++dwc_bool_t DWC_IN_BH(void)
++{
++// return in_softirq();
++ return 0;
++}
++
++void DWC_VPRINTF(char *format, va_list args)
++{
++ vprintf(format, args);
++}
++
++int DWC_VSNPRINTF(char *str, int size, char *format, va_list args)
++{
++ return vsnprintf(str, size, format, args);
++}
++
++void DWC_PRINTF(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++int DWC_SPRINTF(char *buffer, char *format, ...)
++{
++ int retval;
++ va_list args;
++
++ va_start(args, format);
++ retval = vsprintf(buffer, format, args);
++ va_end(args);
++ return retval;
++}
++
++int DWC_SNPRINTF(char *buffer, int size, char *format, ...)
++{
++ int retval;
++ va_list args;
++
++ va_start(args, format);
++ retval = vsnprintf(buffer, size, format, args);
++ va_end(args);
++ return retval;
++}
++
++void __DWC_WARN(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++void __DWC_ERROR(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++
++void DWC_EXCEPTION(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++// BUG_ON(1); ???
++}
++
++#ifdef DEBUG
++void __DWC_DEBUG(char *format, ...)
++{
++ va_list args;
++
++ va_start(args, format);
++ DWC_VPRINTF(format, args);
++ va_end(args);
++}
++#endif
++
++
++/* dwc_mem.h */
++
++#if 0
++dwc_pool_t *DWC_DMA_POOL_CREATE(uint32_t size,
++ uint32_t align,
++ uint32_t alloc)
++{
++ struct dma_pool *pool = dma_pool_create("Pool", NULL,
++ size, align, alloc);
++ return (dwc_pool_t *)pool;
++}
++
++void DWC_DMA_POOL_DESTROY(dwc_pool_t *pool)
++{
++ dma_pool_destroy((struct dma_pool *)pool);
++}
++
++void *DWC_DMA_POOL_ALLOC(dwc_pool_t *pool, uint64_t *dma_addr)
++{
++// return dma_pool_alloc((struct dma_pool *)pool, GFP_KERNEL, dma_addr);
++ return dma_pool_alloc((struct dma_pool *)pool, M_WAITOK, dma_addr);
++}
++
++void *DWC_DMA_POOL_ZALLOC(dwc_pool_t *pool, uint64_t *dma_addr)
++{
++ void *vaddr = DWC_DMA_POOL_ALLOC(pool, dma_addr);
++ memset(..);
++}
++
++void DWC_DMA_POOL_FREE(dwc_pool_t *pool, void *vaddr, void *daddr)
++{
++ dma_pool_free(pool, vaddr, daddr);
++}
++#endif
++
++void *__DWC_DMA_ALLOC(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr)
++{
++ dwc_dmactx_t *dma = (dwc_dmactx_t *)dma_ctx;
++ int error;
++
++ error = bus_dmamem_alloc(dma->dma_tag, size, 1, size, dma->segs,
++ sizeof(dma->segs) / sizeof(dma->segs[0]),
++ &dma->nsegs, BUS_DMA_NOWAIT);
++ if (error) {
++ printf("%s: bus_dmamem_alloc(%ju) failed: %d\n", __func__,
++ (uintmax_t)size, error);
++ goto fail_0;
++ }
++
++ error = bus_dmamem_map(dma->dma_tag, dma->segs, dma->nsegs, size,
++ (caddr_t *)&dma->dma_vaddr,
++ BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
++ if (error) {
++ printf("%s: bus_dmamem_map failed: %d\n", __func__, error);
++ goto fail_1;
++ }
++
++ error = bus_dmamap_create(dma->dma_tag, size, 1, size, 0,
++ BUS_DMA_NOWAIT, &dma->dma_map);
++ if (error) {
++ printf("%s: bus_dmamap_create failed: %d\n", __func__, error);
++ goto fail_2;
++ }
++
++ error = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
++ size, NULL, BUS_DMA_NOWAIT);
++ if (error) {
++ printf("%s: bus_dmamap_load failed: %d\n", __func__, error);
++ goto fail_3;
++ }
++
++ dma->dma_paddr = (bus_addr_t)dma->segs[0].ds_addr;
++ *dma_addr = dma->dma_paddr;
++ return dma->dma_vaddr;
++
++fail_3:
++ bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
++fail_2:
++ bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
++fail_1:
++ bus_dmamem_free(dma->dma_tag, dma->segs, dma->nsegs);
++fail_0:
++ dma->dma_map = NULL;
++ dma->dma_vaddr = NULL;
++ dma->nsegs = 0;
++
++ return NULL;
++}
++
++void __DWC_DMA_FREE(void *dma_ctx, uint32_t size, void *virt_addr, dwc_dma_t dma_addr)
++{
++ dwc_dmactx_t *dma = (dwc_dmactx_t *)dma_ctx;
++
++ if (dma->dma_map != NULL) {
++ bus_dmamap_sync(dma->dma_tag, dma->dma_map, 0, size,
++ BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
++ bus_dmamap_unload(dma->dma_tag, dma->dma_map);
++ bus_dmamap_destroy(dma->dma_tag, dma->dma_map);
++ bus_dmamem_unmap(dma->dma_tag, dma->dma_vaddr, size);
++ bus_dmamem_free(dma->dma_tag, dma->segs, dma->nsegs);
++ dma->dma_paddr = 0;
++ dma->dma_map = NULL;
++ dma->dma_vaddr = NULL;
++ dma->nsegs = 0;
++ }
++}
++
++void *__DWC_ALLOC(void *mem_ctx, uint32_t size)
++{
++ return malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
++}
++
++void *__DWC_ALLOC_ATOMIC(void *mem_ctx, uint32_t size)
++{
++ return malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
++}
++
++void __DWC_FREE(void *mem_ctx, void *addr)
++{
++ free(addr, M_DEVBUF);
++}
++
++
++#ifdef DWC_CRYPTOLIB
++/* dwc_crypto.h */
++
++void DWC_RANDOM_BYTES(uint8_t *buffer, uint32_t length)
++{
++ get_random_bytes(buffer, length);
++}
++
++int DWC_AES_CBC(uint8_t *message, uint32_t messagelen, uint8_t *key, uint32_t keylen, uint8_t iv[16], uint8_t *out)
++{
++ struct crypto_blkcipher *tfm;
++ struct blkcipher_desc desc;
++ struct scatterlist sgd;
++ struct scatterlist sgs;
++
++ tfm = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
++ if (tfm == NULL) {
++ printk("failed to load transform for aes CBC\n");
++ return -1;
++ }
++
++ crypto_blkcipher_setkey(tfm, key, keylen);
++ crypto_blkcipher_set_iv(tfm, iv, 16);
++
++ sg_init_one(&sgd, out, messagelen);
++ sg_init_one(&sgs, message, messagelen);
++
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ if (crypto_blkcipher_encrypt(&desc, &sgd, &sgs, messagelen)) {
++ crypto_free_blkcipher(tfm);
++ DWC_ERROR("AES CBC encryption failed");
++ return -1;
++ }
++
++ crypto_free_blkcipher(tfm);
++ return 0;
++}
++
++int DWC_SHA256(uint8_t *message, uint32_t len, uint8_t *out)
++{
++ struct crypto_hash *tfm;
++ struct hash_desc desc;
++ struct scatterlist sg;
++
++ tfm = crypto_alloc_hash("sha256", 0, CRYPTO_ALG_ASYNC);
++ if (IS_ERR(tfm)) {
++ DWC_ERROR("Failed to load transform for sha256: %ld", PTR_ERR(tfm));
++ return 0;
++ }
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ sg_init_one(&sg, message, len);
++ crypto_hash_digest(&desc, &sg, len, out);
++ crypto_free_hash(tfm);
++
++ return 1;
++}
++
++int DWC_HMAC_SHA256(uint8_t *message, uint32_t messagelen,
++ uint8_t *key, uint32_t keylen, uint8_t *out)
++{
++ struct crypto_hash *tfm;
++ struct hash_desc desc;
++ struct scatterlist sg;
++
++ tfm = crypto_alloc_hash("hmac(sha256)", 0, CRYPTO_ALG_ASYNC);
++ if (IS_ERR(tfm)) {
++ DWC_ERROR("Failed to load transform for hmac(sha256): %ld", PTR_ERR(tfm));
++ return 0;
++ }
++ desc.tfm = tfm;
++ desc.flags = 0;
++
++ sg_init_one(&sg, message, messagelen);
++ crypto_hash_setkey(tfm, key, keylen);
++ crypto_hash_digest(&desc, &sg, messagelen, out);
++ crypto_free_hash(tfm);
++
++ return 1;
++}
++
++#endif /* DWC_CRYPTOLIB */
++
++
++/* Byte Ordering Conversions */
++
++uint32_t DWC_CPU_TO_LE32(uint32_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_CPU_TO_BE32(uint32_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_LE32_TO_CPU(uint32_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint32_t DWC_BE32_TO_CPU(uint32_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++
++ return (u_p[3] | (u_p[2] << 8) | (u_p[1] << 16) | (u_p[0] << 24));
++#endif
++}
++
++uint16_t DWC_CPU_TO_LE16(uint16_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_CPU_TO_BE16(uint16_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_LE16_TO_CPU(uint16_t *p)
++{
++#ifdef __LITTLE_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++uint16_t DWC_BE16_TO_CPU(uint16_t *p)
++{
++#ifdef __BIG_ENDIAN
++ return *p;
++#else
++ uint8_t *u_p = (uint8_t *)p;
++ return (u_p[1] | (u_p[0] << 8));
++#endif
++}
++
++
++/* Registers */
++
++uint32_t DWC_READ_REG32(void *io_ctx, uint32_t volatile *reg)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ return bus_space_read_4(io->iot, io->ioh, ior);
++}
++
++#if 0
++uint64_t DWC_READ_REG64(void *io_ctx, uint64_t volatile *reg)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ return bus_space_read_8(io->iot, io->ioh, ior);
++}
++#endif
++
++void DWC_WRITE_REG32(void *io_ctx, uint32_t volatile *reg, uint32_t value)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_4(io->iot, io->ioh, ior, value);
++}
++
++#if 0
++void DWC_WRITE_REG64(void *io_ctx, uint64_t volatile *reg, uint64_t value)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_8(io->iot, io->ioh, ior, value);
++}
++#endif
++
++void DWC_MODIFY_REG32(void *io_ctx, uint32_t volatile *reg, uint32_t clear_mask,
++ uint32_t set_mask)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_4(io->iot, io->ioh, ior,
++ (bus_space_read_4(io->iot, io->ioh, ior) &
++ ~clear_mask) | set_mask);
++}
++
++#if 0
++void DWC_MODIFY_REG64(void *io_ctx, uint64_t volatile *reg, uint64_t clear_mask,
++ uint64_t set_mask)
++{
++ dwc_ioctx_t *io = (dwc_ioctx_t *)io_ctx;
++ bus_size_t ior = (bus_size_t)reg;
++
++ bus_space_write_8(io->iot, io->ioh, ior,
++ (bus_space_read_8(io->iot, io->ioh, ior) &
++ ~clear_mask) | set_mask);
++}
++#endif
++
++
++/* Locking */
++
++dwc_spinlock_t *DWC_SPINLOCK_ALLOC(void)
++{
++ struct simplelock *sl = DWC_ALLOC(sizeof(*sl));
++
++ if (!sl) {
++ DWC_ERROR("Cannot allocate memory for spinlock");
++ return NULL;
++ }
++
++ simple_lock_init(sl);
++ return (dwc_spinlock_t *)sl;
++}
++
++void DWC_SPINLOCK_FREE(dwc_spinlock_t *lock)
++{
++ struct simplelock *sl = (struct simplelock *)lock;
++
++ DWC_FREE(sl);
++}
++
++void DWC_SPINLOCK(dwc_spinlock_t *lock)
++{
++ simple_lock((struct simplelock *)lock);
++}
++
++void DWC_SPINUNLOCK(dwc_spinlock_t *lock)
++{
++ simple_unlock((struct simplelock *)lock);
++}
++
++void DWC_SPINLOCK_IRQSAVE(dwc_spinlock_t *lock, dwc_irqflags_t *flags)
++{
++ simple_lock((struct simplelock *)lock);
++ *flags = splbio();
++}
++
++void DWC_SPINUNLOCK_IRQRESTORE(dwc_spinlock_t *lock, dwc_irqflags_t flags)
++{
++ splx(flags);
++ simple_unlock((struct simplelock *)lock);
++}
++
++dwc_mutex_t *DWC_MUTEX_ALLOC(void)
++{
++ dwc_mutex_t *mutex = DWC_ALLOC(sizeof(struct lock));
++
++ if (!mutex) {
++ DWC_ERROR("Cannot allocate memory for mutex");
++ return NULL;
++ }
++
++ lockinit((struct lock *)mutex, 0, "dw3mtx", 0, 0);
++ return mutex;
++}
++
++#if (defined(DWC_LINUX) && defined(CONFIG_DEBUG_MUTEXES))
++#else
++void DWC_MUTEX_FREE(dwc_mutex_t *mutex)
++{
++ DWC_FREE(mutex);
++}
++#endif
++
++void DWC_MUTEX_LOCK(dwc_mutex_t *mutex)
++{
++ lockmgr((struct lock *)mutex, LK_EXCLUSIVE, NULL);
++}
++
++int DWC_MUTEX_TRYLOCK(dwc_mutex_t *mutex)
++{
++ int status;
++
++ status = lockmgr((struct lock *)mutex, LK_EXCLUSIVE | LK_NOWAIT, NULL);
++ return status == 0;
++}
++
++void DWC_MUTEX_UNLOCK(dwc_mutex_t *mutex)
++{
++ lockmgr((struct lock *)mutex, LK_RELEASE, NULL);
++}
++
++
++/* Timing */
++
++void DWC_UDELAY(uint32_t usecs)
++{
++ DELAY(usecs);
++}
++
++void DWC_MDELAY(uint32_t msecs)
++{
++ do {
++ DELAY(1000);
++ } while (--msecs);
++}
++
++void DWC_MSLEEP(uint32_t msecs)
++{
++ struct timeval tv;
++
++ tv.tv_sec = msecs / 1000;
++ tv.tv_usec = (msecs - tv.tv_sec * 1000) * 1000;
++ tsleep(&tv, 0, "dw3slp", tvtohz(&tv));
++}
++
++uint32_t DWC_TIME(void)
++{
++ struct timeval tv;
++
++ microuptime(&tv); // or getmicrouptime? (less precise, but faster)
++ return tv.tv_sec * 1000 + tv.tv_usec / 1000;
++}
++
++
++/* Timers */
++
++struct dwc_timer {
++ struct callout t;
++ char *name;
++ dwc_spinlock_t *lock;
++ dwc_timer_callback_t cb;
++ void *data;
++};
++
++dwc_timer_t *DWC_TIMER_ALLOC(char *name, dwc_timer_callback_t cb, void *data)
++{
++ dwc_timer_t *t = DWC_ALLOC(sizeof(*t));
++
++ if (!t) {
++ DWC_ERROR("Cannot allocate memory for timer");
++ return NULL;
++ }
++
++ callout_init(&t->t);
++
++ t->name = DWC_STRDUP(name);
++ if (!t->name) {
++ DWC_ERROR("Cannot allocate memory for timer->name");
++ goto no_name;
++ }
++
++ t->lock = DWC_SPINLOCK_ALLOC();
++ if (!t->lock) {
++ DWC_ERROR("Cannot allocate memory for timer->lock");
++ goto no_lock;
++ }
++
++ t->cb = cb;
++ t->data = data;
++
++ return t;
++
++ no_lock:
++ DWC_FREE(t->name);
++ no_name:
++ DWC_FREE(t);
++
++ return NULL;
++}
++
++void DWC_TIMER_FREE(dwc_timer_t *timer)
++{
++ callout_stop(&timer->t);
++ DWC_SPINLOCK_FREE(timer->lock);
++ DWC_FREE(timer->name);
++ DWC_FREE(timer);
++}
++
++void DWC_TIMER_SCHEDULE(dwc_timer_t *timer, uint32_t time)
++{
++ struct timeval tv;
++
++ tv.tv_sec = time / 1000;
++ tv.tv_usec = (time - tv.tv_sec * 1000) * 1000;
++ callout_reset(&timer->t, tvtohz(&tv), timer->cb, timer->data);
++}
++
++void DWC_TIMER_CANCEL(dwc_timer_t *timer)
++{
++ callout_stop(&timer->t);
++}
++
++
++/* Wait Queues */
++
++struct dwc_waitq {
++ struct simplelock lock;
++ int abort;
++};
++
++dwc_waitq_t *DWC_WAITQ_ALLOC(void)
++{
++ dwc_waitq_t *wq = DWC_ALLOC(sizeof(*wq));
++
++ if (!wq) {
++ DWC_ERROR("Cannot allocate memory for waitqueue");
++ return NULL;
++ }
++
++ simple_lock_init(&wq->lock);
++ wq->abort = 0;
++
++ return wq;
++}
++
++void DWC_WAITQ_FREE(dwc_waitq_t *wq)
++{
++ DWC_FREE(wq);
++}
++
++int32_t DWC_WAITQ_WAIT(dwc_waitq_t *wq, dwc_waitq_condition_t cond, void *data)
++{
++ int ipl;
++ int result = 0;
++
++ simple_lock(&wq->lock);
++ ipl = splbio();
++
++ /* Skip the sleep if already aborted or triggered */
++ if (!wq->abort && !cond(data)) {
++ splx(ipl);
++ result = ltsleep(wq, PCATCH, "dw3wat", 0, &wq->lock); // infinite timeout
++ ipl = splbio();
++ }
++
++ if (result == 0) { // awoken
++ if (wq->abort) {
++ wq->abort = 0;
++ result = -DWC_E_ABORT;
++ } else {
++ result = 0;
++ }
++
++ splx(ipl);
++ simple_unlock(&wq->lock);
++ } else {
++ wq->abort = 0;
++ splx(ipl);
++ simple_unlock(&wq->lock);
++
++ if (result == ERESTART) { // signaled - restart
++ result = -DWC_E_RESTART;
++ } else { // signaled - must be EINTR
++ result = -DWC_E_ABORT;
++ }
++ }
++
++ return result;
++}
++
++int32_t DWC_WAITQ_WAIT_TIMEOUT(dwc_waitq_t *wq, dwc_waitq_condition_t cond,
++ void *data, int32_t msecs)
++{
++ struct timeval tv, tv1, tv2;
++ int ipl;
++ int result = 0;
++
++ tv.tv_sec = msecs / 1000;
++ tv.tv_usec = (msecs - tv.tv_sec * 1000) * 1000;
++
++ simple_lock(&wq->lock);
++ ipl = splbio();
++
++ /* Skip the sleep if already aborted or triggered */
++ if (!wq->abort && !cond(data)) {
++ splx(ipl);
++ getmicrouptime(&tv1);
++ result = ltsleep(wq, PCATCH, "dw3wto", tvtohz(&tv), &wq->lock);
++ getmicrouptime(&tv2);
++ ipl = splbio();
++ }
++
++ if (result == 0) { // awoken
++ if (wq->abort) {
++ wq->abort = 0;
++ splx(ipl);
++ simple_unlock(&wq->lock);
++ result = -DWC_E_ABORT;
++ } else {
++ splx(ipl);
++ simple_unlock(&wq->lock);
++
++ tv2.tv_usec -= tv1.tv_usec;
++ if (tv2.tv_usec < 0) {
++ tv2.tv_usec += 1000000;
++ tv2.tv_sec--;
++ }
++
++ tv2.tv_sec -= tv1.tv_sec;
++ result = tv2.tv_sec * 1000 + tv2.tv_usec / 1000;
++ result = msecs - result;
++ if (result <= 0)
++ result = 1;
++ }
++ } else {
++ wq->abort = 0;
++ splx(ipl);
++ simple_unlock(&wq->lock);
++
++ if (result == ERESTART) { // signaled - restart
++ result = -DWC_E_RESTART;
++
++ } else if (result == EINTR) { // signaled - interrupt
++ result = -DWC_E_ABORT;
++
++ } else { // timed out
++ result = -DWC_E_TIMEOUT;
++ }
++ }
++
++ return result;
++}
++
++void DWC_WAITQ_TRIGGER(dwc_waitq_t *wq)
++{
++ wakeup(wq);
++}
++
++void DWC_WAITQ_ABORT(dwc_waitq_t *wq)
++{
++ int ipl;
++
++ simple_lock(&wq->lock);
++ ipl = splbio();
++ wq->abort = 1;
++ wakeup(wq);
++ splx(ipl);
++ simple_unlock(&wq->lock);
++}
++
++
++/* Threading */
++
++struct dwc_thread {
++ struct proc *proc;
++ int abort;
++};
++
++dwc_thread_t *DWC_THREAD_RUN(dwc_thread_function_t func, char *name, void *data)
++{
++ int retval;
++ dwc_thread_t *thread = DWC_ALLOC(sizeof(*thread));
++
++ if (!thread) {
++ return NULL;
++ }
++
++ thread->abort = 0;
++ retval = kthread_create1((void (*)(void *))func, data, &thread->proc,
++ "%s", name);
++ if (retval) {
++ DWC_FREE(thread);
++ return NULL;
++ }
++
++ return thread;
++}
++
++int DWC_THREAD_STOP(dwc_thread_t *thread)
++{
++ int retval;
++
++ thread->abort = 1;
++ retval = tsleep(&thread->abort, 0, "dw3stp", 60 * hz);
++
++ if (retval == 0) {
++ /* DWC_THREAD_EXIT() will free the thread struct */
++ return 0;
++ }
++
++ /* NOTE: We leak the thread struct if thread doesn't die */
++
++ if (retval == EWOULDBLOCK) {
++ return -DWC_E_TIMEOUT;
++ }
++
++ return -DWC_E_UNKNOWN;
++}
++
++dwc_bool_t DWC_THREAD_SHOULD_STOP(dwc_thread_t *thread)
++{
++ return thread->abort;
++}
++
++void DWC_THREAD_EXIT(dwc_thread_t *thread)
++{
++ wakeup(&thread->abort);
++ DWC_FREE(thread);
++ kthread_exit(0);
++}
++
++/* tasklets
++ - Runs in interrupt context (cannot sleep)
++ - Each tasklet runs on a single CPU
++ - Different tasklets can be running simultaneously on different CPUs
++ [ On NetBSD there is no corresponding mechanism, drivers don't have bottom-
++ halves. So we just call the callback directly from DWC_TASK_SCHEDULE() ]
++ */
++struct dwc_tasklet {
++ dwc_tasklet_callback_t cb;
++ void *data;
++};
++
++static void tasklet_callback(void *data)
++{
++ dwc_tasklet_t *task = (dwc_tasklet_t *)data;
++
++ task->cb(task->data);
++}
++
++dwc_tasklet_t *DWC_TASK_ALLOC(char *name, dwc_tasklet_callback_t cb, void *data)
++{
++ dwc_tasklet_t *task = DWC_ALLOC(sizeof(*task));
++
++ if (task) {
++ task->cb = cb;
++ task->data = data;
++ } else {
++ DWC_ERROR("Cannot allocate memory for tasklet");
++ }
++
++ return task;
++}
++
++void DWC_TASK_FREE(dwc_tasklet_t *task)
++{
++ DWC_FREE(task);
++}
++
++void DWC_TASK_SCHEDULE(dwc_tasklet_t *task)
++{
++ tasklet_callback(task);
++}
++
++
++/* workqueues
++ - Runs in process context (can sleep)
++ */
++typedef struct work_container {
++ dwc_work_callback_t cb;
++ void *data;
++ dwc_workq_t *wq;
++ char *name;
++ int hz;
++ struct work task;
++} work_container_t;
++
++struct dwc_workq {
++ struct workqueue *taskq;
++ dwc_spinlock_t *lock;
++ dwc_waitq_t *waitq;
++ int pending;
++ struct work_container *container;
++};
++
++static void do_work(struct work *task, void *data)
++{
++ dwc_workq_t *wq = (dwc_workq_t *)data;
++ work_container_t *container = wq->container;
++ dwc_irqflags_t flags;
++
++ if (container->hz) {
++ tsleep(container, 0, "dw3wrk", container->hz);
++ }
++
++ container->cb(container->data);
++ DWC_DEBUG("Work done: %s, container=%p", container->name, container);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ if (container->name)
++ DWC_FREE(container->name);
++ DWC_FREE(container);
++ wq->pending--;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++}
++
++static int work_done(void *data)
++{
++ dwc_workq_t *workq = (dwc_workq_t *)data;
++
++ return workq->pending == 0;
++}
++
++int DWC_WORKQ_WAIT_WORK_DONE(dwc_workq_t *workq, int timeout)
++{
++ return DWC_WAITQ_WAIT_TIMEOUT(workq->waitq, work_done, workq, timeout);
++}
++
++dwc_workq_t *DWC_WORKQ_ALLOC(char *name)
++{
++ int result;
++ dwc_workq_t *wq = DWC_ALLOC(sizeof(*wq));
++
++ if (!wq) {
++ DWC_ERROR("Cannot allocate memory for workqueue");
++ return NULL;
++ }
++
++ result = workqueue_create(&wq->taskq, name, do_work, wq, 0 /*PWAIT*/,
++ IPL_BIO, 0);
++ if (result) {
++ DWC_ERROR("Cannot create workqueue");
++ goto no_taskq;
++ }
++
++ wq->pending = 0;
++
++ wq->lock = DWC_SPINLOCK_ALLOC();
++ if (!wq->lock) {
++ DWC_ERROR("Cannot allocate memory for spinlock");
++ goto no_lock;
++ }
++
++ wq->waitq = DWC_WAITQ_ALLOC();
++ if (!wq->waitq) {
++ DWC_ERROR("Cannot allocate memory for waitqueue");
++ goto no_waitq;
++ }
++
++ return wq;
++
++ no_waitq:
++ DWC_SPINLOCK_FREE(wq->lock);
++ no_lock:
++ workqueue_destroy(wq->taskq);
++ no_taskq:
++ DWC_FREE(wq);
++
++ return NULL;
++}
++
++void DWC_WORKQ_FREE(dwc_workq_t *wq)
++{
++#ifdef DEBUG
++ dwc_irqflags_t flags;
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++
++ if (wq->pending != 0) {
++ struct work_container *container = wq->container;
++
++ DWC_ERROR("Destroying work queue with pending work");
++
++ if (container && container->name) {
++ DWC_ERROR("Work %s still pending", container->name);
++ }
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++#endif
++ DWC_WAITQ_FREE(wq->waitq);
++ DWC_SPINLOCK_FREE(wq->lock);
++ workqueue_destroy(wq->taskq);
++ DWC_FREE(wq);
++}
++
++void DWC_WORKQ_SCHEDULE(dwc_workq_t *wq, dwc_work_callback_t cb, void *data,
++ char *format, ...)
++{
++ dwc_irqflags_t flags;
++ work_container_t *container;
++ static char name[128];
++ va_list args;
++
++ va_start(args, format);
++ DWC_VSNPRINTF(name, 128, format, args);
++ va_end(args);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ wq->pending++;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++
++ container = DWC_ALLOC_ATOMIC(sizeof(*container));
++ if (!container) {
++ DWC_ERROR("Cannot allocate memory for container");
++ return;
++ }
++
++ container->name = DWC_STRDUP(name);
++ if (!container->name) {
++ DWC_ERROR("Cannot allocate memory for container->name");
++ DWC_FREE(container);
++ return;
++ }
++
++ container->cb = cb;
++ container->data = data;
++ container->wq = wq;
++ container->hz = 0;
++ wq->container = container;
++
++ DWC_DEBUG("Queueing work: %s, container=%p", container->name, container);
++ workqueue_enqueue(wq->taskq, &container->task);
++}
++
++void DWC_WORKQ_SCHEDULE_DELAYED(dwc_workq_t *wq, dwc_work_callback_t cb,
++ void *data, uint32_t time, char *format, ...)
++{
++ dwc_irqflags_t flags;
++ work_container_t *container;
++ static char name[128];
++ struct timeval tv;
++ va_list args;
++
++ va_start(args, format);
++ DWC_VSNPRINTF(name, 128, format, args);
++ va_end(args);
++
++ DWC_SPINLOCK_IRQSAVE(wq->lock, &flags);
++ wq->pending++;
++ DWC_SPINUNLOCK_IRQRESTORE(wq->lock, flags);
++ DWC_WAITQ_TRIGGER(wq->waitq);
++
++ container = DWC_ALLOC_ATOMIC(sizeof(*container));
++ if (!container) {
++ DWC_ERROR("Cannot allocate memory for container");
++ return;
++ }
++
++ container->name = DWC_STRDUP(name);
++ if (!container->name) {
++ DWC_ERROR("Cannot allocate memory for container->name");
++ DWC_FREE(container);
++ return;
++ }
++
++ container->cb = cb;
++ container->data = data;
++ container->wq = wq;
++ tv.tv_sec = time / 1000;
++ tv.tv_usec = (time - tv.tv_sec * 1000) * 1000;
++ container->hz = tvtohz(&tv);
++ wq->container = container;
++
++ DWC_DEBUG("Queueing work: %s, container=%p", container->name, container);
++ workqueue_enqueue(wq->taskq, &container->task);
++}
++
++int DWC_WORKQ_PENDING(dwc_workq_t *wq)
++{
++ return wq->pending;
++}
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_crypto.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_crypto.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_crypto.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_crypto.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,308 @@
++/* =========================================================================
++ * $File: //dwh/usb_iip/dev/software/dwc_common_port_2/dwc_crypto.c $
++ * $Revision: #5 $
++ * $Date: 2010/09/28 $
++ * $Change: 1596182 $
++ *
++ * Synopsys Portability Library Software and documentation
++ * (hereinafter, "Software") is an Unsupported proprietary work of
++ * Synopsys, Inc. unless otherwise expressly agreed to in writing
++ * between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product
++ * under any End User Software License Agreement or Agreement for
++ * Licensed Product with Synopsys or any supplement thereto. You are
++ * permitted to use and redistribute this Software in source and binary
++ * forms, with or without modification, provided that redistributions
++ * of source code must retain this notice. You may not view, use,
++ * disclose, copy or distribute this file or any information contained
++ * herein except pursuant to this license grant from Synopsys. If you
++ * do not agree with this notice, including the disclaimer below, then
++ * you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
++ * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
++ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
++ * FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
++ * SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
++ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
++ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================= */
++
++/** @file
++ * This file contains the WUSB cryptographic routines.
++ */
++
++#ifdef DWC_CRYPTOLIB
++
++#include "dwc_crypto.h"
++#include "usb.h"
++
++#ifdef DEBUG
++static inline void dump_bytes(char *name, uint8_t *bytes, int len)
++{
++ int i;
++ DWC_PRINTF("%s: ", name);
++ for (i=0; i<len; i++) {
++ DWC_PRINTF("%02x ", bytes[i]);
++ }
++ DWC_PRINTF("\n");
++}
++#else
++#define dump_bytes(x...)
++#endif
++
++/* Display a block */
++void show_block(const u8 *blk, const char *prefix, const char *suffix, int a)
++{
++#ifdef DWC_DEBUG_CRYPTO
++ int i, blksize = 16;
++
++ DWC_DEBUG("%s", prefix);
++
++ if (suffix == NULL) {
++ suffix = "\n";
++ blksize = a;
++ }
++
++ for (i = 0; i < blksize; i++)
++ DWC_PRINT("%02x%s", *blk++, ((i & 3) == 3) ? " " : " ");
++ DWC_PRINT(suffix);
++#endif
++}
++
++/**
++ * Encrypts an array of bytes using the AES encryption engine.
++ * If <code>dst</code> == <code>src</code>, then the bytes will be encrypted
++ * in-place.
++ *
++ * @return 0 on success, negative error code on error.
++ */
++int dwc_wusb_aes_encrypt(u8 *src, u8 *key, u8 *dst)
++{
++ u8 block_t[16];
++ DWC_MEMSET(block_t, 0, 16);
++
++ return DWC_AES_CBC(src, 16, key, 16, block_t, dst);
++}
++
++/**
++ * The CCM-MAC-FUNCTION described in section 6.5 of the WUSB spec.
++ * This function takes a data string and returns the encrypted CBC
++ * Counter-mode MIC.
++ *
++ * @param key The 128-bit symmetric key.
++ * @param nonce The CCM nonce.
++ * @param label The unique 14-byte ASCII text label.
++ * @param bytes The byte array to be encrypted.
++ * @param len Length of the byte array.
++ * @param result Byte array to receive the 8-byte encrypted MIC.
++ */
++void dwc_wusb_cmf(u8 *key, u8 *nonce,
++ char *label, u8 *bytes, int len, u8 *result)
++{
++ u8 block_m[16];
++ u8 block_x[16];
++ u8 block_t[8];
++ int idx, blkNum;
++ u16 la = (u16)(len + 14);
++
++ /* Set the AES-128 key */
++ //dwc_aes_setkey(tfm, key, 16);
++
++ /* Fill block B0 from flags = 0x59, N, and l(m) = 0 */
++ block_m[0] = 0x59;
++ for (idx = 0; idx < 13; idx++)
++ block_m[idx + 1] = nonce[idx];
++ block_m[14] = 0;
++ block_m[15] = 0;
++
++ /* Produce the CBC IV */
++ dwc_wusb_aes_encrypt(block_m, key, block_x);
++ show_block(block_m, "CBC IV in: ", "\n", 0);
++ show_block(block_x, "CBC IV out:", "\n", 0);
++
++ /* Fill block B1 from l(a) = Blen + 14, and A */
++ block_x[0] ^= (u8)(la >> 8);
++ block_x[1] ^= (u8)la;
++ for (idx = 0; idx < 14; idx++)
++ block_x[idx + 2] ^= label[idx];
++ show_block(block_x, "After xor: ", "b1\n", 16);
++
++ dwc_wusb_aes_encrypt(block_x, key, block_x);
++ show_block(block_x, "After AES: ", "b1\n", 16);
++
++ idx = 0;
++ blkNum = 0;
++
++ /* Fill remaining blocks with B */
++ while (len-- > 0) {
++ block_x[idx] ^= *bytes++;
++ if (++idx >= 16) {
++ idx = 0;
++ show_block(block_x, "After xor: ", "\n", blkNum);
++ dwc_wusb_aes_encrypt(block_x, key, block_x);
++ show_block(block_x, "After AES: ", "\n", blkNum);
++ blkNum++;
++ }
++ }
++
++ /* Handle partial last block */
++ if (idx > 0) {
++ show_block(block_x, "After xor: ", "\n", blkNum);
++ dwc_wusb_aes_encrypt(block_x, key, block_x);
++ show_block(block_x, "After AES: ", "\n", blkNum);
++ }
++
++ /* Save the MIC tag */
++ DWC_MEMCPY(block_t, block_x, 8);
++ show_block(block_t, "MIC tag : ", NULL, 8);
++
++ /* Fill block A0 from flags = 0x01, N, and counter = 0 */
++ block_m[0] = 0x01;
++ block_m[14] = 0;
++ block_m[15] = 0;
++
++ /* Encrypt the counter */
++ dwc_wusb_aes_encrypt(block_m, key, block_x);
++ show_block(block_x, "CTR[MIC] : ", NULL, 8);
++
++ /* XOR with MIC tag */
++ for (idx = 0; idx < 8; idx++) {
++ block_t[idx] ^= block_x[idx];
++ }
++
++ /* Return result to caller */
++ DWC_MEMCPY(result, block_t, 8);
++ show_block(result, "CCM-MIC : ", NULL, 8);
++
++}
++
++/**
++ * The PRF function described in section 6.5 of the WUSB spec. This function
++ * concatenates MIC values returned from dwc_cmf() to create a value of
++ * the requested length.
++ *
++ * @param prf_len Length of the PRF function in bits (64, 128, or 256).
++ * @param key, nonce, label, bytes, len Same as for dwc_cmf().
++ * @param result Byte array to receive the result.
++ */
++void dwc_wusb_prf(int prf_len, u8 *key,
++ u8 *nonce, char *label, u8 *bytes, int len, u8 *result)
++{
++ int i;
++
++ nonce[0] = 0;
++ for (i = 0; i < prf_len >> 6; i++, nonce[0]++) {
++ dwc_wusb_cmf(key, nonce, label, bytes, len, result);
++ result += 8;
++ }
++}
++
++/**
++ * Fills in CCM Nonce per the WUSB spec.
++ *
++ * @param[in] haddr Host address.
++ * @param[in] daddr Device address.
++ * @param[in] tkid Session Key(PTK) identifier.
++ * @param[out] nonce Pointer to where the CCM Nonce output is to be written.
++ */
++void dwc_wusb_fill_ccm_nonce(uint16_t haddr, uint16_t daddr, uint8_t *tkid,
++ uint8_t *nonce)
++{
++
++ DWC_DEBUG("%s %x %x\n", __func__, daddr, haddr);
++
++ DWC_MEMSET(&nonce[0], 0, 16);
++
++ DWC_MEMCPY(&nonce[6], tkid, 3);
++ nonce[9] = daddr & 0xFF;
++ nonce[10] = (daddr >> 8) & 0xFF;
++ nonce[11] = haddr & 0xFF;
++ nonce[12] = (haddr >> 8) & 0xFF;
++
++ dump_bytes("CCM nonce", nonce, 16);
++}
++
++/**
++ * Generates a 16-byte cryptographic-grade random number for the Host/Device
++ * Nonce.
++ */
++void dwc_wusb_gen_nonce(uint16_t addr, uint8_t *nonce)
++{
++ uint8_t inonce[16];
++ uint32_t temp[4];
++
++ /* Fill in the Nonce */
++ DWC_MEMSET(&inonce[0], 0, sizeof(inonce));
++ inonce[9] = addr & 0xFF;
++ inonce[10] = (addr >> 8) & 0xFF;
++ inonce[11] = inonce[9];
++ inonce[12] = inonce[10];
++
++ /* Collect "randomness samples" */
++ DWC_RANDOM_BYTES((uint8_t *)temp, 16);
++
++ dwc_wusb_prf_128((uint8_t *)temp, nonce,
++ "Random Numbers", (uint8_t *)temp, sizeof(temp),
++ nonce);
++}
++
++/**
++ * Generates the Session Key (PTK) and Key Confirmation Key (KCK) per the
++ * WUSB spec.
++ *
++ * @param[in] ccm_nonce Pointer to CCM Nonce.
++ * @param[in] mk Master Key to derive the session from
++ * @param[in] hnonce Pointer to Host Nonce.
++ * @param[in] dnonce Pointer to Device Nonce.
++ * @param[out] kck Pointer to where the KCK output is to be written.
++ * @param[out] ptk Pointer to where the PTK output is to be written.
++ */
++void dwc_wusb_gen_key(uint8_t *ccm_nonce, uint8_t *mk, uint8_t *hnonce,
++ uint8_t *dnonce, uint8_t *kck, uint8_t *ptk)
++{
++ uint8_t idata[32];
++ uint8_t odata[32];
++
++ dump_bytes("ck", mk, 16);
++ dump_bytes("hnonce", hnonce, 16);
++ dump_bytes("dnonce", dnonce, 16);
++
++ /* The data is the HNonce and DNonce concatenated */
++ DWC_MEMCPY(&idata[0], hnonce, 16);
++ DWC_MEMCPY(&idata[16], dnonce, 16);
++
++ dwc_wusb_prf_256(mk, ccm_nonce, "Pair-wise keys", idata, 32, odata);
++
++ /* Low 16 bytes of the result is the KCK, high 16 is the PTK */
++ DWC_MEMCPY(kck, &odata[0], 16);
++ DWC_MEMCPY(ptk, &odata[16], 16);
++
++ dump_bytes("kck", kck, 16);
++ dump_bytes("ptk", ptk, 16);
++}
++
++/**
++ * Generates the Message Integrity Code over the Handshake data per the
++ * WUSB spec.
++ *
++ * @param ccm_nonce Pointer to CCM Nonce.
++ * @param kck Pointer to Key Confirmation Key.
++ * @param data Pointer to Handshake data to be checked.
++ * @param mic Pointer to where the MIC output is to be written.
++ */
++void dwc_wusb_gen_mic(uint8_t *ccm_nonce, uint8_t *kck,
++ uint8_t *data, uint8_t *mic)
++{
++
++ dwc_wusb_prf_64(kck, ccm_nonce, "out-of-bandMIC",
++ data, WUSB_HANDSHAKE_LEN_FOR_MIC, mic);
++}
++
++#endif /* DWC_CRYPTOLIB */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_crypto.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_crypto.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_crypto.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_crypto.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,111 @@
++/* =========================================================================
++ * $File: //dwh/usb_iip/dev/software/dwc_common_port_2/dwc_crypto.h $
++ * $Revision: #3 $
++ * $Date: 2010/09/28 $
++ * $Change: 1596182 $
++ *
++ * Synopsys Portability Library Software and documentation
++ * (hereinafter, "Software") is an Unsupported proprietary work of
++ * Synopsys, Inc. unless otherwise expressly agreed to in writing
++ * between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product
++ * under any End User Software License Agreement or Agreement for
++ * Licensed Product with Synopsys or any supplement thereto. You are
++ * permitted to use and redistribute this Software in source and binary
++ * forms, with or without modification, provided that redistributions
++ * of source code must retain this notice. You may not view, use,
++ * disclose, copy or distribute this file or any information contained
++ * herein except pursuant to this license grant from Synopsys. If you
++ * do not agree with this notice, including the disclaimer below, then
++ * you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
++ * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
++ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
++ * FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
++ * SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
++ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
++ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================= */
++
++#ifndef _DWC_CRYPTO_H_
++#define _DWC_CRYPTO_H_
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/** @file
++ *
++ * This file contains declarations for the WUSB Cryptographic routines as
++ * defined in the WUSB spec. They are only to be used internally by the DWC UWB
++ * modules.
++ */
++
++#include "dwc_os.h"
++
++int dwc_wusb_aes_encrypt(u8 *src, u8 *key, u8 *dst);
++
++void dwc_wusb_cmf(u8 *key, u8 *nonce,
++ char *label, u8 *bytes, int len, u8 *result);
++void dwc_wusb_prf(int prf_len, u8 *key,
++ u8 *nonce, char *label, u8 *bytes, int len, u8 *result);
++
++/**
++ * The PRF-64 function described in section 6.5 of the WUSB spec.
++ *
++ * @param key, nonce, label, bytes, len, result Same as for dwc_prf().
++ */
++static inline void dwc_wusb_prf_64(u8 *key, u8 *nonce,
++ char *label, u8 *bytes, int len, u8 *result)
++{
++ dwc_wusb_prf(64, key, nonce, label, bytes, len, result);
++}
++
++/**
++ * The PRF-128 function described in section 6.5 of the WUSB spec.
++ *
++ * @param key, nonce, label, bytes, len, result Same as for dwc_prf().
++ */
++static inline void dwc_wusb_prf_128(u8 *key, u8 *nonce,
++ char *label, u8 *bytes, int len, u8 *result)
++{
++ dwc_wusb_prf(128, key, nonce, label, bytes, len, result);
++}
++
++/**
++ * The PRF-256 function described in section 6.5 of the WUSB spec.
++ *
++ * @param key, nonce, label, bytes, len, result Same as for dwc_prf().
++ */
++static inline void dwc_wusb_prf_256(u8 *key, u8 *nonce,
++ char *label, u8 *bytes, int len, u8 *result)
++{
++ dwc_wusb_prf(256, key, nonce, label, bytes, len, result);
++}
++
++
++void dwc_wusb_fill_ccm_nonce(uint16_t haddr, uint16_t daddr, uint8_t *tkid,
++ uint8_t *nonce);
++void dwc_wusb_gen_nonce(uint16_t addr,
++ uint8_t *nonce);
++
++void dwc_wusb_gen_key(uint8_t *ccm_nonce, uint8_t *mk,
++ uint8_t *hnonce, uint8_t *dnonce,
++ uint8_t *kck, uint8_t *ptk);
++
++
++void dwc_wusb_gen_mic(uint8_t *ccm_nonce, uint8_t
++ *kck, uint8_t *data, uint8_t *mic);
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* _DWC_CRYPTO_H_ */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_dh.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_dh.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_dh.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_dh.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,291 @@
++/* =========================================================================
++ * $File: //dwh/usb_iip/dev/software/dwc_common_port_2/dwc_dh.c $
++ * $Revision: #3 $
++ * $Date: 2010/09/28 $
++ * $Change: 1596182 $
++ *
++ * Synopsys Portability Library Software and documentation
++ * (hereinafter, "Software") is an Unsupported proprietary work of
++ * Synopsys, Inc. unless otherwise expressly agreed to in writing
++ * between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product
++ * under any End User Software License Agreement or Agreement for
++ * Licensed Product with Synopsys or any supplement thereto. You are
++ * permitted to use and redistribute this Software in source and binary
++ * forms, with or without modification, provided that redistributions
++ * of source code must retain this notice. You may not view, use,
++ * disclose, copy or distribute this file or any information contained
++ * herein except pursuant to this license grant from Synopsys. If you
++ * do not agree with this notice, including the disclaimer below, then
++ * you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
++ * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
++ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
++ * FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
++ * SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
++ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
++ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================= */
++#ifdef DWC_CRYPTOLIB
++
++#ifndef CONFIG_MACH_IPMATE
++
++#include "dwc_dh.h"
++#include "dwc_modpow.h"
++
++#ifdef DEBUG
++/* This function prints out a buffer in the format described in the Association
++ * Model specification. */
++static void dh_dump(char *str, void *_num, int len)
++{
++ uint8_t *num = _num;
++ int i;
++ DWC_PRINTF("%s\n", str);
++ for (i = 0; i < len; i ++) {
++ DWC_PRINTF("%02x", num[i]);
++ if (((i + 1) % 2) == 0) DWC_PRINTF(" ");
++ if (((i + 1) % 26) == 0) DWC_PRINTF("\n");
++ }
++
++ DWC_PRINTF("\n");
++}
++#else
++#define dh_dump(_x...) do {; } while(0)
++#endif
++
++/* Constant g value */
++static __u32 dh_g[] = {
++ 0x02000000,
++};
++
++/* Constant p value */
++static __u32 dh_p[] = {
++ 0xFFFFFFFF, 0xFFFFFFFF, 0xA2DA0FC9, 0x34C26821, 0x8B62C6C4, 0xD11CDC80, 0x084E0229, 0x74CC678A,
++ 0xA6BE0B02, 0x229B133B, 0x79084A51, 0xDD04348E, 0xB31995EF, 0x1B433ACD, 0x6D0A2B30, 0x37145FF2,
++ 0x6D35E14F, 0x45C2516D, 0x76B585E4, 0xC67E5E62, 0xE9424CF4, 0x6BED37A6, 0xB65CFF0B, 0xEDB706F4,
++ 0xFB6B38EE, 0xA59F895A, 0x11249FAE, 0xE61F4B7C, 0x51662849, 0x3D5BE4EC, 0xB87C00C2, 0x05BF63A1,
++ 0x3648DA98, 0x9AD3551C, 0xA83F1669, 0x5FCF24FD, 0x235D6583, 0x96ADA3DC, 0x56F3621C, 0xBB528520,
++ 0x0729D59E, 0x6D969670, 0x4E350C67, 0x0498BC4A, 0x086C74F1, 0x7C2118CA, 0x465E9032, 0x3BCE362E,
++ 0x2C779EE3, 0x03860E18, 0xA283279B, 0x8FA207EC, 0xF05DC5B5, 0xC9524C6F, 0xF6CB2BDE, 0x18175895,
++ 0x7C499539, 0xE56A95EA, 0x1826D215, 0x1005FA98, 0x5A8E7215, 0x2DC4AA8A, 0x0D1733AD, 0x337A5004,
++ 0xAB2155A8, 0x64BA1CDF, 0x0485FBEC, 0x0AEFDB58, 0x5771EA8A, 0x7D0C065D, 0x850F97B3, 0xC7E4E1A6,
++ 0x8CAEF5AB, 0xD73309DB, 0xE0948C1E, 0x9D61254A, 0x26D2E3CE, 0x6BEED21A, 0x06FA2FF1, 0x64088AD9,
++ 0x730276D8, 0x646AC83E, 0x182B1F52, 0x0C207B17, 0x5717E1BB, 0x6C5D617A, 0xC0880977, 0xE246D9BA,
++ 0xA04FE208, 0x31ABE574, 0xFC5BDB43, 0x8E10FDE0, 0x20D1824B, 0xCAD23AA9, 0xFFFFFFFF, 0xFFFFFFFF,
++};
++
++static void dh_swap_bytes(void *_in, void *_out, uint32_t len)
++{
++ uint8_t *in = _in;
++ uint8_t *out = _out;
++ int i;
++ for (i=0; i<len; i++) {
++ out[i] = in[len-1-i];
++ }
++}
++
++/* Computes the modular exponentiation (num^exp % mod). num, exp, and mod are
++ * big endian numbers of size len, in bytes. Each len value must be a multiple
++ * of 4. */
++int dwc_dh_modpow(void *mem_ctx, void *num, uint32_t num_len,
++ void *exp, uint32_t exp_len,
++ void *mod, uint32_t mod_len,
++ void *out)
++{
++ /* modpow() takes little endian numbers. AM uses big-endian. This
++ * function swaps bytes of numbers before passing onto modpow. */
++
++ int retval = 0;
++ uint32_t *result;
++
++ uint32_t *bignum_num = dwc_alloc(mem_ctx, num_len + 4);
++ uint32_t *bignum_exp = dwc_alloc(mem_ctx, exp_len + 4);
++ uint32_t *bignum_mod = dwc_alloc(mem_ctx, mod_len + 4);
++
++ dh_swap_bytes(num, &bignum_num[1], num_len);
++ bignum_num[0] = num_len / 4;
++
++ dh_swap_bytes(exp, &bignum_exp[1], exp_len);
++ bignum_exp[0] = exp_len / 4;
++
++ dh_swap_bytes(mod, &bignum_mod[1], mod_len);
++ bignum_mod[0] = mod_len / 4;
++
++ result = dwc_modpow(mem_ctx, bignum_num, bignum_exp, bignum_mod);
++ if (!result) {
++ retval = -1;
++ goto dh_modpow_nomem;
++ }
++
++ dh_swap_bytes(&result[1], out, result[0] * 4);
++ dwc_free(mem_ctx, result);
++
++ dh_modpow_nomem:
++ dwc_free(mem_ctx, bignum_num);
++ dwc_free(mem_ctx, bignum_exp);
++ dwc_free(mem_ctx, bignum_mod);
++ return retval;
++}
++
++
++int dwc_dh_pk(void *mem_ctx, uint8_t nd, uint8_t *exp, uint8_t *pk, uint8_t *hash)
++{
++ int retval;
++ uint8_t m3[385];
++
++#ifndef DH_TEST_VECTORS
++ DWC_RANDOM_BYTES(exp, 32);
++#endif
++
++ /* Compute the pkd */
++ if ((retval = dwc_dh_modpow(mem_ctx, dh_g, 4,
++ exp, 32,
++ dh_p, 384, pk))) {
++ return retval;
++ }
++
++ m3[384] = nd;
++ DWC_MEMCPY(&m3[0], pk, 384);
++ DWC_SHA256(m3, 385, hash);
++
++ dh_dump("PK", pk, 384);
++ dh_dump("SHA-256(M3)", hash, 32);
++ return 0;
++}
++
++int dwc_dh_derive_keys(void *mem_ctx, uint8_t nd, uint8_t *pkh, uint8_t *pkd,
++ uint8_t *exp, int is_host,
++ char *dd, uint8_t *ck, uint8_t *kdk)
++{
++ int retval;
++ uint8_t mv[784];
++ uint8_t sha_result[32];
++ uint8_t dhkey[384];
++ uint8_t shared_secret[384];
++ char *message;
++ uint32_t vd;
++
++ uint8_t *pk;
++
++ if (is_host) {
++ pk = pkd;
++ }
++ else {
++ pk = pkh;
++ }
++
++ if ((retval = dwc_dh_modpow(mem_ctx, pk, 384,
++ exp, 32,
++ dh_p, 384, shared_secret))) {
++ return retval;
++ }
++ dh_dump("Shared Secret", shared_secret, 384);
++
++ DWC_SHA256(shared_secret, 384, dhkey);
++ dh_dump("DHKEY", dhkey, 384);
++
++ DWC_MEMCPY(&mv[0], pkd, 384);
++ DWC_MEMCPY(&mv[384], pkh, 384);
++ DWC_MEMCPY(&mv[768], "displayed digest", 16);
++ dh_dump("MV", mv, 784);
++
++ DWC_SHA256(mv, 784, sha_result);
++ dh_dump("SHA-256(MV)", sha_result, 32);
++ dh_dump("First 32-bits of SHA-256(MV)", sha_result, 4);
++
++ dh_swap_bytes(sha_result, &vd, 4);
++#ifdef DEBUG
++ DWC_PRINTF("Vd (decimal) = %d\n", vd);
++#endif
++
++ switch (nd) {
++ case 2:
++ vd = vd % 100;
++ DWC_SPRINTF(dd, "%02d", vd);
++ break;
++ case 3:
++ vd = vd % 1000;
++ DWC_SPRINTF(dd, "%03d", vd);
++ break;
++ case 4:
++ vd = vd % 10000;
++ DWC_SPRINTF(dd, "%04d", vd);
++ break;
++ }
++#ifdef DEBUG
++ DWC_PRINTF("Display Digits: %s\n", dd);
++#endif
++
++ message = "connection key";
++ DWC_HMAC_SHA256(message, DWC_STRLEN(message), dhkey, 32, sha_result);
++ dh_dump("HMAC(SHA-256, DHKey, connection key)", sha_result, 32);
++ DWC_MEMCPY(ck, sha_result, 16);
++
++ message = "key derivation key";
++ DWC_HMAC_SHA256(message, DWC_STRLEN(message), dhkey, 32, sha_result);
++ dh_dump("HMAC(SHA-256, DHKey, key derivation key)", sha_result, 32);
++ DWC_MEMCPY(kdk, sha_result, 32);
++
++ return 0;
++}
++
++
++#ifdef DH_TEST_VECTORS
++
++static __u8 dh_a[] = {
++ 0x44, 0x00, 0x51, 0xd6,
++ 0xf0, 0xb5, 0x5e, 0xa9,
++ 0x67, 0xab, 0x31, 0xc6,
++ 0x8a, 0x8b, 0x5e, 0x37,
++ 0xd9, 0x10, 0xda, 0xe0,
++ 0xe2, 0xd4, 0x59, 0xa4,
++ 0x86, 0x45, 0x9c, 0xaa,
++ 0xdf, 0x36, 0x75, 0x16,
++};
++
++static __u8 dh_b[] = {
++ 0x5d, 0xae, 0xc7, 0x86,
++ 0x79, 0x80, 0xa3, 0x24,
++ 0x8c, 0xe3, 0x57, 0x8f,
++ 0xc7, 0x5f, 0x1b, 0x0f,
++ 0x2d, 0xf8, 0x9d, 0x30,
++ 0x6f, 0xa4, 0x52, 0xcd,
++ 0xe0, 0x7a, 0x04, 0x8a,
++ 0xde, 0xd9, 0x26, 0x56,
++};
++
++void dwc_run_dh_test_vectors(void *mem_ctx)
++{
++ uint8_t pkd[384];
++ uint8_t pkh[384];
++ uint8_t hashd[32];
++ uint8_t hashh[32];
++ uint8_t ck[16];
++ uint8_t kdk[32];
++ char dd[5];
++
++ DWC_PRINTF("\n\n\nDH_TEST_VECTORS\n\n");
++
++ /* compute the PKd and SHA-256(PKd || Nd) */
++ DWC_PRINTF("Computing PKd\n");
++ dwc_dh_pk(mem_ctx, 2, dh_a, pkd, hashd);
++
++ /* compute the PKd and SHA-256(PKh || Nd) */
++ DWC_PRINTF("Computing PKh\n");
++ dwc_dh_pk(mem_ctx, 2, dh_b, pkh, hashh);
++
++ /* compute the dhkey */
++ dwc_dh_derive_keys(mem_ctx, 2, pkh, pkd, dh_a, 0, dd, ck, kdk);
++}
++#endif /* DH_TEST_VECTORS */
++
++#endif /* !CONFIG_MACH_IPMATE */
++
++#endif /* DWC_CRYPTOLIB */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_dh.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_dh.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_dh.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_dh.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,106 @@
++/* =========================================================================
++ * $File: //dwh/usb_iip/dev/software/dwc_common_port_2/dwc_dh.h $
++ * $Revision: #4 $
++ * $Date: 2010/09/28 $
++ * $Change: 1596182 $
++ *
++ * Synopsys Portability Library Software and documentation
++ * (hereinafter, "Software") is an Unsupported proprietary work of
++ * Synopsys, Inc. unless otherwise expressly agreed to in writing
++ * between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product
++ * under any End User Software License Agreement or Agreement for
++ * Licensed Product with Synopsys or any supplement thereto. You are
++ * permitted to use and redistribute this Software in source and binary
++ * forms, with or without modification, provided that redistributions
++ * of source code must retain this notice. You may not view, use,
++ * disclose, copy or distribute this file or any information contained
++ * herein except pursuant to this license grant from Synopsys. If you
++ * do not agree with this notice, including the disclaimer below, then
++ * you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
++ * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
++ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
++ * FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
++ * SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
++ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
++ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================= */
++#ifndef _DWC_DH_H_
++#define _DWC_DH_H_
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++#include "dwc_os.h"
++
++/** @file
++ *
++ * This file defines the common functions on device and host for performing
++ * numeric association as defined in the WUSB spec. They are only to be
++ * used internally by the DWC UWB modules. */
++
++extern int dwc_dh_sha256(uint8_t *message, uint32_t len, uint8_t *out);
++extern int dwc_dh_hmac_sha256(uint8_t *message, uint32_t messagelen,
++ uint8_t *key, uint32_t keylen,
++ uint8_t *out);
++extern int dwc_dh_modpow(void *mem_ctx, void *num, uint32_t num_len,
++ void *exp, uint32_t exp_len,
++ void *mod, uint32_t mod_len,
++ void *out);
++
++/** Computes PKD or PKH, and SHA-256(PKd || Nd)
++ *
++ * PK = g^exp mod p.
++ *
++ * Input:
++ * Nd = Number of digits on the device.
++ *
++ * Output:
++ * exp = A 32-byte buffer to be filled with a randomly generated number.
++ * used as either A or B.
++ * pk = A 384-byte buffer to be filled with the PKH or PKD.
++ * hash = A 32-byte buffer to be filled with SHA-256(PK || ND).
++ */
++extern int dwc_dh_pk(void *mem_ctx, uint8_t nd, uint8_t *exp, uint8_t *pkd, uint8_t *hash);
++
++/** Computes the DHKEY, and VD.
++ *
++ * If called from host, then it will comput DHKEY=PKD^exp % p.
++ * If called from device, then it will comput DHKEY=PKH^exp % p.
++ *
++ * Input:
++ * pkd = The PKD value.
++ * pkh = The PKH value.
++ * exp = The A value (if device) or B value (if host) generated in dwc_wudev_dh_pk.
++ * is_host = Set to non zero if a WUSB host is calling this function.
++ *
++ * Output:
++
++ * dd = A pointer to an buffer to be set to the displayed digits string to be shown
++ * to the user. This buffer should be at 5 bytes long to hold 4 digits plus a
++ * null termination character. This buffer can be used directly for display.
++ * ck = A 16-byte buffer to be filled with the CK.
++ * kdk = A 32-byte buffer to be filled with the KDK.
++ */
++extern int dwc_dh_derive_keys(void *mem_ctx, uint8_t nd, uint8_t *pkh, uint8_t *pkd,
++ uint8_t *exp, int is_host,
++ char *dd, uint8_t *ck, uint8_t *kdk);
++
++#ifdef DH_TEST_VECTORS
++extern void dwc_run_dh_test_vectors(void);
++#endif
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* _DWC_DH_H_ */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_list.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_list.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_list.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_list.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,594 @@
++/* $OpenBSD: queue.h,v 1.26 2004/05/04 16:59:32 grange Exp $ */
++/* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
++
++/*
++ * Copyright (c) 1991, 1993
++ * The Regents of the University of California. All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. Neither the name of the University nor the names of its contributors
++ * may be used to endorse or promote products derived from this software
++ * without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
++ * SUCH DAMAGE.
++ *
++ * @(#)queue.h 8.5 (Berkeley) 8/20/94
++ */
++
++#ifndef _DWC_LIST_H_
++#define _DWC_LIST_H_
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/** @file
++ *
++ * This file defines linked list operations. It is derived from BSD with
++ * only the MACRO names being prefixed with DWC_. This is because a few of
++ * these names conflict with those on Linux. For documentation on use, see the
++ * inline comments in the source code. The original license for this source
++ * code applies and is preserved in the dwc_list.h source file.
++ */
++
++/*
++ * This file defines five types of data structures: singly-linked lists,
++ * lists, simple queues, tail queues, and circular queues.
++ *
++ *
++ * A singly-linked list is headed by a single forward pointer. The elements
++ * are singly linked for minimum space and pointer manipulation overhead at
++ * the expense of O(n) removal for arbitrary elements. New elements can be
++ * added to the list after an existing element or at the head of the list.
++ * Elements being removed from the head of the list should use the explicit
++ * macro for this purpose for optimum efficiency. A singly-linked list may
++ * only be traversed in the forward direction. Singly-linked lists are ideal
++ * for applications with large datasets and few or no removals or for
++ * implementing a LIFO queue.
++ *
++ * A list is headed by a single forward pointer (or an array of forward
++ * pointers for a hash table header). The elements are doubly linked
++ * so that an arbitrary element can be removed without a need to
++ * traverse the list. New elements can be added to the list before
++ * or after an existing element or at the head of the list. A list
++ * may only be traversed in the forward direction.
++ *
++ * A simple queue is headed by a pair of pointers, one the head of the
++ * list and the other to the tail of the list. The elements are singly
++ * linked to save space, so elements can only be removed from the
++ * head of the list. New elements can be added to the list before or after
++ * an existing element, at the head of the list, or at the end of the
++ * list. A simple queue may only be traversed in the forward direction.
++ *
++ * A tail queue is headed by a pair of pointers, one to the head of the
++ * list and the other to the tail of the list. The elements are doubly
++ * linked so that an arbitrary element can be removed without a need to
++ * traverse the list. New elements can be added to the list before or
++ * after an existing element, at the head of the list, or at the end of
++ * the list. A tail queue may be traversed in either direction.
++ *
++ * A circle queue is headed by a pair of pointers, one to the head of the
++ * list and the other to the tail of the list. The elements are doubly
++ * linked so that an arbitrary element can be removed without a need to
++ * traverse the list. New elements can be added to the list before or after
++ * an existing element, at the head of the list, or at the end of the list.
++ * A circle queue may be traversed in either direction, but has a more
++ * complex end of list detection.
++ *
++ * For details on the use of these macros, see the queue(3) manual page.
++ */
++
++/*
++ * Double-linked List.
++ */
++
++typedef struct dwc_list_link {
++ struct dwc_list_link *next;
++ struct dwc_list_link *prev;
++} dwc_list_link_t;
++
++#define DWC_LIST_INIT(link) do { \
++ (link)->next = (link); \
++ (link)->prev = (link); \
++} while (0)
++
++#define DWC_LIST_FIRST(link) ((link)->next)
++#define DWC_LIST_LAST(link) ((link)->prev)
++#define DWC_LIST_END(link) (link)
++#define DWC_LIST_NEXT(link) ((link)->next)
++#define DWC_LIST_PREV(link) ((link)->prev)
++#define DWC_LIST_EMPTY(link) \
++ (DWC_LIST_FIRST(link) == DWC_LIST_END(link))
++#define DWC_LIST_ENTRY(link, type, field) \
++ (type *)((uint8_t *)(link) - (size_t)(&((type *)0)->field))
++
++#if 0
++#define DWC_LIST_INSERT_HEAD(list, link) do { \
++ (link)->next = (list)->next; \
++ (link)->prev = (list); \
++ (list)->next->prev = (link); \
++ (list)->next = (link); \
++} while (0)
++
++#define DWC_LIST_INSERT_TAIL(list, link) do { \
++ (link)->next = (list); \
++ (link)->prev = (list)->prev; \
++ (list)->prev->next = (link); \
++ (list)->prev = (link); \
++} while (0)
++#else
++#define DWC_LIST_INSERT_HEAD(list, link) do { \
++ dwc_list_link_t *__next__ = (list)->next; \
++ __next__->prev = (link); \
++ (link)->next = __next__; \
++ (link)->prev = (list); \
++ (list)->next = (link); \
++} while (0)
++
++#define DWC_LIST_INSERT_TAIL(list, link) do { \
++ dwc_list_link_t *__prev__ = (list)->prev; \
++ (list)->prev = (link); \
++ (link)->next = (list); \
++ (link)->prev = __prev__; \
++ __prev__->next = (link); \
++} while (0)
++#endif
++
++#if 0
++static inline void __list_add(struct list_head *new,
++ struct list_head *prev,
++ struct list_head *next)
++{
++ next->prev = new;
++ new->next = next;
++ new->prev = prev;
++ prev->next = new;
++}
++
++static inline void list_add(struct list_head *new, struct list_head *head)
++{
++ __list_add(new, head, head->next);
++}
++
++static inline void list_add_tail(struct list_head *new, struct list_head *head)
++{
++ __list_add(new, head->prev, head);
++}
++
++static inline void __list_del(struct list_head * prev, struct list_head * next)
++{
++ next->prev = prev;
++ prev->next = next;
++}
++
++static inline void list_del(struct list_head *entry)
++{
++ __list_del(entry->prev, entry->next);
++ entry->next = LIST_POISON1;
++ entry->prev = LIST_POISON2;
++}
++#endif
++
++#define DWC_LIST_REMOVE(link) do { \
++ (link)->next->prev = (link)->prev; \
++ (link)->prev->next = (link)->next; \
++} while (0)
++
++#define DWC_LIST_REMOVE_INIT(link) do { \
++ DWC_LIST_REMOVE(link); \
++ DWC_LIST_INIT(link); \
++} while (0)
++
++#define DWC_LIST_MOVE_HEAD(list, link) do { \
++ DWC_LIST_REMOVE(link); \
++ DWC_LIST_INSERT_HEAD(list, link); \
++} while (0)
++
++#define DWC_LIST_MOVE_TAIL(list, link) do { \
++ DWC_LIST_REMOVE(link); \
++ DWC_LIST_INSERT_TAIL(list, link); \
++} while (0)
++
++#define DWC_LIST_FOREACH(var, list) \
++ for((var) = DWC_LIST_FIRST(list); \
++ (var) != DWC_LIST_END(list); \
++ (var) = DWC_LIST_NEXT(var))
++
++#define DWC_LIST_FOREACH_SAFE(var, var2, list) \
++ for((var) = DWC_LIST_FIRST(list), (var2) = DWC_LIST_NEXT(var); \
++ (var) != DWC_LIST_END(list); \
++ (var) = (var2), (var2) = DWC_LIST_NEXT(var2))
++
++#define DWC_LIST_FOREACH_REVERSE(var, list) \
++ for((var) = DWC_LIST_LAST(list); \
++ (var) != DWC_LIST_END(list); \
++ (var) = DWC_LIST_PREV(var))
++
++/*
++ * Singly-linked List definitions.
++ */
++#define DWC_SLIST_HEAD(name, type) \
++struct name { \
++ struct type *slh_first; /* first element */ \
++}
++
++#define DWC_SLIST_HEAD_INITIALIZER(head) \
++ { NULL }
++
++#define DWC_SLIST_ENTRY(type) \
++struct { \
++ struct type *sle_next; /* next element */ \
++}
++
++/*
++ * Singly-linked List access methods.
++ */
++#define DWC_SLIST_FIRST(head) ((head)->slh_first)
++#define DWC_SLIST_END(head) NULL
++#define DWC_SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
++#define DWC_SLIST_NEXT(elm, field) ((elm)->field.sle_next)
++
++#define DWC_SLIST_FOREACH(var, head, field) \
++ for((var) = SLIST_FIRST(head); \
++ (var) != SLIST_END(head); \
++ (var) = SLIST_NEXT(var, field))
++
++#define DWC_SLIST_FOREACH_PREVPTR(var, varp, head, field) \
++ for((varp) = &SLIST_FIRST((head)); \
++ ((var) = *(varp)) != SLIST_END(head); \
++ (varp) = &SLIST_NEXT((var), field))
++
++/*
++ * Singly-linked List functions.
++ */
++#define DWC_SLIST_INIT(head) { \
++ SLIST_FIRST(head) = SLIST_END(head); \
++}
++
++#define DWC_SLIST_INSERT_AFTER(slistelm, elm, field) do { \
++ (elm)->field.sle_next = (slistelm)->field.sle_next; \
++ (slistelm)->field.sle_next = (elm); \
++} while (0)
++
++#define DWC_SLIST_INSERT_HEAD(head, elm, field) do { \
++ (elm)->field.sle_next = (head)->slh_first; \
++ (head)->slh_first = (elm); \
++} while (0)
++
++#define DWC_SLIST_REMOVE_NEXT(head, elm, field) do { \
++ (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \
++} while (0)
++
++#define DWC_SLIST_REMOVE_HEAD(head, field) do { \
++ (head)->slh_first = (head)->slh_first->field.sle_next; \
++} while (0)
++
++#define DWC_SLIST_REMOVE(head, elm, type, field) do { \
++ if ((head)->slh_first == (elm)) { \
++ SLIST_REMOVE_HEAD((head), field); \
++ } \
++ else { \
++ struct type *curelm = (head)->slh_first; \
++ while( curelm->field.sle_next != (elm) ) \
++ curelm = curelm->field.sle_next; \
++ curelm->field.sle_next = \
++ curelm->field.sle_next->field.sle_next; \
++ } \
++} while (0)
++
++/*
++ * Simple queue definitions.
++ */
++#define DWC_SIMPLEQ_HEAD(name, type) \
++struct name { \
++ struct type *sqh_first; /* first element */ \
++ struct type **sqh_last; /* addr of last next element */ \
++}
++
++#define DWC_SIMPLEQ_HEAD_INITIALIZER(head) \
++ { NULL, &(head).sqh_first }
++
++#define DWC_SIMPLEQ_ENTRY(type) \
++struct { \
++ struct type *sqe_next; /* next element */ \
++}
++
++/*
++ * Simple queue access methods.
++ */
++#define DWC_SIMPLEQ_FIRST(head) ((head)->sqh_first)
++#define DWC_SIMPLEQ_END(head) NULL
++#define DWC_SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
++#define DWC_SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
++
++#define DWC_SIMPLEQ_FOREACH(var, head, field) \
++ for((var) = SIMPLEQ_FIRST(head); \
++ (var) != SIMPLEQ_END(head); \
++ (var) = SIMPLEQ_NEXT(var, field))
++
++/*
++ * Simple queue functions.
++ */
++#define DWC_SIMPLEQ_INIT(head) do { \
++ (head)->sqh_first = NULL; \
++ (head)->sqh_last = &(head)->sqh_first; \
++} while (0)
++
++#define DWC_SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
++ if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
++ (head)->sqh_last = &(elm)->field.sqe_next; \
++ (head)->sqh_first = (elm); \
++} while (0)
++
++#define DWC_SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
++ (elm)->field.sqe_next = NULL; \
++ *(head)->sqh_last = (elm); \
++ (head)->sqh_last = &(elm)->field.sqe_next; \
++} while (0)
++
++#define DWC_SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
++ if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
++ (head)->sqh_last = &(elm)->field.sqe_next; \
++ (listelm)->field.sqe_next = (elm); \
++} while (0)
++
++#define DWC_SIMPLEQ_REMOVE_HEAD(head, field) do { \
++ if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
++ (head)->sqh_last = &(head)->sqh_first; \
++} while (0)
++
++/*
++ * Tail queue definitions.
++ */
++#define DWC_TAILQ_HEAD(name, type) \
++struct name { \
++ struct type *tqh_first; /* first element */ \
++ struct type **tqh_last; /* addr of last next element */ \
++}
++
++#define DWC_TAILQ_HEAD_INITIALIZER(head) \
++ { NULL, &(head).tqh_first }
++
++#define DWC_TAILQ_ENTRY(type) \
++struct { \
++ struct type *tqe_next; /* next element */ \
++ struct type **tqe_prev; /* address of previous next element */ \
++}
++
++/*
++ * tail queue access methods
++ */
++#define DWC_TAILQ_FIRST(head) ((head)->tqh_first)
++#define DWC_TAILQ_END(head) NULL
++#define DWC_TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
++#define DWC_TAILQ_LAST(head, headname) \
++ (*(((struct headname *)((head)->tqh_last))->tqh_last))
++/* XXX */
++#define DWC_TAILQ_PREV(elm, headname, field) \
++ (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
++#define DWC_TAILQ_EMPTY(head) \
++ (DWC_TAILQ_FIRST(head) == DWC_TAILQ_END(head))
++
++#define DWC_TAILQ_FOREACH(var, head, field) \
++ for ((var) = DWC_TAILQ_FIRST(head); \
++ (var) != DWC_TAILQ_END(head); \
++ (var) = DWC_TAILQ_NEXT(var, field))
++
++#define DWC_TAILQ_FOREACH_REVERSE(var, head, headname, field) \
++ for ((var) = DWC_TAILQ_LAST(head, headname); \
++ (var) != DWC_TAILQ_END(head); \
++ (var) = DWC_TAILQ_PREV(var, headname, field))
++
++/*
++ * Tail queue functions.
++ */
++#define DWC_TAILQ_INIT(head) do { \
++ (head)->tqh_first = NULL; \
++ (head)->tqh_last = &(head)->tqh_first; \
++} while (0)
++
++#define DWC_TAILQ_INSERT_HEAD(head, elm, field) do { \
++ if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
++ (head)->tqh_first->field.tqe_prev = \
++ &(elm)->field.tqe_next; \
++ else \
++ (head)->tqh_last = &(elm)->field.tqe_next; \
++ (head)->tqh_first = (elm); \
++ (elm)->field.tqe_prev = &(head)->tqh_first; \
++} while (0)
++
++#define DWC_TAILQ_INSERT_TAIL(head, elm, field) do { \
++ (elm)->field.tqe_next = NULL; \
++ (elm)->field.tqe_prev = (head)->tqh_last; \
++ *(head)->tqh_last = (elm); \
++ (head)->tqh_last = &(elm)->field.tqe_next; \
++} while (0)
++
++#define DWC_TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
++ if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
++ (elm)->field.tqe_next->field.tqe_prev = \
++ &(elm)->field.tqe_next; \
++ else \
++ (head)->tqh_last = &(elm)->field.tqe_next; \
++ (listelm)->field.tqe_next = (elm); \
++ (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
++} while (0)
++
++#define DWC_TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
++ (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
++ (elm)->field.tqe_next = (listelm); \
++ *(listelm)->field.tqe_prev = (elm); \
++ (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
++} while (0)
++
++#define DWC_TAILQ_REMOVE(head, elm, field) do { \
++ if (((elm)->field.tqe_next) != NULL) \
++ (elm)->field.tqe_next->field.tqe_prev = \
++ (elm)->field.tqe_prev; \
++ else \
++ (head)->tqh_last = (elm)->field.tqe_prev; \
++ *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
++} while (0)
++
++#define DWC_TAILQ_REPLACE(head, elm, elm2, field) do { \
++ if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
++ (elm2)->field.tqe_next->field.tqe_prev = \
++ &(elm2)->field.tqe_next; \
++ else \
++ (head)->tqh_last = &(elm2)->field.tqe_next; \
++ (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
++ *(elm2)->field.tqe_prev = (elm2); \
++} while (0)
++
++/*
++ * Circular queue definitions.
++ */
++#define DWC_CIRCLEQ_HEAD(name, type) \
++struct name { \
++ struct type *cqh_first; /* first element */ \
++ struct type *cqh_last; /* last element */ \
++}
++
++#define DWC_CIRCLEQ_HEAD_INITIALIZER(head) \
++ { DWC_CIRCLEQ_END(&head), DWC_CIRCLEQ_END(&head) }
++
++#define DWC_CIRCLEQ_ENTRY(type) \
++struct { \
++ struct type *cqe_next; /* next element */ \
++ struct type *cqe_prev; /* previous element */ \
++}
++
++/*
++ * Circular queue access methods
++ */
++#define DWC_CIRCLEQ_FIRST(head) ((head)->cqh_first)
++#define DWC_CIRCLEQ_LAST(head) ((head)->cqh_last)
++#define DWC_CIRCLEQ_END(head) ((void *)(head))
++#define DWC_CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
++#define DWC_CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
++#define DWC_CIRCLEQ_EMPTY(head) \
++ (DWC_CIRCLEQ_FIRST(head) == DWC_CIRCLEQ_END(head))
++
++#define DWC_CIRCLEQ_EMPTY_ENTRY(elm, field) (((elm)->field.cqe_next == NULL) && ((elm)->field.cqe_prev == NULL))
++
++#define DWC_CIRCLEQ_FOREACH(var, head, field) \
++ for((var) = DWC_CIRCLEQ_FIRST(head); \
++ (var) != DWC_CIRCLEQ_END(head); \
++ (var) = DWC_CIRCLEQ_NEXT(var, field))
++
++#define DWC_CIRCLEQ_FOREACH_SAFE(var, var2, head, field) \
++ for((var) = DWC_CIRCLEQ_FIRST(head), var2 = DWC_CIRCLEQ_NEXT(var, field); \
++ (var) != DWC_CIRCLEQ_END(head); \
++ (var) = var2, var2 = DWC_CIRCLEQ_NEXT(var, field))
++
++#define DWC_CIRCLEQ_FOREACH_REVERSE(var, head, field) \
++ for((var) = DWC_CIRCLEQ_LAST(head); \
++ (var) != DWC_CIRCLEQ_END(head); \
++ (var) = DWC_CIRCLEQ_PREV(var, field))
++
++/*
++ * Circular queue functions.
++ */
++#define DWC_CIRCLEQ_INIT(head) do { \
++ (head)->cqh_first = DWC_CIRCLEQ_END(head); \
++ (head)->cqh_last = DWC_CIRCLEQ_END(head); \
++} while (0)
++
++#define DWC_CIRCLEQ_INIT_ENTRY(elm, field) do { \
++ (elm)->field.cqe_next = NULL; \
++ (elm)->field.cqe_prev = NULL; \
++} while (0)
++
++#define DWC_CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
++ (elm)->field.cqe_next = (listelm)->field.cqe_next; \
++ (elm)->field.cqe_prev = (listelm); \
++ if ((listelm)->field.cqe_next == DWC_CIRCLEQ_END(head)) \
++ (head)->cqh_last = (elm); \
++ else \
++ (listelm)->field.cqe_next->field.cqe_prev = (elm); \
++ (listelm)->field.cqe_next = (elm); \
++} while (0)
++
++#define DWC_CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
++ (elm)->field.cqe_next = (listelm); \
++ (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
++ if ((listelm)->field.cqe_prev == DWC_CIRCLEQ_END(head)) \
++ (head)->cqh_first = (elm); \
++ else \
++ (listelm)->field.cqe_prev->field.cqe_next = (elm); \
++ (listelm)->field.cqe_prev = (elm); \
++} while (0)
++
++#define DWC_CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
++ (elm)->field.cqe_next = (head)->cqh_first; \
++ (elm)->field.cqe_prev = DWC_CIRCLEQ_END(head); \
++ if ((head)->cqh_last == DWC_CIRCLEQ_END(head)) \
++ (head)->cqh_last = (elm); \
++ else \
++ (head)->cqh_first->field.cqe_prev = (elm); \
++ (head)->cqh_first = (elm); \
++} while (0)
++
++#define DWC_CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
++ (elm)->field.cqe_next = DWC_CIRCLEQ_END(head); \
++ (elm)->field.cqe_prev = (head)->cqh_last; \
++ if ((head)->cqh_first == DWC_CIRCLEQ_END(head)) \
++ (head)->cqh_first = (elm); \
++ else \
++ (head)->cqh_last->field.cqe_next = (elm); \
++ (head)->cqh_last = (elm); \
++} while (0)
++
++#define DWC_CIRCLEQ_REMOVE(head, elm, field) do { \
++ if ((elm)->field.cqe_next == DWC_CIRCLEQ_END(head)) \
++ (head)->cqh_last = (elm)->field.cqe_prev; \
++ else \
++ (elm)->field.cqe_next->field.cqe_prev = \
++ (elm)->field.cqe_prev; \
++ if ((elm)->field.cqe_prev == DWC_CIRCLEQ_END(head)) \
++ (head)->cqh_first = (elm)->field.cqe_next; \
++ else \
++ (elm)->field.cqe_prev->field.cqe_next = \
++ (elm)->field.cqe_next; \
++} while (0)
++
++#define DWC_CIRCLEQ_REMOVE_INIT(head, elm, field) do { \
++ DWC_CIRCLEQ_REMOVE(head, elm, field); \
++ DWC_CIRCLEQ_INIT_ENTRY(elm, field); \
++} while (0)
++
++#define DWC_CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
++ if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
++ DWC_CIRCLEQ_END(head)) \
++ (head).cqh_last = (elm2); \
++ else \
++ (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
++ if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
++ DWC_CIRCLEQ_END(head)) \
++ (head).cqh_first = (elm2); \
++ else \
++ (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
++} while (0)
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* _DWC_LIST_H_ */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_mem.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_mem.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_mem.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_mem.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,245 @@
++/* Memory Debugging */
++#ifdef DWC_DEBUG_MEMORY
++
++#include "dwc_os.h"
++#include "dwc_list.h"
++
++struct allocation {
++ void *addr;
++ void *ctx;
++ char *func;
++ int line;
++ uint32_t size;
++ int dma;
++ DWC_CIRCLEQ_ENTRY(allocation) entry;
++};
++
++DWC_CIRCLEQ_HEAD(allocation_queue, allocation);
++
++struct allocation_manager {
++ void *mem_ctx;
++ struct allocation_queue allocations;
++
++ /* statistics */
++ int num;
++ int num_freed;
++ int num_active;
++ uint32_t total;
++ uint32_t cur;
++ uint32_t max;
++};
++
++static struct allocation_manager *manager = NULL;
++
++static int add_allocation(void *ctx, uint32_t size, char const *func, int line, void *addr,
++ int dma)
++{
++ struct allocation *a;
++
++ DWC_ASSERT(manager != NULL, "manager not allocated");
++
++ a = __DWC_ALLOC_ATOMIC(manager->mem_ctx, sizeof(*a));
++ if (!a) {
++ return -DWC_E_NO_MEMORY;
++ }
++
++ a->func = __DWC_ALLOC_ATOMIC(manager->mem_ctx, DWC_STRLEN(func) + 1);
++ if (!a->func) {
++ __DWC_FREE(manager->mem_ctx, a);
++ return -DWC_E_NO_MEMORY;
++ }
++
++ DWC_MEMCPY(a->func, func, DWC_STRLEN(func) + 1);
++ a->addr = addr;
++ a->ctx = ctx;
++ a->line = line;
++ a->size = size;
++ a->dma = dma;
++ DWC_CIRCLEQ_INSERT_TAIL(&manager->allocations, a, entry);
++
++ /* Update stats */
++ manager->num++;
++ manager->num_active++;
++ manager->total += size;
++ manager->cur += size;
++
++ if (manager->max < manager->cur) {
++ manager->max = manager->cur;
++ }
++
++ return 0;
++}
++
++static struct allocation *find_allocation(void *ctx, void *addr)
++{
++ struct allocation *a;
++
++ DWC_CIRCLEQ_FOREACH(a, &manager->allocations, entry) {
++ if (a->ctx == ctx && a->addr == addr) {
++ return a;
++ }
++ }
++
++ return NULL;
++}
++
++static void free_allocation(void *ctx, void *addr, char const *func, int line)
++{
++ struct allocation *a = find_allocation(ctx, addr);
++
++ if (!a) {
++ DWC_ASSERT(0,
++ "Free of address %p that was never allocated or already freed %s:%d",
++ addr, func, line);
++ return;
++ }
++
++ DWC_CIRCLEQ_REMOVE(&manager->allocations, a, entry);
++
++ manager->num_active--;
++ manager->num_freed++;
++ manager->cur -= a->size;
++ __DWC_FREE(manager->mem_ctx, a->func);
++ __DWC_FREE(manager->mem_ctx, a);
++}
++
++int dwc_memory_debug_start(void *mem_ctx)
++{
++ DWC_ASSERT(manager == NULL, "Memory debugging has already started\n");
++
++ if (manager) {
++ return -DWC_E_BUSY;
++ }
++
++ manager = __DWC_ALLOC(mem_ctx, sizeof(*manager));
++ if (!manager) {
++ return -DWC_E_NO_MEMORY;
++ }
++
++ DWC_CIRCLEQ_INIT(&manager->allocations);
++ manager->mem_ctx = mem_ctx;
++ manager->num = 0;
++ manager->num_freed = 0;
++ manager->num_active = 0;
++ manager->total = 0;
++ manager->cur = 0;
++ manager->max = 0;
++
++ return 0;
++}
++
++void dwc_memory_debug_stop(void)
++{
++ struct allocation *a;
++
++ dwc_memory_debug_report();
++
++ DWC_CIRCLEQ_FOREACH(a, &manager->allocations, entry) {
++ DWC_ERROR("Memory leaked from %s:%d\n", a->func, a->line);
++ free_allocation(a->ctx, a->addr, NULL, -1);
++ }
++
++ __DWC_FREE(manager->mem_ctx, manager);
++}
++
++void dwc_memory_debug_report(void)
++{
++ struct allocation *a;
++
++ DWC_PRINTF("\n\n\n----------------- Memory Debugging Report -----------------\n\n");
++ DWC_PRINTF("Num Allocations = %d\n", manager->num);
++ DWC_PRINTF("Freed = %d\n", manager->num_freed);
++ DWC_PRINTF("Active = %d\n", manager->num_active);
++ DWC_PRINTF("Current Memory Used = %d\n", manager->cur);
++ DWC_PRINTF("Total Memory Used = %d\n", manager->total);
++ DWC_PRINTF("Maximum Memory Used at Once = %d\n", manager->max);
++ DWC_PRINTF("Unfreed allocations:\n");
++
++ DWC_CIRCLEQ_FOREACH(a, &manager->allocations, entry) {
++ DWC_PRINTF(" addr=%p, size=%d from %s:%d, DMA=%d\n",
++ a->addr, a->size, a->func, a->line, a->dma);
++ }
++}
++
++/* The replacement functions */
++void *dwc_alloc_debug(void *mem_ctx, uint32_t size, char const *func, int line)
++{
++ void *addr = __DWC_ALLOC(mem_ctx, size);
++
++ if (!addr) {
++ return NULL;
++ }
++
++ if (add_allocation(mem_ctx, size, func, line, addr, 0)) {
++ __DWC_FREE(mem_ctx, addr);
++ return NULL;
++ }
++
++ return addr;
++}
++
++void *dwc_alloc_atomic_debug(void *mem_ctx, uint32_t size, char const *func,
++ int line)
++{
++ void *addr = __DWC_ALLOC_ATOMIC(mem_ctx, size);
++
++ if (!addr) {
++ return NULL;
++ }
++
++ if (add_allocation(mem_ctx, size, func, line, addr, 0)) {
++ __DWC_FREE(mem_ctx, addr);
++ return NULL;
++ }
++
++ return addr;
++}
++
++void dwc_free_debug(void *mem_ctx, void *addr, char const *func, int line)
++{
++ free_allocation(mem_ctx, addr, func, line);
++ __DWC_FREE(mem_ctx, addr);
++}
++
++void *dwc_dma_alloc_debug(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr,
++ char const *func, int line)
++{
++ void *addr = __DWC_DMA_ALLOC(dma_ctx, size, dma_addr);
++
++ if (!addr) {
++ return NULL;
++ }
++
++ if (add_allocation(dma_ctx, size, func, line, addr, 1)) {
++ __DWC_DMA_FREE(dma_ctx, size, addr, *dma_addr);
++ return NULL;
++ }
++
++ return addr;
++}
++
++void *dwc_dma_alloc_atomic_debug(void *dma_ctx, uint32_t size,
++ dwc_dma_t *dma_addr, char const *func, int line)
++{
++ void *addr = __DWC_DMA_ALLOC_ATOMIC(dma_ctx, size, dma_addr);
++
++ if (!addr) {
++ return NULL;
++ }
++
++ if (add_allocation(dma_ctx, size, func, line, addr, 1)) {
++ __DWC_DMA_FREE(dma_ctx, size, addr, *dma_addr);
++ return NULL;
++ }
++
++ return addr;
++}
++
++void dwc_dma_free_debug(void *dma_ctx, uint32_t size, void *virt_addr,
++ dwc_dma_t dma_addr, char const *func, int line)
++{
++ free_allocation(dma_ctx, virt_addr, func, line);
++ __DWC_DMA_FREE(dma_ctx, size, virt_addr, dma_addr);
++}
++
++#endif /* DWC_DEBUG_MEMORY */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_modpow.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_modpow.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_modpow.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_modpow.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,636 @@
++/* Bignum routines adapted from PUTTY sources. PuTTY copyright notice follows.
++ *
++ * PuTTY is copyright 1997-2007 Simon Tatham.
++ *
++ * Portions copyright Robert de Bath, Joris van Rantwijk, Delian
++ * Delchev, Andreas Schultz, Jeroen Massar, Wez Furlong, Nicolas Barry,
++ * Justin Bradford, Ben Harris, Malcolm Smith, Ahmad Khalifa, Markus
++ * Kuhn, and CORE SDI S.A.
++ *
++ * Permission is hereby granted, free of charge, to any person
++ * obtaining a copy of this software and associated documentation files
++ * (the "Software"), to deal in the Software without restriction,
++ * including without limitation the rights to use, copy, modify, merge,
++ * publish, distribute, sublicense, and/or sell copies of the Software,
++ * and to permit persons to whom the Software is furnished to do so,
++ * subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be
++ * included in all copies or substantial portions of the Software.
++
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
++ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
++ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
++ * NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE
++ * FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
++ * CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
++ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
++ *
++ */
++#ifdef DWC_CRYPTOLIB
++
++#ifndef CONFIG_MACH_IPMATE
++
++#include "dwc_modpow.h"
++
++#define BIGNUM_INT_MASK 0xFFFFFFFFUL
++#define BIGNUM_TOP_BIT 0x80000000UL
++#define BIGNUM_INT_BITS 32
++
++
++static void *snmalloc(void *mem_ctx, size_t n, size_t size)
++{
++ void *p;
++ size *= n;
++ if (size == 0) size = 1;
++ p = dwc_alloc(mem_ctx, size);
++ return p;
++}
++
++#define snewn(ctx, n, type) ((type *)snmalloc((ctx), (n), sizeof(type)))
++#define sfree dwc_free
++
++/*
++ * Usage notes:
++ * * Do not call the DIVMOD_WORD macro with expressions such as array
++ * subscripts, as some implementations object to this (see below).
++ * * Note that none of the division methods below will cope if the
++ * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful
++ * to avoid this case.
++ * If this condition occurs, in the case of the x86 DIV instruction,
++ * an overflow exception will occur, which (according to a correspondent)
++ * will manifest on Windows as something like
++ * 0xC0000095: Integer overflow
++ * The C variant won't give the right answer, either.
++ */
++
++#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2)
++
++#if defined __GNUC__ && defined __i386__
++#define DIVMOD_WORD(q, r, hi, lo, w) \
++ __asm__("div %2" : \
++ "=d" (r), "=a" (q) : \
++ "r" (w), "d" (hi), "a" (lo))
++#else
++#define DIVMOD_WORD(q, r, hi, lo, w) do { \
++ BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \
++ q = n / w; \
++ r = n % w; \
++} while (0)
++#endif
++
++// q = n / w;
++// r = n % w;
++
++#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8)
++
++#define BIGNUM_INTERNAL
++
++static Bignum newbn(void *mem_ctx, int length)
++{
++ Bignum b = snewn(mem_ctx, length + 1, BignumInt);
++ //if (!b)
++ //abort(); /* FIXME */
++ DWC_MEMSET(b, 0, (length + 1) * sizeof(*b));
++ b[0] = length;
++ return b;
++}
++
++void freebn(void *mem_ctx, Bignum b)
++{
++ /*
++ * Burn the evidence, just in case.
++ */
++ DWC_MEMSET(b, 0, sizeof(b[0]) * (b[0] + 1));
++ sfree(mem_ctx, b);
++}
++
++/*
++ * Compute c = a * b.
++ * Input is in the first len words of a and b.
++ * Result is returned in the first 2*len words of c.
++ */
++static void internal_mul(BignumInt *a, BignumInt *b,
++ BignumInt *c, int len)
++{
++ int i, j;
++ BignumDblInt t;
++
++ for (j = 0; j < 2 * len; j++)
++ c[j] = 0;
++
++ for (i = len - 1; i >= 0; i--) {
++ t = 0;
++ for (j = len - 1; j >= 0; j--) {
++ t += MUL_WORD(a[i], (BignumDblInt) b[j]);
++ t += (BignumDblInt) c[i + j + 1];
++ c[i + j + 1] = (BignumInt) t;
++ t = t >> BIGNUM_INT_BITS;
++ }
++ c[i] = (BignumInt) t;
++ }
++}
++
++static void internal_add_shifted(BignumInt *number,
++ unsigned n, int shift)
++{
++ int word = 1 + (shift / BIGNUM_INT_BITS);
++ int bshift = shift % BIGNUM_INT_BITS;
++ BignumDblInt addend;
++
++ addend = (BignumDblInt)n << bshift;
++
++ while (addend) {
++ addend += number[word];
++ number[word] = (BignumInt) addend & BIGNUM_INT_MASK;
++ addend >>= BIGNUM_INT_BITS;
++ word++;
++ }
++}
++
++/*
++ * Compute a = a % m.
++ * Input in first alen words of a and first mlen words of m.
++ * Output in first alen words of a
++ * (of which first alen-mlen words will be zero).
++ * The MSW of m MUST have its high bit set.
++ * Quotient is accumulated in the `quotient' array, which is a Bignum
++ * rather than the internal bigendian format. Quotient parts are shifted
++ * left by `qshift' before adding into quot.
++ */
++static void internal_mod(BignumInt *a, int alen,
++ BignumInt *m, int mlen,
++ BignumInt *quot, int qshift)
++{
++ BignumInt m0, m1;
++ unsigned int h;
++ int i, k;
++
++ m0 = m[0];
++ if (mlen > 1)
++ m1 = m[1];
++ else
++ m1 = 0;
++
++ for (i = 0; i <= alen - mlen; i++) {
++ BignumDblInt t;
++ unsigned int q, r, c, ai1;
++
++ if (i == 0) {
++ h = 0;
++ } else {
++ h = a[i - 1];
++ a[i - 1] = 0;
++ }
++
++ if (i == alen - 1)
++ ai1 = 0;
++ else
++ ai1 = a[i + 1];
++
++ /* Find q = h:a[i] / m0 */
++ if (h >= m0) {
++ /*
++ * Special case.
++ *
++ * To illustrate it, suppose a BignumInt is 8 bits, and
++ * we are dividing (say) A1:23:45:67 by A1:B2:C3. Then
++ * our initial division will be 0xA123 / 0xA1, which
++ * will give a quotient of 0x100 and a divide overflow.
++ * However, the invariants in this division algorithm
++ * are not violated, since the full number A1:23:... is
++ * _less_ than the quotient prefix A1:B2:... and so the
++ * following correction loop would have sorted it out.
++ *
++ * In this situation we set q to be the largest
++ * quotient we _can_ stomach (0xFF, of course).
++ */
++ q = BIGNUM_INT_MASK;
++ } else {
++ /* Macro doesn't want an array subscript expression passed
++ * into it (see definition), so use a temporary. */
++ BignumInt tmplo = a[i];
++ DIVMOD_WORD(q, r, h, tmplo, m0);
++
++ /* Refine our estimate of q by looking at
++ h:a[i]:a[i+1] / m0:m1 */
++ t = MUL_WORD(m1, q);
++ if (t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) {
++ q--;
++ t -= m1;
++ r = (r + m0) & BIGNUM_INT_MASK; /* overflow? */
++ if (r >= (BignumDblInt) m0 &&
++ t > ((BignumDblInt) r << BIGNUM_INT_BITS) + ai1) q--;
++ }
++ }
++
++ /* Subtract q * m from a[i...] */
++ c = 0;
++ for (k = mlen - 1; k >= 0; k--) {
++ t = MUL_WORD(q, m[k]);
++ t += c;
++ c = (unsigned)(t >> BIGNUM_INT_BITS);
++ if ((BignumInt) t > a[i + k])
++ c++;
++ a[i + k] -= (BignumInt) t;
++ }
++
++ /* Add back m in case of borrow */
++ if (c != h) {
++ t = 0;
++ for (k = mlen - 1; k >= 0; k--) {
++ t += m[k];
++ t += a[i + k];
++ a[i + k] = (BignumInt) t;
++ t = t >> BIGNUM_INT_BITS;
++ }
++ q--;
++ }
++ if (quot)
++ internal_add_shifted(quot, q, qshift + BIGNUM_INT_BITS * (alen - mlen - i));
++ }
++}
++
++/*
++ * Compute p % mod.
++ * The most significant word of mod MUST be non-zero.
++ * We assume that the result array is the same size as the mod array.
++ * We optionally write out a quotient if `quotient' is non-NULL.
++ * We can avoid writing out the result if `result' is NULL.
++ */
++void bigdivmod(void *mem_ctx, Bignum p, Bignum mod, Bignum result, Bignum quotient)
++{
++ BignumInt *n, *m;
++ int mshift;
++ int plen, mlen, i, j;
++
++ /* Allocate m of size mlen, copy mod to m */
++ /* We use big endian internally */
++ mlen = mod[0];
++ m = snewn(mem_ctx, mlen, BignumInt);
++ //if (!m)
++ //abort(); /* FIXME */
++ for (j = 0; j < mlen; j++)
++ m[j] = mod[mod[0] - j];
++
++ /* Shift m left to make msb bit set */
++ for (mshift = 0; mshift < BIGNUM_INT_BITS-1; mshift++)
++ if ((m[0] << mshift) & BIGNUM_TOP_BIT)
++ break;
++ if (mshift) {
++ for (i = 0; i < mlen - 1; i++)
++ m[i] = (m[i] << mshift) | (m[i + 1] >> (BIGNUM_INT_BITS - mshift));
++ m[mlen - 1] = m[mlen - 1] << mshift;
++ }
++
++ plen = p[0];
++ /* Ensure plen > mlen */
++ if (plen <= mlen)
++ plen = mlen + 1;
++
++ /* Allocate n of size plen, copy p to n */
++ n = snewn(mem_ctx, plen, BignumInt);
++ //if (!n)
++ //abort(); /* FIXME */
++ for (j = 0; j < plen; j++)
++ n[j] = 0;
++ for (j = 1; j <= (int)p[0]; j++)
++ n[plen - j] = p[j];
++
++ /* Main computation */
++ internal_mod(n, plen, m, mlen, quotient, mshift);
++
++ /* Fixup result in case the modulus was shifted */
++ if (mshift) {
++ for (i = plen - mlen - 1; i < plen - 1; i++)
++ n[i] = (n[i] << mshift) | (n[i + 1] >> (BIGNUM_INT_BITS - mshift));
++ n[plen - 1] = n[plen - 1] << mshift;
++ internal_mod(n, plen, m, mlen, quotient, 0);
++ for (i = plen - 1; i >= plen - mlen; i--)
++ n[i] = (n[i] >> mshift) | (n[i - 1] << (BIGNUM_INT_BITS - mshift));
++ }
++
++ /* Copy result to buffer */
++ if (result) {
++ for (i = 1; i <= (int)result[0]; i++) {
++ int j = plen - i;
++ result[i] = j >= 0 ? n[j] : 0;
++ }
++ }
++
++ /* Free temporary arrays */
++ for (i = 0; i < mlen; i++)
++ m[i] = 0;
++ sfree(mem_ctx, m);
++ for (i = 0; i < plen; i++)
++ n[i] = 0;
++ sfree(mem_ctx, n);
++}
++
++/*
++ * Simple remainder.
++ */
++Bignum bigmod(void *mem_ctx, Bignum a, Bignum b)
++{
++ Bignum r = newbn(mem_ctx, b[0]);
++ bigdivmod(mem_ctx, a, b, r, NULL);
++ return r;
++}
++
++/*
++ * Compute (base ^ exp) % mod.
++ */
++Bignum dwc_modpow(void *mem_ctx, Bignum base_in, Bignum exp, Bignum mod)
++{
++ BignumInt *a, *b, *n, *m;
++ int mshift;
++ int mlen, i, j;
++ Bignum base, result;
++
++ /*
++ * The most significant word of mod needs to be non-zero. It
++ * should already be, but let's make sure.
++ */
++ //assert(mod[mod[0]] != 0);
++
++ /*
++ * Make sure the base is smaller than the modulus, by reducing
++ * it modulo the modulus if not.
++ */
++ base = bigmod(mem_ctx, base_in, mod);
++
++ /* Allocate m of size mlen, copy mod to m */
++ /* We use big endian internally */
++ mlen = mod[0];
++ m = snewn(mem_ctx, mlen, BignumInt);
++ //if (!m)
++ //abort(); /* FIXME */
++ for (j = 0; j < mlen; j++)
++ m[j] = mod[mod[0] - j];
++
++ /* Shift m left to make msb bit set */
++ for (mshift = 0; mshift < BIGNUM_INT_BITS - 1; mshift++)
++ if ((m[0] << mshift) & BIGNUM_TOP_BIT)
++ break;
++ if (mshift) {
++ for (i = 0; i < mlen - 1; i++)
++ m[i] =
++ (m[i] << mshift) | (m[i + 1] >>
++ (BIGNUM_INT_BITS - mshift));
++ m[mlen - 1] = m[mlen - 1] << mshift;
++ }
++
++ /* Allocate n of size mlen, copy base to n */
++ n = snewn(mem_ctx, mlen, BignumInt);
++ //if (!n)
++ //abort(); /* FIXME */
++ i = mlen - base[0];
++ for (j = 0; j < i; j++)
++ n[j] = 0;
++ for (j = 0; j < base[0]; j++)
++ n[i + j] = base[base[0] - j];
++
++ /* Allocate a and b of size 2*mlen. Set a = 1 */
++ a = snewn(mem_ctx, 2 * mlen, BignumInt);
++ //if (!a)
++ //abort(); /* FIXME */
++ b = snewn(mem_ctx, 2 * mlen, BignumInt);
++ //if (!b)
++ //abort(); /* FIXME */
++ for (i = 0; i < 2 * mlen; i++)
++ a[i] = 0;
++ a[2 * mlen - 1] = 1;
++
++ /* Skip leading zero bits of exp. */
++ i = 0;
++ j = BIGNUM_INT_BITS - 1;
++ while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) {
++ j--;
++ if (j < 0) {
++ i++;
++ j = BIGNUM_INT_BITS - 1;
++ }
++ }
++
++ /* Main computation */
++ while (i < exp[0]) {
++ while (j >= 0) {
++ internal_mul(a + mlen, a + mlen, b, mlen);
++ internal_mod(b, mlen * 2, m, mlen, NULL, 0);
++ if ((exp[exp[0] - i] & (1 << j)) != 0) {
++ internal_mul(b + mlen, n, a, mlen);
++ internal_mod(a, mlen * 2, m, mlen, NULL, 0);
++ } else {
++ BignumInt *t;
++ t = a;
++ a = b;
++ b = t;
++ }
++ j--;
++ }
++ i++;
++ j = BIGNUM_INT_BITS - 1;
++ }
++
++ /* Fixup result in case the modulus was shifted */
++ if (mshift) {
++ for (i = mlen - 1; i < 2 * mlen - 1; i++)
++ a[i] =
++ (a[i] << mshift) | (a[i + 1] >>
++ (BIGNUM_INT_BITS - mshift));
++ a[2 * mlen - 1] = a[2 * mlen - 1] << mshift;
++ internal_mod(a, mlen * 2, m, mlen, NULL, 0);
++ for (i = 2 * mlen - 1; i >= mlen; i--)
++ a[i] =
++ (a[i] >> mshift) | (a[i - 1] <<
++ (BIGNUM_INT_BITS - mshift));
++ }
++
++ /* Copy result to buffer */
++ result = newbn(mem_ctx, mod[0]);
++ for (i = 0; i < mlen; i++)
++ result[result[0] - i] = a[i + mlen];
++ while (result[0] > 1 && result[result[0]] == 0)
++ result[0]--;
++
++ /* Free temporary arrays */
++ for (i = 0; i < 2 * mlen; i++)
++ a[i] = 0;
++ sfree(mem_ctx, a);
++ for (i = 0; i < 2 * mlen; i++)
++ b[i] = 0;
++ sfree(mem_ctx, b);
++ for (i = 0; i < mlen; i++)
++ m[i] = 0;
++ sfree(mem_ctx, m);
++ for (i = 0; i < mlen; i++)
++ n[i] = 0;
++ sfree(mem_ctx, n);
++
++ freebn(mem_ctx, base);
++
++ return result;
++}
++
++
++#ifdef UNITTEST
++
++static __u32 dh_p[] = {
++ 96,
++ 0xFFFFFFFF,
++ 0xFFFFFFFF,
++ 0xA93AD2CA,
++ 0x4B82D120,
++ 0xE0FD108E,
++ 0x43DB5BFC,
++ 0x74E5AB31,
++ 0x08E24FA0,
++ 0xBAD946E2,
++ 0x770988C0,
++ 0x7A615D6C,
++ 0xBBE11757,
++ 0x177B200C,
++ 0x521F2B18,
++ 0x3EC86A64,
++ 0xD8760273,
++ 0xD98A0864,
++ 0xF12FFA06,
++ 0x1AD2EE6B,
++ 0xCEE3D226,
++ 0x4A25619D,
++ 0x1E8C94E0,
++ 0xDB0933D7,
++ 0xABF5AE8C,
++ 0xA6E1E4C7,
++ 0xB3970F85,
++ 0x5D060C7D,
++ 0x8AEA7157,
++ 0x58DBEF0A,
++ 0xECFB8504,
++ 0xDF1CBA64,
++ 0xA85521AB,
++ 0x04507A33,
++ 0xAD33170D,
++ 0x8AAAC42D,
++ 0x15728E5A,
++ 0x98FA0510,
++ 0x15D22618,
++ 0xEA956AE5,
++ 0x3995497C,
++ 0x95581718,
++ 0xDE2BCBF6,
++ 0x6F4C52C9,
++ 0xB5C55DF0,
++ 0xEC07A28F,
++ 0x9B2783A2,
++ 0x180E8603,
++ 0xE39E772C,
++ 0x2E36CE3B,
++ 0x32905E46,
++ 0xCA18217C,
++ 0xF1746C08,
++ 0x4ABC9804,
++ 0x670C354E,
++ 0x7096966D,
++ 0x9ED52907,
++ 0x208552BB,
++ 0x1C62F356,
++ 0xDCA3AD96,
++ 0x83655D23,
++ 0xFD24CF5F,
++ 0x69163FA8,
++ 0x1C55D39A,
++ 0x98DA4836,
++ 0xA163BF05,
++ 0xC2007CB8,
++ 0xECE45B3D,
++ 0x49286651,
++ 0x7C4B1FE6,
++ 0xAE9F2411,
++ 0x5A899FA5,
++ 0xEE386BFB,
++ 0xF406B7ED,
++ 0x0BFF5CB6,
++ 0xA637ED6B,
++ 0xF44C42E9,
++ 0x625E7EC6,
++ 0xE485B576,
++ 0x6D51C245,
++ 0x4FE1356D,
++ 0xF25F1437,
++ 0x302B0A6D,
++ 0xCD3A431B,
++ 0xEF9519B3,
++ 0x8E3404DD,
++ 0x514A0879,
++ 0x3B139B22,
++ 0x020BBEA6,
++ 0x8A67CC74,
++ 0x29024E08,
++ 0x80DC1CD1,
++ 0xC4C6628B,
++ 0x2168C234,
++ 0xC90FDAA2,
++ 0xFFFFFFFF,
++ 0xFFFFFFFF,
++};
++
++static __u32 dh_a[] = {
++ 8,
++ 0xdf367516,
++ 0x86459caa,
++ 0xe2d459a4,
++ 0xd910dae0,
++ 0x8a8b5e37,
++ 0x67ab31c6,
++ 0xf0b55ea9,
++ 0x440051d6,
++};
++
++static __u32 dh_b[] = {
++ 8,
++ 0xded92656,
++ 0xe07a048a,
++ 0x6fa452cd,
++ 0x2df89d30,
++ 0xc75f1b0f,
++ 0x8ce3578f,
++ 0x7980a324,
++ 0x5daec786,
++};
++
++static __u32 dh_g[] = {
++ 1,
++ 2,
++};
++
++int main(void)
++{
++ int i;
++ __u32 *k;
++ k = dwc_modpow(NULL, dh_g, dh_a, dh_p);
++
++ printf("\n\n");
++ for (i=0; i<k[0]; i++) {
++ __u32 word32 = k[k[0] - i];
++ __u16 l = word32 & 0xffff;
++ __u16 m = (word32 & 0xffff0000) >> 16;
++ printf("%04x %04x ", m, l);
++ if (!((i + 1)%13)) printf("\n");
++ }
++ printf("\n\n");
++
++ if ((k[0] == 0x60) && (k[1] == 0x28e490e5) && (k[0x60] == 0x5a0d3d4e)) {
++ printf("PASS\n\n");
++ }
++ else {
++ printf("FAIL\n\n");
++ }
++
++}
++
++#endif /* UNITTEST */
++
++#endif /* CONFIG_MACH_IPMATE */
++
++#endif /*DWC_CRYPTOLIB */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_modpow.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_modpow.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_modpow.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_modpow.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,34 @@
++/*
++ * dwc_modpow.h
++ * See dwc_modpow.c for license and changes
++ */
++#ifndef _DWC_MODPOW_H
++#define _DWC_MODPOW_H
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++#include "dwc_os.h"
++
++/** @file
++ *
++ * This file defines the module exponentiation function which is only used
++ * internally by the DWC UWB modules for calculation of PKs during numeric
++ * association. The routine is taken from the PUTTY, an open source terminal
++ * emulator. The PUTTY License is preserved in the dwc_modpow.c file.
++ *
++ */
++
++typedef uint32_t BignumInt;
++typedef uint64_t BignumDblInt;
++typedef BignumInt *Bignum;
++
++/* Compute modular exponentiaion */
++extern Bignum dwc_modpow(void *mem_ctx, Bignum base_in, Bignum exp, Bignum mod);
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* _LINUX_BIGNUM_H */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_notifier.c linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_notifier.c
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_notifier.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_notifier.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,319 @@
++#ifdef DWC_NOTIFYLIB
++
++#include "dwc_notifier.h"
++#include "dwc_list.h"
++
++typedef struct dwc_observer {
++ void *observer;
++ dwc_notifier_callback_t callback;
++ void *data;
++ char *notification;
++ DWC_CIRCLEQ_ENTRY(dwc_observer) list_entry;
++} observer_t;
++
++DWC_CIRCLEQ_HEAD(observer_queue, dwc_observer);
++
++typedef struct dwc_notifier {
++ void *mem_ctx;
++ void *object;
++ struct observer_queue observers;
++ DWC_CIRCLEQ_ENTRY(dwc_notifier) list_entry;
++} notifier_t;
++
++DWC_CIRCLEQ_HEAD(notifier_queue, dwc_notifier);
++
++typedef struct manager {
++ void *mem_ctx;
++ void *wkq_ctx;
++ dwc_workq_t *wq;
++// dwc_mutex_t *mutex;
++ struct notifier_queue notifiers;
++} manager_t;
++
++static manager_t *manager = NULL;
++
++static int create_manager(void *mem_ctx, void *wkq_ctx)
++{
++ manager = dwc_alloc(mem_ctx, sizeof(manager_t));
++ if (!manager) {
++ return -DWC_E_NO_MEMORY;
++ }
++
++ DWC_CIRCLEQ_INIT(&manager->notifiers);
++
++ manager->wq = dwc_workq_alloc(wkq_ctx, "DWC Notification WorkQ");
++ if (!manager->wq) {
++ return -DWC_E_NO_MEMORY;
++ }
++
++ return 0;
++}
++
++static void free_manager(void)
++{
++ dwc_workq_free(manager->wq);
++
++ /* All notifiers must have unregistered themselves before this module
++ * can be removed. Hitting this assertion indicates a programmer
++ * error. */
++ DWC_ASSERT(DWC_CIRCLEQ_EMPTY(&manager->notifiers),
++ "Notification manager being freed before all notifiers have been removed");
++ dwc_free(manager->mem_ctx, manager);
++}
++
++#ifdef DEBUG
++static void dump_manager(void)
++{
++ notifier_t *n;
++ observer_t *o;
++
++ DWC_ASSERT(manager, "Notification manager not found");
++
++ DWC_DEBUG("List of all notifiers and observers:\n");
++ DWC_CIRCLEQ_FOREACH(n, &manager->notifiers, list_entry) {
++ DWC_DEBUG("Notifier %p has observers:\n", n->object);
++ DWC_CIRCLEQ_FOREACH(o, &n->observers, list_entry) {
++ DWC_DEBUG(" %p watching %s\n", o->observer, o->notification);
++ }
++ }
++}
++#else
++#define dump_manager(...)
++#endif
++
++static observer_t *alloc_observer(void *mem_ctx, void *observer, char *notification,
++ dwc_notifier_callback_t callback, void *data)
++{
++ observer_t *new_observer = dwc_alloc(mem_ctx, sizeof(observer_t));
++
++ if (!new_observer) {
++ return NULL;
++ }
++
++ DWC_CIRCLEQ_INIT_ENTRY(new_observer, list_entry);
++ new_observer->observer = observer;
++ new_observer->notification = notification;
++ new_observer->callback = callback;
++ new_observer->data = data;
++ return new_observer;
++}
++
++static void free_observer(void *mem_ctx, observer_t *observer)
++{
++ dwc_free(mem_ctx, observer);
++}
++
++static notifier_t *alloc_notifier(void *mem_ctx, void *object)
++{
++ notifier_t *notifier;
++
++ if (!object) {
++ return NULL;
++ }
++
++ notifier = dwc_alloc(mem_ctx, sizeof(notifier_t));
++ if (!notifier) {
++ return NULL;
++ }
++
++ DWC_CIRCLEQ_INIT(&notifier->observers);
++ DWC_CIRCLEQ_INIT_ENTRY(notifier, list_entry);
++
++ notifier->mem_ctx = mem_ctx;
++ notifier->object = object;
++ return notifier;
++}
++
++static void free_notifier(notifier_t *notifier)
++{
++ observer_t *observer;
++
++ DWC_CIRCLEQ_FOREACH(observer, &notifier->observers, list_entry) {
++ free_observer(notifier->mem_ctx, observer);
++ }
++
++ dwc_free(notifier->mem_ctx, notifier);
++}
++
++static notifier_t *find_notifier(void *object)
++{
++ notifier_t *notifier;
++
++ DWC_ASSERT(manager, "Notification manager not found");
++
++ if (!object) {
++ return NULL;
++ }
++
++ DWC_CIRCLEQ_FOREACH(notifier, &manager->notifiers, list_entry) {
++ if (notifier->object == object) {
++ return notifier;
++ }
++ }
++
++ return NULL;
++}
++
++int dwc_alloc_notification_manager(void *mem_ctx, void *wkq_ctx)
++{
++ return create_manager(mem_ctx, wkq_ctx);
++}
++
++void dwc_free_notification_manager(void)
++{
++ free_manager();
++}
++
++dwc_notifier_t *dwc_register_notifier(void *mem_ctx, void *object)
++{
++ notifier_t *notifier;
++
++ DWC_ASSERT(manager, "Notification manager not found");
++
++ notifier = find_notifier(object);
++ if (notifier) {
++ DWC_ERROR("Notifier %p is already registered\n", object);
++ return NULL;
++ }
++
++ notifier = alloc_notifier(mem_ctx, object);
++ if (!notifier) {
++ return NULL;
++ }
++
++ DWC_CIRCLEQ_INSERT_TAIL(&manager->notifiers, notifier, list_entry);
++
++ DWC_INFO("Notifier %p registered", object);
++ dump_manager();
++
++ return notifier;
++}
++
++void dwc_unregister_notifier(dwc_notifier_t *notifier)
++{
++ DWC_ASSERT(manager, "Notification manager not found");
++
++ if (!DWC_CIRCLEQ_EMPTY(&notifier->observers)) {
++ observer_t *o;
++
++ DWC_ERROR("Notifier %p has active observers when removing\n", notifier->object);
++ DWC_CIRCLEQ_FOREACH(o, &notifier->observers, list_entry) {
++ DWC_DEBUGC(" %p watching %s\n", o->observer, o->notification);
++ }
++
++ DWC_ASSERT(DWC_CIRCLEQ_EMPTY(&notifier->observers),
++ "Notifier %p has active observers when removing", notifier);
++ }
++
++ DWC_CIRCLEQ_REMOVE_INIT(&manager->notifiers, notifier, list_entry);
++ free_notifier(notifier);
++
++ DWC_INFO("Notifier unregistered");
++ dump_manager();
++}
++
++/* Add an observer to observe the notifier for a particular state, event, or notification. */
++int dwc_add_observer(void *observer, void *object, char *notification,
++ dwc_notifier_callback_t callback, void *data)
++{
++ notifier_t *notifier = find_notifier(object);
++ observer_t *new_observer;
++
++ if (!notifier) {
++ DWC_ERROR("Notifier %p is not found when adding observer\n", object);
++ return -DWC_E_INVALID;
++ }
++
++ new_observer = alloc_observer(notifier->mem_ctx, observer, notification, callback, data);
++ if (!new_observer) {
++ return -DWC_E_NO_MEMORY;
++ }
++
++ DWC_CIRCLEQ_INSERT_TAIL(&notifier->observers, new_observer, list_entry);
++
++ DWC_INFO("Added observer %p to notifier %p observing notification %s, callback=%p, data=%p",
++ observer, object, notification, callback, data);
++
++ dump_manager();
++ return 0;
++}
++
++int dwc_remove_observer(void *observer)
++{
++ notifier_t *n;
++
++ DWC_ASSERT(manager, "Notification manager not found");
++
++ DWC_CIRCLEQ_FOREACH(n, &manager->notifiers, list_entry) {
++ observer_t *o;
++ observer_t *o2;
++
++ DWC_CIRCLEQ_FOREACH_SAFE(o, o2, &n->observers, list_entry) {
++ if (o->observer == observer) {
++ DWC_CIRCLEQ_REMOVE_INIT(&n->observers, o, list_entry);
++ DWC_INFO("Removing observer %p from notifier %p watching notification %s:",
++ o->observer, n->object, o->notification);
++ free_observer(n->mem_ctx, o);
++ }
++ }
++ }
++
++ dump_manager();
++ return 0;
++}
++
++typedef struct callback_data {
++ void *mem_ctx;
++ dwc_notifier_callback_t cb;
++ void *observer;
++ void *data;
++ void *object;
++ char *notification;
++ void *notification_data;
++} cb_data_t;
++
++static void cb_task(void *data)
++{
++ cb_data_t *cb = (cb_data_t *)data;
++
++ cb->cb(cb->object, cb->notification, cb->observer, cb->notification_data, cb->data);
++ dwc_free(cb->mem_ctx, cb);
++}
++
++void dwc_notify(dwc_notifier_t *notifier, char *notification, void *notification_data)
++{
++ observer_t *o;
++
++ DWC_ASSERT(manager, "Notification manager not found");
++
++ DWC_CIRCLEQ_FOREACH(o, &notifier->observers, list_entry) {
++ int len = DWC_STRLEN(notification);
++
++ if (DWC_STRLEN(o->notification) != len) {
++ continue;
++ }
++
++ if (DWC_STRNCMP(o->notification, notification, len) == 0) {
++ cb_data_t *cb_data = dwc_alloc(notifier->mem_ctx, sizeof(cb_data_t));
++
++ if (!cb_data) {
++ DWC_ERROR("Failed to allocate callback data\n");
++ return;
++ }
++
++ cb_data->mem_ctx = notifier->mem_ctx;
++ cb_data->cb = o->callback;
++ cb_data->observer = o->observer;
++ cb_data->data = o->data;
++ cb_data->object = notifier->object;
++ cb_data->notification = notification;
++ cb_data->notification_data = notification_data;
++ DWC_DEBUGC("Observer found %p for notification %s\n", o->observer, notification);
++ DWC_WORKQ_SCHEDULE(manager->wq, cb_task, cb_data,
++ "Notify callback from %p for Notification %s, to observer %p",
++ cb_data->object, notification, cb_data->observer);
++ }
++ }
++}
++
++#endif /* DWC_NOTIFYLIB */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_notifier.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_notifier.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_notifier.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_notifier.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,122 @@
++
++#ifndef __DWC_NOTIFIER_H__
++#define __DWC_NOTIFIER_H__
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++#include "dwc_os.h"
++
++/** @file
++ *
++ * A simple implementation of the Observer pattern. Any "module" can
++ * register as an observer or notifier. The notion of "module" is abstract and
++ * can mean anything used to identify either an observer or notifier. Usually
++ * it will be a pointer to a data structure which contains some state, ie an
++ * object.
++ *
++ * Before any notifiers can be added, the global notification manager must be
++ * brought up with dwc_alloc_notification_manager().
++ * dwc_free_notification_manager() will bring it down and free all resources.
++ * These would typically be called upon module load and unload. The
++ * notification manager is a single global instance that handles all registered
++ * observable modules and observers so this should be done only once.
++ *
++ * A module can be observable by using Notifications to publicize some general
++ * information about it's state or operation. It does not care who listens, or
++ * even if anyone listens, or what they do with the information. The observable
++ * modules do not need to know any information about it's observers or their
++ * interface, or their state or data.
++ *
++ * Any module can register to emit Notifications. It should publish a list of
++ * notifications that it can emit and their behavior, such as when they will get
++ * triggered, and what information will be provided to the observer. Then it
++ * should register itself as an observable module. See dwc_register_notifier().
++ *
++ * Any module can observe any observable, registered module, provided it has a
++ * handle to the other module and knows what notifications to observe. See
++ * dwc_add_observer().
++ *
++ * A function of type dwc_notifier_callback_t is called whenever a notification
++ * is triggered with one or more observers observing it. This function is
++ * called in it's own process so it may sleep or block if needed. It is
++ * guaranteed to be called sometime after the notification has occurred and will
++ * be called once per each time the notification is triggered. It will NOT be
++ * called in the same process context used to trigger the notification.
++ *
++ * @section Limitiations
++ *
++ * Keep in mind that Notifications that can be triggered in rapid sucession may
++ * schedule too many processes too handle. Be aware of this limitation when
++ * designing to use notifications, and only add notifications for appropriate
++ * observable information.
++ *
++ * Also Notification callbacks are not synchronous. If you need to synchronize
++ * the behavior between module/observer you must use other means. And perhaps
++ * that will mean Notifications are not the proper solution.
++ */
++
++struct dwc_notifier;
++typedef struct dwc_notifier dwc_notifier_t;
++
++/** The callback function must be of this type.
++ *
++ * @param object This is the object that is being observed.
++ * @param notification This is the notification that was triggered.
++ * @param observer This is the observer
++ * @param notification_data This is notification-specific data that the notifier
++ * has included in this notification. The value of this should be published in
++ * the documentation of the observable module with the notifications.
++ * @param user_data This is any custom data that the observer provided when
++ * adding itself as an observer to the notification. */
++typedef void (*dwc_notifier_callback_t)(void *object, char *notification, void *observer,
++ void *notification_data, void *user_data);
++
++/** Brings up the notification manager. */
++extern int dwc_alloc_notification_manager(void *mem_ctx, void *wkq_ctx);
++/** Brings down the notification manager. */
++extern void dwc_free_notification_manager(void);
++
++/** This function registers an observable module. A dwc_notifier_t object is
++ * returned to the observable module. This is an opaque object that is used by
++ * the observable module to trigger notifications. This object should only be
++ * accessible to functions that are authorized to trigger notifications for this
++ * module. Observers do not need this object. */
++extern dwc_notifier_t *dwc_register_notifier(void *mem_ctx, void *object);
++
++/** This function unregisters an observable module. All observers have to be
++ * removed prior to unregistration. */
++extern void dwc_unregister_notifier(dwc_notifier_t *notifier);
++
++/** Add a module as an observer to the observable module. The observable module
++ * needs to have previously registered with the notification manager.
++ *
++ * @param observer The observer module
++ * @param object The module to observe
++ * @param notification The notification to observe
++ * @param callback The callback function to call
++ * @param user_data Any additional user data to pass into the callback function */
++extern int dwc_add_observer(void *observer, void *object, char *notification,
++ dwc_notifier_callback_t callback, void *user_data);
++
++/** Removes the specified observer from all notifications that it is currently
++ * observing. */
++extern int dwc_remove_observer(void *observer);
++
++/** This function triggers a Notification. It should be called by the
++ * observable module, or any module or library which the observable module
++ * allows to trigger notification on it's behalf. Such as the dwc_cc_t.
++ *
++ * dwc_notify is a non-blocking function. Callbacks are scheduled called in
++ * their own process context for each trigger. Callbacks can be blocking.
++ * dwc_notify can be called from interrupt context if needed.
++ *
++ */
++void dwc_notify(dwc_notifier_t *notifier, char *notification, void *notification_data);
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* __DWC_NOTIFIER_H__ */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/dwc_os.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_os.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/dwc_os.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/dwc_os.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1262 @@
++/* =========================================================================
++ * $File: //dwh/usb_iip/dev/software/dwc_common_port_2/dwc_os.h $
++ * $Revision: #14 $
++ * $Date: 2010/11/04 $
++ * $Change: 1621695 $
++ *
++ * Synopsys Portability Library Software and documentation
++ * (hereinafter, "Software") is an Unsupported proprietary work of
++ * Synopsys, Inc. unless otherwise expressly agreed to in writing
++ * between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product
++ * under any End User Software License Agreement or Agreement for
++ * Licensed Product with Synopsys or any supplement thereto. You are
++ * permitted to use and redistribute this Software in source and binary
++ * forms, with or without modification, provided that redistributions
++ * of source code must retain this notice. You may not view, use,
++ * disclose, copy or distribute this file or any information contained
++ * herein except pursuant to this license grant from Synopsys. If you
++ * do not agree with this notice, including the disclaimer below, then
++ * you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
++ * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
++ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
++ * FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
++ * SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
++ * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
++ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
++ * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================= */
++#ifndef _DWC_OS_H_
++#define _DWC_OS_H_
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/** @file
++ *
++ * DWC portability library, low level os-wrapper functions
++ *
++ */
++
++/* These basic types need to be defined by some OS header file or custom header
++ * file for your specific target architecture.
++ *
++ * uint8_t, int8_t, uint16_t, int16_t, uint32_t, int32_t, uint64_t, int64_t
++ *
++ * Any custom or alternate header file must be added and enabled here.
++ */
++
++#ifdef DWC_LINUX
++# include <linux/types.h>
++# ifdef CONFIG_DEBUG_MUTEXES
++# include <linux/mutex.h>
++# endif
++# include <linux/errno.h>
++# include <stdarg.h>
++#endif
++
++#if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++# include <os_dep.h>
++#endif
++
++
++/** @name Primitive Types and Values */
++
++/** We define a boolean type for consistency. Can be either YES or NO */
++typedef uint8_t dwc_bool_t;
++#define YES 1
++#define NO 0
++
++#ifdef DWC_LINUX
++
++/** @name Error Codes */
++#define DWC_E_INVALID EINVAL
++#define DWC_E_NO_MEMORY ENOMEM
++#define DWC_E_NO_DEVICE ENODEV
++#define DWC_E_NOT_SUPPORTED EOPNOTSUPP
++#define DWC_E_TIMEOUT ETIMEDOUT
++#define DWC_E_BUSY EBUSY
++#define DWC_E_AGAIN EAGAIN
++#define DWC_E_RESTART ERESTART
++#define DWC_E_ABORT ECONNABORTED
++#define DWC_E_SHUTDOWN ESHUTDOWN
++#define DWC_E_NO_DATA ENODATA
++#define DWC_E_DISCONNECT ECONNRESET
++#define DWC_E_UNKNOWN EINVAL
++#define DWC_E_NO_STREAM_RES ENOSR
++#define DWC_E_COMMUNICATION ECOMM
++#define DWC_E_OVERFLOW EOVERFLOW
++#define DWC_E_PROTOCOL EPROTO
++#define DWC_E_IN_PROGRESS EINPROGRESS
++#define DWC_E_PIPE EPIPE
++#define DWC_E_IO EIO
++#define DWC_E_NO_SPACE ENOSPC
++
++#else
++
++/** @name Error Codes */
++#define DWC_E_INVALID 1001
++#define DWC_E_NO_MEMORY 1002
++#define DWC_E_NO_DEVICE 1003
++#define DWC_E_NOT_SUPPORTED 1004
++#define DWC_E_TIMEOUT 1005
++#define DWC_E_BUSY 1006
++#define DWC_E_AGAIN 1007
++#define DWC_E_RESTART 1008
++#define DWC_E_ABORT 1009
++#define DWC_E_SHUTDOWN 1010
++#define DWC_E_NO_DATA 1011
++#define DWC_E_DISCONNECT 2000
++#define DWC_E_UNKNOWN 3000
++#define DWC_E_NO_STREAM_RES 4001
++#define DWC_E_COMMUNICATION 4002
++#define DWC_E_OVERFLOW 4003
++#define DWC_E_PROTOCOL 4004
++#define DWC_E_IN_PROGRESS 4005
++#define DWC_E_PIPE 4006
++#define DWC_E_IO 4007
++#define DWC_E_NO_SPACE 4008
++
++#endif
++
++
++/** @name Tracing/Logging Functions
++ *
++ * These function provide the capability to add tracing, debugging, and error
++ * messages, as well exceptions as assertions. The WUDEV uses these
++ * extensively. These could be logged to the main console, the serial port, an
++ * internal buffer, etc. These functions could also be no-op if they are too
++ * expensive on your system. By default undefining the DEBUG macro already
++ * no-ops some of these functions. */
++
++/** Returns non-zero if in interrupt context. */
++extern dwc_bool_t DWC_IN_IRQ(void);
++#define dwc_in_irq DWC_IN_IRQ
++
++/** Returns "IRQ" if DWC_IN_IRQ is true. */
++static inline char *dwc_irq(void) {
++ return DWC_IN_IRQ() ? "IRQ" : "";
++}
++
++/** Returns non-zero if in bottom-half context. */
++extern dwc_bool_t DWC_IN_BH(void);
++#define dwc_in_bh DWC_IN_BH
++
++/** Returns "BH" if DWC_IN_BH is true. */
++static inline char *dwc_bh(void) {
++ return DWC_IN_BH() ? "BH" : "";
++}
++
++/**
++ * A vprintf() clone. Just call vprintf if you've got it.
++ */
++extern void DWC_VPRINTF(char *format, va_list args);
++#define dwc_vprintf DWC_VPRINTF
++
++/**
++ * A vsnprintf() clone. Just call vprintf if you've got it.
++ */
++extern int DWC_VSNPRINTF(char *str, int size, char *format, va_list args);
++#define dwc_vsnprintf DWC_VSNPRINTF
++
++/**
++ * printf() clone. Just call printf if you've go it.
++ */
++extern void DWC_PRINTF(char *format, ...)
++/* This provides compiler level static checking of the parameters if you're
++ * using GCC. */
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 1, 2)));
++#else
++ ;
++#endif
++#define dwc_printf DWC_PRINTF
++
++/**
++ * sprintf() clone. Just call sprintf if you've got it.
++ */
++extern int DWC_SPRINTF(char *string, char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 2, 3)));
++#else
++ ;
++#endif
++#define dwc_sprintf DWC_SPRINTF
++
++/**
++ * snprintf() clone. Just call snprintf if you've got it.
++ */
++extern int DWC_SNPRINTF(char *string, int size, char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 3, 4)));
++#else
++ ;
++#endif
++#define dwc_snprintf DWC_SNPRINTF
++
++/**
++ * Prints a WARNING message. On systems that don't differentiate between
++ * warnings and regular log messages, just print it. Indicates that something
++ * may be wrong with the driver. Works like printf().
++ *
++ * Use the DWC_WARN macro to call this function.
++ */
++extern void __DWC_WARN(char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 1, 2)));
++#else
++ ;
++#endif
++
++/**
++ * Prints an error message. On systems that don't differentiate between errors
++ * and regular log messages, just print it. Indicates that something went wrong
++ * with the driver. Works like printf().
++ *
++ * Use the DWC_ERROR macro to call this function.
++ */
++extern void __DWC_ERROR(char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 1, 2)));
++#else
++ ;
++#endif
++
++/**
++ * Prints an exception error message and takes some user-defined action such as
++ * print out a backtrace or trigger a breakpoint. Indicates that something went
++ * abnormally wrong with the driver such as programmer error, or other
++ * exceptional condition. It should not be ignored so even on systems without
++ * printing capability, some action should be taken to notify the developer of
++ * it. Works like printf().
++ */
++extern void DWC_EXCEPTION(char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 1, 2)));
++#else
++ ;
++#endif
++#define dwc_exception DWC_EXCEPTION
++
++#ifndef DWC_OTG_DEBUG_LEV
++#define DWC_OTG_DEBUG_LEV 0
++#endif
++
++#ifdef DEBUG
++/**
++ * Prints out a debug message. Used for logging/trace messages.
++ *
++ * Use the DWC_DEBUG macro to call this function
++ */
++extern void __DWC_DEBUG(char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 1, 2)));
++#else
++ ;
++#endif
++#else
++#define __DWC_DEBUG printk
++#endif
++
++/**
++ * Prints out a Debug message.
++ */
++#define DWC_DEBUG(_format, _args...) __DWC_DEBUG("DEBUG:%s:%s: " _format "\n", \
++ __func__, dwc_irq(), ## _args)
++#define dwc_debug DWC_DEBUG
++/**
++ * Prints out a Debug message if enabled at compile time.
++ */
++#if DWC_OTG_DEBUG_LEV > 0
++#define DWC_DEBUGC(_format, _args...) DWC_DEBUG(_format, ##_args )
++#else
++#define DWC_DEBUGC(_format, _args...)
++#endif
++#define dwc_debugc DWC_DEBUGC
++/**
++ * Prints out an informative message.
++ */
++#define DWC_INFO(_format, _args...) DWC_PRINTF("INFO:%s: " _format "\n", \
++ dwc_irq(), ## _args)
++#define dwc_info DWC_INFO
++/**
++ * Prints out an informative message if enabled at compile time.
++ */
++#if DWC_OTG_DEBUG_LEV > 1
++#define DWC_INFOC(_format, _args...) DWC_INFO(_format, ##_args )
++#else
++#define DWC_INFOC(_format, _args...)
++#endif
++#define dwc_infoc DWC_INFOC
++/**
++ * Prints out a warning message.
++ */
++#define DWC_WARN(_format, _args...) __DWC_WARN("WARN:%s:%s:%d: " _format "\n", \
++ dwc_irq(), __func__, __LINE__, ## _args)
++#define dwc_warn DWC_WARN
++/**
++ * Prints out an error message.
++ */
++#define DWC_ERROR(_format, _args...) __DWC_ERROR("ERROR:%s:%s:%d: " _format "\n", \
++ dwc_irq(), __func__, __LINE__, ## _args)
++#define dwc_error DWC_ERROR
++
++#define DWC_PROTO_ERROR(_format, _args...) __DWC_WARN("ERROR:%s:%s:%d: " _format "\n", \
++ dwc_irq(), __func__, __LINE__, ## _args)
++#define dwc_proto_error DWC_PROTO_ERROR
++
++#ifdef DEBUG
++/** Prints out a exception error message if the _expr expression fails. Disabled
++ * if DEBUG is not enabled. */
++#define DWC_ASSERT(_expr, _format, _args...) do { \
++ if (!(_expr)) { DWC_EXCEPTION("%s:%s:%d: " _format "\n", dwc_irq(), \
++ __FILE__, __LINE__, ## _args); } \
++ } while (0)
++#else
++#define DWC_ASSERT(_x...)
++#endif
++#define dwc_assert DWC_ASSERT
++
++
++/** @name Byte Ordering
++ * The following functions are for conversions between processor's byte ordering
++ * and specific ordering you want.
++ */
++
++/** Converts 32 bit data in CPU byte ordering to little endian. */
++extern uint32_t DWC_CPU_TO_LE32(uint32_t *p);
++#define dwc_cpu_to_le32 DWC_CPU_TO_LE32
++
++/** Converts 32 bit data in CPU byte orderint to big endian. */
++extern uint32_t DWC_CPU_TO_BE32(uint32_t *p);
++#define dwc_cpu_to_be32 DWC_CPU_TO_BE32
++
++/** Converts 32 bit little endian data to CPU byte ordering. */
++extern uint32_t DWC_LE32_TO_CPU(uint32_t *p);
++#define dwc_le32_to_cpu DWC_LE32_TO_CPU
++
++/** Converts 32 bit big endian data to CPU byte ordering. */
++extern uint32_t DWC_BE32_TO_CPU(uint32_t *p);
++#define dwc_be32_to_cpu DWC_BE32_TO_CPU
++
++/** Converts 16 bit data in CPU byte ordering to little endian. */
++extern uint16_t DWC_CPU_TO_LE16(uint16_t *p);
++#define dwc_cpu_to_le16 DWC_CPU_TO_LE16
++
++/** Converts 16 bit data in CPU byte orderint to big endian. */
++extern uint16_t DWC_CPU_TO_BE16(uint16_t *p);
++#define dwc_cpu_to_be16 DWC_CPU_TO_BE16
++
++/** Converts 16 bit little endian data to CPU byte ordering. */
++extern uint16_t DWC_LE16_TO_CPU(uint16_t *p);
++#define dwc_le16_to_cpu DWC_LE16_TO_CPU
++
++/** Converts 16 bit bi endian data to CPU byte ordering. */
++extern uint16_t DWC_BE16_TO_CPU(uint16_t *p);
++#define dwc_be16_to_cpu DWC_BE16_TO_CPU
++
++
++/** @name Register Read/Write
++ *
++ * The following six functions should be implemented to read/write registers of
++ * 32-bit and 64-bit sizes. All modules use this to read/write register values.
++ * The reg value is a pointer to the register calculated from the void *base
++ * variable passed into the driver when it is started. */
++
++#ifdef DWC_LINUX
++/* Linux doesn't need any extra parameters for register read/write, so we
++ * just throw away the IO context parameter.
++ */
++/** Reads the content of a 32-bit register. */
++extern uint32_t DWC_READ_REG32(uint32_t volatile *reg);
++#define dwc_read_reg32(_ctx_,_reg_) DWC_READ_REG32(_reg_)
++
++/** Reads the content of a 64-bit register. */
++extern uint64_t DWC_READ_REG64(uint64_t volatile *reg);
++#define dwc_read_reg64(_ctx_,_reg_) DWC_READ_REG64(_reg_)
++
++/** Writes to a 32-bit register. */
++extern void DWC_WRITE_REG32(uint32_t volatile *reg, uint32_t value);
++#define dwc_write_reg32(_ctx_,_reg_,_val_) DWC_WRITE_REG32(_reg_, _val_)
++
++/** Writes to a 64-bit register. */
++extern void DWC_WRITE_REG64(uint64_t volatile *reg, uint64_t value);
++#define dwc_write_reg64(_ctx_,_reg_,_val_) DWC_WRITE_REG64(_reg_, _val_)
++
++/**
++ * Modify bit values in a register. Using the
++ * algorithm: (reg_contents & ~clear_mask) | set_mask.
++ */
++extern void DWC_MODIFY_REG32(uint32_t volatile *reg, uint32_t clear_mask, uint32_t set_mask);
++#define dwc_modify_reg32(_ctx_,_reg_,_cmsk_,_smsk_) DWC_MODIFY_REG32(_reg_,_cmsk_,_smsk_)
++extern void DWC_MODIFY_REG64(uint64_t volatile *reg, uint64_t clear_mask, uint64_t set_mask);
++#define dwc_modify_reg64(_ctx_,_reg_,_cmsk_,_smsk_) DWC_MODIFY_REG64(_reg_,_cmsk_,_smsk_)
++
++#endif /* DWC_LINUX */
++
++#if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++typedef struct dwc_ioctx {
++ struct device *dev;
++ bus_space_tag_t iot;
++ bus_space_handle_t ioh;
++} dwc_ioctx_t;
++
++/** BSD needs two extra parameters for register read/write, so we pass
++ * them in using the IO context parameter.
++ */
++/** Reads the content of a 32-bit register. */
++extern uint32_t DWC_READ_REG32(void *io_ctx, uint32_t volatile *reg);
++#define dwc_read_reg32 DWC_READ_REG32
++
++/** Reads the content of a 64-bit register. */
++extern uint64_t DWC_READ_REG64(void *io_ctx, uint64_t volatile *reg);
++#define dwc_read_reg64 DWC_READ_REG64
++
++/** Writes to a 32-bit register. */
++extern void DWC_WRITE_REG32(void *io_ctx, uint32_t volatile *reg, uint32_t value);
++#define dwc_write_reg32 DWC_WRITE_REG32
++
++/** Writes to a 64-bit register. */
++extern void DWC_WRITE_REG64(void *io_ctx, uint64_t volatile *reg, uint64_t value);
++#define dwc_write_reg64 DWC_WRITE_REG64
++
++/**
++ * Modify bit values in a register. Using the
++ * algorithm: (reg_contents & ~clear_mask) | set_mask.
++ */
++extern void DWC_MODIFY_REG32(void *io_ctx, uint32_t volatile *reg, uint32_t clear_mask, uint32_t set_mask);
++#define dwc_modify_reg32 DWC_MODIFY_REG32
++extern void DWC_MODIFY_REG64(void *io_ctx, uint64_t volatile *reg, uint64_t clear_mask, uint64_t set_mask);
++#define dwc_modify_reg64 DWC_MODIFY_REG64
++
++#endif /* DWC_FREEBSD || DWC_NETBSD */
++
++/** @cond */
++
++/** @name Some convenience MACROS used internally. Define DWC_DEBUG_REGS to log the
++ * register writes. */
++
++#ifdef DWC_LINUX
++
++# ifdef DWC_DEBUG_REGS
++
++#define dwc_define_read_write_reg_n(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg##_n(_container_type *container, int num) { \
++ return DWC_READ_REG32(&container->regs->_reg[num]); \
++} \
++static inline void dwc_write_##_reg##_n(_container_type *container, int num, uint32_t data) { \
++ DWC_DEBUG("WRITING %8s[%d]: %p: %08x", #_reg, num, \
++ &(((uint32_t*)container->regs->_reg)[num]), data); \
++ DWC_WRITE_REG32(&(((uint32_t*)container->regs->_reg)[num]), data); \
++}
++
++#define dwc_define_read_write_reg(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg(_container_type *container) { \
++ return DWC_READ_REG32(&container->regs->_reg); \
++} \
++static inline void dwc_write_##_reg(_container_type *container, uint32_t data) { \
++ DWC_DEBUG("WRITING %11s: %p: %08x", #_reg, &container->regs->_reg, data); \
++ DWC_WRITE_REG32(&container->regs->_reg, data); \
++}
++
++# else /* DWC_DEBUG_REGS */
++
++#define dwc_define_read_write_reg_n(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg##_n(_container_type *container, int num) { \
++ return DWC_READ_REG32(&container->regs->_reg[num]); \
++} \
++static inline void dwc_write_##_reg##_n(_container_type *container, int num, uint32_t data) { \
++ DWC_WRITE_REG32(&(((uint32_t*)container->regs->_reg)[num]), data); \
++}
++
++#define dwc_define_read_write_reg(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg(_container_type *container) { \
++ return DWC_READ_REG32(&container->regs->_reg); \
++} \
++static inline void dwc_write_##_reg(_container_type *container, uint32_t data) { \
++ DWC_WRITE_REG32(&container->regs->_reg, data); \
++}
++
++# endif /* DWC_DEBUG_REGS */
++
++#endif /* DWC_LINUX */
++
++#if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++
++# ifdef DWC_DEBUG_REGS
++
++#define dwc_define_read_write_reg_n(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg##_n(void *io_ctx, _container_type *container, int num) { \
++ return DWC_READ_REG32(io_ctx, &container->regs->_reg[num]); \
++} \
++static inline void dwc_write_##_reg##_n(void *io_ctx, _container_type *container, int num, uint32_t data) { \
++ DWC_DEBUG("WRITING %8s[%d]: %p: %08x", #_reg, num, \
++ &(((uint32_t*)container->regs->_reg)[num]), data); \
++ DWC_WRITE_REG32(io_ctx, &(((uint32_t*)container->regs->_reg)[num]), data); \
++}
++
++#define dwc_define_read_write_reg(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg(void *io_ctx, _container_type *container) { \
++ return DWC_READ_REG32(io_ctx, &container->regs->_reg); \
++} \
++static inline void dwc_write_##_reg(void *io_ctx, _container_type *container, uint32_t data) { \
++ DWC_DEBUG("WRITING %11s: %p: %08x", #_reg, &container->regs->_reg, data); \
++ DWC_WRITE_REG32(io_ctx, &container->regs->_reg, data); \
++}
++
++# else /* DWC_DEBUG_REGS */
++
++#define dwc_define_read_write_reg_n(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg##_n(void *io_ctx, _container_type *container, int num) { \
++ return DWC_READ_REG32(io_ctx, &container->regs->_reg[num]); \
++} \
++static inline void dwc_write_##_reg##_n(void *io_ctx, _container_type *container, int num, uint32_t data) { \
++ DWC_WRITE_REG32(io_ctx, &(((uint32_t*)container->regs->_reg)[num]), data); \
++}
++
++#define dwc_define_read_write_reg(_reg,_container_type) \
++static inline uint32_t dwc_read_##_reg(void *io_ctx, _container_type *container) { \
++ return DWC_READ_REG32(io_ctx, &container->regs->_reg); \
++} \
++static inline void dwc_write_##_reg(void *io_ctx, _container_type *container, uint32_t data) { \
++ DWC_WRITE_REG32(io_ctx, &container->regs->_reg, data); \
++}
++
++# endif /* DWC_DEBUG_REGS */
++
++#endif /* DWC_FREEBSD || DWC_NETBSD */
++
++/** @endcond */
++
++
++#ifdef DWC_CRYPTOLIB
++/** @name Crypto Functions
++ *
++ * These are the low-level cryptographic functions used by the driver. */
++
++/** Perform AES CBC */
++extern int DWC_AES_CBC(uint8_t *message, uint32_t messagelen, uint8_t *key, uint32_t keylen, uint8_t iv[16], uint8_t *out);
++#define dwc_aes_cbc DWC_AES_CBC
++
++/** Fill the provided buffer with random bytes. These should be cryptographic grade random numbers. */
++extern void DWC_RANDOM_BYTES(uint8_t *buffer, uint32_t length);
++#define dwc_random_bytes DWC_RANDOM_BYTES
++
++/** Perform the SHA-256 hash function */
++extern int DWC_SHA256(uint8_t *message, uint32_t len, uint8_t *out);
++#define dwc_sha256 DWC_SHA256
++
++/** Calculated the HMAC-SHA256 */
++extern int DWC_HMAC_SHA256(uint8_t *message, uint32_t messagelen, uint8_t *key, uint32_t keylen, uint8_t *out);
++#define dwc_hmac_sha256 DWC_HMAC_SHA256
++
++#endif /* DWC_CRYPTOLIB */
++
++
++/** @name Memory Allocation
++ *
++ * These function provide access to memory allocation. There are only 2 DMA
++ * functions and 3 Regular memory functions that need to be implemented. None
++ * of the memory debugging routines need to be implemented. The allocation
++ * routines all ZERO the contents of the memory.
++ *
++ * Defining DWC_DEBUG_MEMORY turns on memory debugging and statistic gathering.
++ * This checks for memory leaks, keeping track of alloc/free pairs. It also
++ * keeps track of how much memory the driver is using at any given time. */
++
++#define DWC_PAGE_SIZE 4096
++#define DWC_PAGE_OFFSET(addr) (((uint32_t)addr) & 0xfff)
++#define DWC_PAGE_ALIGNED(addr) ((((uint32_t)addr) & 0xfff) == 0)
++
++#define DWC_INVALID_DMA_ADDR 0x0
++
++#ifdef DWC_LINUX
++/** Type for a DMA address */
++typedef dma_addr_t dwc_dma_t;
++#endif
++
++#if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++typedef bus_addr_t dwc_dma_t;
++#endif
++
++#ifdef DWC_FREEBSD
++typedef struct dwc_dmactx {
++ struct device *dev;
++ bus_dma_tag_t dma_tag;
++ bus_dmamap_t dma_map;
++ bus_addr_t dma_paddr;
++ void *dma_vaddr;
++} dwc_dmactx_t;
++#endif
++
++#ifdef DWC_NETBSD
++typedef struct dwc_dmactx {
++ struct device *dev;
++ bus_dma_tag_t dma_tag;
++ bus_dmamap_t dma_map;
++ bus_dma_segment_t segs[1];
++ int nsegs;
++ bus_addr_t dma_paddr;
++ void *dma_vaddr;
++} dwc_dmactx_t;
++#endif
++
++/* @todo these functions will be added in the future */
++#if 0
++/**
++ * Creates a DMA pool from which you can allocate DMA buffers. Buffers
++ * allocated from this pool will be guaranteed to meet the size, alignment, and
++ * boundary requirements specified.
++ *
++ * @param[in] size Specifies the size of the buffers that will be allocated from
++ * this pool.
++ * @param[in] align Specifies the byte alignment requirements of the buffers
++ * allocated from this pool. Must be a power of 2.
++ * @param[in] boundary Specifies the N-byte boundary that buffers allocated from
++ * this pool must not cross.
++ *
++ * @returns A pointer to an internal opaque structure which is not to be
++ * accessed outside of these library functions. Use this handle to specify
++ * which pools to allocate/free DMA buffers from and also to destroy the pool,
++ * when you are done with it.
++ */
++extern dwc_pool_t *DWC_DMA_POOL_CREATE(uint32_t size, uint32_t align, uint32_t boundary);
++
++/**
++ * Destroy a DMA pool. All buffers allocated from that pool must be freed first.
++ */
++extern void DWC_DMA_POOL_DESTROY(dwc_pool_t *pool);
++
++/**
++ * Allocate a buffer from the specified DMA pool and zeros its contents.
++ */
++extern void *DWC_DMA_POOL_ALLOC(dwc_pool_t *pool, uint64_t *dma_addr);
++
++/**
++ * Free a previously allocated buffer from the DMA pool.
++ */
++extern void DWC_DMA_POOL_FREE(dwc_pool_t *pool, void *vaddr, void *daddr);
++#endif
++
++/** Allocates a DMA capable buffer and zeroes its contents. */
++extern void *__DWC_DMA_ALLOC(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr);
++
++/** Allocates a DMA capable buffer and zeroes its contents in atomic contest */
++extern void *__DWC_DMA_ALLOC_ATOMIC(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr);
++
++/** Frees a previously allocated buffer. */
++extern void __DWC_DMA_FREE(void *dma_ctx, uint32_t size, void *virt_addr, dwc_dma_t dma_addr);
++
++/** Allocates a block of memory and zeroes its contents. */
++extern void *__DWC_ALLOC(void *mem_ctx, uint32_t size);
++
++/** Allocates a block of memory and zeroes its contents, in an atomic manner
++ * which can be used inside interrupt context. The size should be sufficiently
++ * small, a few KB at most, such that failures are not likely to occur. Can just call
++ * __DWC_ALLOC if it is atomic. */
++extern void *__DWC_ALLOC_ATOMIC(void *mem_ctx, uint32_t size);
++
++/** Frees a previously allocated buffer. */
++extern void __DWC_FREE(void *mem_ctx, void *addr);
++
++#ifndef DWC_DEBUG_MEMORY
++
++#define DWC_ALLOC(_size_) __DWC_ALLOC(NULL, _size_)
++#define DWC_ALLOC_ATOMIC(_size_) __DWC_ALLOC_ATOMIC(NULL, _size_)
++#define DWC_FREE(_addr_) __DWC_FREE(NULL, _addr_)
++
++# ifdef DWC_LINUX
++#define DWC_DMA_ALLOC(_size_,_dma_) __DWC_DMA_ALLOC(NULL, _size_, _dma_)
++#define DWC_DMA_ALLOC_ATOMIC(_size_,_dma_) __DWC_DMA_ALLOC_ATOMIC(NULL, _size_,_dma_)
++#define DWC_DMA_FREE(_size_,_virt_,_dma_) __DWC_DMA_FREE(NULL, _size_, _virt_, _dma_)
++# endif
++
++# if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++#define DWC_DMA_ALLOC __DWC_DMA_ALLOC
++#define DWC_DMA_FREE __DWC_DMA_FREE
++# endif
++extern void *dwc_dma_alloc_atomic_debug(uint32_t size, dwc_dma_t *dma_addr, char const *func, int line);
++
++#else /* DWC_DEBUG_MEMORY */
++
++extern void *dwc_alloc_debug(void *mem_ctx, uint32_t size, char const *func, int line);
++extern void *dwc_alloc_atomic_debug(void *mem_ctx, uint32_t size, char const *func, int line);
++extern void dwc_free_debug(void *mem_ctx, void *addr, char const *func, int line);
++extern void *dwc_dma_alloc_debug(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr,
++ char const *func, int line);
++extern void *dwc_dma_alloc_atomic_debug(void *dma_ctx, uint32_t size, dwc_dma_t *dma_addr,
++ char const *func, int line);
++extern void dwc_dma_free_debug(void *dma_ctx, uint32_t size, void *virt_addr,
++ dwc_dma_t dma_addr, char const *func, int line);
++
++extern int dwc_memory_debug_start(void *mem_ctx);
++extern void dwc_memory_debug_stop(void);
++extern void dwc_memory_debug_report(void);
++
++#define DWC_ALLOC(_size_) dwc_alloc_debug(NULL, _size_, __func__, __LINE__)
++#define DWC_ALLOC_ATOMIC(_size_) dwc_alloc_atomic_debug(NULL, _size_, \
++ __func__, __LINE__)
++#define DWC_FREE(_addr_) dwc_free_debug(NULL, _addr_, __func__, __LINE__)
++
++# ifdef DWC_LINUX
++#define DWC_DMA_ALLOC(_size_,_dma_) dwc_dma_alloc_debug(NULL, _size_, \
++ _dma_, __func__, __LINE__)
++#define DWC_DMA_ALLOC_ATOMIC(_size_,_dma_) dwc_dma_alloc_atomic_debug(NULL, _size_, \
++ _dma_, __func__, __LINE__)
++#define DWC_DMA_FREE(_size_,_virt_,_dma_) dwc_dma_free_debug(NULL, _size_, \
++ _virt_, _dma_, __func__, __LINE__)
++# endif
++
++# if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++#define DWC_DMA_ALLOC(_ctx_,_size_,_dma_) dwc_dma_alloc_debug(_ctx_, _size_, \
++ _dma_, __func__, __LINE__)
++#define DWC_DMA_FREE(_ctx_,_size_,_virt_,_dma_) dwc_dma_free_debug(_ctx_, _size_, \
++ _virt_, _dma_, __func__, __LINE__)
++# endif
++
++#endif /* DWC_DEBUG_MEMORY */
++
++#define dwc_alloc(_ctx_,_size_) DWC_ALLOC(_size_)
++#define dwc_alloc_atomic(_ctx_,_size_) DWC_ALLOC_ATOMIC(_size_)
++#define dwc_free(_ctx_,_addr_) DWC_FREE(_addr_)
++
++#ifdef DWC_LINUX
++/* Linux doesn't need any extra parameters for DMA buffer allocation, so we
++ * just throw away the DMA context parameter.
++ */
++#define dwc_dma_alloc(_ctx_,_size_,_dma_) DWC_DMA_ALLOC(_size_, _dma_)
++#define dwc_dma_alloc_atomic(_ctx_,_size_,_dma_) DWC_DMA_ALLOC_ATOMIC(_size_, _dma_)
++#define dwc_dma_free(_ctx_,_size_,_virt_,_dma_) DWC_DMA_FREE(_size_, _virt_, _dma_)
++#endif
++
++#if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++/** BSD needs several extra parameters for DMA buffer allocation, so we pass
++ * them in using the DMA context parameter.
++ */
++#define dwc_dma_alloc DWC_DMA_ALLOC
++#define dwc_dma_free DWC_DMA_FREE
++#endif
++
++
++/** @name Memory and String Processing */
++
++/** memset() clone */
++extern void *DWC_MEMSET(void *dest, uint8_t byte, uint32_t size);
++#define dwc_memset DWC_MEMSET
++
++/** memcpy() clone */
++extern void *DWC_MEMCPY(void *dest, void const *src, uint32_t size);
++#define dwc_memcpy DWC_MEMCPY
++
++/** memmove() clone */
++extern void *DWC_MEMMOVE(void *dest, void *src, uint32_t size);
++#define dwc_memmove DWC_MEMMOVE
++
++/** memcmp() clone */
++extern int DWC_MEMCMP(void *m1, void *m2, uint32_t size);
++#define dwc_memcmp DWC_MEMCMP
++
++/** strcmp() clone */
++extern int DWC_STRCMP(void *s1, void *s2);
++#define dwc_strcmp DWC_STRCMP
++
++/** strncmp() clone */
++extern int DWC_STRNCMP(void *s1, void *s2, uint32_t size);
++#define dwc_strncmp DWC_STRNCMP
++
++/** strlen() clone, for NULL terminated ASCII strings */
++extern int DWC_STRLEN(char const *str);
++#define dwc_strlen DWC_STRLEN
++
++/** strcpy() clone, for NULL terminated ASCII strings */
++extern char *DWC_STRCPY(char *to, const char *from);
++#define dwc_strcpy DWC_STRCPY
++
++/** strdup() clone. If you wish to use memory allocation debugging, this
++ * implementation of strdup should use the DWC_* memory routines instead of
++ * calling a predefined strdup. Otherwise the memory allocated by this routine
++ * will not be seen by the debugging routines. */
++extern char *DWC_STRDUP(char const *str);
++#define dwc_strdup(_ctx_,_str_) DWC_STRDUP(_str_)
++
++/** NOT an atoi() clone. Read the description carefully. Returns an integer
++ * converted from the string str in base 10 unless the string begins with a "0x"
++ * in which case it is base 16. String must be a NULL terminated sequence of
++ * ASCII characters and may optionally begin with whitespace, a + or -, and a
++ * "0x" prefix if base 16. The remaining characters must be valid digits for
++ * the number and end with a NULL character. If any invalid characters are
++ * encountered or it returns with a negative error code and the results of the
++ * conversion are undefined. On sucess it returns 0. Overflow conditions are
++ * undefined. An example implementation using atoi() can be referenced from the
++ * Linux implementation. */
++extern int DWC_ATOI(const char *str, int32_t *value);
++#define dwc_atoi DWC_ATOI
++
++/** Same as above but for unsigned. */
++extern int DWC_ATOUI(const char *str, uint32_t *value);
++#define dwc_atoui DWC_ATOUI
++
++#ifdef DWC_UTFLIB
++/** This routine returns a UTF16LE unicode encoded string from a UTF8 string. */
++extern int DWC_UTF8_TO_UTF16LE(uint8_t const *utf8string, uint16_t *utf16string, unsigned len);
++#define dwc_utf8_to_utf16le DWC_UTF8_TO_UTF16LE
++#endif
++
++
++/** @name Wait queues
++ *
++ * Wait queues provide a means of synchronizing between threads or processes. A
++ * process can block on a waitq if some condition is not true, waiting for it to
++ * become true. When the waitq is triggered all waiting process will get
++ * unblocked and the condition will be check again. Waitqs should be triggered
++ * every time a condition can potentially change.*/
++struct dwc_waitq;
++
++/** Type for a waitq */
++typedef struct dwc_waitq dwc_waitq_t;
++
++/** The type of waitq condition callback function. This is called every time
++ * condition is evaluated. */
++typedef int (*dwc_waitq_condition_t)(void *data);
++
++/** Allocate a waitq */
++extern dwc_waitq_t *DWC_WAITQ_ALLOC(void);
++#define dwc_waitq_alloc(_ctx_) DWC_WAITQ_ALLOC()
++
++/** Free a waitq */
++extern void DWC_WAITQ_FREE(dwc_waitq_t *wq);
++#define dwc_waitq_free DWC_WAITQ_FREE
++
++/** Check the condition and if it is false, block on the waitq. When unblocked, check the
++ * condition again. The function returns when the condition becomes true. The return value
++ * is 0 on condition true, DWC_WAITQ_ABORTED on abort or killed, or DWC_WAITQ_UNKNOWN on error. */
++extern int32_t DWC_WAITQ_WAIT(dwc_waitq_t *wq, dwc_waitq_condition_t cond, void *data);
++#define dwc_waitq_wait DWC_WAITQ_WAIT
++
++/** Check the condition and if it is false, block on the waitq. When unblocked,
++ * check the condition again. The function returns when the condition become
++ * true or the timeout has passed. The return value is 0 on condition true or
++ * DWC_TIMED_OUT on timeout, or DWC_WAITQ_ABORTED, or DWC_WAITQ_UNKNOWN on
++ * error. */
++extern int32_t DWC_WAITQ_WAIT_TIMEOUT(dwc_waitq_t *wq, dwc_waitq_condition_t cond,
++ void *data, int32_t msecs);
++#define dwc_waitq_wait_timeout DWC_WAITQ_WAIT_TIMEOUT
++
++/** Trigger a waitq, unblocking all processes. This should be called whenever a condition
++ * has potentially changed. */
++extern void DWC_WAITQ_TRIGGER(dwc_waitq_t *wq);
++#define dwc_waitq_trigger DWC_WAITQ_TRIGGER
++
++/** Unblock all processes waiting on the waitq with an ABORTED result. */
++extern void DWC_WAITQ_ABORT(dwc_waitq_t *wq);
++#define dwc_waitq_abort DWC_WAITQ_ABORT
++
++
++/** @name Threads
++ *
++ * A thread must be explicitly stopped. It must check DWC_THREAD_SHOULD_STOP
++ * whenever it is woken up, and then return. The DWC_THREAD_STOP function
++ * returns the value from the thread.
++ */
++
++struct dwc_thread;
++
++/** Type for a thread */
++typedef struct dwc_thread dwc_thread_t;
++
++/** The thread function */
++typedef int (*dwc_thread_function_t)(void *data);
++
++/** Create a thread and start it running the thread_function. Returns a handle
++ * to the thread */
++extern dwc_thread_t *DWC_THREAD_RUN(dwc_thread_function_t func, char *name, void *data);
++#define dwc_thread_run(_ctx_,_func_,_name_,_data_) DWC_THREAD_RUN(_func_, _name_, _data_)
++
++/** Stops a thread. Return the value returned by the thread. Or will return
++ * DWC_ABORT if the thread never started. */
++extern int DWC_THREAD_STOP(dwc_thread_t *thread);
++#define dwc_thread_stop DWC_THREAD_STOP
++
++/** Signifies to the thread that it must stop. */
++#ifdef DWC_LINUX
++/* Linux doesn't need any parameters for kthread_should_stop() */
++extern dwc_bool_t DWC_THREAD_SHOULD_STOP(void);
++#define dwc_thread_should_stop(_thrd_) DWC_THREAD_SHOULD_STOP()
++
++/* No thread_exit function in Linux */
++#define dwc_thread_exit(_thrd_)
++#endif
++
++#if defined(DWC_FREEBSD) || defined(DWC_NETBSD)
++/** BSD needs the thread pointer for kthread_suspend_check() */
++extern dwc_bool_t DWC_THREAD_SHOULD_STOP(dwc_thread_t *thread);
++#define dwc_thread_should_stop DWC_THREAD_SHOULD_STOP
++
++/** The thread must call this to exit. */
++extern void DWC_THREAD_EXIT(dwc_thread_t *thread);
++#define dwc_thread_exit DWC_THREAD_EXIT
++#endif
++
++
++/** @name Work queues
++ *
++ * Workqs are used to queue a callback function to be called at some later time,
++ * in another thread. */
++struct dwc_workq;
++
++/** Type for a workq */
++typedef struct dwc_workq dwc_workq_t;
++
++/** The type of the callback function to be called. */
++typedef void (*dwc_work_callback_t)(void *data);
++
++/** Allocate a workq */
++extern dwc_workq_t *DWC_WORKQ_ALLOC(char *name);
++#define dwc_workq_alloc(_ctx_,_name_) DWC_WORKQ_ALLOC(_name_)
++
++/** Free a workq. All work must be completed before being freed. */
++extern void DWC_WORKQ_FREE(dwc_workq_t *workq);
++#define dwc_workq_free DWC_WORKQ_FREE
++
++/** Schedule a callback on the workq, passing in data. The function will be
++ * scheduled at some later time. */
++extern void DWC_WORKQ_SCHEDULE(dwc_workq_t *workq, dwc_work_callback_t cb,
++ void *data, char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 4, 5)));
++#else
++ ;
++#endif
++#define dwc_workq_schedule DWC_WORKQ_SCHEDULE
++
++/** Schedule a callback on the workq, that will be called until at least
++ * given number miliseconds have passed. */
++extern void DWC_WORKQ_SCHEDULE_DELAYED(dwc_workq_t *workq, dwc_work_callback_t cb,
++ void *data, uint32_t time, char *format, ...)
++#ifdef __GNUC__
++ __attribute__ ((format(printf, 5, 6)));
++#else
++ ;
++#endif
++#define dwc_workq_schedule_delayed DWC_WORKQ_SCHEDULE_DELAYED
++
++/** The number of processes in the workq */
++extern int DWC_WORKQ_PENDING(dwc_workq_t *workq);
++#define dwc_workq_pending DWC_WORKQ_PENDING
++
++/** Blocks until all the work in the workq is complete or timed out. Returns <
++ * 0 on timeout. */
++extern int DWC_WORKQ_WAIT_WORK_DONE(dwc_workq_t *workq, int timeout);
++#define dwc_workq_wait_work_done DWC_WORKQ_WAIT_WORK_DONE
++
++
++/** @name Tasklets
++ *
++ */
++struct dwc_tasklet;
++
++/** Type for a tasklet */
++typedef struct dwc_tasklet dwc_tasklet_t;
++
++/** The type of the callback function to be called */
++typedef void (*dwc_tasklet_callback_t)(void *data);
++
++/** Allocates a tasklet */
++extern dwc_tasklet_t *DWC_TASK_ALLOC(char *name, dwc_tasklet_callback_t cb, void *data);
++#define dwc_task_alloc(_ctx_,_name_,_cb_,_data_) DWC_TASK_ALLOC(_name_, _cb_, _data_)
++
++/** Frees a tasklet */
++extern void DWC_TASK_FREE(dwc_tasklet_t *task);
++#define dwc_task_free DWC_TASK_FREE
++
++/** Schedules a tasklet to run */
++extern void DWC_TASK_SCHEDULE(dwc_tasklet_t *task);
++#define dwc_task_schedule DWC_TASK_SCHEDULE
++
++extern void DWC_TASK_HI_SCHEDULE(dwc_tasklet_t *task);
++#define dwc_task_hi_schedule DWC_TASK_HI_SCHEDULE
++
++/** @name Timer
++ *
++ * Callbacks must be small and atomic.
++ */
++struct dwc_timer;
++
++/** Type for a timer */
++typedef struct dwc_timer dwc_timer_t;
++
++/** The type of the callback function to be called */
++typedef void (*dwc_timer_callback_t)(void *data);
++
++/** Allocates a timer */
++extern dwc_timer_t *DWC_TIMER_ALLOC(char *name, dwc_timer_callback_t cb, void *data);
++#define dwc_timer_alloc(_ctx_,_name_,_cb_,_data_) DWC_TIMER_ALLOC(_name_,_cb_,_data_)
++
++/** Frees a timer */
++extern void DWC_TIMER_FREE(dwc_timer_t *timer);
++#define dwc_timer_free DWC_TIMER_FREE
++
++/** Schedules the timer to run at time ms from now. And will repeat at every
++ * repeat_interval msec therafter
++ *
++ * Modifies a timer that is still awaiting execution to a new expiration time.
++ * The mod_time is added to the old time. */
++extern void DWC_TIMER_SCHEDULE(dwc_timer_t *timer, uint32_t time);
++#define dwc_timer_schedule DWC_TIMER_SCHEDULE
++
++/** Disables the timer from execution. */
++extern void DWC_TIMER_CANCEL(dwc_timer_t *timer);
++#define dwc_timer_cancel DWC_TIMER_CANCEL
++
++
++/** @name Spinlocks
++ *
++ * These locks are used when the work between the lock/unlock is atomic and
++ * short. Interrupts are also disabled during the lock/unlock and thus they are
++ * suitable to lock between interrupt/non-interrupt context. They also lock
++ * between processes if you have multiple CPUs or Preemption. If you don't have
++ * multiple CPUS or Preemption, then the you can simply implement the
++ * DWC_SPINLOCK and DWC_SPINUNLOCK to disable and enable interrupts. Because
++ * the work between the lock/unlock is atomic, the process context will never
++ * change, and so you never have to lock between processes. */
++
++struct dwc_spinlock;
++
++/** Type for a spinlock */
++typedef struct dwc_spinlock dwc_spinlock_t;
++
++/** Type for the 'flags' argument to spinlock funtions */
++typedef unsigned long dwc_irqflags_t;
++
++/** Returns an initialized lock variable. This function should allocate and
++ * initialize the OS-specific data structure used for locking. This data
++ * structure is to be used for the DWC_LOCK and DWC_UNLOCK functions and should
++ * be freed by the DWC_FREE_LOCK when it is no longer used. */
++extern dwc_spinlock_t *DWC_SPINLOCK_ALLOC(void);
++#define dwc_spinlock_alloc(_ctx_) DWC_SPINLOCK_ALLOC()
++
++/** Frees an initialized lock variable. */
++extern void DWC_SPINLOCK_FREE(dwc_spinlock_t *lock);
++#define dwc_spinlock_free(_ctx_,_lock_) DWC_SPINLOCK_FREE(_lock_)
++
++/** Disables interrupts and blocks until it acquires the lock.
++ *
++ * @param lock Pointer to the spinlock.
++ * @param flags Unsigned long for irq flags storage.
++ */
++extern void DWC_SPINLOCK_IRQSAVE(dwc_spinlock_t *lock, dwc_irqflags_t *flags);
++#define dwc_spinlock_irqsave DWC_SPINLOCK_IRQSAVE
++
++/** Re-enables the interrupt and releases the lock.
++ *
++ * @param lock Pointer to the spinlock.
++ * @param flags Unsigned long for irq flags storage. Must be the same as was
++ * passed into DWC_LOCK.
++ */
++extern void DWC_SPINUNLOCK_IRQRESTORE(dwc_spinlock_t *lock, dwc_irqflags_t flags);
++#define dwc_spinunlock_irqrestore DWC_SPINUNLOCK_IRQRESTORE
++
++/** Blocks until it acquires the lock.
++ *
++ * @param lock Pointer to the spinlock.
++ */
++extern void DWC_SPINLOCK(dwc_spinlock_t *lock);
++#define dwc_spinlock DWC_SPINLOCK
++
++/** Releases the lock.
++ *
++ * @param lock Pointer to the spinlock.
++ */
++extern void DWC_SPINUNLOCK(dwc_spinlock_t *lock);
++#define dwc_spinunlock DWC_SPINUNLOCK
++
++
++/** @name Mutexes
++ *
++ * Unlike spinlocks Mutexes lock only between processes and the work between the
++ * lock/unlock CAN block, therefore it CANNOT be called from interrupt context.
++ */
++
++struct dwc_mutex;
++
++/** Type for a mutex */
++typedef struct dwc_mutex dwc_mutex_t;
++
++/* For Linux Mutex Debugging make it inline because the debugging routines use
++ * the symbol to determine recursive locking. This makes it falsely think
++ * recursive locking occurs. */
++#if defined(DWC_LINUX) && defined(CONFIG_DEBUG_MUTEXES)
++#define DWC_MUTEX_ALLOC_LINUX_DEBUG(__mutexp) ({ \
++ __mutexp = (dwc_mutex_t *)DWC_ALLOC(sizeof(struct mutex)); \
++ mutex_init((struct mutex *)__mutexp); \
++})
++#endif
++
++/** Allocate a mutex */
++extern dwc_mutex_t *DWC_MUTEX_ALLOC(void);
++#define dwc_mutex_alloc(_ctx_) DWC_MUTEX_ALLOC()
++
++/* For memory leak debugging when using Linux Mutex Debugging */
++#if defined(DWC_LINUX) && defined(CONFIG_DEBUG_MUTEXES)
++#define DWC_MUTEX_FREE(__mutexp) do { \
++ mutex_destroy((struct mutex *)__mutexp); \
++ DWC_FREE(__mutexp); \
++} while(0)
++#else
++/** Free a mutex */
++extern void DWC_MUTEX_FREE(dwc_mutex_t *mutex);
++#define dwc_mutex_free(_ctx_,_mutex_) DWC_MUTEX_FREE(_mutex_)
++#endif
++
++/** Lock a mutex */
++extern void DWC_MUTEX_LOCK(dwc_mutex_t *mutex);
++#define dwc_mutex_lock DWC_MUTEX_LOCK
++
++/** Non-blocking lock returns 1 on successful lock. */
++extern int DWC_MUTEX_TRYLOCK(dwc_mutex_t *mutex);
++#define dwc_mutex_trylock DWC_MUTEX_TRYLOCK
++
++/** Unlock a mutex */
++extern void DWC_MUTEX_UNLOCK(dwc_mutex_t *mutex);
++#define dwc_mutex_unlock DWC_MUTEX_UNLOCK
++
++
++/** @name Time */
++
++/** Microsecond delay.
++ *
++ * @param usecs Microseconds to delay.
++ */
++extern void DWC_UDELAY(uint32_t usecs);
++#define dwc_udelay DWC_UDELAY
++
++/** Millisecond delay.
++ *
++ * @param msecs Milliseconds to delay.
++ */
++extern void DWC_MDELAY(uint32_t msecs);
++#define dwc_mdelay DWC_MDELAY
++
++/** Non-busy waiting.
++ * Sleeps for specified number of milliseconds.
++ *
++ * @param msecs Milliseconds to sleep.
++ */
++extern void DWC_MSLEEP(uint32_t msecs);
++#define dwc_msleep DWC_MSLEEP
++
++/**
++ * Returns number of milliseconds since boot.
++ */
++extern uint32_t DWC_TIME(void);
++#define dwc_time DWC_TIME
++
++
++
++
++/* @mainpage DWC Portability and Common Library
++ *
++ * This is the documentation for the DWC Portability and Common Library.
++ *
++ * @section intro Introduction
++ *
++ * The DWC Portability library consists of wrapper calls and data structures to
++ * all low-level functions which are typically provided by the OS. The WUDEV
++ * driver uses only these functions. In order to port the WUDEV driver, only
++ * the functions in this library need to be re-implemented, with the same
++ * behavior as documented here.
++ *
++ * The Common library consists of higher level functions, which rely only on
++ * calling the functions from the DWC Portability library. These common
++ * routines are shared across modules. Some of the common libraries need to be
++ * used directly by the driver programmer when porting WUDEV. Such as the
++ * parameter and notification libraries.
++ *
++ * @section low Portability Library OS Wrapper Functions
++ *
++ * Any function starting with DWC and in all CAPS is a low-level OS-wrapper that
++ * needs to be implemented when porting, for example DWC_MUTEX_ALLOC(). All of
++ * these functions are included in the dwc_os.h file.
++ *
++ * There are many functions here covering a wide array of OS services. Please
++ * see dwc_os.h for details, and implementation notes for each function.
++ *
++ * @section common Common Library Functions
++ *
++ * Any function starting with dwc and in all lowercase is a common library
++ * routine. These functions have a portable implementation and do not need to
++ * be reimplemented when porting. The common routines can be used by any
++ * driver, and some must be used by the end user to control the drivers. For
++ * example, you must use the Parameter common library in order to set the
++ * parameters in the WUDEV module.
++ *
++ * The common libraries consist of the following:
++ *
++ * - Connection Contexts - Used internally and can be used by end-user. See dwc_cc.h
++ * - Parameters - Used internally and can be used by end-user. See dwc_params.h
++ * - Notifications - Used internally and can be used by end-user. See dwc_notifier.h
++ * - Lists - Used internally and can be used by end-user. See dwc_list.h
++ * - Memory Debugging - Used internally and can be used by end-user. See dwc_os.h
++ * - Modpow - Used internally only. See dwc_modpow.h
++ * - DH - Used internally only. See dwc_dh.h
++ * - Crypto - Used internally only. See dwc_crypto.h
++ *
++ *
++ * @section prereq Prerequistes For dwc_os.h
++ * @subsection types Data Types
++ *
++ * The dwc_os.h file assumes that several low-level data types are pre defined for the
++ * compilation environment. These data types are:
++ *
++ * - uint8_t - unsigned 8-bit data type
++ * - int8_t - signed 8-bit data type
++ * - uint16_t - unsigned 16-bit data type
++ * - int16_t - signed 16-bit data type
++ * - uint32_t - unsigned 32-bit data type
++ * - int32_t - signed 32-bit data type
++ * - uint64_t - unsigned 64-bit data type
++ * - int64_t - signed 64-bit data type
++ *
++ * Ensure that these are defined before using dwc_os.h. The easiest way to do
++ * that is to modify the top of the file to include the appropriate header.
++ * This is already done for the Linux environment. If the DWC_LINUX macro is
++ * defined, the correct header will be added. A standard header <stdint.h> is
++ * also used for environments where standard C headers are available.
++ *
++ * @subsection stdarg Variable Arguments
++ *
++ * Variable arguments are provided by a standard C header <stdarg.h>. it is
++ * available in Both the Linux and ANSI C enviornment. An equivalent must be
++ * provided in your enviornment in order to use dwc_os.h with the debug and
++ * tracing message functionality.
++ *
++ * @subsection thread Threading
++ *
++ * WUDEV Core must be run on an operating system that provides for multiple
++ * threads/processes. Threading can be implemented in many ways, even in
++ * embedded systems without an operating system. At the bare minimum, the
++ * system should be able to start any number of processes at any time to handle
++ * special work. It need not be a pre-emptive system. Process context can
++ * change upon a call to a blocking function. The hardware interrupt context
++ * that calls the module's ISR() function must be differentiable from process
++ * context, even if your processes are impemented via a hardware interrupt.
++ * Further locking mechanism between process must exist (or be implemented), and
++ * process context must have a way to disable interrupts for a period of time to
++ * lock them out. If all of this exists, the functions in dwc_os.h related to
++ * threading should be able to be implemented with the defined behavior.
++ *
++ */
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* _DWC_OS_H_ */
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/Makefile linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/Makefile
+--- linux-3.10/drivers/usb/host/dwc_common_port/Makefile 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/Makefile 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,58 @@
++#
++# Makefile for DWC_common library
++#
++
++ifneq ($(KERNELRELEASE),)
++
++EXTRA_CFLAGS += -DDWC_LINUX
++#EXTRA_CFLAGS += -DDEBUG
++#EXTRA_CFLAGS += -DDWC_DEBUG_REGS
++#EXTRA_CFLAGS += -DDWC_DEBUG_MEMORY
++
++EXTRA_CFLAGS += -DDWC_LIBMODULE
++EXTRA_CFLAGS += -DDWC_CCLIB
++#EXTRA_CFLAGS += -DDWC_CRYPTOLIB
++EXTRA_CFLAGS += -DDWC_NOTIFYLIB
++EXTRA_CFLAGS += -DDWC_UTFLIB
++
++obj-$(CONFIG_USB_DWCOTG) += dwc_common_port_lib.o
++dwc_common_port_lib-objs := dwc_cc.o dwc_modpow.o dwc_dh.o \
++ dwc_crypto.o dwc_notifier.o \
++ dwc_common_linux.o dwc_mem.o
++
++kernrelwd := $(subst ., ,$(KERNELRELEASE))
++kernrel3 := $(word 1,$(kernrelwd)).$(word 2,$(kernrelwd)).$(word 3,$(kernrelwd))
++
++ifneq ($(kernrel3),2.6.20)
++# grayg - I only know that we use EXTRA_CFLAGS in 2.6.31 actually
++EXTRA_CFLAGS += $(CPPFLAGS)
++endif
++
++else
++
++#ifeq ($(KDIR),)
++#$(error Must give "KDIR=/path/to/kernel/source" on command line or in environment)
++#endif
++
++ifeq ($(ARCH),)
++$(error Must give "ARCH=<arch>" on command line or in environment. Also, if \
++ cross-compiling, must give "CROSS_COMPILE=/path/to/compiler/plus/tool-prefix-")
++endif
++
++ifeq ($(DOXYGEN),)
++DOXYGEN := doxygen
++endif
++
++default:
++ $(MAKE) -C$(KDIR) M=$(PWD) ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE) modules
++
++docs: $(wildcard *.[hc]) doc/doxygen.cfg
++ $(DOXYGEN) doc/doxygen.cfg
++
++tags: $(wildcard *.[hc])
++ $(CTAGS) -e $(wildcard *.[hc]) $(wildcard linux/*.[hc]) $(wildcard $(KDIR)/include/linux/usb*.h)
++
++endif
++
++clean:
++ rm -rf *.o *.ko .*.cmd *.mod.c .*.o.d .*.o.tmp modules.order Module.markers Module.symvers .tmp_versions/
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/Makefile.fbsd linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/Makefile.fbsd
+--- linux-3.10/drivers/usb/host/dwc_common_port/Makefile.fbsd 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/Makefile.fbsd 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,17 @@
++CFLAGS += -I/sys/i386/compile/GENERIC -I/sys/i386/include -I/usr/include
++CFLAGS += -DDWC_FREEBSD
++CFLAGS += -DDEBUG
++#CFLAGS += -DDWC_DEBUG_REGS
++#CFLAGS += -DDWC_DEBUG_MEMORY
++
++#CFLAGS += -DDWC_LIBMODULE
++#CFLAGS += -DDWC_CCLIB
++#CFLAGS += -DDWC_CRYPTOLIB
++#CFLAGS += -DDWC_NOTIFYLIB
++#CFLAGS += -DDWC_UTFLIB
++
++KMOD = dwc_common_port_lib
++SRCS = dwc_cc.c dwc_modpow.c dwc_dh.c dwc_crypto.c dwc_notifier.c \
++ dwc_common_fbsd.c dwc_mem.c
++
++.include <bsd.kmod.mk>
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/Makefile.linux linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/Makefile.linux
+--- linux-3.10/drivers/usb/host/dwc_common_port/Makefile.linux 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/Makefile.linux 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,49 @@
++#
++# Makefile for DWC_common library
++#
++ifneq ($(KERNELRELEASE),)
++
++EXTRA_CFLAGS += -DDWC_LINUX
++#EXTRA_CFLAGS += -DDEBUG
++#EXTRA_CFLAGS += -DDWC_DEBUG_REGS
++#EXTRA_CFLAGS += -DDWC_DEBUG_MEMORY
++
++EXTRA_CFLAGS += -DDWC_LIBMODULE
++EXTRA_CFLAGS += -DDWC_CCLIB
++EXTRA_CFLAGS += -DDWC_CRYPTOLIB
++EXTRA_CFLAGS += -DDWC_NOTIFYLIB
++EXTRA_CFLAGS += -DDWC_UTFLIB
++
++obj-m := dwc_common_port_lib.o
++dwc_common_port_lib-objs := dwc_cc.o dwc_modpow.o dwc_dh.o \
++ dwc_crypto.o dwc_notifier.o \
++ dwc_common_linux.o dwc_mem.o
++
++else
++
++ifeq ($(KDIR),)
++$(error Must give "KDIR=/path/to/kernel/source" on command line or in environment)
++endif
++
++ifeq ($(ARCH),)
++$(error Must give "ARCH=<arch>" on command line or in environment. Also, if \
++ cross-compiling, must give "CROSS_COMPILE=/path/to/compiler/plus/tool-prefix-")
++endif
++
++ifeq ($(DOXYGEN),)
++DOXYGEN := doxygen
++endif
++
++default:
++ $(MAKE) -C$(KDIR) M=$(PWD) ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE) modules
++
++docs: $(wildcard *.[hc]) doc/doxygen.cfg
++ $(DOXYGEN) doc/doxygen.cfg
++
++tags: $(wildcard *.[hc])
++ $(CTAGS) -e $(wildcard *.[hc]) $(wildcard linux/*.[hc]) $(wildcard $(KDIR)/include/linux/usb*.h)
++
++endif
++
++clean:
++ rm -rf *.o *.ko .*.cmd *.mod.c .*.o.d .*.o.tmp modules.order Module.markers Module.symvers .tmp_versions/
+diff -urN linux-3.10/drivers/usb/host/dwc_common_port/usb.h linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/usb.h
+--- linux-3.10/drivers/usb/host/dwc_common_port/usb.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_common_port/usb.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,946 @@
++/*
++ * Copyright (c) 1998 The NetBSD Foundation, Inc.
++ * All rights reserved.
++ *
++ * This code is derived from software contributed to The NetBSD Foundation
++ * by Lennart Augustsson (lennart@augustsson.net) at
++ * Carlstedt Research & Technology.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions and the following disclaimer.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. All advertising materials mentioning features or use of this software
++ * must display the following acknowledgement:
++ * This product includes software developed by the NetBSD
++ * Foundation, Inc. and its contributors.
++ * 4. Neither the name of The NetBSD Foundation nor the names of its
++ * contributors may be used to endorse or promote products derived
++ * from this software without specific prior written permission.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
++ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
++ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
++ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
++ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
++ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
++ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
++ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
++ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
++ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
++ * POSSIBILITY OF SUCH DAMAGE.
++ */
++
++/* Modified by Synopsys, Inc, 12/12/2007 */
++
++
++#ifndef _USB_H_
++#define _USB_H_
++
++#ifdef __cplusplus
++extern "C" {
++#endif
++
++/*
++ * The USB records contain some unaligned little-endian word
++ * components. The U[SG]ETW macros take care of both the alignment
++ * and endian problem and should always be used to access non-byte
++ * values.
++ */
++typedef u_int8_t uByte;
++typedef u_int8_t uWord[2];
++typedef u_int8_t uDWord[4];
++
++#define USETW2(w,h,l) ((w)[0] = (u_int8_t)(l), (w)[1] = (u_int8_t)(h))
++#define UCONSTW(x) { (x) & 0xff, ((x) >> 8) & 0xff }
++#define UCONSTDW(x) { (x) & 0xff, ((x) >> 8) & 0xff, \
++ ((x) >> 16) & 0xff, ((x) >> 24) & 0xff }
++
++#if 1
++#define UGETW(w) ((w)[0] | ((w)[1] << 8))
++#define USETW(w,v) ((w)[0] = (u_int8_t)(v), (w)[1] = (u_int8_t)((v) >> 8))
++#define UGETDW(w) ((w)[0] | ((w)[1] << 8) | ((w)[2] << 16) | ((w)[3] << 24))
++#define USETDW(w,v) ((w)[0] = (u_int8_t)(v), \
++ (w)[1] = (u_int8_t)((v) >> 8), \
++ (w)[2] = (u_int8_t)((v) >> 16), \
++ (w)[3] = (u_int8_t)((v) >> 24))
++#else
++/*
++ * On little-endian machines that can handle unanliged accesses
++ * (e.g. i386) these macros can be replaced by the following.
++ */
++#define UGETW(w) (*(u_int16_t *)(w))
++#define USETW(w,v) (*(u_int16_t *)(w) = (v))
++#define UGETDW(w) (*(u_int32_t *)(w))
++#define USETDW(w,v) (*(u_int32_t *)(w) = (v))
++#endif
++
++/*
++ * Macros for accessing UAS IU fields, which are big-endian
++ */
++#define IUSETW2(w,h,l) ((w)[0] = (u_int8_t)(h), (w)[1] = (u_int8_t)(l))
++#define IUCONSTW(x) { ((x) >> 8) & 0xff, (x) & 0xff }
++#define IUCONSTDW(x) { ((x) >> 24) & 0xff, ((x) >> 16) & 0xff, \
++ ((x) >> 8) & 0xff, (x) & 0xff }
++#define IUGETW(w) (((w)[0] << 8) | (w)[1])
++#define IUSETW(w,v) ((w)[0] = (u_int8_t)((v) >> 8), (w)[1] = (u_int8_t)(v))
++#define IUGETDW(w) (((w)[0] << 24) | ((w)[1] << 16) | ((w)[2] << 8) | (w)[3])
++#define IUSETDW(w,v) ((w)[0] = (u_int8_t)((v) >> 24), \
++ (w)[1] = (u_int8_t)((v) >> 16), \
++ (w)[2] = (u_int8_t)((v) >> 8), \
++ (w)[3] = (u_int8_t)(v))
++
++#define UPACKED __attribute__((__packed__))
++
++typedef struct {
++ uByte bmRequestType;
++ uByte bRequest;
++ uWord wValue;
++ uWord wIndex;
++ uWord wLength;
++} UPACKED usb_device_request_t;
++
++#define UT_GET_DIR(a) ((a) & 0x80)
++#define UT_WRITE 0x00
++#define UT_READ 0x80
++
++#define UT_GET_TYPE(a) ((a) & 0x60)
++#define UT_STANDARD 0x00
++#define UT_CLASS 0x20
++#define UT_VENDOR 0x40
++
++#define UT_GET_RECIPIENT(a) ((a) & 0x1f)
++#define UT_DEVICE 0x00
++#define UT_INTERFACE 0x01
++#define UT_ENDPOINT 0x02
++#define UT_OTHER 0x03
++
++#define UT_READ_DEVICE (UT_READ | UT_STANDARD | UT_DEVICE)
++#define UT_READ_INTERFACE (UT_READ | UT_STANDARD | UT_INTERFACE)
++#define UT_READ_ENDPOINT (UT_READ | UT_STANDARD | UT_ENDPOINT)
++#define UT_WRITE_DEVICE (UT_WRITE | UT_STANDARD | UT_DEVICE)
++#define UT_WRITE_INTERFACE (UT_WRITE | UT_STANDARD | UT_INTERFACE)
++#define UT_WRITE_ENDPOINT (UT_WRITE | UT_STANDARD | UT_ENDPOINT)
++#define UT_READ_CLASS_DEVICE (UT_READ | UT_CLASS | UT_DEVICE)
++#define UT_READ_CLASS_INTERFACE (UT_READ | UT_CLASS | UT_INTERFACE)
++#define UT_READ_CLASS_OTHER (UT_READ | UT_CLASS | UT_OTHER)
++#define UT_READ_CLASS_ENDPOINT (UT_READ | UT_CLASS | UT_ENDPOINT)
++#define UT_WRITE_CLASS_DEVICE (UT_WRITE | UT_CLASS | UT_DEVICE)
++#define UT_WRITE_CLASS_INTERFACE (UT_WRITE | UT_CLASS | UT_INTERFACE)
++#define UT_WRITE_CLASS_OTHER (UT_WRITE | UT_CLASS | UT_OTHER)
++#define UT_WRITE_CLASS_ENDPOINT (UT_WRITE | UT_CLASS | UT_ENDPOINT)
++#define UT_READ_VENDOR_DEVICE (UT_READ | UT_VENDOR | UT_DEVICE)
++#define UT_READ_VENDOR_INTERFACE (UT_READ | UT_VENDOR | UT_INTERFACE)
++#define UT_READ_VENDOR_OTHER (UT_READ | UT_VENDOR | UT_OTHER)
++#define UT_READ_VENDOR_ENDPOINT (UT_READ | UT_VENDOR | UT_ENDPOINT)
++#define UT_WRITE_VENDOR_DEVICE (UT_WRITE | UT_VENDOR | UT_DEVICE)
++#define UT_WRITE_VENDOR_INTERFACE (UT_WRITE | UT_VENDOR | UT_INTERFACE)
++#define UT_WRITE_VENDOR_OTHER (UT_WRITE | UT_VENDOR | UT_OTHER)
++#define UT_WRITE_VENDOR_ENDPOINT (UT_WRITE | UT_VENDOR | UT_ENDPOINT)
++
++/* Requests */
++#define UR_GET_STATUS 0x00
++#define USTAT_STANDARD_STATUS 0x00
++#define WUSTAT_WUSB_FEATURE 0x01
++#define WUSTAT_CHANNEL_INFO 0x02
++#define WUSTAT_RECEIVED_DATA 0x03
++#define WUSTAT_MAS_AVAILABILITY 0x04
++#define WUSTAT_CURRENT_TRANSMIT_POWER 0x05
++#define UR_CLEAR_FEATURE 0x01
++#define UR_SET_FEATURE 0x03
++#define UR_SET_AND_TEST_FEATURE 0x0c
++#define UR_SET_ADDRESS 0x05
++#define UR_GET_DESCRIPTOR 0x06
++#define UDESC_DEVICE 0x01
++#define UDESC_CONFIG 0x02
++#define UDESC_STRING 0x03
++#define UDESC_INTERFACE 0x04
++#define UDESC_ENDPOINT 0x05
++#define UDESC_SS_USB_COMPANION 0x30
++#define UDESC_DEVICE_QUALIFIER 0x06
++#define UDESC_OTHER_SPEED_CONFIGURATION 0x07
++#define UDESC_INTERFACE_POWER 0x08
++#define UDESC_OTG 0x09
++#define WUDESC_SECURITY 0x0c
++#define WUDESC_KEY 0x0d
++#define WUD_GET_KEY_INDEX(_wValue_) ((_wValue_) & 0xf)
++#define WUD_GET_KEY_TYPE(_wValue_) (((_wValue_) & 0x30) >> 4)
++#define WUD_KEY_TYPE_ASSOC 0x01
++#define WUD_KEY_TYPE_GTK 0x02
++#define WUD_GET_KEY_ORIGIN(_wValue_) (((_wValue_) & 0x40) >> 6)
++#define WUD_KEY_ORIGIN_HOST 0x00
++#define WUD_KEY_ORIGIN_DEVICE 0x01
++#define WUDESC_ENCRYPTION_TYPE 0x0e
++#define WUDESC_BOS 0x0f
++#define WUDESC_DEVICE_CAPABILITY 0x10
++#define WUDESC_WIRELESS_ENDPOINT_COMPANION 0x11
++#define UDESC_BOS 0x0f
++#define UDESC_DEVICE_CAPABILITY 0x10
++#define UDESC_CS_DEVICE 0x21 /* class specific */
++#define UDESC_CS_CONFIG 0x22
++#define UDESC_CS_STRING 0x23
++#define UDESC_CS_INTERFACE 0x24
++#define UDESC_CS_ENDPOINT 0x25
++#define UDESC_HUB 0x29
++#define UR_SET_DESCRIPTOR 0x07
++#define UR_GET_CONFIG 0x08
++#define UR_SET_CONFIG 0x09
++#define UR_GET_INTERFACE 0x0a
++#define UR_SET_INTERFACE 0x0b
++#define UR_SYNCH_FRAME 0x0c
++#define WUR_SET_ENCRYPTION 0x0d
++#define WUR_GET_ENCRYPTION 0x0e
++#define WUR_SET_HANDSHAKE 0x0f
++#define WUR_GET_HANDSHAKE 0x10
++#define WUR_SET_CONNECTION 0x11
++#define WUR_SET_SECURITY_DATA 0x12
++#define WUR_GET_SECURITY_DATA 0x13
++#define WUR_SET_WUSB_DATA 0x14
++#define WUDATA_DRPIE_INFO 0x01
++#define WUDATA_TRANSMIT_DATA 0x02
++#define WUDATA_TRANSMIT_PARAMS 0x03
++#define WUDATA_RECEIVE_PARAMS 0x04
++#define WUDATA_TRANSMIT_POWER 0x05
++#define WUR_LOOPBACK_DATA_WRITE 0x15
++#define WUR_LOOPBACK_DATA_READ 0x16
++#define WUR_SET_INTERFACE_DS 0x17
++
++/* Feature numbers */
++#define UF_ENDPOINT_HALT 0
++#define UF_DEVICE_REMOTE_WAKEUP 1
++#define UF_TEST_MODE 2
++#define UF_DEVICE_B_HNP_ENABLE 3
++#define UF_DEVICE_A_HNP_SUPPORT 4
++#define UF_DEVICE_A_ALT_HNP_SUPPORT 5
++#define WUF_WUSB 3
++#define WUF_TX_DRPIE 0x0
++#define WUF_DEV_XMIT_PACKET 0x1
++#define WUF_COUNT_PACKETS 0x2
++#define WUF_CAPTURE_PACKETS 0x3
++#define UF_FUNCTION_SUSPEND 0
++#define UF_U1_ENABLE 48
++#define UF_U2_ENABLE 49
++#define UF_LTM_ENABLE 50
++
++/* Class requests from the USB 2.0 hub spec, table 11-15 */
++#define UCR_CLEAR_HUB_FEATURE (0x2000 | UR_CLEAR_FEATURE)
++#define UCR_CLEAR_PORT_FEATURE (0x2300 | UR_CLEAR_FEATURE)
++#define UCR_GET_HUB_DESCRIPTOR (0xa000 | UR_GET_DESCRIPTOR)
++#define UCR_GET_HUB_STATUS (0xa000 | UR_GET_STATUS)
++#define UCR_GET_PORT_STATUS (0xa300 | UR_GET_STATUS)
++#define UCR_SET_HUB_FEATURE (0x2000 | UR_SET_FEATURE)
++#define UCR_SET_PORT_FEATURE (0x2300 | UR_SET_FEATURE)
++#define UCR_SET_AND_TEST_PORT_FEATURE (0xa300 | UR_SET_AND_TEST_FEATURE)
++
++#ifdef _MSC_VER
++#include <pshpack1.h>
++#endif
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bDescriptorSubtype;
++} UPACKED usb_descriptor_t;
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++} UPACKED usb_descriptor_header_t;
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uWord bcdUSB;
++#define UD_USB_2_0 0x0200
++#define UD_IS_USB2(d) (UGETW((d)->bcdUSB) >= UD_USB_2_0)
++ uByte bDeviceClass;
++ uByte bDeviceSubClass;
++ uByte bDeviceProtocol;
++ uByte bMaxPacketSize;
++ /* The fields below are not part of the initial descriptor. */
++ uWord idVendor;
++ uWord idProduct;
++ uWord bcdDevice;
++ uByte iManufacturer;
++ uByte iProduct;
++ uByte iSerialNumber;
++ uByte bNumConfigurations;
++} UPACKED usb_device_descriptor_t;
++#define USB_DEVICE_DESCRIPTOR_SIZE 18
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uWord wTotalLength;
++ uByte bNumInterface;
++ uByte bConfigurationValue;
++ uByte iConfiguration;
++#define UC_ATT_ONE (1 << 7) /* must be set */
++#define UC_ATT_SELFPOWER (1 << 6) /* self powered */
++#define UC_ATT_WAKEUP (1 << 5) /* can wakeup */
++#define UC_ATT_BATTERY (1 << 4) /* battery powered */
++ uByte bmAttributes;
++#define UC_BUS_POWERED 0x80
++#define UC_SELF_POWERED 0x40
++#define UC_REMOTE_WAKEUP 0x20
++ uByte bMaxPower; /* max current in 2 mA units */
++#define UC_POWER_FACTOR 2
++} UPACKED usb_config_descriptor_t;
++#define USB_CONFIG_DESCRIPTOR_SIZE 9
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bInterfaceNumber;
++ uByte bAlternateSetting;
++ uByte bNumEndpoints;
++ uByte bInterfaceClass;
++ uByte bInterfaceSubClass;
++ uByte bInterfaceProtocol;
++ uByte iInterface;
++} UPACKED usb_interface_descriptor_t;
++#define USB_INTERFACE_DESCRIPTOR_SIZE 9
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bEndpointAddress;
++#define UE_GET_DIR(a) ((a) & 0x80)
++#define UE_SET_DIR(a,d) ((a) | (((d)&1) << 7))
++#define UE_DIR_IN 0x80
++#define UE_DIR_OUT 0x00
++#define UE_ADDR 0x0f
++#define UE_GET_ADDR(a) ((a) & UE_ADDR)
++ uByte bmAttributes;
++#define UE_XFERTYPE 0x03
++#define UE_CONTROL 0x00
++#define UE_ISOCHRONOUS 0x01
++#define UE_BULK 0x02
++#define UE_INTERRUPT 0x03
++#define UE_GET_XFERTYPE(a) ((a) & UE_XFERTYPE)
++#define UE_ISO_TYPE 0x0c
++#define UE_ISO_ASYNC 0x04
++#define UE_ISO_ADAPT 0x08
++#define UE_ISO_SYNC 0x0c
++#define UE_GET_ISO_TYPE(a) ((a) & UE_ISO_TYPE)
++ uWord wMaxPacketSize;
++ uByte bInterval;
++} UPACKED usb_endpoint_descriptor_t;
++#define USB_ENDPOINT_DESCRIPTOR_SIZE 7
++
++typedef struct ss_endpoint_companion_descriptor {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bMaxBurst;
++#define USSE_GET_MAX_STREAMS(a) ((a) & 0x1f)
++#define USSE_SET_MAX_STREAMS(a, b) ((a) | ((b) & 0x1f))
++#define USSE_GET_MAX_PACKET_NUM(a) ((a) & 0x03)
++#define USSE_SET_MAX_PACKET_NUM(a, b) ((a) | ((b) & 0x03))
++ uByte bmAttributes;
++ uWord wBytesPerInterval;
++} UPACKED ss_endpoint_companion_descriptor_t;
++#define USB_SS_ENDPOINT_COMPANION_DESCRIPTOR_SIZE 6
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uWord bString[127];
++} UPACKED usb_string_descriptor_t;
++#define USB_MAX_STRING_LEN 128
++#define USB_LANGUAGE_TABLE 0 /* # of the string language id table */
++
++/* Hub specific request */
++#define UR_GET_BUS_STATE 0x02
++#define UR_CLEAR_TT_BUFFER 0x08
++#define UR_RESET_TT 0x09
++#define UR_GET_TT_STATE 0x0a
++#define UR_STOP_TT 0x0b
++
++/* Hub features */
++#define UHF_C_HUB_LOCAL_POWER 0
++#define UHF_C_HUB_OVER_CURRENT 1
++#define UHF_PORT_CONNECTION 0
++#define UHF_PORT_ENABLE 1
++#define UHF_PORT_SUSPEND 2
++#define UHF_PORT_OVER_CURRENT 3
++#define UHF_PORT_RESET 4
++#define UHF_PORT_L1 5
++#define UHF_PORT_POWER 8
++#define UHF_PORT_LOW_SPEED 9
++#define UHF_PORT_HIGH_SPEED 10
++#define UHF_C_PORT_CONNECTION 16
++#define UHF_C_PORT_ENABLE 17
++#define UHF_C_PORT_SUSPEND 18
++#define UHF_C_PORT_OVER_CURRENT 19
++#define UHF_C_PORT_RESET 20
++#define UHF_C_PORT_L1 23
++#define UHF_PORT_TEST 21
++#define UHF_PORT_INDICATOR 22
++
++typedef struct {
++ uByte bDescLength;
++ uByte bDescriptorType;
++ uByte bNbrPorts;
++ uWord wHubCharacteristics;
++#define UHD_PWR 0x0003
++#define UHD_PWR_GANGED 0x0000
++#define UHD_PWR_INDIVIDUAL 0x0001
++#define UHD_PWR_NO_SWITCH 0x0002
++#define UHD_COMPOUND 0x0004
++#define UHD_OC 0x0018
++#define UHD_OC_GLOBAL 0x0000
++#define UHD_OC_INDIVIDUAL 0x0008
++#define UHD_OC_NONE 0x0010
++#define UHD_TT_THINK 0x0060
++#define UHD_TT_THINK_8 0x0000
++#define UHD_TT_THINK_16 0x0020
++#define UHD_TT_THINK_24 0x0040
++#define UHD_TT_THINK_32 0x0060
++#define UHD_PORT_IND 0x0080
++ uByte bPwrOn2PwrGood; /* delay in 2 ms units */
++#define UHD_PWRON_FACTOR 2
++ uByte bHubContrCurrent;
++ uByte DeviceRemovable[32]; /* max 255 ports */
++#define UHD_NOT_REMOV(desc, i) \
++ (((desc)->DeviceRemovable[(i)/8] >> ((i) % 8)) & 1)
++ /* deprecated */ uByte PortPowerCtrlMask[1];
++} UPACKED usb_hub_descriptor_t;
++#define USB_HUB_DESCRIPTOR_SIZE 9 /* includes deprecated PortPowerCtrlMask */
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uWord bcdUSB;
++ uByte bDeviceClass;
++ uByte bDeviceSubClass;
++ uByte bDeviceProtocol;
++ uByte bMaxPacketSize0;
++ uByte bNumConfigurations;
++ uByte bReserved;
++} UPACKED usb_device_qualifier_t;
++#define USB_DEVICE_QUALIFIER_SIZE 10
++
++typedef struct {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bmAttributes;
++#define UOTG_SRP 0x01
++#define UOTG_HNP 0x02
++} UPACKED usb_otg_descriptor_t;
++
++/* OTG feature selectors */
++#define UOTG_B_HNP_ENABLE 3
++#define UOTG_A_HNP_SUPPORT 4
++#define UOTG_A_ALT_HNP_SUPPORT 5
++
++typedef struct {
++ uWord wStatus;
++/* Device status flags */
++#define UDS_SELF_POWERED 0x0001
++#define UDS_REMOTE_WAKEUP 0x0002
++/* Endpoint status flags */
++#define UES_HALT 0x0001
++} UPACKED usb_status_t;
++
++typedef struct {
++ uWord wHubStatus;
++#define UHS_LOCAL_POWER 0x0001
++#define UHS_OVER_CURRENT 0x0002
++ uWord wHubChange;
++} UPACKED usb_hub_status_t;
++
++typedef struct {
++ uWord wPortStatus;
++#define UPS_CURRENT_CONNECT_STATUS 0x0001
++#define UPS_PORT_ENABLED 0x0002
++#define UPS_SUSPEND 0x0004
++#define UPS_OVERCURRENT_INDICATOR 0x0008
++#define UPS_RESET 0x0010
++#define UPS_PORT_POWER 0x0100
++#define UPS_LOW_SPEED 0x0200
++#define UPS_HIGH_SPEED 0x0400
++#define UPS_PORT_TEST 0x0800
++#define UPS_PORT_INDICATOR 0x1000
++ uWord wPortChange;
++#define UPS_C_CONNECT_STATUS 0x0001
++#define UPS_C_PORT_ENABLED 0x0002
++#define UPS_C_SUSPEND 0x0004
++#define UPS_C_OVERCURRENT_INDICATOR 0x0008
++#define UPS_C_PORT_RESET 0x0010
++} UPACKED usb_port_status_t;
++
++#ifdef _MSC_VER
++#include <poppack.h>
++#endif
++
++/* Device class codes */
++#define UDCLASS_IN_INTERFACE 0x00
++#define UDCLASS_COMM 0x02
++#define UDCLASS_HUB 0x09
++#define UDSUBCLASS_HUB 0x00
++#define UDPROTO_FSHUB 0x00
++#define UDPROTO_HSHUBSTT 0x01
++#define UDPROTO_HSHUBMTT 0x02
++#define UDCLASS_DIAGNOSTIC 0xdc
++#define UDCLASS_WIRELESS 0xe0
++#define UDSUBCLASS_RF 0x01
++#define UDPROTO_BLUETOOTH 0x01
++#define UDCLASS_VENDOR 0xff
++
++/* Interface class codes */
++#define UICLASS_UNSPEC 0x00
++
++#define UICLASS_AUDIO 0x01
++#define UISUBCLASS_AUDIOCONTROL 1
++#define UISUBCLASS_AUDIOSTREAM 2
++#define UISUBCLASS_MIDISTREAM 3
++
++#define UICLASS_CDC 0x02 /* communication */
++#define UISUBCLASS_DIRECT_LINE_CONTROL_MODEL 1
++#define UISUBCLASS_ABSTRACT_CONTROL_MODEL 2
++#define UISUBCLASS_TELEPHONE_CONTROL_MODEL 3
++#define UISUBCLASS_MULTICHANNEL_CONTROL_MODEL 4
++#define UISUBCLASS_CAPI_CONTROLMODEL 5
++#define UISUBCLASS_ETHERNET_NETWORKING_CONTROL_MODEL 6
++#define UISUBCLASS_ATM_NETWORKING_CONTROL_MODEL 7
++#define UIPROTO_CDC_AT 1
++
++#define UICLASS_HID 0x03
++#define UISUBCLASS_BOOT 1
++#define UIPROTO_BOOT_KEYBOARD 1
++
++#define UICLASS_PHYSICAL 0x05
++
++#define UICLASS_IMAGE 0x06
++
++#define UICLASS_PRINTER 0x07
++#define UISUBCLASS_PRINTER 1
++#define UIPROTO_PRINTER_UNI 1
++#define UIPROTO_PRINTER_BI 2
++#define UIPROTO_PRINTER_1284 3
++
++#define UICLASS_MASS 0x08
++#define UISUBCLASS_RBC 1
++#define UISUBCLASS_SFF8020I 2
++#define UISUBCLASS_QIC157 3
++#define UISUBCLASS_UFI 4
++#define UISUBCLASS_SFF8070I 5
++#define UISUBCLASS_SCSI 6
++#define UIPROTO_MASS_CBI_I 0
++#define UIPROTO_MASS_CBI 1
++#define UIPROTO_MASS_BBB_OLD 2 /* Not in the spec anymore */
++#define UIPROTO_MASS_BBB 80 /* 'P' for the Iomega Zip drive */
++
++#define UICLASS_HUB 0x09
++#define UISUBCLASS_HUB 0
++#define UIPROTO_FSHUB 0
++#define UIPROTO_HSHUBSTT 0 /* Yes, same as previous */
++#define UIPROTO_HSHUBMTT 1
++
++#define UICLASS_CDC_DATA 0x0a
++#define UISUBCLASS_DATA 0
++#define UIPROTO_DATA_ISDNBRI 0x30 /* Physical iface */
++#define UIPROTO_DATA_HDLC 0x31 /* HDLC */
++#define UIPROTO_DATA_TRANSPARENT 0x32 /* Transparent */
++#define UIPROTO_DATA_Q921M 0x50 /* Management for Q921 */
++#define UIPROTO_DATA_Q921 0x51 /* Data for Q921 */
++#define UIPROTO_DATA_Q921TM 0x52 /* TEI multiplexer for Q921 */
++#define UIPROTO_DATA_V42BIS 0x90 /* Data compression */
++#define UIPROTO_DATA_Q931 0x91 /* Euro-ISDN */
++#define UIPROTO_DATA_V120 0x92 /* V.24 rate adaption */
++#define UIPROTO_DATA_CAPI 0x93 /* CAPI 2.0 commands */
++#define UIPROTO_DATA_HOST_BASED 0xfd /* Host based driver */
++#define UIPROTO_DATA_PUF 0xfe /* see Prot. Unit Func. Desc.*/
++#define UIPROTO_DATA_VENDOR 0xff /* Vendor specific */
++
++#define UICLASS_SMARTCARD 0x0b
++
++/*#define UICLASS_FIRM_UPD 0x0c*/
++
++#define UICLASS_SECURITY 0x0d
++
++#define UICLASS_DIAGNOSTIC 0xdc
++
++#define UICLASS_WIRELESS 0xe0
++#define UISUBCLASS_RF 0x01
++#define UIPROTO_BLUETOOTH 0x01
++
++#define UICLASS_APPL_SPEC 0xfe
++#define UISUBCLASS_FIRMWARE_DOWNLOAD 1
++#define UISUBCLASS_IRDA 2
++#define UIPROTO_IRDA 0
++
++#define UICLASS_VENDOR 0xff
++
++#define USB_HUB_MAX_DEPTH 5
++
++/*
++ * Minimum time a device needs to be powered down to go through
++ * a power cycle. XXX Are these time in the spec?
++ */
++#define USB_POWER_DOWN_TIME 200 /* ms */
++#define USB_PORT_POWER_DOWN_TIME 100 /* ms */
++
++#if 0
++/* These are the values from the spec. */
++#define USB_PORT_RESET_DELAY 10 /* ms */
++#define USB_PORT_ROOT_RESET_DELAY 50 /* ms */
++#define USB_PORT_RESET_RECOVERY 10 /* ms */
++#define USB_PORT_POWERUP_DELAY 100 /* ms */
++#define USB_SET_ADDRESS_SETTLE 2 /* ms */
++#define USB_RESUME_DELAY (20*5) /* ms */
++#define USB_RESUME_WAIT 10 /* ms */
++#define USB_RESUME_RECOVERY 10 /* ms */
++#define USB_EXTRA_POWER_UP_TIME 0 /* ms */
++#else
++/* Allow for marginal (i.e. non-conforming) devices. */
++#define USB_PORT_RESET_DELAY 50 /* ms */
++#define USB_PORT_ROOT_RESET_DELAY 250 /* ms */
++#define USB_PORT_RESET_RECOVERY 250 /* ms */
++#define USB_PORT_POWERUP_DELAY 300 /* ms */
++#define USB_SET_ADDRESS_SETTLE 10 /* ms */
++#define USB_RESUME_DELAY (50*5) /* ms */
++#define USB_RESUME_WAIT 50 /* ms */
++#define USB_RESUME_RECOVERY 50 /* ms */
++#define USB_EXTRA_POWER_UP_TIME 20 /* ms */
++#endif
++
++#define USB_MIN_POWER 100 /* mA */
++#define USB_MAX_POWER 500 /* mA */
++
++#define USB_BUS_RESET_DELAY 100 /* ms XXX?*/
++
++#define USB_UNCONFIG_NO 0
++#define USB_UNCONFIG_INDEX (-1)
++
++/*** ioctl() related stuff ***/
++
++struct usb_ctl_request {
++ int ucr_addr;
++ usb_device_request_t ucr_request;
++ void *ucr_data;
++ int ucr_flags;
++#define USBD_SHORT_XFER_OK 0x04 /* allow short reads */
++ int ucr_actlen; /* actual length transferred */
++};
++
++struct usb_alt_interface {
++ int uai_config_index;
++ int uai_interface_index;
++ int uai_alt_no;
++};
++
++#define USB_CURRENT_CONFIG_INDEX (-1)
++#define USB_CURRENT_ALT_INDEX (-1)
++
++struct usb_config_desc {
++ int ucd_config_index;
++ usb_config_descriptor_t ucd_desc;
++};
++
++struct usb_interface_desc {
++ int uid_config_index;
++ int uid_interface_index;
++ int uid_alt_index;
++ usb_interface_descriptor_t uid_desc;
++};
++
++struct usb_endpoint_desc {
++ int ued_config_index;
++ int ued_interface_index;
++ int ued_alt_index;
++ int ued_endpoint_index;
++ usb_endpoint_descriptor_t ued_desc;
++};
++
++struct usb_full_desc {
++ int ufd_config_index;
++ u_int ufd_size;
++ u_char *ufd_data;
++};
++
++struct usb_string_desc {
++ int usd_string_index;
++ int usd_language_id;
++ usb_string_descriptor_t usd_desc;
++};
++
++struct usb_ctl_report_desc {
++ int ucrd_size;
++ u_char ucrd_data[1024]; /* filled data size will vary */
++};
++
++typedef struct { u_int32_t cookie; } usb_event_cookie_t;
++
++#define USB_MAX_DEVNAMES 4
++#define USB_MAX_DEVNAMELEN 16
++struct usb_device_info {
++ u_int8_t udi_bus;
++ u_int8_t udi_addr; /* device address */
++ usb_event_cookie_t udi_cookie;
++ char udi_product[USB_MAX_STRING_LEN];
++ char udi_vendor[USB_MAX_STRING_LEN];
++ char udi_release[8];
++ u_int16_t udi_productNo;
++ u_int16_t udi_vendorNo;
++ u_int16_t udi_releaseNo;
++ u_int8_t udi_class;
++ u_int8_t udi_subclass;
++ u_int8_t udi_protocol;
++ u_int8_t udi_config;
++ u_int8_t udi_speed;
++#define USB_SPEED_UNKNOWN 0
++#define USB_SPEED_LOW 1
++#define USB_SPEED_FULL 2
++#define USB_SPEED_HIGH 3
++#define USB_SPEED_VARIABLE 4
++#define USB_SPEED_SUPER 5
++ int udi_power; /* power consumption in mA, 0 if selfpowered */
++ int udi_nports;
++ char udi_devnames[USB_MAX_DEVNAMES][USB_MAX_DEVNAMELEN];
++ u_int8_t udi_ports[16];/* hub only: addresses of devices on ports */
++#define USB_PORT_ENABLED 0xff
++#define USB_PORT_SUSPENDED 0xfe
++#define USB_PORT_POWERED 0xfd
++#define USB_PORT_DISABLED 0xfc
++};
++
++struct usb_ctl_report {
++ int ucr_report;
++ u_char ucr_data[1024]; /* filled data size will vary */
++};
++
++struct usb_device_stats {
++ u_long uds_requests[4]; /* indexed by transfer type UE_* */
++};
++
++#define WUSB_MIN_IE 0x80
++#define WUSB_WCTA_IE 0x80
++#define WUSB_WCONNECTACK_IE 0x81
++#define WUSB_WHOSTINFO_IE 0x82
++#define WUHI_GET_CA(_bmAttributes_) ((_bmAttributes_) & 0x3)
++#define WUHI_CA_RECONN 0x00
++#define WUHI_CA_LIMITED 0x01
++#define WUHI_CA_ALL 0x03
++#define WUHI_GET_MLSI(_bmAttributes_) (((_bmAttributes_) & 0x38) >> 3)
++#define WUSB_WCHCHANGEANNOUNCE_IE 0x83
++#define WUSB_WDEV_DISCONNECT_IE 0x84
++#define WUSB_WHOST_DISCONNECT_IE 0x85
++#define WUSB_WRELEASE_CHANNEL_IE 0x86
++#define WUSB_WWORK_IE 0x87
++#define WUSB_WCHANNEL_STOP_IE 0x88
++#define WUSB_WDEV_KEEPALIVE_IE 0x89
++#define WUSB_WISOCH_DISCARD_IE 0x8A
++#define WUSB_WRESETDEVICE_IE 0x8B
++#define WUSB_WXMIT_PACKET_ADJUST_IE 0x8C
++#define WUSB_MAX_IE 0x8C
++
++/* Device Notification Types */
++
++#define WUSB_DN_MIN 0x01
++#define WUSB_DN_CONNECT 0x01
++# define WUSB_DA_OLDCONN 0x00
++# define WUSB_DA_NEWCONN 0x01
++# define WUSB_DA_SELF_BEACON 0x02
++# define WUSB_DA_DIR_BEACON 0x04
++# define WUSB_DA_NO_BEACON 0x06
++#define WUSB_DN_DISCONNECT 0x02
++#define WUSB_DN_EPRDY 0x03
++#define WUSB_DN_MASAVAILCHANGED 0x04
++#define WUSB_DN_REMOTEWAKEUP 0x05
++#define WUSB_DN_SLEEP 0x06
++#define WUSB_DN_ALIVE 0x07
++#define WUSB_DN_MAX 0x07
++
++#ifdef _MSC_VER
++#include <pshpack1.h>
++#endif
++
++/* WUSB Handshake Data. Used during the SET/GET HANDSHAKE requests */
++typedef struct wusb_hndshk_data {
++ uByte bMessageNumber;
++ uByte bStatus;
++ uByte tTKID[3];
++ uByte bReserved;
++ uByte CDID[16];
++ uByte Nonce[16];
++ uByte MIC[8];
++} UPACKED wusb_hndshk_data_t;
++#define WUSB_HANDSHAKE_LEN_FOR_MIC 38
++
++/* WUSB Connection Context */
++typedef struct wusb_conn_context {
++ uByte CHID [16];
++ uByte CDID [16];
++ uByte CK [16];
++} UPACKED wusb_conn_context_t;
++
++/* WUSB Security Descriptor */
++typedef struct wusb_security_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++ uWord wTotalLength;
++ uByte bNumEncryptionTypes;
++} UPACKED wusb_security_desc_t;
++
++/* WUSB Encryption Type Descriptor */
++typedef struct wusb_encrypt_type_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++
++ uByte bEncryptionType;
++#define WUETD_UNSECURE 0
++#define WUETD_WIRED 1
++#define WUETD_CCM_1 2
++#define WUETD_RSA_1 3
++
++ uByte bEncryptionValue;
++ uByte bAuthKeyIndex;
++} UPACKED wusb_encrypt_type_desc_t;
++
++/* WUSB Key Descriptor */
++typedef struct wusb_key_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte tTKID[3];
++ uByte bReserved;
++ uByte KeyData[1]; /* variable length */
++} UPACKED wusb_key_desc_t;
++
++/* WUSB BOS Descriptor (Binary device Object Store) */
++typedef struct wusb_bos_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++ uWord wTotalLength;
++ uByte bNumDeviceCaps;
++} UPACKED wusb_bos_desc_t;
++
++#define USB_DEVICE_CAPABILITY_20_EXTENSION 0x02
++typedef struct usb_dev_cap_20_ext_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bDevCapabilityType;
++#define USB_20_EXT_LPM 0x02
++ uDWord bmAttributes;
++} UPACKED usb_dev_cap_20_ext_desc_t;
++
++#define USB_DEVICE_CAPABILITY_SS_USB 0x03
++typedef struct usb_dev_cap_ss_usb {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bDevCapabilityType;
++#define USB_DC_SS_USB_LTM_CAPABLE 0x02
++ uByte bmAttributes;
++#define USB_DC_SS_USB_SPEED_SUPPORT_LOW 0x01
++#define USB_DC_SS_USB_SPEED_SUPPORT_FULL 0x02
++#define USB_DC_SS_USB_SPEED_SUPPORT_HIGH 0x04
++#define USB_DC_SS_USB_SPEED_SUPPORT_SS 0x08
++ uWord wSpeedsSupported;
++ uByte bFunctionalitySupport;
++ uByte bU1DevExitLat;
++ uWord wU2DevExitLat;
++} UPACKED usb_dev_cap_ss_usb_t;
++
++#define USB_DEVICE_CAPABILITY_CONTAINER_ID 0x04
++typedef struct usb_dev_cap_container_id {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bDevCapabilityType;
++ uByte bReserved;
++ uByte containerID[16];
++} UPACKED usb_dev_cap_container_id_t;
++
++/* Device Capability Type Codes */
++#define WUSB_DEVICE_CAPABILITY_WIRELESS_USB 0x01
++
++/* Device Capability Descriptor */
++typedef struct wusb_dev_cap_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bDevCapabilityType;
++ uByte caps[1]; /* Variable length */
++} UPACKED wusb_dev_cap_desc_t;
++
++/* Device Capability Descriptor */
++typedef struct wusb_dev_cap_uwb_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bDevCapabilityType;
++ uByte bmAttributes;
++ uWord wPHYRates; /* Bitmap */
++ uByte bmTFITXPowerInfo;
++ uByte bmFFITXPowerInfo;
++ uWord bmBandGroup;
++ uByte bReserved;
++} UPACKED wusb_dev_cap_uwb_desc_t;
++
++/* Wireless USB Endpoint Companion Descriptor */
++typedef struct wusb_endpoint_companion_desc {
++ uByte bLength;
++ uByte bDescriptorType;
++ uByte bMaxBurst;
++ uByte bMaxSequence;
++ uWord wMaxStreamDelay;
++ uWord wOverTheAirPacketSize;
++ uByte bOverTheAirInterval;
++ uByte bmCompAttributes;
++} UPACKED wusb_endpoint_companion_desc_t;
++
++/* Wireless USB Numeric Association M1 Data Structure */
++typedef struct wusb_m1_data {
++ uByte version;
++ uWord langId;
++ uByte deviceFriendlyNameLength;
++ uByte sha_256_m3[32];
++ uByte deviceFriendlyName[256];
++} UPACKED wusb_m1_data_t;
++
++typedef struct wusb_m2_data {
++ uByte version;
++ uWord langId;
++ uByte hostFriendlyNameLength;
++ uByte pkh[384];
++ uByte hostFriendlyName[256];
++} UPACKED wusb_m2_data_t;
++
++typedef struct wusb_m3_data {
++ uByte pkd[384];
++ uByte nd;
++} UPACKED wusb_m3_data_t;
++
++typedef struct wusb_m4_data {
++ uDWord _attributeTypeIdAndLength_1;
++ uWord associationTypeId;
++
++ uDWord _attributeTypeIdAndLength_2;
++ uWord associationSubTypeId;
++
++ uDWord _attributeTypeIdAndLength_3;
++ uDWord length;
++
++ uDWord _attributeTypeIdAndLength_4;
++ uDWord associationStatus;
++
++ uDWord _attributeTypeIdAndLength_5;
++ uByte chid[16];
++
++ uDWord _attributeTypeIdAndLength_6;
++ uByte cdid[16];
++
++ uDWord _attributeTypeIdAndLength_7;
++ uByte bandGroups[2];
++} UPACKED wusb_m4_data_t;
++
++#ifdef _MSC_VER
++#include <poppack.h>
++#endif
++
++#ifdef __cplusplus
++}
++#endif
++
++#endif /* _USB_H_ */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/doc/doxygen.cfg linux-rpi-3.10.y/drivers/usb/host/dwc_otg/doc/doxygen.cfg
+--- linux-3.10/drivers/usb/host/dwc_otg/doc/doxygen.cfg 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/doc/doxygen.cfg 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,224 @@
++# Doxyfile 1.3.9.1
++
++#---------------------------------------------------------------------------
++# Project related configuration options
++#---------------------------------------------------------------------------
++PROJECT_NAME = "DesignWare USB 2.0 OTG Controller (DWC_otg) Device Driver"
++PROJECT_NUMBER = v3.00a
++OUTPUT_DIRECTORY = ./doc/
++CREATE_SUBDIRS = NO
++OUTPUT_LANGUAGE = English
++BRIEF_MEMBER_DESC = YES
++REPEAT_BRIEF = YES
++ABBREVIATE_BRIEF = "The $name class" \
++ "The $name widget" \
++ "The $name file" \
++ is \
++ provides \
++ specifies \
++ contains \
++ represents \
++ a \
++ an \
++ the
++ALWAYS_DETAILED_SEC = NO
++INLINE_INHERITED_MEMB = NO
++FULL_PATH_NAMES = NO
++STRIP_FROM_PATH =
++STRIP_FROM_INC_PATH =
++SHORT_NAMES = NO
++JAVADOC_AUTOBRIEF = YES
++MULTILINE_CPP_IS_BRIEF = NO
++INHERIT_DOCS = YES
++DISTRIBUTE_GROUP_DOC = NO
++TAB_SIZE = 8
++ALIASES =
++OPTIMIZE_OUTPUT_FOR_C = YES
++OPTIMIZE_OUTPUT_JAVA = NO
++SUBGROUPING = YES
++#---------------------------------------------------------------------------
++# Build related configuration options
++#---------------------------------------------------------------------------
++EXTRACT_ALL = NO
++EXTRACT_PRIVATE = YES
++EXTRACT_STATIC = YES
++EXTRACT_LOCAL_CLASSES = YES
++EXTRACT_LOCAL_METHODS = NO
++HIDE_UNDOC_MEMBERS = NO
++HIDE_UNDOC_CLASSES = NO
++HIDE_FRIEND_COMPOUNDS = NO
++HIDE_IN_BODY_DOCS = NO
++INTERNAL_DOCS = NO
++CASE_SENSE_NAMES = NO
++HIDE_SCOPE_NAMES = NO
++SHOW_INCLUDE_FILES = YES
++INLINE_INFO = YES
++SORT_MEMBER_DOCS = NO
++SORT_BRIEF_DOCS = NO
++SORT_BY_SCOPE_NAME = NO
++GENERATE_TODOLIST = YES
++GENERATE_TESTLIST = YES
++GENERATE_BUGLIST = YES
++GENERATE_DEPRECATEDLIST= YES
++ENABLED_SECTIONS =
++MAX_INITIALIZER_LINES = 30
++SHOW_USED_FILES = YES
++SHOW_DIRECTORIES = YES
++#---------------------------------------------------------------------------
++# configuration options related to warning and progress messages
++#---------------------------------------------------------------------------
++QUIET = YES
++WARNINGS = YES
++WARN_IF_UNDOCUMENTED = NO
++WARN_IF_DOC_ERROR = YES
++WARN_FORMAT = "$file:$line: $text"
++WARN_LOGFILE =
++#---------------------------------------------------------------------------
++# configuration options related to the input files
++#---------------------------------------------------------------------------
++INPUT = .
++FILE_PATTERNS = *.c \
++ *.h \
++ ./linux/*.c \
++ ./linux/*.h
++RECURSIVE = NO
++EXCLUDE = ./test/ \
++ ./dwc_otg/.AppleDouble/
++EXCLUDE_SYMLINKS = YES
++EXCLUDE_PATTERNS = *.mod.*
++EXAMPLE_PATH =
++EXAMPLE_PATTERNS = *
++EXAMPLE_RECURSIVE = NO
++IMAGE_PATH =
++INPUT_FILTER =
++FILTER_PATTERNS =
++FILTER_SOURCE_FILES = NO
++#---------------------------------------------------------------------------
++# configuration options related to source browsing
++#---------------------------------------------------------------------------
++SOURCE_BROWSER = YES
++INLINE_SOURCES = NO
++STRIP_CODE_COMMENTS = YES
++REFERENCED_BY_RELATION = NO
++REFERENCES_RELATION = NO
++VERBATIM_HEADERS = NO
++#---------------------------------------------------------------------------
++# configuration options related to the alphabetical class index
++#---------------------------------------------------------------------------
++ALPHABETICAL_INDEX = NO
++COLS_IN_ALPHA_INDEX = 5
++IGNORE_PREFIX =
++#---------------------------------------------------------------------------
++# configuration options related to the HTML output
++#---------------------------------------------------------------------------
++GENERATE_HTML = YES
++HTML_OUTPUT = html
++HTML_FILE_EXTENSION = .html
++HTML_HEADER =
++HTML_FOOTER =
++HTML_STYLESHEET =
++HTML_ALIGN_MEMBERS = YES
++GENERATE_HTMLHELP = NO
++CHM_FILE =
++HHC_LOCATION =
++GENERATE_CHI = NO
++BINARY_TOC = NO
++TOC_EXPAND = NO
++DISABLE_INDEX = NO
++ENUM_VALUES_PER_LINE = 4
++GENERATE_TREEVIEW = YES
++TREEVIEW_WIDTH = 250
++#---------------------------------------------------------------------------
++# configuration options related to the LaTeX output
++#---------------------------------------------------------------------------
++GENERATE_LATEX = NO
++LATEX_OUTPUT = latex
++LATEX_CMD_NAME = latex
++MAKEINDEX_CMD_NAME = makeindex
++COMPACT_LATEX = NO
++PAPER_TYPE = a4wide
++EXTRA_PACKAGES =
++LATEX_HEADER =
++PDF_HYPERLINKS = NO
++USE_PDFLATEX = NO
++LATEX_BATCHMODE = NO
++LATEX_HIDE_INDICES = NO
++#---------------------------------------------------------------------------
++# configuration options related to the RTF output
++#---------------------------------------------------------------------------
++GENERATE_RTF = NO
++RTF_OUTPUT = rtf
++COMPACT_RTF = NO
++RTF_HYPERLINKS = NO
++RTF_STYLESHEET_FILE =
++RTF_EXTENSIONS_FILE =
++#---------------------------------------------------------------------------
++# configuration options related to the man page output
++#---------------------------------------------------------------------------
++GENERATE_MAN = NO
++MAN_OUTPUT = man
++MAN_EXTENSION = .3
++MAN_LINKS = NO
++#---------------------------------------------------------------------------
++# configuration options related to the XML output
++#---------------------------------------------------------------------------
++GENERATE_XML = NO
++XML_OUTPUT = xml
++XML_SCHEMA =
++XML_DTD =
++XML_PROGRAMLISTING = YES
++#---------------------------------------------------------------------------
++# configuration options for the AutoGen Definitions output
++#---------------------------------------------------------------------------
++GENERATE_AUTOGEN_DEF = NO
++#---------------------------------------------------------------------------
++# configuration options related to the Perl module output
++#---------------------------------------------------------------------------
++GENERATE_PERLMOD = NO
++PERLMOD_LATEX = NO
++PERLMOD_PRETTY = YES
++PERLMOD_MAKEVAR_PREFIX =
++#---------------------------------------------------------------------------
++# Configuration options related to the preprocessor
++#---------------------------------------------------------------------------
++ENABLE_PREPROCESSING = YES
++MACRO_EXPANSION = YES
++EXPAND_ONLY_PREDEF = YES
++SEARCH_INCLUDES = YES
++INCLUDE_PATH =
++INCLUDE_FILE_PATTERNS =
++PREDEFINED = DEVICE_ATTR DWC_EN_ISOC
++EXPAND_AS_DEFINED = DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW DWC_OTG_DEVICE_ATTR_BITFIELD_STORE DWC_OTG_DEVICE_ATTR_BITFIELD_RW DWC_OTG_DEVICE_ATTR_BITFIELD_RO DWC_OTG_DEVICE_ATTR_REG_SHOW DWC_OTG_DEVICE_ATTR_REG_STORE DWC_OTG_DEVICE_ATTR_REG32_RW DWC_OTG_DEVICE_ATTR_REG32_RO DWC_EN_ISOC
++SKIP_FUNCTION_MACROS = NO
++#---------------------------------------------------------------------------
++# Configuration::additions related to external references
++#---------------------------------------------------------------------------
++TAGFILES =
++GENERATE_TAGFILE =
++ALLEXTERNALS = NO
++EXTERNAL_GROUPS = YES
++PERL_PATH = /usr/bin/perl
++#---------------------------------------------------------------------------
++# Configuration options related to the dot tool
++#---------------------------------------------------------------------------
++CLASS_DIAGRAMS = YES
++HIDE_UNDOC_RELATIONS = YES
++HAVE_DOT = NO
++CLASS_GRAPH = YES
++COLLABORATION_GRAPH = YES
++UML_LOOK = NO
++TEMPLATE_RELATIONS = NO
++INCLUDE_GRAPH = YES
++INCLUDED_BY_GRAPH = YES
++CALL_GRAPH = NO
++GRAPHICAL_HIERARCHY = YES
++DOT_IMAGE_FORMAT = png
++DOT_PATH =
++DOTFILE_DIRS =
++MAX_DOT_GRAPH_DEPTH = 1000
++GENERATE_LEGEND = YES
++DOT_CLEANUP = YES
++#---------------------------------------------------------------------------
++# Configuration::additions related to the search engine
++#---------------------------------------------------------------------------
++SEARCHENGINE = NO
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dummy_audio.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dummy_audio.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dummy_audio.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dummy_audio.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1575 @@
++/*
++ * zero.c -- Gadget Zero, for USB development
++ *
++ * Copyright (C) 2003-2004 David Brownell
++ * All rights reserved.
++ *
++ * Redistribution and use in source and binary forms, with or without
++ * modification, are permitted provided that the following conditions
++ * are met:
++ * 1. Redistributions of source code must retain the above copyright
++ * notice, this list of conditions, and the following disclaimer,
++ * without modification.
++ * 2. Redistributions in binary form must reproduce the above copyright
++ * notice, this list of conditions and the following disclaimer in the
++ * documentation and/or other materials provided with the distribution.
++ * 3. The names of the above-listed copyright holders may not be used
++ * to endorse or promote products derived from this software without
++ * specific prior written permission.
++ *
++ * ALTERNATIVELY, this software may be distributed under the terms of the
++ * GNU General Public License ("GPL") as published by the Free Software
++ * Foundation, either version 2 of that License or (at your option) any
++ * later version.
++ *
++ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
++ * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
++ * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
++ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
++ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
++ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
++ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
++ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
++ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
++ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
++ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
++ */
++
++
++/*
++ * Gadget Zero only needs two bulk endpoints, and is an example of how you
++ * can write a hardware-agnostic gadget driver running inside a USB device.
++ *
++ * Hardware details are visible (see CONFIG_USB_ZERO_* below) but don't
++ * affect most of the driver.
++ *
++ * Use it with the Linux host/master side "usbtest" driver to get a basic
++ * functional test of your device-side usb stack, or with "usb-skeleton".
++ *
++ * It supports two similar configurations. One sinks whatever the usb host
++ * writes, and in return sources zeroes. The other loops whatever the host
++ * writes back, so the host can read it. Module options include:
++ *
++ * buflen=N default N=4096, buffer size used
++ * qlen=N default N=32, how many buffers in the loopback queue
++ * loopdefault default false, list loopback config first
++ *
++ * Many drivers will only have one configuration, letting them be much
++ * simpler if they also don't support high speed operation (like this
++ * driver does).
++ */
++
++#include <linux/config.h>
++#include <linux/module.h>
++#include <linux/kernel.h>
++#include <linux/delay.h>
++#include <linux/ioport.h>
++#include <linux/sched.h>
++#include <linux/slab.h>
++#include <linux/smp_lock.h>
++#include <linux/errno.h>
++#include <linux/init.h>
++#include <linux/timer.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/uts.h>
++#include <linux/version.h>
++#include <linux/device.h>
++#include <linux/moduleparam.h>
++#include <linux/proc_fs.h>
++
++#include <asm/byteorder.h>
++#include <asm/io.h>
++#include <asm/irq.h>
++#include <asm/system.h>
++#include <asm/unaligned.h>
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
++# include <linux/usb/ch9.h>
++#else
++# include <linux/usb_ch9.h>
++#endif
++
++#include <linux/usb_gadget.h>
++
++
++/*-------------------------------------------------------------------------*/
++/*-------------------------------------------------------------------------*/
++
++
++static int utf8_to_utf16le(const char *s, u16 *cp, unsigned len)
++{
++ int count = 0;
++ u8 c;
++ u16 uchar;
++
++ /* this insists on correct encodings, though not minimal ones.
++ * BUT it currently rejects legit 4-byte UTF-8 code points,
++ * which need surrogate pairs. (Unicode 3.1 can use them.)
++ */
++ while (len != 0 && (c = (u8) *s++) != 0) {
++ if (unlikely(c & 0x80)) {
++ // 2-byte sequence:
++ // 00000yyyyyxxxxxx = 110yyyyy 10xxxxxx
++ if ((c & 0xe0) == 0xc0) {
++ uchar = (c & 0x1f) << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ // 3-byte sequence (most CJKV characters):
++ // zzzzyyyyyyxxxxxx = 1110zzzz 10yyyyyy 10xxxxxx
++ } else if ((c & 0xf0) == 0xe0) {
++ uchar = (c & 0x0f) << 12;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c << 6;
++
++ c = (u8) *s++;
++ if ((c & 0xc0) != 0xc0)
++ goto fail;
++ c &= 0x3f;
++ uchar |= c;
++
++ /* no bogus surrogates */
++ if (0xd800 <= uchar && uchar <= 0xdfff)
++ goto fail;
++
++ // 4-byte sequence (surrogate pairs, currently rare):
++ // 11101110wwwwzzzzyy + 110111yyyyxxxxxx
++ // = 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx
++ // (uuuuu = wwww + 1)
++ // FIXME accept the surrogate code points (only)
++
++ } else
++ goto fail;
++ } else
++ uchar = c;
++ put_unaligned (cpu_to_le16 (uchar), cp++);
++ count++;
++ len--;
++ }
++ return count;
++fail:
++ return -1;
++}
++
++
++/**
++ * usb_gadget_get_string - fill out a string descriptor
++ * @table: of c strings encoded using UTF-8
++ * @id: string id, from low byte of wValue in get string descriptor
++ * @buf: at least 256 bytes
++ *
++ * Finds the UTF-8 string matching the ID, and converts it into a
++ * string descriptor in utf16-le.
++ * Returns length of descriptor (always even) or negative errno
++ *
++ * If your driver needs stings in multiple languages, you'll probably
++ * "switch (wIndex) { ... }" in your ep0 string descriptor logic,
++ * using this routine after choosing which set of UTF-8 strings to use.
++ * Note that US-ASCII is a strict subset of UTF-8; any string bytes with
++ * the eighth bit set will be multibyte UTF-8 characters, not ISO-8859/1
++ * characters (which are also widely used in C strings).
++ */
++int
++usb_gadget_get_string (struct usb_gadget_strings *table, int id, u8 *buf)
++{
++ struct usb_string *s;
++ int len;
++
++ /* descriptor 0 has the language id */
++ if (id == 0) {
++ buf [0] = 4;
++ buf [1] = USB_DT_STRING;
++ buf [2] = (u8) table->language;
++ buf [3] = (u8) (table->language >> 8);
++ return 4;
++ }
++ for (s = table->strings; s && s->s; s++)
++ if (s->id == id)
++ break;
++
++ /* unrecognized: stall. */
++ if (!s || !s->s)
++ return -EINVAL;
++
++ /* string descriptors have length, tag, then UTF16-LE text */
++ len = min ((size_t) 126, strlen (s->s));
++ memset (buf + 2, 0, 2 * len); /* zero all the bytes */
++ len = utf8_to_utf16le(s->s, (u16 *)&buf[2], len);
++ if (len < 0)
++ return -EINVAL;
++ buf [0] = (len + 1) * 2;
++ buf [1] = USB_DT_STRING;
++ return buf [0];
++}
++
++
++/*-------------------------------------------------------------------------*/
++/*-------------------------------------------------------------------------*/
++
++
++/**
++ * usb_descriptor_fillbuf - fill buffer with descriptors
++ * @buf: Buffer to be filled
++ * @buflen: Size of buf
++ * @src: Array of descriptor pointers, terminated by null pointer.
++ *
++ * Copies descriptors into the buffer, returning the length or a
++ * negative error code if they can't all be copied. Useful when
++ * assembling descriptors for an associated set of interfaces used
++ * as part of configuring a composite device; or in other cases where
++ * sets of descriptors need to be marshaled.
++ */
++int
++usb_descriptor_fillbuf(void *buf, unsigned buflen,
++ const struct usb_descriptor_header **src)
++{
++ u8 *dest = buf;
++
++ if (!src)
++ return -EINVAL;
++
++ /* fill buffer from src[] until null descriptor ptr */
++ for (; 0 != *src; src++) {
++ unsigned len = (*src)->bLength;
++
++ if (len > buflen)
++ return -EINVAL;
++ memcpy(dest, *src, len);
++ buflen -= len;
++ dest += len;
++ }
++ return dest - (u8 *)buf;
++}
++
++
++/**
++ * usb_gadget_config_buf - builts a complete configuration descriptor
++ * @config: Header for the descriptor, including characteristics such
++ * as power requirements and number of interfaces.
++ * @desc: Null-terminated vector of pointers to the descriptors (interface,
++ * endpoint, etc) defining all functions in this device configuration.
++ * @buf: Buffer for the resulting configuration descriptor.
++ * @length: Length of buffer. If this is not big enough to hold the
++ * entire configuration descriptor, an error code will be returned.
++ *
++ * This copies descriptors into the response buffer, building a descriptor
++ * for that configuration. It returns the buffer length or a negative
++ * status code. The config.wTotalLength field is set to match the length
++ * of the result, but other descriptor fields (including power usage and
++ * interface count) must be set by the caller.
++ *
++ * Gadget drivers could use this when constructing a config descriptor
++ * in response to USB_REQ_GET_DESCRIPTOR. They will need to patch the
++ * resulting bDescriptorType value if USB_DT_OTHER_SPEED_CONFIG is needed.
++ */
++int usb_gadget_config_buf(
++ const struct usb_config_descriptor *config,
++ void *buf,
++ unsigned length,
++ const struct usb_descriptor_header **desc
++)
++{
++ struct usb_config_descriptor *cp = buf;
++ int len;
++
++ /* config descriptor first */
++ if (length < USB_DT_CONFIG_SIZE || !desc)
++ return -EINVAL;
++ *cp = *config;
++
++ /* then interface/endpoint/class/vendor/... */
++ len = usb_descriptor_fillbuf(USB_DT_CONFIG_SIZE + (u8*)buf,
++ length - USB_DT_CONFIG_SIZE, desc);
++ if (len < 0)
++ return len;
++ len += USB_DT_CONFIG_SIZE;
++ if (len > 0xffff)
++ return -EINVAL;
++
++ /* patch up the config descriptor */
++ cp->bLength = USB_DT_CONFIG_SIZE;
++ cp->bDescriptorType = USB_DT_CONFIG;
++ cp->wTotalLength = cpu_to_le16(len);
++ cp->bmAttributes |= USB_CONFIG_ATT_ONE;
++ return len;
++}
++
++/*-------------------------------------------------------------------------*/
++/*-------------------------------------------------------------------------*/
++
++
++#define RBUF_LEN (1024*1024)
++static int rbuf_start;
++static int rbuf_len;
++static __u8 rbuf[RBUF_LEN];
++
++/*-------------------------------------------------------------------------*/
++
++#define DRIVER_VERSION "St Patrick's Day 2004"
++
++static const char shortname [] = "zero";
++static const char longname [] = "YAMAHA YST-MS35D USB Speaker ";
++
++static const char source_sink [] = "source and sink data";
++static const char loopback [] = "loop input to output";
++
++/*-------------------------------------------------------------------------*/
++
++/*
++ * driver assumes self-powered hardware, and
++ * has no way for users to trigger remote wakeup.
++ *
++ * this version autoconfigures as much as possible,
++ * which is reasonable for most "bulk-only" drivers.
++ */
++static const char *EP_IN_NAME; /* source */
++static const char *EP_OUT_NAME; /* sink */
++
++/*-------------------------------------------------------------------------*/
++
++/* big enough to hold our biggest descriptor */
++#define USB_BUFSIZ 512
++
++struct zero_dev {
++ spinlock_t lock;
++ struct usb_gadget *gadget;
++ struct usb_request *req; /* for control responses */
++
++ /* when configured, we have one of two configs:
++ * - source data (in to host) and sink it (out from host)
++ * - or loop it back (out from host back in to host)
++ */
++ u8 config;
++ struct usb_ep *in_ep, *out_ep;
++
++ /* autoresume timer */
++ struct timer_list resume;
++};
++
++#define xprintk(d,level,fmt,args...) \
++ dev_printk(level , &(d)->gadget->dev , fmt , ## args)
++
++#ifdef DEBUG
++#define DBG(dev,fmt,args...) \
++ xprintk(dev , KERN_DEBUG , fmt , ## args)
++#else
++#define DBG(dev,fmt,args...) \
++ do { } while (0)
++#endif /* DEBUG */
++
++#ifdef VERBOSE
++#define VDBG DBG
++#else
++#define VDBG(dev,fmt,args...) \
++ do { } while (0)
++#endif /* VERBOSE */
++
++#define ERROR(dev,fmt,args...) \
++ xprintk(dev , KERN_ERR , fmt , ## args)
++#define WARN(dev,fmt,args...) \
++ xprintk(dev , KERN_WARNING , fmt , ## args)
++#define INFO(dev,fmt,args...) \
++ xprintk(dev , KERN_INFO , fmt , ## args)
++
++/*-------------------------------------------------------------------------*/
++
++static unsigned buflen = 4096;
++static unsigned qlen = 32;
++static unsigned pattern = 0;
++
++module_param (buflen, uint, S_IRUGO|S_IWUSR);
++module_param (qlen, uint, S_IRUGO|S_IWUSR);
++module_param (pattern, uint, S_IRUGO|S_IWUSR);
++
++/*
++ * if it's nonzero, autoresume says how many seconds to wait
++ * before trying to wake up the host after suspend.
++ */
++static unsigned autoresume = 0;
++module_param (autoresume, uint, 0);
++
++/*
++ * Normally the "loopback" configuration is second (index 1) so
++ * it's not the default. Here's where to change that order, to
++ * work better with hosts where config changes are problematic.
++ * Or controllers (like superh) that only support one config.
++ */
++static int loopdefault = 0;
++
++module_param (loopdefault, bool, S_IRUGO|S_IWUSR);
++
++/*-------------------------------------------------------------------------*/
++
++/* Thanks to NetChip Technologies for donating this product ID.
++ *
++ * DO NOT REUSE THESE IDs with a protocol-incompatible driver!! Ever!!
++ * Instead: allocate your own, using normal USB-IF procedures.
++ */
++#ifndef CONFIG_USB_ZERO_HNPTEST
++#define DRIVER_VENDOR_NUM 0x0525 /* NetChip */
++#define DRIVER_PRODUCT_NUM 0xa4a0 /* Linux-USB "Gadget Zero" */
++#else
++#define DRIVER_VENDOR_NUM 0x1a0a /* OTG test device IDs */
++#define DRIVER_PRODUCT_NUM 0xbadd
++#endif
++
++/*-------------------------------------------------------------------------*/
++
++/*
++ * DESCRIPTORS ... most are static, but strings and (full)
++ * configuration descriptors are built on demand.
++ */
++
++/*
++#define STRING_MANUFACTURER 25
++#define STRING_PRODUCT 42
++#define STRING_SERIAL 101
++*/
++#define STRING_MANUFACTURER 1
++#define STRING_PRODUCT 2
++#define STRING_SERIAL 3
++
++#define STRING_SOURCE_SINK 250
++#define STRING_LOOPBACK 251
++
++/*
++ * This device advertises two configurations; these numbers work
++ * on a pxa250 as well as more flexible hardware.
++ */
++#define CONFIG_SOURCE_SINK 3
++#define CONFIG_LOOPBACK 2
++
++/*
++static struct usb_device_descriptor
++device_desc = {
++ .bLength = sizeof device_desc,
++ .bDescriptorType = USB_DT_DEVICE,
++
++ .bcdUSB = __constant_cpu_to_le16 (0x0200),
++ .bDeviceClass = USB_CLASS_VENDOR_SPEC,
++
++ .idVendor = __constant_cpu_to_le16 (DRIVER_VENDOR_NUM),
++ .idProduct = __constant_cpu_to_le16 (DRIVER_PRODUCT_NUM),
++ .iManufacturer = STRING_MANUFACTURER,
++ .iProduct = STRING_PRODUCT,
++ .iSerialNumber = STRING_SERIAL,
++ .bNumConfigurations = 2,
++};
++*/
++static struct usb_device_descriptor
++device_desc = {
++ .bLength = sizeof device_desc,
++ .bDescriptorType = USB_DT_DEVICE,
++ .bcdUSB = __constant_cpu_to_le16 (0x0100),
++ .bDeviceClass = USB_CLASS_PER_INTERFACE,
++ .bDeviceSubClass = 0,
++ .bDeviceProtocol = 0,
++ .bMaxPacketSize0 = 64,
++ .bcdDevice = __constant_cpu_to_le16 (0x0100),
++ .idVendor = __constant_cpu_to_le16 (0x0499),
++ .idProduct = __constant_cpu_to_le16 (0x3002),
++ .iManufacturer = STRING_MANUFACTURER,
++ .iProduct = STRING_PRODUCT,
++ .iSerialNumber = STRING_SERIAL,
++ .bNumConfigurations = 1,
++};
++
++static struct usb_config_descriptor
++z_config = {
++ .bLength = sizeof z_config,
++ .bDescriptorType = USB_DT_CONFIG,
++
++ /* compute wTotalLength on the fly */
++ .bNumInterfaces = 2,
++ .bConfigurationValue = 1,
++ .iConfiguration = 0,
++ .bmAttributes = 0x40,
++ .bMaxPower = 0, /* self-powered */
++};
++
++
++static struct usb_otg_descriptor
++otg_descriptor = {
++ .bLength = sizeof otg_descriptor,
++ .bDescriptorType = USB_DT_OTG,
++
++ .bmAttributes = USB_OTG_SRP,
++};
++
++/* one interface in each configuration */
++#ifdef CONFIG_USB_GADGET_DUALSPEED
++
++/*
++ * usb 2.0 devices need to expose both high speed and full speed
++ * descriptors, unless they only run at full speed.
++ *
++ * that means alternate endpoint descriptors (bigger packets)
++ * and a "device qualifier" ... plus more construction options
++ * for the config descriptor.
++ */
++
++static struct usb_qualifier_descriptor
++dev_qualifier = {
++ .bLength = sizeof dev_qualifier,
++ .bDescriptorType = USB_DT_DEVICE_QUALIFIER,
++
++ .bcdUSB = __constant_cpu_to_le16 (0x0200),
++ .bDeviceClass = USB_CLASS_VENDOR_SPEC,
++
++ .bNumConfigurations = 2,
++};
++
++
++struct usb_cs_as_general_descriptor {
++ __u8 bLength;
++ __u8 bDescriptorType;
++
++ __u8 bDescriptorSubType;
++ __u8 bTerminalLink;
++ __u8 bDelay;
++ __u16 wFormatTag;
++} __attribute__ ((packed));
++
++struct usb_cs_as_format_descriptor {
++ __u8 bLength;
++ __u8 bDescriptorType;
++
++ __u8 bDescriptorSubType;
++ __u8 bFormatType;
++ __u8 bNrChannels;
++ __u8 bSubframeSize;
++ __u8 bBitResolution;
++ __u8 bSamfreqType;
++ __u8 tLowerSamFreq[3];
++ __u8 tUpperSamFreq[3];
++} __attribute__ ((packed));
++
++static const struct usb_interface_descriptor
++z_audio_control_if_desc = {
++ .bLength = sizeof z_audio_control_if_desc,
++ .bDescriptorType = USB_DT_INTERFACE,
++ .bInterfaceNumber = 0,
++ .bAlternateSetting = 0,
++ .bNumEndpoints = 0,
++ .bInterfaceClass = USB_CLASS_AUDIO,
++ .bInterfaceSubClass = 0x1,
++ .bInterfaceProtocol = 0,
++ .iInterface = 0,
++};
++
++static const struct usb_interface_descriptor
++z_audio_if_desc = {
++ .bLength = sizeof z_audio_if_desc,
++ .bDescriptorType = USB_DT_INTERFACE,
++ .bInterfaceNumber = 1,
++ .bAlternateSetting = 0,
++ .bNumEndpoints = 0,
++ .bInterfaceClass = USB_CLASS_AUDIO,
++ .bInterfaceSubClass = 0x2,
++ .bInterfaceProtocol = 0,
++ .iInterface = 0,
++};
++
++static const struct usb_interface_descriptor
++z_audio_if_desc2 = {
++ .bLength = sizeof z_audio_if_desc,
++ .bDescriptorType = USB_DT_INTERFACE,
++ .bInterfaceNumber = 1,
++ .bAlternateSetting = 1,
++ .bNumEndpoints = 1,
++ .bInterfaceClass = USB_CLASS_AUDIO,
++ .bInterfaceSubClass = 0x2,
++ .bInterfaceProtocol = 0,
++ .iInterface = 0,
++};
++
++static const struct usb_cs_as_general_descriptor
++z_audio_cs_as_if_desc = {
++ .bLength = 7,
++ .bDescriptorType = 0x24,
++
++ .bDescriptorSubType = 0x01,
++ .bTerminalLink = 0x01,
++ .bDelay = 0x0,
++ .wFormatTag = __constant_cpu_to_le16 (0x0001)
++};
++
++
++static const struct usb_cs_as_format_descriptor
++z_audio_cs_as_format_desc = {
++ .bLength = 0xe,
++ .bDescriptorType = 0x24,
++
++ .bDescriptorSubType = 2,
++ .bFormatType = 1,
++ .bNrChannels = 1,
++ .bSubframeSize = 1,
++ .bBitResolution = 8,
++ .bSamfreqType = 0,
++ .tLowerSamFreq = {0x7e, 0x13, 0x00},
++ .tUpperSamFreq = {0xe2, 0xd6, 0x00},
++};
++
++static const struct usb_endpoint_descriptor
++z_iso_ep = {
++ .bLength = 0x09,
++ .bDescriptorType = 0x05,
++ .bEndpointAddress = 0x04,
++ .bmAttributes = 0x09,
++ .wMaxPacketSize = 0x0038,
++ .bInterval = 0x01,
++ .bRefresh = 0x00,
++ .bSynchAddress = 0x00,
++};
++
++static char z_iso_ep2[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
++
++// 9 bytes
++static char z_ac_interface_header_desc[] =
++{ 0x09, 0x24, 0x01, 0x00, 0x01, 0x2b, 0x00, 0x01, 0x01 };
++
++// 12 bytes
++static char z_0[] = {0x0c, 0x24, 0x02, 0x01, 0x01, 0x01, 0x00, 0x02,
++ 0x03, 0x00, 0x00, 0x00};
++// 13 bytes
++static char z_1[] = {0x0d, 0x24, 0x06, 0x02, 0x01, 0x02, 0x15, 0x00,
++ 0x02, 0x00, 0x02, 0x00, 0x00};
++// 9 bytes
++static char z_2[] = {0x09, 0x24, 0x03, 0x03, 0x01, 0x03, 0x00, 0x02,
++ 0x00};
++
++static char za_0[] = {0x09, 0x04, 0x01, 0x02, 0x01, 0x01, 0x02, 0x00,
++ 0x00};
++
++static char za_1[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
++
++static char za_2[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x01, 0x08, 0x00,
++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
++
++static char za_3[] = {0x09, 0x05, 0x04, 0x09, 0x70, 0x00, 0x01, 0x00,
++ 0x00};
++
++static char za_4[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
++
++static char za_5[] = {0x09, 0x04, 0x01, 0x03, 0x01, 0x01, 0x02, 0x00,
++ 0x00};
++
++static char za_6[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
++
++static char za_7[] = {0x0e, 0x24, 0x02, 0x01, 0x01, 0x02, 0x10, 0x00,
++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
++
++static char za_8[] = {0x09, 0x05, 0x04, 0x09, 0x70, 0x00, 0x01, 0x00,
++ 0x00};
++
++static char za_9[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
++
++static char za_10[] = {0x09, 0x04, 0x01, 0x04, 0x01, 0x01, 0x02, 0x00,
++ 0x00};
++
++static char za_11[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
++
++static char za_12[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x02, 0x10, 0x00,
++ 0x73, 0x13, 0x00, 0xe2, 0xd6, 0x00};
++
++static char za_13[] = {0x09, 0x05, 0x04, 0x09, 0xe0, 0x00, 0x01, 0x00,
++ 0x00};
++
++static char za_14[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
++
++static char za_15[] = {0x09, 0x04, 0x01, 0x05, 0x01, 0x01, 0x02, 0x00,
++ 0x00};
++
++static char za_16[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
++
++static char za_17[] = {0x0e, 0x24, 0x02, 0x01, 0x01, 0x03, 0x14, 0x00,
++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
++
++static char za_18[] = {0x09, 0x05, 0x04, 0x09, 0xa8, 0x00, 0x01, 0x00,
++ 0x00};
++
++static char za_19[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
++
++static char za_20[] = {0x09, 0x04, 0x01, 0x06, 0x01, 0x01, 0x02, 0x00,
++ 0x00};
++
++static char za_21[] = {0x07, 0x24, 0x01, 0x01, 0x00, 0x01, 0x00};
++
++static char za_22[] = {0x0e, 0x24, 0x02, 0x01, 0x02, 0x03, 0x14, 0x00,
++ 0x7e, 0x13, 0x00, 0xe2, 0xd6, 0x00};
++
++static char za_23[] = {0x09, 0x05, 0x04, 0x09, 0x50, 0x01, 0x01, 0x00,
++ 0x00};
++
++static char za_24[] = {0x07, 0x25, 0x01, 0x00, 0x02, 0x00, 0x02};
++
++
++
++static const struct usb_descriptor_header *z_function [] = {
++ (struct usb_descriptor_header *) &z_audio_control_if_desc,
++ (struct usb_descriptor_header *) &z_ac_interface_header_desc,
++ (struct usb_descriptor_header *) &z_0,
++ (struct usb_descriptor_header *) &z_1,
++ (struct usb_descriptor_header *) &z_2,
++ (struct usb_descriptor_header *) &z_audio_if_desc,
++ (struct usb_descriptor_header *) &z_audio_if_desc2,
++ (struct usb_descriptor_header *) &z_audio_cs_as_if_desc,
++ (struct usb_descriptor_header *) &z_audio_cs_as_format_desc,
++ (struct usb_descriptor_header *) &z_iso_ep,
++ (struct usb_descriptor_header *) &z_iso_ep2,
++ (struct usb_descriptor_header *) &za_0,
++ (struct usb_descriptor_header *) &za_1,
++ (struct usb_descriptor_header *) &za_2,
++ (struct usb_descriptor_header *) &za_3,
++ (struct usb_descriptor_header *) &za_4,
++ (struct usb_descriptor_header *) &za_5,
++ (struct usb_descriptor_header *) &za_6,
++ (struct usb_descriptor_header *) &za_7,
++ (struct usb_descriptor_header *) &za_8,
++ (struct usb_descriptor_header *) &za_9,
++ (struct usb_descriptor_header *) &za_10,
++ (struct usb_descriptor_header *) &za_11,
++ (struct usb_descriptor_header *) &za_12,
++ (struct usb_descriptor_header *) &za_13,
++ (struct usb_descriptor_header *) &za_14,
++ (struct usb_descriptor_header *) &za_15,
++ (struct usb_descriptor_header *) &za_16,
++ (struct usb_descriptor_header *) &za_17,
++ (struct usb_descriptor_header *) &za_18,
++ (struct usb_descriptor_header *) &za_19,
++ (struct usb_descriptor_header *) &za_20,
++ (struct usb_descriptor_header *) &za_21,
++ (struct usb_descriptor_header *) &za_22,
++ (struct usb_descriptor_header *) &za_23,
++ (struct usb_descriptor_header *) &za_24,
++ NULL,
++};
++
++/* maxpacket and other transfer characteristics vary by speed. */
++#define ep_desc(g,hs,fs) (((g)->speed==USB_SPEED_HIGH)?(hs):(fs))
++
++#else
++
++/* if there's no high speed support, maxpacket doesn't change. */
++#define ep_desc(g,hs,fs) fs
++
++#endif /* !CONFIG_USB_GADGET_DUALSPEED */
++
++static char manufacturer [40];
++//static char serial [40];
++static char serial [] = "Ser 00 em";
++
++/* static strings, in UTF-8 */
++static struct usb_string strings [] = {
++ { STRING_MANUFACTURER, manufacturer, },
++ { STRING_PRODUCT, longname, },
++ { STRING_SERIAL, serial, },
++ { STRING_LOOPBACK, loopback, },
++ { STRING_SOURCE_SINK, source_sink, },
++ { } /* end of list */
++};
++
++static struct usb_gadget_strings stringtab = {
++ .language = 0x0409, /* en-us */
++ .strings = strings,
++};
++
++/*
++ * config descriptors are also handcrafted. these must agree with code
++ * that sets configurations, and with code managing interfaces and their
++ * altsettings. other complexity may come from:
++ *
++ * - high speed support, including "other speed config" rules
++ * - multiple configurations
++ * - interfaces with alternate settings
++ * - embedded class or vendor-specific descriptors
++ *
++ * this handles high speed, and has a second config that could as easily
++ * have been an alternate interface setting (on most hardware).
++ *
++ * NOTE: to demonstrate (and test) more USB capabilities, this driver
++ * should include an altsetting to test interrupt transfers, including
++ * high bandwidth modes at high speed. (Maybe work like Intel's test
++ * device?)
++ */
++static int
++config_buf (struct usb_gadget *gadget, u8 *buf, u8 type, unsigned index)
++{
++ int len;
++ const struct usb_descriptor_header **function;
++
++ function = z_function;
++ len = usb_gadget_config_buf (&z_config, buf, USB_BUFSIZ, function);
++ if (len < 0)
++ return len;
++ ((struct usb_config_descriptor *) buf)->bDescriptorType = type;
++ return len;
++}
++
++/*-------------------------------------------------------------------------*/
++
++static struct usb_request *
++alloc_ep_req (struct usb_ep *ep, unsigned length)
++{
++ struct usb_request *req;
++
++ req = usb_ep_alloc_request (ep, GFP_ATOMIC);
++ if (req) {
++ req->length = length;
++ req->buf = usb_ep_alloc_buffer (ep, length,
++ &req->dma, GFP_ATOMIC);
++ if (!req->buf) {
++ usb_ep_free_request (ep, req);
++ req = NULL;
++ }
++ }
++ return req;
++}
++
++static void free_ep_req (struct usb_ep *ep, struct usb_request *req)
++{
++ if (req->buf)
++ usb_ep_free_buffer (ep, req->buf, req->dma, req->length);
++ usb_ep_free_request (ep, req);
++}
++
++/*-------------------------------------------------------------------------*/
++
++/* optionally require specific source/sink data patterns */
++
++static int
++check_read_data (
++ struct zero_dev *dev,
++ struct usb_ep *ep,
++ struct usb_request *req
++)
++{
++ unsigned i;
++ u8 *buf = req->buf;
++
++ for (i = 0; i < req->actual; i++, buf++) {
++ switch (pattern) {
++ /* all-zeroes has no synchronization issues */
++ case 0:
++ if (*buf == 0)
++ continue;
++ break;
++ /* mod63 stays in sync with short-terminated transfers,
++ * or otherwise when host and gadget agree on how large
++ * each usb transfer request should be. resync is done
++ * with set_interface or set_config.
++ */
++ case 1:
++ if (*buf == (u8)(i % 63))
++ continue;
++ break;
++ }
++ ERROR (dev, "bad OUT byte, buf [%d] = %d\n", i, *buf);
++ usb_ep_set_halt (ep);
++ return -EINVAL;
++ }
++ return 0;
++}
++
++/*-------------------------------------------------------------------------*/
++
++static void zero_reset_config (struct zero_dev *dev)
++{
++ if (dev->config == 0)
++ return;
++
++ DBG (dev, "reset config\n");
++
++ /* just disable endpoints, forcing completion of pending i/o.
++ * all our completion handlers free their requests in this case.
++ */
++ if (dev->in_ep) {
++ usb_ep_disable (dev->in_ep);
++ dev->in_ep = NULL;
++ }
++ if (dev->out_ep) {
++ usb_ep_disable (dev->out_ep);
++ dev->out_ep = NULL;
++ }
++ dev->config = 0;
++ del_timer (&dev->resume);
++}
++
++#define _write(f, buf, sz) (f->f_op->write(f, buf, sz, &f->f_pos))
++
++static void
++zero_isoc_complete (struct usb_ep *ep, struct usb_request *req)
++{
++ struct zero_dev *dev = ep->driver_data;
++ int status = req->status;
++ int i, j;
++
++ switch (status) {
++
++ case 0: /* normal completion? */
++ //printk ("\nzero ---------------> isoc normal completion %d bytes\n", req->actual);
++ for (i=0, j=rbuf_start; i<req->actual; i++) {
++ //printk ("%02x ", ((__u8*)req->buf)[i]);
++ rbuf[j] = ((__u8*)req->buf)[i];
++ j++;
++ if (j >= RBUF_LEN) j=0;
++ }
++ rbuf_start = j;
++ //printk ("\n\n");
++
++ if (rbuf_len < RBUF_LEN) {
++ rbuf_len += req->actual;
++ if (rbuf_len > RBUF_LEN) {
++ rbuf_len = RBUF_LEN;
++ }
++ }
++
++ break;
++
++ /* this endpoint is normally active while we're configured */
++ case -ECONNABORTED: /* hardware forced ep reset */
++ case -ECONNRESET: /* request dequeued */
++ case -ESHUTDOWN: /* disconnect from host */
++ VDBG (dev, "%s gone (%d), %d/%d\n", ep->name, status,
++ req->actual, req->length);
++ if (ep == dev->out_ep)
++ check_read_data (dev, ep, req);
++ free_ep_req (ep, req);
++ return;
++
++ case -EOVERFLOW: /* buffer overrun on read means that
++ * we didn't provide a big enough
++ * buffer.
++ */
++ default:
++#if 1
++ DBG (dev, "%s complete --> %d, %d/%d\n", ep->name,
++ status, req->actual, req->length);
++#endif
++ case -EREMOTEIO: /* short read */
++ break;
++ }
++
++ status = usb_ep_queue (ep, req, GFP_ATOMIC);
++ if (status) {
++ ERROR (dev, "kill %s: resubmit %d bytes --> %d\n",
++ ep->name, req->length, status);
++ usb_ep_set_halt (ep);
++ /* FIXME recover later ... somehow */
++ }
++}
++
++static struct usb_request *
++zero_start_isoc_ep (struct usb_ep *ep, int gfp_flags)
++{
++ struct usb_request *req;
++ int status;
++
++ req = alloc_ep_req (ep, 512);
++ if (!req)
++ return NULL;
++
++ req->complete = zero_isoc_complete;
++
++ status = usb_ep_queue (ep, req, gfp_flags);
++ if (status) {
++ struct zero_dev *dev = ep->driver_data;
++
++ ERROR (dev, "start %s --> %d\n", ep->name, status);
++ free_ep_req (ep, req);
++ req = NULL;
++ }
++
++ return req;
++}
++
++/* change our operational config. this code must agree with the code
++ * that returns config descriptors, and altsetting code.
++ *
++ * it's also responsible for power management interactions. some
++ * configurations might not work with our current power sources.
++ *
++ * note that some device controller hardware will constrain what this
++ * code can do, perhaps by disallowing more than one configuration or
++ * by limiting configuration choices (like the pxa2xx).
++ */
++static int
++zero_set_config (struct zero_dev *dev, unsigned number, int gfp_flags)
++{
++ int result = 0;
++ struct usb_gadget *gadget = dev->gadget;
++ const struct usb_endpoint_descriptor *d;
++ struct usb_ep *ep;
++
++ if (number == dev->config)
++ return 0;
++
++ zero_reset_config (dev);
++
++ gadget_for_each_ep (ep, gadget) {
++
++ if (strcmp (ep->name, "ep4") == 0) {
++
++ d = (struct usb_endpoint_descripter *)&za_23; // isoc ep desc for audio i/f alt setting 6
++ result = usb_ep_enable (ep, d);
++
++ if (result == 0) {
++ ep->driver_data = dev;
++ dev->in_ep = ep;
++
++ if (zero_start_isoc_ep (ep, gfp_flags) != 0) {
++
++ dev->in_ep = ep;
++ continue;
++ }
++
++ usb_ep_disable (ep);
++ result = -EIO;
++ }
++ }
++
++ }
++
++ dev->config = number;
++ return result;
++}
++
++/*-------------------------------------------------------------------------*/
++
++static void zero_setup_complete (struct usb_ep *ep, struct usb_request *req)
++{
++ if (req->status || req->actual != req->length)
++ DBG ((struct zero_dev *) ep->driver_data,
++ "setup complete --> %d, %d/%d\n",
++ req->status, req->actual, req->length);
++}
++
++/*
++ * The setup() callback implements all the ep0 functionality that's
++ * not handled lower down, in hardware or the hardware driver (like
++ * device and endpoint feature flags, and their status). It's all
++ * housekeeping for the gadget function we're implementing. Most of
++ * the work is in config-specific setup.
++ */
++static int
++zero_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
++{
++ struct zero_dev *dev = get_gadget_data (gadget);
++ struct usb_request *req = dev->req;
++ int value = -EOPNOTSUPP;
++
++ /* usually this stores reply data in the pre-allocated ep0 buffer,
++ * but config change events will reconfigure hardware.
++ */
++ req->zero = 0;
++ switch (ctrl->bRequest) {
++
++ case USB_REQ_GET_DESCRIPTOR:
++
++ switch (ctrl->wValue >> 8) {
++
++ case USB_DT_DEVICE:
++ value = min (ctrl->wLength, (u16) sizeof device_desc);
++ memcpy (req->buf, &device_desc, value);
++ break;
++#ifdef CONFIG_USB_GADGET_DUALSPEED
++ case USB_DT_DEVICE_QUALIFIER:
++ if (!gadget->is_dualspeed)
++ break;
++ value = min (ctrl->wLength, (u16) sizeof dev_qualifier);
++ memcpy (req->buf, &dev_qualifier, value);
++ break;
++
++ case USB_DT_OTHER_SPEED_CONFIG:
++ if (!gadget->is_dualspeed)
++ break;
++ // FALLTHROUGH
++#endif /* CONFIG_USB_GADGET_DUALSPEED */
++ case USB_DT_CONFIG:
++ value = config_buf (gadget, req->buf,
++ ctrl->wValue >> 8,
++ ctrl->wValue & 0xff);
++ if (value >= 0)
++ value = min (ctrl->wLength, (u16) value);
++ break;
++
++ case USB_DT_STRING:
++ /* wIndex == language code.
++ * this driver only handles one language, you can
++ * add string tables for other languages, using
++ * any UTF-8 characters
++ */
++ value = usb_gadget_get_string (&stringtab,
++ ctrl->wValue & 0xff, req->buf);
++ if (value >= 0) {
++ value = min (ctrl->wLength, (u16) value);
++ }
++ break;
++ }
++ break;
++
++ /* currently two configs, two speeds */
++ case USB_REQ_SET_CONFIGURATION:
++ if (ctrl->bRequestType != 0)
++ goto unknown;
++
++ spin_lock (&dev->lock);
++ value = zero_set_config (dev, ctrl->wValue, GFP_ATOMIC);
++ spin_unlock (&dev->lock);
++ break;
++ case USB_REQ_GET_CONFIGURATION:
++ if (ctrl->bRequestType != USB_DIR_IN)
++ goto unknown;
++ *(u8 *)req->buf = dev->config;
++ value = min (ctrl->wLength, (u16) 1);
++ break;
++
++ /* until we add altsetting support, or other interfaces,
++ * only 0/0 are possible. pxa2xx only supports 0/0 (poorly)
++ * and already killed pending endpoint I/O.
++ */
++ case USB_REQ_SET_INTERFACE:
++
++ if (ctrl->bRequestType != USB_RECIP_INTERFACE)
++ goto unknown;
++ spin_lock (&dev->lock);
++ if (dev->config) {
++ u8 config = dev->config;
++
++ /* resets interface configuration, forgets about
++ * previous transaction state (queued bufs, etc)
++ * and re-inits endpoint state (toggle etc)
++ * no response queued, just zero status == success.
++ * if we had more than one interface we couldn't
++ * use this "reset the config" shortcut.
++ */
++ zero_reset_config (dev);
++ zero_set_config (dev, config, GFP_ATOMIC);
++ value = 0;
++ }
++ spin_unlock (&dev->lock);
++ break;
++ case USB_REQ_GET_INTERFACE:
++ if ((ctrl->bRequestType == 0x21) && (ctrl->wIndex == 0x02)) {
++ value = ctrl->wLength;
++ break;
++ }
++ else {
++ if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE))
++ goto unknown;
++ if (!dev->config)
++ break;
++ if (ctrl->wIndex != 0) {
++ value = -EDOM;
++ break;
++ }
++ *(u8 *)req->buf = 0;
++ value = min (ctrl->wLength, (u16) 1);
++ }
++ break;
++
++ /*
++ * These are the same vendor-specific requests supported by
++ * Intel's USB 2.0 compliance test devices. We exceed that
++ * device spec by allowing multiple-packet requests.
++ */
++ case 0x5b: /* control WRITE test -- fill the buffer */
++ if (ctrl->bRequestType != (USB_DIR_OUT|USB_TYPE_VENDOR))
++ goto unknown;
++ if (ctrl->wValue || ctrl->wIndex)
++ break;
++ /* just read that many bytes into the buffer */
++ if (ctrl->wLength > USB_BUFSIZ)
++ break;
++ value = ctrl->wLength;
++ break;
++ case 0x5c: /* control READ test -- return the buffer */
++ if (ctrl->bRequestType != (USB_DIR_IN|USB_TYPE_VENDOR))
++ goto unknown;
++ if (ctrl->wValue || ctrl->wIndex)
++ break;
++ /* expect those bytes are still in the buffer; send back */
++ if (ctrl->wLength > USB_BUFSIZ
++ || ctrl->wLength != req->length)
++ break;
++ value = ctrl->wLength;
++ break;
++
++ case 0x01: // SET_CUR
++ case 0x02:
++ case 0x03:
++ case 0x04:
++ case 0x05:
++ value = ctrl->wLength;
++ break;
++ case 0x81:
++ switch (ctrl->wValue) {
++ case 0x0201:
++ case 0x0202:
++ ((u8*)req->buf)[0] = 0x00;
++ ((u8*)req->buf)[1] = 0xe3;
++ break;
++ case 0x0300:
++ case 0x0500:
++ ((u8*)req->buf)[0] = 0x00;
++ break;
++ }
++ //((u8*)req->buf)[0] = 0x81;
++ //((u8*)req->buf)[1] = 0x81;
++ value = ctrl->wLength;
++ break;
++ case 0x82:
++ switch (ctrl->wValue) {
++ case 0x0201:
++ case 0x0202:
++ ((u8*)req->buf)[0] = 0x00;
++ ((u8*)req->buf)[1] = 0xc3;
++ break;
++ case 0x0300:
++ case 0x0500:
++ ((u8*)req->buf)[0] = 0x00;
++ break;
++ }
++ //((u8*)req->buf)[0] = 0x82;
++ //((u8*)req->buf)[1] = 0x82;
++ value = ctrl->wLength;
++ break;
++ case 0x83:
++ switch (ctrl->wValue) {
++ case 0x0201:
++ case 0x0202:
++ ((u8*)req->buf)[0] = 0x00;
++ ((u8*)req->buf)[1] = 0x00;
++ break;
++ case 0x0300:
++ ((u8*)req->buf)[0] = 0x60;
++ break;
++ case 0x0500:
++ ((u8*)req->buf)[0] = 0x18;
++ break;
++ }
++ //((u8*)req->buf)[0] = 0x83;
++ //((u8*)req->buf)[1] = 0x83;
++ value = ctrl->wLength;
++ break;
++ case 0x84:
++ switch (ctrl->wValue) {
++ case 0x0201:
++ case 0x0202:
++ ((u8*)req->buf)[0] = 0x00;
++ ((u8*)req->buf)[1] = 0x01;
++ break;
++ case 0x0300:
++ case 0x0500:
++ ((u8*)req->buf)[0] = 0x08;
++ break;
++ }
++ //((u8*)req->buf)[0] = 0x84;
++ //((u8*)req->buf)[1] = 0x84;
++ value = ctrl->wLength;
++ break;
++ case 0x85:
++ ((u8*)req->buf)[0] = 0x85;
++ ((u8*)req->buf)[1] = 0x85;
++ value = ctrl->wLength;
++ break;
++
++
++ default:
++unknown:
++ printk("unknown control req%02x.%02x v%04x i%04x l%d\n",
++ ctrl->bRequestType, ctrl->bRequest,
++ ctrl->wValue, ctrl->wIndex, ctrl->wLength);
++ }
++
++ /* respond with data transfer before status phase? */
++ if (value >= 0) {
++ req->length = value;
++ req->zero = value < ctrl->wLength
++ && (value % gadget->ep0->maxpacket) == 0;
++ value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
++ if (value < 0) {
++ DBG (dev, "ep_queue < 0 --> %d\n", value);
++ req->status = 0;
++ zero_setup_complete (gadget->ep0, req);
++ }
++ }
++
++ /* device either stalls (value < 0) or reports success */
++ return value;
++}
++
++static void
++zero_disconnect (struct usb_gadget *gadget)
++{
++ struct zero_dev *dev = get_gadget_data (gadget);
++ unsigned long flags;
++
++ spin_lock_irqsave (&dev->lock, flags);
++ zero_reset_config (dev);
++
++ /* a more significant application might have some non-usb
++ * activities to quiesce here, saving resources like power
++ * or pushing the notification up a network stack.
++ */
++ spin_unlock_irqrestore (&dev->lock, flags);
++
++ /* next we may get setup() calls to enumerate new connections;
++ * or an unbind() during shutdown (including removing module).
++ */
++}
++
++static void
++zero_autoresume (unsigned long _dev)
++{
++ struct zero_dev *dev = (struct zero_dev *) _dev;
++ int status;
++
++ /* normally the host would be woken up for something
++ * more significant than just a timer firing...
++ */
++ if (dev->gadget->speed != USB_SPEED_UNKNOWN) {
++ status = usb_gadget_wakeup (dev->gadget);
++ DBG (dev, "wakeup --> %d\n", status);
++ }
++}
++
++/*-------------------------------------------------------------------------*/
++
++static void
++zero_unbind (struct usb_gadget *gadget)
++{
++ struct zero_dev *dev = get_gadget_data (gadget);
++
++ DBG (dev, "unbind\n");
++
++ /* we've already been disconnected ... no i/o is active */
++ if (dev->req)
++ free_ep_req (gadget->ep0, dev->req);
++ del_timer_sync (&dev->resume);
++ kfree (dev);
++ set_gadget_data (gadget, NULL);
++}
++
++static int
++zero_bind (struct usb_gadget *gadget)
++{
++ struct zero_dev *dev;
++ //struct usb_ep *ep;
++
++ printk("binding\n");
++ /*
++ * DRIVER POLICY CHOICE: you may want to do this differently.
++ * One thing to avoid is reusing a bcdDevice revision code
++ * with different host-visible configurations or behavior
++ * restrictions -- using ep1in/ep2out vs ep1out/ep3in, etc
++ */
++ //device_desc.bcdDevice = __constant_cpu_to_le16 (0x0201);
++
++
++ /* ok, we made sense of the hardware ... */
++ dev = kmalloc (sizeof *dev, SLAB_KERNEL);
++ if (!dev)
++ return -ENOMEM;
++ memset (dev, 0, sizeof *dev);
++ spin_lock_init (&dev->lock);
++ dev->gadget = gadget;
++ set_gadget_data (gadget, dev);
++
++ /* preallocate control response and buffer */
++ dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
++ if (!dev->req)
++ goto enomem;
++ dev->req->buf = usb_ep_alloc_buffer (gadget->ep0, USB_BUFSIZ,
++ &dev->req->dma, GFP_KERNEL);
++ if (!dev->req->buf)
++ goto enomem;
++
++ dev->req->complete = zero_setup_complete;
++
++ device_desc.bMaxPacketSize0 = gadget->ep0->maxpacket;
++
++#ifdef CONFIG_USB_GADGET_DUALSPEED
++ /* assume ep0 uses the same value for both speeds ... */
++ dev_qualifier.bMaxPacketSize0 = device_desc.bMaxPacketSize0;
++
++ /* and that all endpoints are dual-speed */
++ //hs_source_desc.bEndpointAddress = fs_source_desc.bEndpointAddress;
++ //hs_sink_desc.bEndpointAddress = fs_sink_desc.bEndpointAddress;
++#endif
++
++ usb_gadget_set_selfpowered (gadget);
++
++ init_timer (&dev->resume);
++ dev->resume.function = zero_autoresume;
++ dev->resume.data = (unsigned long) dev;
++
++ gadget->ep0->driver_data = dev;
++
++ INFO (dev, "%s, version: " DRIVER_VERSION "\n", longname);
++ INFO (dev, "using %s, OUT %s IN %s\n", gadget->name,
++ EP_OUT_NAME, EP_IN_NAME);
++
++ snprintf (manufacturer, sizeof manufacturer,
++ UTS_SYSNAME " " UTS_RELEASE " with %s",
++ gadget->name);
++
++ return 0;
++
++enomem:
++ zero_unbind (gadget);
++ return -ENOMEM;
++}
++
++/*-------------------------------------------------------------------------*/
++
++static void
++zero_suspend (struct usb_gadget *gadget)
++{
++ struct zero_dev *dev = get_gadget_data (gadget);
++
++ if (gadget->speed == USB_SPEED_UNKNOWN)
++ return;
++
++ if (autoresume) {
++ mod_timer (&dev->resume, jiffies + (HZ * autoresume));
++ DBG (dev, "suspend, wakeup in %d seconds\n", autoresume);
++ } else
++ DBG (dev, "suspend\n");
++}
++
++static void
++zero_resume (struct usb_gadget *gadget)
++{
++ struct zero_dev *dev = get_gadget_data (gadget);
++
++ DBG (dev, "resume\n");
++ del_timer (&dev->resume);
++}
++
++
++/*-------------------------------------------------------------------------*/
++
++static struct usb_gadget_driver zero_driver = {
++#ifdef CONFIG_USB_GADGET_DUALSPEED
++ .speed = USB_SPEED_HIGH,
++#else
++ .speed = USB_SPEED_FULL,
++#endif
++ .function = (char *) longname,
++ .bind = zero_bind,
++ .unbind = zero_unbind,
++
++ .setup = zero_setup,
++ .disconnect = zero_disconnect,
++
++ .suspend = zero_suspend,
++ .resume = zero_resume,
++
++ .driver = {
++ .name = (char *) shortname,
++ // .shutdown = ...
++ // .suspend = ...
++ // .resume = ...
++ },
++};
++
++MODULE_AUTHOR ("David Brownell");
++MODULE_LICENSE ("Dual BSD/GPL");
++
++static struct proc_dir_entry *pdir, *pfile;
++
++static int isoc_read_data (char *page, char **start,
++ off_t off, int count,
++ int *eof, void *data)
++{
++ int i;
++ static int c = 0;
++ static int done = 0;
++ static int s = 0;
++
++/*
++ printk ("\ncount: %d\n", count);
++ printk ("rbuf_start: %d\n", rbuf_start);
++ printk ("rbuf_len: %d\n", rbuf_len);
++ printk ("off: %d\n", off);
++ printk ("start: %p\n\n", *start);
++*/
++ if (done) {
++ c = 0;
++ done = 0;
++ *eof = 1;
++ return 0;
++ }
++
++ if (c == 0) {
++ if (rbuf_len == RBUF_LEN)
++ s = rbuf_start;
++ else s = 0;
++ }
++
++ for (i=0; i<count && c<rbuf_len; i++, c++) {
++ page[i] = rbuf[(c+s) % RBUF_LEN];
++ }
++ *start = page;
++
++ if (c >= rbuf_len) {
++ *eof = 1;
++ done = 1;
++ }
++
++
++ return i;
++}
++
++static int __init init (void)
++{
++
++ int retval = 0;
++
++ pdir = proc_mkdir("isoc_test", NULL);
++ if(pdir == NULL) {
++ retval = -ENOMEM;
++ printk("Error creating dir\n");
++ goto done;
++ }
++ pdir->owner = THIS_MODULE;
++
++ pfile = create_proc_read_entry("isoc_data",
++ 0444, pdir,
++ isoc_read_data,
++ NULL);
++ if (pfile == NULL) {
++ retval = -ENOMEM;
++ printk("Error creating file\n");
++ goto no_file;
++ }
++ pfile->owner = THIS_MODULE;
++
++ return usb_gadget_register_driver (&zero_driver);
++
++ no_file:
++ remove_proc_entry("isoc_data", NULL);
++ done:
++ return retval;
++}
++module_init (init);
++
++static void __exit cleanup (void)
++{
++
++ usb_gadget_unregister_driver (&zero_driver);
++
++ remove_proc_entry("isoc_data", pdir);
++ remove_proc_entry("isoc_test", NULL);
++}
++module_exit (cleanup);
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_cfi_common.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_cfi_common.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_cfi_common.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_cfi_common.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,142 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_CFI_COMMON_H__)
++#define __DWC_CFI_COMMON_H__
++
++//#include <linux/types.h>
++
++/**
++ * @file
++ *
++ * This file contains the CFI specific common constants, interfaces
++ * (functions and macros) and structures for Linux. No PCD specific
++ * data structure or definition is to be included in this file.
++ *
++ */
++
++/** This is a request for all Core Features */
++#define VEN_CORE_GET_FEATURES 0xB1
++
++/** This is a request to get the value of a specific Core Feature */
++#define VEN_CORE_GET_FEATURE 0xB2
++
++/** This command allows the host to set the value of a specific Core Feature */
++#define VEN_CORE_SET_FEATURE 0xB3
++
++/** This command allows the host to set the default values of
++ * either all or any specific Core Feature
++ */
++#define VEN_CORE_RESET_FEATURES 0xB4
++
++/** This command forces the PCD to write the deferred values of a Core Features */
++#define VEN_CORE_ACTIVATE_FEATURES 0xB5
++
++/** This request reads a DWORD value from a register at the specified offset */
++#define VEN_CORE_READ_REGISTER 0xB6
++
++/** This request writes a DWORD value into a register at the specified offset */
++#define VEN_CORE_WRITE_REGISTER 0xB7
++
++/** This structure is the header of the Core Features dataset returned to
++ * the Host
++ */
++struct cfi_all_features_header {
++/** The features header structure length is */
++#define CFI_ALL_FEATURES_HDR_LEN 8
++ /**
++ * The total length of the features dataset returned to the Host
++ */
++ uint16_t wTotalLen;
++
++ /**
++ * CFI version number inBinary-Coded Decimal (i.e., 1.00 is 100H).
++ * This field identifies the version of the CFI Specification with which
++ * the device is compliant.
++ */
++ uint16_t wVersion;
++
++ /** The ID of the Core */
++ uint16_t wCoreID;
++#define CFI_CORE_ID_UDC 1
++#define CFI_CORE_ID_OTG 2
++#define CFI_CORE_ID_WUDEV 3
++
++ /** Number of features returned by VEN_CORE_GET_FEATURES request */
++ uint16_t wNumFeatures;
++} UPACKED;
++
++typedef struct cfi_all_features_header cfi_all_features_header_t;
++
++/** This structure is a header of the Core Feature descriptor dataset returned to
++ * the Host after the VEN_CORE_GET_FEATURES request
++ */
++struct cfi_feature_desc_header {
++#define CFI_FEATURE_DESC_HDR_LEN 8
++
++ /** The feature ID */
++ uint16_t wFeatureID;
++
++ /** Length of this feature descriptor in bytes - including the
++ * length of the feature name string
++ */
++ uint16_t wLength;
++
++ /** The data length of this feature in bytes */
++ uint16_t wDataLength;
++
++ /**
++ * Attributes of this features
++ * D0: Access rights
++ * 0 - Read/Write
++ * 1 - Read only
++ */
++ uint8_t bmAttributes;
++#define CFI_FEATURE_ATTR_RO 1
++#define CFI_FEATURE_ATTR_RW 0
++
++ /** Length of the feature name in bytes */
++ uint8_t bNameLen;
++
++ /** The feature name buffer */
++ //uint8_t *name;
++} UPACKED;
++
++typedef struct cfi_feature_desc_header cfi_feature_desc_header_t;
++
++/**
++ * This structure describes a NULL terminated string referenced by its id field.
++ * It is very similar to usb_string structure but has the id field type set to 16-bit.
++ */
++struct cfi_string {
++ uint16_t id;
++ const uint8_t *s;
++};
++typedef struct cfi_string cfi_string_t;
++
++#endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_adp.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_adp.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_adp.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_adp.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,854 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_adp.c $
++ * $Revision: #12 $
++ * $Date: 2011/10/26 $
++ * $Change: 1873028 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#include "dwc_os.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++#include "dwc_otg_adp.h"
++
++/** @file
++ *
++ * This file contains the most of the Attach Detect Protocol implementation for
++ * the driver to support OTG Rev2.0.
++ *
++ */
++
++void dwc_otg_adp_write_reg(dwc_otg_core_if_t * core_if, uint32_t value)
++{
++ adpctl_data_t adpctl;
++
++ adpctl.d32 = value;
++ adpctl.b.ar = 0x2;
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->adpctl, adpctl.d32);
++
++ while (adpctl.b.ar) {
++ adpctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->adpctl);
++ }
++
++}
++
++/**
++ * Function is called to read ADP registers
++ */
++uint32_t dwc_otg_adp_read_reg(dwc_otg_core_if_t * core_if)
++{
++ adpctl_data_t adpctl;
++
++ adpctl.d32 = 0;
++ adpctl.b.ar = 0x1;
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->adpctl, adpctl.d32);
++
++ while (adpctl.b.ar) {
++ adpctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->adpctl);
++ }
++
++ return adpctl.d32;
++}
++
++/**
++ * Function is called to read ADPCTL register and filter Write-clear bits
++ */
++uint32_t dwc_otg_adp_read_reg_filter(dwc_otg_core_if_t * core_if)
++{
++ adpctl_data_t adpctl;
++
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++ adpctl.b.adp_tmout_int = 0;
++ adpctl.b.adp_prb_int = 0;
++ adpctl.b.adp_tmout_int = 0;
++
++ return adpctl.d32;
++}
++
++/**
++ * Function is called to write ADP registers
++ */
++void dwc_otg_adp_modify_reg(dwc_otg_core_if_t * core_if, uint32_t clr,
++ uint32_t set)
++{
++ dwc_otg_adp_write_reg(core_if,
++ (dwc_otg_adp_read_reg(core_if) & (~clr)) | set);
++}
++
++static void adp_sense_timeout(void *ptr)
++{
++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *) ptr;
++ core_if->adp.sense_timer_started = 0;
++ DWC_PRINTF("ADP SENSE TIMEOUT\n");
++ if (core_if->adp_enable) {
++ dwc_otg_adp_sense_stop(core_if);
++ dwc_otg_adp_probe_start(core_if);
++ }
++}
++
++/**
++ * This function is called when the ADP vbus timer expires. Timeout is 1.1s.
++ */
++static void adp_vbuson_timeout(void *ptr)
++{
++ gpwrdn_data_t gpwrdn;
++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *) ptr;
++ hprt0_data_t hprt0 = {.d32 = 0 };
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ DWC_PRINTF("%s: 1.1 seconds expire after turning on VBUS\n",__FUNCTION__);
++ if (core_if) {
++ core_if->adp.vbuson_timer_started = 0;
++ /* Turn off vbus */
++ hprt0.b.prtpwr = 1;
++ DWC_MODIFY_REG32(core_if->host_if->hprt0, hprt0.d32, 0);
++ gpwrdn.d32 = 0;
++
++ /* Power off the core */
++ if (core_if->power_down == 2) {
++ /* Enable Wakeup Logic */
++// gpwrdn.b.wkupactiv = 1;
++ gpwrdn.b.pmuactv = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0,
++ gpwrdn.d32);
++
++ /* Suspend the Phy Clock */
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, pcgcctl.d32);
++
++ /* Switch on VDD */
++// gpwrdn.b.wkupactiv = 1;
++ gpwrdn.b.pmuactv = 1;
++ gpwrdn.b.pwrdnrstn = 1;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0,
++ gpwrdn.d32);
++ } else {
++ /* Enable Power Down Logic */
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ }
++
++ /* Power off the core */
++ if (core_if->power_down == 2) {
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn,
++ gpwrdn.d32, 0);
++ }
++
++ /* Unmask SRP detected interrupt from Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.srp_det_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++
++ dwc_otg_adp_probe_start(core_if);
++ dwc_otg_dump_global_registers(core_if);
++ dwc_otg_dump_host_registers(core_if);
++ }
++
++}
++
++/**
++ * Start the ADP Initial Probe timer to detect if Port Connected interrupt is
++ * not asserted within 1.1 seconds.
++ *
++ * @param core_if the pointer to core_if strucure.
++ */
++void dwc_otg_adp_vbuson_timer_start(dwc_otg_core_if_t * core_if)
++{
++ core_if->adp.vbuson_timer_started = 1;
++ if (core_if->adp.vbuson_timer)
++ {
++ DWC_PRINTF("SCHEDULING VBUSON TIMER\n");
++ /* 1.1 secs + 60ms necessary for cil_hcd_start*/
++ DWC_TIMER_SCHEDULE(core_if->adp.vbuson_timer, 1160);
++ } else {
++ DWC_WARN("VBUSON_TIMER = %p\n",core_if->adp.vbuson_timer);
++ }
++}
++
++#if 0
++/**
++ * Masks all DWC OTG core interrupts
++ *
++ */
++static void mask_all_interrupts(dwc_otg_core_if_t * core_if)
++{
++ int i;
++ gahbcfg_data_t ahbcfg = {.d32 = 0 };
++
++ /* Mask Host Interrupts */
++
++ /* Clear and disable HCINTs */
++ for (i = 0; i < core_if->core_params->host_channels; i++) {
++ DWC_WRITE_REG32(&core_if->host_if->hc_regs[i]->hcintmsk, 0);
++ DWC_WRITE_REG32(&core_if->host_if->hc_regs[i]->hcint, 0xFFFFFFFF);
++
++ }
++
++ /* Clear and disable HAINT */
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->haintmsk, 0x0000);
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->haint, 0xFFFFFFFF);
++
++ /* Mask Device Interrupts */
++ if (!core_if->multiproc_int_enable) {
++ /* Clear and disable IN Endpoint interrupts */
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->diepmsk, 0);
++ for (i = 0; i <= core_if->dev_if->num_in_eps; i++) {
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[i]->
++ diepint, 0xFFFFFFFF);
++ }
++
++ /* Clear and disable OUT Endpoint interrupts */
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->doepmsk, 0);
++ for (i = 0; i <= core_if->dev_if->num_out_eps; i++) {
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[i]->
++ doepint, 0xFFFFFFFF);
++ }
++
++ /* Clear and disable DAINT */
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->daint,
++ 0xFFFFFFFF);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->daintmsk, 0);
++ } else {
++ for (i = 0; i < core_if->dev_if->num_in_eps; ++i) {
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->
++ diepeachintmsk[i], 0);
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[i]->
++ diepint, 0xFFFFFFFF);
++ }
++
++ for (i = 0; i < core_if->dev_if->num_out_eps; ++i) {
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->
++ doepeachintmsk[i], 0);
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[i]->
++ doepint, 0xFFFFFFFF);
++ }
++
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->deachintmsk,
++ 0);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->deachint,
++ 0xFFFFFFFF);
++
++ }
++
++ /* Disable interrupts */
++ ahbcfg.b.glblintrmsk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
++
++ /* Disable all interrupts. */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Clear any pending OTG Interrupts */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gotgint, 0xFFFFFFFF);
++}
++
++/**
++ * Unmask Port Connection Detected interrupt
++ *
++ */
++static void unmask_conn_det_intr(dwc_otg_core_if_t * core_if)
++{
++ gintmsk_data_t gintmsk = {.d32 = 0,.b.portintr = 1 };
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, gintmsk.d32);
++}
++#endif
++
++/**
++ * Starts the ADP Probing
++ *
++ * @param core_if the pointer to core_if structure.
++ */
++uint32_t dwc_otg_adp_probe_start(dwc_otg_core_if_t * core_if)
++{
++
++ adpctl_data_t adpctl = {.d32 = 0};
++ gpwrdn_data_t gpwrdn;
++#if 0
++ adpctl_data_t adpctl_int = {.d32 = 0, .b.adp_prb_int = 1,
++ .b.adp_sns_int = 1, b.adp_tmout_int};
++#endif
++ dwc_otg_disable_global_interrupts(core_if);
++ DWC_PRINTF("ADP Probe Start\n");
++ core_if->adp.probe_enabled = 1;
++
++ adpctl.b.adpres = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ while (adpctl.b.adpres) {
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++ }
++
++ adpctl.d32 = 0;
++ gpwrdn.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++
++ /* In Host mode unmask SRP detected interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.sts_chngint_msk = 1;
++ if (!gpwrdn.b.idsts) {
++ gpwrdn.b.srp_det_msk = 1;
++ }
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++
++ adpctl.b.adp_tmout_int_msk = 1;
++ adpctl.b.adp_prb_int_msk = 1;
++ adpctl.b.prb_dschg = 1;
++ adpctl.b.prb_delta = 1;
++ adpctl.b.prb_per = 1;
++ adpctl.b.adpen = 1;
++ adpctl.b.enaprb = 1;
++
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++ DWC_PRINTF("ADP Probe Finish\n");
++ return 0;
++}
++
++/**
++ * Starts the ADP Sense timer to detect if ADP Sense interrupt is not asserted
++ * within 3 seconds.
++ *
++ * @param core_if the pointer to core_if strucure.
++ */
++void dwc_otg_adp_sense_timer_start(dwc_otg_core_if_t * core_if)
++{
++ core_if->adp.sense_timer_started = 1;
++ DWC_TIMER_SCHEDULE(core_if->adp.sense_timer, 3000 /* 3 secs */ );
++}
++
++/**
++ * Starts the ADP Sense
++ *
++ * @param core_if the pointer to core_if strucure.
++ */
++uint32_t dwc_otg_adp_sense_start(dwc_otg_core_if_t * core_if)
++{
++ adpctl_data_t adpctl;
++
++ DWC_PRINTF("ADP Sense Start\n");
++
++ /* Unmask ADP sense interrupt and mask all other from the core */
++ adpctl.d32 = dwc_otg_adp_read_reg_filter(core_if);
++ adpctl.b.adp_sns_int_msk = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++ dwc_otg_disable_global_interrupts(core_if); // vahrama
++
++ /* Set ADP reset bit*/
++ adpctl.d32 = dwc_otg_adp_read_reg_filter(core_if);
++ adpctl.b.adpres = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ while (adpctl.b.adpres) {
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++ }
++
++ adpctl.b.adpres = 0;
++ adpctl.b.adpen = 1;
++ adpctl.b.enasns = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ dwc_otg_adp_sense_timer_start(core_if);
++
++ return 0;
++}
++
++/**
++ * Stops the ADP Probing
++ *
++ * @param core_if the pointer to core_if strucure.
++ */
++uint32_t dwc_otg_adp_probe_stop(dwc_otg_core_if_t * core_if)
++{
++
++ adpctl_data_t adpctl;
++ DWC_PRINTF("Stop ADP probe\n");
++ core_if->adp.probe_enabled = 0;
++ core_if->adp.probe_counter = 0;
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++
++ adpctl.b.adpen = 0;
++ adpctl.b.adp_prb_int = 1;
++ adpctl.b.adp_tmout_int = 1;
++ adpctl.b.adp_sns_int = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ return 0;
++}
++
++/**
++ * Stops the ADP Sensing
++ *
++ * @param core_if the pointer to core_if strucure.
++ */
++uint32_t dwc_otg_adp_sense_stop(dwc_otg_core_if_t * core_if)
++{
++ adpctl_data_t adpctl;
++
++ core_if->adp.sense_enabled = 0;
++
++ adpctl.d32 = dwc_otg_adp_read_reg_filter(core_if);
++ adpctl.b.enasns = 0;
++ adpctl.b.adp_sns_int = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ return 0;
++}
++
++/**
++ * Called to turn on the VBUS after initial ADP probe in host mode.
++ * If port power was already enabled in cil_hcd_start function then
++ * only schedule a timer.
++ *
++ * @param core_if the pointer to core_if structure.
++ */
++void dwc_otg_adp_turnon_vbus(dwc_otg_core_if_t * core_if)
++{
++ hprt0_data_t hprt0 = {.d32 = 0 };
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ DWC_PRINTF("Turn on VBUS for 1.1s, port power is %d\n", hprt0.b.prtpwr);
++
++ if (hprt0.b.prtpwr == 0) {
++ hprt0.b.prtpwr = 1;
++ //DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ }
++
++ dwc_otg_adp_vbuson_timer_start(core_if);
++}
++
++/**
++ * Called right after driver is loaded
++ * to perform initial actions for ADP
++ *
++ * @param core_if the pointer to core_if structure.
++ * @param is_host - flag for current mode of operation either from GINTSTS or GPWRDN
++ */
++void dwc_otg_adp_start(dwc_otg_core_if_t * core_if, uint8_t is_host)
++{
++ gpwrdn_data_t gpwrdn;
++
++ DWC_PRINTF("ADP Initial Start\n");
++ core_if->adp.adp_started = 1;
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++ dwc_otg_disable_global_interrupts(core_if);
++ if (is_host) {
++ DWC_PRINTF("HOST MODE\n");
++ /* Enable Power Down Logic Interrupt*/
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ /* Initialize first ADP probe to obtain Ramp Time value */
++ core_if->adp.initial_probe = 1;
++ dwc_otg_adp_probe_start(core_if);
++ } else {
++ gotgctl_data_t gotgctl;
++ gotgctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ DWC_PRINTF("DEVICE MODE\n");
++ if (gotgctl.b.bsesvld == 0) {
++ /* Enable Power Down Logic Interrupt*/
++ gpwrdn.d32 = 0;
++ DWC_PRINTF("VBUS is not valid - start ADP probe\n");
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ core_if->adp.initial_probe = 1;
++ dwc_otg_adp_probe_start(core_if);
++ } else {
++ DWC_PRINTF("VBUS is valid - initialize core as a Device\n");
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++ dwc_otg_dump_global_registers(core_if);
++ dwc_otg_dump_dev_registers(core_if);
++ }
++ }
++}
++
++void dwc_otg_adp_init(dwc_otg_core_if_t * core_if)
++{
++ core_if->adp.adp_started = 0;
++ core_if->adp.initial_probe = 0;
++ core_if->adp.probe_timer_values[0] = -1;
++ core_if->adp.probe_timer_values[1] = -1;
++ core_if->adp.probe_enabled = 0;
++ core_if->adp.sense_enabled = 0;
++ core_if->adp.sense_timer_started = 0;
++ core_if->adp.vbuson_timer_started = 0;
++ core_if->adp.probe_counter = 0;
++ core_if->adp.gpwrdn = 0;
++ core_if->adp.attached = DWC_OTG_ADP_UNKOWN;
++ /* Initialize timers */
++ core_if->adp.sense_timer =
++ DWC_TIMER_ALLOC("ADP SENSE TIMER", adp_sense_timeout, core_if);
++ core_if->adp.vbuson_timer =
++ DWC_TIMER_ALLOC("ADP VBUS ON TIMER", adp_vbuson_timeout, core_if);
++ if (!core_if->adp.sense_timer || !core_if->adp.vbuson_timer)
++ {
++ DWC_ERROR("Could not allocate memory for ADP timers\n");
++ }
++}
++
++void dwc_otg_adp_remove(dwc_otg_core_if_t * core_if)
++{
++ gpwrdn_data_t gpwrdn = { .d32 = 0 };
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ if (core_if->adp.probe_enabled)
++ dwc_otg_adp_probe_stop(core_if);
++ if (core_if->adp.sense_enabled)
++ dwc_otg_adp_sense_stop(core_if);
++ if (core_if->adp.sense_timer_started)
++ DWC_TIMER_CANCEL(core_if->adp.sense_timer);
++ if (core_if->adp.vbuson_timer_started)
++ DWC_TIMER_CANCEL(core_if->adp.vbuson_timer);
++ DWC_TIMER_FREE(core_if->adp.sense_timer);
++ DWC_TIMER_FREE(core_if->adp.vbuson_timer);
++}
++
++/////////////////////////////////////////////////////////////////////
++////////////// ADP Interrupt Handlers ///////////////////////////////
++/////////////////////////////////////////////////////////////////////
++/**
++ * This function sets Ramp Timer values
++ */
++static uint32_t set_timer_value(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ if (core_if->adp.probe_timer_values[0] == -1) {
++ core_if->adp.probe_timer_values[0] = val;
++ core_if->adp.probe_timer_values[1] = -1;
++ return 1;
++ } else {
++ core_if->adp.probe_timer_values[1] =
++ core_if->adp.probe_timer_values[0];
++ core_if->adp.probe_timer_values[0] = val;
++ return 0;
++ }
++}
++
++/**
++ * This function compares Ramp Timer values
++ */
++static uint32_t compare_timer_values(dwc_otg_core_if_t * core_if)
++{
++ uint32_t diff;
++ if (core_if->adp.probe_timer_values[0]>=core_if->adp.probe_timer_values[1])
++ diff = core_if->adp.probe_timer_values[0]-core_if->adp.probe_timer_values[1];
++ else
++ diff = core_if->adp.probe_timer_values[1]-core_if->adp.probe_timer_values[0];
++ if(diff < 2) {
++ return 0;
++ } else {
++ return 1;
++ }
++}
++
++/**
++ * This function handles ADP Probe Interrupts
++ */
++static int32_t dwc_otg_adp_handle_prb_intr(dwc_otg_core_if_t * core_if,
++ uint32_t val)
++{
++ adpctl_data_t adpctl = {.d32 = 0 };
++ gpwrdn_data_t gpwrdn, temp;
++ adpctl.d32 = val;
++
++ temp.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ core_if->adp.probe_counter++;
++ core_if->adp.gpwrdn = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ if (adpctl.b.rtim == 0 && !temp.b.idsts){
++ DWC_PRINTF("RTIM value is 0\n");
++ goto exit;
++ }
++ if (set_timer_value(core_if, adpctl.b.rtim) &&
++ core_if->adp.initial_probe) {
++ core_if->adp.initial_probe = 0;
++ dwc_otg_adp_probe_stop(core_if);
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++
++ /* check which value is for device mode and which for Host mode */
++ if (!temp.b.idsts) { /* considered host mode value is 0 */
++ /*
++ * Turn on VBUS after initial ADP probe.
++ */
++ core_if->op_state = A_HOST;
++ dwc_otg_enable_global_interrupts(core_if);
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_hcd_start(core_if);
++ dwc_otg_adp_turnon_vbus(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ } else {
++ /*
++ * Initiate SRP after initial ADP probe.
++ */
++ dwc_otg_enable_global_interrupts(core_if);
++ dwc_otg_initiate_srp(core_if);
++ }
++ } else if (core_if->adp.probe_counter > 2){
++ gpwrdn.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ if (compare_timer_values(core_if)) {
++ DWC_PRINTF("Difference in timer values !!! \n");
++// core_if->adp.attached = DWC_OTG_ADP_ATTACHED;
++ dwc_otg_adp_probe_stop(core_if);
++
++ /* Power on the core */
++ if (core_if->power_down == 2) {
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ }
++
++ /* check which value is for device mode and which for Host mode */
++ if (!temp.b.idsts) { /* considered host mode value is 0 */
++ /* Disable Interrupt from Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, gpwrdn.d32, 0);
++
++ /*
++ * Initialize the Core for Host mode.
++ */
++ core_if->op_state = A_HOST;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_hcd_start(core_if);
++ } else {
++ gotgctl_data_t gotgctl;
++ /* Mask SRP detected interrupt from Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.srp_det_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, gpwrdn.d32, 0);
++
++ /* Disable Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, gpwrdn.d32, 0);
++
++ /*
++ * Initialize the Core for Device mode.
++ */
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++
++ gotgctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ if (!gotgctl.b.bsesvld) {
++ dwc_otg_initiate_srp(core_if);
++ }
++ }
++ }
++ if (core_if->power_down == 2) {
++ if (gpwrdn.b.bsessvld) {
++ /* Mask SRP detected interrupt from Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.srp_det_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Disable Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /*
++ * Initialize the Core for Device mode.
++ */
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++ }
++ }
++ }
++exit:
++ /* Clear interrupt */
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++ adpctl.b.adp_prb_int = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ return 0;
++}
++
++/**
++ * This function hadles ADP Sense Interrupt
++ */
++static int32_t dwc_otg_adp_handle_sns_intr(dwc_otg_core_if_t * core_if)
++{
++ adpctl_data_t adpctl;
++ /* Stop ADP Sense timer */
++ DWC_TIMER_CANCEL(core_if->adp.sense_timer);
++
++ /* Restart ADP Sense timer */
++ dwc_otg_adp_sense_timer_start(core_if);
++
++ /* Clear interrupt */
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++ adpctl.b.adp_sns_int = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ return 0;
++}
++
++/**
++ * This function handles ADP Probe Interrupts
++ */
++static int32_t dwc_otg_adp_handle_prb_tmout_intr(dwc_otg_core_if_t * core_if,
++ uint32_t val)
++{
++ adpctl_data_t adpctl = {.d32 = 0 };
++ adpctl.d32 = val;
++ set_timer_value(core_if, adpctl.b.rtim);
++
++ /* Clear interrupt */
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++ adpctl.b.adp_tmout_int = 1;
++ dwc_otg_adp_write_reg(core_if, adpctl.d32);
++
++ return 0;
++}
++
++/**
++ * ADP Interrupt handler.
++ *
++ */
++int32_t dwc_otg_adp_handle_intr(dwc_otg_core_if_t * core_if)
++{
++ int retval = 0;
++ adpctl_data_t adpctl = {.d32 = 0};
++
++ adpctl.d32 = dwc_otg_adp_read_reg(core_if);
++ DWC_PRINTF("ADPCTL = %08x\n",adpctl.d32);
++
++ if (adpctl.b.adp_sns_int & adpctl.b.adp_sns_int_msk) {
++ DWC_PRINTF("ADP Sense interrupt\n");
++ retval |= dwc_otg_adp_handle_sns_intr(core_if);
++ }
++ if (adpctl.b.adp_tmout_int & adpctl.b.adp_tmout_int_msk) {
++ DWC_PRINTF("ADP timeout interrupt\n");
++ retval |= dwc_otg_adp_handle_prb_tmout_intr(core_if, adpctl.d32);
++ }
++ if (adpctl.b.adp_prb_int & adpctl.b.adp_prb_int_msk) {
++ DWC_PRINTF("ADP Probe interrupt\n");
++ adpctl.b.adp_prb_int = 1;
++ retval |= dwc_otg_adp_handle_prb_intr(core_if, adpctl.d32);
++ }
++
++// dwc_otg_adp_modify_reg(core_if, adpctl.d32, 0);
++ //dwc_otg_adp_write_reg(core_if, adpctl.d32);
++ DWC_PRINTF("RETURN FROM ADP ISR\n");
++
++ return retval;
++}
++
++/**
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_adp_handle_srp_intr(dwc_otg_core_if_t * core_if)
++{
++
++#ifndef DWC_HOST_ONLY
++ hprt0_data_t hprt0;
++ gpwrdn_data_t gpwrdn;
++ DWC_DEBUGPL(DBG_ANY, "++ Power Down Logic Session Request Interrupt++\n");
++
++ gpwrdn.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ /* check which value is for device mode and which for Host mode */
++ if (!gpwrdn.b.idsts) { /* considered host mode value is 0 */
++ DWC_PRINTF("SRP: Host mode\n");
++
++ if (core_if->adp_enable) {
++ dwc_otg_adp_probe_stop(core_if);
++
++ /* Power on the core */
++ if (core_if->power_down == 2) {
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ }
++
++ core_if->op_state = A_HOST;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_hcd_start(core_if);
++ }
++
++ /* Turn on the port power bit. */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Start the Connection timer. So a message can be displayed
++ * if connect does not occur within 10 seconds. */
++ cil_hcd_session_start(core_if);
++ } else {
++ DWC_PRINTF("SRP: Device mode %s\n", __FUNCTION__);
++ if (core_if->adp_enable) {
++ dwc_otg_adp_probe_stop(core_if);
++
++ /* Power on the core */
++ if (core_if->power_down == 2) {
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ }
++
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 0;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0,
++ gpwrdn.d32);
++
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++ }
++ }
++#endif
++ return 1;
++}
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_adp.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_adp.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_adp.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_adp.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,80 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_adp.h $
++ * $Revision: #7 $
++ * $Date: 2011/10/24 $
++ * $Change: 1871159 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_ADP_H__
++#define __DWC_OTG_ADP_H__
++
++/**
++ * @file
++ *
++ * This file contains the Attach Detect Protocol interfaces and defines
++ * (functions) and structures for Linux.
++ *
++ */
++
++#define DWC_OTG_ADP_UNATTACHED 0
++#define DWC_OTG_ADP_ATTACHED 1
++#define DWC_OTG_ADP_UNKOWN 2
++
++typedef struct dwc_otg_adp {
++ uint32_t adp_started;
++ uint32_t initial_probe;
++ int32_t probe_timer_values[2];
++ uint32_t probe_enabled;
++ uint32_t sense_enabled;
++ dwc_timer_t *sense_timer;
++ uint32_t sense_timer_started;
++ dwc_timer_t *vbuson_timer;
++ uint32_t vbuson_timer_started;
++ uint32_t attached;
++ uint32_t probe_counter;
++ uint32_t gpwrdn;
++} dwc_otg_adp_t;
++
++/**
++ * Attach Detect Protocol functions
++ */
++
++extern void dwc_otg_adp_write_reg(dwc_otg_core_if_t * core_if, uint32_t value);
++extern uint32_t dwc_otg_adp_read_reg(dwc_otg_core_if_t * core_if);
++extern uint32_t dwc_otg_adp_probe_start(dwc_otg_core_if_t * core_if);
++extern uint32_t dwc_otg_adp_sense_start(dwc_otg_core_if_t * core_if);
++extern uint32_t dwc_otg_adp_probe_stop(dwc_otg_core_if_t * core_if);
++extern uint32_t dwc_otg_adp_sense_stop(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_adp_start(dwc_otg_core_if_t * core_if, uint8_t is_host);
++extern void dwc_otg_adp_init(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_adp_remove(dwc_otg_core_if_t * core_if);
++extern int32_t dwc_otg_adp_handle_intr(dwc_otg_core_if_t * core_if);
++extern int32_t dwc_otg_adp_handle_srp_intr(dwc_otg_core_if_t * core_if);
++
++#endif //__DWC_OTG_ADP_H__
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_attr.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_attr.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_attr.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_attr.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1210 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
++ * $Revision: #44 $
++ * $Date: 2010/11/29 $
++ * $Change: 1636033 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing. The Linux driver attributes
++ * feature will be used to provide the Linux Diagnostic
++ * Interface. These attributes are accessed through sysfs.
++ */
++
++/** @page "Linux Module Attributes"
++ *
++ * The Linux module attributes feature is used to provide the Linux
++ * Diagnostic Interface. These attributes are accessed through sysfs.
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing.
++
++ The following table shows the attributes.
++ <table>
++ <tr>
++ <td><b> Name</b></td>
++ <td><b> Description</b></td>
++ <td><b> Access</b></td>
++ </tr>
++
++ <tr>
++ <td> mode </td>
++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hnpcapable </td>
++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srpcapable </td>
++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> hsic_connect </td>
++ <td> Gets or sets the "HSIC-Connect" bit in the GLPMCFG Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> inv_sel_hsic </td>
++ <td> Gets or sets the "Invert Select HSIC" bit in the GLPMFG Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> hnp </td>
++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srp </td>
++ <td> Initiates the Session Request Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> buspower </td>
++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> bussuspend </td>
++ <td> Suspends the USB bus.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> busconnected </td>
++ <td> Gets the connection status of the bus</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> gotgctl </td>
++ <td> Gets or sets the Core Control Status Register.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gusbcfg </td>
++ <td> Gets or sets the Core USB Configuration Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> grxfsiz </td>
++ <td> Gets or sets the Receive FIFO Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gnptxfsiz </td>
++ <td> Gets or sets the non-periodic Transmit Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gpvndctl </td>
++ <td> Gets or sets the PHY Vendor Control Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> ggpio </td>
++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
++ or sets the upper 16 bits.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> guid </td>
++ <td> Gets or sets the value of the User ID Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gsnpsid </td>
++ <td> Gets the value of the Synopsys ID Regester</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> devspeed </td>
++ <td> Gets or sets the device speed setting in the DCFG register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> enumspeed </td>
++ <td> Gets the device enumeration Speed.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hptxfsiz </td>
++ <td> Gets the value of the Host Periodic Transmit FIFO</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hprt0 </td>
++ <td> Gets or sets the value in the Host Port Control and Status Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regoffset </td>
++ <td> Sets the register offset for the next Register Access</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regvalue </td>
++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> remote_wakeup </td>
++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
++ Wakeup signalling bit in the Device Control Register is set for 1
++ milli-second.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> rem_wakeup_pwrdn </td>
++ <td> On read, shows the status core - hibernated or not. On write, initiates
++ a remote wakeup of the device from Hibernation. </td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> mode_ch_tim_en </td>
++ <td> This bit is used to enable or disable the host core to wait for 200 PHY
++ clock cycles at the end of Resume to change the opmode signal to the PHY to 00
++ after Suspend or LPM. </td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> fr_interval </td>
++ <td> On read, shows the value of HFIR Frame Interval. On write, dynamically
++ reload HFIR register during runtime. The application can write a value to this
++ register only after the Port Enable bit of the Host Port Control and Status
++ register (HPRT.PrtEnaPort) has been set </td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> disconnect_us </td>
++ <td> On read, shows the status of disconnect_device_us. On write, sets disconnect_us
++ which causes soft disconnect for 100us. Applicable only for device mode of operation.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regdump </td>
++ <td> Dumps the contents of core registers.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> spramdump </td>
++ <td> Dumps the contents of core registers.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcddump </td>
++ <td> Dumps the current HCD state.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcd_frrem </td>
++ <td> Shows the average value of the Frame Remaining
++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
++ occurs. This can be used to determine the average interrupt latency. Also
++ shows the average Frame Remaining value for start_transfer and the "a" and
++ "b" sample points. The "a" and "b" sample points may be used during debugging
++ bto determine how long it takes to execute a section of the HCD code.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> rd_reg_test </td>
++ <td> Displays the time required to read the GNPTXFSIZ register many times
++ (the output shows the number of times the register is read).
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> wr_reg_test </td>
++ <td> Displays the time required to write the GNPTXFSIZ register many times
++ (the output shows the number of times the register is written).
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> lpm_response </td>
++ <td> Gets or sets lpm_response mode. Applicable only in device mode.
++ <td> Write</td>
++ </tr>
++
++ <tr>
++ <td> sleep_status </td>
++ <td> Shows sleep status of device.
++ <td> Read</td>
++ </tr>
++
++ </table>
++
++ Example usage:
++ To get the current mode:
++ cat /sys/devices/lm0/mode
++
++ To power down the USB:
++ echo 0 > /sys/devices/lm0/buspower
++ */
++
++#include "dwc_otg_os_dep.h"
++#include "dwc_os.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_core_if.h"
++#include "dwc_otg_pcd_if.h"
++#include "dwc_otg_hcd_if.h"
++
++/*
++ * MACROs for defining sysfs attribute
++ */
++#ifdef LM_INTERFACE
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ struct lm_device *lm_dev = container_of(_dev, struct lm_device, dev); \
++ dwc_otg_device_t *otg_dev = lm_get_drvdata(lm_dev); \
++ uint32_t val; \
++ val = dwc_otg_get_##_otg_attr_name_ (otg_dev->core_if); \
++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ struct lm_device *lm_dev = container_of(_dev, struct lm_device, dev); \
++ dwc_otg_device_t *otg_dev = lm_get_drvdata(lm_dev); \
++ uint32_t set = simple_strtoul(buf, NULL, 16); \
++ dwc_otg_set_##_otg_attr_name_(otg_dev->core_if, set);\
++ return count; \
++}
++
++#elif defined(PCI_INTERFACE)
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
++ uint32_t val; \
++ val = dwc_otg_get_##_otg_attr_name_ (otg_dev->core_if); \
++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
++ uint32_t set = simple_strtoul(buf, NULL, 16); \
++ dwc_otg_set_##_otg_attr_name_(otg_dev->core_if, set);\
++ return count; \
++}
++
++#elif defined(PLATFORM_INTERFACE)
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ struct platform_device *platform_dev = \
++ container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(platform_dev); \
++ uint32_t val; \
++ DWC_PRINTF("%s(%p) -> platform_dev %p, otg_dev %p\n", \
++ __func__, _dev, platform_dev, otg_dev); \
++ val = dwc_otg_get_##_otg_attr_name_ (otg_dev->core_if); \
++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ struct platform_device *platform_dev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(platform_dev); \
++ uint32_t set = simple_strtoul(buf, NULL, 16); \
++ dwc_otg_set_##_otg_attr_name_(otg_dev->core_if, set);\
++ return count; \
++}
++#endif
++
++/*
++ * MACROs for defining sysfs attribute for 32-bit registers
++ */
++#ifdef LM_INTERFACE
++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ struct lm_device *lm_dev = container_of(_dev, struct lm_device, dev); \
++ dwc_otg_device_t *otg_dev = lm_get_drvdata(lm_dev); \
++ uint32_t val; \
++ val = dwc_otg_get_##_otg_attr_name_ (otg_dev->core_if); \
++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ struct lm_device *lm_dev = container_of(_dev, struct lm_device, dev); \
++ dwc_otg_device_t *otg_dev = lm_get_drvdata(lm_dev); \
++ uint32_t val = simple_strtoul(buf, NULL, 16); \
++ dwc_otg_set_##_otg_attr_name_ (otg_dev->core_if, val); \
++ return count; \
++}
++#elif defined(PCI_INTERFACE)
++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
++ uint32_t val; \
++ val = dwc_otg_get_##_otg_attr_name_ (otg_dev->core_if); \
++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ dwc_otg_device_t *otg_dev = dev_get_drvdata(_dev); \
++ uint32_t val = simple_strtoul(buf, NULL, 16); \
++ dwc_otg_set_##_otg_attr_name_ (otg_dev->core_if, val); \
++ return count; \
++}
++
++#elif defined(PLATFORM_INTERFACE)
++#include "dwc_otg_dbg.h"
++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ struct platform_device *platform_dev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(platform_dev); \
++ uint32_t val; \
++ DWC_PRINTF("%s(%p) -> platform_dev %p, otg_dev %p\n", \
++ __func__, _dev, platform_dev, otg_dev); \
++ val = dwc_otg_get_##_otg_attr_name_ (otg_dev->core_if); \
++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ struct platform_device *platform_dev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(platform_dev); \
++ uint32_t val = simple_strtoul(buf, NULL, 16); \
++ dwc_otg_set_##_otg_attr_name_ (otg_dev->core_if, val); \
++ return count; \
++}
++
++#endif
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
++
++/** @name Functions for Show/Store of Attributes */
++/**@{*/
++
++/**
++ * Helper function returning the otg_device structure of the given device
++ */
++static dwc_otg_device_t *dwc_otg_drvdev(struct device *_dev)
++{
++ dwc_otg_device_t *otg_dev;
++ DWC_OTG_GETDRVDEV(otg_dev, _dev);
++ return otg_dev;
++}
++
++/**
++ * Show the register offset of the Register Access.
++ */
++static ssize_t regoffset_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return snprintf(buf, sizeof("0xFFFFFFFF\n") + 1, "0x%08x\n",
++ otg_dev->os_dep.reg_offset);
++}
++
++/**
++ * Set the register offset for the next Register Access Read/Write
++ */
++static ssize_t regoffset_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t offset = simple_strtoul(buf, NULL, 16);
++#if defined(LM_INTERFACE) || defined(PLATFORM_INTERFACE)
++ if (offset < SZ_256K) {
++#elif defined(PCI_INTERFACE)
++ if (offset < 0x00040000) {
++#endif
++ otg_dev->os_dep.reg_offset = offset;
++ } else {
++ dev_err(_dev, "invalid offset\n");
++ }
++
++ return count;
++}
++
++DEVICE_ATTR(regoffset, S_IRUGO | S_IWUSR, regoffset_show, regoffset_store);
++
++/**
++ * Show the value of the register at the offset in the reg_offset
++ * attribute.
++ */
++static ssize_t regvalue_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t val;
++ volatile uint32_t *addr;
++
++ if (otg_dev->os_dep.reg_offset != 0xFFFFFFFF && 0 != otg_dev->os_dep.base) {
++ /* Calculate the address */
++ addr = (uint32_t *) (otg_dev->os_dep.reg_offset +
++ (uint8_t *) otg_dev->os_dep.base);
++ val = DWC_READ_REG32(addr);
++ return snprintf(buf,
++ sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n") + 1,
++ "Reg@0x%06x = 0x%08x\n", otg_dev->os_dep.reg_offset,
++ val);
++ } else {
++ dev_err(_dev, "Invalid offset (0x%0x)\n", otg_dev->os_dep.reg_offset);
++ return sprintf(buf, "invalid offset\n");
++ }
++}
++
++/**
++ * Store the value in the register at the offset in the reg_offset
++ * attribute.
++ *
++ */
++static ssize_t regvalue_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ volatile uint32_t *addr;
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
++ if (otg_dev->os_dep.reg_offset != 0xFFFFFFFF && 0 != otg_dev->os_dep.base) {
++ /* Calculate the address */
++ addr = (uint32_t *) (otg_dev->os_dep.reg_offset +
++ (uint8_t *) otg_dev->os_dep.base);
++ DWC_WRITE_REG32(addr, val);
++ } else {
++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
++ otg_dev->os_dep.reg_offset);
++ }
++ return count;
++}
++
++DEVICE_ATTR(regvalue, S_IRUGO | S_IWUSR, regvalue_show, regvalue_store);
++
++/*
++ * Attributes
++ */
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode, "Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable, "HNPCapable");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable, "SRPCapable");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hsic_connect, "HSIC Connect");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(inv_sel_hsic, "Invert Select HSIC");
++
++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected, "Bus Connected");
++
++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl, 0, "GOTGCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,
++ &(otg_dev->core_if->core_global_regs->gusbcfg),
++ "GUSBCFG");
++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,
++ &(otg_dev->core_if->core_global_regs->grxfsiz),
++ "GRXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,
++ &(otg_dev->core_if->core_global_regs->gnptxfsiz),
++ "GNPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,
++ &(otg_dev->core_if->core_global_regs->gpvndctl),
++ "GPVNDCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,
++ &(otg_dev->core_if->core_global_regs->ggpio),
++ "GGPIO");
++DWC_OTG_DEVICE_ATTR_REG32_RW(guid, &(otg_dev->core_if->core_global_regs->guid),
++ "GUID");
++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,
++ &(otg_dev->core_if->core_global_regs->gsnpsid),
++ "GSNPSID");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed, "Device Speed");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed, "Device Enumeration Speed");
++
++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,
++ &(otg_dev->core_if->core_global_regs->hptxfsiz),
++ "HPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0, otg_dev->core_if->host_if->hprt0, "HPRT0");
++
++/**
++ * @todo Add code to initiate the HNP.
++ */
++/**
++ * Show the HNP status bit
++ */
++static ssize_t hnp_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return sprintf(buf, "HstNegScs = 0x%x\n",
++ dwc_otg_get_hnpstatus(otg_dev->core_if));
++}
++
++/**
++ * Set the HNP Request bit
++ */
++static ssize_t hnp_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ dwc_otg_set_hnpreq(otg_dev->core_if, in);
++ return count;
++}
++
++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
++
++/**
++ * @todo Add code to initiate the SRP.
++ */
++/**
++ * Show the SRP status bit
++ */
++static ssize_t srp_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return sprintf(buf, "SesReqScs = 0x%x\n",
++ dwc_otg_get_srpstatus(otg_dev->core_if));
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++/**
++ * Set the SRP Request bit
++ */
++static ssize_t srp_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
++#endif
++ return count;
++}
++
++DEVICE_ATTR(srp, 0644, srp_show, srp_store);
++
++/**
++ * @todo Need to do more for power on/off?
++ */
++/**
++ * Show the Bus Power status
++ */
++static ssize_t buspower_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return sprintf(buf, "Bus Power = 0x%x\n",
++ dwc_otg_get_prtpower(otg_dev->core_if));
++}
++
++/**
++ * Set the Bus Power status
++ */
++static ssize_t buspower_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t on = simple_strtoul(buf, NULL, 16);
++ dwc_otg_set_prtpower(otg_dev->core_if, on);
++ return count;
++}
++
++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
++
++/**
++ * @todo Need to do more for suspend?
++ */
++/**
++ * Show the Bus Suspend status
++ */
++static ssize_t bussuspend_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return sprintf(buf, "Bus Suspend = 0x%x\n",
++ dwc_otg_get_prtsuspend(otg_dev->core_if));
++}
++
++/**
++ * Set the Bus Suspend status
++ */
++static ssize_t bussuspend_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ dwc_otg_set_prtsuspend(otg_dev->core_if, in);
++ return count;
++}
++
++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
++
++/**
++ * Show the Mode Change Ready Timer status
++ */
++static ssize_t mode_ch_tim_en_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return sprintf(buf, "Mode Change Ready Timer Enable = 0x%x\n",
++ dwc_otg_get_mode_ch_tim(otg_dev->core_if));
++}
++
++/**
++ * Set the Mode Change Ready Timer status
++ */
++static ssize_t mode_ch_tim_en_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ dwc_otg_set_mode_ch_tim(otg_dev->core_if, in);
++ return count;
++}
++
++DEVICE_ATTR(mode_ch_tim_en, 0644, mode_ch_tim_en_show, mode_ch_tim_en_store);
++
++/**
++ * Show the value of HFIR Frame Interval bitfield
++ */
++static ssize_t fr_interval_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return sprintf(buf, "Frame Interval = 0x%x\n",
++ dwc_otg_get_fr_interval(otg_dev->core_if));
++}
++
++/**
++ * Set the HFIR Frame Interval value
++ */
++static ssize_t fr_interval_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t in = simple_strtoul(buf, NULL, 10);
++ dwc_otg_set_fr_interval(otg_dev->core_if, in);
++ return count;
++}
++
++DEVICE_ATTR(fr_interval, 0644, fr_interval_show, fr_interval_store);
++
++/**
++ * Show the status of Remote Wakeup.
++ */
++static ssize_t remote_wakeup_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++
++ return sprintf(buf,
++ "Remote Wakeup Sig = %d Enabled = %d LPM Remote Wakeup = %d\n",
++ dwc_otg_get_remotewakesig(otg_dev->core_if),
++ dwc_otg_pcd_get_rmwkup_enable(otg_dev->pcd),
++ dwc_otg_get_lpm_remotewakeenabled(otg_dev->core_if));
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif /* DWC_HOST_ONLY */
++}
++
++/**
++ * Initiate a remote wakeup of the host. The Device control register
++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
++ * flag is set.
++ *
++ */
++static ssize_t remote_wakeup_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++
++ if (val & 1) {
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
++ } else {
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
++ }
++#endif /* DWC_HOST_ONLY */
++ return count;
++}
++
++DEVICE_ATTR(remote_wakeup, S_IRUGO | S_IWUSR, remote_wakeup_show,
++ remote_wakeup_store);
++
++/**
++ * Show the whether core is hibernated or not.
++ */
++static ssize_t rem_wakeup_pwrdn_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++
++ if (dwc_otg_get_core_state(otg_dev->core_if)) {
++ DWC_PRINTF("Core is in hibernation\n");
++ } else {
++ DWC_PRINTF("Core is not in hibernation\n");
++ }
++#endif /* DWC_HOST_ONLY */
++ return 0;
++}
++
++extern int dwc_otg_device_hibernation_restore(dwc_otg_core_if_t * core_if,
++ int rem_wakeup, int reset);
++
++/**
++ * Initiate a remote wakeup of the device to exit from hibernation.
++ */
++static ssize_t rem_wakeup_pwrdn_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ dwc_otg_device_hibernation_restore(otg_dev->core_if, 1, 0);
++#endif
++ return count;
++}
++
++DEVICE_ATTR(rem_wakeup_pwrdn, S_IRUGO | S_IWUSR, rem_wakeup_pwrdn_show,
++ rem_wakeup_pwrdn_store);
++
++static ssize_t disconnect_us(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++
++#ifndef DWC_HOST_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++ DWC_PRINTF("The Passed value is %04x\n", val);
++
++ dwc_otg_pcd_disconnect_us(otg_dev->pcd, 50);
++
++#endif /* DWC_HOST_ONLY */
++ return count;
++}
++
++DEVICE_ATTR(disconnect_us, S_IWUSR, 0, disconnect_us);
++
++/**
++ * Dump global registers and either host or device registers (depending on the
++ * current mode of the core).
++ */
++static ssize_t regdump_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++
++ dwc_otg_dump_global_registers(otg_dev->core_if);
++ if (dwc_otg_is_host_mode(otg_dev->core_if)) {
++ dwc_otg_dump_host_registers(otg_dev->core_if);
++ } else {
++ dwc_otg_dump_dev_registers(otg_dev->core_if);
++
++ }
++ return sprintf(buf, "Register Dump\n");
++}
++
++DEVICE_ATTR(regdump, S_IRUGO, regdump_show, 0);
++
++/**
++ * Dump global registers and either host or device registers (depending on the
++ * current mode of the core).
++ */
++static ssize_t spramdump_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++
++ dwc_otg_dump_spram(otg_dev->core_if);
++
++ return sprintf(buf, "SPRAM Dump\n");
++}
++
++DEVICE_ATTR(spramdump, S_IRUGO, spramdump_show, 0);
++
++/**
++ * Dump the current hcd state.
++ */
++static ssize_t hcddump_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ dwc_otg_hcd_dump_state(otg_dev->hcd);
++#endif /* DWC_DEVICE_ONLY */
++ return sprintf(buf, "HCD Dump\n");
++}
++
++DEVICE_ATTR(hcddump, S_IRUGO, hcddump_show, 0);
++
++/**
++ * Dump the average frame remaining at SOF. This can be used to
++ * determine average interrupt latency. Frame remaining is also shown for
++ * start transfer and two additional sample points.
++ */
++static ssize_t hcd_frrem_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++
++ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
++#endif /* DWC_DEVICE_ONLY */
++ return sprintf(buf, "HCD Dump Frame Remaining\n");
++}
++
++DEVICE_ATTR(hcd_frrem, S_IRUGO, hcd_frrem_show, 0);
++
++/**
++ * Displays the time required to read the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is read).
++ */
++#define RW_REG_COUNT 10000000
++#define MSEC_PER_JIFFIE 1000/HZ
++static ssize_t rd_reg_test_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ int i;
++ int time;
++ int start_jiffies;
++
++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++) {
++ dwc_otg_get_gnptxfsiz(otg_dev->core_if);
++ }
++ time = jiffies - start_jiffies;
++ return sprintf(buf,
++ "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(rd_reg_test, S_IRUGO, rd_reg_test_show, 0);
++
++/**
++ * Displays the time required to write the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is written).
++ */
++static ssize_t wr_reg_test_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t reg_val;
++ int i;
++ int time;
++ int start_jiffies;
++
++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ reg_val = dwc_otg_get_gnptxfsiz(otg_dev->core_if);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++) {
++ dwc_otg_set_gnptxfsiz(otg_dev->core_if, reg_val);
++ }
++ time = jiffies - start_jiffies;
++ return sprintf(buf,
++ "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(wr_reg_test, S_IRUGO, wr_reg_test_show, 0);
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++
++/**
++* Show the lpm_response attribute.
++*/
++static ssize_t lpmresp_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++
++ if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if))
++ return sprintf(buf, "** LPM is DISABLED **\n");
++
++ if (!dwc_otg_is_device_mode(otg_dev->core_if)) {
++ return sprintf(buf, "** Current mode is not device mode\n");
++ }
++ return sprintf(buf, "lpm_response = %d\n",
++ dwc_otg_get_lpmresponse(otg_dev->core_if));
++}
++
++/**
++* Store the lpm_response attribute.
++*/
++static ssize_t lpmresp_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++
++ if (!dwc_otg_get_param_lpm_enable(otg_dev->core_if)) {
++ return 0;
++ }
++
++ if (!dwc_otg_is_device_mode(otg_dev->core_if)) {
++ return 0;
++ }
++
++ dwc_otg_set_lpmresponse(otg_dev->core_if, val);
++ return count;
++}
++
++DEVICE_ATTR(lpm_response, S_IRUGO | S_IWUSR, lpmresp_show, lpmresp_store);
++
++/**
++* Show the sleep_status attribute.
++*/
++static ssize_t sleepstatus_show(struct device *_dev,
++ struct device_attribute *attr, char *buf)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ return sprintf(buf, "Sleep Status = %d\n",
++ dwc_otg_get_lpm_portsleepstatus(otg_dev->core_if));
++}
++
++/**
++ * Store the sleep_status attribure.
++ */
++static ssize_t sleepstatus_store(struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf, size_t count)
++{
++ dwc_otg_device_t *otg_dev = dwc_otg_drvdev(_dev);
++ dwc_otg_core_if_t *core_if = otg_dev->core_if;
++
++ if (dwc_otg_get_lpm_portsleepstatus(otg_dev->core_if)) {
++ if (dwc_otg_is_host_mode(core_if)) {
++
++ DWC_PRINTF("Host initiated resume\n");
++ dwc_otg_set_prtresume(otg_dev->core_if, 1);
++ }
++ }
++
++ return count;
++}
++
++DEVICE_ATTR(sleep_status, S_IRUGO | S_IWUSR, sleepstatus_show,
++ sleepstatus_store);
++
++#endif /* CONFIG_USB_DWC_OTG_LPM_ENABLE */
++
++/**@}*/
++
++/**
++ * Create the device files
++ */
++void dwc_otg_attr_create(
++#ifdef LM_INTERFACE
++ struct lm_device *dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *dev
++#endif
++ )
++{
++ int error;
++
++ error = device_create_file(&dev->dev, &dev_attr_regoffset);
++ error = device_create_file(&dev->dev, &dev_attr_regvalue);
++ error = device_create_file(&dev->dev, &dev_attr_mode);
++ error = device_create_file(&dev->dev, &dev_attr_hnpcapable);
++ error = device_create_file(&dev->dev, &dev_attr_srpcapable);
++ error = device_create_file(&dev->dev, &dev_attr_hsic_connect);
++ error = device_create_file(&dev->dev, &dev_attr_inv_sel_hsic);
++ error = device_create_file(&dev->dev, &dev_attr_hnp);
++ error = device_create_file(&dev->dev, &dev_attr_srp);
++ error = device_create_file(&dev->dev, &dev_attr_buspower);
++ error = device_create_file(&dev->dev, &dev_attr_bussuspend);
++ error = device_create_file(&dev->dev, &dev_attr_mode_ch_tim_en);
++ error = device_create_file(&dev->dev, &dev_attr_fr_interval);
++ error = device_create_file(&dev->dev, &dev_attr_busconnected);
++ error = device_create_file(&dev->dev, &dev_attr_gotgctl);
++ error = device_create_file(&dev->dev, &dev_attr_gusbcfg);
++ error = device_create_file(&dev->dev, &dev_attr_grxfsiz);
++ error = device_create_file(&dev->dev, &dev_attr_gnptxfsiz);
++ error = device_create_file(&dev->dev, &dev_attr_gpvndctl);
++ error = device_create_file(&dev->dev, &dev_attr_ggpio);
++ error = device_create_file(&dev->dev, &dev_attr_guid);
++ error = device_create_file(&dev->dev, &dev_attr_gsnpsid);
++ error = device_create_file(&dev->dev, &dev_attr_devspeed);
++ error = device_create_file(&dev->dev, &dev_attr_enumspeed);
++ error = device_create_file(&dev->dev, &dev_attr_hptxfsiz);
++ error = device_create_file(&dev->dev, &dev_attr_hprt0);
++ error = device_create_file(&dev->dev, &dev_attr_remote_wakeup);
++ error = device_create_file(&dev->dev, &dev_attr_rem_wakeup_pwrdn);
++ error = device_create_file(&dev->dev, &dev_attr_disconnect_us);
++ error = device_create_file(&dev->dev, &dev_attr_regdump);
++ error = device_create_file(&dev->dev, &dev_attr_spramdump);
++ error = device_create_file(&dev->dev, &dev_attr_hcddump);
++ error = device_create_file(&dev->dev, &dev_attr_hcd_frrem);
++ error = device_create_file(&dev->dev, &dev_attr_rd_reg_test);
++ error = device_create_file(&dev->dev, &dev_attr_wr_reg_test);
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ error = device_create_file(&dev->dev, &dev_attr_lpm_response);
++ error = device_create_file(&dev->dev, &dev_attr_sleep_status);
++#endif
++}
++
++/**
++ * Remove the device files
++ */
++void dwc_otg_attr_remove(
++#ifdef LM_INTERFACE
++ struct lm_device *dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *dev
++#endif
++ )
++{
++ device_remove_file(&dev->dev, &dev_attr_regoffset);
++ device_remove_file(&dev->dev, &dev_attr_regvalue);
++ device_remove_file(&dev->dev, &dev_attr_mode);
++ device_remove_file(&dev->dev, &dev_attr_hnpcapable);
++ device_remove_file(&dev->dev, &dev_attr_srpcapable);
++ device_remove_file(&dev->dev, &dev_attr_hsic_connect);
++ device_remove_file(&dev->dev, &dev_attr_inv_sel_hsic);
++ device_remove_file(&dev->dev, &dev_attr_hnp);
++ device_remove_file(&dev->dev, &dev_attr_srp);
++ device_remove_file(&dev->dev, &dev_attr_buspower);
++ device_remove_file(&dev->dev, &dev_attr_bussuspend);
++ device_remove_file(&dev->dev, &dev_attr_mode_ch_tim_en);
++ device_remove_file(&dev->dev, &dev_attr_fr_interval);
++ device_remove_file(&dev->dev, &dev_attr_busconnected);
++ device_remove_file(&dev->dev, &dev_attr_gotgctl);
++ device_remove_file(&dev->dev, &dev_attr_gusbcfg);
++ device_remove_file(&dev->dev, &dev_attr_grxfsiz);
++ device_remove_file(&dev->dev, &dev_attr_gnptxfsiz);
++ device_remove_file(&dev->dev, &dev_attr_gpvndctl);
++ device_remove_file(&dev->dev, &dev_attr_ggpio);
++ device_remove_file(&dev->dev, &dev_attr_guid);
++ device_remove_file(&dev->dev, &dev_attr_gsnpsid);
++ device_remove_file(&dev->dev, &dev_attr_devspeed);
++ device_remove_file(&dev->dev, &dev_attr_enumspeed);
++ device_remove_file(&dev->dev, &dev_attr_hptxfsiz);
++ device_remove_file(&dev->dev, &dev_attr_hprt0);
++ device_remove_file(&dev->dev, &dev_attr_remote_wakeup);
++ device_remove_file(&dev->dev, &dev_attr_rem_wakeup_pwrdn);
++ device_remove_file(&dev->dev, &dev_attr_disconnect_us);
++ device_remove_file(&dev->dev, &dev_attr_regdump);
++ device_remove_file(&dev->dev, &dev_attr_spramdump);
++ device_remove_file(&dev->dev, &dev_attr_hcddump);
++ device_remove_file(&dev->dev, &dev_attr_hcd_frrem);
++ device_remove_file(&dev->dev, &dev_attr_rd_reg_test);
++ device_remove_file(&dev->dev, &dev_attr_wr_reg_test);
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ device_remove_file(&dev->dev, &dev_attr_lpm_response);
++ device_remove_file(&dev->dev, &dev_attr_sleep_status);
++#endif
++}
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_attr.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_attr.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_attr.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_attr.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,89 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
++ * $Revision: #13 $
++ * $Date: 2010/06/21 $
++ * $Change: 1532021 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_ATTR_H__)
++#define __DWC_OTG_ATTR_H__
++
++/** @file
++ * This file contains the interface to the Linux device attributes.
++ */
++extern struct device_attribute dev_attr_regoffset;
++extern struct device_attribute dev_attr_regvalue;
++
++extern struct device_attribute dev_attr_mode;
++extern struct device_attribute dev_attr_hnpcapable;
++extern struct device_attribute dev_attr_srpcapable;
++extern struct device_attribute dev_attr_hnp;
++extern struct device_attribute dev_attr_srp;
++extern struct device_attribute dev_attr_buspower;
++extern struct device_attribute dev_attr_bussuspend;
++extern struct device_attribute dev_attr_mode_ch_tim_en;
++extern struct device_attribute dev_attr_fr_interval;
++extern struct device_attribute dev_attr_busconnected;
++extern struct device_attribute dev_attr_gotgctl;
++extern struct device_attribute dev_attr_gusbcfg;
++extern struct device_attribute dev_attr_grxfsiz;
++extern struct device_attribute dev_attr_gnptxfsiz;
++extern struct device_attribute dev_attr_gpvndctl;
++extern struct device_attribute dev_attr_ggpio;
++extern struct device_attribute dev_attr_guid;
++extern struct device_attribute dev_attr_gsnpsid;
++extern struct device_attribute dev_attr_devspeed;
++extern struct device_attribute dev_attr_enumspeed;
++extern struct device_attribute dev_attr_hptxfsiz;
++extern struct device_attribute dev_attr_hprt0;
++#ifdef CONFIG_USB_DWC_OTG_LPM
++extern struct device_attribute dev_attr_lpm_response;
++extern struct device_attribute devi_attr_sleep_status;
++#endif
++
++void dwc_otg_attr_create(
++#ifdef LM_INTERFACE
++ struct lm_device *dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *dev
++#endif
++ );
++
++void dwc_otg_attr_remove(
++#ifdef LM_INTERFACE
++ struct lm_device *dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *dev
++#endif
++ );
++#endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cfi.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cfi.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cfi.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cfi.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1876 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * This file contains the most of the CFI(Core Feature Interface)
++ * implementation for the OTG.
++ */
++
++#ifdef DWC_UTE_CFI
++
++#include "dwc_otg_pcd.h"
++#include "dwc_otg_cfi.h"
++
++/** This definition should actually migrate to the Portability Library */
++#define DWC_CONSTANT_CPU_TO_LE16(x) (x)
++
++extern dwc_otg_pcd_ep_t *get_ep_by_addr(dwc_otg_pcd_t * pcd, u16 wIndex);
++
++static int cfi_core_features_buf(uint8_t * buf, uint16_t buflen);
++static int cfi_get_feature_value(uint8_t * buf, uint16_t buflen,
++ struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *ctrl_req);
++static int cfi_set_feature_value(struct dwc_otg_pcd *pcd);
++static int cfi_ep_get_sg_val(uint8_t * buf, struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req);
++static int cfi_ep_get_concat_val(uint8_t * buf, struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req);
++static int cfi_ep_get_align_val(uint8_t * buf, struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req);
++static int cfi_preproc_reset(struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req);
++static void cfi_free_ep_bs_dyn_data(cfi_ep_t * cfiep);
++
++static uint16_t get_dfifo_size(dwc_otg_core_if_t * core_if);
++static int32_t get_rxfifo_size(dwc_otg_core_if_t * core_if, uint16_t wValue);
++static int32_t get_txfifo_size(struct dwc_otg_pcd *pcd, uint16_t wValue);
++
++static uint8_t resize_fifos(dwc_otg_core_if_t * core_if);
++
++/** This is the header of the all features descriptor */
++static cfi_all_features_header_t all_props_desc_header = {
++ .wVersion = DWC_CONSTANT_CPU_TO_LE16(0x100),
++ .wCoreID = DWC_CONSTANT_CPU_TO_LE16(CFI_CORE_ID_OTG),
++ .wNumFeatures = DWC_CONSTANT_CPU_TO_LE16(9),
++};
++
++/** This is an array of statically allocated feature descriptors */
++static cfi_feature_desc_header_t prop_descs[] = {
++
++ /* FT_ID_DMA_MODE */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_DMA_MODE),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(1),
++ },
++
++ /* FT_ID_DMA_BUFFER_SETUP */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_DMA_BUFFER_SETUP),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(6),
++ },
++
++ /* FT_ID_DMA_BUFF_ALIGN */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_DMA_BUFF_ALIGN),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(2),
++ },
++
++ /* FT_ID_DMA_CONCAT_SETUP */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_DMA_CONCAT_SETUP),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ //.wDataLength = DWC_CONSTANT_CPU_TO_LE16(6),
++ },
++
++ /* FT_ID_DMA_CIRCULAR */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_DMA_CIRCULAR),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(6),
++ },
++
++ /* FT_ID_THRESHOLD_SETUP */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_THRESHOLD_SETUP),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(6),
++ },
++
++ /* FT_ID_DFIFO_DEPTH */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_DFIFO_DEPTH),
++ .bmAttributes = CFI_FEATURE_ATTR_RO,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(2),
++ },
++
++ /* FT_ID_TX_FIFO_DEPTH */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_TX_FIFO_DEPTH),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(2),
++ },
++
++ /* FT_ID_RX_FIFO_DEPTH */
++ {
++ .wFeatureID = DWC_CONSTANT_CPU_TO_LE16(FT_ID_RX_FIFO_DEPTH),
++ .bmAttributes = CFI_FEATURE_ATTR_RW,
++ .wDataLength = DWC_CONSTANT_CPU_TO_LE16(2),
++ }
++};
++
++/** The table of feature names */
++cfi_string_t prop_name_table[] = {
++ {FT_ID_DMA_MODE, "dma_mode"},
++ {FT_ID_DMA_BUFFER_SETUP, "buffer_setup"},
++ {FT_ID_DMA_BUFF_ALIGN, "buffer_align"},
++ {FT_ID_DMA_CONCAT_SETUP, "concat_setup"},
++ {FT_ID_DMA_CIRCULAR, "buffer_circular"},
++ {FT_ID_THRESHOLD_SETUP, "threshold_setup"},
++ {FT_ID_DFIFO_DEPTH, "dfifo_depth"},
++ {FT_ID_TX_FIFO_DEPTH, "txfifo_depth"},
++ {FT_ID_RX_FIFO_DEPTH, "rxfifo_depth"},
++ {}
++};
++
++/************************************************************************/
++
++/**
++ * Returns the name of the feature by its ID
++ * or NULL if no featute ID matches.
++ *
++ */
++const uint8_t *get_prop_name(uint16_t prop_id, int *len)
++{
++ cfi_string_t *pstr;
++ *len = 0;
++
++ for (pstr = prop_name_table; pstr && pstr->s; pstr++) {
++ if (pstr->id == prop_id) {
++ *len = DWC_STRLEN(pstr->s);
++ return pstr->s;
++ }
++ }
++ return NULL;
++}
++
++/**
++ * This function handles all CFI specific control requests.
++ *
++ * Return a negative value to stall the DCE.
++ */
++int cfi_setup(struct dwc_otg_pcd *pcd, struct cfi_usb_ctrlrequest *ctrl)
++{
++ int retval = 0;
++ dwc_otg_pcd_ep_t *ep = NULL;
++ cfiobject_t *cfi = pcd->cfi;
++ struct dwc_otg_core_if *coreif = GET_CORE_IF(pcd);
++ uint16_t wLen = DWC_LE16_TO_CPU(&ctrl->wLength);
++ uint16_t wValue = DWC_LE16_TO_CPU(&ctrl->wValue);
++ uint16_t wIndex = DWC_LE16_TO_CPU(&ctrl->wIndex);
++ uint32_t regaddr = 0;
++ uint32_t regval = 0;
++
++ /* Save this Control Request in the CFI object.
++ * The data field will be assigned in the data stage completion CB function.
++ */
++ cfi->ctrl_req = *ctrl;
++ cfi->ctrl_req.data = NULL;
++
++ cfi->need_gadget_att = 0;
++ cfi->need_status_in_complete = 0;
++
++ switch (ctrl->bRequest) {
++ case VEN_CORE_GET_FEATURES:
++ retval = cfi_core_features_buf(cfi->buf_in.buf, CFI_IN_BUF_LEN);
++ if (retval >= 0) {
++ //dump_msg(cfi->buf_in.buf, retval);
++ ep = &pcd->ep0;
++
++ retval = min((uint16_t) retval, wLen);
++ /* Transfer this buffer to the host through the EP0-IN EP */
++ ep->dwc_ep.dma_addr = cfi->buf_in.addr;
++ ep->dwc_ep.start_xfer_buff = cfi->buf_in.buf;
++ ep->dwc_ep.xfer_buff = cfi->buf_in.buf;
++ ep->dwc_ep.xfer_len = retval;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
++
++ pcd->ep0_pending = 1;
++ dwc_otg_ep0_start_transfer(coreif, &ep->dwc_ep);
++ }
++ retval = 0;
++ break;
++
++ case VEN_CORE_GET_FEATURE:
++ CFI_INFO("VEN_CORE_GET_FEATURE\n");
++ retval = cfi_get_feature_value(cfi->buf_in.buf, CFI_IN_BUF_LEN,
++ pcd, ctrl);
++ if (retval >= 0) {
++ ep = &pcd->ep0;
++
++ retval = min((uint16_t) retval, wLen);
++ /* Transfer this buffer to the host through the EP0-IN EP */
++ ep->dwc_ep.dma_addr = cfi->buf_in.addr;
++ ep->dwc_ep.start_xfer_buff = cfi->buf_in.buf;
++ ep->dwc_ep.xfer_buff = cfi->buf_in.buf;
++ ep->dwc_ep.xfer_len = retval;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
++
++ pcd->ep0_pending = 1;
++ dwc_otg_ep0_start_transfer(coreif, &ep->dwc_ep);
++ }
++ CFI_INFO("VEN_CORE_GET_FEATURE=%d\n", retval);
++ dump_msg(cfi->buf_in.buf, retval);
++ break;
++
++ case VEN_CORE_SET_FEATURE:
++ CFI_INFO("VEN_CORE_SET_FEATURE\n");
++ /* Set up an XFER to get the data stage of the control request,
++ * which is the new value of the feature to be modified.
++ */
++ ep = &pcd->ep0;
++ ep->dwc_ep.is_in = 0;
++ ep->dwc_ep.dma_addr = cfi->buf_out.addr;
++ ep->dwc_ep.start_xfer_buff = cfi->buf_out.buf;
++ ep->dwc_ep.xfer_buff = cfi->buf_out.buf;
++ ep->dwc_ep.xfer_len = wLen;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
++
++ pcd->ep0_pending = 1;
++ /* Read the control write's data stage */
++ dwc_otg_ep0_start_transfer(coreif, &ep->dwc_ep);
++ retval = 0;
++ break;
++
++ case VEN_CORE_RESET_FEATURES:
++ CFI_INFO("VEN_CORE_RESET_FEATURES\n");
++ cfi->need_gadget_att = 1;
++ cfi->need_status_in_complete = 1;
++ retval = cfi_preproc_reset(pcd, ctrl);
++ CFI_INFO("VEN_CORE_RESET_FEATURES = (%d)\n", retval);
++ break;
++
++ case VEN_CORE_ACTIVATE_FEATURES:
++ CFI_INFO("VEN_CORE_ACTIVATE_FEATURES\n");
++ break;
++
++ case VEN_CORE_READ_REGISTER:
++ CFI_INFO("VEN_CORE_READ_REGISTER\n");
++ /* wValue optionally contains the HI WORD of the register offset and
++ * wIndex contains the LOW WORD of the register offset
++ */
++ if (wValue == 0) {
++ /* @TODO - MAS - fix the access to the base field */
++ regaddr = 0;
++ //regaddr = (uint32_t) pcd->otg_dev->os_dep.base;
++ //GET_CORE_IF(pcd)->co
++ regaddr |= wIndex;
++ } else {
++ regaddr = (wValue << 16) | wIndex;
++ }
++
++ /* Read a 32-bit value of the memory at the regaddr */
++ regval = DWC_READ_REG32((uint32_t *) regaddr);
++
++ ep = &pcd->ep0;
++ dwc_memcpy(cfi->buf_in.buf, &regval, sizeof(uint32_t));
++ ep->dwc_ep.is_in = 1;
++ ep->dwc_ep.dma_addr = cfi->buf_in.addr;
++ ep->dwc_ep.start_xfer_buff = cfi->buf_in.buf;
++ ep->dwc_ep.xfer_buff = cfi->buf_in.buf;
++ ep->dwc_ep.xfer_len = wLen;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
++
++ pcd->ep0_pending = 1;
++ dwc_otg_ep0_start_transfer(coreif, &ep->dwc_ep);
++ cfi->need_gadget_att = 0;
++ retval = 0;
++ break;
++
++ case VEN_CORE_WRITE_REGISTER:
++ CFI_INFO("VEN_CORE_WRITE_REGISTER\n");
++ /* Set up an XFER to get the data stage of the control request,
++ * which is the new value of the register to be modified.
++ */
++ ep = &pcd->ep0;
++ ep->dwc_ep.is_in = 0;
++ ep->dwc_ep.dma_addr = cfi->buf_out.addr;
++ ep->dwc_ep.start_xfer_buff = cfi->buf_out.buf;
++ ep->dwc_ep.xfer_buff = cfi->buf_out.buf;
++ ep->dwc_ep.xfer_len = wLen;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
++
++ pcd->ep0_pending = 1;
++ /* Read the control write's data stage */
++ dwc_otg_ep0_start_transfer(coreif, &ep->dwc_ep);
++ retval = 0;
++ break;
++
++ default:
++ retval = -DWC_E_NOT_SUPPORTED;
++ break;
++ }
++
++ return retval;
++}
++
++/**
++ * This function prepares the core features descriptors and copies its
++ * raw representation into the buffer <buf>.
++ *
++ * The buffer structure is as follows:
++ * all_features_header (8 bytes)
++ * features_#1 (8 bytes + feature name string length)
++ * features_#2 (8 bytes + feature name string length)
++ * .....
++ * features_#n - where n=the total count of feature descriptors
++ */
++static int cfi_core_features_buf(uint8_t * buf, uint16_t buflen)
++{
++ cfi_feature_desc_header_t *prop_hdr = prop_descs;
++ cfi_feature_desc_header_t *prop;
++ cfi_all_features_header_t *all_props_hdr = &all_props_desc_header;
++ cfi_all_features_header_t *tmp;
++ uint8_t *tmpbuf = buf;
++ const uint8_t *pname = NULL;
++ int i, j, namelen = 0, totlen;
++
++ /* Prepare and copy the core features into the buffer */
++ CFI_INFO("%s:\n", __func__);
++
++ tmp = (cfi_all_features_header_t *) tmpbuf;
++ *tmp = *all_props_hdr;
++ tmpbuf += CFI_ALL_FEATURES_HDR_LEN;
++
++ j = sizeof(prop_descs) / sizeof(cfi_all_features_header_t);
++ for (i = 0; i < j; i++, prop_hdr++) {
++ pname = get_prop_name(prop_hdr->wFeatureID, &namelen);
++ prop = (cfi_feature_desc_header_t *) tmpbuf;
++ *prop = *prop_hdr;
++
++ prop->bNameLen = namelen;
++ prop->wLength =
++ DWC_CONSTANT_CPU_TO_LE16(CFI_FEATURE_DESC_HDR_LEN +
++ namelen);
++
++ tmpbuf += CFI_FEATURE_DESC_HDR_LEN;
++ dwc_memcpy(tmpbuf, pname, namelen);
++ tmpbuf += namelen;
++ }
++
++ totlen = tmpbuf - buf;
++
++ if (totlen > 0) {
++ tmp = (cfi_all_features_header_t *) buf;
++ tmp->wTotalLen = DWC_CONSTANT_CPU_TO_LE16(totlen);
++ }
++
++ return totlen;
++}
++
++/**
++ * This function releases all the dynamic memory in the CFI object.
++ */
++static void cfi_release(cfiobject_t * cfiobj)
++{
++ cfi_ep_t *cfiep;
++ dwc_list_link_t *tmp;
++
++ CFI_INFO("%s\n", __func__);
++
++ if (cfiobj->buf_in.buf) {
++ DWC_DMA_FREE(CFI_IN_BUF_LEN, cfiobj->buf_in.buf,
++ cfiobj->buf_in.addr);
++ cfiobj->buf_in.buf = NULL;
++ }
++
++ if (cfiobj->buf_out.buf) {
++ DWC_DMA_FREE(CFI_OUT_BUF_LEN, cfiobj->buf_out.buf,
++ cfiobj->buf_out.addr);
++ cfiobj->buf_out.buf = NULL;
++ }
++
++ /* Free the Buffer Setup values for each EP */
++ //list_for_each_entry(cfiep, &cfiobj->active_eps, lh) {
++ DWC_LIST_FOREACH(tmp, &cfiobj->active_eps) {
++ cfiep = DWC_LIST_ENTRY(tmp, struct cfi_ep, lh);
++ cfi_free_ep_bs_dyn_data(cfiep);
++ }
++}
++
++/**
++ * This function frees the dynamically allocated EP buffer setup data.
++ */
++static void cfi_free_ep_bs_dyn_data(cfi_ep_t * cfiep)
++{
++ if (cfiep->bm_sg) {
++ DWC_FREE(cfiep->bm_sg);
++ cfiep->bm_sg = NULL;
++ }
++
++ if (cfiep->bm_align) {
++ DWC_FREE(cfiep->bm_align);
++ cfiep->bm_align = NULL;
++ }
++
++ if (cfiep->bm_concat) {
++ if (NULL != cfiep->bm_concat->wTxBytes) {
++ DWC_FREE(cfiep->bm_concat->wTxBytes);
++ cfiep->bm_concat->wTxBytes = NULL;
++ }
++ DWC_FREE(cfiep->bm_concat);
++ cfiep->bm_concat = NULL;
++ }
++}
++
++/**
++ * This function initializes the default values of the features
++ * for a specific endpoint and should be called only once when
++ * the EP is enabled first time.
++ */
++static int cfi_ep_init_defaults(struct dwc_otg_pcd *pcd, cfi_ep_t * cfiep)
++{
++ int retval = 0;
++
++ cfiep->bm_sg = DWC_ALLOC(sizeof(ddma_sg_buffer_setup_t));
++ if (NULL == cfiep->bm_sg) {
++ CFI_INFO("Failed to allocate memory for SG feature value\n");
++ return -DWC_E_NO_MEMORY;
++ }
++ dwc_memset(cfiep->bm_sg, 0, sizeof(ddma_sg_buffer_setup_t));
++
++ /* For the Concatenation feature's default value we do not allocate
++ * memory for the wTxBytes field - it will be done in the set_feature_value
++ * request handler.
++ */
++ cfiep->bm_concat = DWC_ALLOC(sizeof(ddma_concat_buffer_setup_t));
++ if (NULL == cfiep->bm_concat) {
++ CFI_INFO
++ ("Failed to allocate memory for CONCATENATION feature value\n");
++ DWC_FREE(cfiep->bm_sg);
++ return -DWC_E_NO_MEMORY;
++ }
++ dwc_memset(cfiep->bm_concat, 0, sizeof(ddma_concat_buffer_setup_t));
++
++ cfiep->bm_align = DWC_ALLOC(sizeof(ddma_align_buffer_setup_t));
++ if (NULL == cfiep->bm_align) {
++ CFI_INFO
++ ("Failed to allocate memory for Alignment feature value\n");
++ DWC_FREE(cfiep->bm_sg);
++ DWC_FREE(cfiep->bm_concat);
++ return -DWC_E_NO_MEMORY;
++ }
++ dwc_memset(cfiep->bm_align, 0, sizeof(ddma_align_buffer_setup_t));
++
++ return retval;
++}
++
++/**
++ * The callback function that notifies the CFI on the activation of
++ * an endpoint in the PCD. The following steps are done in this function:
++ *
++ * Create a dynamically allocated cfi_ep_t object (a CFI wrapper to the PCD's
++ * active endpoint)
++ * Create MAX_DMA_DESCS_PER_EP count DMA Descriptors for the EP
++ * Set the Buffer Mode to standard
++ * Initialize the default values for all EP modes (SG, Circular, Concat, Align)
++ * Add the cfi_ep_t object to the list of active endpoints in the CFI object
++ */
++static int cfi_ep_enable(struct cfiobject *cfi, struct dwc_otg_pcd *pcd,
++ struct dwc_otg_pcd_ep *ep)
++{
++ cfi_ep_t *cfiep;
++ int retval = -DWC_E_NOT_SUPPORTED;
++
++ CFI_INFO("%s: epname=%s; epnum=0x%02x\n", __func__,
++ "EP_" /*ep->ep.name */ , ep->desc->bEndpointAddress);
++ /* MAS - Check whether this endpoint already is in the list */
++ cfiep = get_cfi_ep_by_pcd_ep(cfi, ep);
++
++ if (NULL == cfiep) {
++ /* Allocate a cfi_ep_t object */
++ cfiep = DWC_ALLOC(sizeof(cfi_ep_t));
++ if (NULL == cfiep) {
++ CFI_INFO
++ ("Unable to allocate memory for <cfiep> in function %s\n",
++ __func__);
++ return -DWC_E_NO_MEMORY;
++ }
++ dwc_memset(cfiep, 0, sizeof(cfi_ep_t));
++
++ /* Save the dwc_otg_pcd_ep pointer in the cfiep object */
++ cfiep->ep = ep;
++
++ /* Allocate the DMA Descriptors chain of MAX_DMA_DESCS_PER_EP count */
++ ep->dwc_ep.descs =
++ DWC_DMA_ALLOC(MAX_DMA_DESCS_PER_EP *
++ sizeof(dwc_otg_dma_desc_t),
++ &ep->dwc_ep.descs_dma_addr);
++
++ if (NULL == ep->dwc_ep.descs) {
++ DWC_FREE(cfiep);
++ return -DWC_E_NO_MEMORY;
++ }
++
++ DWC_LIST_INIT(&cfiep->lh);
++
++ /* Set the buffer mode to BM_STANDARD. It will be modified
++ * when building descriptors for a specific buffer mode */
++ ep->dwc_ep.buff_mode = BM_STANDARD;
++
++ /* Create and initialize the default values for this EP's Buffer modes */
++ if ((retval = cfi_ep_init_defaults(pcd, cfiep)) < 0)
++ return retval;
++
++ /* Add the cfi_ep_t object to the CFI object's list of active endpoints */
++ DWC_LIST_INSERT_TAIL(&cfi->active_eps, &cfiep->lh);
++ retval = 0;
++ } else { /* The sought EP already is in the list */
++ CFI_INFO("%s: The sought EP already is in the list\n",
++ __func__);
++ }
++
++ return retval;
++}
++
++/**
++ * This function is called when the data stage of a 3-stage Control Write request
++ * is complete.
++ *
++ */
++static int cfi_ctrl_write_complete(struct cfiobject *cfi,
++ struct dwc_otg_pcd *pcd)
++{
++ uint32_t addr, reg_value;
++ uint16_t wIndex, wValue;
++ uint8_t bRequest;
++ uint8_t *buf = cfi->buf_out.buf;
++ //struct usb_ctrlrequest *ctrl_req = &cfi->ctrl_req_saved;
++ struct cfi_usb_ctrlrequest *ctrl_req = &cfi->ctrl_req;
++ int retval = -DWC_E_NOT_SUPPORTED;
++
++ CFI_INFO("%s\n", __func__);
++
++ bRequest = ctrl_req->bRequest;
++ wIndex = DWC_CONSTANT_CPU_TO_LE16(ctrl_req->wIndex);
++ wValue = DWC_CONSTANT_CPU_TO_LE16(ctrl_req->wValue);
++
++ /*
++ * Save the pointer to the data stage in the ctrl_req's <data> field.
++ * The request should be already saved in the command stage by now.
++ */
++ ctrl_req->data = cfi->buf_out.buf;
++ cfi->need_status_in_complete = 0;
++ cfi->need_gadget_att = 0;
++
++ switch (bRequest) {
++ case VEN_CORE_WRITE_REGISTER:
++ /* The buffer contains raw data of the new value for the register */
++ reg_value = *((uint32_t *) buf);
++ if (wValue == 0) {
++ addr = 0;
++ //addr = (uint32_t) pcd->otg_dev->os_dep.base;
++ addr += wIndex;
++ } else {
++ addr = (wValue << 16) | wIndex;
++ }
++
++ //writel(reg_value, addr);
++
++ retval = 0;
++ cfi->need_status_in_complete = 1;
++ break;
++
++ case VEN_CORE_SET_FEATURE:
++ /* The buffer contains raw data of the new value of the feature */
++ retval = cfi_set_feature_value(pcd);
++ if (retval < 0)
++ return retval;
++
++ cfi->need_status_in_complete = 1;
++ break;
++
++ default:
++ break;
++ }
++
++ return retval;
++}
++
++/**
++ * This function builds the DMA descriptors for the SG buffer mode.
++ */
++static void cfi_build_sg_descs(struct cfiobject *cfi, cfi_ep_t * cfiep,
++ dwc_otg_pcd_request_t * req)
++{
++ struct dwc_otg_pcd_ep *ep = cfiep->ep;
++ ddma_sg_buffer_setup_t *sgval = cfiep->bm_sg;
++ struct dwc_otg_dma_desc *desc = cfiep->ep->dwc_ep.descs;
++ struct dwc_otg_dma_desc *desc_last = cfiep->ep->dwc_ep.descs;
++ dma_addr_t buff_addr = req->dma;
++ int i;
++ uint32_t txsize, off;
++
++ txsize = sgval->wSize;
++ off = sgval->bOffset;
++
++// CFI_INFO("%s: %s TXSIZE=0x%08x; OFFSET=0x%08x\n",
++// __func__, cfiep->ep->ep.name, txsize, off);
++
++ for (i = 0; i < sgval->bCount; i++) {
++ desc->status.b.bs = BS_HOST_BUSY;
++ desc->buf = buff_addr;
++ desc->status.b.l = 0;
++ desc->status.b.ioc = 0;
++ desc->status.b.sp = 0;
++ desc->status.b.bytes = txsize;
++ desc->status.b.bs = BS_HOST_READY;
++
++ /* Set the next address of the buffer */
++ buff_addr += txsize + off;
++ desc_last = desc;
++ desc++;
++ }
++
++ /* Set the last, ioc and sp bits on the Last DMA Descriptor */
++ desc_last->status.b.l = 1;
++ desc_last->status.b.ioc = 1;
++ desc_last->status.b.sp = ep->dwc_ep.sent_zlp;
++ /* Save the last DMA descriptor pointer */
++ cfiep->dma_desc_last = desc_last;
++ cfiep->desc_count = sgval->bCount;
++}
++
++/**
++ * This function builds the DMA descriptors for the Concatenation buffer mode.
++ */
++static void cfi_build_concat_descs(struct cfiobject *cfi, cfi_ep_t * cfiep,
++ dwc_otg_pcd_request_t * req)
++{
++ struct dwc_otg_pcd_ep *ep = cfiep->ep;
++ ddma_concat_buffer_setup_t *concatval = cfiep->bm_concat;
++ struct dwc_otg_dma_desc *desc = cfiep->ep->dwc_ep.descs;
++ struct dwc_otg_dma_desc *desc_last = cfiep->ep->dwc_ep.descs;
++ dma_addr_t buff_addr = req->dma;
++ int i;
++ uint16_t *txsize;
++
++ txsize = concatval->wTxBytes;
++
++ for (i = 0; i < concatval->hdr.bDescCount; i++) {
++ desc->buf = buff_addr;
++ desc->status.b.bs = BS_HOST_BUSY;
++ desc->status.b.l = 0;
++ desc->status.b.ioc = 0;
++ desc->status.b.sp = 0;
++ desc->status.b.bytes = *txsize;
++ desc->status.b.bs = BS_HOST_READY;
++
++ txsize++;
++ /* Set the next address of the buffer */
++ buff_addr += UGETW(ep->desc->wMaxPacketSize);
++ desc_last = desc;
++ desc++;
++ }
++
++ /* Set the last, ioc and sp bits on the Last DMA Descriptor */
++ desc_last->status.b.l = 1;
++ desc_last->status.b.ioc = 1;
++ desc_last->status.b.sp = ep->dwc_ep.sent_zlp;
++ cfiep->dma_desc_last = desc_last;
++ cfiep->desc_count = concatval->hdr.bDescCount;
++}
++
++/**
++ * This function builds the DMA descriptors for the Circular buffer mode
++ */
++static void cfi_build_circ_descs(struct cfiobject *cfi, cfi_ep_t * cfiep,
++ dwc_otg_pcd_request_t * req)
++{
++ /* @todo: MAS - add implementation when this feature needs to be tested */
++}
++
++/**
++ * This function builds the DMA descriptors for the Alignment buffer mode
++ */
++static void cfi_build_align_descs(struct cfiobject *cfi, cfi_ep_t * cfiep,
++ dwc_otg_pcd_request_t * req)
++{
++ struct dwc_otg_pcd_ep *ep = cfiep->ep;
++ ddma_align_buffer_setup_t *alignval = cfiep->bm_align;
++ struct dwc_otg_dma_desc *desc = cfiep->ep->dwc_ep.descs;
++ dma_addr_t buff_addr = req->dma;
++
++ desc->status.b.bs = BS_HOST_BUSY;
++ desc->status.b.l = 1;
++ desc->status.b.ioc = 1;
++ desc->status.b.sp = ep->dwc_ep.sent_zlp;
++ desc->status.b.bytes = req->length;
++ /* Adjust the buffer alignment */
++ desc->buf = (buff_addr + alignval->bAlign);
++ desc->status.b.bs = BS_HOST_READY;
++ cfiep->dma_desc_last = desc;
++ cfiep->desc_count = 1;
++}
++
++/**
++ * This function builds the DMA descriptors chain for different modes of the
++ * buffer setup of an endpoint.
++ */
++static void cfi_build_descriptors(struct cfiobject *cfi,
++ struct dwc_otg_pcd *pcd,
++ struct dwc_otg_pcd_ep *ep,
++ dwc_otg_pcd_request_t * req)
++{
++ cfi_ep_t *cfiep;
++
++ /* Get the cfiep by the dwc_otg_pcd_ep */
++ cfiep = get_cfi_ep_by_pcd_ep(cfi, ep);
++ if (NULL == cfiep) {
++ CFI_INFO("%s: Unable to find a matching active endpoint\n",
++ __func__);
++ return;
++ }
++
++ cfiep->xfer_len = req->length;
++
++ /* Iterate through all the DMA descriptors */
++ switch (cfiep->ep->dwc_ep.buff_mode) {
++ case BM_SG:
++ cfi_build_sg_descs(cfi, cfiep, req);
++ break;
++
++ case BM_CONCAT:
++ cfi_build_concat_descs(cfi, cfiep, req);
++ break;
++
++ case BM_CIRCULAR:
++ cfi_build_circ_descs(cfi, cfiep, req);
++ break;
++
++ case BM_ALIGN:
++ cfi_build_align_descs(cfi, cfiep, req);
++ break;
++
++ default:
++ break;
++ }
++}
++
++/**
++ * Allocate DMA buffer for different Buffer modes.
++ */
++static void *cfi_ep_alloc_buf(struct cfiobject *cfi, struct dwc_otg_pcd *pcd,
++ struct dwc_otg_pcd_ep *ep, dma_addr_t * dma,
++ unsigned size, gfp_t flags)
++{
++ return DWC_DMA_ALLOC(size, dma);
++}
++
++/**
++ * This function initializes the CFI object.
++ */
++int init_cfi(cfiobject_t * cfiobj)
++{
++ CFI_INFO("%s\n", __func__);
++
++ /* Allocate a buffer for IN XFERs */
++ cfiobj->buf_in.buf =
++ DWC_DMA_ALLOC(CFI_IN_BUF_LEN, &cfiobj->buf_in.addr);
++ if (NULL == cfiobj->buf_in.buf) {
++ CFI_INFO("Unable to allocate buffer for INs\n");
++ return -DWC_E_NO_MEMORY;
++ }
++
++ /* Allocate a buffer for OUT XFERs */
++ cfiobj->buf_out.buf =
++ DWC_DMA_ALLOC(CFI_OUT_BUF_LEN, &cfiobj->buf_out.addr);
++ if (NULL == cfiobj->buf_out.buf) {
++ CFI_INFO("Unable to allocate buffer for OUT\n");
++ return -DWC_E_NO_MEMORY;
++ }
++
++ /* Initialize the callback function pointers */
++ cfiobj->ops.release = cfi_release;
++ cfiobj->ops.ep_enable = cfi_ep_enable;
++ cfiobj->ops.ctrl_write_complete = cfi_ctrl_write_complete;
++ cfiobj->ops.build_descriptors = cfi_build_descriptors;
++ cfiobj->ops.ep_alloc_buf = cfi_ep_alloc_buf;
++
++ /* Initialize the list of active endpoints in the CFI object */
++ DWC_LIST_INIT(&cfiobj->active_eps);
++
++ return 0;
++}
++
++/**
++ * This function reads the required feature's current value into the buffer
++ *
++ * @retval: Returns negative as error, or the data length of the feature
++ */
++static int cfi_get_feature_value(uint8_t * buf, uint16_t buflen,
++ struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *ctrl_req)
++{
++ int retval = -DWC_E_NOT_SUPPORTED;
++ struct dwc_otg_core_if *coreif = GET_CORE_IF(pcd);
++ uint16_t dfifo, rxfifo, txfifo;
++
++ switch (ctrl_req->wIndex) {
++ /* Whether the DDMA is enabled or not */
++ case FT_ID_DMA_MODE:
++ *buf = (coreif->dma_enable && coreif->dma_desc_enable) ? 1 : 0;
++ retval = 1;
++ break;
++
++ case FT_ID_DMA_BUFFER_SETUP:
++ retval = cfi_ep_get_sg_val(buf, pcd, ctrl_req);
++ break;
++
++ case FT_ID_DMA_BUFF_ALIGN:
++ retval = cfi_ep_get_align_val(buf, pcd, ctrl_req);
++ break;
++
++ case FT_ID_DMA_CONCAT_SETUP:
++ retval = cfi_ep_get_concat_val(buf, pcd, ctrl_req);
++ break;
++
++ case FT_ID_DMA_CIRCULAR:
++ CFI_INFO("GetFeature value (FT_ID_DMA_CIRCULAR)\n");
++ break;
++
++ case FT_ID_THRESHOLD_SETUP:
++ CFI_INFO("GetFeature value (FT_ID_THRESHOLD_SETUP)\n");
++ break;
++
++ case FT_ID_DFIFO_DEPTH:
++ dfifo = get_dfifo_size(coreif);
++ *((uint16_t *) buf) = dfifo;
++ retval = sizeof(uint16_t);
++ break;
++
++ case FT_ID_TX_FIFO_DEPTH:
++ retval = get_txfifo_size(pcd, ctrl_req->wValue);
++ if (retval >= 0) {
++ txfifo = retval;
++ *((uint16_t *) buf) = txfifo;
++ retval = sizeof(uint16_t);
++ }
++ break;
++
++ case FT_ID_RX_FIFO_DEPTH:
++ retval = get_rxfifo_size(coreif, ctrl_req->wValue);
++ if (retval >= 0) {
++ rxfifo = retval;
++ *((uint16_t *) buf) = rxfifo;
++ retval = sizeof(uint16_t);
++ }
++ break;
++ }
++
++ return retval;
++}
++
++/**
++ * This function resets the SG for the specified EP to its default value
++ */
++static int cfi_reset_sg_val(cfi_ep_t * cfiep)
++{
++ dwc_memset(cfiep->bm_sg, 0, sizeof(ddma_sg_buffer_setup_t));
++ return 0;
++}
++
++/**
++ * This function resets the Alignment for the specified EP to its default value
++ */
++static int cfi_reset_align_val(cfi_ep_t * cfiep)
++{
++ dwc_memset(cfiep->bm_sg, 0, sizeof(ddma_sg_buffer_setup_t));
++ return 0;
++}
++
++/**
++ * This function resets the Concatenation for the specified EP to its default value
++ * This function will also set the value of the wTxBytes field to NULL after
++ * freeing the memory previously allocated for this field.
++ */
++static int cfi_reset_concat_val(cfi_ep_t * cfiep)
++{
++ /* First we need to free the wTxBytes field */
++ if (cfiep->bm_concat->wTxBytes) {
++ DWC_FREE(cfiep->bm_concat->wTxBytes);
++ cfiep->bm_concat->wTxBytes = NULL;
++ }
++
++ dwc_memset(cfiep->bm_concat, 0, sizeof(ddma_concat_buffer_setup_t));
++ return 0;
++}
++
++/**
++ * This function resets all the buffer setups of the specified endpoint
++ */
++static int cfi_ep_reset_all_setup_vals(cfi_ep_t * cfiep)
++{
++ cfi_reset_sg_val(cfiep);
++ cfi_reset_align_val(cfiep);
++ cfi_reset_concat_val(cfiep);
++ return 0;
++}
++
++static int cfi_handle_reset_fifo_val(struct dwc_otg_pcd *pcd, uint8_t ep_addr,
++ uint8_t rx_rst, uint8_t tx_rst)
++{
++ int retval = -DWC_E_INVALID;
++ uint16_t tx_siz[15];
++ uint16_t rx_siz = 0;
++ dwc_otg_pcd_ep_t *ep = NULL;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_core_params_t *params = GET_CORE_IF(pcd)->core_params;
++
++ if (rx_rst) {
++ rx_siz = params->dev_rx_fifo_size;
++ params->dev_rx_fifo_size = GET_CORE_IF(pcd)->init_rxfsiz;
++ }
++
++ if (tx_rst) {
++ if (ep_addr == 0) {
++ int i;
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++ tx_siz[i] =
++ core_if->core_params->dev_tx_fifo_size[i];
++ core_if->core_params->dev_tx_fifo_size[i] =
++ core_if->init_txfsiz[i];
++ }
++ } else {
++
++ ep = get_ep_by_addr(pcd, ep_addr);
++
++ if (NULL == ep) {
++ CFI_INFO
++ ("%s: Unable to get the endpoint addr=0x%02x\n",
++ __func__, ep_addr);
++ return -DWC_E_INVALID;
++ }
++
++ tx_siz[0] =
++ params->dev_tx_fifo_size[ep->dwc_ep.tx_fifo_num -
++ 1];
++ params->dev_tx_fifo_size[ep->dwc_ep.tx_fifo_num - 1] =
++ GET_CORE_IF(pcd)->init_txfsiz[ep->
++ dwc_ep.tx_fifo_num -
++ 1];
++ }
++ }
++
++ if (resize_fifos(GET_CORE_IF(pcd))) {
++ retval = 0;
++ } else {
++ CFI_INFO
++ ("%s: Error resetting the feature Reset All(FIFO size)\n",
++ __func__);
++ if (rx_rst) {
++ params->dev_rx_fifo_size = rx_siz;
++ }
++
++ if (tx_rst) {
++ if (ep_addr == 0) {
++ int i;
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps;
++ i++) {
++ core_if->
++ core_params->dev_tx_fifo_size[i] =
++ tx_siz[i];
++ }
++ } else {
++ params->dev_tx_fifo_size[ep->
++ dwc_ep.tx_fifo_num -
++ 1] = tx_siz[0];
++ }
++ }
++ retval = -DWC_E_INVALID;
++ }
++ return retval;
++}
++
++static int cfi_handle_reset_all(struct dwc_otg_pcd *pcd, uint8_t addr)
++{
++ int retval = 0;
++ cfi_ep_t *cfiep;
++ cfiobject_t *cfi = pcd->cfi;
++ dwc_list_link_t *tmp;
++
++ retval = cfi_handle_reset_fifo_val(pcd, addr, 1, 1);
++ if (retval < 0) {
++ return retval;
++ }
++
++ /* If the EP address is known then reset the features for only that EP */
++ if (addr) {
++ cfiep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == cfiep) {
++ CFI_INFO("%s: Error getting the EP address 0x%02x\n",
++ __func__, addr);
++ return -DWC_E_INVALID;
++ }
++ retval = cfi_ep_reset_all_setup_vals(cfiep);
++ cfiep->ep->dwc_ep.buff_mode = BM_STANDARD;
++ }
++ /* Otherwise (wValue == 0), reset all features of all EP's */
++ else {
++ /* Traverse all the active EP's and reset the feature(s) value(s) */
++ //list_for_each_entry(cfiep, &cfi->active_eps, lh) {
++ DWC_LIST_FOREACH(tmp, &cfi->active_eps) {
++ cfiep = DWC_LIST_ENTRY(tmp, struct cfi_ep, lh);
++ retval = cfi_ep_reset_all_setup_vals(cfiep);
++ cfiep->ep->dwc_ep.buff_mode = BM_STANDARD;
++ if (retval < 0) {
++ CFI_INFO
++ ("%s: Error resetting the feature Reset All\n",
++ __func__);
++ return retval;
++ }
++ }
++ }
++ return retval;
++}
++
++static int cfi_handle_reset_dma_buff_setup(struct dwc_otg_pcd *pcd,
++ uint8_t addr)
++{
++ int retval = 0;
++ cfi_ep_t *cfiep;
++ cfiobject_t *cfi = pcd->cfi;
++ dwc_list_link_t *tmp;
++
++ /* If the EP address is known then reset the features for only that EP */
++ if (addr) {
++ cfiep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == cfiep) {
++ CFI_INFO("%s: Error getting the EP address 0x%02x\n",
++ __func__, addr);
++ return -DWC_E_INVALID;
++ }
++ retval = cfi_reset_sg_val(cfiep);
++ }
++ /* Otherwise (wValue == 0), reset all features of all EP's */
++ else {
++ /* Traverse all the active EP's and reset the feature(s) value(s) */
++ //list_for_each_entry(cfiep, &cfi->active_eps, lh) {
++ DWC_LIST_FOREACH(tmp, &cfi->active_eps) {
++ cfiep = DWC_LIST_ENTRY(tmp, struct cfi_ep, lh);
++ retval = cfi_reset_sg_val(cfiep);
++ if (retval < 0) {
++ CFI_INFO
++ ("%s: Error resetting the feature Buffer Setup\n",
++ __func__);
++ return retval;
++ }
++ }
++ }
++ return retval;
++}
++
++static int cfi_handle_reset_concat_val(struct dwc_otg_pcd *pcd, uint8_t addr)
++{
++ int retval = 0;
++ cfi_ep_t *cfiep;
++ cfiobject_t *cfi = pcd->cfi;
++ dwc_list_link_t *tmp;
++
++ /* If the EP address is known then reset the features for only that EP */
++ if (addr) {
++ cfiep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == cfiep) {
++ CFI_INFO("%s: Error getting the EP address 0x%02x\n",
++ __func__, addr);
++ return -DWC_E_INVALID;
++ }
++ retval = cfi_reset_concat_val(cfiep);
++ }
++ /* Otherwise (wValue == 0), reset all features of all EP's */
++ else {
++ /* Traverse all the active EP's and reset the feature(s) value(s) */
++ //list_for_each_entry(cfiep, &cfi->active_eps, lh) {
++ DWC_LIST_FOREACH(tmp, &cfi->active_eps) {
++ cfiep = DWC_LIST_ENTRY(tmp, struct cfi_ep, lh);
++ retval = cfi_reset_concat_val(cfiep);
++ if (retval < 0) {
++ CFI_INFO
++ ("%s: Error resetting the feature Concatenation Value\n",
++ __func__);
++ return retval;
++ }
++ }
++ }
++ return retval;
++}
++
++static int cfi_handle_reset_align_val(struct dwc_otg_pcd *pcd, uint8_t addr)
++{
++ int retval = 0;
++ cfi_ep_t *cfiep;
++ cfiobject_t *cfi = pcd->cfi;
++ dwc_list_link_t *tmp;
++
++ /* If the EP address is known then reset the features for only that EP */
++ if (addr) {
++ cfiep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == cfiep) {
++ CFI_INFO("%s: Error getting the EP address 0x%02x\n",
++ __func__, addr);
++ return -DWC_E_INVALID;
++ }
++ retval = cfi_reset_align_val(cfiep);
++ }
++ /* Otherwise (wValue == 0), reset all features of all EP's */
++ else {
++ /* Traverse all the active EP's and reset the feature(s) value(s) */
++ //list_for_each_entry(cfiep, &cfi->active_eps, lh) {
++ DWC_LIST_FOREACH(tmp, &cfi->active_eps) {
++ cfiep = DWC_LIST_ENTRY(tmp, struct cfi_ep, lh);
++ retval = cfi_reset_align_val(cfiep);
++ if (retval < 0) {
++ CFI_INFO
++ ("%s: Error resetting the feature Aliignment Value\n",
++ __func__);
++ return retval;
++ }
++ }
++ }
++ return retval;
++
++}
++
++static int cfi_preproc_reset(struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req)
++{
++ int retval = 0;
++
++ switch (req->wIndex) {
++ case 0:
++ /* Reset all features */
++ retval = cfi_handle_reset_all(pcd, req->wValue & 0xff);
++ break;
++
++ case FT_ID_DMA_BUFFER_SETUP:
++ /* Reset the SG buffer setup */
++ retval =
++ cfi_handle_reset_dma_buff_setup(pcd, req->wValue & 0xff);
++ break;
++
++ case FT_ID_DMA_CONCAT_SETUP:
++ /* Reset the Concatenation buffer setup */
++ retval = cfi_handle_reset_concat_val(pcd, req->wValue & 0xff);
++ break;
++
++ case FT_ID_DMA_BUFF_ALIGN:
++ /* Reset the Alignment buffer setup */
++ retval = cfi_handle_reset_align_val(pcd, req->wValue & 0xff);
++ break;
++
++ case FT_ID_TX_FIFO_DEPTH:
++ retval =
++ cfi_handle_reset_fifo_val(pcd, req->wValue & 0xff, 0, 1);
++ pcd->cfi->need_gadget_att = 0;
++ break;
++
++ case FT_ID_RX_FIFO_DEPTH:
++ retval = cfi_handle_reset_fifo_val(pcd, 0, 1, 0);
++ pcd->cfi->need_gadget_att = 0;
++ break;
++ default:
++ break;
++ }
++ return retval;
++}
++
++/**
++ * This function sets a new value for the SG buffer setup.
++ */
++static int cfi_ep_set_sg_val(uint8_t * buf, struct dwc_otg_pcd *pcd)
++{
++ uint8_t inaddr, outaddr;
++ cfi_ep_t *epin, *epout;
++ ddma_sg_buffer_setup_t *psgval;
++ uint32_t desccount, size;
++
++ CFI_INFO("%s\n", __func__);
++
++ psgval = (ddma_sg_buffer_setup_t *) buf;
++ desccount = (uint32_t) psgval->bCount;
++ size = (uint32_t) psgval->wSize;
++
++ /* Check the DMA descriptor count */
++ if ((desccount > MAX_DMA_DESCS_PER_EP) || (desccount == 0)) {
++ CFI_INFO
++ ("%s: The count of DMA Descriptors should be between 1 and %d\n",
++ __func__, MAX_DMA_DESCS_PER_EP);
++ return -DWC_E_INVALID;
++ }
++
++ /* Check the DMA descriptor count */
++
++ if (size == 0) {
++
++ CFI_INFO("%s: The transfer size should be at least 1 byte\n",
++ __func__);
++
++ return -DWC_E_INVALID;
++
++ }
++
++ inaddr = psgval->bInEndpointAddress;
++ outaddr = psgval->bOutEndpointAddress;
++
++ epin = get_cfi_ep_by_addr(pcd->cfi, inaddr);
++ epout = get_cfi_ep_by_addr(pcd->cfi, outaddr);
++
++ if (NULL == epin || NULL == epout) {
++ CFI_INFO
++ ("%s: Unable to get the endpoints inaddr=0x%02x outaddr=0x%02x\n",
++ __func__, inaddr, outaddr);
++ return -DWC_E_INVALID;
++ }
++
++ epin->ep->dwc_ep.buff_mode = BM_SG;
++ dwc_memcpy(epin->bm_sg, psgval, sizeof(ddma_sg_buffer_setup_t));
++
++ epout->ep->dwc_ep.buff_mode = BM_SG;
++ dwc_memcpy(epout->bm_sg, psgval, sizeof(ddma_sg_buffer_setup_t));
++
++ return 0;
++}
++
++/**
++ * This function sets a new value for the buffer Alignment setup.
++ */
++static int cfi_ep_set_alignment_val(uint8_t * buf, struct dwc_otg_pcd *pcd)
++{
++ cfi_ep_t *ep;
++ uint8_t addr;
++ ddma_align_buffer_setup_t *palignval;
++
++ palignval = (ddma_align_buffer_setup_t *) buf;
++ addr = palignval->bEndpointAddress;
++
++ ep = get_cfi_ep_by_addr(pcd->cfi, addr);
++
++ if (NULL == ep) {
++ CFI_INFO("%s: Unable to get the endpoint addr=0x%02x\n",
++ __func__, addr);
++ return -DWC_E_INVALID;
++ }
++
++ ep->ep->dwc_ep.buff_mode = BM_ALIGN;
++ dwc_memcpy(ep->bm_align, palignval, sizeof(ddma_align_buffer_setup_t));
++
++ return 0;
++}
++
++/**
++ * This function sets a new value for the Concatenation buffer setup.
++ */
++static int cfi_ep_set_concat_val(uint8_t * buf, struct dwc_otg_pcd *pcd)
++{
++ uint8_t addr;
++ cfi_ep_t *ep;
++ struct _ddma_concat_buffer_setup_hdr *pConcatValHdr;
++ uint16_t *pVals;
++ uint32_t desccount;
++ int i;
++ uint16_t mps;
++
++ pConcatValHdr = (struct _ddma_concat_buffer_setup_hdr *)buf;
++ desccount = (uint32_t) pConcatValHdr->bDescCount;
++ pVals = (uint16_t *) (buf + BS_CONCAT_VAL_HDR_LEN);
++
++ /* Check the DMA descriptor count */
++ if (desccount > MAX_DMA_DESCS_PER_EP) {
++ CFI_INFO("%s: Maximum DMA Descriptor count should be %d\n",
++ __func__, MAX_DMA_DESCS_PER_EP);
++ return -DWC_E_INVALID;
++ }
++
++ addr = pConcatValHdr->bEndpointAddress;
++ ep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == ep) {
++ CFI_INFO("%s: Unable to get the endpoint addr=0x%02x\n",
++ __func__, addr);
++ return -DWC_E_INVALID;
++ }
++
++ mps = UGETW(ep->ep->desc->wMaxPacketSize);
++
++#if 0
++ for (i = 0; i < desccount; i++) {
++ CFI_INFO("%s: wTxSize[%d]=0x%04x\n", __func__, i, pVals[i]);
++ }
++ CFI_INFO("%s: epname=%s; mps=%d\n", __func__, ep->ep->ep.name, mps);
++#endif
++
++ /* Check the wTxSizes to be less than or equal to the mps */
++ for (i = 0; i < desccount; i++) {
++ if (pVals[i] > mps) {
++ CFI_INFO
++ ("%s: ERROR - the wTxSize[%d] should be <= MPS (wTxSize=%d)\n",
++ __func__, i, pVals[i]);
++ return -DWC_E_INVALID;
++ }
++ }
++
++ ep->ep->dwc_ep.buff_mode = BM_CONCAT;
++ dwc_memcpy(ep->bm_concat, pConcatValHdr, BS_CONCAT_VAL_HDR_LEN);
++
++ /* Free the previously allocated storage for the wTxBytes */
++ if (ep->bm_concat->wTxBytes) {
++ DWC_FREE(ep->bm_concat->wTxBytes);
++ }
++
++ /* Allocate a new storage for the wTxBytes field */
++ ep->bm_concat->wTxBytes =
++ DWC_ALLOC(sizeof(uint16_t) * pConcatValHdr->bDescCount);
++ if (NULL == ep->bm_concat->wTxBytes) {
++ CFI_INFO("%s: Unable to allocate memory\n", __func__);
++ return -DWC_E_NO_MEMORY;
++ }
++
++ /* Copy the new values into the wTxBytes filed */
++ dwc_memcpy(ep->bm_concat->wTxBytes, buf + BS_CONCAT_VAL_HDR_LEN,
++ sizeof(uint16_t) * pConcatValHdr->bDescCount);
++
++ return 0;
++}
++
++/**
++ * This function calculates the total of all FIFO sizes
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ * @return The total of data FIFO sizes.
++ *
++ */
++static uint16_t get_dfifo_size(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_params_t *params = core_if->core_params;
++ uint16_t dfifo_total = 0;
++ int i;
++
++ /* The shared RxFIFO size */
++ dfifo_total =
++ params->dev_rx_fifo_size + params->dev_nperio_tx_fifo_size;
++
++ /* Add up each TxFIFO size to the total */
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++ dfifo_total += params->dev_tx_fifo_size[i];
++ }
++
++ return dfifo_total;
++}
++
++/**
++ * This function returns Rx FIFO size
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ * @return The total of data FIFO sizes.
++ *
++ */
++static int32_t get_rxfifo_size(dwc_otg_core_if_t * core_if, uint16_t wValue)
++{
++ switch (wValue >> 8) {
++ case 0:
++ return (core_if->pwron_rxfsiz <
++ 32768) ? core_if->pwron_rxfsiz : 32768;
++ break;
++ case 1:
++ return core_if->core_params->dev_rx_fifo_size;
++ break;
++ default:
++ return -DWC_E_INVALID;
++ break;
++ }
++}
++
++/**
++ * This function returns Tx FIFO size for IN EP
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ * @return The total of data FIFO sizes.
++ *
++ */
++static int32_t get_txfifo_size(struct dwc_otg_pcd *pcd, uint16_t wValue)
++{
++ dwc_otg_pcd_ep_t *ep;
++
++ ep = get_ep_by_addr(pcd, wValue & 0xff);
++
++ if (NULL == ep) {
++ CFI_INFO("%s: Unable to get the endpoint addr=0x%02x\n",
++ __func__, wValue & 0xff);
++ return -DWC_E_INVALID;
++ }
++
++ if (!ep->dwc_ep.is_in) {
++ CFI_INFO
++ ("%s: No Tx FIFO assingned to the Out endpoint addr=0x%02x\n",
++ __func__, wValue & 0xff);
++ return -DWC_E_INVALID;
++ }
++
++ switch (wValue >> 8) {
++ case 0:
++ return (GET_CORE_IF(pcd)->pwron_txfsiz
++ [ep->dwc_ep.tx_fifo_num - 1] <
++ 768) ? GET_CORE_IF(pcd)->pwron_txfsiz[ep->
++ dwc_ep.tx_fifo_num
++ - 1] : 32768;
++ break;
++ case 1:
++ return GET_CORE_IF(pcd)->core_params->
++ dev_tx_fifo_size[ep->dwc_ep.num - 1];
++ break;
++ default:
++ return -DWC_E_INVALID;
++ break;
++ }
++}
++
++/**
++ * This function checks if the submitted combination of
++ * device mode FIFO sizes is possible or not.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ * @return 1 if possible, 0 otherwise.
++ *
++ */
++static uint8_t check_fifo_sizes(dwc_otg_core_if_t * core_if)
++{
++ uint16_t dfifo_actual = 0;
++ dwc_otg_core_params_t *params = core_if->core_params;
++ uint16_t start_addr = 0;
++ int i;
++
++ dfifo_actual =
++ params->dev_rx_fifo_size + params->dev_nperio_tx_fifo_size;
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++ dfifo_actual += params->dev_tx_fifo_size[i];
++ }
++
++ if (dfifo_actual > core_if->total_fifo_size) {
++ return 0;
++ }
++
++ if (params->dev_rx_fifo_size > 32768 || params->dev_rx_fifo_size < 16)
++ return 0;
++
++ if (params->dev_nperio_tx_fifo_size > 32768
++ || params->dev_nperio_tx_fifo_size < 16)
++ return 0;
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++
++ if (params->dev_tx_fifo_size[i] > 768
++ || params->dev_tx_fifo_size[i] < 4)
++ return 0;
++ }
++
++ if (params->dev_rx_fifo_size > core_if->pwron_rxfsiz)
++ return 0;
++ start_addr = params->dev_rx_fifo_size;
++
++ if (params->dev_nperio_tx_fifo_size > core_if->pwron_gnptxfsiz)
++ return 0;
++ start_addr += params->dev_nperio_tx_fifo_size;
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++
++ if (params->dev_tx_fifo_size[i] > core_if->pwron_txfsiz[i])
++ return 0;
++ start_addr += params->dev_tx_fifo_size[i];
++ }
++
++ return 1;
++}
++
++/**
++ * This function resizes Device mode FIFOs
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ * @return 1 if successful, 0 otherwise
++ *
++ */
++static uint8_t resize_fifos(dwc_otg_core_if_t * core_if)
++{
++ int i = 0;
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ dwc_otg_core_params_t *params = core_if->core_params;
++ uint32_t rx_fifo_size;
++ fifosize_data_t nptxfifosize;
++ fifosize_data_t txfifosize[15];
++
++ uint32_t rx_fsz_bak;
++ uint32_t nptxfsz_bak;
++ uint32_t txfsz_bak[15];
++
++ uint16_t start_address;
++ uint8_t retval = 1;
++
++ if (!check_fifo_sizes(core_if)) {
++ return 0;
++ }
++
++ /* Configure data FIFO sizes */
++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++ rx_fsz_bak = DWC_READ_REG32(&global_regs->grxfsiz);
++ rx_fifo_size = params->dev_rx_fifo_size;
++ DWC_WRITE_REG32(&global_regs->grxfsiz, rx_fifo_size);
++
++ /*
++ * Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_tx_fifo_size array and the FIFO size registers in
++ * the dtxfsiz array run from 0 to 14.
++ */
++
++ /* Non-periodic Tx FIFO */
++ nptxfsz_bak = DWC_READ_REG32(&global_regs->gnptxfsiz);
++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++ start_address = params->dev_rx_fifo_size;
++ nptxfifosize.b.startaddr = start_address;
++
++ DWC_WRITE_REG32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++
++ start_address += nptxfifosize.b.depth;
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++ txfsz_bak[i] = DWC_READ_REG32(&global_regs->dtxfsiz[i]);
++
++ txfifosize[i].b.depth = params->dev_tx_fifo_size[i];
++ txfifosize[i].b.startaddr = start_address;
++ DWC_WRITE_REG32(&global_regs->dtxfsiz[i],
++ txfifosize[i].d32);
++
++ start_address += txfifosize[i].b.depth;
++ }
++
++ /** Check if register values are set correctly */
++ if (rx_fifo_size != DWC_READ_REG32(&global_regs->grxfsiz)) {
++ retval = 0;
++ }
++
++ if (nptxfifosize.d32 != DWC_READ_REG32(&global_regs->gnptxfsiz)) {
++ retval = 0;
++ }
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++ if (txfifosize[i].d32 !=
++ DWC_READ_REG32(&global_regs->dtxfsiz[i])) {
++ retval = 0;
++ }
++ }
++
++ /** If register values are not set correctly, reset old values */
++ if (retval == 0) {
++ DWC_WRITE_REG32(&global_regs->grxfsiz, rx_fsz_bak);
++
++ /* Non-periodic Tx FIFO */
++ DWC_WRITE_REG32(&global_regs->gnptxfsiz, nptxfsz_bak);
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++ DWC_WRITE_REG32(&global_regs->dtxfsiz[i],
++ txfsz_bak[i]);
++ }
++ }
++ } else {
++ return 0;
++ }
++
++ /* Flush the FIFOs */
++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
++ dwc_otg_flush_rx_fifo(core_if);
++
++ return retval;
++}
++
++/**
++ * This function sets a new value for the buffer Alignment setup.
++ */
++static int cfi_ep_set_tx_fifo_val(uint8_t * buf, dwc_otg_pcd_t * pcd)
++{
++ int retval;
++ uint32_t fsiz;
++ uint16_t size;
++ uint16_t ep_addr;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_core_params_t *params = GET_CORE_IF(pcd)->core_params;
++ tx_fifo_size_setup_t *ptxfifoval;
++
++ ptxfifoval = (tx_fifo_size_setup_t *) buf;
++ ep_addr = ptxfifoval->bEndpointAddress;
++ size = ptxfifoval->wDepth;
++
++ ep = get_ep_by_addr(pcd, ep_addr);
++
++ CFI_INFO
++ ("%s: Set Tx FIFO size: endpoint addr=0x%02x, depth=%d, FIFO Num=%d\n",
++ __func__, ep_addr, size, ep->dwc_ep.tx_fifo_num);
++
++ if (NULL == ep) {
++ CFI_INFO("%s: Unable to get the endpoint addr=0x%02x\n",
++ __func__, ep_addr);
++ return -DWC_E_INVALID;
++ }
++
++ fsiz = params->dev_tx_fifo_size[ep->dwc_ep.tx_fifo_num - 1];
++ params->dev_tx_fifo_size[ep->dwc_ep.tx_fifo_num - 1] = size;
++
++ if (resize_fifos(GET_CORE_IF(pcd))) {
++ retval = 0;
++ } else {
++ CFI_INFO
++ ("%s: Error setting the feature Tx FIFO Size for EP%d\n",
++ __func__, ep_addr);
++ params->dev_tx_fifo_size[ep->dwc_ep.tx_fifo_num - 1] = fsiz;
++ retval = -DWC_E_INVALID;
++ }
++
++ return retval;
++}
++
++/**
++ * This function sets a new value for the buffer Alignment setup.
++ */
++static int cfi_set_rx_fifo_val(uint8_t * buf, dwc_otg_pcd_t * pcd)
++{
++ int retval;
++ uint32_t fsiz;
++ uint16_t size;
++ dwc_otg_core_params_t *params = GET_CORE_IF(pcd)->core_params;
++ rx_fifo_size_setup_t *prxfifoval;
++
++ prxfifoval = (rx_fifo_size_setup_t *) buf;
++ size = prxfifoval->wDepth;
++
++ fsiz = params->dev_rx_fifo_size;
++ params->dev_rx_fifo_size = size;
++
++ if (resize_fifos(GET_CORE_IF(pcd))) {
++ retval = 0;
++ } else {
++ CFI_INFO("%s: Error setting the feature Rx FIFO Size\n",
++ __func__);
++ params->dev_rx_fifo_size = fsiz;
++ retval = -DWC_E_INVALID;
++ }
++
++ return retval;
++}
++
++/**
++ * This function reads the SG of an EP's buffer setup into the buffer buf
++ */
++static int cfi_ep_get_sg_val(uint8_t * buf, struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req)
++{
++ int retval = -DWC_E_INVALID;
++ uint8_t addr;
++ cfi_ep_t *ep;
++
++ /* The Low Byte of the wValue contains a non-zero address of the endpoint */
++ addr = req->wValue & 0xFF;
++ if (addr == 0) /* The address should be non-zero */
++ return retval;
++
++ ep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == ep) {
++ CFI_INFO("%s: Unable to get the endpoint address(0x%02x)\n",
++ __func__, addr);
++ return retval;
++ }
++
++ dwc_memcpy(buf, ep->bm_sg, BS_SG_VAL_DESC_LEN);
++ retval = BS_SG_VAL_DESC_LEN;
++ return retval;
++}
++
++/**
++ * This function reads the Concatenation value of an EP's buffer mode into
++ * the buffer buf
++ */
++static int cfi_ep_get_concat_val(uint8_t * buf, struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req)
++{
++ int retval = -DWC_E_INVALID;
++ uint8_t addr;
++ cfi_ep_t *ep;
++ uint8_t desc_count;
++
++ /* The Low Byte of the wValue contains a non-zero address of the endpoint */
++ addr = req->wValue & 0xFF;
++ if (addr == 0) /* The address should be non-zero */
++ return retval;
++
++ ep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == ep) {
++ CFI_INFO("%s: Unable to get the endpoint address(0x%02x)\n",
++ __func__, addr);
++ return retval;
++ }
++
++ /* Copy the header to the buffer */
++ dwc_memcpy(buf, ep->bm_concat, BS_CONCAT_VAL_HDR_LEN);
++ /* Advance the buffer pointer by the header size */
++ buf += BS_CONCAT_VAL_HDR_LEN;
++
++ desc_count = ep->bm_concat->hdr.bDescCount;
++ /* Copy alll the wTxBytes to the buffer */
++ dwc_memcpy(buf, ep->bm_concat->wTxBytes, sizeof(uid16_t) * desc_count);
++
++ retval = BS_CONCAT_VAL_HDR_LEN + sizeof(uid16_t) * desc_count;
++ return retval;
++}
++
++/**
++ * This function reads the buffer Alignment value of an EP's buffer mode into
++ * the buffer buf
++ *
++ * @return The total number of bytes copied to the buffer or negative error code.
++ */
++static int cfi_ep_get_align_val(uint8_t * buf, struct dwc_otg_pcd *pcd,
++ struct cfi_usb_ctrlrequest *req)
++{
++ int retval = -DWC_E_INVALID;
++ uint8_t addr;
++ cfi_ep_t *ep;
++
++ /* The Low Byte of the wValue contains a non-zero address of the endpoint */
++ addr = req->wValue & 0xFF;
++ if (addr == 0) /* The address should be non-zero */
++ return retval;
++
++ ep = get_cfi_ep_by_addr(pcd->cfi, addr);
++ if (NULL == ep) {
++ CFI_INFO("%s: Unable to get the endpoint address(0x%02x)\n",
++ __func__, addr);
++ return retval;
++ }
++
++ dwc_memcpy(buf, ep->bm_align, BS_ALIGN_VAL_HDR_LEN);
++ retval = BS_ALIGN_VAL_HDR_LEN;
++
++ return retval;
++}
++
++/**
++ * This function sets a new value for the specified feature
++ *
++ * @param pcd A pointer to the PCD object
++ *
++ * @return 0 if successful, negative error code otherwise to stall the DCE.
++ */
++static int cfi_set_feature_value(struct dwc_otg_pcd *pcd)
++{
++ int retval = -DWC_E_NOT_SUPPORTED;
++ uint16_t wIndex, wValue;
++ uint8_t bRequest;
++ struct dwc_otg_core_if *coreif;
++ cfiobject_t *cfi = pcd->cfi;
++ struct cfi_usb_ctrlrequest *ctrl_req;
++ uint8_t *buf;
++ ctrl_req = &cfi->ctrl_req;
++
++ buf = pcd->cfi->ctrl_req.data;
++
++ coreif = GET_CORE_IF(pcd);
++ bRequest = ctrl_req->bRequest;
++ wIndex = DWC_CONSTANT_CPU_TO_LE16(ctrl_req->wIndex);
++ wValue = DWC_CONSTANT_CPU_TO_LE16(ctrl_req->wValue);
++
++ /* See which feature is to be modified */
++ switch (wIndex) {
++ case FT_ID_DMA_BUFFER_SETUP:
++ /* Modify the feature */
++ if ((retval = cfi_ep_set_sg_val(buf, pcd)) < 0)
++ return retval;
++
++ /* And send this request to the gadget */
++ cfi->need_gadget_att = 1;
++ break;
++
++ case FT_ID_DMA_BUFF_ALIGN:
++ if ((retval = cfi_ep_set_alignment_val(buf, pcd)) < 0)
++ return retval;
++ cfi->need_gadget_att = 1;
++ break;
++
++ case FT_ID_DMA_CONCAT_SETUP:
++ /* Modify the feature */
++ if ((retval = cfi_ep_set_concat_val(buf, pcd)) < 0)
++ return retval;
++ cfi->need_gadget_att = 1;
++ break;
++
++ case FT_ID_DMA_CIRCULAR:
++ CFI_INFO("FT_ID_DMA_CIRCULAR\n");
++ break;
++
++ case FT_ID_THRESHOLD_SETUP:
++ CFI_INFO("FT_ID_THRESHOLD_SETUP\n");
++ break;
++
++ case FT_ID_DFIFO_DEPTH:
++ CFI_INFO("FT_ID_DFIFO_DEPTH\n");
++ break;
++
++ case FT_ID_TX_FIFO_DEPTH:
++ CFI_INFO("FT_ID_TX_FIFO_DEPTH\n");
++ if ((retval = cfi_ep_set_tx_fifo_val(buf, pcd)) < 0)
++ return retval;
++ cfi->need_gadget_att = 0;
++ break;
++
++ case FT_ID_RX_FIFO_DEPTH:
++ CFI_INFO("FT_ID_RX_FIFO_DEPTH\n");
++ if ((retval = cfi_set_rx_fifo_val(buf, pcd)) < 0)
++ return retval;
++ cfi->need_gadget_att = 0;
++ break;
++ }
++
++ return retval;
++}
++
++#endif //DWC_UTE_CFI
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cfi.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cfi.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cfi.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cfi.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,320 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_CFI_H__)
++#define __DWC_OTG_CFI_H__
++
++#include "dwc_otg_pcd.h"
++#include "dwc_cfi_common.h"
++
++/**
++ * @file
++ * This file contains the CFI related OTG PCD specific common constants,
++ * interfaces(functions and macros) and data structures.The CFI Protocol is an
++ * optional interface for internal testing purposes that a DUT may implement to
++ * support testing of configurable features.
++ *
++ */
++
++struct dwc_otg_pcd;
++struct dwc_otg_pcd_ep;
++
++/** OTG CFI Features (properties) ID constants */
++/** This is a request for all Core Features */
++#define FT_ID_DMA_MODE 0x0001
++#define FT_ID_DMA_BUFFER_SETUP 0x0002
++#define FT_ID_DMA_BUFF_ALIGN 0x0003
++#define FT_ID_DMA_CONCAT_SETUP 0x0004
++#define FT_ID_DMA_CIRCULAR 0x0005
++#define FT_ID_THRESHOLD_SETUP 0x0006
++#define FT_ID_DFIFO_DEPTH 0x0007
++#define FT_ID_TX_FIFO_DEPTH 0x0008
++#define FT_ID_RX_FIFO_DEPTH 0x0009
++
++/**********************************************************/
++#define CFI_INFO_DEF
++
++#ifdef CFI_INFO_DEF
++#define CFI_INFO(fmt...) DWC_PRINTF("CFI: " fmt);
++#else
++#define CFI_INFO(fmt...)
++#endif
++
++#define min(x,y) ({ \
++ x < y ? x : y; })
++
++#define max(x,y) ({ \
++ x > y ? x : y; })
++
++/**
++ * Descriptor DMA SG Buffer setup structure (SG buffer). This structure is
++ * also used for setting up a buffer for Circular DDMA.
++ */
++struct _ddma_sg_buffer_setup {
++#define BS_SG_VAL_DESC_LEN 6
++ /* The OUT EP address */
++ uint8_t bOutEndpointAddress;
++ /* The IN EP address */
++ uint8_t bInEndpointAddress;
++ /* Number of bytes to put between transfer segments (must be DWORD boundaries) */
++ uint8_t bOffset;
++ /* The number of transfer segments (a DMA descriptors per each segment) */
++ uint8_t bCount;
++ /* Size (in byte) of each transfer segment */
++ uint16_t wSize;
++} __attribute__ ((packed));
++typedef struct _ddma_sg_buffer_setup ddma_sg_buffer_setup_t;
++
++/** Descriptor DMA Concatenation Buffer setup structure */
++struct _ddma_concat_buffer_setup_hdr {
++#define BS_CONCAT_VAL_HDR_LEN 4
++ /* The endpoint for which the buffer is to be set up */
++ uint8_t bEndpointAddress;
++ /* The count of descriptors to be used */
++ uint8_t bDescCount;
++ /* The total size of the transfer */
++ uint16_t wSize;
++} __attribute__ ((packed));
++typedef struct _ddma_concat_buffer_setup_hdr ddma_concat_buffer_setup_hdr_t;
++
++/** Descriptor DMA Concatenation Buffer setup structure */
++struct _ddma_concat_buffer_setup {
++ /* The SG header */
++ ddma_concat_buffer_setup_hdr_t hdr;
++
++ /* The XFER sizes pointer (allocated dynamically) */
++ uint16_t *wTxBytes;
++} __attribute__ ((packed));
++typedef struct _ddma_concat_buffer_setup ddma_concat_buffer_setup_t;
++
++/** Descriptor DMA Alignment Buffer setup structure */
++struct _ddma_align_buffer_setup {
++#define BS_ALIGN_VAL_HDR_LEN 2
++ uint8_t bEndpointAddress;
++ uint8_t bAlign;
++} __attribute__ ((packed));
++typedef struct _ddma_align_buffer_setup ddma_align_buffer_setup_t;
++
++/** Transmit FIFO Size setup structure */
++struct _tx_fifo_size_setup {
++ uint8_t bEndpointAddress;
++ uint16_t wDepth;
++} __attribute__ ((packed));
++typedef struct _tx_fifo_size_setup tx_fifo_size_setup_t;
++
++/** Transmit FIFO Size setup structure */
++struct _rx_fifo_size_setup {
++ uint16_t wDepth;
++} __attribute__ ((packed));
++typedef struct _rx_fifo_size_setup rx_fifo_size_setup_t;
++
++/**
++ * struct cfi_usb_ctrlrequest - the CFI implementation of the struct usb_ctrlrequest
++ * This structure encapsulates the standard usb_ctrlrequest and adds a pointer
++ * to the data returned in the data stage of a 3-stage Control Write requests.
++ */
++struct cfi_usb_ctrlrequest {
++ uint8_t bRequestType;
++ uint8_t bRequest;
++ uint16_t wValue;
++ uint16_t wIndex;
++ uint16_t wLength;
++ uint8_t *data;
++} UPACKED;
++
++/*---------------------------------------------------------------------------*/
++
++/**
++ * The CFI wrapper of the enabled and activated dwc_otg_pcd_ep structures.
++ * This structure is used to store the buffer setup data for any
++ * enabled endpoint in the PCD.
++ */
++struct cfi_ep {
++ /* Entry for the list container */
++ dwc_list_link_t lh;
++ /* Pointer to the active PCD endpoint structure */
++ struct dwc_otg_pcd_ep *ep;
++ /* The last descriptor in the chain of DMA descriptors of the endpoint */
++ struct dwc_otg_dma_desc *dma_desc_last;
++ /* The SG feature value */
++ ddma_sg_buffer_setup_t *bm_sg;
++ /* The Circular feature value */
++ ddma_sg_buffer_setup_t *bm_circ;
++ /* The Concatenation feature value */
++ ddma_concat_buffer_setup_t *bm_concat;
++ /* The Alignment feature value */
++ ddma_align_buffer_setup_t *bm_align;
++ /* XFER length */
++ uint32_t xfer_len;
++ /*
++ * Count of DMA descriptors currently used.
++ * The total should not exceed the MAX_DMA_DESCS_PER_EP value
++ * defined in the dwc_otg_cil.h
++ */
++ uint32_t desc_count;
++};
++typedef struct cfi_ep cfi_ep_t;
++
++typedef struct cfi_dma_buff {
++#define CFI_IN_BUF_LEN 1024
++#define CFI_OUT_BUF_LEN 1024
++ dma_addr_t addr;
++ uint8_t *buf;
++} cfi_dma_buff_t;
++
++struct cfiobject;
++
++/**
++ * This is the interface for the CFI operations.
++ *
++ * @param ep_enable Called when any endpoint is enabled and activated.
++ * @param release Called when the CFI object is released and it needs to correctly
++ * deallocate the dynamic memory
++ * @param ctrl_write_complete Called when the data stage of the request is complete
++ */
++typedef struct cfi_ops {
++ int (*ep_enable) (struct cfiobject * cfi, struct dwc_otg_pcd * pcd,
++ struct dwc_otg_pcd_ep * ep);
++ void *(*ep_alloc_buf) (struct cfiobject * cfi, struct dwc_otg_pcd * pcd,
++ struct dwc_otg_pcd_ep * ep, dma_addr_t * dma,
++ unsigned size, gfp_t flags);
++ void (*release) (struct cfiobject * cfi);
++ int (*ctrl_write_complete) (struct cfiobject * cfi,
++ struct dwc_otg_pcd * pcd);
++ void (*build_descriptors) (struct cfiobject * cfi,
++ struct dwc_otg_pcd * pcd,
++ struct dwc_otg_pcd_ep * ep,
++ dwc_otg_pcd_request_t * req);
++} cfi_ops_t;
++
++struct cfiobject {
++ cfi_ops_t ops;
++ struct dwc_otg_pcd *pcd;
++ struct usb_gadget *gadget;
++
++ /* Buffers used to send/receive CFI-related request data */
++ cfi_dma_buff_t buf_in;
++ cfi_dma_buff_t buf_out;
++
++ /* CFI specific Control request wrapper */
++ struct cfi_usb_ctrlrequest ctrl_req;
++
++ /* The list of active EP's in the PCD of type cfi_ep_t */
++ dwc_list_link_t active_eps;
++
++ /* This flag shall control the propagation of a specific request
++ * to the gadget's processing routines.
++ * 0 - no gadget handling
++ * 1 - the gadget needs to know about this request (w/o completing a status
++ * phase - just return a 0 to the _setup callback)
++ */
++ uint8_t need_gadget_att;
++
++ /* Flag indicating whether the status IN phase needs to be
++ * completed by the PCD
++ */
++ uint8_t need_status_in_complete;
++};
++typedef struct cfiobject cfiobject_t;
++
++#define DUMP_MSG
++
++#if defined(DUMP_MSG)
++static inline void dump_msg(const u8 * buf, unsigned int length)
++{
++ unsigned int start, num, i;
++ char line[52], *p;
++
++ if (length >= 512)
++ return;
++
++ start = 0;
++ while (length > 0) {
++ num = min(length, 16u);
++ p = line;
++ for (i = 0; i < num; ++i) {
++ if (i == 8)
++ *p++ = ' ';
++ DWC_SPRINTF(p, " %02x", buf[i]);
++ p += 3;
++ }
++ *p = 0;
++ DWC_DEBUG("%6x: %s\n", start, line);
++ buf += num;
++ start += num;
++ length -= num;
++ }
++}
++#else
++static inline void dump_msg(const u8 * buf, unsigned int length)
++{
++}
++#endif
++
++/**
++ * This function returns a pointer to cfi_ep_t object with the addr address.
++ */
++static inline struct cfi_ep *get_cfi_ep_by_addr(struct cfiobject *cfi,
++ uint8_t addr)
++{
++ struct cfi_ep *pcfiep;
++ dwc_list_link_t *tmp;
++
++ DWC_LIST_FOREACH(tmp, &cfi->active_eps) {
++ pcfiep = DWC_LIST_ENTRY(tmp, struct cfi_ep, lh);
++
++ if (pcfiep->ep->desc->bEndpointAddress == addr) {
++ return pcfiep;
++ }
++ }
++
++ return NULL;
++}
++
++/**
++ * This function returns a pointer to cfi_ep_t object that matches
++ * the dwc_otg_pcd_ep object.
++ */
++static inline struct cfi_ep *get_cfi_ep_by_pcd_ep(struct cfiobject *cfi,
++ struct dwc_otg_pcd_ep *ep)
++{
++ struct cfi_ep *pcfiep = NULL;
++ dwc_list_link_t *tmp;
++
++ DWC_LIST_FOREACH(tmp, &cfi->active_eps) {
++ pcfiep = DWC_LIST_ENTRY(tmp, struct cfi_ep, lh);
++ if (pcfiep->ep == ep) {
++ return pcfiep;
++ }
++ }
++ return NULL;
++}
++
++int cfi_setup(struct dwc_otg_pcd *pcd, struct cfi_usb_ctrlrequest *ctrl);
++
++#endif /* (__DWC_OTG_CFI_H__) */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cil.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cil.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cil.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cil.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,7151 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
++ * $Revision: #191 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * The CIL manages the memory map for the core so that the HCD and PCD
++ * don't have to do this separately. It also handles basic tasks like
++ * reading/writing the registers and data FIFOs in the controller.
++ * Some of the data access functions provide encapsulation of several
++ * operations required to perform a task, such as writing multiple
++ * registers to start a transfer. Finally, the CIL performs basic
++ * services that are not specific to either the host or device modes
++ * of operation. These services include management of the OTG Host
++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
++ * Diagnostic API is also provided to allow testing of the controller
++ * hardware.
++ *
++ * The Core Interface Layer has the following requirements:
++ * - Provides basic controller operations.
++ * - Minimal use of OS services.
++ * - The OS services used will be abstracted by using inline functions
++ * or macros.
++ *
++ */
++
++#include "dwc_os.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++
++static int dwc_otg_setup_params(dwc_otg_core_if_t * core_if);
++
++/**
++ * This function is called to initialize the DWC_otg CSR data
++ * structures. The register addresses in the device and host
++ * structures are initialized from the base address supplied by the
++ * caller. The calling function must make the OS calls to get the
++ * base address of the DWC_otg controller registers. The core_params
++ * argument holds the parameters that specify how the core should be
++ * configured.
++ *
++ * @param reg_base_addr Base address of DWC_otg core registers
++ *
++ */
++dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t * reg_base_addr)
++{
++ dwc_otg_core_if_t *core_if = 0;
++ dwc_otg_dev_if_t *dev_if = 0;
++ dwc_otg_host_if_t *host_if = 0;
++ uint8_t *reg_base = (uint8_t *) reg_base_addr;
++ int i = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, reg_base_addr);
++
++ core_if = DWC_ALLOC(sizeof(dwc_otg_core_if_t));
++
++ if (core_if == NULL) {
++ DWC_DEBUGPL(DBG_CIL,
++ "Allocation of dwc_otg_core_if_t failed\n");
++ return 0;
++ }
++ core_if->core_global_regs = (dwc_otg_core_global_regs_t *) reg_base;
++
++ /*
++ * Allocate the Device Mode structures.
++ */
++ dev_if = DWC_ALLOC(sizeof(dwc_otg_dev_if_t));
++
++ if (dev_if == NULL) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
++ DWC_FREE(core_if);
++ return 0;
++ }
++
++ dev_if->dev_global_regs =
++ (dwc_otg_device_global_regs_t *) (reg_base +
++ DWC_DEV_GLOBAL_REG_OFFSET);
++
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++
++ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
++ i, &dev_if->in_ep_regs[i]->diepctl);
++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
++ i, &dev_if->out_ep_regs[i]->doepctl);
++ }
++
++ dev_if->speed = 0; // unknown
++
++ core_if->dev_if = dev_if;
++
++ /*
++ * Allocate the Host Mode structures.
++ */
++ host_if = DWC_ALLOC(sizeof(dwc_otg_host_if_t));
++
++ if (host_if == NULL) {
++ DWC_DEBUGPL(DBG_CIL,
++ "Allocation of dwc_otg_host_if_t failed\n");
++ DWC_FREE(dev_if);
++ DWC_FREE(core_if);
++ return 0;
++ }
++
++ host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
++
++ host_if->hprt0 =
++ (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
++
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
++ (i * DWC_OTG_CHAN_REGS_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
++ i, &host_if->hc_regs[i]->hcchar);
++ }
++
++ host_if->num_host_channels = MAX_EPS_CHANNELS;
++ core_if->host_if = host_if;
++
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ core_if->data_fifo[i] =
++ (uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET +
++ (i * DWC_OTG_DATA_FIFO_SIZE));
++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08lx\n",
++ i, (unsigned long)core_if->data_fifo[i]);
++ }
++
++ core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET);
++
++ /* Initiate lx_state to L3 disconnected state */
++ core_if->lx_state = DWC_OTG_L3;
++ /*
++ * Store the contents of the hardware configuration registers here for
++ * easy access later.
++ */
++ core_if->hwcfg1.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->ghwcfg1);
++ core_if->hwcfg2.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->ghwcfg2);
++ core_if->hwcfg3.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->ghwcfg3);
++ core_if->hwcfg4.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->ghwcfg4);
++
++ /* Force host mode to get HPTXFSIZ exact power on value */
++ {
++ gusbcfg_data_t gusbcfg = {.d32 = 0 };
++ gusbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ gusbcfg.b.force_host_mode = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, gusbcfg.d32);
++ dwc_mdelay(100);
++ core_if->hptxfsiz.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->hptxfsiz);
++ gusbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ gusbcfg.b.force_host_mode = 0;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, gusbcfg.d32);
++ dwc_mdelay(100);
++ }
++
++ DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32);
++ DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32);
++ DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32);
++ DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32);
++
++ core_if->hcfg.d32 =
++ DWC_READ_REG32(&core_if->host_if->host_global_regs->hcfg);
++ core_if->dcfg.d32 =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++
++ DWC_DEBUGPL(DBG_CILV, "hcfg=%08x\n", core_if->hcfg.d32);
++ DWC_DEBUGPL(DBG_CILV, "dcfg=%08x\n", core_if->dcfg.d32);
++
++ DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode);
++ DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture);
++ DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n", core_if->hwcfg2.b.num_dev_ep);
++ DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n",
++ core_if->hwcfg2.b.num_host_chan);
++ DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n",
++ core_if->hwcfg2.b.nonperio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n",
++ core_if->hwcfg2.b.host_perio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n",
++ core_if->hwcfg2.b.dev_token_q_depth);
++
++ DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n",
++ core_if->hwcfg3.b.dfifo_depth);
++ DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n",
++ core_if->hwcfg3.b.xfer_size_cntr_width);
++
++ /*
++ * Set the SRP sucess bit for FS-I2c
++ */
++ core_if->srp_success = 0;
++ core_if->srp_timer_started = 0;
++
++ /*
++ * Create new workqueue and init works
++ */
++ core_if->wq_otg = DWC_WORKQ_ALLOC("dwc_otg");
++ if (core_if->wq_otg == 0) {
++ DWC_WARN("DWC_WORKQ_ALLOC failed\n");
++ DWC_FREE(host_if);
++ DWC_FREE(dev_if);
++ DWC_FREE(core_if);
++ return 0;
++ }
++
++ core_if->snpsid = DWC_READ_REG32(&core_if->core_global_regs->gsnpsid);
++
++ DWC_PRINTF("Core Release: %x.%x%x%x\n",
++ (core_if->snpsid >> 12 & 0xF),
++ (core_if->snpsid >> 8 & 0xF),
++ (core_if->snpsid >> 4 & 0xF), (core_if->snpsid & 0xF));
++
++ core_if->wkp_timer = DWC_TIMER_ALLOC("Wake Up Timer",
++ w_wakeup_detected, core_if);
++ if (core_if->wkp_timer == 0) {
++ DWC_WARN("DWC_TIMER_ALLOC failed\n");
++ DWC_FREE(host_if);
++ DWC_FREE(dev_if);
++ DWC_WORKQ_FREE(core_if->wq_otg);
++ DWC_FREE(core_if);
++ return 0;
++ }
++
++ if (dwc_otg_setup_params(core_if)) {
++ DWC_WARN("Error while setting core params\n");
++ }
++
++ core_if->hibernation_suspend = 0;
++
++ /** ADP initialization */
++ dwc_otg_adp_init(core_if);
++
++ return core_if;
++}
++
++/**
++ * This function frees the structures allocated by dwc_otg_cil_init().
++ *
++ * @param core_if The core interface pointer returned from
++ * dwc_otg_cil_init().
++ *
++ */
++void dwc_otg_cil_remove(dwc_otg_core_if_t * core_if)
++{
++ dctl_data_t dctl = {.d32 = 0 };
++ DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, core_if);
++
++ /* Disable all interrupts */
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gahbcfg, 1, 0);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, 0);
++
++ dctl.b.sftdiscon = 1;
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, 0,
++ dctl.d32);
++ }
++
++ if (core_if->wq_otg) {
++ DWC_WORKQ_WAIT_WORK_DONE(core_if->wq_otg, 500);
++ DWC_WORKQ_FREE(core_if->wq_otg);
++ }
++ if (core_if->dev_if) {
++ DWC_FREE(core_if->dev_if);
++ }
++ if (core_if->host_if) {
++ DWC_FREE(core_if->host_if);
++ }
++
++ /** Remove ADP Stuff */
++ dwc_otg_adp_remove(core_if);
++ if (core_if->core_params) {
++ DWC_FREE(core_if->core_params);
++ }
++ if (core_if->wkp_timer) {
++ DWC_TIMER_FREE(core_if->wkp_timer);
++ }
++ if (core_if->srp_timer) {
++ DWC_TIMER_FREE(core_if->srp_timer);
++ }
++ DWC_FREE(core_if);
++}
++
++/**
++ * This function enables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t * core_if)
++{
++ gahbcfg_data_t ahbcfg = {.d32 = 0 };
++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
++}
++
++/**
++ * This function disables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t * core_if)
++{
++ gahbcfg_data_t ahbcfg = {.d32 = 0 };
++ ahbcfg.b.glblintrmsk = 1; /* Disable interrupts */
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
++}
++
++/**
++ * This function initializes the commmon interrupts, used in both
++ * device and host modes.
++ *
++ * @param core_if Programming view of the DWC_otg controller
++ *
++ */
++static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ /* Clear any pending OTG Interrupts */
++ DWC_WRITE_REG32(&global_regs->gotgint, 0xFFFFFFFF);
++
++ /* Clear any pending interrupts */
++ DWC_WRITE_REG32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /*
++ * Enable the interrupts in the GINTMSK.
++ */
++ intr_mask.b.modemismatch = 1;
++ intr_mask.b.otgintr = 1;
++
++ if (!core_if->dma_enable) {
++ intr_mask.b.rxstsqlvl = 1;
++ }
++
++ intr_mask.b.conidstschng = 1;
++ intr_mask.b.wkupintr = 1;
++ intr_mask.b.disconnect = 0;
++ intr_mask.b.usbsuspend = 1;
++ intr_mask.b.sessreqintr = 1;
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ if (core_if->core_params->lpm_enable) {
++ intr_mask.b.lpmtranrcvd = 1;
++ }
++#endif
++ DWC_WRITE_REG32(&global_regs->gintmsk, intr_mask.d32);
++}
++
++/*
++ * The restore operation is modified to support Synopsys Emulated Powerdown and
++ * Hibernation. This function is for exiting from Device mode hibernation by
++ * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
++ * @param core_if Programming view of DWC_otg controller.
++ * @param rem_wakeup - indicates whether resume is initiated by Device or Host.
++ * @param reset - indicates whether resume is initiated by Reset.
++ */
++int dwc_otg_device_hibernation_restore(dwc_otg_core_if_t * core_if,
++ int rem_wakeup, int reset)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ dctl_data_t dctl = {.d32 = 0 };
++
++ int timeout = 2000;
++
++ if (!core_if->hibernation_suspend) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return 1;
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "%s called\n", __FUNCTION__);
++ /* Switch-on voltage to the core */
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Reset core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Assert Restore signal */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.restore = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable power clamps */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ if (rem_wakeup) {
++ dwc_udelay(70);
++ }
++
++ /* Deassert Reset core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable PMU interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Mask interrupts from gpwrdn */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.connect_det_msk = 1;
++ gpwrdn.b.srp_det_msk = 1;
++ gpwrdn.b.disconn_det_msk = 1;
++ gpwrdn.b.rst_det_msk = 1;
++ gpwrdn.b.lnstchng_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Indicates that we are going out from hibernation */
++ core_if->hibernation_suspend = 0;
++
++ /*
++ * Set Restore Essential Regs bit in PCGCCTL register, restore_mode = 1
++ * indicates restore from remote_wakeup
++ */
++ restore_essential_regs(core_if, rem_wakeup, 0);
++
++ /*
++ * Wait a little for seeing new value of variable hibernation_suspend if
++ * Restore done interrupt received before polling
++ */
++ dwc_udelay(10);
++
++ if (core_if->hibernation_suspend == 0) {
++ /*
++ * Wait For Restore_done Interrupt. This mechanism of polling the
++ * interrupt is introduced to avoid any possible race conditions
++ */
++ do {
++ gintsts_data_t gintsts;
++ gintsts.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ if (gintsts.b.restoredone) {
++ gintsts.d32 = 0;
++ gintsts.b.restoredone = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->
++ gintsts, gintsts.d32);
++ DWC_PRINTF("Restore Done Interrupt seen\n");
++ break;
++ }
++ dwc_udelay(10);
++ } while (--timeout);
++ if (!timeout) {
++ DWC_PRINTF("Restore Done interrupt wasn't generated here\n");
++ }
++ }
++ /* Clear all pending interupts */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++
++ /* De-assert Restore */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.restore = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ if (!rem_wakeup) {
++ pcgcctl.d32 = 0;
++ pcgcctl.b.rstpdwnmodule = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32, 0);
++ }
++
++ /* Restore GUSBCFG and DCFG */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg,
++ core_if->gr_backup->gusbcfg_local);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dcfg,
++ core_if->dr_backup->dcfg);
++
++ /* De-assert Wakeup Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ if (!rem_wakeup) {
++ /* Set Device programming done bit */
++ dctl.b.pwronprgdone = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ } else {
++ /* Start Remote Wakeup Signaling */
++ dctl.d32 = core_if->dr_backup->dctl;
++ dctl.b.rmtwkupsig = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
++ }
++
++ dwc_mdelay(2);
++ /* Clear all pending interupts */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Restore global registers */
++ dwc_otg_restore_global_regs(core_if);
++ /* Restore device global registers */
++ dwc_otg_restore_dev_regs(core_if, rem_wakeup);
++
++ if (rem_wakeup) {
++ dwc_mdelay(7);
++ dctl.d32 = 0;
++ dctl.b.rmtwkupsig = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32, 0);
++ }
++
++ core_if->hibernation_suspend = 0;
++ /* The core will be in ON STATE */
++ core_if->lx_state = DWC_OTG_L0;
++ DWC_PRINTF("Hibernation recovery completes here\n");
++
++ return 1;
++}
++
++/*
++ * The restore operation is modified to support Synopsys Emulated Powerdown and
++ * Hibernation. This function is for exiting from Host mode hibernation by
++ * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
++ * @param core_if Programming view of DWC_otg controller.
++ * @param rem_wakeup - indicates whether resume is initiated by Device or Host.
++ * @param reset - indicates whether resume is initiated by Reset.
++ */
++int dwc_otg_host_hibernation_restore(dwc_otg_core_if_t * core_if,
++ int rem_wakeup, int reset)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ hprt0_data_t hprt0 = {.d32 = 0 };
++
++ int timeout = 2000;
++
++ DWC_DEBUGPL(DBG_HCD, "%s called\n", __FUNCTION__);
++ /* Switch-on voltage to the core */
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Reset core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Assert Restore signal */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.restore = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable power clamps */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ if (!rem_wakeup) {
++ dwc_udelay(50);
++ }
++
++ /* Deassert Reset core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable PMU interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ gpwrdn.d32 = 0;
++ gpwrdn.b.connect_det_msk = 1;
++ gpwrdn.b.srp_det_msk = 1;
++ gpwrdn.b.disconn_det_msk = 1;
++ gpwrdn.b.rst_det_msk = 1;
++ gpwrdn.b.lnstchng_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Indicates that we are going out from hibernation */
++ core_if->hibernation_suspend = 0;
++
++ /* Set Restore Essential Regs bit in PCGCCTL register */
++ restore_essential_regs(core_if, rem_wakeup, 1);
++
++ /* Wait a little for seeing new value of variable hibernation_suspend if
++ * Restore done interrupt received before polling */
++ dwc_udelay(10);
++
++ if (core_if->hibernation_suspend == 0) {
++ /* Wait For Restore_done Interrupt. This mechanism of polling the
++ * interrupt is introduced to avoid any possible race conditions
++ */
++ do {
++ gintsts_data_t gintsts;
++ gintsts.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ if (gintsts.b.restoredone) {
++ gintsts.d32 = 0;
++ gintsts.b.restoredone = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++ DWC_DEBUGPL(DBG_HCD,"Restore Done Interrupt seen\n");
++ break;
++ }
++ dwc_udelay(10);
++ } while (--timeout);
++ if (!timeout) {
++ DWC_WARN("Restore Done interrupt wasn't generated\n");
++ }
++ }
++
++ /* Set the flag's value to 0 again after receiving restore done interrupt */
++ core_if->hibernation_suspend = 0;
++
++ /* This step is not described in functional spec but if not wait for this
++ * delay, mismatch interrupts occurred because just after restore core is
++ * in Device mode(gintsts.curmode == 0) */
++ dwc_mdelay(100);
++
++ /* Clear all pending interrupts */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++
++ /* De-assert Restore */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.restore = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Restore GUSBCFG and HCFG */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg,
++ core_if->gr_backup->gusbcfg_local);
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->hcfg,
++ core_if->hr_backup->hcfg_local);
++
++ /* De-assert Wakeup Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Start the Resume operation by programming HPRT0 */
++ hprt0.d32 = core_if->hr_backup->hprt0_local;
++ hprt0.b.prtpwr = 1;
++ hprt0.b.prtena = 0;
++ hprt0.b.prtsusp = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ DWC_PRINTF("Resume Starts Now\n");
++ if (!reset) { // Indicates it is Resume Operation
++ hprt0.d32 = core_if->hr_backup->hprt0_local;
++ hprt0.b.prtres = 1;
++ hprt0.b.prtpwr = 1;
++ hprt0.b.prtena = 0;
++ hprt0.b.prtsusp = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ if (!rem_wakeup)
++ hprt0.b.prtres = 0;
++ /* Wait for Resume time and then program HPRT again */
++ dwc_mdelay(100);
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ } else { // Indicates it is Reset Operation
++ hprt0.d32 = core_if->hr_backup->hprt0_local;
++ hprt0.b.prtrst = 1;
++ hprt0.b.prtpwr = 1;
++ hprt0.b.prtena = 0;
++ hprt0.b.prtsusp = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ /* Wait for Reset time and then program HPRT again */
++ dwc_mdelay(60);
++ hprt0.b.prtrst = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ }
++ /* Clear all interrupt status */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtconndet = 1;
++ hprt0.b.prtenchng = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Clear all pending interupts */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Restore global registers */
++ dwc_otg_restore_global_regs(core_if);
++ /* Restore host global registers */
++ dwc_otg_restore_host_regs(core_if, reset);
++
++ /* The core will be in ON STATE */
++ core_if->lx_state = DWC_OTG_L0;
++ DWC_PRINTF("Hibernation recovery is complete here\n");
++ return 0;
++}
++
++/** Saves some register values into system memory. */
++int dwc_otg_save_global_regs(dwc_otg_core_if_t * core_if)
++{
++ struct dwc_otg_global_regs_backup *gr;
++ int i;
++
++ gr = core_if->gr_backup;
++ if (!gr) {
++ gr = DWC_ALLOC(sizeof(*gr));
++ if (!gr) {
++ return -DWC_E_NO_MEMORY;
++ }
++ core_if->gr_backup = gr;
++ }
++
++ gr->gotgctl_local = DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ gr->gintmsk_local = DWC_READ_REG32(&core_if->core_global_regs->gintmsk);
++ gr->gahbcfg_local = DWC_READ_REG32(&core_if->core_global_regs->gahbcfg);
++ gr->gusbcfg_local = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ gr->grxfsiz_local = DWC_READ_REG32(&core_if->core_global_regs->grxfsiz);
++ gr->gnptxfsiz_local = DWC_READ_REG32(&core_if->core_global_regs->gnptxfsiz);
++ gr->hptxfsiz_local = DWC_READ_REG32(&core_if->core_global_regs->hptxfsiz);
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ gr->glpmcfg_local = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++#endif
++ gr->gi2cctl_local = DWC_READ_REG32(&core_if->core_global_regs->gi2cctl);
++ gr->pcgcctl_local = DWC_READ_REG32(core_if->pcgcctl);
++ gr->gdfifocfg_local =
++ DWC_READ_REG32(&core_if->core_global_regs->gdfifocfg);
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ gr->dtxfsiz_local[i] =
++ DWC_READ_REG32(&(core_if->core_global_regs->dtxfsiz[i]));
++ }
++
++ DWC_DEBUGPL(DBG_ANY, "===========Backing Global registers==========\n");
++ DWC_DEBUGPL(DBG_ANY, "Backed up gotgctl = %08x\n", gr->gotgctl_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up gintmsk = %08x\n", gr->gintmsk_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up gahbcfg = %08x\n", gr->gahbcfg_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up gusbcfg = %08x\n", gr->gusbcfg_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up grxfsiz = %08x\n", gr->grxfsiz_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up gnptxfsiz = %08x\n",
++ gr->gnptxfsiz_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up hptxfsiz = %08x\n",
++ gr->hptxfsiz_local);
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ DWC_DEBUGPL(DBG_ANY, "Backed up glpmcfg = %08x\n", gr->glpmcfg_local);
++#endif
++ DWC_DEBUGPL(DBG_ANY, "Backed up gi2cctl = %08x\n", gr->gi2cctl_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up pcgcctl = %08x\n", gr->pcgcctl_local);
++ DWC_DEBUGPL(DBG_ANY,"Backed up gdfifocfg = %08x\n",gr->gdfifocfg_local);
++
++ return 0;
++}
++
++/** Saves GINTMSK register before setting the msk bits. */
++int dwc_otg_save_gintmsk_reg(dwc_otg_core_if_t * core_if)
++{
++ struct dwc_otg_global_regs_backup *gr;
++
++ gr = core_if->gr_backup;
++ if (!gr) {
++ gr = DWC_ALLOC(sizeof(*gr));
++ if (!gr) {
++ return -DWC_E_NO_MEMORY;
++ }
++ core_if->gr_backup = gr;
++ }
++
++ gr->gintmsk_local = DWC_READ_REG32(&core_if->core_global_regs->gintmsk);
++
++ DWC_DEBUGPL(DBG_ANY,"=============Backing GINTMSK registers============\n");
++ DWC_DEBUGPL(DBG_ANY, "Backed up gintmsk = %08x\n", gr->gintmsk_local);
++
++ return 0;
++}
++
++int dwc_otg_save_dev_regs(dwc_otg_core_if_t * core_if)
++{
++ struct dwc_otg_dev_regs_backup *dr;
++ int i;
++
++ dr = core_if->dr_backup;
++ if (!dr) {
++ dr = DWC_ALLOC(sizeof(*dr));
++ if (!dr) {
++ return -DWC_E_NO_MEMORY;
++ }
++ core_if->dr_backup = dr;
++ }
++
++ dr->dcfg = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++ dr->dctl = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dctl);
++ dr->daintmsk =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->daintmsk);
++ dr->diepmsk =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->diepmsk);
++ dr->doepmsk =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->doepmsk);
++
++ for (i = 0; i < core_if->dev_if->num_in_eps; ++i) {
++ dr->diepctl[i] =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[i]->diepctl);
++ dr->dieptsiz[i] =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[i]->dieptsiz);
++ dr->diepdma[i] =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[i]->diepdma);
++ }
++
++ DWC_DEBUGPL(DBG_ANY,
++ "=============Backing Host registers==============\n");
++ DWC_DEBUGPL(DBG_ANY, "Backed up dcfg = %08x\n", dr->dcfg);
++ DWC_DEBUGPL(DBG_ANY, "Backed up dctl = %08x\n", dr->dctl);
++ DWC_DEBUGPL(DBG_ANY, "Backed up daintmsk = %08x\n",
++ dr->daintmsk);
++ DWC_DEBUGPL(DBG_ANY, "Backed up diepmsk = %08x\n", dr->diepmsk);
++ DWC_DEBUGPL(DBG_ANY, "Backed up doepmsk = %08x\n", dr->doepmsk);
++ for (i = 0; i < core_if->dev_if->num_in_eps; ++i) {
++ DWC_DEBUGPL(DBG_ANY, "Backed up diepctl[%d] = %08x\n", i,
++ dr->diepctl[i]);
++ DWC_DEBUGPL(DBG_ANY, "Backed up dieptsiz[%d] = %08x\n",
++ i, dr->dieptsiz[i]);
++ DWC_DEBUGPL(DBG_ANY, "Backed up diepdma[%d] = %08x\n", i,
++ dr->diepdma[i]);
++ }
++
++ return 0;
++}
++
++int dwc_otg_save_host_regs(dwc_otg_core_if_t * core_if)
++{
++ struct dwc_otg_host_regs_backup *hr;
++ int i;
++
++ hr = core_if->hr_backup;
++ if (!hr) {
++ hr = DWC_ALLOC(sizeof(*hr));
++ if (!hr) {
++ return -DWC_E_NO_MEMORY;
++ }
++ core_if->hr_backup = hr;
++ }
++
++ hr->hcfg_local =
++ DWC_READ_REG32(&core_if->host_if->host_global_regs->hcfg);
++ hr->haintmsk_local =
++ DWC_READ_REG32(&core_if->host_if->host_global_regs->haintmsk);
++ for (i = 0; i < dwc_otg_get_param_host_channels(core_if); ++i) {
++ hr->hcintmsk_local[i] =
++ DWC_READ_REG32(&core_if->host_if->hc_regs[i]->hcintmsk);
++ }
++ hr->hprt0_local = DWC_READ_REG32(core_if->host_if->hprt0);
++ hr->hfir_local =
++ DWC_READ_REG32(&core_if->host_if->host_global_regs->hfir);
++
++ DWC_DEBUGPL(DBG_ANY,
++ "=============Backing Host registers===============\n");
++ DWC_DEBUGPL(DBG_ANY, "Backed up hcfg = %08x\n",
++ hr->hcfg_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up haintmsk = %08x\n", hr->haintmsk_local);
++ for (i = 0; i < dwc_otg_get_param_host_channels(core_if); ++i) {
++ DWC_DEBUGPL(DBG_ANY, "Backed up hcintmsk[%02d]=%08x\n", i,
++ hr->hcintmsk_local[i]);
++ }
++ DWC_DEBUGPL(DBG_ANY, "Backed up hprt0 = %08x\n",
++ hr->hprt0_local);
++ DWC_DEBUGPL(DBG_ANY, "Backed up hfir = %08x\n",
++ hr->hfir_local);
++
++ return 0;
++}
++
++int dwc_otg_restore_global_regs(dwc_otg_core_if_t *core_if)
++{
++ struct dwc_otg_global_regs_backup *gr;
++ int i;
++
++ gr = core_if->gr_backup;
++ if (!gr) {
++ return -DWC_E_INVALID;
++ }
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->gotgctl, gr->gotgctl_local);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, gr->gintmsk_local);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, gr->gusbcfg_local);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gahbcfg, gr->gahbcfg_local);
++ DWC_WRITE_REG32(&core_if->core_global_regs->grxfsiz, gr->grxfsiz_local);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gnptxfsiz,
++ gr->gnptxfsiz_local);
++ DWC_WRITE_REG32(&core_if->core_global_regs->hptxfsiz,
++ gr->hptxfsiz_local);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gdfifocfg,
++ gr->gdfifocfg_local);
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ DWC_WRITE_REG32(&core_if->core_global_regs->dtxfsiz[i],
++ gr->dtxfsiz_local[i]);
++ }
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++ DWC_WRITE_REG32(core_if->host_if->hprt0, 0x0000100A);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gahbcfg,
++ (gr->gahbcfg_local));
++ return 0;
++}
++
++int dwc_otg_restore_dev_regs(dwc_otg_core_if_t * core_if, int rem_wakeup)
++{
++ struct dwc_otg_dev_regs_backup *dr;
++ int i;
++
++ dr = core_if->dr_backup;
++
++ if (!dr) {
++ return -DWC_E_INVALID;
++ }
++
++ if (!rem_wakeup) {
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl,
++ dr->dctl);
++ }
++
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->daintmsk, dr->daintmsk);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->diepmsk, dr->diepmsk);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->doepmsk, dr->doepmsk);
++
++ for (i = 0; i < core_if->dev_if->num_in_eps; ++i) {
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[i]->dieptsiz, dr->dieptsiz[i]);
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[i]->diepdma, dr->diepdma[i]);
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[i]->diepctl, dr->diepctl[i]);
++ }
++
++ return 0;
++}
++
++int dwc_otg_restore_host_regs(dwc_otg_core_if_t * core_if, int reset)
++{
++ struct dwc_otg_host_regs_backup *hr;
++ int i;
++ hr = core_if->hr_backup;
++
++ if (!hr) {
++ return -DWC_E_INVALID;
++ }
++
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->hcfg, hr->hcfg_local);
++ //if (!reset)
++ //{
++ // DWC_WRITE_REG32(&core_if->host_if->host_global_regs->hfir, hr->hfir_local);
++ //}
++
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->haintmsk,
++ hr->haintmsk_local);
++ for (i = 0; i < dwc_otg_get_param_host_channels(core_if); ++i) {
++ DWC_WRITE_REG32(&core_if->host_if->hc_regs[i]->hcintmsk,
++ hr->hcintmsk_local[i]);
++ }
++
++ return 0;
++}
++
++int restore_lpm_i2c_regs(dwc_otg_core_if_t * core_if)
++{
++ struct dwc_otg_global_regs_backup *gr;
++
++ gr = core_if->gr_backup;
++
++ /* Restore values for LPM and I2C */
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ DWC_WRITE_REG32(&core_if->core_global_regs->glpmcfg, gr->glpmcfg_local);
++#endif
++ DWC_WRITE_REG32(&core_if->core_global_regs->gi2cctl, gr->gi2cctl_local);
++
++ return 0;
++}
++
++int restore_essential_regs(dwc_otg_core_if_t * core_if, int rmode, int is_host)
++{
++ struct dwc_otg_global_regs_backup *gr;
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ gahbcfg_data_t gahbcfg = {.d32 = 0 };
++ gusbcfg_data_t gusbcfg = {.d32 = 0 };
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++
++ /* Restore LPM and I2C registers */
++ restore_lpm_i2c_regs(core_if);
++
++ /* Set PCGCCTL to 0 */
++ DWC_WRITE_REG32(core_if->pcgcctl, 0x00000000);
++
++ gr = core_if->gr_backup;
++ /* Load restore values for [31:14] bits */
++ DWC_WRITE_REG32(core_if->pcgcctl,
++ ((gr->pcgcctl_local & 0xffffc000) | 0x00020000));
++
++ /* Umnask global Interrupt in GAHBCFG and restore it */
++ gahbcfg.d32 = gr->gahbcfg_local;
++ gahbcfg.b.glblintrmsk = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gahbcfg, gahbcfg.d32);
++
++ /* Clear all pending interupts */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Unmask restore done interrupt */
++ gintmsk.b.restoredone = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, gintmsk.d32);
++
++ /* Restore GUSBCFG and HCFG/DCFG */
++ gusbcfg.d32 = core_if->gr_backup->gusbcfg_local;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, gusbcfg.d32);
++
++ if (is_host) {
++ hcfg_data_t hcfg = {.d32 = 0 };
++ hcfg.d32 = core_if->hr_backup->hcfg_local;
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->hcfg,
++ hcfg.d32);
++
++ /* Load restore values for [31:14] bits */
++ pcgcctl.d32 = gr->pcgcctl_local & 0xffffc000;
++ pcgcctl.d32 = gr->pcgcctl_local | 0x00020000;
++
++ if (rmode)
++ pcgcctl.b.restoremode = 1;
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++ dwc_udelay(10);
++
++ /* Load restore values for [31:14] bits and set EssRegRestored bit */
++ pcgcctl.d32 = gr->pcgcctl_local | 0xffffc000;
++ pcgcctl.d32 = gr->pcgcctl_local & 0xffffc000;
++ pcgcctl.b.ess_reg_restored = 1;
++ if (rmode)
++ pcgcctl.b.restoremode = 1;
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++ } else {
++ dcfg_data_t dcfg = {.d32 = 0 };
++ dcfg.d32 = core_if->dr_backup->dcfg;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ /* Load restore values for [31:14] bits */
++ pcgcctl.d32 = gr->pcgcctl_local & 0xffffc000;
++ pcgcctl.d32 = gr->pcgcctl_local | 0x00020000;
++ if (!rmode) {
++ pcgcctl.d32 |= 0x208;
++ }
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++ dwc_udelay(10);
++
++ /* Load restore values for [31:14] bits */
++ pcgcctl.d32 = gr->pcgcctl_local & 0xffffc000;
++ pcgcctl.d32 = gr->pcgcctl_local | 0x00020000;
++ pcgcctl.b.ess_reg_restored = 1;
++ if (!rmode)
++ pcgcctl.d32 |= 0x208;
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++ }
++
++ return 0;
++}
++
++/**
++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
++ * type.
++ */
++static void init_fslspclksel(dwc_otg_core_if_t * core_if)
++{
++ uint32_t val;
++ hcfg_data_t hcfg;
++
++ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) ||
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* Full speed PHY */
++ val = DWC_HCFG_48_MHZ;
++ } else {
++ /* High speed PHY running at full speed or high speed */
++ val = DWC_HCFG_30_60_MHZ;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
++ hcfg.d32 = DWC_READ_REG32(&core_if->host_if->host_global_regs->hcfg);
++ hcfg.b.fslspclksel = val;
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++}
++
++/**
++ * Initializes the DevSpd field of the DCFG register depending on the PHY type
++ * and the enumeration speed of the device.
++ */
++static void init_devspd(dwc_otg_core_if_t * core_if)
++{
++ uint32_t val;
++ dcfg_data_t dcfg;
++
++ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) ||
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* Full speed PHY */
++ val = 0x3;
++ } else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++ /* High speed PHY running at full speed */
++ val = 0x1;
++ } else {
++ /* High speed PHY running at high speed */
++ val = 0x0;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
++
++ dcfg.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++ dcfg.b.devspd = val;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
++}
++
++/**
++ * This function calculates the number of IN EPS
++ * using GHWCFG1 and GHWCFG2 registers values
++ *
++ * @param core_if Programming view of the DWC_otg controller
++ */
++static uint32_t calc_num_in_eps(dwc_otg_core_if_t * core_if)
++{
++ uint32_t num_in_eps = 0;
++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
++ uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
++ int i;
++
++ for (i = 0; i < num_eps; ++i) {
++ if (!(hwcfg1 & 0x1))
++ num_in_eps++;
++
++ hwcfg1 >>= 2;
++ }
++
++ if (core_if->hwcfg4.b.ded_fifo_en) {
++ num_in_eps =
++ (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
++ }
++
++ return num_in_eps;
++}
++
++/**
++ * This function calculates the number of OUT EPS
++ * using GHWCFG1 and GHWCFG2 registers values
++ *
++ * @param core_if Programming view of the DWC_otg controller
++ */
++static uint32_t calc_num_out_eps(dwc_otg_core_if_t * core_if)
++{
++ uint32_t num_out_eps = 0;
++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
++ int i;
++
++ for (i = 0; i < num_eps; ++i) {
++ if (!(hwcfg1 & 0x1))
++ num_out_eps++;
++
++ hwcfg1 >>= 2;
++ }
++ return num_out_eps;
++}
++
++/**
++ * This function initializes the DWC_otg controller registers and
++ * prepares the core for device mode or host mode operation.
++ *
++ * @param core_if Programming view of the DWC_otg controller
++ *
++ */
++void dwc_otg_core_init(dwc_otg_core_if_t * core_if)
++{
++ int i = 0;
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ gahbcfg_data_t ahbcfg = {.d32 = 0 };
++ gusbcfg_data_t usbcfg = {.d32 = 0 };
++ gi2cctl_data_t i2cctl = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p) regs at %p\n",
++ core_if, global_regs);
++
++ /* Common Initialization */
++ usbcfg.d32 = DWC_READ_REG32(&global_regs->gusbcfg);
++
++ /* Program the ULPI External VBUS bit if needed */
++ usbcfg.b.ulpi_ext_vbus_drv =
++ (core_if->core_params->phy_ulpi_ext_vbus ==
++ DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
++
++ /* Set external TS Dline pulsing */
++ usbcfg.b.term_sel_dl_pulse =
++ (core_if->core_params->ts_dline == 1) ? 1 : 0;
++ DWC_WRITE_REG32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset the Controller */
++ dwc_otg_core_reset(core_if);
++
++ core_if->adp_enable = core_if->core_params->adp_supp_enable;
++ core_if->power_down = core_if->core_params->power_down;
++ core_if->otg_sts = 0;
++
++ /* Initialize parameters from Hardware configuration registers. */
++ dev_if->num_in_eps = calc_num_in_eps(core_if);
++ dev_if->num_out_eps = calc_num_out_eps(core_if);
++
++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
++ core_if->hwcfg4.b.num_dev_perio_in_ep);
++
++ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++ dev_if->perio_tx_fifo_size[i] =
++ DWC_READ_REG32(&global_regs->dtxfsiz[i]) >> 16;
++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
++ i, dev_if->perio_tx_fifo_size[i]);
++ }
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++ dev_if->tx_fifo_size[i] =
++ DWC_READ_REG32(&global_regs->dtxfsiz[i]) >> 16;
++ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
++ i, dev_if->tx_fifo_size[i]);
++ }
++
++ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
++ core_if->rx_fifo_size = DWC_READ_REG32(&global_regs->grxfsiz);
++ core_if->nperio_tx_fifo_size =
++ DWC_READ_REG32(&global_regs->gnptxfsiz) >> 16;
++
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n",
++ core_if->nperio_tx_fifo_size);
++
++ /* This programming sequence needs to happen in FS mode before any other
++ * programming occurs */
++ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* If FS mode with FS PHY */
++
++ /* core_init() is now called on every switch so only call the
++ * following for the first time through. */
++ if (!core_if->phy_init_done) {
++ core_if->phy_init_done = 1;
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
++ usbcfg.d32 = DWC_READ_REG32(&global_regs->gusbcfg);
++ usbcfg.b.physel = 1;
++ DWC_WRITE_REG32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset after a PHY select */
++ dwc_otg_core_reset(core_if);
++ }
++
++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
++ * do this on HNP Dev/Host mode switches (done in dev_init and
++ * host_init). */
++ if (dwc_otg_is_host_mode(core_if)) {
++ init_fslspclksel(core_if);
++ } else {
++ init_devspd(core_if);
++ }
++
++ if (core_if->core_params->i2c_enable) {
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
++ /* Program GUSBCFG.OtgUtmifsSel to I2C */
++ usbcfg.d32 = DWC_READ_REG32(&global_regs->gusbcfg);
++ usbcfg.b.otgutmifssel = 1;
++ DWC_WRITE_REG32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Program GI2CCTL.I2CEn */
++ i2cctl.d32 = DWC_READ_REG32(&global_regs->gi2cctl);
++ i2cctl.b.i2cdevaddr = 1;
++ i2cctl.b.i2cen = 0;
++ DWC_WRITE_REG32(&global_regs->gi2cctl, i2cctl.d32);
++ i2cctl.b.i2cen = 1;
++ DWC_WRITE_REG32(&global_regs->gi2cctl, i2cctl.d32);
++ }
++
++ } /* endif speed == DWC_SPEED_PARAM_FULL */
++ else {
++ /* High speed PHY. */
++ if (!core_if->phy_init_done) {
++ core_if->phy_init_done = 1;
++ /* HS PHY parameters. These parameters are preserved
++ * during soft reset so only program the first time. Do
++ * a soft reset immediately after setting phyif. */
++
++ if (core_if->core_params->phy_type == 2) {
++ /* ULPI interface */
++ usbcfg.b.ulpi_utmi_sel = 1;
++ usbcfg.b.phyif = 0;
++ usbcfg.b.ddrsel =
++ core_if->core_params->phy_ulpi_ddr;
++ } else if (core_if->core_params->phy_type == 1) {
++ /* UTMI+ interface */
++ usbcfg.b.ulpi_utmi_sel = 0;
++ if (core_if->core_params->phy_utmi_width == 16) {
++ usbcfg.b.phyif = 1;
++
++ } else {
++ usbcfg.b.phyif = 0;
++ }
++ } else {
++ DWC_ERROR("FS PHY TYPE\n");
++ }
++ DWC_WRITE_REG32(&global_regs->gusbcfg, usbcfg.d32);
++ /* Reset after setting the PHY parameters */
++ dwc_otg_core_reset(core_if);
++ }
++ }
++
++ if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) {
++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
++ usbcfg.d32 = DWC_READ_REG32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 1;
++ usbcfg.b.ulpi_clk_sus_m = 1;
++ DWC_WRITE_REG32(&global_regs->gusbcfg, usbcfg.d32);
++ } else {
++ usbcfg.d32 = DWC_READ_REG32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 0;
++ usbcfg.b.ulpi_clk_sus_m = 0;
++ DWC_WRITE_REG32(&global_regs->gusbcfg, usbcfg.d32);
++ }
++
++ /* Program the GAHBCFG Register. */
++ switch (core_if->hwcfg2.b.architecture) {
++
++ case DWC_SLAVE_ONLY_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
++ ahbcfg.b.nptxfemplvl_txfemplvl =
++ DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ core_if->dma_enable = 0;
++ core_if->dma_desc_enable = 0;
++ break;
++
++ case DWC_EXT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
++ {
++ uint8_t brst_sz = core_if->core_params->dma_burst_size;
++ ahbcfg.b.hburstlen = 0;
++ while (brst_sz > 1) {
++ ahbcfg.b.hburstlen++;
++ brst_sz >>= 1;
++ }
++ }
++ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++ core_if->dma_desc_enable =
++ (core_if->core_params->dma_desc_enable != 0);
++ break;
++
++ case DWC_INT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
++ /* Old value was DWC_GAHBCFG_INT_DMA_BURST_INCR - done for
++ Host mode ISOC in issue fix - vahrama */
++ /* Broadcom had altered to (1<<3)|(0<<0) - WRESP=1, max 4 beats */
++ ahbcfg.b.hburstlen = (1<<3)|(0<<0);//DWC_GAHBCFG_INT_DMA_BURST_INCR4;
++ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++ core_if->dma_desc_enable =
++ (core_if->core_params->dma_desc_enable != 0);
++ break;
++
++ }
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable) {
++ DWC_PRINTF("Using Descriptor DMA mode\n");
++ } else {
++ DWC_PRINTF("Using Buffer DMA mode\n");
++
++ }
++ } else {
++ DWC_PRINTF("Using Slave mode\n");
++ core_if->dma_desc_enable = 0;
++ }
++
++ if (core_if->core_params->ahb_single) {
++ ahbcfg.b.ahbsingle = 1;
++ }
++
++ ahbcfg.b.dmaenable = core_if->dma_enable;
++ DWC_WRITE_REG32(&global_regs->gahbcfg, ahbcfg.d32);
++
++ core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
++
++ core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
++ core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
++ DWC_PRINTF("Periodic Transfer Interrupt Enhancement - %s\n",
++ ((core_if->pti_enh_enable) ? "enabled" : "disabled"));
++ DWC_PRINTF("Multiprocessor Interrupt Enhancement - %s\n",
++ ((core_if->multiproc_int_enable) ? "enabled" : "disabled"));
++
++ /*
++ * Program the GUSBCFG register.
++ */
++ usbcfg.d32 = DWC_READ_REG32(&global_regs->gusbcfg);
++
++ switch (core_if->hwcfg2.b.op_mode) {
++ case DWC_MODE_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_SRP_ONLY_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++ }
++
++ DWC_WRITE_REG32(&global_regs->gusbcfg, usbcfg.d32);
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ if (core_if->core_params->lpm_enable) {
++ glpmcfg_data_t lpmcfg = {.d32 = 0 };
++
++ /* To enable LPM support set lpm_cap_en bit */
++ lpmcfg.b.lpm_cap_en = 1;
++
++ /* Make AppL1Res ACK */
++ lpmcfg.b.appl_resp = 1;
++
++ /* Retry 3 times */
++ lpmcfg.b.retry_count = 3;
++
++ DWC_MODIFY_REG32(&core_if->core_global_regs->glpmcfg,
++ 0, lpmcfg.d32);
++
++ }
++#endif
++ if (core_if->core_params->ic_usb_cap) {
++ gusbcfg_data_t gusbcfg = {.d32 = 0 };
++ gusbcfg.b.ic_usb_cap = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gusbcfg,
++ 0, gusbcfg.d32);
++ }
++ {
++ gotgctl_data_t gotgctl = {.d32 = 0 };
++ gotgctl.b.otgver = core_if->core_params->otg_ver;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gotgctl, 0,
++ gotgctl.d32);
++ /* Set OTG version supported */
++ core_if->otg_ver = core_if->core_params->otg_ver;
++ DWC_PRINTF("OTG VER PARAM: %d, OTG VER FLAG: %d\n",
++ core_if->core_params->otg_ver, core_if->otg_ver);
++ }
++
++
++ /* Enable common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /* Do device or host intialization based on mode during PCD
++ * and HCD initialization */
++ if (dwc_otg_is_host_mode(core_if)) {
++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
++ core_if->op_state = A_HOST;
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
++ core_if->op_state = B_PERIPHERAL;
++#ifdef DWC_DEVICE_ONLY
++ dwc_otg_core_dev_init(core_if);
++#endif
++ }
++}
++
++/**
++ * This function enables the Device mode interrupts.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t * core_if)
++{
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++ /* Disable all interrupts. */
++ DWC_WRITE_REG32(&global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts */
++ DWC_WRITE_REG32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /* Enable interrupts */
++ intr_mask.b.usbreset = 1;
++ intr_mask.b.enumdone = 1;
++ /* Disable Disconnect interrupt in Device mode */
++ intr_mask.b.disconnect = 0;
++
++ if (!core_if->multiproc_int_enable) {
++ intr_mask.b.inepintr = 1;
++ intr_mask.b.outepintr = 1;
++ }
++
++ intr_mask.b.erlysuspend = 1;
++
++ if (core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.epmismatch = 1;
++ }
++
++ //intr_mask.b.incomplisoout = 1;
++ intr_mask.b.incomplisoin = 1;
++
++/* Enable the ignore frame number for ISOC xfers - MAS */
++/* Disable to support high bandwith ISOC transfers - manukz */
++#if 0
++#ifdef DWC_UTE_PER_IO
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable) {
++ dctl_data_t dctl1 = {.d32 = 0 };
++ dctl1.b.ifrmnum = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ dctl, 0, dctl1.d32);
++ DWC_DEBUG("----Enabled Ignore frame number (0x%08x)",
++ DWC_READ_REG32(&core_if->dev_if->
++ dev_global_regs->dctl));
++ }
++ }
++#endif
++#endif
++#ifdef DWC_EN_ISOC
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable == 0) {
++ if (core_if->pti_enh_enable) {
++ dctl_data_t dctl = {.d32 = 0 };
++ dctl.b.ifrmnum = 1;
++ DWC_MODIFY_REG32(&core_if->
++ dev_if->dev_global_regs->dctl,
++ 0, dctl.d32);
++ } else {
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++ }
++ }
++ } else {
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++ }
++#endif /* DWC_EN_ISOC */
++
++ /** @todo NGS: Should this be a module parameter? */
++#ifdef USE_PERIODIC_EP
++ intr_mask.b.isooutdrop = 1;
++ intr_mask.b.eopframe = 1;
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++#endif
++
++ DWC_MODIFY_REG32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
++ DWC_READ_REG32(&global_regs->gintmsk));
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * device mode.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_dev_init(dwc_otg_core_if_t * core_if)
++{
++ int i;
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_core_params_t *params = core_if->core_params;
++ dcfg_data_t dcfg = {.d32 = 0 };
++ depctl_data_t diepctl = {.d32 = 0 };
++ grstctl_t resetctl = {.d32 = 0 };
++ uint32_t rx_fifo_size;
++ fifosize_data_t nptxfifosize;
++ fifosize_data_t txfifosize;
++ dthrctl_data_t dthrctl;
++ fifosize_data_t ptxfifosize;
++ uint16_t rxfsiz, nptxfsiz;
++ gdfifocfg_data_t gdfifocfg = {.d32 = 0 };
++ hwcfg3_data_t hwcfg3 = {.d32 = 0 };
++
++ /* Restart the Phy Clock */
++ DWC_WRITE_REG32(core_if->pcgcctl, 0);
++
++ /* Device configuration register */
++ init_devspd(core_if);
++ dcfg.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
++ /* Enable Device OUT NAK in case of DDMA mode*/
++ if (core_if->core_params->dev_out_nak) {
++ dcfg.b.endevoutnak = 1;
++ }
++
++ if (core_if->core_params->cont_on_bna) {
++ dctl_data_t dctl = {.d32 = 0 };
++ dctl.b.encontonbna = 1;
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ }
++
++
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ /* Configure data FIFO sizes */
++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
++ core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
++ params->dev_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
++ params->dev_nperio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->grxfsiz));
++
++#ifdef DWC_UTE_CFI
++ core_if->pwron_rxfsiz = DWC_READ_REG32(&global_regs->grxfsiz);
++ core_if->init_rxfsiz = params->dev_rx_fifo_size;
++#endif
++ rx_fifo_size = params->dev_rx_fifo_size;
++ DWC_WRITE_REG32(&global_regs->grxfsiz, rx_fifo_size);
++
++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->grxfsiz));
++
++ /** Set Periodic Tx FIFO Mask all bits 0 */
++ core_if->p_tx_msk = 0;
++
++ /** Set Tx FIFO Mask all bits 0 */
++ core_if->tx_msk = 0;
++
++ if (core_if->en_multiple_tx_fifo == 0) {
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->gnptxfsiz));
++
++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
++
++ DWC_WRITE_REG32(&global_regs->gnptxfsiz,
++ nptxfifosize.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->gnptxfsiz));
++
++ /**@todo NGS: Fix Periodic FIFO Sizing! */
++ /*
++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_perio_tx_fifo_size array and the FIFO size registers in
++ * the dptxfsiz array run from 0 to 14.
++ */
++ /** @todo Finish debug of this */
++ ptxfifosize.b.startaddr =
++ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++ ptxfifosize.b.depth =
++ params->dev_perio_tx_fifo_size[i];
++ DWC_DEBUGPL(DBG_CIL,
++ "initial dtxfsiz[%d]=%08x\n", i,
++ DWC_READ_REG32(&global_regs->dtxfsiz
++ [i]));
++ DWC_WRITE_REG32(&global_regs->dtxfsiz[i],
++ ptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new dtxfsiz[%d]=%08x\n",
++ i,
++ DWC_READ_REG32(&global_regs->dtxfsiz
++ [i]));
++ ptxfifosize.b.startaddr += ptxfifosize.b.depth;
++ }
++ } else {
++ /*
++ * Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_tx_fifo_size array and the FIFO size registers in
++ * the dtxfsiz array run from 0 to 14.
++ */
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->gnptxfsiz));
++
++#ifdef DWC_UTE_CFI
++ core_if->pwron_gnptxfsiz =
++ (DWC_READ_REG32(&global_regs->gnptxfsiz) >> 16);
++ core_if->init_gnptxfsiz =
++ params->dev_nperio_tx_fifo_size;
++#endif
++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
++
++ DWC_WRITE_REG32(&global_regs->gnptxfsiz,
++ nptxfifosize.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->gnptxfsiz));
++
++ txfifosize.b.startaddr =
++ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; i++) {
++
++ txfifosize.b.depth =
++ params->dev_tx_fifo_size[i];
++
++ DWC_DEBUGPL(DBG_CIL,
++ "initial dtxfsiz[%d]=%08x\n",
++ i,
++ DWC_READ_REG32(&global_regs->dtxfsiz
++ [i]));
++
++#ifdef DWC_UTE_CFI
++ core_if->pwron_txfsiz[i] =
++ (DWC_READ_REG32
++ (&global_regs->dtxfsiz[i]) >> 16);
++ core_if->init_txfsiz[i] =
++ params->dev_tx_fifo_size[i];
++#endif
++ DWC_WRITE_REG32(&global_regs->dtxfsiz[i],
++ txfifosize.d32);
++
++ DWC_DEBUGPL(DBG_CIL,
++ "new dtxfsiz[%d]=%08x\n",
++ i,
++ DWC_READ_REG32(&global_regs->dtxfsiz
++ [i]));
++
++ txfifosize.b.startaddr += txfifosize.b.depth;
++ }
++ if (core_if->snpsid <= OTG_CORE_REV_2_94a) {
++ /* Calculating DFIFOCFG for Device mode to include RxFIFO and NPTXFIFO */
++ gdfifocfg.d32 = DWC_READ_REG32(&global_regs->gdfifocfg);
++ hwcfg3.d32 = DWC_READ_REG32(&global_regs->ghwcfg3);
++ gdfifocfg.b.gdfifocfg = (DWC_READ_REG32(&global_regs->ghwcfg3) >> 16);
++ DWC_WRITE_REG32(&global_regs->gdfifocfg, gdfifocfg.d32);
++ rxfsiz = (DWC_READ_REG32(&global_regs->grxfsiz) & 0x0000ffff);
++ nptxfsiz = (DWC_READ_REG32(&global_regs->gnptxfsiz) >> 16);
++ gdfifocfg.b.epinfobase = rxfsiz + nptxfsiz;
++ DWC_WRITE_REG32(&global_regs->gdfifocfg, gdfifocfg.d32);
++ }
++ }
++
++ /* Flush the FIFOs */
++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
++ dwc_otg_flush_rx_fifo(core_if);
++
++ /* Flush the Learning Queue. */
++ resetctl.b.intknqflsh = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->grstctl, resetctl.d32);
++
++ if (!core_if->core_params->en_multiple_tx_fifo && core_if->dma_enable) {
++ core_if->start_predict = 0;
++ for (i = 0; i<= core_if->dev_if->num_in_eps; ++i) {
++ core_if->nextep_seq[i] = 0xff; // 0xff - EP not active
++ }
++ core_if->nextep_seq[0] = 0;
++ core_if->first_in_nextep_seq = 0;
++ diepctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[0]->diepctl);
++ diepctl.b.nextep = 0;
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
++
++ /* Update IN Endpoint Mismatch Count by active IN NP EP count + 1 */
++ dcfg.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.epmscnt = 2;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ DWC_DEBUGPL(DBG_CILV,"%s first_in_nextep_seq= %2d; nextep_seq[]:\n",
++ __func__, core_if->first_in_nextep_seq);
++ for (i=0; i <= core_if->dev_if->num_in_eps; i++) {
++ DWC_DEBUGPL(DBG_CILV, "%2d ", core_if->nextep_seq[i]);
++ }
++ DWC_DEBUGPL(DBG_CILV,"\n");
++ }
++
++ /* Clear all pending Device Interrupts */
++ /** @todo - if the condition needed to be checked
++ * or in any case all pending interrutps should be cleared?
++ */
++ if (core_if->multiproc_int_enable) {
++ for (i = 0; i < core_if->dev_if->num_in_eps; ++i) {
++ DWC_WRITE_REG32(&dev_if->
++ dev_global_regs->diepeachintmsk[i], 0);
++ }
++ }
++
++ for (i = 0; i < core_if->dev_if->num_out_eps; ++i) {
++ DWC_WRITE_REG32(&dev_if->
++ dev_global_regs->doepeachintmsk[i], 0);
++ }
++
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->deachintmsk, 0);
++ } else {
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->diepmsk, 0);
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->doepmsk, 0);
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->daintmsk, 0);
++ }
++
++ for (i = 0; i <= dev_if->num_in_eps; i++) {
++ depctl_data_t depctl;
++ depctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ if (depctl.b.epena) {
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ } else {
++ depctl.d32 = 0;
++ }
++
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
++
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->diepdma, 0);
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
++ }
++
++ for (i = 0; i <= dev_if->num_out_eps; i++) {
++ depctl_data_t depctl;
++ depctl.d32 = DWC_READ_REG32(&dev_if->out_ep_regs[i]->doepctl);
++ if (depctl.b.epena) {
++ dctl_data_t dctl = {.d32 = 0 };
++ gintmsk_data_t gintsts = {.d32 = 0 };
++ doepint_data_t doepint = {.d32 = 0 };
++ dctl.b.sgoutnak = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ do {
++ dwc_udelay(10);
++ gintsts.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ } while (!gintsts.b.goutnakeff);
++ gintsts.d32 = 0;
++ gintsts.b.goutnakeff = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[i]->doepctl, depctl.d32);
++ do {
++ dwc_udelay(10);
++ doepint.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[i]->doepint);
++ } while (!doepint.b.epdisabled);
++
++ doepint.b.epdisabled = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[i]->doepint, doepint.d32);
++
++ dctl.d32 = 0;
++ dctl.b.cgoutnak = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ } else {
++ depctl.d32 = 0;
++ }
++
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
++
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[i]->doepdma, 0);
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
++ }
++
++ if (core_if->en_multiple_tx_fifo && core_if->dma_enable) {
++ dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
++ dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
++ dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
++
++ dev_if->rx_thr_length = params->rx_thr_length;
++ dev_if->tx_thr_length = params->tx_thr_length;
++
++ dev_if->setup_desc_index = 0;
++
++ dthrctl.d32 = 0;
++ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
++ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
++ dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
++ dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
++ dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
++ dthrctl.b.ahb_thr_ratio = params->ahb_thr_ratio;
++
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dtknqr3_dthrctl,
++ dthrctl.d32);
++
++ DWC_DEBUGPL(DBG_CIL,
++ "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
++ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en,
++ dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len,
++ dthrctl.b.rx_thr_len);
++
++ }
++
++ dwc_otg_enable_device_interrupts(core_if);
++
++ {
++ diepmsk_data_t msk = {.d32 = 0 };
++ msk.b.txfifoundrn = 1;
++ if (core_if->multiproc_int_enable) {
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->
++ diepeachintmsk[0], msk.d32, msk.d32);
++ } else {
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->diepmsk,
++ msk.d32, msk.d32);
++ }
++ }
++
++ if (core_if->multiproc_int_enable) {
++ /* Set NAK on Babble */
++ dctl_data_t dctl = {.d32 = 0 };
++ dctl.b.nakonbble = 1;
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ }
++
++ if (core_if->snpsid >= OTG_CORE_REV_2_94a) {
++ dctl_data_t dctl = {.d32 = 0 };
++ dctl.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->dctl);
++ dctl.b.sftdiscon = 0;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dctl, dctl.d32);
++ }
++}
++
++/**
++ * This function enables the Host mode interrupts.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CIL, "%s(%p)\n", __func__, core_if);
++
++ /* Disable all interrupts. */
++ DWC_WRITE_REG32(&global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts. */
++ DWC_WRITE_REG32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /*
++ * Enable host mode interrupts without disturbing common
++ * interrupts.
++ */
++
++ intr_mask.b.disconnect = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++
++ DWC_MODIFY_REG32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++}
++
++/**
++ * This function disables the Host Mode interrupts.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
++
++ /*
++ * Disable host mode interrupts without disturbing common
++ * interrupts.
++ */
++ intr_mask.b.sofintr = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++ intr_mask.b.ptxfempty = 1;
++ intr_mask.b.nptxfempty = 1;
++
++ DWC_MODIFY_REG32(&global_regs->gintmsk, intr_mask.d32, 0);
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * host mode.
++ *
++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
++ * request queues. Host channels are reset to ensure that they are ready for
++ * performing transfers.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_host_init(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ dwc_otg_host_if_t *host_if = core_if->host_if;
++ dwc_otg_core_params_t *params = core_if->core_params;
++ hprt0_data_t hprt0 = {.d32 = 0 };
++ fifosize_data_t nptxfifosize;
++ fifosize_data_t ptxfifosize;
++ uint16_t rxfsiz, nptxfsiz, hptxfsiz;
++ gdfifocfg_data_t gdfifocfg = {.d32 = 0 };
++ int i;
++ hcchar_data_t hcchar;
++ hcfg_data_t hcfg;
++ hfir_data_t hfir;
++ dwc_otg_hc_regs_t *hc_regs;
++ int num_channels;
++ gotgctl_data_t gotgctl = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, core_if);
++
++ /* Restart the Phy Clock */
++ DWC_WRITE_REG32(core_if->pcgcctl, 0);
++
++ /* Initialize Host Configuration Register */
++ init_fslspclksel(core_if);
++ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++ hcfg.d32 = DWC_READ_REG32(&host_if->host_global_regs->hcfg);
++ hcfg.b.fslssupp = 1;
++ DWC_WRITE_REG32(&host_if->host_global_regs->hcfg, hcfg.d32);
++
++ }
++
++ /* This bit allows dynamic reloading of the HFIR register
++ * during runtime. This bit needs to be programmed during
++ * initial configuration and its value must not be changed
++ * during runtime.*/
++ if (core_if->core_params->reload_ctl == 1) {
++ hfir.d32 = DWC_READ_REG32(&host_if->host_global_regs->hfir);
++ hfir.b.hfirrldctrl = 1;
++ DWC_WRITE_REG32(&host_if->host_global_regs->hfir, hfir.d32);
++ }
++
++ if (core_if->core_params->dma_desc_enable) {
++ uint8_t op_mode = core_if->hwcfg2.b.op_mode;
++ if (!
++ (core_if->hwcfg4.b.desc_dma
++ && (core_if->snpsid >= OTG_CORE_REV_2_90a)
++ && ((op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ || (op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
++ || (op_mode ==
++ DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG)
++ || (op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)
++ || (op_mode ==
++ DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST)))) {
++
++ DWC_ERROR("Host can't operate in Descriptor DMA mode.\n"
++ "Either core version is below 2.90a or "
++ "GHWCFG2, GHWCFG4 registers' values do not allow Descriptor DMA in host mode.\n"
++ "To run the driver in Buffer DMA host mode set dma_desc_enable "
++ "module parameter to 0.\n");
++ return;
++ }
++ hcfg.d32 = DWC_READ_REG32(&host_if->host_global_regs->hcfg);
++ hcfg.b.descdma = 1;
++ DWC_WRITE_REG32(&host_if->host_global_regs->hcfg, hcfg.d32);
++ }
++
++ /* Configure data FIFO sizes */
++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
++ core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
++ params->host_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
++ params->host_nperio_tx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n",
++ params->host_perio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->grxfsiz));
++ DWC_WRITE_REG32(&global_regs->grxfsiz,
++ params->host_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->grxfsiz));
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->gnptxfsiz));
++ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->host_rx_fifo_size;
++ DWC_WRITE_REG32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->gnptxfsiz));
++
++ /* Periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->hptxfsiz));
++ ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
++ ptxfifosize.b.startaddr =
++ nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ DWC_WRITE_REG32(&global_regs->hptxfsiz, ptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n",
++ DWC_READ_REG32(&global_regs->hptxfsiz));
++
++ if (core_if->en_multiple_tx_fifo
++ && core_if->snpsid <= OTG_CORE_REV_2_94a) {
++ /* Global DFIFOCFG calculation for Host mode - include RxFIFO, NPTXFIFO and HPTXFIFO */
++ gdfifocfg.d32 = DWC_READ_REG32(&global_regs->gdfifocfg);
++ rxfsiz = (DWC_READ_REG32(&global_regs->grxfsiz) & 0x0000ffff);
++ nptxfsiz = (DWC_READ_REG32(&global_regs->gnptxfsiz) >> 16);
++ hptxfsiz = (DWC_READ_REG32(&global_regs->hptxfsiz) >> 16);
++ gdfifocfg.b.epinfobase = rxfsiz + nptxfsiz + hptxfsiz;
++ DWC_WRITE_REG32(&global_regs->gdfifocfg, gdfifocfg.d32);
++ }
++ }
++
++ /* TODO - check this */
++ /* Clear Host Set HNP Enable in the OTG Control Register */
++ gotgctl.b.hstsethnpen = 1;
++ DWC_MODIFY_REG32(&global_regs->gotgctl, gotgctl.d32, 0);
++ /* Make sure the FIFOs are flushed. */
++ dwc_otg_flush_tx_fifo(core_if, 0x10 /* all TX FIFOs */ );
++ dwc_otg_flush_rx_fifo(core_if);
++
++ /* Clear Host Set HNP Enable in the OTG Control Register */
++ gotgctl.b.hstsethnpen = 1;
++ DWC_MODIFY_REG32(&global_regs->gotgctl, gotgctl.d32, 0);
++
++ if (!core_if->core_params->dma_desc_enable) {
++ /* Flush out any leftover queued requests. */
++ num_channels = core_if->core_params->host_channels;
++
++ for (i = 0; i < num_channels; i++) {
++ hc_regs = core_if->host_if->hc_regs[i];
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++ }
++
++ /* Halt all channels to put them into a known state. */
++ for (i = 0; i < num_channels; i++) {
++ int count = 0;
++ hc_regs = core_if->host_if->hc_regs[i];
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d regs %p\n", __func__, i, hc_regs);
++ do {
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ if (++count > 1000) {
++ DWC_ERROR
++ ("%s: Unable to clear halt on channel %d (timeout HCCHAR 0x%X @%p)\n",
++ __func__, i, hcchar.d32, &hc_regs->hcchar);
++ break;
++ }
++ dwc_udelay(1);
++ } while (hcchar.b.chen);
++ }
++ }
++
++ /* Turn on the vbus power. */
++ DWC_PRINTF("Init: Port Power? op_state=%d\n", core_if->op_state);
++ if (core_if->op_state == A_HOST) {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ DWC_PRINTF("Init: Power Port (%d)\n", hprt0.b.prtpwr);
++ if (hprt0.b.prtpwr == 0) {
++ hprt0.b.prtpwr = 1;
++ DWC_WRITE_REG32(host_if->hprt0, hprt0.d32);
++ }
++ }
++
++ dwc_otg_enable_host_interrupts(core_if);
++}
++
++/**
++ * Prepares a host channel for transferring packets to/from a specific
++ * endpoint. The HCCHARn register is set up with the characteristics specified
++ * in _hc. Host channel interrupts that may need to be serviced while this
++ * transfer is in progress are enabled.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ * @param hc Information needed to initialize the host channel
++ */
++void dwc_otg_hc_init(dwc_otg_core_if_t * core_if, dwc_hc_t * hc)
++{
++ uint32_t intr_enable;
++ hcintmsk_data_t hc_intr_mask;
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++
++ uint8_t hc_num = hc->hc_num;
++ dwc_otg_host_if_t *host_if = core_if->host_if;
++ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
++
++ /* Clear old interrupt conditions for this host channel. */
++ hc_intr_mask.d32 = 0xFFFFFFFF;
++ hc_intr_mask.b.reserved14_31 = 0;
++ DWC_WRITE_REG32(&hc_regs->hcint, hc_intr_mask.d32);
++
++ /* Enable channel interrupts required for this transfer. */
++ hc_intr_mask.d32 = 0;
++ hc_intr_mask.b.chhltd = 1;
++ if (core_if->dma_enable) {
++ /* For Descriptor DMA mode core halts the channel on AHB error. Interrupt is not required */
++ if (!core_if->dma_desc_enable)
++ hc_intr_mask.b.ahberr = 1;
++ else {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
++ hc_intr_mask.b.xfercompl = 1;
++ }
++
++ if (hc->error_state && !hc->do_split &&
++ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ hc_intr_mask.b.ack = 1;
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.datatglerr = 1;
++ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
++ hc_intr_mask.b.nak = 1;
++ }
++ }
++ }
++ } else {
++ switch (hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.bblerr = 1;
++ } else {
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.nyet = 1;
++ if (hc->do_ping) {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++
++ if (hc->do_split) {
++ hc_intr_mask.b.nak = 1;
++ if (hc->complete_split) {
++ hc_intr_mask.b.nyet = 1;
++ } else {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++
++ if (hc->error_state) {
++ hc_intr_mask.b.ack = 1;
++ }
++ break;
++ case DWC_OTG_EP_TYPE_INTR:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ hc_intr_mask.b.frmovrun = 1;
++
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.bblerr = 1;
++ }
++ if (hc->error_state) {
++ hc_intr_mask.b.ack = 1;
++ }
++ if (hc->do_split) {
++ if (hc->complete_split) {
++ hc_intr_mask.b.nyet = 1;
++ } else {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++ break;
++ case DWC_OTG_EP_TYPE_ISOC:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.frmovrun = 1;
++ hc_intr_mask.b.ack = 1;
++
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.bblerr = 1;
++ }
++ break;
++ }
++ }
++ DWC_WRITE_REG32(&hc_regs->hcintmsk, hc_intr_mask.d32);
++
++ /* Enable the top level host channel interrupt. */
++ intr_enable = (1 << hc_num);
++ DWC_MODIFY_REG32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
++
++ /* Make sure host channel interrupts are enabled. */
++ gintmsk.b.hcintr = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
++
++ /*
++ * Program the HCCHARn register with the endpoint characteristics for
++ * the current transfer.
++ */
++ hcchar.d32 = 0;
++ hcchar.b.devaddr = hc->dev_addr;
++ hcchar.b.epnum = hc->ep_num;
++ hcchar.b.epdir = hc->ep_is_in;
++ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
++ hcchar.b.eptype = hc->ep_type;
++ hcchar.b.mps = hc->max_packet;
++
++ DWC_WRITE_REG32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d, Dev Addr %d, EP #%d\n",
++ __func__, hc->hc_num, hcchar.b.devaddr, hcchar.b.epnum);
++ DWC_DEBUGPL(DBG_HCDV, " Is In %d, Is Low Speed %d, EP Type %d, "
++ "Max Pkt %d, Multi Cnt %d\n",
++ hcchar.b.epdir, hcchar.b.lspddev, hcchar.b.eptype,
++ hcchar.b.mps, hcchar.b.multicnt);
++
++ /*
++ * Program the HCSPLIT register for SPLITs
++ */
++ hcsplt.d32 = 0;
++ if (hc->do_split) {
++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n",
++ hc->hc_num,
++ hc->complete_split ? "CSPLIT" : "SSPLIT");
++ hcsplt.b.compsplt = hc->complete_split;
++ hcsplt.b.xactpos = hc->xact_pos;
++ hcsplt.b.hubaddr = hc->hub_addr;
++ hcsplt.b.prtaddr = hc->port_addr;
++ DWC_DEBUGPL(DBG_HCDV, "\t comp split %d\n", hc->complete_split);
++ DWC_DEBUGPL(DBG_HCDV, "\t xact pos %d\n", hc->xact_pos);
++ DWC_DEBUGPL(DBG_HCDV, "\t hub addr %d\n", hc->hub_addr);
++ DWC_DEBUGPL(DBG_HCDV, "\t port addr %d\n", hc->port_addr);
++ DWC_DEBUGPL(DBG_HCDV, "\t is_in %d\n", hc->ep_is_in);
++ DWC_DEBUGPL(DBG_HCDV, "\t Max Pkt: %d\n", hcchar.b.mps);
++ DWC_DEBUGPL(DBG_HCDV, "\t xferlen: %d\n", hc->xfer_len);
++ }
++ DWC_WRITE_REG32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
++
++}
++
++/**
++ * Attempts to halt a host channel. This function should only be called in
++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
++ * normal circumstances in DMA mode, the controller halts the channel when the
++ * transfer is complete or a condition occurs that requires application
++ * intervention.
++ *
++ * In slave mode, checks for a free request queue entry, then sets the Channel
++ * Enable and Channel Disable bits of the Host Channel Characteristics
++ * register of the specified channel to intiate the halt. If there is no free
++ * request queue entry, sets only the Channel Disable bit of the HCCHARn
++ * register to flush requests for this channel. In the latter case, sets a
++ * flag to indicate that the host channel needs to be halted when a request
++ * queue slot is open.
++ *
++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
++ * HCCHARn register. The controller ensures there is space in the request
++ * queue before submitting the halt request.
++ *
++ * Some time may elapse before the core flushes any posted requests for this
++ * host channel and halts. The Channel Halted interrupt handler completes the
++ * deactivation of the host channel.
++ *
++ * @param core_if Controller register interface.
++ * @param hc Host channel to halt.
++ * @param halt_status Reason for halting the channel.
++ */
++void dwc_otg_hc_halt(dwc_otg_core_if_t * core_if,
++ dwc_hc_t * hc, dwc_otg_halt_status_e halt_status)
++{
++ gnptxsts_data_t nptxsts;
++ hptxsts_data_t hptxsts;
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs;
++ dwc_otg_core_global_regs_t *global_regs;
++ dwc_otg_host_global_regs_t *host_global_regs;
++
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ global_regs = core_if->core_global_regs;
++ host_global_regs = core_if->host_if->host_global_regs;
++
++ DWC_ASSERT(!(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS),
++ "halt_status = %d\n", halt_status);
++
++ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ /*
++ * Disable all channel interrupts except Ch Halted. The QTD
++ * and QH state associated with this transfer has been cleared
++ * (in the case of URB_DEQUEUE), so the channel needs to be
++ * shut down carefully to prevent crashes.
++ */
++ hcintmsk_data_t hcintmsk;
++ hcintmsk.d32 = 0;
++ hcintmsk.b.chhltd = 1;
++ DWC_WRITE_REG32(&hc_regs->hcintmsk, hcintmsk.d32);
++
++ /*
++ * Make sure no other interrupts besides halt are currently
++ * pending. Handling another interrupt could cause a crash due
++ * to the QTD and QH state.
++ */
++ DWC_WRITE_REG32(&hc_regs->hcint, ~hcintmsk.d32);
++
++ /*
++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
++ * even if the channel was already halted for some other
++ * reason.
++ */
++ hc->halt_status = halt_status;
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ if (hcchar.b.chen == 0) {
++ /*
++ * The channel is either already halted or it hasn't
++ * started yet. In DMA mode, the transfer may halt if
++ * it finishes normally or a condition occurs that
++ * requires driver intervention. Don't want to halt
++ * the channel again. In either Slave or DMA mode,
++ * it's possible that the transfer has been assigned
++ * to a channel, but not started yet when an URB is
++ * dequeued. Don't want to halt a channel that hasn't
++ * started yet.
++ */
++ return;
++ }
++ }
++ if (hc->halt_pending) {
++ /*
++ * A halt has already been issued for this channel. This might
++ * happen when a transfer is aborted by a higher level in
++ * the stack.
++ */
++#ifdef DEBUG
++ DWC_PRINTF
++ ("*** %s: Channel %d, _hc->halt_pending already set ***\n",
++ __func__, hc->hc_num);
++
++#endif
++ return;
++ }
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* No need to set the bit in DDMA for disabling the channel */
++ //TODO check it everywhere channel is disabled
++ if (!core_if->core_params->dma_desc_enable)
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++
++ if (!core_if->dma_enable) {
++ /* Check for space in the request queue to issue the halt. */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ nptxsts.d32 = DWC_READ_REG32(&global_regs->gnptxsts);
++ if (nptxsts.b.nptxqspcavail == 0) {
++ hcchar.b.chen = 0;
++ }
++ } else {
++ hptxsts.d32 =
++ DWC_READ_REG32(&host_global_regs->hptxsts);
++ if ((hptxsts.b.ptxqspcavail == 0)
++ || (core_if->queuing_high_bandwidth)) {
++ hcchar.b.chen = 0;
++ }
++ }
++ }
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++
++ hc->halt_status = halt_status;
++
++ if (hcchar.b.chen) {
++ hc->halt_pending = 1;
++ hc->halt_on_queue = 0;
++ } else {
++ hc->halt_on_queue = 1;
++ }
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
++
++ return;
++}
++
++/**
++ * Clears the transfer state for a host channel. This function is normally
++ * called after a transfer is done and the host channel is being released.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param hc Identifies the host channel to clean up.
++ */
++void dwc_otg_hc_cleanup(dwc_otg_core_if_t * core_if, dwc_hc_t * hc)
++{
++ dwc_otg_hc_regs_t *hc_regs;
++
++ hc->xfer_started = 0;
++
++ /*
++ * Clear channel interrupt enables and any unhandled channel interrupt
++ * conditions.
++ */
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ DWC_WRITE_REG32(&hc_regs->hcintmsk, 0);
++ DWC_WRITE_REG32(&hc_regs->hcint, 0xFFFFFFFF);
++#ifdef DEBUG
++ DWC_TIMER_CANCEL(core_if->hc_xfer_timer[hc->hc_num]);
++#endif
++}
++
++/**
++ * Sets the channel property that indicates in which frame a periodic transfer
++ * should occur. This is always set to the _next_ frame. This function has no
++ * effect on non-periodic transfers.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param hc Identifies the host channel to set up and its properties.
++ * @param hcchar Current value of the HCCHAR register for the specified host
++ * channel.
++ */
++static inline void hc_set_even_odd_frame(dwc_otg_core_if_t * core_if,
++ dwc_hc_t * hc, hcchar_data_t * hcchar)
++{
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ hfnum_data_t hfnum;
++ hfnum.d32 =
++ DWC_READ_REG32(&core_if->host_if->host_global_regs->hfnum);
++
++ /* 1 if _next_ frame is odd, 0 if it's even */
++ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
++#ifdef DEBUG
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split
++ && !hc->complete_split) {
++ switch (hfnum.b.frnum & 0x7) {
++ case 7:
++ core_if->hfnum_7_samples++;
++ core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
++ break;
++ case 0:
++ core_if->hfnum_0_samples++;
++ core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
++ break;
++ default:
++ core_if->hfnum_other_samples++;
++ core_if->hfnum_other_frrem_accum +=
++ hfnum.b.frrem;
++ break;
++ }
++ }
++#endif
++ }
++}
++
++#ifdef DEBUG
++void hc_xfer_timeout(void *ptr)
++{
++ hc_xfer_info_t *xfer_info = NULL;
++ int hc_num = 0;
++
++ if (ptr)
++ xfer_info = (hc_xfer_info_t *) ptr;
++
++ if (!xfer_info->hc) {
++ DWC_ERROR("xfer_info->hc = %p\n", xfer_info->hc);
++ return;
++ }
++
++ hc_num = xfer_info->hc->hc_num;
++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
++ DWC_WARN(" start_hcchar_val 0x%08x\n",
++ xfer_info->core_if->start_hcchar_val[hc_num]);
++}
++#endif
++
++void ep_xfer_timeout(void *ptr)
++{
++ ep_xfer_info_t *xfer_info = NULL;
++ int ep_num = 0;
++ dctl_data_t dctl = {.d32 = 0 };
++ gintsts_data_t gintsts = {.d32 = 0 };
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++
++ if (ptr)
++ xfer_info = (ep_xfer_info_t *) ptr;
++
++ if (!xfer_info->ep) {
++ DWC_ERROR("xfer_info->ep = %p\n", xfer_info->ep);
++ return;
++ }
++
++ ep_num = xfer_info->ep->num;
++ DWC_WARN("%s: timeout on endpoit %d\n", __func__, ep_num);
++ /* Put the sate to 2 as it was time outed */
++ xfer_info->state = 2;
++
++ dctl.d32 =
++ DWC_READ_REG32(&xfer_info->core_if->dev_if->dev_global_regs->dctl);
++ gintsts.d32 =
++ DWC_READ_REG32(&xfer_info->core_if->core_global_regs->gintsts);
++ gintmsk.d32 =
++ DWC_READ_REG32(&xfer_info->core_if->core_global_regs->gintmsk);
++
++ if (!gintmsk.b.goutnakeff) {
++ /* Unmask it */
++ gintmsk.b.goutnakeff = 1;
++ DWC_WRITE_REG32(&xfer_info->core_if->core_global_regs->gintmsk,
++ gintmsk.d32);
++
++ }
++
++ if (!gintsts.b.goutnakeff) {
++ dctl.b.sgoutnak = 1;
++ }
++ DWC_WRITE_REG32(&xfer_info->core_if->dev_if->dev_global_regs->dctl,
++ dctl.d32);
++
++}
++
++void set_pid_isoc(dwc_hc_t * hc)
++{
++ /* Set up the initial PID for the transfer. */
++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
++ if (hc->ep_is_in) {
++ if (hc->multi_count == 1) {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ } else if (hc->multi_count == 2) {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++ } else {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
++ }
++ } else {
++ if (hc->multi_count == 1) {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ } else {
++ hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
++ }
++ }
++ } else {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ }
++}
++
++/**
++ * This function does the setup for a data transfer for a host channel and
++ * starts the transfer. May be called in either Slave mode or DMA mode. In
++ * Slave mode, the caller must ensure that there is sufficient space in the
++ * request queue and Tx Data FIFO.
++ *
++ * For an OUT transfer in Slave mode, it loads a data packet into the
++ * appropriate FIFO. If necessary, additional data packets will be loaded in
++ * the Host ISR.
++ *
++ * For an IN transfer in Slave mode, a data packet is requested. The data
++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
++ * additional data packets are requested in the Host ISR.
++ *
++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
++ * register along with a packet count of 1 and the channel is enabled. This
++ * causes a single PING transaction to occur. Other fields in HCTSIZ are
++ * simply set to 0 since no data transfer occurs in this case.
++ *
++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
++ * all the information required to perform the subsequent data transfer. In
++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
++ * controller performs the entire PING protocol, then starts the data
++ * transfer.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param hc Information needed to initialize the host channel. The xfer_len
++ * value may be reduced to accommodate the max widths of the XferSize and
++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
++ * to reflect the final xfer_len value.
++ */
++void dwc_otg_hc_start_transfer(dwc_otg_core_if_t * core_if, dwc_hc_t * hc)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ uint16_t num_packets;
++ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
++ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++ hctsiz.d32 = 0;
++
++ if (hc->do_ping) {
++ if (!core_if->dma_enable) {
++ dwc_otg_hc_do_ping(core_if, hc);
++ hc->xfer_started = 1;
++ return;
++ } else {
++ hctsiz.b.dopng = 1;
++ }
++ }
++
++ if (hc->do_split) {
++ num_packets = 1;
++
++ if (hc->complete_split && !hc->ep_is_in) {
++ /* For CSPLIT OUT Transfer, set the size to 0 so the
++ * core doesn't expect any data written to the FIFO */
++ hc->xfer_len = 0;
++ } else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
++ hc->xfer_len = hc->max_packet;
++ } else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
++ hc->xfer_len = 188;
++ }
++
++ hctsiz.b.xfersize = hc->xfer_len;
++ } else {
++ /*
++ * Ensure that the transfer length and packet count will fit
++ * in the widths allocated for them in the HCTSIZn register.
++ */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure the transfer size is no larger than one
++ * (micro)frame's worth of data. (A check was done
++ * when the periodic transfer was accepted to ensure
++ * that a (micro)frame's worth of data can be
++ * programmed into a channel.)
++ */
++ uint32_t max_periodic_len =
++ hc->multi_count * hc->max_packet;
++ if (hc->xfer_len > max_periodic_len) {
++ hc->xfer_len = max_periodic_len;
++ } else {
++ }
++ } else if (hc->xfer_len > max_hc_xfer_size) {
++ /* Make sure that xfer_len is a multiple of max packet size. */
++ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
++ }
++
++ if (hc->xfer_len > 0) {
++ num_packets =
++ (hc->xfer_len + hc->max_packet -
++ 1) / hc->max_packet;
++ if (num_packets > max_hc_pkt_count) {
++ num_packets = max_hc_pkt_count;
++ hc->xfer_len = num_packets * hc->max_packet;
++ }
++ } else {
++ /* Need 1 packet for transfer length of 0. */
++ num_packets = 1;
++ }
++
++ if (hc->ep_is_in) {
++ /* Always program an integral # of max packets for IN transfers. */
++ hc->xfer_len = num_packets * hc->max_packet;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure that the multi_count field matches the
++ * actual transfer length.
++ */
++ hc->multi_count = num_packets;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
++ set_pid_isoc(hc);
++
++ hctsiz.b.xfersize = hc->xfer_len;
++ }
++
++ hc->start_pkt_count = num_packets;
++ hctsiz.b.pktcnt = num_packets;
++ hctsiz.b.pid = hc->data_pid_start;
++ DWC_WRITE_REG32(&hc_regs->hctsiz, hctsiz.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
++
++ if (core_if->dma_enable) {
++ dwc_dma_t dma_addr;
++ if (hc->align_buff) {
++ dma_addr = hc->align_buff;
++ } else {
++ dma_addr = ((unsigned long)hc->xfer_buff & 0xffffffff);
++ }
++ DWC_WRITE_REG32(&hc_regs->hcdma, dma_addr);
++ }
++
++ /* Start the split */
++ if (hc->do_split) {
++ hcsplt_data_t hcsplt;
++ hcsplt.d32 = DWC_READ_REG32(&hc_regs->hcsplt);
++ hcsplt.b.spltena = 1;
++ DWC_WRITE_REG32(&hc_regs->hcsplt, hcsplt.d32);
++ }
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.multicnt = hc->multi_count;
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++#ifdef DEBUG
++ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, hc->hc_num, hcchar.d32);
++ }
++#endif
++
++ /* Set host channel enable after all other setup is complete. */
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++
++ hc->xfer_started = 1;
++ hc->requests++;
++
++ if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0) {
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(core_if, hc);
++ }
++#ifdef DEBUG
++ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
++ DWC_DEBUGPL(DBG_HCDV, "transfer %d from core_if %p\n",
++ hc->hc_num, core_if);//GRAYG
++ core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
++ core_if->hc_xfer_info[hc->hc_num].hc = hc;
++
++ /* Start a timer for this transfer. */
++ DWC_TIMER_SCHEDULE(core_if->hc_xfer_timer[hc->hc_num], 10000);
++ }
++#endif
++}
++
++/**
++ * This function does the setup for a data transfer for a host channel
++ * and starts the transfer in Descriptor DMA mode.
++ *
++ * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
++ * Sets PID and NTD values. For periodic transfers
++ * initializes SCHED_INFO field with micro-frame bitmap.
++ *
++ * Initializes HCDMA register with descriptor list address and CTD value
++ * then starts the transfer via enabling the channel.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param hc Information needed to initialize the host channel.
++ */
++void dwc_otg_hc_start_transfer_ddma(dwc_otg_core_if_t * core_if, dwc_hc_t * hc)
++{
++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ hcdma_data_t hcdma;
++
++ hctsiz.d32 = 0;
++
++ if (hc->do_ping)
++ hctsiz.b_ddma.dopng = 1;
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
++ set_pid_isoc(hc);
++
++ /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
++ hctsiz.b_ddma.pid = hc->data_pid_start;
++ hctsiz.b_ddma.ntd = hc->ntd - 1; /* 0 - 1 descriptor, 1 - 2 descriptors, etc. */
++ hctsiz.b_ddma.schinfo = hc->schinfo; /* Non-zero only for high-speed interrupt endpoints */
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
++ DWC_DEBUGPL(DBG_HCDV, " NTD: %d\n", hctsiz.b_ddma.ntd);
++
++ DWC_WRITE_REG32(&hc_regs->hctsiz, hctsiz.d32);
++
++ hcdma.d32 = 0;
++ hcdma.b.dma_addr = ((uint32_t) hc->desc_list_addr) >> 11;
++
++ /* Always start from first descriptor. */
++ hcdma.b.ctd = 0;
++ DWC_WRITE_REG32(&hc_regs->hcdma, hcdma.d32);
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.multicnt = hc->multi_count;
++
++#ifdef DEBUG
++ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, hc->hc_num, hcchar.d32);
++ }
++#endif
++
++ /* Set host channel enable after all other setup is complete. */
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++
++ hc->xfer_started = 1;
++ hc->requests++;
++
++#ifdef DEBUG
++ if ((hc->ep_type != DWC_OTG_EP_TYPE_INTR)
++ && (hc->ep_type != DWC_OTG_EP_TYPE_ISOC)) {
++ DWC_DEBUGPL(DBG_HCDV, "DMA transfer %d from core_if %p\n",
++ hc->hc_num, core_if);//GRAYG
++ core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
++ core_if->hc_xfer_info[hc->hc_num].hc = hc;
++ /* Start a timer for this transfer. */
++ DWC_TIMER_SCHEDULE(core_if->hc_xfer_timer[hc->hc_num], 10000);
++ }
++#endif
++
++}
++
++/**
++ * This function continues a data transfer that was started by previous call
++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
++ * sufficient space in the request queue and Tx Data FIFO. This function
++ * should only be called in Slave mode. In DMA mode, the controller acts
++ * autonomously to complete transfers programmed to a host channel.
++ *
++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
++ * if there is any data remaining to be queued. For an IN transfer, another
++ * data packet is always requested. For the SETUP phase of a control transfer,
++ * this function does nothing.
++ *
++ * @return 1 if a new request is queued, 0 if no more requests are required
++ * for this transfer.
++ */
++int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t * core_if, dwc_hc_t * hc)
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++ if (hc->do_split) {
++ /* SPLITs always queue just once per channel */
++ return 0;
++ } else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ /* SETUPs are queued only once since they can't be NAKed. */
++ return 0;
++ } else if (hc->ep_is_in) {
++ /*
++ * Always queue another request for other IN transfers. If
++ * back-to-back INs are issued and NAKs are received for both,
++ * the driver may still be processing the first NAK when the
++ * second NAK is received. When the interrupt handler clears
++ * the NAK interrupt for the first NAK, the second NAK will
++ * not be seen. So we can't depend on the NAK interrupt
++ * handler to requeue a NAKed request. Instead, IN requests
++ * are issued each time this function is called. When the
++ * transfer completes, the extra requests for the channel will
++ * be flushed.
++ */
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs =
++ core_if->host_if->hc_regs[hc->hc_num];
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n",
++ hcchar.d32);
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++ hc->requests++;
++ return 1;
++ } else {
++ /* OUT transfers. */
++ if (hc->xfer_count < hc->xfer_len) {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs;
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++ }
++
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(core_if, hc);
++ hc->requests++;
++ return 1;
++ } else {
++ return 0;
++ }
++ }
++}
++
++/**
++ * Starts a PING transfer. This function should only be called in Slave mode.
++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
++ */
++void dwc_otg_hc_do_ping(dwc_otg_core_if_t * core_if, dwc_hc_t * hc)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++ hctsiz.d32 = 0;
++ hctsiz.b.dopng = 1;
++ hctsiz.b.pktcnt = 1;
++ DWC_WRITE_REG32(&hc_regs->hctsiz, hctsiz.d32);
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++}
++
++/*
++ * This function writes a packet into the Tx FIFO associated with the Host
++ * Channel. For a channel associated with a non-periodic EP, the non-periodic
++ * Tx FIFO is written. For a channel associated with a periodic EP, the
++ * periodic Tx FIFO is written. This function should only be called in Slave
++ * mode.
++ *
++ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
++ * then number of bytes written to the Tx FIFO.
++ */
++void dwc_otg_hc_write_packet(dwc_otg_core_if_t * core_if, dwc_hc_t * hc)
++{
++ uint32_t i;
++ uint32_t remaining_count;
++ uint32_t byte_count;
++ uint32_t dword_count;
++
++ uint32_t *data_buff = (uint32_t *) (hc->xfer_buff);
++ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
++
++ remaining_count = hc->xfer_len - hc->xfer_count;
++ if (remaining_count > hc->max_packet) {
++ byte_count = hc->max_packet;
++ } else {
++ byte_count = remaining_count;
++ }
++
++ dword_count = (byte_count + 3) / 4;
++
++ if ((((unsigned long)data_buff) & 0x3) == 0) {
++ /* xfer_buff is DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++) {
++ DWC_WRITE_REG32(data_fifo, *data_buff);
++ }
++ } else {
++ /* xfer_buff is not DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++) {
++ uint32_t data;
++ data =
++ (data_buff[0] | data_buff[1] << 8 | data_buff[2] <<
++ 16 | data_buff[3] << 24);
++ DWC_WRITE_REG32(data_fifo, data);
++ }
++ }
++
++ hc->xfer_count += byte_count;
++ hc->xfer_buff += byte_count;
++}
++
++/**
++ * Gets the current USB frame number. This is the frame number from the last
++ * SOF packet.
++ */
++uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t * core_if)
++{
++ dsts_data_t dsts;
++ dsts.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++
++ /* read current frame/microframe number from DSTS register */
++ return dsts.b.soffn;
++}
++
++/**
++ * Calculates and gets the frame Interval value of HFIR register according PHY
++ * type and speed.The application can modify a value of HFIR register only after
++ * the Port Enable bit of the Host Port Control and Status register
++ * (HPRT.PrtEnaPort) has been set.
++*/
++
++uint32_t calc_frame_interval(dwc_otg_core_if_t * core_if)
++{
++ gusbcfg_data_t usbcfg;
++ hwcfg2_data_t hwcfg2;
++ hprt0_data_t hprt0;
++ int clock = 60; // default value
++ usbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ hwcfg2.d32 = DWC_READ_REG32(&core_if->core_global_regs->ghwcfg2);
++ hprt0.d32 = DWC_READ_REG32(core_if->host_if->hprt0);
++ if (!usbcfg.b.physel && usbcfg.b.ulpi_utmi_sel && !usbcfg.b.phyif)
++ clock = 60;
++ if (usbcfg.b.physel && hwcfg2.b.fs_phy_type == 3)
++ clock = 48;
++ if (!usbcfg.b.phylpwrclksel && !usbcfg.b.physel &&
++ !usbcfg.b.ulpi_utmi_sel && usbcfg.b.phyif)
++ clock = 30;
++ if (!usbcfg.b.phylpwrclksel && !usbcfg.b.physel &&
++ !usbcfg.b.ulpi_utmi_sel && !usbcfg.b.phyif)
++ clock = 60;
++ if (usbcfg.b.phylpwrclksel && !usbcfg.b.physel &&
++ !usbcfg.b.ulpi_utmi_sel && usbcfg.b.phyif)
++ clock = 48;
++ if (usbcfg.b.physel && !usbcfg.b.phyif && hwcfg2.b.fs_phy_type == 2)
++ clock = 48;
++ if (usbcfg.b.physel && hwcfg2.b.fs_phy_type == 1)
++ clock = 48;
++ if (hprt0.b.prtspd == 0)
++ /* High speed case */
++ return 125 * clock;
++ else
++ /* FS/LS case */
++ return 1000 * clock;
++}
++
++/**
++ * This function reads a setup packet from the Rx FIFO into the destination
++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
++ * Interrupt routine when a SETUP packet has been received in Slave mode.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dest Destination buffer for packet data.
++ */
++void dwc_otg_read_setup_packet(dwc_otg_core_if_t * core_if, uint32_t * dest)
++{
++ device_grxsts_data_t status;
++ /* Get the 8 bytes of a setup transaction data */
++
++ /* Pop 2 DWORDS off the receive data FIFO into memory */
++ dest[0] = DWC_READ_REG32(core_if->data_fifo[0]);
++ dest[1] = DWC_READ_REG32(core_if->data_fifo[0]);
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ status.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->grxstsp);
++ DWC_DEBUGPL(DBG_ANY,
++ "EP:%d BCnt:%d " "pktsts:%x Frame:%d(0x%0x)\n",
++ status.b.epnum, status.b.bcnt, status.b.pktsts,
++ status.b.fn, status.b.fn);
++ }
++}
++
++/**
++ * This function enables EP0 OUT to receive SETUP packets and configures EP0
++ * IN for transmitting packets. It is normally called when the
++ * "Enumeration Done" interrupt occurs.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP0 data.
++ */
++void dwc_otg_ep0_activate(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dsts_data_t dsts;
++ depctl_data_t diepctl;
++ depctl_data_t doepctl;
++ dctl_data_t dctl = {.d32 = 0 };
++
++ ep->stp_rollover = 0;
++ /* Read the Device Status and Endpoint 0 Control registers */
++ dsts.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->dsts);
++ diepctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[0]->diepctl);
++ doepctl.d32 = DWC_READ_REG32(&dev_if->out_ep_regs[0]->doepctl);
++
++ /* Set the MPS of the IN EP based on the enumeration speed */
++ switch (dsts.b.enumspd) {
++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
++ break;
++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
++ break;
++ }
++
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
++
++ /* Enable OUT EP for receive */
++ if (core_if->snpsid <= OTG_CORE_REV_2_94a) {
++ doepctl.b.epena = 1;
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
++ }
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n",
++ DWC_READ_REG32(&dev_if->out_ep_regs[0]->doepctl));
++ DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n",
++ DWC_READ_REG32(&dev_if->in_ep_regs[0]->diepctl));
++#endif
++ dctl.b.cgnpinnak = 1;
++
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++ DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n",
++ DWC_READ_REG32(&dev_if->dev_global_regs->dctl));
++
++}
++
++/**
++ * This function activates an EP. The Device EP control register for
++ * the EP is configured as defined in the ep structure. Note: This
++ * function is not used for EP0.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to activate.
++ */
++void dwc_otg_ep_activate(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ depctl_data_t depctl;
++ volatile uint32_t *addr;
++ daint_data_t daintmsk = {.d32 = 0 };
++ dcfg_data_t dcfg;
++ uint8_t i;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
++ (ep->is_in ? "IN" : "OUT"));
++
++#ifdef DWC_UTE_PER_IO
++ ep->xiso_frame_num = 0xFFFFFFFF;
++ ep->xiso_active_xfers = 0;
++ ep->xiso_queued_xfers = 0;
++#endif
++ /* Read DEPCTLn register */
++ if (ep->is_in == 1) {
++ addr = &dev_if->in_ep_regs[ep->num]->diepctl;
++ daintmsk.ep.in = 1 << ep->num;
++ } else {
++ addr = &dev_if->out_ep_regs[ep->num]->doepctl;
++ daintmsk.ep.out = 1 << ep->num;
++ }
++
++ /* If the EP is already active don't change the EP Control
++ * register. */
++ depctl.d32 = DWC_READ_REG32(addr);
++ if (!depctl.b.usbactep) {
++ depctl.b.mps = ep->maxpacket;
++ depctl.b.eptype = ep->type;
++ depctl.b.txfnum = ep->tx_fifo_num;
++
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ depctl.b.setd0pid = 1; // ???
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ depctl.b.usbactep = 1;
++
++ /* Update nextep_seq array and EPMSCNT in DCFG*/
++ if (!(depctl.b.eptype & 1) && (ep->is_in == 1)) { // NP IN EP
++ for (i = 0; i <= core_if->dev_if->num_in_eps; i++) {
++ if (core_if->nextep_seq[i] == core_if->first_in_nextep_seq)
++ break;
++ }
++ core_if->nextep_seq[i] = ep->num;
++ core_if->nextep_seq[ep->num] = core_if->first_in_nextep_seq;
++ depctl.b.nextep = core_if->nextep_seq[ep->num];
++ dcfg.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.epmscnt++;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "%s first_in_nextep_seq= %2d; nextep_seq[]:\n",
++ __func__, core_if->first_in_nextep_seq);
++ for (i=0; i <= core_if->dev_if->num_in_eps; i++) {
++ DWC_DEBUGPL(DBG_PCDV, "%2d\n",
++ core_if->nextep_seq[i]);
++ }
++
++ }
++
++
++ DWC_WRITE_REG32(addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", DWC_READ_REG32(addr));
++ }
++
++ /* Enable the Interrupt for this EP */
++ if (core_if->multiproc_int_enable) {
++ if (ep->is_in == 1) {
++ diepmsk_data_t diepmsk = {.d32 = 0 };
++ diepmsk.b.xfercompl = 1;
++ diepmsk.b.timeout = 1;
++ diepmsk.b.epdisabled = 1;
++ diepmsk.b.ahberr = 1;
++ diepmsk.b.intknepmis = 1;
++ if (!core_if->en_multiple_tx_fifo && core_if->dma_enable)
++ diepmsk.b.intknepmis = 0;
++ diepmsk.b.txfifoundrn = 1; //?????
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ diepmsk.b.nak = 1;
++ }
++
++
++
++/*
++ if (core_if->dma_desc_enable) {
++ diepmsk.b.bna = 1;
++ }
++*/
++/*
++ if (core_if->dma_enable) {
++ doepmsk.b.nak = 1;
++ }
++*/
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->
++ diepeachintmsk[ep->num], diepmsk.d32);
++
++ } else {
++ doepmsk_data_t doepmsk = {.d32 = 0 };
++ doepmsk.b.xfercompl = 1;
++ doepmsk.b.ahberr = 1;
++ doepmsk.b.epdisabled = 1;
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC)
++ doepmsk.b.outtknepdis = 1;
++
++/*
++
++ if (core_if->dma_desc_enable) {
++ doepmsk.b.bna = 1;
++ }
++*/
++/*
++ doepmsk.b.babble = 1;
++ doepmsk.b.nyet = 1;
++ doepmsk.b.nak = 1;
++*/
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->
++ doepeachintmsk[ep->num], doepmsk.d32);
++ }
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->deachintmsk,
++ 0, daintmsk.d32);
++ } else {
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ if (ep->is_in) {
++ diepmsk_data_t diepmsk = {.d32 = 0 };
++ diepmsk.b.nak = 1;
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
++ } else {
++ doepmsk_data_t doepmsk = {.d32 = 0 };
++ doepmsk.b.outtknepdis = 1;
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->doepmsk, 0, doepmsk.d32);
++ }
++ }
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->daintmsk,
++ 0, daintmsk.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n",
++ DWC_READ_REG32(&dev_if->dev_global_regs->daintmsk));
++
++ ep->stall_clear_flag = 0;
++
++ return;
++}
++
++/**
++ * This function deactivates an EP. This is done by clearing the USB Active
++ * EP bit in the Device EP control register. Note: This function is not used
++ * for EP0. EP0 cannot be deactivated.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to deactivate.
++ */
++void dwc_otg_ep_deactivate(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ depctl_data_t depctl = {.d32 = 0 };
++ volatile uint32_t *addr;
++ daint_data_t daintmsk = {.d32 = 0 };
++ dcfg_data_t dcfg;
++ uint8_t i = 0;
++
++#ifdef DWC_UTE_PER_IO
++ ep->xiso_frame_num = 0xFFFFFFFF;
++ ep->xiso_active_xfers = 0;
++ ep->xiso_queued_xfers = 0;
++#endif
++
++ /* Read DEPCTLn register */
++ if (ep->is_in == 1) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ daintmsk.ep.in = 1 << ep->num;
++ } else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ daintmsk.ep.out = 1 << ep->num;
++ }
++
++ depctl.d32 = DWC_READ_REG32(addr);
++
++ depctl.b.usbactep = 0;
++
++ /* Update nextep_seq array and EPMSCNT in DCFG*/
++ if (!(depctl.b.eptype & 1) && ep->is_in == 1) { // NP EP IN
++ for (i = 0; i <= core_if->dev_if->num_in_eps; i++) {
++ if (core_if->nextep_seq[i] == ep->num)
++ break;
++ }
++ core_if->nextep_seq[i] = core_if->nextep_seq[ep->num];
++ if (core_if->first_in_nextep_seq == ep->num)
++ core_if->first_in_nextep_seq = i;
++ core_if->nextep_seq[ep->num] = 0xff;
++ depctl.b.nextep = 0;
++ dcfg.d32 =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++ dcfg.b.epmscnt--;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dcfg,
++ dcfg.d32);
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "%s first_in_nextep_seq= %2d; nextep_seq[]:\n",
++ __func__, core_if->first_in_nextep_seq);
++ for (i=0; i <= core_if->dev_if->num_in_eps; i++) {
++ DWC_DEBUGPL(DBG_PCDV, "%2d\n", core_if->nextep_seq[i]);
++ }
++ }
++
++ if (ep->is_in == 1)
++ depctl.b.txfnum = 0;
++
++ if (core_if->dma_desc_enable)
++ depctl.b.epdis = 1;
++
++ DWC_WRITE_REG32(addr, depctl.d32);
++ depctl.d32 = DWC_READ_REG32(addr);
++ if (core_if->dma_enable && ep->type == DWC_OTG_EP_TYPE_ISOC
++ && depctl.b.epena) {
++ depctl_data_t depctl = {.d32 = 0};
++ if (ep->is_in) {
++ diepint_data_t diepint = {.d32 = 0};
++
++ depctl.b.snak = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[ep->num]->
++ diepctl, depctl.d32);
++ do {
++ dwc_udelay(10);
++ diepint.d32 =
++ DWC_READ_REG32(&core_if->
++ dev_if->in_ep_regs[ep->num]->
++ diepint);
++ } while (!diepint.b.inepnakeff);
++ diepint.b.inepnakeff = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[ep->num]->
++ diepint, diepint.d32);
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[ep->num]->
++ diepctl, depctl.d32);
++ do {
++ dwc_udelay(10);
++ diepint.d32 =
++ DWC_READ_REG32(&core_if->
++ dev_if->in_ep_regs[ep->num]->
++ diepint);
++ } while (!diepint.b.epdisabled);
++ diepint.b.epdisabled = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[ep->num]->
++ diepint, diepint.d32);
++ } else {
++ dctl_data_t dctl = {.d32 = 0};
++ gintmsk_data_t gintsts = {.d32 = 0};
++ doepint_data_t doepint = {.d32 = 0};
++ dctl.b.sgoutnak = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ dctl, 0, dctl.d32);
++ do {
++ dwc_udelay(10);
++ gintsts.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ } while (!gintsts.b.goutnakeff);
++ gintsts.d32 = 0;
++ gintsts.b.goutnakeff = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl, depctl.d32);
++ do
++ {
++ dwc_udelay(10);
++ doepint.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[ep->num]->doepint);
++ } while (!doepint.b.epdisabled);
++
++ doepint.b.epdisabled = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[ep->num]->doepint, doepint.d32);
++
++ dctl.d32 = 0;
++ dctl.b.cgoutnak = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ }
++ }
++
++ /* Disable the Interrupt for this EP */
++ if (core_if->multiproc_int_enable) {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->deachintmsk,
++ daintmsk.d32, 0);
++
++ if (ep->is_in == 1) {
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->
++ diepeachintmsk[ep->num], 0);
++ } else {
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->
++ doepeachintmsk[ep->num], 0);
++ }
++ } else {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->daintmsk,
++ daintmsk.d32, 0);
++ }
++
++}
++
++/**
++ * This function initializes dma descriptor chain.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++static void init_dma_desc_chain(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ dwc_otg_dev_dma_desc_t *dma_desc;
++ uint32_t offset;
++ uint32_t xfer_est;
++ int i;
++ unsigned maxxfer_local, total_len;
++
++ if (!ep->is_in && ep->type == DWC_OTG_EP_TYPE_INTR &&
++ (ep->maxpacket%4)) {
++ maxxfer_local = ep->maxpacket;
++ total_len = ep->xfer_len;
++ } else {
++ maxxfer_local = ep->maxxfer;
++ total_len = ep->total_len;
++ }
++
++ ep->desc_cnt = (total_len / maxxfer_local) +
++ ((total_len % maxxfer_local) ? 1 : 0);
++
++ if (!ep->desc_cnt)
++ ep->desc_cnt = 1;
++
++ if (ep->desc_cnt > MAX_DMA_DESC_CNT)
++ ep->desc_cnt = MAX_DMA_DESC_CNT;
++
++ dma_desc = ep->desc_addr;
++ if (maxxfer_local == ep->maxpacket) {
++ if ((total_len % maxxfer_local) &&
++ (total_len/maxxfer_local < MAX_DMA_DESC_CNT)) {
++ xfer_est = (ep->desc_cnt - 1) * maxxfer_local +
++ (total_len % maxxfer_local);
++ } else
++ xfer_est = ep->desc_cnt * maxxfer_local;
++ } else
++ xfer_est = total_len;
++ offset = 0;
++ for (i = 0; i < ep->desc_cnt; ++i) {
++ /** DMA Descriptor Setup */
++ if (xfer_est > maxxfer_local) {
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 0;
++ dma_desc->status.b.ioc = 0;
++ dma_desc->status.b.sp = 0;
++ dma_desc->status.b.bytes = maxxfer_local;
++ dma_desc->buf = ep->dma_addr + offset;
++ dma_desc->status.b.sts = 0;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ xfer_est -= maxxfer_local;
++ offset += maxxfer_local;
++ } else {
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ if (ep->is_in) {
++ dma_desc->status.b.sp =
++ (xfer_est %
++ ep->maxpacket) ? 1 : ((ep->
++ sent_zlp) ? 1 : 0);
++ dma_desc->status.b.bytes = xfer_est;
++ } else {
++ if (maxxfer_local == ep->maxpacket)
++ dma_desc->status.b.bytes = xfer_est;
++ else
++ dma_desc->status.b.bytes =
++ xfer_est + ((4 - (xfer_est & 0x3)) & 0x3);
++ }
++
++ dma_desc->buf = ep->dma_addr + offset;
++ dma_desc->status.b.sts = 0;
++ dma_desc->status.b.bs = BS_HOST_READY;
++ }
++ dma_desc++;
++ }
++}
++/**
++ * This function is called when to write ISOC data into appropriate dedicated
++ * periodic FIFO.
++ */
++static int32_t write_isoc_tx_fifo(dwc_otg_core_if_t * core_if, dwc_ep_t * dwc_ep)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_dev_in_ep_regs_t *ep_regs;
++ dtxfsts_data_t txstatus = {.d32 = 0 };
++ uint32_t len = 0;
++ int epnum = dwc_ep->num;
++ int dwords;
++
++ DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %d \n", epnum);
++
++ ep_regs = core_if->dev_if->in_ep_regs[epnum];
++
++ len = dwc_ep->xfer_len - dwc_ep->xfer_count;
++
++ if (len > dwc_ep->maxpacket) {
++ len = dwc_ep->maxpacket;
++ }
++
++ dwords = (len + 3) / 4;
++
++ /* While there is space in the queue and space in the FIFO and
++ * More data to tranfer, Write packets to the Tx FIFO */
++ txstatus.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
++
++ while (txstatus.b.txfspcavail > dwords &&
++ dwc_ep->xfer_count < dwc_ep->xfer_len && dwc_ep->xfer_len != 0) {
++ /* Write the FIFO */
++ dwc_otg_ep_write_packet(core_if, dwc_ep, 0);
++
++ len = dwc_ep->xfer_len - dwc_ep->xfer_count;
++ if (len > dwc_ep->maxpacket) {
++ len = dwc_ep->maxpacket;
++ }
++
++ dwords = (len + 3) / 4;
++ txstatus.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "dtxfsts[%d]=0x%08x\n", epnum,
++ txstatus.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n", epnum,
++ DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dtxfsts));
++
++ return 1;
++}
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++
++void dwc_otg_ep_start_transfer(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ depctl_data_t depctl;
++ deptsiz_data_t deptsiz;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p, total_len = %d\n",
++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,
++ ep->total_len);
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[ep->num];
++
++ gnptxsts_data_t gtxstatus;
++
++ gtxstatus.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->gnptxsts);
++
++ if (core_if->en_multiple_tx_fifo == 0
++ && gtxstatus.b.nptxqspcavail == 0 && !core_if->dma_enable) {
++#ifdef DEBUG
++ DWC_PRINTF("TX Queue Full (0x%0x)\n", gtxstatus.d32);
++#endif
++ return;
++ }
++
++ depctl.d32 = DWC_READ_REG32(&(in_regs->diepctl));
++ deptsiz.d32 = DWC_READ_REG32(&(in_regs->dieptsiz));
++
++ if (ep->maxpacket > ep->maxxfer / MAX_PKT_CNT)
++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
++ ep->maxxfer : (ep->total_len - ep->xfer_len);
++ else
++ ep->xfer_len += (MAX_PKT_CNT * ep->maxpacket < (ep->total_len - ep->xfer_len)) ?
++ MAX_PKT_CNT * ep->maxpacket : (ep->total_len - ep->xfer_len);
++
++
++ /* Zero Length Packet? */
++ if ((ep->xfer_len - ep->xfer_count) == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - ep->xfer_count - 1 +
++ ep->maxpacket) / ep->maxpacket;
++ if (deptsiz.b.pktcnt > MAX_PKT_CNT) {
++ deptsiz.b.pktcnt = MAX_PKT_CNT;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++ }
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC)
++ deptsiz.b.mc = deptsiz.b.pktcnt;
++ }
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable == 0) {
++ if (ep->type != DWC_OTG_EP_TYPE_ISOC)
++ deptsiz.b.mc = 1;
++ DWC_WRITE_REG32(&in_regs->dieptsiz,
++ deptsiz.d32);
++ DWC_WRITE_REG32(&(in_regs->diepdma),
++ (uint32_t) ep->dma_addr);
++ } else {
++#ifdef DWC_UTE_CFI
++ /* The descriptor chain should be already initialized by now */
++ if (ep->buff_mode != BM_STANDARD) {
++ DWC_WRITE_REG32(&in_regs->diepdma,
++ ep->descs_dma_addr);
++ } else {
++#endif
++ init_dma_desc_chain(core_if, ep);
++ /** DIEPDMAn Register write */
++ DWC_WRITE_REG32(&in_regs->diepdma,
++ ep->dma_desc_addr);
++#ifdef DWC_UTE_CFI
++ }
++#endif
++ }
++ } else {
++ DWC_WRITE_REG32(&in_regs->dieptsiz, deptsiz.d32);
++ if (ep->type != DWC_OTG_EP_TYPE_ISOC) {
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt,
++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
++ * the data will be written into the fifo by the ISR.
++ */
++ if (core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ DWC_MODIFY_REG32
++ (&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ } else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if (ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk = 1 << ep->num;
++ DWC_MODIFY_REG32
++ (&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++
++ }
++ }
++ } else {
++ write_isoc_tx_fifo(core_if, ep);
++ }
++ }
++ if (!core_if->core_params->en_multiple_tx_fifo && core_if->dma_enable)
++ depctl.b.nextep = core_if->nextep_seq[ep->num];
++
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ dsts_data_t dsts = {.d32 = 0};
++ if (ep->bInterval == 1) {
++ dsts.d32 =
++ DWC_READ_REG32(&core_if->dev_if->
++ dev_global_regs->dsts);
++ ep->frame_num = dsts.b.soffn + ep->bInterval;
++ if (ep->frame_num > 0x3FFF) {
++ ep->frm_overrun = 1;
++ ep->frame_num &= 0x3FFF;
++ } else
++ ep->frm_overrun = 0;
++ if (ep->frame_num & 0x1) {
++ depctl.b.setd1pid = 1;
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ }
++ }
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ DWC_WRITE_REG32(&in_regs->diepctl, depctl.d32);
++
++ } else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[ep->num];
++
++ depctl.d32 = DWC_READ_REG32(&(out_regs->doepctl));
++ deptsiz.d32 = DWC_READ_REG32(&(out_regs->doeptsiz));
++
++ if (!core_if->dma_desc_enable) {
++ if (ep->maxpacket > ep->maxxfer / MAX_PKT_CNT)
++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
++ ep->maxxfer : (ep->total_len - ep->xfer_len);
++ else
++ ep->xfer_len += (MAX_PKT_CNT * ep->maxpacket < (ep->total_len
++ - ep->xfer_len)) ? MAX_PKT_CNT * ep->maxpacket : (ep->total_len - ep->xfer_len);
++ }
++
++ /* Program the transfer size and packet count as follows:
++ *
++ * pktcnt = N
++ * xfersize = N * maxpacket
++ */
++ if ((ep->xfer_len - ep->xfer_count) == 0) {
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - ep->xfer_count +
++ (ep->maxpacket - 1)) / ep->maxpacket;
++ if (deptsiz.b.pktcnt > MAX_PKT_CNT) {
++ deptsiz.b.pktcnt = MAX_PKT_CNT;
++ }
++ if (!core_if->dma_desc_enable) {
++ ep->xfer_len =
++ deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
++ }
++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
++ ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if (core_if->dma_enable) {
++ if (!core_if->dma_desc_enable) {
++ DWC_WRITE_REG32(&out_regs->doeptsiz,
++ deptsiz.d32);
++
++ DWC_WRITE_REG32(&(out_regs->doepdma),
++ (uint32_t) ep->dma_addr);
++ } else {
++#ifdef DWC_UTE_CFI
++ /* The descriptor chain should be already initialized by now */
++ if (ep->buff_mode != BM_STANDARD) {
++ DWC_WRITE_REG32(&out_regs->doepdma,
++ ep->descs_dma_addr);
++ } else {
++#endif
++ /** This is used for interrupt out transfers*/
++ if (!ep->xfer_len)
++ ep->xfer_len = ep->total_len;
++ init_dma_desc_chain(core_if, ep);
++
++ if (core_if->core_params->dev_out_nak) {
++ if (ep->type == DWC_OTG_EP_TYPE_BULK) {
++ deptsiz.b.pktcnt = (ep->total_len +
++ (ep->maxpacket - 1)) / ep->maxpacket;
++ deptsiz.b.xfersize = ep->total_len;
++ /* Remember initial value of doeptsiz */
++ core_if->start_doeptsiz_val[ep->num] = deptsiz.d32;
++ DWC_WRITE_REG32(&out_regs->doeptsiz,
++ deptsiz.d32);
++ }
++ }
++ /** DOEPDMAn Register write */
++ DWC_WRITE_REG32(&out_regs->doepdma,
++ ep->dma_desc_addr);
++#ifdef DWC_UTE_CFI
++ }
++#endif
++ }
++ } else {
++ DWC_WRITE_REG32(&out_regs->doeptsiz, deptsiz.d32);
++ }
++
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ dsts_data_t dsts = {.d32 = 0};
++ if (ep->bInterval == 1) {
++ dsts.d32 =
++ DWC_READ_REG32(&core_if->dev_if->
++ dev_global_regs->dsts);
++ ep->frame_num = dsts.b.soffn + ep->bInterval;
++ if (ep->frame_num > 0x3FFF) {
++ ep->frm_overrun = 1;
++ ep->frame_num &= 0x3FFF;
++ } else
++ ep->frm_overrun = 0;
++
++ if (ep->frame_num & 0x1) {
++ depctl.b.setd1pid = 1;
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ }
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++
++ DWC_WRITE_REG32(&out_regs->doepctl, depctl.d32);
++
++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
++ DWC_READ_REG32(&out_regs->doepctl),
++ DWC_READ_REG32(&out_regs->doeptsiz));
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->
++ daintmsk),
++ DWC_READ_REG32(&core_if->core_global_regs->
++ gintmsk));
++
++ /* Timer is scheduling only for out bulk transfers for
++ * "Device DDMA OUT NAK Enhancement" feature to inform user
++ * about received data payload in case of timeout
++ */
++ if (core_if->core_params->dev_out_nak) {
++ if (ep->type == DWC_OTG_EP_TYPE_BULK) {
++ core_if->ep_xfer_info[ep->num].core_if = core_if;
++ core_if->ep_xfer_info[ep->num].ep = ep;
++ core_if->ep_xfer_info[ep->num].state = 1;
++
++ /* Start a timer for this transfer. */
++ DWC_TIMER_SCHEDULE(core_if->ep_xfer_timer[ep->num], 10000);
++ }
++ }
++ }
++}
++
++/**
++ * This function setup a zero length transfer in Buffer DMA and
++ * Slave modes for usb requests with zero field set
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++
++ depctl_data_t depctl;
++ deptsiz_data_t deptsiz;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
++ DWC_PRINTF("zero length transfer is called\n");
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[ep->num];
++
++ depctl.d32 = DWC_READ_REG32(&(in_regs->diepctl));
++ deptsiz.d32 = DWC_READ_REG32(&(in_regs->dieptsiz));
++
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable == 0) {
++ deptsiz.b.mc = 1;
++ DWC_WRITE_REG32(&in_regs->dieptsiz,
++ deptsiz.d32);
++ DWC_WRITE_REG32(&(in_regs->diepdma),
++ (uint32_t) ep->dma_addr);
++ }
++ } else {
++ DWC_WRITE_REG32(&in_regs->dieptsiz, deptsiz.d32);
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt,
++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
++ * the data will be written into the fifo by the ISR.
++ */
++ if (core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ } else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if (ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk = 1 << ep->num;
++ DWC_MODIFY_REG32(&core_if->
++ dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++ }
++ }
++ }
++
++ if (!core_if->core_params->en_multiple_tx_fifo && core_if->dma_enable)
++ depctl.b.nextep = core_if->nextep_seq[ep->num];
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ DWC_WRITE_REG32(&in_regs->diepctl, depctl.d32);
++
++ } else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[ep->num];
++
++ depctl.d32 = DWC_READ_REG32(&(out_regs->doepctl));
++ deptsiz.d32 = DWC_READ_REG32(&(out_regs->doeptsiz));
++
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++
++ if (core_if->dma_enable) {
++ if (!core_if->dma_desc_enable) {
++ DWC_WRITE_REG32(&out_regs->doeptsiz,
++ deptsiz.d32);
++
++ DWC_WRITE_REG32(&(out_regs->doepdma),
++ (uint32_t) ep->dma_addr);
++ }
++ } else {
++ DWC_WRITE_REG32(&out_regs->doeptsiz, deptsiz.d32);
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++
++ DWC_WRITE_REG32(&out_regs->doepctl, depctl.d32);
++
++ }
++}
++
++/**
++ * This function does the setup for a data transfer for EP0 and starts
++ * the transfer. For an IN transfer, the packets will be loaded into
++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
++ * unloaded from the Rx FIFO in the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP0 data.
++ */
++void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ depctl_data_t depctl;
++ deptsiz0_data_t deptsiz;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ dwc_otg_dev_dma_desc_t *dma_desc;
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p \n",
++ ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
++
++ ep->total_len = ep->xfer_len;
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[0];
++
++ gnptxsts_data_t gtxstatus;
++
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ depctl.d32 = DWC_READ_REG32(&in_regs->diepctl);
++ if (depctl.b.epena)
++ return;
++ }
++
++ gtxstatus.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->gnptxsts);
++
++ /* If dedicated FIFO every time flush fifo before enable ep*/
++ if (core_if->en_multiple_tx_fifo && core_if->snpsid >= OTG_CORE_REV_3_00a)
++ dwc_otg_flush_tx_fifo(core_if, ep->tx_fifo_num);
++
++ if (core_if->en_multiple_tx_fifo == 0
++ && gtxstatus.b.nptxqspcavail == 0
++ && !core_if->dma_enable) {
++#ifdef DEBUG
++ deptsiz.d32 = DWC_READ_REG32(&in_regs->dieptsiz);
++ DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n",
++ DWC_READ_REG32(&in_regs->diepctl));
++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
++ deptsiz.d32,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ DWC_PRINTF("TX Queue or FIFO Full (0x%0x)\n",
++ gtxstatus.d32);
++#endif
++ return;
++ }
++
++ depctl.d32 = DWC_READ_REG32(&in_regs->diepctl);
++ deptsiz.d32 = DWC_READ_REG32(&in_regs->dieptsiz);
++
++ /* Zero Length Packet? */
++ if (ep->xfer_len == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ } else {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ if (ep->xfer_len > ep->maxpacket) {
++ ep->xfer_len = ep->maxpacket;
++ deptsiz.b.xfersize = ep->maxpacket;
++ } else {
++ deptsiz.b.xfersize = ep->xfer_len;
++ }
++ deptsiz.b.pktcnt = 1;
++
++ }
++ DWC_DEBUGPL(DBG_PCDV,
++ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
++ deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable == 0) {
++ DWC_WRITE_REG32(&in_regs->dieptsiz,
++ deptsiz.d32);
++
++ DWC_WRITE_REG32(&(in_regs->diepdma),
++ (uint32_t) ep->dma_addr);
++ } else {
++ dma_desc = core_if->dev_if->in_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.sp =
++ (ep->xfer_len == ep->maxpacket) ? 0 : 1;
++ dma_desc->status.b.bytes = ep->xfer_len;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.sts = 0;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DIEPDMA0 Register write */
++ DWC_WRITE_REG32(&in_regs->diepdma,
++ core_if->
++ dev_if->dma_in_desc_addr);
++ }
++ } else {
++ DWC_WRITE_REG32(&in_regs->dieptsiz, deptsiz.d32);
++ }
++
++ if (!core_if->core_params->en_multiple_tx_fifo && core_if->dma_enable)
++ depctl.b.nextep = core_if->nextep_seq[ep->num];
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ DWC_WRITE_REG32(&in_regs->diepctl, depctl.d32);
++
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!core_if->dma_enable) {
++ if (core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ } else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if (ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk |= 1 << ep->num;
++ DWC_MODIFY_REG32(&core_if->
++ dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++ }
++ }
++ }
++ } else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[0];
++
++ depctl.d32 = DWC_READ_REG32(&out_regs->doepctl);
++ deptsiz.d32 = DWC_READ_REG32(&out_regs->doeptsiz);
++
++ /* Program the transfer size and packet count as follows:
++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
++ * pktcnt = N */
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a)
++ deptsiz.b.supcnt = 3;
++
++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if (core_if->dma_enable) {
++ if (!core_if->dma_desc_enable) {
++ DWC_WRITE_REG32(&out_regs->doeptsiz,
++ deptsiz.d32);
++
++ DWC_WRITE_REG32(&(out_regs->doepdma),
++ (uint32_t) ep->dma_addr);
++ } else {
++ dma_desc = core_if->dev_if->out_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ dma_desc->status.b.mtrf = 0;
++ dma_desc->status.b.sr = 0;
++ }
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.bytes = ep->maxpacket;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.sts = 0;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DOEPDMA0 Register write */
++ DWC_WRITE_REG32(&out_regs->doepdma,
++ core_if->dev_if->
++ dma_out_desc_addr);
++ }
++ } else {
++ DWC_WRITE_REG32(&out_regs->doeptsiz, deptsiz.d32);
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ DWC_WRITE_REG32(&(out_regs->doepctl), depctl.d32);
++ }
++}
++
++/**
++ * This function continues control IN transfers started by
++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
++ * bit for the packet count.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP0 data.
++ */
++void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ depctl_data_t depctl;
++ deptsiz0_data_t deptsiz;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ dwc_otg_dev_dma_desc_t *dma_desc;
++
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[0];
++ gnptxsts_data_t tx_status = {.d32 = 0 };
++
++ tx_status.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->gnptxsts);
++ /** @todo Should there be check for room in the Tx
++ * Status Queue. If not remove the code above this comment. */
++
++ depctl.d32 = DWC_READ_REG32(&in_regs->diepctl);
++ deptsiz.d32 = DWC_READ_REG32(&in_regs->dieptsiz);
++
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++
++ if (core_if->dma_desc_enable == 0) {
++ deptsiz.b.xfersize =
++ (ep->total_len - ep->xfer_count) >
++ ep->maxpacket ? ep->maxpacket : (ep->total_len -
++ ep->xfer_count);
++ deptsiz.b.pktcnt = 1;
++ if (core_if->dma_enable == 0) {
++ ep->xfer_len += deptsiz.b.xfersize;
++ } else {
++ ep->xfer_len = deptsiz.b.xfersize;
++ }
++ DWC_WRITE_REG32(&in_regs->dieptsiz, deptsiz.d32);
++ } else {
++ ep->xfer_len =
++ (ep->total_len - ep->xfer_count) >
++ ep->maxpacket ? ep->maxpacket : (ep->total_len -
++ ep->xfer_count);
++
++ dma_desc = core_if->dev_if->in_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.sp =
++ (ep->xfer_len == ep->maxpacket) ? 0 : 1;
++ dma_desc->status.b.bytes = ep->xfer_len;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.sts = 0;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DIEPDMA0 Register write */
++ DWC_WRITE_REG32(&in_regs->diepdma,
++ core_if->dev_if->dma_in_desc_addr);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
++ deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
++ if (core_if->dma_desc_enable == 0)
++ DWC_WRITE_REG32(&(in_regs->diepdma),
++ (uint32_t) ep->dma_addr);
++ }
++ if (!core_if->core_params->en_multiple_tx_fifo && core_if->dma_enable)
++ depctl.b.nextep = core_if->nextep_seq[ep->num];
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ DWC_WRITE_REG32(&in_regs->diepctl, depctl.d32);
++
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!core_if->dma_enable) {
++ if (core_if->en_multiple_tx_fifo == 0) {
++ /* First clear it from GINTSTS */
++ intr_mask.b.nptxfempty = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++
++ } else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if (ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk |= 1 << ep->num;
++ DWC_MODIFY_REG32(&core_if->
++ dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++ }
++ }
++ }
++ } else {
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[0];
++
++ depctl.d32 = DWC_READ_REG32(&out_regs->doepctl);
++ deptsiz.d32 = DWC_READ_REG32(&out_regs->doeptsiz);
++
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++
++ if (core_if->dma_desc_enable == 0) {
++ DWC_WRITE_REG32(&out_regs->doeptsiz, deptsiz.d32);
++ } else {
++ dma_desc = core_if->dev_if->out_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.bytes = ep->maxpacket;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.sts = 0;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DOEPDMA0 Register write */
++ DWC_WRITE_REG32(&out_regs->doepdma,
++ core_if->dev_if->dma_out_desc_addr);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
++ deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
++ if (core_if->dma_desc_enable == 0)
++ DWC_WRITE_REG32(&(out_regs->doepdma),
++ (uint32_t) ep->dma_addr);
++
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ DWC_WRITE_REG32(&out_regs->doepctl, depctl.d32);
++
++ }
++}
++
++#ifdef DEBUG
++void dump_msg(const u8 * buf, unsigned int length)
++{
++ unsigned int start, num, i;
++ char line[52], *p;
++
++ if (length >= 512)
++ return;
++ start = 0;
++ while (length > 0) {
++ num = length < 16u ? length : 16u;
++ p = line;
++ for (i = 0; i < num; ++i) {
++ if (i == 8)
++ *p++ = ' ';
++ DWC_SPRINTF(p, " %02x", buf[i]);
++ p += 3;
++ }
++ *p = 0;
++ DWC_PRINTF("%6x: %s\n", start, line);
++ buf += num;
++ start += num;
++ length -= num;
++ }
++}
++#else
++static inline void dump_msg(const u8 * buf, unsigned int length)
++{
++}
++#endif
++
++/**
++ * This function writes a packet into the Tx FIFO associated with the
++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
++ * periodic EPs the periodic Tx FIFO associated with the EP is written
++ * with all packets for the next micro-frame.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to write packet for.
++ * @param dma Indicates if DMA is being used.
++ */
++void dwc_otg_ep_write_packet(dwc_otg_core_if_t * core_if, dwc_ep_t * ep,
++ int dma)
++{
++ /**
++ * The buffer is padded to DWORD on a per packet basis in
++ * slave/dma mode if the MPS is not DWORD aligned. The last
++ * packet, if short, is also padded to a multiple of DWORD.
++ *
++ * ep->xfer_buff always starts DWORD aligned in memory and is a
++ * multiple of DWORD in length
++ *
++ * ep->xfer_len can be any number of bytes
++ *
++ * ep->xfer_count is a multiple of ep->maxpacket until the last
++ * packet
++ *
++ * FIFO access is DWORD */
++
++ uint32_t i;
++ uint32_t byte_count;
++ uint32_t dword_count;
++ uint32_t *fifo;
++ uint32_t *data_buff = (uint32_t *) ep->xfer_buff;
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if,
++ ep);
++ if (ep->xfer_count >= ep->xfer_len) {
++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
++ return;
++ }
++
++ /* Find the byte length of the packet either short packet or MPS */
++ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
++ byte_count = ep->xfer_len - ep->xfer_count;
++ } else {
++ byte_count = ep->maxpacket;
++ }
++
++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
++ * is not a multiple of DWORD */
++ dword_count = (byte_count + 3) / 4;
++
++#ifdef VERBOSE
++ dump_msg(ep->xfer_buff, byte_count);
++#endif
++
++ /**@todo NGS Where are the Periodic Tx FIFO addresses
++ * intialized? What should this be? */
++
++ fifo = core_if->data_fifo[ep->num];
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
++ fifo, data_buff, *data_buff, byte_count);
++
++ if (!dma) {
++ for (i = 0; i < dword_count; i++, data_buff++) {
++ DWC_WRITE_REG32(fifo, *data_buff);
++ }
++ }
++
++ ep->xfer_count += byte_count;
++ ep->xfer_buff += byte_count;
++ ep->dma_addr += byte_count;
++}
++
++/**
++ * Set the EP STALL.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to set the stall on.
++ */
++void dwc_otg_ep_set_stall(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ depctl_data_t depctl;
++ volatile uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
++ (ep->is_in ? "IN" : "OUT"));
++
++ if (ep->is_in == 1) {
++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++ depctl.d32 = DWC_READ_REG32(depctl_addr);
++
++ /* set the disable and stall bits */
++ if (depctl.b.epena) {
++ depctl.b.epdis = 1;
++ }
++ depctl.b.stall = 1;
++ DWC_WRITE_REG32(depctl_addr, depctl.d32);
++ } else {
++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++ depctl.d32 = DWC_READ_REG32(depctl_addr);
++
++ /* set the stall bit */
++ depctl.b.stall = 1;
++ DWC_WRITE_REG32(depctl_addr, depctl.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", DWC_READ_REG32(depctl_addr));
++
++ return;
++}
++
++/**
++ * Clear the EP STALL.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to clear stall from.
++ */
++void dwc_otg_ep_clear_stall(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ depctl_data_t depctl;
++ volatile uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
++ (ep->is_in ? "IN" : "OUT"));
++
++ if (ep->is_in == 1) {
++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++ } else {
++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++ }
++
++ depctl.d32 = DWC_READ_REG32(depctl_addr);
++
++ /* clear the stall bits */
++ depctl.b.stall = 0;
++
++ /*
++ * USB Spec 9.4.5: For endpoints using data toggle, regardless
++ * of whether an endpoint has the Halt feature set, a
++ * ClearFeature(ENDPOINT_HALT) request always results in the
++ * data toggle being reinitialized to DATA0.
++ */
++ if (ep->type == DWC_OTG_EP_TYPE_INTR ||
++ ep->type == DWC_OTG_EP_TYPE_BULK) {
++ depctl.b.setd0pid = 1; /* DATA0 */
++ }
++
++ DWC_WRITE_REG32(depctl_addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", DWC_READ_REG32(depctl_addr));
++ return;
++}
++
++/**
++ * This function reads a packet from the Rx FIFO into the destination
++ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dest Destination buffer for the packet.
++ * @param bytes Number of bytes to copy to the destination.
++ */
++void dwc_otg_read_packet(dwc_otg_core_if_t * core_if,
++ uint8_t * dest, uint16_t bytes)
++{
++ int i;
++ int word_count = (bytes + 3) / 4;
++
++ volatile uint32_t *fifo = core_if->data_fifo[0];
++ uint32_t *data_buff = (uint32_t *) dest;
++
++ /**
++ * @todo Account for the case where _dest is not dword aligned. This
++ * requires reading data from the FIFO into a uint32_t temp buffer,
++ * then moving it into the data buffer.
++ */
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
++ core_if, dest, bytes);
++
++ for (i = 0; i < word_count; i++, data_buff++) {
++ *data_buff = DWC_READ_REG32(fifo);
++ }
++
++ return;
++}
++
++/**
++ * This functions reads the device registers and prints them
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_dev_registers(dwc_otg_core_if_t * core_if)
++{
++ int i;
++ volatile uint32_t *addr;
++
++ DWC_PRINTF("Device Global Registers\n");
++ addr = &core_if->dev_if->dev_global_regs->dcfg;
++ DWC_PRINTF("DCFG @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->dctl;
++ DWC_PRINTF("DCTL @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->dsts;
++ DWC_PRINTF("DSTS @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->diepmsk;
++ DWC_PRINTF("DIEPMSK @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->doepmsk;
++ DWC_PRINTF("DOEPMSK @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->daint;
++ DWC_PRINTF("DAINT @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->daintmsk;
++ DWC_PRINTF("DAINTMSK @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->dtknqr1;
++ DWC_PRINTF("DTKNQR1 @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
++ addr = &core_if->dev_if->dev_global_regs->dtknqr2;
++ DWC_PRINTF("DTKNQR2 @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ }
++
++ addr = &core_if->dev_if->dev_global_regs->dvbusdis;
++ DWC_PRINTF("DVBUSID @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++
++ addr = &core_if->dev_if->dev_global_regs->dvbuspulse;
++ DWC_PRINTF("DVBUSPULSE @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++
++ addr = &core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
++ DWC_PRINTF("DTKNQR3_DTHRCTL @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++
++ if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
++ addr = &core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
++ DWC_PRINTF("DTKNQR4 @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ }
++
++ addr = &core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
++ DWC_PRINTF("FIFOEMPMSK @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++
++ if (core_if->hwcfg2.b.multi_proc_int) {
++
++ addr = &core_if->dev_if->dev_global_regs->deachint;
++ DWC_PRINTF("DEACHINT @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->dev_global_regs->deachintmsk;
++ DWC_PRINTF("DEACHINTMSK @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++
++ for (i = 0; i <= core_if->dev_if->num_in_eps; i++) {
++ addr =
++ &core_if->dev_if->
++ dev_global_regs->diepeachintmsk[i];
++ DWC_PRINTF("DIEPEACHINTMSK[%d] @0x%08lX : 0x%08X\n",
++ i, (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ }
++
++ for (i = 0; i <= core_if->dev_if->num_out_eps; i++) {
++ addr =
++ &core_if->dev_if->
++ dev_global_regs->doepeachintmsk[i];
++ DWC_PRINTF("DOEPEACHINTMSK[%d] @0x%08lX : 0x%08X\n",
++ i, (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ }
++ }
++
++ for (i = 0; i <= core_if->dev_if->num_in_eps; i++) {
++ DWC_PRINTF("Device IN EP %d Registers\n", i);
++ addr = &core_if->dev_if->in_ep_regs[i]->diepctl;
++ DWC_PRINTF("DIEPCTL @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->diepint;
++ DWC_PRINTF("DIEPINT @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->dieptsiz;
++ DWC_PRINTF("DIETSIZ @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->diepdma;
++ DWC_PRINTF("DIEPDMA @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->dtxfsts;
++ DWC_PRINTF("DTXFSTS @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->in_ep_regs[i]->diepdmab;
++ DWC_PRINTF("DIEPDMAB @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, 0 /*DWC_READ_REG32(addr) */ );
++ }
++
++ for (i = 0; i <= core_if->dev_if->num_out_eps; i++) {
++ DWC_PRINTF("Device OUT EP %d Registers\n", i);
++ addr = &core_if->dev_if->out_ep_regs[i]->doepctl;
++ DWC_PRINTF("DOEPCTL @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->out_ep_regs[i]->doepint;
++ DWC_PRINTF("DOEPINT @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->out_ep_regs[i]->doeptsiz;
++ DWC_PRINTF("DOETSIZ @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->dev_if->out_ep_regs[i]->doepdma;
++ DWC_PRINTF("DOEPDMA @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ if (core_if->dma_enable) { /* Don't access this register in SLAVE mode */
++ addr = &core_if->dev_if->out_ep_regs[i]->doepdmab;
++ DWC_PRINTF("DOEPDMAB @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ }
++
++ }
++}
++
++/**
++ * This functions reads the SPRAM and prints its content
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_spram(dwc_otg_core_if_t * core_if)
++{
++ volatile uint8_t *addr, *start_addr, *end_addr;
++
++ DWC_PRINTF("SPRAM Data:\n");
++ start_addr = (void *)core_if->core_global_regs;
++ DWC_PRINTF("Base Address: 0x%8lX\n", (unsigned long)start_addr);
++ start_addr += 0x00028000;
++ end_addr = (void *)core_if->core_global_regs;
++ end_addr += 0x000280e0;
++
++ for (addr = start_addr; addr < end_addr; addr += 16) {
++ DWC_PRINTF
++ ("0x%8lX:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n",
++ (unsigned long)addr, addr[0], addr[1], addr[2], addr[3],
++ addr[4], addr[5], addr[6], addr[7], addr[8], addr[9],
++ addr[10], addr[11], addr[12], addr[13], addr[14], addr[15]
++ );
++ }
++
++ return;
++}
++
++/**
++ * This function reads the host registers and prints them
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_host_registers(dwc_otg_core_if_t * core_if)
++{
++ int i;
++ volatile uint32_t *addr;
++
++ DWC_PRINTF("Host Global Registers\n");
++ addr = &core_if->host_if->host_global_regs->hcfg;
++ DWC_PRINTF("HCFG @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->host_if->host_global_regs->hfir;
++ DWC_PRINTF("HFIR @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->host_if->host_global_regs->hfnum;
++ DWC_PRINTF("HFNUM @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->host_if->host_global_regs->hptxsts;
++ DWC_PRINTF("HPTXSTS @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->host_if->host_global_regs->haint;
++ DWC_PRINTF("HAINT @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->host_if->host_global_regs->haintmsk;
++ DWC_PRINTF("HAINTMSK @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ if (core_if->dma_desc_enable) {
++ addr = &core_if->host_if->host_global_regs->hflbaddr;
++ DWC_PRINTF("HFLBADDR @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ }
++
++ addr = core_if->host_if->hprt0;
++ DWC_PRINTF("HPRT0 @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++
++ for (i = 0; i < core_if->core_params->host_channels; i++) {
++ DWC_PRINTF("Host Channel %d Specific Registers\n", i);
++ addr = &core_if->host_if->hc_regs[i]->hcchar;
++ DWC_PRINTF("HCCHAR @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcsplt;
++ DWC_PRINTF("HCSPLT @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcint;
++ DWC_PRINTF("HCINT @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcintmsk;
++ DWC_PRINTF("HCINTMSK @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hctsiz;
++ DWC_PRINTF("HCTSIZ @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->host_if->hc_regs[i]->hcdma;
++ DWC_PRINTF("HCDMA @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ if (core_if->dma_desc_enable) {
++ addr = &core_if->host_if->hc_regs[i]->hcdmab;
++ DWC_PRINTF("HCDMAB @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ }
++
++ }
++ return;
++}
++
++/**
++ * This function reads the core global registers and prints them
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_global_registers(dwc_otg_core_if_t * core_if)
++{
++ int i, ep_num;
++ volatile uint32_t *addr;
++ char *txfsiz;
++
++ DWC_PRINTF("Core Global Registers\n");
++ addr = &core_if->core_global_regs->gotgctl;
++ DWC_PRINTF("GOTGCTL @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gotgint;
++ DWC_PRINTF("GOTGINT @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gahbcfg;
++ DWC_PRINTF("GAHBCFG @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gusbcfg;
++ DWC_PRINTF("GUSBCFG @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->grstctl;
++ DWC_PRINTF("GRSTCTL @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gintsts;
++ DWC_PRINTF("GINTSTS @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gintmsk;
++ DWC_PRINTF("GINTMSK @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->grxstsr;
++ DWC_PRINTF("GRXSTSR @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->grxfsiz;
++ DWC_PRINTF("GRXFSIZ @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gnptxfsiz;
++ DWC_PRINTF("GNPTXFSIZ @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gnptxsts;
++ DWC_PRINTF("GNPTXSTS @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gi2cctl;
++ DWC_PRINTF("GI2CCTL @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gpvndctl;
++ DWC_PRINTF("GPVNDCTL @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->ggpio;
++ DWC_PRINTF("GGPIO @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->guid;
++ DWC_PRINTF("GUID @0x%08lX : 0x%08X\n",
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gsnpsid;
++ DWC_PRINTF("GSNPSID @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->ghwcfg1;
++ DWC_PRINTF("GHWCFG1 @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->ghwcfg2;
++ DWC_PRINTF("GHWCFG2 @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->ghwcfg3;
++ DWC_PRINTF("GHWCFG3 @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->ghwcfg4;
++ DWC_PRINTF("GHWCFG4 @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->glpmcfg;
++ DWC_PRINTF("GLPMCFG @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gpwrdn;
++ DWC_PRINTF("GPWRDN @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->gdfifocfg;
++ DWC_PRINTF("GDFIFOCFG @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++ addr = &core_if->core_global_regs->adpctl;
++ DWC_PRINTF("ADPCTL @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ dwc_otg_adp_read_reg(core_if));
++ addr = &core_if->core_global_regs->hptxfsiz;
++ DWC_PRINTF("HPTXFSIZ @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++
++ if (core_if->en_multiple_tx_fifo == 0) {
++ ep_num = core_if->hwcfg4.b.num_dev_perio_in_ep;
++ txfsiz = "DPTXFSIZ";
++ } else {
++ ep_num = core_if->hwcfg4.b.num_in_eps;
++ txfsiz = "DIENPTXF";
++ }
++ for (i = 0; i < ep_num; i++) {
++ addr = &core_if->core_global_regs->dtxfsiz[i];
++ DWC_PRINTF("%s[%d] @0x%08lX : 0x%08X\n", txfsiz, i + 1,
++ (unsigned long)addr, DWC_READ_REG32(addr));
++ }
++ addr = core_if->pcgcctl;
++ DWC_PRINTF("PCGCCTL @0x%08lX : 0x%08X\n", (unsigned long)addr,
++ DWC_READ_REG32(addr));
++}
++
++/**
++ * Flush a Tx FIFO.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param num Tx FIFO to flush.
++ */
++void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t * core_if, const int num)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ volatile grstctl_t greset = {.d32 = 0 };
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", num);
++
++ greset.b.txfflsh = 1;
++ greset.b.txfnum = num;
++ DWC_WRITE_REG32(&global_regs->grstctl, greset.d32);
++
++ do {
++ greset.d32 = DWC_READ_REG32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
++ __func__, greset.d32,
++ DWC_READ_REG32(&global_regs->gnptxsts));
++ break;
++ }
++ dwc_udelay(1);
++ } while (greset.b.txfflsh == 1);
++
++ /* Wait for 3 PHY Clocks */
++ dwc_udelay(1);
++}
++
++/**
++ * Flush Rx FIFO.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ volatile grstctl_t greset = {.d32 = 0 };
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__);
++ /*
++ *
++ */
++ greset.b.rxfflsh = 1;
++ DWC_WRITE_REG32(&global_regs->grstctl, greset.d32);
++
++ do {
++ greset.d32 = DWC_READ_REG32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ break;
++ }
++ dwc_udelay(1);
++ } while (greset.b.rxfflsh == 1);
++
++ /* Wait for 3 PHY Clocks */
++ dwc_udelay(1);
++}
++
++/**
++ * Do core a soft reset of the core. Be careful with this because it
++ * resets all the internal state machines of the core.
++ */
++void dwc_otg_core_reset(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ volatile grstctl_t greset = {.d32 = 0 };
++ int count = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
++ /* Wait for AHB master IDLE state. */
++ do {
++ dwc_udelay(10);
++ greset.d32 = DWC_READ_REG32(&global_regs->grstctl);
++ if (++count > 100000) {
++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ return;
++ }
++ }
++ while (greset.b.ahbidle == 0);
++
++ /* Core Soft Reset */
++ count = 0;
++ greset.b.csftrst = 1;
++ DWC_WRITE_REG32(&global_regs->grstctl, greset.d32);
++ do {
++ greset.d32 = DWC_READ_REG32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n",
++ __func__, greset.d32);
++ break;
++ }
++ dwc_udelay(1);
++ }
++ while (greset.b.csftrst == 1);
++
++ /* Wait for 3 PHY Clocks */
++ dwc_mdelay(100);
++}
++
++uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t * _core_if)
++{
++ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
++}
++
++uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t * _core_if)
++{
++ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
++}
++
++/**
++ * Register HCD callbacks. The callbacks are used to start and stop
++ * the HCD for interrupt processing.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param cb the HCD callback structure.
++ * @param p pointer to be passed to callback function (usb_hcd*).
++ */
++void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t * core_if,
++ dwc_otg_cil_callbacks_t * cb, void *p)
++{
++ core_if->hcd_cb = cb;
++ cb->p = p;
++}
++
++/**
++ * Register PCD callbacks. The callbacks are used to start and stop
++ * the PCD for interrupt processing.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param cb the PCD callback structure.
++ * @param p pointer to be passed to callback function (pcd*).
++ */
++void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t * core_if,
++ dwc_otg_cil_callbacks_t * cb, void *p)
++{
++ core_if->pcd_cb = cb;
++ cb->p = p;
++}
++
++#ifdef DWC_EN_ISOC
++
++/**
++ * This function writes isoc data per 1 (micro)frame into tx fifo
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void write_isoc_frame_data(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ dwc_otg_dev_in_ep_regs_t *ep_regs;
++ dtxfsts_data_t txstatus = {.d32 = 0 };
++ uint32_t len = 0;
++ uint32_t dwords;
++
++ ep->xfer_len = ep->data_per_frame;
++ ep->xfer_count = 0;
++
++ ep_regs = core_if->dev_if->in_ep_regs[ep->num];
++
++ len = ep->xfer_len - ep->xfer_count;
++
++ if (len > ep->maxpacket) {
++ len = ep->maxpacket;
++ }
++
++ dwords = (len + 3) / 4;
++
++ /* While there is space in the queue and space in the FIFO and
++ * More data to tranfer, Write packets to the Tx FIFO */
++ txstatus.d32 =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
++
++ while (txstatus.b.txfspcavail > dwords &&
++ ep->xfer_count < ep->xfer_len && ep->xfer_len != 0) {
++ /* Write the FIFO */
++ dwc_otg_ep_write_packet(core_if, ep, 0);
++
++ len = ep->xfer_len - ep->xfer_count;
++ if (len > ep->maxpacket) {
++ len = ep->maxpacket;
++ }
++
++ dwords = (len + 3) / 4;
++ txstatus.d32 =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[ep->num]->
++ dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "dtxfsts[%d]=0x%08x\n", ep->num,
++ txstatus.d32);
++ }
++}
++
++/**
++ * This function initializes a descriptor chain for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * ep)
++{
++ deptsiz_data_t deptsiz = {.d32 = 0 };
++ depctl_data_t depctl = {.d32 = 0 };
++ dsts_data_t dsts = {.d32 = 0 };
++ volatile uint32_t *addr;
++
++ if (ep->is_in) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ } else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ }
++
++ ep->xfer_len = ep->data_per_frame;
++ ep->xfer_count = 0;
++ ep->xfer_buff = ep->cur_pkt_addr;
++ ep->dma_addr = ep->cur_pkt_dma_addr;
++
++ if (ep->is_in) {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = ep->xfer_len;
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - 1 + ep->maxpacket) / ep->maxpacket;
++ deptsiz.b.mc = deptsiz.b.pktcnt;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz,
++ deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ DWC_WRITE_REG32(&
++ (core_if->dev_if->in_ep_regs[ep->num]->
++ diepdma), (uint32_t) ep->dma_addr);
++ }
++ } else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len + (ep->maxpacket - 1)) / ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++
++ DWC_WRITE_REG32(&core_if->dev_if->
++ out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
++
++ if (core_if->dma_enable) {
++ DWC_WRITE_REG32(&
++ (core_if->dev_if->
++ out_ep_regs[ep->num]->doepdma),
++ (uint32_t) ep->dma_addr);
++ }
++ }
++
++ /** Enable endpoint, clear nak */
++
++ depctl.d32 = 0;
++ if (ep->bInterval == 1) {
++ dsts.d32 =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++ ep->next_frame = dsts.b.soffn + ep->bInterval;
++
++ if (ep->next_frame & 0x1) {
++ depctl.b.setd1pid = 1;
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ } else {
++ ep->next_frame += ep->bInterval;
++
++ if (ep->next_frame & 0x1) {
++ depctl.b.setd1pid = 1;
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ }
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++
++ DWC_MODIFY_REG32(addr, 0, depctl.d32);
++ depctl.d32 = DWC_READ_REG32(addr);
++
++ if (ep->is_in && core_if->dma_enable == 0) {
++ write_isoc_frame_data(core_if, ep);
++ }
++
++}
++#endif /* DWC_EN_ISOC */
++
++static void dwc_otg_set_uninitialized(int32_t * p, int size)
++{
++ int i;
++ for (i = 0; i < size; i++) {
++ p[i] = -1;
++ }
++}
++
++static int dwc_otg_param_initialized(int32_t val)
++{
++ return val != -1;
++}
++
++static int dwc_otg_setup_params(dwc_otg_core_if_t * core_if)
++{
++ int i;
++ core_if->core_params = DWC_ALLOC(sizeof(*core_if->core_params));
++ if (!core_if->core_params) {
++ return -DWC_E_NO_MEMORY;
++ }
++ dwc_otg_set_uninitialized((int32_t *) core_if->core_params,
++ sizeof(*core_if->core_params) /
++ sizeof(int32_t));
++ DWC_PRINTF("Setting default values for core params\n");
++ dwc_otg_set_param_otg_cap(core_if, dwc_param_otg_cap_default);
++ dwc_otg_set_param_dma_enable(core_if, dwc_param_dma_enable_default);
++ dwc_otg_set_param_dma_desc_enable(core_if,
++ dwc_param_dma_desc_enable_default);
++ dwc_otg_set_param_opt(core_if, dwc_param_opt_default);
++ dwc_otg_set_param_dma_burst_size(core_if,
++ dwc_param_dma_burst_size_default);
++ dwc_otg_set_param_host_support_fs_ls_low_power(core_if,
++ dwc_param_host_support_fs_ls_low_power_default);
++ dwc_otg_set_param_enable_dynamic_fifo(core_if,
++ dwc_param_enable_dynamic_fifo_default);
++ dwc_otg_set_param_data_fifo_size(core_if,
++ dwc_param_data_fifo_size_default);
++ dwc_otg_set_param_dev_rx_fifo_size(core_if,
++ dwc_param_dev_rx_fifo_size_default);
++ dwc_otg_set_param_dev_nperio_tx_fifo_size(core_if,
++ dwc_param_dev_nperio_tx_fifo_size_default);
++ dwc_otg_set_param_host_rx_fifo_size(core_if,
++ dwc_param_host_rx_fifo_size_default);
++ dwc_otg_set_param_host_nperio_tx_fifo_size(core_if,
++ dwc_param_host_nperio_tx_fifo_size_default);
++ dwc_otg_set_param_host_perio_tx_fifo_size(core_if,
++ dwc_param_host_perio_tx_fifo_size_default);
++ dwc_otg_set_param_max_transfer_size(core_if,
++ dwc_param_max_transfer_size_default);
++ dwc_otg_set_param_max_packet_count(core_if,
++ dwc_param_max_packet_count_default);
++ dwc_otg_set_param_host_channels(core_if,
++ dwc_param_host_channels_default);
++ dwc_otg_set_param_dev_endpoints(core_if,
++ dwc_param_dev_endpoints_default);
++ dwc_otg_set_param_phy_type(core_if, dwc_param_phy_type_default);
++ dwc_otg_set_param_speed(core_if, dwc_param_speed_default);
++ dwc_otg_set_param_host_ls_low_power_phy_clk(core_if,
++ dwc_param_host_ls_low_power_phy_clk_default);
++ dwc_otg_set_param_phy_ulpi_ddr(core_if, dwc_param_phy_ulpi_ddr_default);
++ dwc_otg_set_param_phy_ulpi_ext_vbus(core_if,
++ dwc_param_phy_ulpi_ext_vbus_default);
++ dwc_otg_set_param_phy_utmi_width(core_if,
++ dwc_param_phy_utmi_width_default);
++ dwc_otg_set_param_ts_dline(core_if, dwc_param_ts_dline_default);
++ dwc_otg_set_param_i2c_enable(core_if, dwc_param_i2c_enable_default);
++ dwc_otg_set_param_ulpi_fs_ls(core_if, dwc_param_ulpi_fs_ls_default);
++ dwc_otg_set_param_en_multiple_tx_fifo(core_if,
++ dwc_param_en_multiple_tx_fifo_default);
++ for (i = 0; i < 15; i++) {
++ dwc_otg_set_param_dev_perio_tx_fifo_size(core_if,
++ dwc_param_dev_perio_tx_fifo_size_default,
++ i);
++ }
++
++ for (i = 0; i < 15; i++) {
++ dwc_otg_set_param_dev_tx_fifo_size(core_if,
++ dwc_param_dev_tx_fifo_size_default,
++ i);
++ }
++ dwc_otg_set_param_thr_ctl(core_if, dwc_param_thr_ctl_default);
++ dwc_otg_set_param_mpi_enable(core_if, dwc_param_mpi_enable_default);
++ dwc_otg_set_param_pti_enable(core_if, dwc_param_pti_enable_default);
++ dwc_otg_set_param_lpm_enable(core_if, dwc_param_lpm_enable_default);
++ dwc_otg_set_param_ic_usb_cap(core_if, dwc_param_ic_usb_cap_default);
++ dwc_otg_set_param_tx_thr_length(core_if,
++ dwc_param_tx_thr_length_default);
++ dwc_otg_set_param_rx_thr_length(core_if,
++ dwc_param_rx_thr_length_default);
++ dwc_otg_set_param_ahb_thr_ratio(core_if,
++ dwc_param_ahb_thr_ratio_default);
++ dwc_otg_set_param_power_down(core_if, dwc_param_power_down_default);
++ dwc_otg_set_param_reload_ctl(core_if, dwc_param_reload_ctl_default);
++ dwc_otg_set_param_dev_out_nak(core_if, dwc_param_dev_out_nak_default);
++ dwc_otg_set_param_cont_on_bna(core_if, dwc_param_cont_on_bna_default);
++ dwc_otg_set_param_ahb_single(core_if, dwc_param_ahb_single_default);
++ dwc_otg_set_param_otg_ver(core_if, dwc_param_otg_ver_default);
++ dwc_otg_set_param_adp_enable(core_if, dwc_param_adp_enable_default);
++ DWC_PRINTF("Finished setting default values for core params\n");
++
++ return 0;
++}
++
++uint8_t dwc_otg_is_dma_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->dma_enable;
++}
++
++/* Checks if the parameter is outside of its valid range of values */
++#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
++ (((_param_) < (_low_)) || \
++ ((_param_) > (_high_)))
++
++/* Parameter access functions */
++int dwc_otg_set_param_otg_cap(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int valid;
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 2)) {
++ DWC_WARN("Wrong value for otg_cap parameter\n");
++ DWC_WARN("otg_cap parameter must be 0,1 or 2\n");
++ retval = -DWC_E_INVALID;
++ goto out;
++ }
++
++ valid = 1;
++ switch (val) {
++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
++ if (core_if->hwcfg2.b.op_mode !=
++ DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ valid = 0;
++ break;
++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
++ if ((core_if->hwcfg2.b.op_mode !=
++ DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ && (core_if->hwcfg2.b.op_mode !=
++ DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
++ && (core_if->hwcfg2.b.op_mode !=
++ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
++ && (core_if->hwcfg2.b.op_mode !=
++ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
++ valid = 0;
++ }
++ break;
++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
++ /* always valid */
++ break;
++ }
++ if (!valid) {
++ if (dwc_otg_param_initialized(core_if->core_params->otg_cap)) {
++ DWC_ERROR
++ ("%d invalid for otg_cap paremter. Check HW configuration.\n",
++ val);
++ }
++ val =
++ (((core_if->hwcfg2.b.op_mode ==
++ DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ || (core_if->hwcfg2.b.op_mode ==
++ DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
++ || (core_if->hwcfg2.b.op_mode ==
++ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
++ || (core_if->hwcfg2.b.op_mode ==
++ DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->otg_cap = val;
++out:
++ return retval;
++}
++
++int32_t dwc_otg_get_param_otg_cap(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->otg_cap;
++}
++
++int dwc_otg_set_param_opt(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for opt parameter\n");
++ return -DWC_E_INVALID;
++ }
++ core_if->core_params->opt = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_opt(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->opt;
++}
++
++int dwc_otg_set_param_dma_enable(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for dma enable\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 1) && (core_if->hwcfg2.b.architecture == 0)) {
++ if (dwc_otg_param_initialized(core_if->core_params->dma_enable)) {
++ DWC_ERROR
++ ("%d invalid for dma_enable paremter. Check HW configuration.\n",
++ val);
++ }
++ val = 0;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->dma_enable = val;
++ if (val == 0) {
++ dwc_otg_set_param_dma_desc_enable(core_if, 0);
++ }
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dma_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->dma_enable;
++}
++
++int dwc_otg_set_param_dma_desc_enable(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for dma_enable\n");
++ DWC_WARN("dma_desc_enable must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 1)
++ && ((dwc_otg_get_param_dma_enable(core_if) == 0)
++ || (core_if->hwcfg4.b.desc_dma == 0))) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->dma_desc_enable)) {
++ DWC_ERROR
++ ("%d invalid for dma_desc_enable paremter. Check HW configuration.\n",
++ val);
++ }
++ val = 0;
++ retval = -DWC_E_INVALID;
++ }
++ core_if->core_params->dma_desc_enable = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dma_desc_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->dma_desc_enable;
++}
++
++int dwc_otg_set_param_host_support_fs_ls_low_power(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for host_support_fs_low_power\n");
++ DWC_WARN("host_support_fs_low_power must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++ core_if->core_params->host_support_fs_ls_low_power = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_host_support_fs_ls_low_power(dwc_otg_core_if_t *
++ core_if)
++{
++ return core_if->core_params->host_support_fs_ls_low_power;
++}
++
++int dwc_otg_set_param_enable_dynamic_fifo(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for enable_dynamic_fifo\n");
++ DWC_WARN("enable_dynamic_fifo must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 1) && (core_if->hwcfg2.b.dynamic_fifo == 0)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->enable_dynamic_fifo)) {
++ DWC_ERROR
++ ("%d invalid for enable_dynamic_fifo paremter. Check HW configuration.\n",
++ val);
++ }
++ val = 0;
++ retval = -DWC_E_INVALID;
++ }
++ core_if->core_params->enable_dynamic_fifo = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_enable_dynamic_fifo(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->enable_dynamic_fifo;
++}
++
++int dwc_otg_set_param_data_fifo_size(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 32, 32768)) {
++ DWC_WARN("Wrong value for data_fifo_size\n");
++ DWC_WARN("data_fifo_size must be 32-32768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > core_if->hwcfg3.b.dfifo_depth) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->data_fifo_size)) {
++ DWC_ERROR
++ ("%d invalid for data_fifo_size parameter. Check HW configuration.\n",
++ val);
++ }
++ val = core_if->hwcfg3.b.dfifo_depth;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->data_fifo_size = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_data_fifo_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->data_fifo_size;
++}
++
++int dwc_otg_set_param_dev_rx_fifo_size(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 16, 32768)) {
++ DWC_WARN("Wrong value for dev_rx_fifo_size\n");
++ DWC_WARN("dev_rx_fifo_size must be 16-32768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > DWC_READ_REG32(&core_if->core_global_regs->grxfsiz)) {
++ if (dwc_otg_param_initialized(core_if->core_params->dev_rx_fifo_size)) {
++ DWC_WARN("%d invalid for dev_rx_fifo_size parameter\n", val);
++ }
++ val = DWC_READ_REG32(&core_if->core_global_regs->grxfsiz);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->dev_rx_fifo_size = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dev_rx_fifo_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->dev_rx_fifo_size;
++}
++
++int dwc_otg_set_param_dev_nperio_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 16, 32768)) {
++ DWC_WARN("Wrong value for dev_nperio_tx_fifo\n");
++ DWC_WARN("dev_nperio_tx_fifo must be 16-32768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > (DWC_READ_REG32(&core_if->core_global_regs->gnptxfsiz) >> 16)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->dev_nperio_tx_fifo_size)) {
++ DWC_ERROR
++ ("%d invalid for dev_nperio_tx_fifo_size. Check HW configuration.\n",
++ val);
++ }
++ val =
++ (DWC_READ_REG32(&core_if->core_global_regs->gnptxfsiz) >>
++ 16);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->dev_nperio_tx_fifo_size = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dev_nperio_tx_fifo_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->dev_nperio_tx_fifo_size;
++}
++
++int dwc_otg_set_param_host_rx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 16, 32768)) {
++ DWC_WARN("Wrong value for host_rx_fifo_size\n");
++ DWC_WARN("host_rx_fifo_size must be 16-32768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > DWC_READ_REG32(&core_if->core_global_regs->grxfsiz)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->host_rx_fifo_size)) {
++ DWC_ERROR
++ ("%d invalid for host_rx_fifo_size. Check HW configuration.\n",
++ val);
++ }
++ val = DWC_READ_REG32(&core_if->core_global_regs->grxfsiz);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->host_rx_fifo_size = val;
++ return retval;
++
++}
++
++int32_t dwc_otg_get_param_host_rx_fifo_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->host_rx_fifo_size;
++}
++
++int dwc_otg_set_param_host_nperio_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 16, 32768)) {
++ DWC_WARN("Wrong value for host_nperio_tx_fifo_size\n");
++ DWC_WARN("host_nperio_tx_fifo_size must be 16-32768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > (DWC_READ_REG32(&core_if->core_global_regs->gnptxfsiz) >> 16)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->host_nperio_tx_fifo_size)) {
++ DWC_ERROR
++ ("%d invalid for host_nperio_tx_fifo_size. Check HW configuration.\n",
++ val);
++ }
++ val =
++ (DWC_READ_REG32(&core_if->core_global_regs->gnptxfsiz) >>
++ 16);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->host_nperio_tx_fifo_size = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_host_nperio_tx_fifo_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->host_nperio_tx_fifo_size;
++}
++
++int dwc_otg_set_param_host_perio_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 16, 32768)) {
++ DWC_WARN("Wrong value for host_perio_tx_fifo_size\n");
++ DWC_WARN("host_perio_tx_fifo_size must be 16-32768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > ((core_if->hptxfsiz.d32) >> 16)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->host_perio_tx_fifo_size)) {
++ DWC_ERROR
++ ("%d invalid for host_perio_tx_fifo_size. Check HW configuration.\n",
++ val);
++ }
++ val = (core_if->hptxfsiz.d32) >> 16;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->host_perio_tx_fifo_size = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_host_perio_tx_fifo_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->host_perio_tx_fifo_size;
++}
++
++int dwc_otg_set_param_max_transfer_size(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 2047, 524288)) {
++ DWC_WARN("Wrong value for max_transfer_size\n");
++ DWC_WARN("max_transfer_size must be 2047-524288\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val >= (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->max_transfer_size)) {
++ DWC_ERROR
++ ("%d invalid for max_transfer_size. Check HW configuration.\n",
++ val);
++ }
++ val =
++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 11)) -
++ 1);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->max_transfer_size = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_max_transfer_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->max_transfer_size;
++}
++
++int dwc_otg_set_param_max_packet_count(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 15, 511)) {
++ DWC_WARN("Wrong value for max_packet_count\n");
++ DWC_WARN("max_packet_count must be 15-511\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->max_packet_count)) {
++ DWC_ERROR
++ ("%d invalid for max_packet_count. Check HW configuration.\n",
++ val);
++ }
++ val =
++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->max_packet_count = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_max_packet_count(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->max_packet_count;
++}
++
++int dwc_otg_set_param_host_channels(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 1, 16)) {
++ DWC_WARN("Wrong value for host_channels\n");
++ DWC_WARN("host_channels must be 1-16\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > (core_if->hwcfg2.b.num_host_chan + 1)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->host_channels)) {
++ DWC_ERROR
++ ("%d invalid for host_channels. Check HW configurations.\n",
++ val);
++ }
++ val = (core_if->hwcfg2.b.num_host_chan + 1);
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->host_channels = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_host_channels(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->host_channels;
++}
++
++int dwc_otg_set_param_dev_endpoints(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 1, 15)) {
++ DWC_WARN("Wrong value for dev_endpoints\n");
++ DWC_WARN("dev_endpoints must be 1-15\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val > (core_if->hwcfg2.b.num_dev_ep)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->dev_endpoints)) {
++ DWC_ERROR
++ ("%d invalid for dev_endpoints. Check HW configurations.\n",
++ val);
++ }
++ val = core_if->hwcfg2.b.num_dev_ep;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->dev_endpoints = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dev_endpoints(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->dev_endpoints;
++}
++
++int dwc_otg_set_param_phy_type(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ int valid = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 2)) {
++ DWC_WARN("Wrong value for phy_type\n");
++ DWC_WARN("phy_type must be 0,1 or 2\n");
++ return -DWC_E_INVALID;
++ }
++#ifndef NO_FS_PHY_HW_CHECKS
++ if ((val == DWC_PHY_TYPE_PARAM_UTMI) &&
++ ((core_if->hwcfg2.b.hs_phy_type == 1) ||
++ (core_if->hwcfg2.b.hs_phy_type == 3))) {
++ valid = 1;
++ } else if ((val == DWC_PHY_TYPE_PARAM_ULPI) &&
++ ((core_if->hwcfg2.b.hs_phy_type == 2) ||
++ (core_if->hwcfg2.b.hs_phy_type == 3))) {
++ valid = 1;
++ } else if ((val == DWC_PHY_TYPE_PARAM_FS) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1)) {
++ valid = 1;
++ }
++ if (!valid) {
++ if (dwc_otg_param_initialized(core_if->core_params->phy_type)) {
++ DWC_ERROR
++ ("%d invalid for phy_type. Check HW configurations.\n",
++ val);
++ }
++ if (core_if->hwcfg2.b.hs_phy_type) {
++ if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
++ (core_if->hwcfg2.b.hs_phy_type == 1)) {
++ val = DWC_PHY_TYPE_PARAM_UTMI;
++ } else {
++ val = DWC_PHY_TYPE_PARAM_ULPI;
++ }
++ }
++ retval = -DWC_E_INVALID;
++ }
++#endif
++ core_if->core_params->phy_type = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_phy_type(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->phy_type;
++}
++
++int dwc_otg_set_param_speed(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for speed parameter\n");
++ DWC_WARN("max_speed parameter must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++ if ((val == 0)
++ && dwc_otg_get_param_phy_type(core_if) == DWC_PHY_TYPE_PARAM_FS) {
++ if (dwc_otg_param_initialized(core_if->core_params->speed)) {
++ DWC_ERROR
++ ("%d invalid for speed paremter. Check HW configuration.\n",
++ val);
++ }
++ val =
++ (dwc_otg_get_param_phy_type(core_if) ==
++ DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
++ retval = -DWC_E_INVALID;
++ }
++ core_if->core_params->speed = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_speed(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->speed;
++}
++
++int dwc_otg_set_param_host_ls_low_power_phy_clk(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN
++ ("Wrong value for host_ls_low_power_phy_clk parameter\n");
++ DWC_WARN("host_ls_low_power_phy_clk must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ)
++ && (dwc_otg_get_param_phy_type(core_if) == DWC_PHY_TYPE_PARAM_FS)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->host_ls_low_power_phy_clk)) {
++ DWC_ERROR
++ ("%d invalid for host_ls_low_power_phy_clk. Check HW configuration.\n",
++ val);
++ }
++ val =
++ (dwc_otg_get_param_phy_type(core_if) ==
++ DWC_PHY_TYPE_PARAM_FS) ?
++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ :
++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->host_ls_low_power_phy_clk = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_host_ls_low_power_phy_clk(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->host_ls_low_power_phy_clk;
++}
++
++int dwc_otg_set_param_phy_ulpi_ddr(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for phy_ulpi_ddr\n");
++ DWC_WARN("phy_upli_ddr must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->phy_ulpi_ddr = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_phy_ulpi_ddr(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->phy_ulpi_ddr;
++}
++
++int dwc_otg_set_param_phy_ulpi_ext_vbus(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong valaue for phy_ulpi_ext_vbus\n");
++ DWC_WARN("phy_ulpi_ext_vbus must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->phy_ulpi_ext_vbus = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_phy_ulpi_ext_vbus(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->phy_ulpi_ext_vbus;
++}
++
++int dwc_otg_set_param_phy_utmi_width(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 8, 8) && DWC_OTG_PARAM_TEST(val, 16, 16)) {
++ DWC_WARN("Wrong valaue for phy_utmi_width\n");
++ DWC_WARN("phy_utmi_width must be 8 or 16\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->phy_utmi_width = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_phy_utmi_width(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->phy_utmi_width;
++}
++
++int dwc_otg_set_param_ulpi_fs_ls(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong valaue for ulpi_fs_ls\n");
++ DWC_WARN("ulpi_fs_ls must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->ulpi_fs_ls = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_ulpi_fs_ls(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->ulpi_fs_ls;
++}
++
++int dwc_otg_set_param_ts_dline(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong valaue for ts_dline\n");
++ DWC_WARN("ts_dline must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->ts_dline = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_ts_dline(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->ts_dline;
++}
++
++int dwc_otg_set_param_i2c_enable(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong valaue for i2c_enable\n");
++ DWC_WARN("i2c_enable must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++#ifndef NO_FS_PHY_HW_CHECK
++ if (val == 1 && core_if->hwcfg3.b.i2c == 0) {
++ if (dwc_otg_param_initialized(core_if->core_params->i2c_enable)) {
++ DWC_ERROR
++ ("%d invalid for i2c_enable. Check HW configuration.\n",
++ val);
++ }
++ val = 0;
++ retval = -DWC_E_INVALID;
++ }
++#endif
++
++ core_if->core_params->i2c_enable = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_i2c_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->i2c_enable;
++}
++
++int dwc_otg_set_param_dev_perio_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val, int fifo_num)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 4, 768)) {
++ DWC_WARN("Wrong value for dev_perio_tx_fifo_size\n");
++ DWC_WARN("dev_perio_tx_fifo_size must be 4-768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val >
++ (DWC_READ_REG32(&core_if->core_global_regs->dtxfsiz[fifo_num]))) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->dev_perio_tx_fifo_size[fifo_num])) {
++ DWC_ERROR
++ ("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n",
++ val, fifo_num);
++ }
++ val = (DWC_READ_REG32(&core_if->core_global_regs->dtxfsiz[fifo_num]));
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->dev_perio_tx_fifo_size[fifo_num] = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dev_perio_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int fifo_num)
++{
++ return core_if->core_params->dev_perio_tx_fifo_size[fifo_num];
++}
++
++int dwc_otg_set_param_en_multiple_tx_fifo(dwc_otg_core_if_t * core_if,
++ int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong valaue for en_multiple_tx_fifo,\n");
++ DWC_WARN("en_multiple_tx_fifo must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val == 1 && core_if->hwcfg4.b.ded_fifo_en == 0) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->en_multiple_tx_fifo)) {
++ DWC_ERROR
++ ("%d invalid for parameter en_multiple_tx_fifo. Check HW configuration.\n",
++ val);
++ }
++ val = 0;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->en_multiple_tx_fifo = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_en_multiple_tx_fifo(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->en_multiple_tx_fifo;
++}
++
++int dwc_otg_set_param_dev_tx_fifo_size(dwc_otg_core_if_t * core_if, int32_t val,
++ int fifo_num)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 4, 768)) {
++ DWC_WARN("Wrong value for dev_tx_fifo_size\n");
++ DWC_WARN("dev_tx_fifo_size must be 4-768\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val >
++ (DWC_READ_REG32(&core_if->core_global_regs->dtxfsiz[fifo_num]))) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->dev_tx_fifo_size[fifo_num])) {
++ DWC_ERROR
++ ("`%d' invalid for parameter `dev_tx_fifo_size_%d'. Check HW configuration.\n",
++ val, fifo_num);
++ }
++ val = (DWC_READ_REG32(&core_if->core_global_regs->dtxfsiz[fifo_num]));
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->dev_tx_fifo_size[fifo_num] = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dev_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int fifo_num)
++{
++ return core_if->core_params->dev_tx_fifo_size[fifo_num];
++}
++
++int dwc_otg_set_param_thr_ctl(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 7)) {
++ DWC_WARN("Wrong value for thr_ctl\n");
++ DWC_WARN("thr_ctl must be 0-7\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val != 0) &&
++ (!dwc_otg_get_param_dma_enable(core_if) ||
++ !core_if->hwcfg4.b.ded_fifo_en)) {
++ if (dwc_otg_param_initialized(core_if->core_params->thr_ctl)) {
++ DWC_ERROR
++ ("%d invalid for parameter thr_ctl. Check HW configuration.\n",
++ val);
++ }
++ val = 0;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->thr_ctl = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_thr_ctl(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->thr_ctl;
++}
++
++int dwc_otg_set_param_lpm_enable(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("Wrong value for lpm_enable\n");
++ DWC_WARN("lpm_enable must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val && !core_if->hwcfg3.b.otg_lpm_en) {
++ if (dwc_otg_param_initialized(core_if->core_params->lpm_enable)) {
++ DWC_ERROR
++ ("%d invalid for parameter lpm_enable. Check HW configuration.\n",
++ val);
++ }
++ val = 0;
++ retval = -DWC_E_INVALID;
++ }
++
++ core_if->core_params->lpm_enable = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_lpm_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->lpm_enable;
++}
++
++int dwc_otg_set_param_tx_thr_length(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 8, 128)) {
++ DWC_WARN("Wrong valaue for tx_thr_length\n");
++ DWC_WARN("tx_thr_length must be 8 - 128\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->tx_thr_length = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_tx_thr_length(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->tx_thr_length;
++}
++
++int dwc_otg_set_param_rx_thr_length(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 8, 128)) {
++ DWC_WARN("Wrong valaue for rx_thr_length\n");
++ DWC_WARN("rx_thr_length must be 8 - 128\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->rx_thr_length = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_rx_thr_length(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->rx_thr_length;
++}
++
++int dwc_otg_set_param_dma_burst_size(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ if (DWC_OTG_PARAM_TEST(val, 1, 1) &&
++ DWC_OTG_PARAM_TEST(val, 4, 4) &&
++ DWC_OTG_PARAM_TEST(val, 8, 8) &&
++ DWC_OTG_PARAM_TEST(val, 16, 16) &&
++ DWC_OTG_PARAM_TEST(val, 32, 32) &&
++ DWC_OTG_PARAM_TEST(val, 64, 64) &&
++ DWC_OTG_PARAM_TEST(val, 128, 128) &&
++ DWC_OTG_PARAM_TEST(val, 256, 256)) {
++ DWC_WARN("`%d' invalid for parameter `dma_burst_size'\n", val);
++ return -DWC_E_INVALID;
++ }
++ core_if->core_params->dma_burst_size = val;
++ return 0;
++}
++
++int32_t dwc_otg_get_param_dma_burst_size(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->dma_burst_size;
++}
++
++int dwc_otg_set_param_pti_enable(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `pti_enable'\n", val);
++ return -DWC_E_INVALID;
++ }
++ if (val && (core_if->snpsid < OTG_CORE_REV_2_72a)) {
++ if (dwc_otg_param_initialized(core_if->core_params->pti_enable)) {
++ DWC_ERROR
++ ("%d invalid for parameter pti_enable. Check HW configuration.\n",
++ val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->pti_enable = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_pti_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->pti_enable;
++}
++
++int dwc_otg_set_param_mpi_enable(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `mpi_enable'\n", val);
++ return -DWC_E_INVALID;
++ }
++ if (val && (core_if->hwcfg2.b.multi_proc_int == 0)) {
++ if (dwc_otg_param_initialized(core_if->core_params->mpi_enable)) {
++ DWC_ERROR
++ ("%d invalid for parameter mpi_enable. Check HW configuration.\n",
++ val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->mpi_enable = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_mpi_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->mpi_enable;
++}
++
++int dwc_otg_set_param_adp_enable(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `adp_enable'\n", val);
++ return -DWC_E_INVALID;
++ }
++ if (val && (core_if->hwcfg3.b.adp_supp == 0)) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->adp_supp_enable)) {
++ DWC_ERROR
++ ("%d invalid for parameter adp_enable. Check HW configuration.\n",
++ val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->adp_supp_enable = val;
++ /*Set OTG version 2.0 in case of enabling ADP*/
++ if (val)
++ dwc_otg_set_param_otg_ver(core_if, 1);
++
++ return retval;
++}
++
++int32_t dwc_otg_get_param_adp_enable(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->adp_supp_enable;
++}
++
++int dwc_otg_set_param_ic_usb_cap(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `ic_usb_cap'\n", val);
++ DWC_WARN("ic_usb_cap must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val && (core_if->hwcfg2.b.otg_enable_ic_usb == 0)) {
++ if (dwc_otg_param_initialized(core_if->core_params->ic_usb_cap)) {
++ DWC_ERROR
++ ("%d invalid for parameter ic_usb_cap. Check HW configuration.\n",
++ val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->ic_usb_cap = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_ic_usb_cap(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->ic_usb_cap;
++}
++
++int dwc_otg_set_param_ahb_thr_ratio(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ int valid = 1;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 3)) {
++ DWC_WARN("`%d' invalid for parameter `ahb_thr_ratio'\n", val);
++ DWC_WARN("ahb_thr_ratio must be 0 - 3\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (val
++ && (core_if->snpsid < OTG_CORE_REV_2_81a
++ || !dwc_otg_get_param_thr_ctl(core_if))) {
++ valid = 0;
++ } else if (val
++ && ((dwc_otg_get_param_tx_thr_length(core_if) / (1 << val)) <
++ 4)) {
++ valid = 0;
++ }
++ if (valid == 0) {
++ if (dwc_otg_param_initialized
++ (core_if->core_params->ahb_thr_ratio)) {
++ DWC_ERROR
++ ("%d invalid for parameter ahb_thr_ratio. Check HW configuration.\n",
++ val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++
++ core_if->core_params->ahb_thr_ratio = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_ahb_thr_ratio(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->ahb_thr_ratio;
++}
++
++int dwc_otg_set_param_power_down(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ int valid = 1;
++ hwcfg4_data_t hwcfg4 = {.d32 = 0 };
++ hwcfg4.d32 = DWC_READ_REG32(&core_if->core_global_regs->ghwcfg4);
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 3)) {
++ DWC_WARN("`%d' invalid for parameter `power_down'\n", val);
++ DWC_WARN("power_down must be 0 - 2\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 2) && (core_if->snpsid < OTG_CORE_REV_2_91a)) {
++ valid = 0;
++ }
++ if ((val == 3)
++ && ((core_if->snpsid < OTG_CORE_REV_3_00a)
++ || (hwcfg4.b.xhiber == 0))) {
++ valid = 0;
++ }
++ if (valid == 0) {
++ if (dwc_otg_param_initialized(core_if->core_params->power_down)) {
++ DWC_ERROR
++ ("%d invalid for parameter power_down. Check HW configuration.\n",
++ val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->power_down = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_power_down(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->power_down;
++}
++
++int dwc_otg_set_param_reload_ctl(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ int valid = 1;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `reload_ctl'\n", val);
++ DWC_WARN("reload_ctl must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 1) && (core_if->snpsid < OTG_CORE_REV_2_92a)) {
++ valid = 0;
++ }
++ if (valid == 0) {
++ if (dwc_otg_param_initialized(core_if->core_params->reload_ctl)) {
++ DWC_ERROR("%d invalid for parameter reload_ctl."
++ "Check HW configuration.\n", val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->reload_ctl = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_reload_ctl(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->reload_ctl;
++}
++
++int dwc_otg_set_param_dev_out_nak(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ int valid = 1;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `dev_out_nak'\n", val);
++ DWC_WARN("dev_out_nak must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 1) && ((core_if->snpsid < OTG_CORE_REV_2_93a) ||
++ !(core_if->core_params->dma_desc_enable))) {
++ valid = 0;
++ }
++ if (valid == 0) {
++ if (dwc_otg_param_initialized(core_if->core_params->dev_out_nak)) {
++ DWC_ERROR("%d invalid for parameter dev_out_nak."
++ "Check HW configuration.\n", val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->dev_out_nak = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_dev_out_nak(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->dev_out_nak;
++}
++
++int dwc_otg_set_param_cont_on_bna(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ int valid = 1;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `cont_on_bna'\n", val);
++ DWC_WARN("cont_on_bna must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 1) && ((core_if->snpsid < OTG_CORE_REV_2_94a) ||
++ !(core_if->core_params->dma_desc_enable))) {
++ valid = 0;
++ }
++ if (valid == 0) {
++ if (dwc_otg_param_initialized(core_if->core_params->cont_on_bna)) {
++ DWC_ERROR("%d invalid for parameter cont_on_bna."
++ "Check HW configuration.\n", val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->cont_on_bna = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_cont_on_bna(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->cont_on_bna;
++}
++
++int dwc_otg_set_param_ahb_single(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++ int valid = 1;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `ahb_single'\n", val);
++ DWC_WARN("ahb_single must be 0 or 1\n");
++ return -DWC_E_INVALID;
++ }
++
++ if ((val == 1) && (core_if->snpsid < OTG_CORE_REV_2_94a)) {
++ valid = 0;
++ }
++ if (valid == 0) {
++ if (dwc_otg_param_initialized(core_if->core_params->ahb_single)) {
++ DWC_ERROR("%d invalid for parameter ahb_single."
++ "Check HW configuration.\n", val);
++ }
++ retval = -DWC_E_INVALID;
++ val = 0;
++ }
++ core_if->core_params->ahb_single = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_ahb_single(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->ahb_single;
++}
++
++int dwc_otg_set_param_otg_ver(dwc_otg_core_if_t * core_if, int32_t val)
++{
++ int retval = 0;
++
++ if (DWC_OTG_PARAM_TEST(val, 0, 1)) {
++ DWC_WARN("`%d' invalid for parameter `otg_ver'\n", val);
++ DWC_WARN
++ ("otg_ver must be 0(for OTG 1.3 support) or 1(for OTG 2.0 support)\n");
++ return -DWC_E_INVALID;
++ }
++
++ core_if->core_params->otg_ver = val;
++ return retval;
++}
++
++int32_t dwc_otg_get_param_otg_ver(dwc_otg_core_if_t * core_if)
++{
++ return core_if->core_params->otg_ver;
++}
++
++uint32_t dwc_otg_get_hnpstatus(dwc_otg_core_if_t * core_if)
++{
++ gotgctl_data_t otgctl;
++ otgctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ return otgctl.b.hstnegscs;
++}
++
++uint32_t dwc_otg_get_srpstatus(dwc_otg_core_if_t * core_if)
++{
++ gotgctl_data_t otgctl;
++ otgctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ return otgctl.b.sesreqscs;
++}
++
++void dwc_otg_set_hnpreq(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ if(core_if->otg_ver == 0) {
++ gotgctl_data_t otgctl;
++ otgctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ otgctl.b.hnpreq = val;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gotgctl, otgctl.d32);
++ } else {
++ core_if->otg_sts = val;
++ }
++}
++
++uint32_t dwc_otg_get_gsnpsid(dwc_otg_core_if_t * core_if)
++{
++ return core_if->snpsid;
++}
++
++uint32_t dwc_otg_get_mode(dwc_otg_core_if_t * core_if)
++{
++ gintsts_data_t gintsts;
++ gintsts.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ return gintsts.b.curmode;
++}
++
++uint32_t dwc_otg_get_hnpcapable(dwc_otg_core_if_t * core_if)
++{
++ gusbcfg_data_t usbcfg;
++ usbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ return usbcfg.b.hnpcap;
++}
++
++void dwc_otg_set_hnpcapable(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ gusbcfg_data_t usbcfg;
++ usbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ usbcfg.b.hnpcap = val;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, usbcfg.d32);
++}
++
++uint32_t dwc_otg_get_srpcapable(dwc_otg_core_if_t * core_if)
++{
++ gusbcfg_data_t usbcfg;
++ usbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ return usbcfg.b.srpcap;
++}
++
++void dwc_otg_set_srpcapable(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ gusbcfg_data_t usbcfg;
++ usbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ usbcfg.b.srpcap = val;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, usbcfg.d32);
++}
++
++uint32_t dwc_otg_get_devspeed(dwc_otg_core_if_t * core_if)
++{
++ dcfg_data_t dcfg;
++ /* originally: dcfg.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg); */
++
++ dcfg.d32 = -1; //GRAYG
++ DWC_DEBUGPL(DBG_CILV, "%s - core_if(%p)\n", __func__, core_if);
++ if (NULL == core_if)
++ DWC_ERROR("reg request with NULL core_if\n");
++ DWC_DEBUGPL(DBG_CILV, "%s - core_if(%p)->dev_if(%p)\n", __func__,
++ core_if, core_if->dev_if);
++ if (NULL == core_if->dev_if)
++ DWC_ERROR("reg request with NULL dev_if\n");
++ DWC_DEBUGPL(DBG_CILV, "%s - core_if(%p)->dev_if(%p)->"
++ "dev_global_regs(%p)\n", __func__,
++ core_if, core_if->dev_if,
++ core_if->dev_if->dev_global_regs);
++ if (NULL == core_if->dev_if->dev_global_regs)
++ DWC_ERROR("reg request with NULL dev_global_regs\n");
++ else {
++ DWC_DEBUGPL(DBG_CILV, "%s - &core_if(%p)->dev_if(%p)->"
++ "dev_global_regs(%p)->dcfg = %p\n", __func__,
++ core_if, core_if->dev_if,
++ core_if->dev_if->dev_global_regs,
++ &core_if->dev_if->dev_global_regs->dcfg);
++ dcfg.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++ }
++ return dcfg.b.devspd;
++}
++
++void dwc_otg_set_devspeed(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ dcfg_data_t dcfg;
++ dcfg.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++ dcfg.b.devspd = val;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
++}
++
++uint32_t dwc_otg_get_busconnected(dwc_otg_core_if_t * core_if)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = DWC_READ_REG32(core_if->host_if->hprt0);
++ return hprt0.b.prtconnsts;
++}
++
++uint32_t dwc_otg_get_enumspeed(dwc_otg_core_if_t * core_if)
++{
++ dsts_data_t dsts;
++ dsts.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++ return dsts.b.enumspd;
++}
++
++uint32_t dwc_otg_get_prtpower(dwc_otg_core_if_t * core_if)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = DWC_READ_REG32(core_if->host_if->hprt0);
++ return hprt0.b.prtpwr;
++
++}
++
++uint32_t dwc_otg_get_core_state(dwc_otg_core_if_t * core_if)
++{
++ return core_if->hibernation_suspend;
++}
++
++void dwc_otg_set_prtpower(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = val;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++}
++
++uint32_t dwc_otg_get_prtsuspend(dwc_otg_core_if_t * core_if)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = DWC_READ_REG32(core_if->host_if->hprt0);
++ return hprt0.b.prtsusp;
++
++}
++
++void dwc_otg_set_prtsuspend(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = val;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++}
++
++uint32_t dwc_otg_get_fr_interval(dwc_otg_core_if_t * core_if)
++{
++ hfir_data_t hfir;
++ hfir.d32 = DWC_READ_REG32(&core_if->host_if->host_global_regs->hfir);
++ return hfir.b.frint;
++
++}
++
++void dwc_otg_set_fr_interval(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ hfir_data_t hfir;
++ uint32_t fram_int;
++ fram_int = calc_frame_interval(core_if);
++ hfir.d32 = DWC_READ_REG32(&core_if->host_if->host_global_regs->hfir);
++ if (!core_if->core_params->reload_ctl) {
++ DWC_WARN("\nCannot reload HFIR register.HFIR.HFIRRldCtrl bit is"
++ "not set to 1.\nShould load driver with reload_ctl=1"
++ " module parameter\n");
++ return;
++ }
++ switch (fram_int) {
++ case 3750:
++ if ((val < 3350) || (val > 4150)) {
++ DWC_WARN("HFIR interval for HS core and 30 MHz"
++ "clock freq should be from 3350 to 4150\n");
++ return;
++ }
++ break;
++ case 30000:
++ if ((val < 26820) || (val > 33180)) {
++ DWC_WARN("HFIR interval for FS/LS core and 30 MHz"
++ "clock freq should be from 26820 to 33180\n");
++ return;
++ }
++ break;
++ case 6000:
++ if ((val < 5360) || (val > 6640)) {
++ DWC_WARN("HFIR interval for HS core and 48 MHz"
++ "clock freq should be from 5360 to 6640\n");
++ return;
++ }
++ break;
++ case 48000:
++ if ((val < 42912) || (val > 53088)) {
++ DWC_WARN("HFIR interval for FS/LS core and 48 MHz"
++ "clock freq should be from 42912 to 53088\n");
++ return;
++ }
++ break;
++ case 7500:
++ if ((val < 6700) || (val > 8300)) {
++ DWC_WARN("HFIR interval for HS core and 60 MHz"
++ "clock freq should be from 6700 to 8300\n");
++ return;
++ }
++ break;
++ case 60000:
++ if ((val < 53640) || (val > 65536)) {
++ DWC_WARN("HFIR interval for FS/LS core and 60 MHz"
++ "clock freq should be from 53640 to 65536\n");
++ return;
++ }
++ break;
++ default:
++ DWC_WARN("Unknown frame interval\n");
++ return;
++ break;
++
++ }
++ hfir.b.frint = val;
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->hfir, hfir.d32);
++}
++
++uint32_t dwc_otg_get_mode_ch_tim(dwc_otg_core_if_t * core_if)
++{
++ hcfg_data_t hcfg;
++ hcfg.d32 = DWC_READ_REG32(&core_if->host_if->host_global_regs->hcfg);
++ return hcfg.b.modechtimen;
++
++}
++
++void dwc_otg_set_mode_ch_tim(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ hcfg_data_t hcfg;
++ hcfg.d32 = DWC_READ_REG32(&core_if->host_if->host_global_regs->hcfg);
++ hcfg.b.modechtimen = val;
++ DWC_WRITE_REG32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++}
++
++void dwc_otg_set_prtresume(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtres = val;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++}
++
++uint32_t dwc_otg_get_remotewakesig(dwc_otg_core_if_t * core_if)
++{
++ dctl_data_t dctl;
++ dctl.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dctl);
++ return dctl.b.rmtwkupsig;
++}
++
++uint32_t dwc_otg_get_lpm_portsleepstatus(dwc_otg_core_if_t * core_if)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++
++ DWC_ASSERT(!
++ ((core_if->lx_state == DWC_OTG_L1) ^ lpmcfg.b.prt_sleep_sts),
++ "lx_state = %d, lmpcfg.prt_sleep_sts = %d\n",
++ core_if->lx_state, lpmcfg.b.prt_sleep_sts);
++
++ return lpmcfg.b.prt_sleep_sts;
++}
++
++uint32_t dwc_otg_get_lpm_remotewakeenabled(dwc_otg_core_if_t * core_if)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ return lpmcfg.b.rem_wkup_en;
++}
++
++uint32_t dwc_otg_get_lpmresponse(dwc_otg_core_if_t * core_if)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ return lpmcfg.b.appl_resp;
++}
++
++void dwc_otg_set_lpmresponse(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ lpmcfg.b.appl_resp = val;
++ DWC_WRITE_REG32(&core_if->core_global_regs->glpmcfg, lpmcfg.d32);
++}
++
++uint32_t dwc_otg_get_hsic_connect(dwc_otg_core_if_t * core_if)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ return lpmcfg.b.hsic_connect;
++}
++
++void dwc_otg_set_hsic_connect(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ lpmcfg.b.hsic_connect = val;
++ DWC_WRITE_REG32(&core_if->core_global_regs->glpmcfg, lpmcfg.d32);
++}
++
++uint32_t dwc_otg_get_inv_sel_hsic(dwc_otg_core_if_t * core_if)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ return lpmcfg.b.inv_sel_hsic;
++
++}
++
++void dwc_otg_set_inv_sel_hsic(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ lpmcfg.b.inv_sel_hsic = val;
++ DWC_WRITE_REG32(&core_if->core_global_regs->glpmcfg, lpmcfg.d32);
++}
++
++uint32_t dwc_otg_get_gotgctl(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++}
++
++void dwc_otg_set_gotgctl(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(&core_if->core_global_regs->gotgctl, val);
++}
++
++uint32_t dwc_otg_get_gusbcfg(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++}
++
++void dwc_otg_set_gusbcfg(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, val);
++}
++
++uint32_t dwc_otg_get_grxfsiz(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->grxfsiz);
++}
++
++void dwc_otg_set_grxfsiz(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(&core_if->core_global_regs->grxfsiz, val);
++}
++
++uint32_t dwc_otg_get_gnptxfsiz(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->gnptxfsiz);
++}
++
++void dwc_otg_set_gnptxfsiz(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(&core_if->core_global_regs->gnptxfsiz, val);
++}
++
++uint32_t dwc_otg_get_gpvndctl(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->gpvndctl);
++}
++
++void dwc_otg_set_gpvndctl(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(&core_if->core_global_regs->gpvndctl, val);
++}
++
++uint32_t dwc_otg_get_ggpio(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->ggpio);
++}
++
++void dwc_otg_set_ggpio(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(&core_if->core_global_regs->ggpio, val);
++}
++
++uint32_t dwc_otg_get_hprt0(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(core_if->host_if->hprt0);
++
++}
++
++void dwc_otg_set_hprt0(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(core_if->host_if->hprt0, val);
++}
++
++uint32_t dwc_otg_get_guid(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->guid);
++}
++
++void dwc_otg_set_guid(dwc_otg_core_if_t * core_if, uint32_t val)
++{
++ DWC_WRITE_REG32(&core_if->core_global_regs->guid, val);
++}
++
++uint32_t dwc_otg_get_hptxfsiz(dwc_otg_core_if_t * core_if)
++{
++ return DWC_READ_REG32(&core_if->core_global_regs->hptxfsiz);
++}
++
++uint16_t dwc_otg_get_otg_version(dwc_otg_core_if_t * core_if)
++{
++ return ((core_if->otg_ver == 1) ? (uint16_t)0x0200 : (uint16_t)0x0103);
++}
++
++/**
++ * Start the SRP timer to detect when the SRP does not complete within
++ * 6 seconds.
++ *
++ * @param core_if the pointer to core_if strucure.
++ */
++void dwc_otg_pcd_start_srp_timer(dwc_otg_core_if_t * core_if)
++{
++ core_if->srp_timer_started = 1;
++ DWC_TIMER_SCHEDULE(core_if->srp_timer, 6000 /* 6 secs */ );
++}
++
++void dwc_otg_initiate_srp(dwc_otg_core_if_t * core_if)
++{
++ uint32_t *addr = (uint32_t *) & (core_if->core_global_regs->gotgctl);
++ gotgctl_data_t mem;
++ gotgctl_data_t val;
++
++ val.d32 = DWC_READ_REG32(addr);
++ if (val.b.sesreq) {
++ DWC_ERROR("Session Request Already active!\n");
++ return;
++ }
++
++ DWC_INFO("Session Request Initated\n"); //NOTICE
++ mem.d32 = DWC_READ_REG32(addr);
++ mem.b.sesreq = 1;
++ DWC_WRITE_REG32(addr, mem.d32);
++
++ /* Start the SRP timer */
++ dwc_otg_pcd_start_srp_timer(core_if);
++ return;
++}
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cil.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cil.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cil.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cil.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1464 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
++ * $Revision: #123 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_CIL_H__)
++#define __DWC_CIL_H__
++
++#include "dwc_list.h"
++#include "dwc_otg_dbg.h"
++#include "dwc_otg_regs.h"
++
++#include "dwc_otg_core_if.h"
++#include "dwc_otg_adp.h"
++
++/**
++ * @file
++ * This file contains the interface to the Core Interface Layer.
++ */
++
++#ifdef DWC_UTE_CFI
++
++#define MAX_DMA_DESCS_PER_EP 256
++
++/**
++ * Enumeration for the data buffer mode
++ */
++typedef enum _data_buffer_mode {
++ BM_STANDARD = 0, /* data buffer is in normal mode */
++ BM_SG = 1, /* data buffer uses the scatter/gather mode */
++ BM_CONCAT = 2, /* data buffer uses the concatenation mode */
++ BM_CIRCULAR = 3, /* data buffer uses the circular DMA mode */
++ BM_ALIGN = 4 /* data buffer is in buffer alignment mode */
++} data_buffer_mode_e;
++#endif //DWC_UTE_CFI
++
++/** Macros defined for DWC OTG HW Release version */
++
++#define OTG_CORE_REV_2_60a 0x4F54260A
++#define OTG_CORE_REV_2_71a 0x4F54271A
++#define OTG_CORE_REV_2_72a 0x4F54272A
++#define OTG_CORE_REV_2_80a 0x4F54280A
++#define OTG_CORE_REV_2_81a 0x4F54281A
++#define OTG_CORE_REV_2_90a 0x4F54290A
++#define OTG_CORE_REV_2_91a 0x4F54291A
++#define OTG_CORE_REV_2_92a 0x4F54292A
++#define OTG_CORE_REV_2_93a 0x4F54293A
++#define OTG_CORE_REV_2_94a 0x4F54294A
++#define OTG_CORE_REV_3_00a 0x4F54300A
++
++/**
++ * Information for each ISOC packet.
++ */
++typedef struct iso_pkt_info {
++ uint32_t offset;
++ uint32_t length;
++ int32_t status;
++} iso_pkt_info_t;
++
++/**
++ * The <code>dwc_ep</code> structure represents the state of a single
++ * endpoint when acting in device mode. It contains the data items
++ * needed for an endpoint to be activated and transfer packets.
++ */
++typedef struct dwc_ep {
++ /** EP number used for register address lookup */
++ uint8_t num;
++ /** EP direction 0 = OUT */
++ unsigned is_in:1;
++ /** EP active. */
++ unsigned active:1;
++
++ /**
++ * Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic
++ * Tx FIFO. If dedicated Tx FIFOs are enabled Tx FIFO # FOR IN EPs*/
++ unsigned tx_fifo_num:4;
++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
++ unsigned type:2;
++#define DWC_OTG_EP_TYPE_CONTROL 0
++#define DWC_OTG_EP_TYPE_ISOC 1
++#define DWC_OTG_EP_TYPE_BULK 2
++#define DWC_OTG_EP_TYPE_INTR 3
++
++ /** DATA start PID for INTR and BULK EP */
++ unsigned data_pid_start:1;
++ /** Frame (even/odd) for ISOC EP */
++ unsigned even_odd_frame:1;
++ /** Max Packet bytes */
++ unsigned maxpacket:11;
++
++ /** Max Transfer size */
++ uint32_t maxxfer;
++
++ /** @name Transfer state */
++ /** @{ */
++
++ /**
++ * Pointer to the beginning of the transfer buffer -- do not modify
++ * during transfer.
++ */
++
++ dwc_dma_t dma_addr;
++
++ dwc_dma_t dma_desc_addr;
++ dwc_otg_dev_dma_desc_t *desc_addr;
++
++ uint8_t *start_xfer_buff;
++ /** pointer to the transfer buffer */
++ uint8_t *xfer_buff;
++ /** Number of bytes to transfer */
++ unsigned xfer_len:19;
++ /** Number of bytes transferred. */
++ unsigned xfer_count:19;
++ /** Sent ZLP */
++ unsigned sent_zlp:1;
++ /** Total len for control transfer */
++ unsigned total_len:19;
++
++ /** stall clear flag */
++ unsigned stall_clear_flag:1;
++
++ /** SETUP pkt cnt rollover flag for EP0 out*/
++ unsigned stp_rollover;
++
++#ifdef DWC_UTE_CFI
++ /* The buffer mode */
++ data_buffer_mode_e buff_mode;
++
++ /* The chain of DMA descriptors.
++ * MAX_DMA_DESCS_PER_EP will be allocated for each active EP.
++ */
++ dwc_otg_dma_desc_t *descs;
++
++ /* The DMA address of the descriptors chain start */
++ dma_addr_t descs_dma_addr;
++ /** This variable stores the length of the last enqueued request */
++ uint32_t cfi_req_len;
++#endif //DWC_UTE_CFI
++
++/** Max DMA Descriptor count for any EP */
++#define MAX_DMA_DESC_CNT 256
++ /** Allocated DMA Desc count */
++ uint32_t desc_cnt;
++
++ /** bInterval */
++ uint32_t bInterval;
++ /** Next frame num to setup next ISOC transfer */
++ uint32_t frame_num;
++ /** Indicates SOF number overrun in DSTS */
++ uint8_t frm_overrun;
++
++#ifdef DWC_UTE_PER_IO
++ /** Next frame num for which will be setup DMA Desc */
++ uint32_t xiso_frame_num;
++ /** bInterval */
++ uint32_t xiso_bInterval;
++ /** Count of currently active transfers - shall be either 0 or 1 */
++ int xiso_active_xfers;
++ int xiso_queued_xfers;
++#endif
++#ifdef DWC_EN_ISOC
++ /**
++ * Variables specific for ISOC EPs
++ *
++ */
++ /** DMA addresses of ISOC buffers */
++ dwc_dma_t dma_addr0;
++ dwc_dma_t dma_addr1;
++
++ dwc_dma_t iso_dma_desc_addr;
++ dwc_otg_dev_dma_desc_t *iso_desc_addr;
++
++ /** pointer to the transfer buffers */
++ uint8_t *xfer_buff0;
++ uint8_t *xfer_buff1;
++
++ /** number of ISOC Buffer is processing */
++ uint32_t proc_buf_num;
++ /** Interval of ISOC Buffer processing */
++ uint32_t buf_proc_intrvl;
++ /** Data size for regular frame */
++ uint32_t data_per_frame;
++
++ /* todo - pattern data support is to be implemented in the future */
++ /** Data size for pattern frame */
++ uint32_t data_pattern_frame;
++ /** Frame number of pattern data */
++ uint32_t sync_frame;
++
++ /** bInterval */
++ uint32_t bInterval;
++ /** ISO Packet number per frame */
++ uint32_t pkt_per_frm;
++ /** Next frame num for which will be setup DMA Desc */
++ uint32_t next_frame;
++ /** Number of packets per buffer processing */
++ uint32_t pkt_cnt;
++ /** Info for all isoc packets */
++ iso_pkt_info_t *pkt_info;
++ /** current pkt number */
++ uint32_t cur_pkt;
++ /** current pkt number */
++ uint8_t *cur_pkt_addr;
++ /** current pkt number */
++ uint32_t cur_pkt_dma_addr;
++#endif /* DWC_EN_ISOC */
++
++/** @} */
++} dwc_ep_t;
++
++/*
++ * Reasons for halting a host channel.
++ */
++typedef enum dwc_otg_halt_status {
++ DWC_OTG_HC_XFER_NO_HALT_STATUS,
++ DWC_OTG_HC_XFER_COMPLETE,
++ DWC_OTG_HC_XFER_URB_COMPLETE,
++ DWC_OTG_HC_XFER_ACK,
++ DWC_OTG_HC_XFER_NAK,
++ DWC_OTG_HC_XFER_NYET,
++ DWC_OTG_HC_XFER_STALL,
++ DWC_OTG_HC_XFER_XACT_ERR,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN,
++ DWC_OTG_HC_XFER_BABBLE_ERR,
++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
++ DWC_OTG_HC_XFER_AHB_ERR,
++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
++ DWC_OTG_HC_XFER_URB_DEQUEUE
++} dwc_otg_halt_status_e;
++
++/**
++ * Host channel descriptor. This structure represents the state of a single
++ * host channel when acting in host mode. It contains the data items needed to
++ * transfer packets to an endpoint via a host channel.
++ */
++typedef struct dwc_hc {
++ /** Host channel number used for register address lookup */
++ uint8_t hc_num;
++
++ /** Device to access */
++ unsigned dev_addr:7;
++
++ /** EP to access */
++ unsigned ep_num:4;
++
++ /** EP direction. 0: OUT, 1: IN */
++ unsigned ep_is_in:1;
++
++ /**
++ * EP speed.
++ * One of the following values:
++ * - DWC_OTG_EP_SPEED_LOW
++ * - DWC_OTG_EP_SPEED_FULL
++ * - DWC_OTG_EP_SPEED_HIGH
++ */
++ unsigned speed:2;
++#define DWC_OTG_EP_SPEED_LOW 0
++#define DWC_OTG_EP_SPEED_FULL 1
++#define DWC_OTG_EP_SPEED_HIGH 2
++
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - DWC_OTG_EP_TYPE_CONTROL: 0
++ * - DWC_OTG_EP_TYPE_ISOC: 1
++ * - DWC_OTG_EP_TYPE_BULK: 2
++ * - DWC_OTG_EP_TYPE_INTR: 3
++ */
++ unsigned ep_type:2;
++
++ /** Max packet size in bytes */
++ unsigned max_packet:11;
++
++ /**
++ * PID for initial transaction.
++ * 0: DATA0,<br>
++ * 1: DATA2,<br>
++ * 2: DATA1,<br>
++ * 3: MDATA (non-Control EP),
++ * SETUP (Control EP)
++ */
++ unsigned data_pid_start:2;
++#define DWC_OTG_HC_PID_DATA0 0
++#define DWC_OTG_HC_PID_DATA2 1
++#define DWC_OTG_HC_PID_DATA1 2
++#define DWC_OTG_HC_PID_MDATA 3
++#define DWC_OTG_HC_PID_SETUP 3
++
++ /** Number of periodic transactions per (micro)frame */
++ unsigned multi_count:2;
++
++ /** @name Transfer State */
++ /** @{ */
++
++ /** Pointer to the current transfer buffer position. */
++ uint8_t *xfer_buff;
++ /**
++ * In Buffer DMA mode this buffer will be used
++ * if xfer_buff is not DWORD aligned.
++ */
++ dwc_dma_t align_buff;
++ /** Total number of bytes to transfer. */
++ uint32_t xfer_len;
++ /** Number of bytes transferred so far. */
++ uint32_t xfer_count;
++ /** Packet count at start of transfer.*/
++ uint16_t start_pkt_count;
++
++ /**
++ * Flag to indicate whether the transfer has been started. Set to 1 if
++ * it has been started, 0 otherwise.
++ */
++ uint8_t xfer_started;
++
++ /**
++ * Set to 1 to indicate that a PING request should be issued on this
++ * channel. If 0, process normally.
++ */
++ uint8_t do_ping;
++
++ /**
++ * Set to 1 to indicate that the error count for this transaction is
++ * non-zero. Set to 0 if the error count is 0.
++ */
++ uint8_t error_state;
++
++ /**
++ * Set to 1 to indicate that this channel should be halted the next
++ * time a request is queued for the channel. This is necessary in
++ * slave mode if no request queue space is available when an attempt
++ * is made to halt the channel.
++ */
++ uint8_t halt_on_queue;
++
++ /**
++ * Set to 1 if the host channel has been halted, but the core is not
++ * finished flushing queued requests. Otherwise 0.
++ */
++ uint8_t halt_pending;
++
++ /**
++ * Reason for halting the host channel.
++ */
++ dwc_otg_halt_status_e halt_status;
++
++ /*
++ * Split settings for the host channel
++ */
++ uint8_t do_split; /**< Enable split for the channel */
++ uint8_t complete_split; /**< Enable complete split */
++ uint8_t hub_addr; /**< Address of high speed hub */
++
++ uint8_t port_addr; /**< Port of the low/full speed device */
++ /** Split transaction position
++ * One of the following values:
++ * - DWC_HCSPLIT_XACTPOS_MID
++ * - DWC_HCSPLIT_XACTPOS_BEGIN
++ * - DWC_HCSPLIT_XACTPOS_END
++ * - DWC_HCSPLIT_XACTPOS_ALL */
++ uint8_t xact_pos;
++
++ /** Set when the host channel does a short read. */
++ uint8_t short_read;
++
++ /**
++ * Number of requests issued for this channel since it was assigned to
++ * the current transfer (not counting PINGs).
++ */
++ uint8_t requests;
++
++ /**
++ * Queue Head for the transfer being processed by this channel.
++ */
++ struct dwc_otg_qh *qh;
++
++ /** @} */
++
++ /** Entry in list of host channels. */
++ DWC_CIRCLEQ_ENTRY(dwc_hc) hc_list_entry;
++
++ /** @name Descriptor DMA support */
++ /** @{ */
++
++ /** Number of Transfer Descriptors */
++ uint16_t ntd;
++
++ /** Descriptor List DMA address */
++ dwc_dma_t desc_list_addr;
++
++ /** Scheduling micro-frame bitmap. */
++ uint8_t schinfo;
++
++ /** @} */
++} dwc_hc_t;
++
++/**
++ * The following parameters may be specified when starting the module. These
++ * parameters define how the DWC_otg controller should be configured.
++ */
++typedef struct dwc_otg_core_params {
++ int32_t opt;
++
++ /**
++ * Specifies the OTG capabilities. The driver will automatically
++ * detect the value for this parameter if none is specified.
++ * 0 - HNP and SRP capable (default)
++ * 1 - SRP Only capable
++ * 2 - No HNP/SRP capable
++ */
++ int32_t otg_cap;
++
++ /**
++ * Specifies whether to use slave or DMA mode for accessing the data
++ * FIFOs. The driver will automatically detect the value for this
++ * parameter if none is specified.
++ * 0 - Slave
++ * 1 - DMA (default, if available)
++ */
++ int32_t dma_enable;
++
++ /**
++ * When DMA mode is enabled specifies whether to use address DMA or DMA
++ * Descriptor mode for accessing the data FIFOs in device mode. The driver
++ * will automatically detect the value for this if none is specified.
++ * 0 - address DMA
++ * 1 - DMA Descriptor(default, if available)
++ */
++ int32_t dma_desc_enable;
++ /** The DMA Burst size (applicable only for External DMA
++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ */
++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
++
++ /**
++ * Specifies the maximum speed of operation in host and device mode.
++ * The actual speed depends on the speed of the attached device and
++ * the value of phy_type. The actual speed depends on the speed of the
++ * attached device.
++ * 0 - High Speed (default)
++ * 1 - Full Speed
++ */
++ int32_t speed;
++ /** Specifies whether low power mode is supported when attached
++ * to a Full Speed or Low Speed device in host mode.
++ * 0 - Don't support low power mode (default)
++ * 1 - Support low power mode
++ */
++ int32_t host_support_fs_ls_low_power;
++
++ /** Specifies the PHY clock rate in low power mode when connected to a
++ * Low Speed device in host mode. This parameter is applicable only if
++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
++ * then defaults to 6 MHZ otherwise 48 MHZ.
++ *
++ * 0 - 48 MHz
++ * 1 - 6 MHz
++ */
++ int32_t host_ls_low_power_phy_clk;
++
++ /**
++ * 0 - Use cC FIFO size parameters
++ * 1 - Allow dynamic FIFO sizing (default)
++ */
++ int32_t enable_dynamic_fifo;
++
++ /** Total number of 4-byte words in the data FIFO memory. This
++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
++ * Tx FIFOs.
++ * 32 to 32768 (default 8192)
++ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ */
++ int32_t data_fifo_size;
++
++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1064)
++ */
++ int32_t dev_rx_fifo_size;
++
++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
++ * when dynamic FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t dev_nperio_tx_fifo_size;
++
++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
++
++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_rx_fifo_size;
++
++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
++ * when Dynamic FIFO sizing is enabled in the core.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_nperio_tx_fifo_size;
++
++ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_perio_tx_fifo_size;
++
++ /** The maximum transfer size supported in bytes.
++ * 2047 to 65,535 (default 65,535)
++ */
++ int32_t max_transfer_size;
++
++ /** The maximum number of packets in a transfer.
++ * 15 to 511 (default 511)
++ */
++ int32_t max_packet_count;
++
++ /** The number of host channel registers to use.
++ * 1 to 16 (default 12)
++ * Note: The FPGA configuration supports a maximum of 12 host channels.
++ */
++ int32_t host_channels;
++
++ /** The number of endpoints in addition to EP0 available for device
++ * mode operations.
++ * 1 to 15 (default 6 IN and OUT)
++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
++ * endpoints in addition to EP0.
++ */
++ int32_t dev_endpoints;
++
++ /**
++ * Specifies the type of PHY interface to use. By default, the driver
++ * will automatically detect the phy_type.
++ *
++ * 0 - Full Speed PHY
++ * 1 - UTMI+ (default)
++ * 2 - ULPI
++ */
++ int32_t phy_type;
++
++ /**
++ * Specifies the UTMI+ Data Width. This parameter is
++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
++ * PHY_TYPE, this parameter indicates the data width between
++ * the MAC and the ULPI Wrapper.) Also, this parameter is
++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
++ * to "8 and 16 bits", meaning that the core has been
++ * configured to work at either data path width.
++ *
++ * 8 or 16 bits (default 16)
++ */
++ int32_t phy_utmi_width;
++
++ /**
++ * Specifies whether the ULPI operates at double or single
++ * data rate. This parameter is only applicable if PHY_TYPE is
++ * ULPI.
++ *
++ * 0 - single data rate ULPI interface with 8 bit wide data
++ * bus (default)
++ * 1 - double data rate ULPI interface with 4 bit wide data
++ * bus
++ */
++ int32_t phy_ulpi_ddr;
++
++ /**
++ * Specifies whether to use the internal or external supply to
++ * drive the vbus with a ULPI phy.
++ */
++ int32_t phy_ulpi_ext_vbus;
++
++ /**
++ * Specifies whether to use the I2Cinterface for full speed PHY. This
++ * parameter is only applicable if PHY_TYPE is FS.
++ * 0 - No (default)
++ * 1 - Yes
++ */
++ int32_t i2c_enable;
++
++ int32_t ulpi_fs_ls;
++
++ int32_t ts_dline;
++
++ /**
++ * Specifies whether dedicated transmit FIFOs are
++ * enabled for non periodic IN endpoints in device mode
++ * 0 - No
++ * 1 - Yes
++ */
++ int32_t en_multiple_tx_fifo;
++
++ /** Number of 4-byte words in each of the Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
++
++ /** Thresholding enable flag-
++ * bit 0 - enable non-ISO Tx thresholding
++ * bit 1 - enable ISO Tx thresholding
++ * bit 2 - enable Rx thresholding
++ */
++ uint32_t thr_ctl;
++
++ /** Thresholding length for Tx
++ * FIFOs in 32 bit DWORDs
++ */
++ uint32_t tx_thr_length;
++
++ /** Thresholding length for Rx
++ * FIFOs in 32 bit DWORDs
++ */
++ uint32_t rx_thr_length;
++
++ /**
++ * Specifies whether LPM (Link Power Management) support is enabled
++ */
++ int32_t lpm_enable;
++
++ /** Per Transfer Interrupt
++ * mode enable flag
++ * 1 - Enabled
++ * 0 - Disabled
++ */
++ int32_t pti_enable;
++
++ /** Multi Processor Interrupt
++ * mode enable flag
++ * 1 - Enabled
++ * 0 - Disabled
++ */
++ int32_t mpi_enable;
++
++ /** IS_USB Capability
++ * 1 - Enabled
++ * 0 - Disabled
++ */
++ int32_t ic_usb_cap;
++
++ /** AHB Threshold Ratio
++ * 2'b00 AHB Threshold = MAC Threshold
++ * 2'b01 AHB Threshold = 1/2 MAC Threshold
++ * 2'b10 AHB Threshold = 1/4 MAC Threshold
++ * 2'b11 AHB Threshold = 1/8 MAC Threshold
++ */
++ int32_t ahb_thr_ratio;
++
++ /** ADP Support
++ * 1 - Enabled
++ * 0 - Disabled
++ */
++ int32_t adp_supp_enable;
++
++ /** HFIR Reload Control
++ * 0 - The HFIR cannot be reloaded dynamically.
++ * 1 - Allow dynamic reloading of the HFIR register during runtime.
++ */
++ int32_t reload_ctl;
++
++ /** DCFG: Enable device Out NAK
++ * 0 - The core does not set NAK after Bulk Out transfer complete.
++ * 1 - The core sets NAK after Bulk OUT transfer complete.
++ */
++ int32_t dev_out_nak;
++
++ /** DCFG: Enable Continue on BNA
++ * After receiving BNA interrupt the core disables the endpoint,when the
++ * endpoint is re-enabled by the application the core starts processing
++ * 0 - from the DOEPDMA descriptor
++ * 1 - from the descriptor which received the BNA.
++ */
++ int32_t cont_on_bna;
++
++ /** GAHBCFG: AHB Single Support
++ * This bit when programmed supports SINGLE transfers for remainder
++ * data in a transfer for DMA mode of operation.
++ * 0 - in this case the remainder data will be sent using INCR burst size.
++ * 1 - in this case the remainder data will be sent using SINGLE burst size.
++ */
++ int32_t ahb_single;
++
++ /** Core Power down mode
++ * 0 - No Power Down is enabled
++ * 1 - Reserved
++ * 2 - Complete Power Down (Hibernation)
++ */
++ int32_t power_down;
++
++ /** OTG revision supported
++ * 0 - OTG 1.3 revision
++ * 1 - OTG 2.0 revision
++ */
++ int32_t otg_ver;
++
++} dwc_otg_core_params_t;
++
++#ifdef DEBUG
++struct dwc_otg_core_if;
++typedef struct hc_xfer_info {
++ struct dwc_otg_core_if *core_if;
++ dwc_hc_t *hc;
++} hc_xfer_info_t;
++#endif
++
++typedef struct ep_xfer_info {
++ struct dwc_otg_core_if *core_if;
++ dwc_ep_t *ep;
++ uint8_t state;
++} ep_xfer_info_t;
++/*
++ * Device States
++ */
++typedef enum dwc_otg_lx_state {
++ /** On state */
++ DWC_OTG_L0,
++ /** LPM sleep state*/
++ DWC_OTG_L1,
++ /** USB suspend state*/
++ DWC_OTG_L2,
++ /** Off state*/
++ DWC_OTG_L3
++} dwc_otg_lx_state_e;
++
++struct dwc_otg_global_regs_backup {
++ uint32_t gotgctl_local;
++ uint32_t gintmsk_local;
++ uint32_t gahbcfg_local;
++ uint32_t gusbcfg_local;
++ uint32_t grxfsiz_local;
++ uint32_t gnptxfsiz_local;
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ uint32_t glpmcfg_local;
++#endif
++ uint32_t gi2cctl_local;
++ uint32_t hptxfsiz_local;
++ uint32_t pcgcctl_local;
++ uint32_t gdfifocfg_local;
++ uint32_t dtxfsiz_local[MAX_EPS_CHANNELS];
++ uint32_t gpwrdn_local;
++ uint32_t xhib_pcgcctl;
++ uint32_t xhib_gpwrdn;
++};
++
++struct dwc_otg_host_regs_backup {
++ uint32_t hcfg_local;
++ uint32_t haintmsk_local;
++ uint32_t hcintmsk_local[MAX_EPS_CHANNELS];
++ uint32_t hprt0_local;
++ uint32_t hfir_local;
++};
++
++struct dwc_otg_dev_regs_backup {
++ uint32_t dcfg;
++ uint32_t dctl;
++ uint32_t daintmsk;
++ uint32_t diepmsk;
++ uint32_t doepmsk;
++ uint32_t diepctl[MAX_EPS_CHANNELS];
++ uint32_t dieptsiz[MAX_EPS_CHANNELS];
++ uint32_t diepdma[MAX_EPS_CHANNELS];
++};
++/**
++ * The <code>dwc_otg_core_if</code> structure contains information needed to manage
++ * the DWC_otg controller acting in either host or device mode. It
++ * represents the programming view of the controller as a whole.
++ */
++struct dwc_otg_core_if {
++ /** Parameters that define how the core should be configured.*/
++ dwc_otg_core_params_t *core_params;
++
++ /** Core Global registers starting at offset 000h. */
++ dwc_otg_core_global_regs_t *core_global_regs;
++
++ /** Device-specific information */
++ dwc_otg_dev_if_t *dev_if;
++ /** Host-specific information */
++ dwc_otg_host_if_t *host_if;
++
++ /** Value from SNPSID register */
++ uint32_t snpsid;
++
++ /*
++ * Set to 1 if the core PHY interface bits in USBCFG have been
++ * initialized.
++ */
++ uint8_t phy_init_done;
++
++ /*
++ * SRP Success flag, set by srp success interrupt in FS I2C mode
++ */
++ uint8_t srp_success;
++ uint8_t srp_timer_started;
++ /** Timer for SRP. If it expires before SRP is successful
++ * clear the SRP. */
++ dwc_timer_t *srp_timer;
++
++#ifdef DWC_DEV_SRPCAP
++ /* This timer is needed to power on the hibernated host core if SRP is not
++ * initiated on connected SRP capable device for limited period of time
++ */
++ uint8_t pwron_timer_started;
++ dwc_timer_t *pwron_timer;
++#endif
++ /* Common configuration information */
++ /** Power and Clock Gating Control Register */
++ volatile uint32_t *pcgcctl;
++#define DWC_OTG_PCGCCTL_OFFSET 0xE00
++
++ /** Push/pop addresses for endpoints or host channels.*/
++ uint32_t *data_fifo[MAX_EPS_CHANNELS];
++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
++#define DWC_OTG_DATA_FIFO_SIZE 0x1000
++
++ /** Total RAM for FIFOs (Bytes) */
++ uint16_t total_fifo_size;
++ /** Size of Rx FIFO (Bytes) */
++ uint16_t rx_fifo_size;
++ /** Size of Non-periodic Tx FIFO (Bytes) */
++ uint16_t nperio_tx_fifo_size;
++
++ /** 1 if DMA is enabled, 0 otherwise. */
++ uint8_t dma_enable;
++
++ /** 1 if DMA descriptor is enabled, 0 otherwise. */
++ uint8_t dma_desc_enable;
++
++ /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
++ uint8_t pti_enh_enable;
++
++ /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
++ uint8_t multiproc_int_enable;
++
++ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
++ uint8_t en_multiple_tx_fifo;
++
++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
++ * process of being queued */
++ uint8_t queuing_high_bandwidth;
++
++ /** Hardware Configuration -- stored here for convenience.*/
++ hwcfg1_data_t hwcfg1;
++ hwcfg2_data_t hwcfg2;
++ hwcfg3_data_t hwcfg3;
++ hwcfg4_data_t hwcfg4;
++ fifosize_data_t hptxfsiz;
++
++ /** Host and Device Configuration -- stored here for convenience.*/
++ hcfg_data_t hcfg;
++ dcfg_data_t dcfg;
++
++ /** The operational State, during transations
++ * (a_host>>a_peripherial and b_device=>b_host) this may not
++ * match the core but allows the software to determine
++ * transitions.
++ */
++ uint8_t op_state;
++
++ /**
++ * Set to 1 if the HCD needs to be restarted on a session request
++ * interrupt. This is required if no connector ID status change has
++ * occurred since the HCD was last disconnected.
++ */
++ uint8_t restart_hcd_on_session_req;
++
++ /** HCD callbacks */
++ /** A-Device is a_host */
++#define A_HOST (1)
++ /** A-Device is a_suspend */
++#define A_SUSPEND (2)
++ /** A-Device is a_peripherial */
++#define A_PERIPHERAL (3)
++ /** B-Device is operating as a Peripheral. */
++#define B_PERIPHERAL (4)
++ /** B-Device is operating as a Host. */
++#define B_HOST (5)
++
++ /** HCD callbacks */
++ struct dwc_otg_cil_callbacks *hcd_cb;
++ /** PCD callbacks */
++ struct dwc_otg_cil_callbacks *pcd_cb;
++
++ /** Device mode Periodic Tx FIFO Mask */
++ uint32_t p_tx_msk;
++ /** Device mode Periodic Tx FIFO Mask */
++ uint32_t tx_msk;
++
++ /** Workqueue object used for handling several interrupts */
++ dwc_workq_t *wq_otg;
++
++ /** Timer object used for handling "Wakeup Detected" Interrupt */
++ dwc_timer_t *wkp_timer;
++ /** This arrays used for debug purposes for DEV OUT NAK enhancement */
++ uint32_t start_doeptsiz_val[MAX_EPS_CHANNELS];
++ ep_xfer_info_t ep_xfer_info[MAX_EPS_CHANNELS];
++ dwc_timer_t *ep_xfer_timer[MAX_EPS_CHANNELS];
++#ifdef DEBUG
++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
++
++ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
++ dwc_timer_t *hc_xfer_timer[MAX_EPS_CHANNELS];
++
++ uint32_t hfnum_7_samples;
++ uint64_t hfnum_7_frrem_accum;
++ uint32_t hfnum_0_samples;
++ uint64_t hfnum_0_frrem_accum;
++ uint32_t hfnum_other_samples;
++ uint64_t hfnum_other_frrem_accum;
++#endif
++
++#ifdef DWC_UTE_CFI
++ uint16_t pwron_rxfsiz;
++ uint16_t pwron_gnptxfsiz;
++ uint16_t pwron_txfsiz[15];
++
++ uint16_t init_rxfsiz;
++ uint16_t init_gnptxfsiz;
++ uint16_t init_txfsiz[15];
++#endif
++
++ /** Lx state of device */
++ dwc_otg_lx_state_e lx_state;
++
++ /** Saved Core Global registers */
++ struct dwc_otg_global_regs_backup *gr_backup;
++ /** Saved Host registers */
++ struct dwc_otg_host_regs_backup *hr_backup;
++ /** Saved Device registers */
++ struct dwc_otg_dev_regs_backup *dr_backup;
++
++ /** Power Down Enable */
++ uint32_t power_down;
++
++ /** ADP support Enable */
++ uint32_t adp_enable;
++
++ /** ADP structure object */
++ dwc_otg_adp_t adp;
++
++ /** hibernation/suspend flag */
++ int hibernation_suspend;
++
++ /** Device mode extended hibernation flag */
++ int xhib;
++
++ /** OTG revision supported */
++ uint32_t otg_ver;
++
++ /** OTG status flag used for HNP polling */
++ uint8_t otg_sts;
++
++ /** Pointer to either hcd->lock or pcd->lock */
++ dwc_spinlock_t *lock;
++
++ /** Start predict NextEP based on Learning Queue if equal 1,
++ * also used as counter of disabled NP IN EP's */
++ uint8_t start_predict;
++
++ /** NextEp sequence, including EP0: nextep_seq[] = EP if non-periodic and
++ * active, 0xff otherwise */
++ uint8_t nextep_seq[MAX_EPS_CHANNELS];
++
++ /** Index of fisrt EP in nextep_seq array which should be re-enabled **/
++ uint8_t first_in_nextep_seq;
++
++ /** Frame number while entering to ISR - needed for ISOCs **/
++ uint32_t frame_num;
++
++};
++
++#ifdef DEBUG
++/*
++ * This function is called when transfer is timed out.
++ */
++extern void hc_xfer_timeout(void *ptr);
++#endif
++
++/*
++ * This function is called when transfer is timed out on endpoint.
++ */
++extern void ep_xfer_timeout(void *ptr);
++
++/*
++ * The following functions are functions for works
++ * using during handling some interrupts
++ */
++extern void w_conn_id_status_change(void *p);
++
++extern void w_wakeup_detected(void *p);
++
++/** Saves global register values into system memory. */
++extern int dwc_otg_save_global_regs(dwc_otg_core_if_t * core_if);
++/** Saves device register values into system memory. */
++extern int dwc_otg_save_dev_regs(dwc_otg_core_if_t * core_if);
++/** Saves host register values into system memory. */
++extern int dwc_otg_save_host_regs(dwc_otg_core_if_t * core_if);
++/** Restore global register values. */
++extern int dwc_otg_restore_global_regs(dwc_otg_core_if_t * core_if);
++/** Restore host register values. */
++extern int dwc_otg_restore_host_regs(dwc_otg_core_if_t * core_if, int reset);
++/** Restore device register values. */
++extern int dwc_otg_restore_dev_regs(dwc_otg_core_if_t * core_if,
++ int rem_wakeup);
++extern int restore_lpm_i2c_regs(dwc_otg_core_if_t * core_if);
++extern int restore_essential_regs(dwc_otg_core_if_t * core_if, int rmode,
++ int is_host);
++
++extern int dwc_otg_host_hibernation_restore(dwc_otg_core_if_t * core_if,
++ int restore_mode, int reset);
++extern int dwc_otg_device_hibernation_restore(dwc_otg_core_if_t * core_if,
++ int rem_wakeup, int reset);
++
++/*
++ * The following functions support initialization of the CIL driver component
++ * and the DWC_otg controller.
++ */
++extern void dwc_otg_core_host_init(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_core_dev_init(dwc_otg_core_if_t * _core_if);
++
++/** @name Device CIL Functions
++ * The following functions support managing the DWC_otg controller in device
++ * mode.
++ */
++/**@{*/
++extern void dwc_otg_wakeup(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_read_setup_packet(dwc_otg_core_if_t * _core_if,
++ uint32_t * _dest);
++extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_ep0_activate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep);
++extern void dwc_otg_ep_activate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep);
++extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep);
++extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t * _core_if,
++ dwc_ep_t * _ep);
++extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t * _core_if,
++ dwc_ep_t * _ep);
++extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t * _core_if,
++ dwc_ep_t * _ep);
++extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t * _core_if,
++ dwc_ep_t * _ep);
++extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t * _core_if,
++ dwc_ep_t * _ep, int _dma);
++extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t * _core_if, dwc_ep_t * _ep);
++extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t * _core_if,
++ dwc_ep_t * _ep);
++extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t * _core_if);
++
++#ifdef DWC_EN_ISOC
++extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * ep);
++extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * ep);
++#endif /* DWC_EN_ISOC */
++/**@}*/
++
++/** @name Host CIL Functions
++ * The following functions support managing the DWC_otg controller in host
++ * mode.
++ */
++/**@{*/
++extern void dwc_otg_hc_init(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc);
++extern void dwc_otg_hc_halt(dwc_otg_core_if_t * _core_if,
++ dwc_hc_t * _hc, dwc_otg_halt_status_e _halt_status);
++extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc);
++extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t * _core_if,
++ dwc_hc_t * _hc);
++extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t * _core_if,
++ dwc_hc_t * _hc);
++extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t * _core_if, dwc_hc_t * _hc);
++extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t * _core_if,
++ dwc_hc_t * _hc);
++extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t * _core_if);
++
++extern void dwc_otg_hc_start_transfer_ddma(dwc_otg_core_if_t * core_if,
++ dwc_hc_t * hc);
++
++extern uint32_t calc_frame_interval(dwc_otg_core_if_t * core_if);
++
++/* Macro used to clear one channel interrupt */
++#define clear_hc_int(_hc_regs_, _intr_) \
++do { \
++ hcint_data_t hcint_clear = {.d32 = 0}; \
++ hcint_clear.b._intr_ = 1; \
++ DWC_WRITE_REG32(&(_hc_regs_)->hcint, hcint_clear.d32); \
++} while (0)
++
++/*
++ * Macro used to disable one channel interrupt. Channel interrupts are
++ * disabled when the channel is halted or released by the interrupt handler.
++ * There is no need to handle further interrupts of that type until the
++ * channel is re-assigned. In fact, subsequent handling may cause crashes
++ * because the channel structures are cleaned up when the channel is released.
++ */
++#define disable_hc_int(_hc_regs_, _intr_) \
++do { \
++ hcintmsk_data_t hcintmsk = {.d32 = 0}; \
++ hcintmsk.b._intr_ = 1; \
++ DWC_MODIFY_REG32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
++} while (0)
++
++/**
++ * This function Reads HPRT0 in preparation to modify. It keeps the
++ * WC bits 0 so that if they are read as 1, they won't clear when you
++ * write it back
++ */
++static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t * _core_if)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = DWC_READ_REG32(_core_if->host_if->hprt0);
++ hprt0.b.prtena = 0;
++ hprt0.b.prtconndet = 0;
++ hprt0.b.prtenchng = 0;
++ hprt0.b.prtovrcurrchng = 0;
++ return hprt0.d32;
++}
++
++/**@}*/
++
++/** @name Common CIL Functions
++ * The following functions support managing the DWC_otg controller in either
++ * device or host mode.
++ */
++/**@{*/
++
++extern void dwc_otg_read_packet(dwc_otg_core_if_t * core_if,
++ uint8_t * dest, uint16_t bytes);
++
++extern void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t * _core_if, const int _num);
++extern void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_core_reset(dwc_otg_core_if_t * _core_if);
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t * core_if)
++{
++ return (DWC_READ_REG32(&core_if->core_global_regs->gintsts) &
++ DWC_READ_REG32(&core_if->core_global_regs->gintmsk));
++}
++
++/**
++ * This function returns the OTG Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_otg_intr(dwc_otg_core_if_t * core_if)
++{
++ return (DWC_READ_REG32(&core_if->core_global_regs->gotgint));
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the IN endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *
++ core_if)
++{
++
++ uint32_t v;
++
++ if (core_if->multiproc_int_enable) {
++ v = DWC_READ_REG32(&core_if->dev_if->
++ dev_global_regs->deachint) &
++ DWC_READ_REG32(&core_if->
++ dev_if->dev_global_regs->deachintmsk);
++ } else {
++ v = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->daint) &
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->daintmsk);
++ }
++ return (v & 0xffff);
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the OUT endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *
++ core_if)
++{
++ uint32_t v;
++
++ if (core_if->multiproc_int_enable) {
++ v = DWC_READ_REG32(&core_if->dev_if->
++ dev_global_regs->deachint) &
++ DWC_READ_REG32(&core_if->
++ dev_if->dev_global_regs->deachintmsk);
++ } else {
++ v = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->daint) &
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->daintmsk);
++ }
++
++ return ((v & 0xffff0000) >> 16);
++}
++
++/**
++ * This function returns the Device IN EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * ep)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ uint32_t v, msk, emp;
++
++ if (core_if->multiproc_int_enable) {
++ msk =
++ DWC_READ_REG32(&dev_if->
++ dev_global_regs->diepeachintmsk[ep->num]);
++ emp =
++ DWC_READ_REG32(&dev_if->
++ dev_global_regs->dtknqr4_fifoemptymsk);
++ msk |= ((emp >> ep->num) & 0x1) << 7;
++ v = DWC_READ_REG32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
++ } else {
++ msk = DWC_READ_REG32(&dev_if->dev_global_regs->diepmsk);
++ emp =
++ DWC_READ_REG32(&dev_if->
++ dev_global_regs->dtknqr4_fifoemptymsk);
++ msk |= ((emp >> ep->num) & 0x1) << 7;
++ v = DWC_READ_REG32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
++ }
++
++ return v;
++}
++
++/**
++ * This function returns the Device OUT EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *
++ _core_if, dwc_ep_t * _ep)
++{
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ uint32_t v;
++ doepmsk_data_t msk = {.d32 = 0 };
++
++ if (_core_if->multiproc_int_enable) {
++ msk.d32 =
++ DWC_READ_REG32(&dev_if->
++ dev_global_regs->doepeachintmsk[_ep->num]);
++ if (_core_if->pti_enh_enable) {
++ msk.b.pktdrpsts = 1;
++ }
++ v = DWC_READ_REG32(&dev_if->
++ out_ep_regs[_ep->num]->doepint) & msk.d32;
++ } else {
++ msk.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->doepmsk);
++ if (_core_if->pti_enh_enable) {
++ msk.b.pktdrpsts = 1;
++ }
++ v = DWC_READ_REG32(&dev_if->
++ out_ep_regs[_ep->num]->doepint) & msk.d32;
++ }
++ return v;
++}
++
++/**
++ * This function returns the Host All Channel Interrupt register
++ */
++static inline uint32_t dwc_otg_read_host_all_channels_intr(dwc_otg_core_if_t *
++ _core_if)
++{
++ return (DWC_READ_REG32(&_core_if->host_if->host_global_regs->haint));
++}
++
++static inline uint32_t dwc_otg_read_host_channel_intr(dwc_otg_core_if_t *
++ _core_if, dwc_hc_t * _hc)
++{
++ return (DWC_READ_REG32
++ (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
++}
++
++/**
++ * This function returns the mode of the operation, host or device.
++ *
++ * @return 0 - Device Mode, 1 - Host Mode
++ */
++static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t * _core_if)
++{
++ return (DWC_READ_REG32(&_core_if->core_global_regs->gintsts) & 0x1);
++}
++
++/**@}*/
++
++/**
++ * DWC_otg CIL callback structure. This structure allows the HCD and
++ * PCD to register functions used for starting and stopping the PCD
++ * and HCD for role change on for a DRD.
++ */
++typedef struct dwc_otg_cil_callbacks {
++ /** Start function for role change */
++ int (*start) (void *_p);
++ /** Stop Function for role change */
++ int (*stop) (void *_p);
++ /** Disconnect Function for role change */
++ int (*disconnect) (void *_p);
++ /** Resume/Remote wakeup Function */
++ int (*resume_wakeup) (void *_p);
++ /** Suspend function */
++ int (*suspend) (void *_p);
++ /** Session Start (SRP) */
++ int (*session_start) (void *_p);
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ /** Sleep (switch to L0 state) */
++ int (*sleep) (void *_p);
++#endif
++ /** Pointer passed to start() and stop() */
++ void *p;
++} dwc_otg_cil_callbacks_t;
++
++extern void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t * _core_if,
++ dwc_otg_cil_callbacks_t * _cb,
++ void *_p);
++extern void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t * _core_if,
++ dwc_otg_cil_callbacks_t * _cb,
++ void *_p);
++
++void dwc_otg_initiate_srp(dwc_otg_core_if_t * core_if);
++
++//////////////////////////////////////////////////////////////////////
++/** Start the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_hcd_start(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->start) {
++ core_if->hcd_cb->start(core_if->hcd_cb->p);
++ }
++}
++
++/** Stop the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_hcd_stop(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->stop) {
++ core_if->hcd_cb->stop(core_if->hcd_cb->p);
++ }
++}
++
++/** Disconnect the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_hcd_disconnect(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
++ core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
++ }
++}
++
++/** Inform the HCD the a New Session has begun. Helper function for
++ * using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_hcd_session_start(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
++ core_if->hcd_cb->session_start(core_if->hcd_cb->p);
++ }
++}
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++/**
++ * Inform the HCD about LPM sleep.
++ * Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_hcd_sleep(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->sleep) {
++ core_if->hcd_cb->sleep(core_if->hcd_cb->p);
++ }
++}
++#endif
++
++/** Resume the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_hcd_resume(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->resume_wakeup) {
++ core_if->hcd_cb->resume_wakeup(core_if->hcd_cb->p);
++ }
++}
++
++/** Start the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_pcd_start(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->start) {
++ core_if->pcd_cb->start(core_if->pcd_cb->p);
++ }
++}
++
++/** Stop the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_pcd_stop(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->stop) {
++ core_if->pcd_cb->stop(core_if->pcd_cb->p);
++ }
++}
++
++/** Suspend the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_pcd_suspend(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
++ core_if->pcd_cb->suspend(core_if->pcd_cb->p);
++ }
++}
++
++/** Resume the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void cil_pcd_resume(dwc_otg_core_if_t * core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ }
++}
++
++//////////////////////////////////////////////////////////////////////
++
++#endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1571 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
++ * $Revision: #32 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * This file contains the Common Interrupt handlers.
++ */
++#include "dwc_os.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_pcd.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_mphi_fix.h"
++
++extern bool fiq_fix_enable;
++
++#ifdef DEBUG
++inline const char *op_state_str(dwc_otg_core_if_t * core_if)
++{
++ return (core_if->op_state == A_HOST ? "a_host" :
++ (core_if->op_state == A_SUSPEND ? "a_suspend" :
++ (core_if->op_state == A_PERIPHERAL ? "a_peripheral" :
++ (core_if->op_state == B_PERIPHERAL ? "b_peripheral" :
++ (core_if->op_state == B_HOST ? "b_host" : "unknown")))));
++}
++#endif
++
++/** This function will log a debug message
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_mode_mismatch_intr(dwc_otg_core_if_t * core_if)
++{
++ gintsts_data_t gintsts;
++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
++ dwc_otg_mode(core_if) ? "Host" : "Device");
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.modemismatch = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++
++/**
++ * This function handles the OTG Interrupts. It reads the OTG
++ * Interrupt Register (GOTGINT) to determine what interrupt has
++ * occurred.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ gotgint_data_t gotgint;
++ gotgctl_data_t gotgctl;
++ gintmsk_data_t gintmsk;
++ gpwrdn_data_t gpwrdn;
++
++ gotgint.d32 = DWC_READ_REG32(&global_regs->gotgint);
++ gotgctl.d32 = DWC_READ_REG32(&global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
++ op_state_str(core_if));
++
++ if (gotgint.b.sesenddet) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session End Detected++ (%s)\n",
++ op_state_str(core_if));
++ gotgctl.d32 = DWC_READ_REG32(&global_regs->gotgctl);
++
++ if (core_if->op_state == B_HOST) {
++ cil_pcd_start(core_if);
++ core_if->op_state = B_PERIPHERAL;
++ } else {
++ /* If not B_HOST and Device HNP still set. HNP
++ * Did not succeed!*/
++ if (gotgctl.b.devhnpen) {
++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
++ __DWC_ERROR("Device Not Connected/Responding!\n");
++ }
++
++ /* If Session End Detected the B-Cable has
++ * been disconnected. */
++ /* Reset PCD and Gadget driver to a
++ * clean state. */
++ core_if->lx_state = DWC_OTG_L0;
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_pcd_stop(core_if);
++ DWC_SPINLOCK(core_if->lock);
++
++ if (core_if->adp_enable) {
++ if (core_if->power_down == 2) {
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->
++ gpwrdn, gpwrdn.d32, 0);
++ }
++
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++
++ dwc_otg_adp_sense_start(core_if);
++ }
++ }
++
++ gotgctl.d32 = 0;
++ gotgctl.b.devhnpen = 1;
++ DWC_MODIFY_REG32(&global_regs->gotgctl, gotgctl.d32, 0);
++ }
++ if (gotgint.b.sesreqsucstschng) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session Reqeust Success Status Change++\n");
++ gotgctl.d32 = DWC_READ_REG32(&global_regs->gotgctl);
++ if (gotgctl.b.sesreqscs) {
++
++ if ((core_if->core_params->phy_type ==
++ DWC_PHY_TYPE_PARAM_FS) && (core_if->core_params->i2c_enable)) {
++ core_if->srp_success = 1;
++ } else {
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_pcd_resume(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ /* Clear Session Request */
++ gotgctl.d32 = 0;
++ gotgctl.b.sesreq = 1;
++ DWC_MODIFY_REG32(&global_regs->gotgctl,
++ gotgctl.d32, 0);
++ }
++ }
++ }
++ if (gotgint.b.hstnegsucstschng) {
++ /* Print statements during the HNP interrupt handling
++ * can cause it to fail.*/
++ gotgctl.d32 = DWC_READ_REG32(&global_regs->gotgctl);
++ /* WA for 3.00a- HW is not setting cur_mode, even sometimes
++ * this does not help*/
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a)
++ dwc_udelay(100);
++ if (gotgctl.b.hstnegscs) {
++ if (dwc_otg_is_host_mode(core_if)) {
++ core_if->op_state = B_HOST;
++ /*
++ * Need to disable SOF interrupt immediately.
++ * When switching from device to host, the PCD
++ * interrupt handler won't handle the
++ * interrupt if host mode is already set. The
++ * HCD interrupt handler won't get called if
++ * the HCD state is HALT. This means that the
++ * interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ DWC_MODIFY_REG32(&global_regs->gintmsk,
++ gintmsk.d32, 0);
++ /* Call callback function with spin lock released */
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_pcd_stop(core_if);
++ /*
++ * Initialize the Core for Host mode.
++ */
++ cil_hcd_start(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ core_if->op_state = B_HOST;
++ }
++ } else {
++ gotgctl.d32 = 0;
++ gotgctl.b.hnpreq = 1;
++ gotgctl.b.devhnpen = 1;
++ DWC_MODIFY_REG32(&global_regs->gotgctl, gotgctl.d32, 0);
++ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
++ __DWC_ERROR("Device Not Connected/Responding\n");
++ }
++ }
++ if (gotgint.b.hstnegdet) {
++ /* The disconnect interrupt is set at the same time as
++ * Host Negotiation Detected. During the mode
++ * switch all interrupts are cleared so the disconnect
++ * interrupt handler will not get executed.
++ */
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Host Negotiation Detected++ (%s)\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" :
++ "Device"));
++ if (dwc_otg_is_device_mode(core_if)) {
++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",
++ core_if->op_state);
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_hcd_disconnect(core_if);
++ cil_pcd_start(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ core_if->op_state = A_PERIPHERAL;
++ } else {
++ /*
++ * Need to disable SOF interrupt immediately. When
++ * switching from device to host, the PCD interrupt
++ * handler won't handle the interrupt if host mode is
++ * already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that
++ * the interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ DWC_MODIFY_REG32(&global_regs->gintmsk, gintmsk.d32, 0);
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_pcd_stop(core_if);
++ cil_hcd_start(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ core_if->op_state = A_HOST;
++ }
++ }
++ if (gotgint.b.adevtoutchng) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "A-Device Timeout Change++\n");
++ }
++ if (gotgint.b.debdone) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " "Debounce Done++\n");
++ }
++
++ /* Clear GOTGINT */
++ DWC_WRITE_REG32(&core_if->core_global_regs->gotgint, gotgint.d32);
++
++ return 1;
++}
++
++void w_conn_id_status_change(void *p)
++{
++ dwc_otg_core_if_t *core_if = p;
++ uint32_t count = 0;
++ gotgctl_data_t gotgctl = {.d32 = 0 };
++
++ gotgctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
++
++ /* B-Device connector (Device Mode) */
++ if (gotgctl.b.conidsts) {
++ /* Wait for switch to device mode. */
++ while (!dwc_otg_is_device_mode(core_if)) {
++ DWC_PRINTF("Waiting for Peripheral Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" :
++ "Peripheral"));
++ dwc_mdelay(100);
++ if (++count > 10000)
++ break;
++ }
++ DWC_ASSERT(++count < 10000,
++ "Connection id status change timed out");
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++ } else {
++ /* A-Device connector (Host Mode) */
++ while (!dwc_otg_is_host_mode(core_if)) {
++ DWC_PRINTF("Waiting for Host Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" :
++ "Peripheral"));
++ dwc_mdelay(100);
++ if (++count > 10000)
++ break;
++ }
++ DWC_ASSERT(++count < 10000,
++ "Connection id status change timed out");
++ core_if->op_state = A_HOST;
++ /*
++ * Initialize the Core for Host mode.
++ */
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_hcd_start(core_if);
++ }
++}
++
++/**
++ * This function handles the Connector ID Status Change Interrupt. It
++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
++ * is a Device to Host Mode transition or a Host Mode to Device
++ * Transition.
++ *
++ * This only occurs when the cable is connected/removed from the PHY
++ * connector.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t * core_if)
++{
++
++ /*
++ * Need to disable SOF interrupt immediately. If switching from device
++ * to host, the PCD interrupt handler won't handle the interrupt if
++ * host mode is already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that the interrupt does
++ * not get handled and Linux complains loudly.
++ */
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++ gintsts_data_t gintsts = {.d32 = 0 };
++
++ gintmsk.b.sofintr = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
++
++ DWC_DEBUGPL(DBG_CIL,
++ " ++Connector ID Status Change Interrupt++ (%s)\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"));
++
++ DWC_SPINUNLOCK(core_if->lock);
++
++ /*
++ * Need to schedule a work, as there are possible DELAY function calls
++ * Release lock before scheduling workq as it holds spinlock during scheduling
++ */
++
++ DWC_WORKQ_SCHEDULE(core_if->wq_otg, w_conn_id_status_change,
++ core_if, "connection id status change");
++ DWC_SPINLOCK(core_if->lock);
++
++ /* Set flag and clear interrupt */
++ gintsts.b.conidstschng = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device is initiating the Session
++ * Request Protocol to request the host to turn on bus power so a new
++ * session can begin. The handler responds by turning on bus power. If
++ * the DWC_otg controller is in low power mode, the handler brings the
++ * controller out of low power mode before turning on bus power.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t * core_if)
++{
++ gintsts_data_t gintsts;
++
++#ifndef DWC_HOST_ONLY
++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ DWC_PRINTF("SRP: Device mode\n");
++ } else {
++ hprt0_data_t hprt0;
++ DWC_PRINTF("SRP: Host mode\n");
++
++ /* Turn on the port power bit. */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Start the Connection timer. So a message can be displayed
++ * if connect does not occur within 10 seconds. */
++ cil_hcd_session_start(core_if);
++ }
++#endif
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.sessreqintr = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++void w_wakeup_detected(void *p)
++{
++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *) p;
++ /*
++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
++ * so that OPT tests pass with all PHYs).
++ */
++ hprt0_data_t hprt0 = {.d32 = 0 };
++#if 0
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ /* Restart the Phy Clock */
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32, 0);
++ dwc_udelay(10);
++#endif //0
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ DWC_DEBUGPL(DBG_ANY, "Resume: HPRT0=%0x\n", hprt0.d32);
++// dwc_mdelay(70);
++ hprt0.b.prtres = 0; /* Resume */
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ DWC_DEBUGPL(DBG_ANY, "Clear Resume: HPRT0=%0x\n",
++ DWC_READ_REG32(core_if->host_if->hprt0));
++
++ cil_hcd_resume(core_if);
++
++ /** Change to L0 state*/
++ core_if->lx_state = DWC_OTG_L0;
++}
++
++/**
++ * This interrupt indicates that the DWC_otg controller has detected a
++ * resume or remote wakeup sequence. If the DWC_otg controller is in
++ * low power mode, the handler must brings the controller out of low
++ * power mode. The controller automatically begins resume
++ * signaling. The handler schedules a time to stop resume signaling.
++ */
++int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t * core_if)
++{
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_ANY,
++ "++Resume and Remote Wakeup Detected Interrupt++\n");
++
++ DWC_PRINTF("%s lxstate = %d\n", __func__, core_if->lx_state);
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ dctl_data_t dctl = {.d32 = 0 };
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->
++ dsts));
++ if (core_if->lx_state == DWC_OTG_L2) {
++#ifdef PARTIAL_POWER_DOWN
++ if (core_if->hwcfg4.b.power_optimiz) {
++ pcgcctl_data_t power = {.d32 = 0 };
++
++ power.d32 = DWC_READ_REG32(core_if->pcgcctl);
++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n",
++ power.d32);
++
++ power.b.stoppclk = 0;
++ DWC_WRITE_REG32(core_if->pcgcctl, power.d32);
++
++ power.b.pwrclmp = 0;
++ DWC_WRITE_REG32(core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 0;
++ DWC_WRITE_REG32(core_if->pcgcctl, power.d32);
++ }
++#endif
++ /* Clear the Remote Wakeup Signaling */
++ dctl.b.rmtwkupsig = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ dctl, dctl.d32, 0);
++
++ DWC_SPINUNLOCK(core_if->lock);
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ }
++ DWC_SPINLOCK(core_if->lock);
++ } else {
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ lpmcfg.b.hird_thres &= (~(1 << 4));
++ DWC_WRITE_REG32(&core_if->core_global_regs->glpmcfg,
++ lpmcfg.d32);
++ }
++ /** Change to L0 state*/
++ core_if->lx_state = DWC_OTG_L0;
++ } else {
++ if (core_if->lx_state != DWC_OTG_L1) {
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++
++ /* Restart the Phy Clock */
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32, 0);
++ DWC_TIMER_SCHEDULE(core_if->wkp_timer, 71);
++ } else {
++ /** Change to L0 state*/
++ core_if->lx_state = DWC_OTG_L0;
++ }
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.wkupintr = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that the Wakeup Logic has detected a
++ * Device disconnect.
++ */
++static int32_t dwc_otg_handle_pwrdn_disconnect_intr(dwc_otg_core_if_t *core_if)
++{
++ gpwrdn_data_t gpwrdn = { .d32 = 0 };
++ gpwrdn_data_t gpwrdn_temp = { .d32 = 0 };
++ gpwrdn_temp.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++
++ DWC_PRINTF("%s called\n", __FUNCTION__);
++
++ if (!core_if->hibernation_suspend) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return 1;
++ }
++
++ /* Switch on the voltage to the core */
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Reset the core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Disable power clamps*/
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Remove reset the core signal */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable PMU interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ core_if->hibernation_suspend = 0;
++
++ /* Disable PMU */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ if (gpwrdn_temp.b.idsts) {
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++ } else {
++ core_if->op_state = A_HOST;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_hcd_start(core_if);
++ }
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that the Wakeup Logic has detected a
++ * remote wakeup sequence.
++ */
++static int32_t dwc_otg_handle_pwrdn_wakeup_detected_intr(dwc_otg_core_if_t * core_if)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ DWC_DEBUGPL(DBG_ANY,
++ "++Powerdown Remote Wakeup Detected Interrupt++\n");
++
++ if (!core_if->hibernation_suspend) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return 1;
++ }
++
++ gpwrdn.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ if (gpwrdn.b.idsts) { // Device Mode
++ if ((core_if->power_down == 2)
++ && (core_if->hibernation_suspend == 1)) {
++ dwc_otg_device_hibernation_restore(core_if, 0, 0);
++ }
++ } else {
++ if ((core_if->power_down == 2)
++ && (core_if->hibernation_suspend == 1)) {
++ dwc_otg_host_hibernation_restore(core_if, 1, 0);
++ }
++ }
++ return 1;
++}
++
++static int32_t dwc_otg_handle_pwrdn_idsts_change(dwc_otg_device_t *otg_dev)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ gpwrdn_data_t gpwrdn_temp = {.d32 = 0 };
++ dwc_otg_core_if_t *core_if = otg_dev->core_if;
++
++ DWC_DEBUGPL(DBG_ANY, "%s called\n", __FUNCTION__);
++ gpwrdn_temp.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ if (core_if->power_down == 2) {
++ if (!core_if->hibernation_suspend) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return 1;
++ }
++ DWC_DEBUGPL(DBG_ANY, "Exit from hibernation on ID sts change\n");
++ /* Switch on the voltage to the core */
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Reset the core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Disable power clamps */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Remove reset the core signal */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable PMU interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /*Indicates that we are exiting from hibernation */
++ core_if->hibernation_suspend = 0;
++
++ /* Disable PMU */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ gpwrdn.d32 = core_if->gr_backup->gpwrdn_local;
++ if (gpwrdn.b.dis_vbus == 1) {
++ gpwrdn.d32 = 0;
++ gpwrdn.b.dis_vbus = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ }
++
++ if (gpwrdn_temp.b.idsts) {
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++ } else {
++ core_if->op_state = A_HOST;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_hcd_start(core_if);
++ }
++ }
++
++ if (core_if->adp_enable) {
++ uint8_t is_host = 0;
++ DWC_SPINUNLOCK(core_if->lock);
++ /* Change the core_if's lock to hcd/pcd lock depend on mode? */
++#ifndef DWC_HOST_ONLY
++ if (gpwrdn_temp.b.idsts)
++ core_if->lock = otg_dev->pcd->lock;
++#endif
++#ifndef DWC_DEVICE_ONLY
++ if (!gpwrdn_temp.b.idsts) {
++ core_if->lock = otg_dev->hcd->lock;
++ is_host = 1;
++ }
++#endif
++ DWC_PRINTF("RESTART ADP\n");
++ if (core_if->adp.probe_enabled)
++ dwc_otg_adp_probe_stop(core_if);
++ if (core_if->adp.sense_enabled)
++ dwc_otg_adp_sense_stop(core_if);
++ if (core_if->adp.sense_timer_started)
++ DWC_TIMER_CANCEL(core_if->adp.sense_timer);
++ if (core_if->adp.vbuson_timer_started)
++ DWC_TIMER_CANCEL(core_if->adp.vbuson_timer);
++ core_if->adp.probe_timer_values[0] = -1;
++ core_if->adp.probe_timer_values[1] = -1;
++ core_if->adp.sense_timer_started = 0;
++ core_if->adp.vbuson_timer_started = 0;
++ core_if->adp.probe_counter = 0;
++ core_if->adp.gpwrdn = 0;
++
++ /* Disable PMU and restart ADP */
++ gpwrdn_temp.d32 = 0;
++ gpwrdn_temp.b.pmuactv = 1;
++ gpwrdn_temp.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ DWC_PRINTF("Check point 1\n");
++ dwc_mdelay(110);
++ dwc_otg_adp_start(core_if, is_host);
++ DWC_SPINLOCK(core_if->lock);
++ }
++
++
++ return 1;
++}
++
++static int32_t dwc_otg_handle_pwrdn_session_change(dwc_otg_core_if_t * core_if)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ int32_t otg_cap_param = core_if->core_params->otg_cap;
++ DWC_DEBUGPL(DBG_ANY, "%s called\n", __FUNCTION__);
++
++ gpwrdn.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ if (core_if->power_down == 2) {
++ if (!core_if->hibernation_suspend) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return 1;
++ }
++
++ if ((otg_cap_param != DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE ||
++ otg_cap_param != DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE) &&
++ gpwrdn.b.bsessvld == 0) {
++ /* Save gpwrdn register for further usage if stschng interrupt */
++ core_if->gr_backup->gpwrdn_local =
++ DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ /*Exit from ISR and wait for stschng interrupt with bsessvld = 1 */
++ return 1;
++ }
++
++ /* Switch on the voltage to the core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Reset the core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Disable power clamps */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Remove reset the core signal */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable PMU interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /*Indicates that we are exiting from hibernation */
++ core_if->hibernation_suspend = 0;
++
++ /* Disable PMU */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE ||
++ otg_cap_param == DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE) {
++ /*
++ * Initiate SRP after initial ADP probe.
++ */
++ dwc_otg_initiate_srp(core_if);
++ }
++ }
++
++ return 1;
++}
++/**
++ * This interrupt indicates that the Wakeup Logic has detected a
++ * status change either on IDDIG or BSessVld.
++ */
++static uint32_t dwc_otg_handle_pwrdn_stschng_intr(dwc_otg_device_t *otg_dev)
++{
++ int retval;
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ gpwrdn_data_t gpwrdn_temp = {.d32 = 0 };
++ dwc_otg_core_if_t *core_if = otg_dev->core_if;
++
++ DWC_PRINTF("%s called\n", __FUNCTION__);
++
++ if (core_if->power_down == 2) {
++ if (core_if->hibernation_suspend <= 0) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return 1;
++ } else
++ gpwrdn_temp.d32 = core_if->gr_backup->gpwrdn_local;
++
++ } else {
++ gpwrdn_temp.d32 = core_if->adp.gpwrdn;
++ }
++
++ gpwrdn.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++
++ if (gpwrdn.b.idsts ^ gpwrdn_temp.b.idsts) {
++ retval = dwc_otg_handle_pwrdn_idsts_change(otg_dev);
++ } else if (gpwrdn.b.bsessvld ^ gpwrdn_temp.b.bsessvld) {
++ retval = dwc_otg_handle_pwrdn_session_change(core_if);
++ }
++
++ return retval;
++}
++
++/**
++ * This interrupt indicates that the Wakeup Logic has detected a
++ * SRP.
++ */
++static int32_t dwc_otg_handle_pwrdn_srp_intr(dwc_otg_core_if_t * core_if)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++
++ DWC_PRINTF("%s called\n", __FUNCTION__);
++
++ if (!core_if->hibernation_suspend) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return 1;
++ }
++#ifdef DWC_DEV_SRPCAP
++ if (core_if->pwron_timer_started) {
++ core_if->pwron_timer_started = 0;
++ DWC_TIMER_CANCEL(core_if->pwron_timer);
++ }
++#endif
++
++ /* Switch on the voltage to the core */
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Reset the core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Disable power clamps */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Remove reset the core signal */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable PMU interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Indicates that we are exiting from hibernation */
++ core_if->hibernation_suspend = 0;
++
++ /* Disable PMU */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Programm Disable VBUS to 0 */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.dis_vbus = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /*Initialize the core as Host */
++ core_if->op_state = A_HOST;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_hcd_start(core_if);
++
++ return 1;
++}
++
++/** This interrupt indicates that restore command after Hibernation
++ * was completed by the core. */
++int32_t dwc_otg_handle_restore_done_intr(dwc_otg_core_if_t * core_if)
++{
++ pcgcctl_data_t pcgcctl;
++ DWC_DEBUGPL(DBG_ANY, "++Restore Done Interrupt++\n");
++
++ //TODO De-assert restore signal. 8.a
++ pcgcctl.d32 = DWC_READ_REG32(core_if->pcgcctl);
++ if (pcgcctl.b.restoremode == 1) {
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++ /*
++ * If restore mode is Remote Wakeup,
++ * unmask Remote Wakeup interrupt.
++ */
++ gintmsk.b.wkupintr = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk,
++ 0, gintmsk.d32);
++ }
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device has been disconnected from
++ * the root port.
++ */
++int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t * core_if)
++{
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
++ (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"),
++ op_state_str(core_if));
++
++/** @todo Consolidate this if statement. */
++#ifndef DWC_HOST_ONLY
++ if (core_if->op_state == B_HOST) {
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_hcd_disconnect(core_if);
++ cil_pcd_start(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ core_if->op_state = B_PERIPHERAL;
++ } else if (dwc_otg_is_device_mode(core_if)) {
++ gotgctl_data_t gotgctl = {.d32 = 0 };
++ gotgctl.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->gotgctl);
++ if (gotgctl.b.hstsethnpen == 1) {
++ /* Do nothing, if HNP in process the OTG
++ * interrupt "Host Negotiation Detected"
++ * interrupt will do the mode switch.
++ */
++ } else if (gotgctl.b.devhnpen == 0) {
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_hcd_disconnect(core_if);
++ cil_pcd_start(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ core_if->op_state = B_PERIPHERAL;
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "!a_peripheral && !devhnpen\n");
++ }
++ } else {
++ if (core_if->op_state == A_HOST) {
++ /* A-Cable still connected but device disconnected. */
++ cil_hcd_disconnect(core_if);
++ if (core_if->adp_enable) {
++ gpwrdn_data_t gpwrdn = { .d32 = 0 };
++ cil_hcd_stop(core_if);
++ /* Enable Power Down Logic */
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_otg_adp_probe_start(core_if);
++
++ /* Power off the core */
++ if (core_if->power_down == 2) {
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32
++ (&core_if->core_global_regs->gpwrdn,
++ gpwrdn.d32, 0);
++ }
++ }
++ }
++ }
++#endif
++ /* Change to L3(OFF) state */
++ core_if->lx_state = DWC_OTG_L3;
++
++ gintsts.d32 = 0;
++ gintsts.b.disconnect = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++
++/**
++ * This interrupt indicates that SUSPEND state has been detected on
++ * the USB.
++ *
++ * For HNP the USB Suspend interrupt signals the change from
++ * "a_peripheral" to "a_host".
++ *
++ * When power management is enabled the core will be put in low power
++ * mode.
++ */
++int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t * core_if)
++{
++ dsts_data_t dsts;
++ gintsts_data_t gintsts;
++ dcfg_data_t dcfg;
++
++ DWC_DEBUGPL(DBG_ANY, "USB SUSPEND\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ /* Check the Device status register to determine if the Suspend
++ * state is active. */
++ dsts.d32 =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
++ "HWCFG4.power Optimize=%d\n",
++ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
++
++#ifdef PARTIAL_POWER_DOWN
++/** @todo Add a module parameter for power management. */
++
++ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
++ pcgcctl_data_t power = {.d32 = 0 };
++ DWC_DEBUGPL(DBG_CIL, "suspend\n");
++
++ power.b.pwrclmp = 1;
++ DWC_WRITE_REG32(core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, power.d32);
++
++ power.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, power.d32);
++
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "disconnect?\n");
++ }
++#endif
++ /* PCD callback for suspend. Release the lock inside of callback function */
++ cil_pcd_suspend(core_if);
++ if (core_if->power_down == 2)
++ {
++ dcfg.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++ DWC_DEBUGPL(DBG_ANY,"lx_state = %08x\n",core_if->lx_state);
++ DWC_DEBUGPL(DBG_ANY," device address = %08d\n",dcfg.b.devaddr);
++
++ if (core_if->lx_state != DWC_OTG_L3 && dcfg.b.devaddr) {
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ gusbcfg_data_t gusbcfg = {.d32 = 0 };
++
++ /* Change to L2(suspend) state */
++ core_if->lx_state = DWC_OTG_L2;
++
++ /* Clear interrupt in gintsts */
++ gintsts.d32 = 0;
++ gintsts.b.usbsuspend = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->
++ gintsts, gintsts.d32);
++ DWC_PRINTF("Start of hibernation completed\n");
++ dwc_otg_save_global_regs(core_if);
++ dwc_otg_save_dev_regs(core_if);
++
++ gusbcfg.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->
++ gusbcfg);
++ if (gusbcfg.b.ulpi_utmi_sel == 1) {
++ /* ULPI interface */
++ /* Suspend the Phy Clock */
++ pcgcctl.d32 = 0;
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0,
++ pcgcctl.d32);
++ dwc_udelay(10);
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ } else {
++ /* UTMI+ Interface */
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0,
++ pcgcctl.d32);
++ dwc_udelay(10);
++ }
++
++ /* Set flag to indicate that we are in hibernation */
++ core_if->hibernation_suspend = 1;
++ /* Enable interrupts from wake up logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Unmask device mode interrupts in GPWRDN */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.rst_det_msk = 1;
++ gpwrdn.b.lnstchng_msk = 1;
++ gpwrdn.b.sts_chngint_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Enable Power Down Clamp */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Switch off VDD */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++
++ /* Save gpwrdn register for further usage if stschng interrupt */
++ core_if->gr_backup->gpwrdn_local =
++ DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ DWC_PRINTF("Hibernation completed\n");
++
++ return 1;
++ }
++ } else if (core_if->power_down == 3) {
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ dcfg.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dcfg);
++ DWC_DEBUGPL(DBG_ANY, "lx_state = %08x\n",core_if->lx_state);
++ DWC_DEBUGPL(DBG_ANY, " device address = %08d\n",dcfg.b.devaddr);
++
++ if (core_if->lx_state != DWC_OTG_L3 && dcfg.b.devaddr) {
++ DWC_DEBUGPL(DBG_ANY, "Start entering to extended hibernation\n");
++ core_if->xhib = 1;
++
++ /* Clear interrupt in gintsts */
++ gintsts.d32 = 0;
++ gintsts.b.usbsuspend = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->
++ gintsts, gintsts.d32);
++
++ dwc_otg_save_global_regs(core_if);
++ dwc_otg_save_dev_regs(core_if);
++
++ /* Wait for 10 PHY clocks */
++ dwc_udelay(10);
++
++ /* Program GPIO register while entering to xHib */
++ DWC_WRITE_REG32(&core_if->core_global_regs->ggpio, 0x1);
++
++ pcgcctl.b.enbl_extnd_hiber = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, pcgcctl.d32);
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, pcgcctl.d32);
++
++ pcgcctl.d32 = 0;
++ pcgcctl.b.extnd_hiber_pwrclmp = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, pcgcctl.d32);
++
++ pcgcctl.d32 = 0;
++ pcgcctl.b.extnd_hiber_switch = 1;
++ core_if->gr_backup->xhib_gpwrdn = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ core_if->gr_backup->xhib_pcgcctl = DWC_READ_REG32(core_if->pcgcctl) | pcgcctl.d32;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, pcgcctl.d32);
++
++ DWC_DEBUGPL(DBG_ANY, "Finished entering to extended hibernation\n");
++
++ return 1;
++ }
++ }
++ } else {
++ if (core_if->op_state == A_PERIPHERAL) {
++ DWC_DEBUGPL(DBG_ANY, "a_peripheral->a_host\n");
++ /* Clear the a_peripheral flag, back to a_host. */
++ DWC_SPINUNLOCK(core_if->lock);
++ cil_pcd_stop(core_if);
++ cil_hcd_start(core_if);
++ DWC_SPINLOCK(core_if->lock);
++ core_if->op_state = A_HOST;
++ }
++ }
++
++ /* Change to L2(suspend) state */
++ core_if->lx_state = DWC_OTG_L2;
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.usbsuspend = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++static int32_t dwc_otg_handle_xhib_exit_intr(dwc_otg_core_if_t * core_if)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ gahbcfg_data_t gahbcfg = {.d32 = 0 };
++
++ dwc_udelay(10);
++
++ /* Program GPIO register while entering to xHib */
++ DWC_WRITE_REG32(&core_if->core_global_regs->ggpio, 0x0);
++
++ pcgcctl.d32 = core_if->gr_backup->xhib_pcgcctl;
++ pcgcctl.b.extnd_hiber_pwrclmp = 0;
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++ dwc_udelay(10);
++
++ gpwrdn.d32 = core_if->gr_backup->xhib_gpwrdn;
++ gpwrdn.b.restore = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32);
++ dwc_udelay(10);
++
++ restore_lpm_i2c_regs(core_if);
++
++ pcgcctl.d32 = core_if->gr_backup->pcgcctl_local & (0x3FFFF << 14);
++ pcgcctl.b.max_xcvrselect = 1;
++ pcgcctl.b.ess_reg_restored = 0;
++ pcgcctl.b.extnd_hiber_switch = 0;
++ pcgcctl.b.extnd_hiber_pwrclmp = 0;
++ pcgcctl.b.enbl_extnd_hiber = 1;
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++
++ gahbcfg.d32 = core_if->gr_backup->gahbcfg_local;
++ gahbcfg.b.glblintrmsk = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gahbcfg, gahbcfg.d32);
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, 0xFFFFFFFF);
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, 0x1 << 16);
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg,
++ core_if->gr_backup->gusbcfg_local);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dcfg,
++ core_if->dr_backup->dcfg);
++
++ pcgcctl.d32 = 0;
++ pcgcctl.d32 = core_if->gr_backup->pcgcctl_local & (0x3FFFF << 14);
++ pcgcctl.b.max_xcvrselect = 1;
++ pcgcctl.d32 |= 0x608;
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++ dwc_udelay(10);
++
++ pcgcctl.d32 = 0;
++ pcgcctl.d32 = core_if->gr_backup->pcgcctl_local & (0x3FFFF << 14);
++ pcgcctl.b.max_xcvrselect = 1;
++ pcgcctl.b.ess_reg_restored = 1;
++ pcgcctl.b.enbl_extnd_hiber = 1;
++ pcgcctl.b.rstpdwnmodule = 1;
++ pcgcctl.b.restoremode = 1;
++ DWC_WRITE_REG32(core_if->pcgcctl, pcgcctl.d32);
++
++ DWC_DEBUGPL(DBG_ANY, "%s called\n", __FUNCTION__);
++
++ return 1;
++}
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++/**
++ * This function hadles LPM transaction received interrupt.
++ */
++static int32_t dwc_otg_handle_lpm_intr(dwc_otg_core_if_t * core_if)
++{
++ glpmcfg_data_t lpmcfg;
++ gintsts_data_t gintsts;
++
++ if (!core_if->core_params->lpm_enable) {
++ DWC_PRINTF("Unexpected LPM interrupt\n");
++ }
++
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ DWC_PRINTF("LPM config register = 0x%08x\n", lpmcfg.d32);
++
++ if (dwc_otg_is_host_mode(core_if)) {
++ cil_hcd_sleep(core_if);
++ } else {
++ lpmcfg.b.hird_thres |= (1 << 4);
++ DWC_WRITE_REG32(&core_if->core_global_regs->glpmcfg,
++ lpmcfg.d32);
++ }
++
++ /* Examine prt_sleep_sts after TL1TokenTetry period max (10 us) */
++ dwc_udelay(10);
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ if (lpmcfg.b.prt_sleep_sts) {
++ /* Save the current state */
++ core_if->lx_state = DWC_OTG_L1;
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.lpmtranrcvd = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++#endif /* CONFIG_USB_DWC_OTG_LPM */
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t * core_if)
++{
++ gahbcfg_data_t gahbcfg = {.d32 = 0 };
++ gintsts_data_t gintsts;
++ gintmsk_data_t gintmsk;
++ gintmsk_data_t gintmsk_common = {.d32 = 0 };
++ gintmsk_common.b.wkupintr = 1;
++ gintmsk_common.b.sessreqintr = 1;
++ gintmsk_common.b.conidstschng = 1;
++ gintmsk_common.b.otgintr = 1;
++ gintmsk_common.b.modemismatch = 1;
++ gintmsk_common.b.disconnect = 1;
++ gintmsk_common.b.usbsuspend = 1;
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ gintmsk_common.b.lpmtranrcvd = 1;
++#endif
++ gintmsk_common.b.restoredone = 1;
++ /** @todo: The port interrupt occurs while in device
++ * mode. Added code to CIL to clear the interrupt for now!
++ */
++ gintmsk_common.b.portintr = 1;
++
++ gintsts.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ gintmsk.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintmsk);
++ gahbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gahbcfg);
++
++#ifdef DEBUG
++ /* if any common interrupts set */
++ if (gintsts.d32 & gintmsk_common.d32) {
++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
++ gintsts.d32, gintmsk.d32);
++ }
++#endif
++ if (!fiq_fix_enable){
++ if (gahbcfg.b.glblintrmsk)
++ return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
++ else
++ return 0;
++ }
++ else {
++ return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
++ }
++
++}
++
++/* MACRO for clearing interupt bits in GPWRDN register */
++#define CLEAR_GPWRDN_INTR(__core_if,__intr) \
++do { \
++ gpwrdn_data_t gpwrdn = {.d32=0}; \
++ gpwrdn.b.__intr = 1; \
++ DWC_MODIFY_REG32(&__core_if->core_global_regs->gpwrdn, \
++ 0, gpwrdn.d32); \
++} while (0)
++
++/**
++ * Common interrupt handler.
++ *
++ * The common interrupts are those that occur in both Host and Device mode.
++ * This handler handles the following interrupts:
++ * - Mode Mismatch Interrupt
++ * - Disconnect Interrupt
++ * - OTG Interrupt
++ * - Connector ID Status Change Interrupt
++ * - Session Request Interrupt.
++ * - Resume / Remote Wakeup Detected Interrupt.
++ * - LPM Transaction Received Interrupt
++ * - ADP Transaction Received Interrupt
++ *
++ */
++int32_t dwc_otg_handle_common_intr(void *dev)
++{
++ int retval = 0;
++ gintsts_data_t gintsts;
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ dwc_otg_device_t *otg_dev = dev;
++ dwc_otg_core_if_t *core_if = otg_dev->core_if;
++ gpwrdn.d32 = DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++ if (dwc_otg_is_device_mode(core_if))
++ core_if->frame_num = dwc_otg_get_frame_number(core_if);
++
++ if (core_if->lock)
++ DWC_SPINLOCK(core_if->lock);
++
++ if (core_if->power_down == 3 && core_if->xhib == 1) {
++ DWC_DEBUGPL(DBG_ANY, "Exiting from xHIB state\n");
++ retval |= dwc_otg_handle_xhib_exit_intr(core_if);
++ core_if->xhib = 2;
++ if (core_if->lock)
++ DWC_SPINUNLOCK(core_if->lock);
++
++ return retval;
++ }
++
++ if (core_if->hibernation_suspend <= 0) {
++ gintsts.d32 = dwc_otg_read_common_intr(core_if);
++
++ if (gintsts.b.modemismatch) {
++ retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
++ }
++ if (gintsts.b.otgintr) {
++ retval |= dwc_otg_handle_otg_intr(core_if);
++ }
++ if (gintsts.b.conidstschng) {
++ retval |=
++ dwc_otg_handle_conn_id_status_change_intr(core_if);
++ }
++ if (gintsts.b.disconnect) {
++ retval |= dwc_otg_handle_disconnect_intr(core_if);
++ }
++ if (gintsts.b.sessreqintr) {
++ retval |= dwc_otg_handle_session_req_intr(core_if);
++ }
++ if (gintsts.b.wkupintr) {
++ retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
++ }
++ if (gintsts.b.usbsuspend) {
++ retval |= dwc_otg_handle_usb_suspend_intr(core_if);
++ }
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ if (gintsts.b.lpmtranrcvd) {
++ retval |= dwc_otg_handle_lpm_intr(core_if);
++ }
++#endif
++ if (gintsts.b.restoredone) {
++ gintsts.d32 = 0;
++ if (core_if->power_down == 2)
++ core_if->hibernation_suspend = -1;
++ else if (core_if->power_down == 3 && core_if->xhib == 2) {
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ dctl_data_t dctl = {.d32 = 0 };
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->
++ gintsts, 0xFFFFFFFF);
++
++ DWC_DEBUGPL(DBG_ANY,
++ "RESTORE DONE generated\n");
++
++ gpwrdn.b.restore = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ pcgcctl.b.rstpdwnmodule = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32, 0);
++
++ DWC_WRITE_REG32(&core_if->core_global_regs->gusbcfg, core_if->gr_backup->gusbcfg_local);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dcfg, core_if->dr_backup->dcfg);
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl, core_if->dr_backup->dctl);
++ dwc_udelay(50);
++
++ dctl.b.pwronprgdone = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ dwc_udelay(10);
++
++ dwc_otg_restore_global_regs(core_if);
++ dwc_otg_restore_dev_regs(core_if, 0);
++
++ dctl.d32 = 0;
++ dctl.b.pwronprgdone = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32, 0);
++ dwc_udelay(10);
++
++ pcgcctl.d32 = 0;
++ pcgcctl.b.enbl_extnd_hiber = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32, 0);
++
++ /* The core will be in ON STATE */
++ core_if->lx_state = DWC_OTG_L0;
++ core_if->xhib = 0;
++
++ DWC_SPINUNLOCK(core_if->lock);
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ }
++ DWC_SPINLOCK(core_if->lock);
++
++ }
++
++ gintsts.b.restoredone = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts,gintsts.d32);
++ DWC_PRINTF(" --Restore done interrupt received-- \n");
++ retval |= 1;
++ }
++ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
++ /* The port interrupt occurs while in device mode with HPRT0
++ * Port Enable/Disable.
++ */
++ gintsts.d32 = 0;
++ gintsts.b.portintr = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts,gintsts.d32);
++ retval |= 1;
++
++ }
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "gpwrdn=%08x\n", gpwrdn.d32);
++
++ if (gpwrdn.b.disconn_det && gpwrdn.b.disconn_det_msk) {
++ CLEAR_GPWRDN_INTR(core_if, disconn_det);
++ if (gpwrdn.b.linestate == 0) {
++ dwc_otg_handle_pwrdn_disconnect_intr(core_if);
++ } else {
++ DWC_PRINTF("Disconnect detected while linestate is not 0\n");
++ }
++
++ retval |= 1;
++ }
++ if (gpwrdn.b.lnstschng && gpwrdn.b.lnstchng_msk) {
++ CLEAR_GPWRDN_INTR(core_if, lnstschng);
++ /* remote wakeup from hibernation */
++ if (gpwrdn.b.linestate == 2 || gpwrdn.b.linestate == 1) {
++ dwc_otg_handle_pwrdn_wakeup_detected_intr(core_if);
++ } else {
++ DWC_PRINTF("gpwrdn.linestate = %d\n", gpwrdn.b.linestate);
++ }
++ retval |= 1;
++ }
++ if (gpwrdn.b.rst_det && gpwrdn.b.rst_det_msk) {
++ CLEAR_GPWRDN_INTR(core_if, rst_det);
++ if (gpwrdn.b.linestate == 0) {
++ DWC_PRINTF("Reset detected\n");
++ retval |= dwc_otg_device_hibernation_restore(core_if, 0, 1);
++ }
++ }
++ if (gpwrdn.b.srp_det && gpwrdn.b.srp_det_msk) {
++ CLEAR_GPWRDN_INTR(core_if, srp_det);
++ dwc_otg_handle_pwrdn_srp_intr(core_if);
++ retval |= 1;
++ }
++ }
++ /* Handle ADP interrupt here */
++ if (gpwrdn.b.adp_int) {
++ DWC_PRINTF("ADP interrupt\n");
++ CLEAR_GPWRDN_INTR(core_if, adp_int);
++ dwc_otg_adp_handle_intr(core_if);
++ retval |= 1;
++ }
++ if (gpwrdn.b.sts_chngint && gpwrdn.b.sts_chngint_msk) {
++ DWC_PRINTF("STS CHNG interrupt asserted\n");
++ CLEAR_GPWRDN_INTR(core_if, sts_chngint);
++ dwc_otg_handle_pwrdn_stschng_intr(otg_dev);
++
++ retval |= 1;
++ }
++ if (core_if->lock)
++ DWC_SPINUNLOCK(core_if->lock);
++
++ return retval;
++}
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_core_if.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_core_if.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_core_if.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_core_if.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,705 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_core_if.h $
++ * $Revision: #13 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#if !defined(__DWC_CORE_IF_H__)
++#define __DWC_CORE_IF_H__
++
++#include "dwc_os.h"
++
++/** @file
++ * This file defines DWC_OTG Core API
++ */
++
++struct dwc_otg_core_if;
++typedef struct dwc_otg_core_if dwc_otg_core_if_t;
++
++/** Maximum number of Periodic FIFOs */
++#define MAX_PERIO_FIFOS 15
++/** Maximum number of Periodic FIFOs */
++#define MAX_TX_FIFOS 15
++
++/** Maximum number of Endpoints/HostChannels */
++#define MAX_EPS_CHANNELS 16
++
++extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t * _reg_base_addr);
++extern void dwc_otg_core_init(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_cil_remove(dwc_otg_core_if_t * _core_if);
++
++extern void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t * _core_if);
++
++extern uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t * _core_if);
++extern uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t * _core_if);
++
++extern uint8_t dwc_otg_is_dma_enable(dwc_otg_core_if_t * core_if);
++
++/** This function should be called on every hardware interrupt. */
++extern int32_t dwc_otg_handle_common_intr(void *otg_dev);
++
++/** @name OTG Core Parameters */
++/** @{ */
++
++/**
++ * Specifies the OTG capabilities. The driver will automatically
++ * detect the value for this parameter if none is specified.
++ * 0 - HNP and SRP capable (default)
++ * 1 - SRP Only capable
++ * 2 - No HNP/SRP capable
++ */
++extern int dwc_otg_set_param_otg_cap(dwc_otg_core_if_t * core_if, int32_t val);
++extern int32_t dwc_otg_get_param_otg_cap(dwc_otg_core_if_t * core_if);
++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
++
++extern int dwc_otg_set_param_opt(dwc_otg_core_if_t * core_if, int32_t val);
++extern int32_t dwc_otg_get_param_opt(dwc_otg_core_if_t * core_if);
++#define dwc_param_opt_default 1
++
++/**
++ * Specifies whether to use slave or DMA mode for accessing the data
++ * FIFOs. The driver will automatically detect the value for this
++ * parameter if none is specified.
++ * 0 - Slave
++ * 1 - DMA (default, if available)
++ */
++extern int dwc_otg_set_param_dma_enable(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_dma_enable(dwc_otg_core_if_t * core_if);
++#define dwc_param_dma_enable_default 1
++
++/**
++ * When DMA mode is enabled specifies whether to use
++ * address DMA or DMA Descritor mode for accessing the data
++ * FIFOs in device mode. The driver will automatically detect
++ * the value for this parameter if none is specified.
++ * 0 - address DMA
++ * 1 - DMA Descriptor(default, if available)
++ */
++extern int dwc_otg_set_param_dma_desc_enable(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_dma_desc_enable(dwc_otg_core_if_t * core_if);
++//#define dwc_param_dma_desc_enable_default 1
++#define dwc_param_dma_desc_enable_default 0 // Broadcom BCM2708
++
++/** The DMA Burst size (applicable only for External DMA
++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ */
++extern int dwc_otg_set_param_dma_burst_size(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_dma_burst_size(dwc_otg_core_if_t * core_if);
++#define dwc_param_dma_burst_size_default 32
++
++/**
++ * Specifies the maximum speed of operation in host and device mode.
++ * The actual speed depends on the speed of the attached device and
++ * the value of phy_type. The actual speed depends on the speed of the
++ * attached device.
++ * 0 - High Speed (default)
++ * 1 - Full Speed
++ */
++extern int dwc_otg_set_param_speed(dwc_otg_core_if_t * core_if, int32_t val);
++extern int32_t dwc_otg_get_param_speed(dwc_otg_core_if_t * core_if);
++#define dwc_param_speed_default 0
++#define DWC_SPEED_PARAM_HIGH 0
++#define DWC_SPEED_PARAM_FULL 1
++
++/** Specifies whether low power mode is supported when attached
++ * to a Full Speed or Low Speed device in host mode.
++ * 0 - Don't support low power mode (default)
++ * 1 - Support low power mode
++ */
++extern int dwc_otg_set_param_host_support_fs_ls_low_power(dwc_otg_core_if_t *
++ core_if, int32_t val);
++extern int32_t dwc_otg_get_param_host_support_fs_ls_low_power(dwc_otg_core_if_t
++ * core_if);
++#define dwc_param_host_support_fs_ls_low_power_default 0
++
++/** Specifies the PHY clock rate in low power mode when connected to a
++ * Low Speed device in host mode. This parameter is applicable only if
++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
++ * then defaults to 6 MHZ otherwise 48 MHZ.
++ *
++ * 0 - 48 MHz
++ * 1 - 6 MHz
++ */
++extern int dwc_otg_set_param_host_ls_low_power_phy_clk(dwc_otg_core_if_t *
++ core_if, int32_t val);
++extern int32_t dwc_otg_get_param_host_ls_low_power_phy_clk(dwc_otg_core_if_t *
++ core_if);
++#define dwc_param_host_ls_low_power_phy_clk_default 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
++
++/**
++ * 0 - Use cC FIFO size parameters
++ * 1 - Allow dynamic FIFO sizing (default)
++ */
++extern int dwc_otg_set_param_enable_dynamic_fifo(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_enable_dynamic_fifo(dwc_otg_core_if_t *
++ core_if);
++#define dwc_param_enable_dynamic_fifo_default 1
++
++/** Total number of 4-byte words in the data FIFO memory. This
++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
++ * Tx FIFOs.
++ * 32 to 32768 (default 8192)
++ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ */
++extern int dwc_otg_set_param_data_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_data_fifo_size(dwc_otg_core_if_t * core_if);
++//#define dwc_param_data_fifo_size_default 8192
++#define dwc_param_data_fifo_size_default 0xFF0 // Broadcom BCM2708
++
++/** Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1064)
++ */
++extern int dwc_otg_set_param_dev_rx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_dev_rx_fifo_size(dwc_otg_core_if_t * core_if);
++#define dwc_param_dev_rx_fifo_size_default 1064
++
++/** Number of 4-byte words in the non-periodic Tx FIFO in device mode
++ * when dynamic FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++extern int dwc_otg_set_param_dev_nperio_tx_fifo_size(dwc_otg_core_if_t *
++ core_if, int32_t val);
++extern int32_t dwc_otg_get_param_dev_nperio_tx_fifo_size(dwc_otg_core_if_t *
++ core_if);
++#define dwc_param_dev_nperio_tx_fifo_size_default 1024
++
++/** Number of 4-byte words in each of the periodic Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++extern int dwc_otg_set_param_dev_perio_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val, int fifo_num);
++extern int32_t dwc_otg_get_param_dev_perio_tx_fifo_size(dwc_otg_core_if_t *
++ core_if, int fifo_num);
++#define dwc_param_dev_perio_tx_fifo_size_default 256
++
++/** Number of 4-byte words in the Rx FIFO in host mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++extern int dwc_otg_set_param_host_rx_fifo_size(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_host_rx_fifo_size(dwc_otg_core_if_t * core_if);
++//#define dwc_param_host_rx_fifo_size_default 1024
++#define dwc_param_host_rx_fifo_size_default 774 // Broadcom BCM2708
++
++/** Number of 4-byte words in the non-periodic Tx FIFO in host mode
++ * when Dynamic FIFO sizing is enabled in the core.
++ * 16 to 32768 (default 1024)
++ */
++extern int dwc_otg_set_param_host_nperio_tx_fifo_size(dwc_otg_core_if_t *
++ core_if, int32_t val);
++extern int32_t dwc_otg_get_param_host_nperio_tx_fifo_size(dwc_otg_core_if_t *
++ core_if);
++//#define dwc_param_host_nperio_tx_fifo_size_default 1024
++#define dwc_param_host_nperio_tx_fifo_size_default 0x100 // Broadcom BCM2708
++
++/** Number of 4-byte words in the host periodic Tx FIFO when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++extern int dwc_otg_set_param_host_perio_tx_fifo_size(dwc_otg_core_if_t *
++ core_if, int32_t val);
++extern int32_t dwc_otg_get_param_host_perio_tx_fifo_size(dwc_otg_core_if_t *
++ core_if);
++//#define dwc_param_host_perio_tx_fifo_size_default 1024
++#define dwc_param_host_perio_tx_fifo_size_default 0x200 // Broadcom BCM2708
++
++/** The maximum transfer size supported in bytes.
++ * 2047 to 65,535 (default 65,535)
++ */
++extern int dwc_otg_set_param_max_transfer_size(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_max_transfer_size(dwc_otg_core_if_t * core_if);
++#define dwc_param_max_transfer_size_default 65535
++
++/** The maximum number of packets in a transfer.
++ * 15 to 511 (default 511)
++ */
++extern int dwc_otg_set_param_max_packet_count(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_max_packet_count(dwc_otg_core_if_t * core_if);
++#define dwc_param_max_packet_count_default 511
++
++/** The number of host channel registers to use.
++ * 1 to 16 (default 12)
++ * Note: The FPGA configuration supports a maximum of 12 host channels.
++ */
++extern int dwc_otg_set_param_host_channels(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_host_channels(dwc_otg_core_if_t * core_if);
++//#define dwc_param_host_channels_default 12
++#define dwc_param_host_channels_default 8 // Broadcom BCM2708
++
++/** The number of endpoints in addition to EP0 available for device
++ * mode operations.
++ * 1 to 15 (default 6 IN and OUT)
++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
++ * endpoints in addition to EP0.
++ */
++extern int dwc_otg_set_param_dev_endpoints(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_dev_endpoints(dwc_otg_core_if_t * core_if);
++#define dwc_param_dev_endpoints_default 6
++
++/**
++ * Specifies the type of PHY interface to use. By default, the driver
++ * will automatically detect the phy_type.
++ *
++ * 0 - Full Speed PHY
++ * 1 - UTMI+ (default)
++ * 2 - ULPI
++ */
++extern int dwc_otg_set_param_phy_type(dwc_otg_core_if_t * core_if, int32_t val);
++extern int32_t dwc_otg_get_param_phy_type(dwc_otg_core_if_t * core_if);
++#define DWC_PHY_TYPE_PARAM_FS 0
++#define DWC_PHY_TYPE_PARAM_UTMI 1
++#define DWC_PHY_TYPE_PARAM_ULPI 2
++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
++
++/**
++ * Specifies the UTMI+ Data Width. This parameter is
++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
++ * PHY_TYPE, this parameter indicates the data width between
++ * the MAC and the ULPI Wrapper.) Also, this parameter is
++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
++ * to "8 and 16 bits", meaning that the core has been
++ * configured to work at either data path width.
++ *
++ * 8 or 16 bits (default 16)
++ */
++extern int dwc_otg_set_param_phy_utmi_width(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_phy_utmi_width(dwc_otg_core_if_t * core_if);
++//#define dwc_param_phy_utmi_width_default 16
++#define dwc_param_phy_utmi_width_default 8 // Broadcom BCM2708
++
++/**
++ * Specifies whether the ULPI operates at double or single
++ * data rate. This parameter is only applicable if PHY_TYPE is
++ * ULPI.
++ *
++ * 0 - single data rate ULPI interface with 8 bit wide data
++ * bus (default)
++ * 1 - double data rate ULPI interface with 4 bit wide data
++ * bus
++ */
++extern int dwc_otg_set_param_phy_ulpi_ddr(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_phy_ulpi_ddr(dwc_otg_core_if_t * core_if);
++#define dwc_param_phy_ulpi_ddr_default 0
++
++/**
++ * Specifies whether to use the internal or external supply to
++ * drive the vbus with a ULPI phy.
++ */
++extern int dwc_otg_set_param_phy_ulpi_ext_vbus(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_phy_ulpi_ext_vbus(dwc_otg_core_if_t * core_if);
++#define DWC_PHY_ULPI_INTERNAL_VBUS 0
++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
++
++/**
++ * Specifies whether to use the I2Cinterface for full speed PHY. This
++ * parameter is only applicable if PHY_TYPE is FS.
++ * 0 - No (default)
++ * 1 - Yes
++ */
++extern int dwc_otg_set_param_i2c_enable(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_i2c_enable(dwc_otg_core_if_t * core_if);
++#define dwc_param_i2c_enable_default 0
++
++extern int dwc_otg_set_param_ulpi_fs_ls(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_ulpi_fs_ls(dwc_otg_core_if_t * core_if);
++#define dwc_param_ulpi_fs_ls_default 0
++
++extern int dwc_otg_set_param_ts_dline(dwc_otg_core_if_t * core_if, int32_t val);
++extern int32_t dwc_otg_get_param_ts_dline(dwc_otg_core_if_t * core_if);
++#define dwc_param_ts_dline_default 0
++
++/**
++ * Specifies whether dedicated transmit FIFOs are
++ * enabled for non periodic IN endpoints in device mode
++ * 0 - No
++ * 1 - Yes
++ */
++extern int dwc_otg_set_param_en_multiple_tx_fifo(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_en_multiple_tx_fifo(dwc_otg_core_if_t *
++ core_if);
++#define dwc_param_en_multiple_tx_fifo_default 1
++
++/** Number of 4-byte words in each of the Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++extern int dwc_otg_set_param_dev_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int fifo_num, int32_t val);
++extern int32_t dwc_otg_get_param_dev_tx_fifo_size(dwc_otg_core_if_t * core_if,
++ int fifo_num);
++#define dwc_param_dev_tx_fifo_size_default 768
++
++/** Thresholding enable flag-
++ * bit 0 - enable non-ISO Tx thresholding
++ * bit 1 - enable ISO Tx thresholding
++ * bit 2 - enable Rx thresholding
++ */
++extern int dwc_otg_set_param_thr_ctl(dwc_otg_core_if_t * core_if, int32_t val);
++extern int32_t dwc_otg_get_thr_ctl(dwc_otg_core_if_t * core_if, int fifo_num);
++#define dwc_param_thr_ctl_default 0
++
++/** Thresholding length for Tx
++ * FIFOs in 32 bit DWORDs
++ */
++extern int dwc_otg_set_param_tx_thr_length(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_tx_thr_length(dwc_otg_core_if_t * core_if);
++#define dwc_param_tx_thr_length_default 64
++
++/** Thresholding length for Rx
++ * FIFOs in 32 bit DWORDs
++ */
++extern int dwc_otg_set_param_rx_thr_length(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_rx_thr_length(dwc_otg_core_if_t * core_if);
++#define dwc_param_rx_thr_length_default 64
++
++/**
++ * Specifies whether LPM (Link Power Management) support is enabled
++ */
++extern int dwc_otg_set_param_lpm_enable(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_lpm_enable(dwc_otg_core_if_t * core_if);
++#define dwc_param_lpm_enable_default 1
++
++/**
++ * Specifies whether PTI enhancement is enabled
++ */
++extern int dwc_otg_set_param_pti_enable(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_pti_enable(dwc_otg_core_if_t * core_if);
++#define dwc_param_pti_enable_default 0
++
++/**
++ * Specifies whether MPI enhancement is enabled
++ */
++extern int dwc_otg_set_param_mpi_enable(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_mpi_enable(dwc_otg_core_if_t * core_if);
++#define dwc_param_mpi_enable_default 0
++
++/**
++ * Specifies whether ADP capability is enabled
++ */
++extern int dwc_otg_set_param_adp_enable(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_adp_enable(dwc_otg_core_if_t * core_if);
++#define dwc_param_adp_enable_default 0
++
++/**
++ * Specifies whether IC_USB capability is enabled
++ */
++
++extern int dwc_otg_set_param_ic_usb_cap(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_ic_usb_cap(dwc_otg_core_if_t * core_if);
++#define dwc_param_ic_usb_cap_default 0
++
++extern int dwc_otg_set_param_ahb_thr_ratio(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_ahb_thr_ratio(dwc_otg_core_if_t * core_if);
++#define dwc_param_ahb_thr_ratio_default 0
++
++extern int dwc_otg_set_param_power_down(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_power_down(dwc_otg_core_if_t * core_if);
++#define dwc_param_power_down_default 0
++
++extern int dwc_otg_set_param_reload_ctl(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_reload_ctl(dwc_otg_core_if_t * core_if);
++#define dwc_param_reload_ctl_default 0
++
++extern int dwc_otg_set_param_dev_out_nak(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_dev_out_nak(dwc_otg_core_if_t * core_if);
++#define dwc_param_dev_out_nak_default 0
++
++extern int dwc_otg_set_param_cont_on_bna(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_cont_on_bna(dwc_otg_core_if_t * core_if);
++#define dwc_param_cont_on_bna_default 0
++
++extern int dwc_otg_set_param_ahb_single(dwc_otg_core_if_t * core_if,
++ int32_t val);
++extern int32_t dwc_otg_get_param_ahb_single(dwc_otg_core_if_t * core_if);
++#define dwc_param_ahb_single_default 0
++
++extern int dwc_otg_set_param_otg_ver(dwc_otg_core_if_t * core_if, int32_t val);
++extern int32_t dwc_otg_get_param_otg_ver(dwc_otg_core_if_t * core_if);
++#define dwc_param_otg_ver_default 0
++
++/** @} */
++
++/** @name Access to registers and bit-fields */
++
++/**
++ * Dump core registers and SPRAM
++ */
++extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_dump_spram(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t * _core_if);
++extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t * _core_if);
++
++/**
++ * Get host negotiation status.
++ */
++extern uint32_t dwc_otg_get_hnpstatus(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get srp status
++ */
++extern uint32_t dwc_otg_get_srpstatus(dwc_otg_core_if_t * core_if);
++
++/**
++ * Set hnpreq bit in the GOTGCTL register.
++ */
++extern void dwc_otg_set_hnpreq(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get Content of SNPSID register.
++ */
++extern uint32_t dwc_otg_get_gsnpsid(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get current mode.
++ * Returns 0 if in device mode, and 1 if in host mode.
++ */
++extern uint32_t dwc_otg_get_mode(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get value of hnpcapable field in the GUSBCFG register
++ */
++extern uint32_t dwc_otg_get_hnpcapable(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of hnpcapable field in the GUSBCFG register
++ */
++extern void dwc_otg_set_hnpcapable(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of srpcapable field in the GUSBCFG register
++ */
++extern uint32_t dwc_otg_get_srpcapable(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of srpcapable field in the GUSBCFG register
++ */
++extern void dwc_otg_set_srpcapable(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of devspeed field in the DCFG register
++ */
++extern uint32_t dwc_otg_get_devspeed(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of devspeed field in the DCFG register
++ */
++extern void dwc_otg_set_devspeed(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get the value of busconnected field from the HPRT0 register
++ */
++extern uint32_t dwc_otg_get_busconnected(dwc_otg_core_if_t * core_if);
++
++/**
++ * Gets the device enumeration Speed.
++ */
++extern uint32_t dwc_otg_get_enumspeed(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get value of prtpwr field from the HPRT0 register
++ */
++extern uint32_t dwc_otg_get_prtpower(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get value of flag indicating core state - hibernated or not
++ */
++extern uint32_t dwc_otg_get_core_state(dwc_otg_core_if_t * core_if);
++
++/**
++ * Set value of prtpwr field from the HPRT0 register
++ */
++extern void dwc_otg_set_prtpower(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of prtsusp field from the HPRT0 regsiter
++ */
++extern uint32_t dwc_otg_get_prtsuspend(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of prtpwr field from the HPRT0 register
++ */
++extern void dwc_otg_set_prtsuspend(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of ModeChTimEn field from the HCFG regsiter
++ */
++extern uint32_t dwc_otg_get_mode_ch_tim(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of ModeChTimEn field from the HCFG regsiter
++ */
++extern void dwc_otg_set_mode_ch_tim(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of Fram Interval field from the HFIR regsiter
++ */
++extern uint32_t dwc_otg_get_fr_interval(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of Frame Interval field from the HFIR regsiter
++ */
++extern void dwc_otg_set_fr_interval(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Set value of prtres field from the HPRT0 register
++ *FIXME Remove?
++ */
++extern void dwc_otg_set_prtresume(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of rmtwkupsig bit in DCTL register
++ */
++extern uint32_t dwc_otg_get_remotewakesig(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get value of prt_sleep_sts field from the GLPMCFG register
++ */
++extern uint32_t dwc_otg_get_lpm_portsleepstatus(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get value of rem_wkup_en field from the GLPMCFG register
++ */
++extern uint32_t dwc_otg_get_lpm_remotewakeenabled(dwc_otg_core_if_t * core_if);
++
++/**
++ * Get value of appl_resp field from the GLPMCFG register
++ */
++extern uint32_t dwc_otg_get_lpmresponse(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of appl_resp field from the GLPMCFG register
++ */
++extern void dwc_otg_set_lpmresponse(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of hsic_connect field from the GLPMCFG register
++ */
++extern uint32_t dwc_otg_get_hsic_connect(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of hsic_connect field from the GLPMCFG register
++ */
++extern void dwc_otg_set_hsic_connect(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * Get value of inv_sel_hsic field from the GLPMCFG register.
++ */
++extern uint32_t dwc_otg_get_inv_sel_hsic(dwc_otg_core_if_t * core_if);
++/**
++ * Set value of inv_sel_hsic field from the GLPMFG register.
++ */
++extern void dwc_otg_set_inv_sel_hsic(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/*
++ * Some functions for accessing registers
++ */
++
++/**
++ * GOTGCTL register
++ */
++extern uint32_t dwc_otg_get_gotgctl(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_gotgctl(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * GUSBCFG register
++ */
++extern uint32_t dwc_otg_get_gusbcfg(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_gusbcfg(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * GRXFSIZ register
++ */
++extern uint32_t dwc_otg_get_grxfsiz(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_grxfsiz(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * GNPTXFSIZ register
++ */
++extern uint32_t dwc_otg_get_gnptxfsiz(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_gnptxfsiz(dwc_otg_core_if_t * core_if, uint32_t val);
++
++extern uint32_t dwc_otg_get_gpvndctl(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_gpvndctl(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * GGPIO register
++ */
++extern uint32_t dwc_otg_get_ggpio(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_ggpio(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * GUID register
++ */
++extern uint32_t dwc_otg_get_guid(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_guid(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * HPRT0 register
++ */
++extern uint32_t dwc_otg_get_hprt0(dwc_otg_core_if_t * core_if);
++extern void dwc_otg_set_hprt0(dwc_otg_core_if_t * core_if, uint32_t val);
++
++/**
++ * GHPTXFSIZE
++ */
++extern uint32_t dwc_otg_get_hptxfsiz(dwc_otg_core_if_t * core_if);
++
++/** @} */
++
++#endif /* __DWC_CORE_IF_H__ */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_dbg.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_dbg.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_dbg.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_dbg.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,117 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_DBG_H__
++#define __DWC_OTG_DBG_H__
++
++/** @file
++ * This file defines debug levels.
++ * Debugging support vanishes in non-debug builds.
++ */
++
++/**
++ * The Debug Level bit-mask variable.
++ */
++extern uint32_t g_dbg_lvl;
++/**
++ * Set the Debug Level variable.
++ */
++static inline uint32_t SET_DEBUG_LEVEL(const uint32_t new)
++{
++ uint32_t old = g_dbg_lvl;
++ g_dbg_lvl = new;
++ return old;
++}
++
++#define DBG_USER (0x1)
++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
++#define DBG_CIL (0x2)
++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
++ * messages */
++#define DBG_CILV (0x20)
++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
++ * messages */
++#define DBG_PCD (0x4)
++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
++ * messages */
++#define DBG_PCDV (0x40)
++/** When debug level has the DBG_HCD bit set, display Host debug messages */
++#define DBG_HCD (0x8)
++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
++ * messages */
++#define DBG_HCDV (0x80)
++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
++ * mode. */
++#define DBG_HCD_URB (0x800)
++/** When debug level has the DBG_HCDI bit set, display host interrupt
++ * messages. */
++#define DBG_HCDI (0x1000)
++
++/** When debug level has any bit set, display debug messages */
++#define DBG_ANY (0xFF)
++
++/** All debug messages off */
++#define DBG_OFF 0
++
++/** Prefix string for DWC_DEBUG print macros. */
++#define USB_DWC "DWC_otg: "
++
++/**
++ * Print a debug message when the Global debug level variable contains
++ * the bit defined in <code>lvl</code>.
++ *
++ * @param[in] lvl - Debug level, use one of the DBG_ constants above.
++ * @param[in] x - like printf
++ *
++ * Example:<p>
++ * <code>
++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
++ * </code>
++ * <br>
++ * results in:<br>
++ * <code>
++ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
++ * </code>
++ */
++#ifdef DEBUG
++
++# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)__DWC_DEBUG(USB_DWC x ); }while(0)
++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
++
++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
++
++#else
++
++# define DWC_DEBUGPL(lvl, x...) do{}while(0)
++# define DWC_DEBUGP(x...)
++
++# define CHK_DEBUG_LEVEL(level) (0)
++
++#endif /*DEBUG*/
++#endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_driver.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_driver.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_driver.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_driver.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1732 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $
++ * $Revision: #92 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ * The dwc_otg_driver module provides the initialization and cleanup entry
++ * points for the DWC_otg driver. This module will be dynamically installed
++ * after Linux is booted using the insmod command. When the module is
++ * installed, the dwc_otg_driver_init function is called. When the module is
++ * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
++ *
++ * This module also defines a data structure for the dwc_otg_driver, which is
++ * used in conjunction with the standard ARM lm_device structure. These
++ * structures allow the OTG driver to comply with the standard Linux driver
++ * model in which devices and drivers are registered with a bus driver. This
++ * has the benefit that Linux can expose attributes of the driver and device
++ * in its special sysfs file system. Users can then read or write files in
++ * this file system to perform diagnostics on the driver components or the
++ * device.
++ */
++
++#include "dwc_otg_os_dep.h"
++#include "dwc_os.h"
++#include "dwc_otg_dbg.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_core_if.h"
++#include "dwc_otg_pcd_if.h"
++#include "dwc_otg_hcd_if.h"
++
++#define DWC_DRIVER_VERSION "3.00a 10-AUG-2012"
++#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
++
++bool microframe_schedule=true;
++
++static const char dwc_driver_name[] = "dwc_otg";
++
++extern void* dummy_send;
++
++extern int pcd_init(
++#ifdef LM_INTERFACE
++ struct lm_device *_dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *_dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *dev
++#endif
++ );
++extern int hcd_init(
++#ifdef LM_INTERFACE
++ struct lm_device *_dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *_dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *dev
++#endif
++ );
++
++extern int pcd_remove(
++#ifdef LM_INTERFACE
++ struct lm_device *_dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *_dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *_dev
++#endif
++ );
++
++extern void hcd_remove(
++#ifdef LM_INTERFACE
++ struct lm_device *_dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *_dev
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *_dev
++#endif
++ );
++
++extern void dwc_otg_adp_start(dwc_otg_core_if_t * core_if, uint8_t is_host);
++
++/*-------------------------------------------------------------------------*/
++/* Encapsulate the module parameter settings */
++
++struct dwc_otg_driver_module_params {
++ int32_t opt;
++ int32_t otg_cap;
++ int32_t dma_enable;
++ int32_t dma_desc_enable;
++ int32_t dma_burst_size;
++ int32_t speed;
++ int32_t host_support_fs_ls_low_power;
++ int32_t host_ls_low_power_phy_clk;
++ int32_t enable_dynamic_fifo;
++ int32_t data_fifo_size;
++ int32_t dev_rx_fifo_size;
++ int32_t dev_nperio_tx_fifo_size;
++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
++ int32_t host_rx_fifo_size;
++ int32_t host_nperio_tx_fifo_size;
++ int32_t host_perio_tx_fifo_size;
++ int32_t max_transfer_size;
++ int32_t max_packet_count;
++ int32_t host_channels;
++ int32_t dev_endpoints;
++ int32_t phy_type;
++ int32_t phy_utmi_width;
++ int32_t phy_ulpi_ddr;
++ int32_t phy_ulpi_ext_vbus;
++ int32_t i2c_enable;
++ int32_t ulpi_fs_ls;
++ int32_t ts_dline;
++ int32_t en_multiple_tx_fifo;
++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
++ uint32_t thr_ctl;
++ uint32_t tx_thr_length;
++ uint32_t rx_thr_length;
++ int32_t pti_enable;
++ int32_t mpi_enable;
++ int32_t lpm_enable;
++ int32_t ic_usb_cap;
++ int32_t ahb_thr_ratio;
++ int32_t power_down;
++ int32_t reload_ctl;
++ int32_t dev_out_nak;
++ int32_t cont_on_bna;
++ int32_t ahb_single;
++ int32_t otg_ver;
++ int32_t adp_enable;
++};
++
++static struct dwc_otg_driver_module_params dwc_otg_module_params = {
++ .opt = -1,
++ .otg_cap = -1,
++ .dma_enable = -1,
++ .dma_desc_enable = -1,
++ .dma_burst_size = -1,
++ .speed = -1,
++ .host_support_fs_ls_low_power = -1,
++ .host_ls_low_power_phy_clk = -1,
++ .enable_dynamic_fifo = -1,
++ .data_fifo_size = -1,
++ .dev_rx_fifo_size = -1,
++ .dev_nperio_tx_fifo_size = -1,
++ .dev_perio_tx_fifo_size = {
++ /* dev_perio_tx_fifo_size_1 */
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1
++ /* 15 */
++ },
++ .host_rx_fifo_size = -1,
++ .host_nperio_tx_fifo_size = -1,
++ .host_perio_tx_fifo_size = -1,
++ .max_transfer_size = -1,
++ .max_packet_count = -1,
++ .host_channels = -1,
++ .dev_endpoints = -1,
++ .phy_type = -1,
++ .phy_utmi_width = -1,
++ .phy_ulpi_ddr = -1,
++ .phy_ulpi_ext_vbus = -1,
++ .i2c_enable = -1,
++ .ulpi_fs_ls = -1,
++ .ts_dline = -1,
++ .en_multiple_tx_fifo = -1,
++ .dev_tx_fifo_size = {
++ /* dev_tx_fifo_size */
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1
++ /* 15 */
++ },
++ .thr_ctl = -1,
++ .tx_thr_length = -1,
++ .rx_thr_length = -1,
++ .pti_enable = -1,
++ .mpi_enable = -1,
++ .lpm_enable = 0,
++ .ic_usb_cap = -1,
++ .ahb_thr_ratio = -1,
++ .power_down = -1,
++ .reload_ctl = -1,
++ .dev_out_nak = -1,
++ .cont_on_bna = -1,
++ .ahb_single = -1,
++ .otg_ver = -1,
++ .adp_enable = -1,
++};
++
++//Global variable to switch the fiq fix on or off (declared in bcm2708.c)
++extern bool fiq_fix_enable;
++
++//Global variable to switch the nak holdoff on or off
++bool nak_holdoff_enable = true;
++
++
++/**
++ * This function shows the Driver Version.
++ */
++static ssize_t version_show(struct device_driver *dev, char *buf)
++{
++ return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n",
++ DWC_DRIVER_VERSION);
++}
++
++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
++
++/**
++ * Global Debug Level Mask.
++ */
++uint32_t g_dbg_lvl = 0; /* OFF */
++
++/**
++ * This function shows the driver Debug Level.
++ */
++static ssize_t dbg_level_show(struct device_driver *drv, char *buf)
++{
++ return sprintf(buf, "0x%0x\n", g_dbg_lvl);
++}
++
++/**
++ * This function stores the driver Debug Level.
++ */
++static ssize_t dbg_level_store(struct device_driver *drv, const char *buf,
++ size_t count)
++{
++ g_dbg_lvl = simple_strtoul(buf, NULL, 16);
++ return count;
++}
++
++static DRIVER_ATTR(debuglevel, S_IRUGO | S_IWUSR, dbg_level_show,
++ dbg_level_store);
++
++/**
++ * This function is called during module intialization
++ * to pass module parameters to the DWC_OTG CORE.
++ */
++static int set_parameters(dwc_otg_core_if_t * core_if)
++{
++ int retval = 0;
++ int i;
++
++ if (dwc_otg_module_params.otg_cap != -1) {
++ retval +=
++ dwc_otg_set_param_otg_cap(core_if,
++ dwc_otg_module_params.otg_cap);
++ }
++ if (dwc_otg_module_params.dma_enable != -1) {
++ retval +=
++ dwc_otg_set_param_dma_enable(core_if,
++ dwc_otg_module_params.
++ dma_enable);
++ }
++ if (dwc_otg_module_params.dma_desc_enable != -1) {
++ retval +=
++ dwc_otg_set_param_dma_desc_enable(core_if,
++ dwc_otg_module_params.
++ dma_desc_enable);
++ }
++ if (dwc_otg_module_params.opt != -1) {
++ retval +=
++ dwc_otg_set_param_opt(core_if, dwc_otg_module_params.opt);
++ }
++ if (dwc_otg_module_params.dma_burst_size != -1) {
++ retval +=
++ dwc_otg_set_param_dma_burst_size(core_if,
++ dwc_otg_module_params.
++ dma_burst_size);
++ }
++ if (dwc_otg_module_params.host_support_fs_ls_low_power != -1) {
++ retval +=
++ dwc_otg_set_param_host_support_fs_ls_low_power(core_if,
++ dwc_otg_module_params.
++ host_support_fs_ls_low_power);
++ }
++ if (dwc_otg_module_params.enable_dynamic_fifo != -1) {
++ retval +=
++ dwc_otg_set_param_enable_dynamic_fifo(core_if,
++ dwc_otg_module_params.
++ enable_dynamic_fifo);
++ }
++ if (dwc_otg_module_params.data_fifo_size != -1) {
++ retval +=
++ dwc_otg_set_param_data_fifo_size(core_if,
++ dwc_otg_module_params.
++ data_fifo_size);
++ }
++ if (dwc_otg_module_params.dev_rx_fifo_size != -1) {
++ retval +=
++ dwc_otg_set_param_dev_rx_fifo_size(core_if,
++ dwc_otg_module_params.
++ dev_rx_fifo_size);
++ }
++ if (dwc_otg_module_params.dev_nperio_tx_fifo_size != -1) {
++ retval +=
++ dwc_otg_set_param_dev_nperio_tx_fifo_size(core_if,
++ dwc_otg_module_params.
++ dev_nperio_tx_fifo_size);
++ }
++ if (dwc_otg_module_params.host_rx_fifo_size != -1) {
++ retval +=
++ dwc_otg_set_param_host_rx_fifo_size(core_if,
++ dwc_otg_module_params.host_rx_fifo_size);
++ }
++ if (dwc_otg_module_params.host_nperio_tx_fifo_size != -1) {
++ retval +=
++ dwc_otg_set_param_host_nperio_tx_fifo_size(core_if,
++ dwc_otg_module_params.
++ host_nperio_tx_fifo_size);
++ }
++ if (dwc_otg_module_params.host_perio_tx_fifo_size != -1) {
++ retval +=
++ dwc_otg_set_param_host_perio_tx_fifo_size(core_if,
++ dwc_otg_module_params.
++ host_perio_tx_fifo_size);
++ }
++ if (dwc_otg_module_params.max_transfer_size != -1) {
++ retval +=
++ dwc_otg_set_param_max_transfer_size(core_if,
++ dwc_otg_module_params.
++ max_transfer_size);
++ }
++ if (dwc_otg_module_params.max_packet_count != -1) {
++ retval +=
++ dwc_otg_set_param_max_packet_count(core_if,
++ dwc_otg_module_params.
++ max_packet_count);
++ }
++ if (dwc_otg_module_params.host_channels != -1) {
++ retval +=
++ dwc_otg_set_param_host_channels(core_if,
++ dwc_otg_module_params.
++ host_channels);
++ }
++ if (dwc_otg_module_params.dev_endpoints != -1) {
++ retval +=
++ dwc_otg_set_param_dev_endpoints(core_if,
++ dwc_otg_module_params.
++ dev_endpoints);
++ }
++ if (dwc_otg_module_params.phy_type != -1) {
++ retval +=
++ dwc_otg_set_param_phy_type(core_if,
++ dwc_otg_module_params.phy_type);
++ }
++ if (dwc_otg_module_params.speed != -1) {
++ retval +=
++ dwc_otg_set_param_speed(core_if,
++ dwc_otg_module_params.speed);
++ }
++ if (dwc_otg_module_params.host_ls_low_power_phy_clk != -1) {
++ retval +=
++ dwc_otg_set_param_host_ls_low_power_phy_clk(core_if,
++ dwc_otg_module_params.
++ host_ls_low_power_phy_clk);
++ }
++ if (dwc_otg_module_params.phy_ulpi_ddr != -1) {
++ retval +=
++ dwc_otg_set_param_phy_ulpi_ddr(core_if,
++ dwc_otg_module_params.
++ phy_ulpi_ddr);
++ }
++ if (dwc_otg_module_params.phy_ulpi_ext_vbus != -1) {
++ retval +=
++ dwc_otg_set_param_phy_ulpi_ext_vbus(core_if,
++ dwc_otg_module_params.
++ phy_ulpi_ext_vbus);
++ }
++ if (dwc_otg_module_params.phy_utmi_width != -1) {
++ retval +=
++ dwc_otg_set_param_phy_utmi_width(core_if,
++ dwc_otg_module_params.
++ phy_utmi_width);
++ }
++ if (dwc_otg_module_params.ulpi_fs_ls != -1) {
++ retval +=
++ dwc_otg_set_param_ulpi_fs_ls(core_if,
++ dwc_otg_module_params.ulpi_fs_ls);
++ }
++ if (dwc_otg_module_params.ts_dline != -1) {
++ retval +=
++ dwc_otg_set_param_ts_dline(core_if,
++ dwc_otg_module_params.ts_dline);
++ }
++ if (dwc_otg_module_params.i2c_enable != -1) {
++ retval +=
++ dwc_otg_set_param_i2c_enable(core_if,
++ dwc_otg_module_params.
++ i2c_enable);
++ }
++ if (dwc_otg_module_params.en_multiple_tx_fifo != -1) {
++ retval +=
++ dwc_otg_set_param_en_multiple_tx_fifo(core_if,
++ dwc_otg_module_params.
++ en_multiple_tx_fifo);
++ }
++ for (i = 0; i < 15; i++) {
++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
++ retval +=
++ dwc_otg_set_param_dev_perio_tx_fifo_size(core_if,
++ dwc_otg_module_params.
++ dev_perio_tx_fifo_size
++ [i], i);
++ }
++ }
++
++ for (i = 0; i < 15; i++) {
++ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
++ retval += dwc_otg_set_param_dev_tx_fifo_size(core_if,
++ dwc_otg_module_params.
++ dev_tx_fifo_size
++ [i], i);
++ }
++ }
++ if (dwc_otg_module_params.thr_ctl != -1) {
++ retval +=
++ dwc_otg_set_param_thr_ctl(core_if,
++ dwc_otg_module_params.thr_ctl);
++ }
++ if (dwc_otg_module_params.mpi_enable != -1) {
++ retval +=
++ dwc_otg_set_param_mpi_enable(core_if,
++ dwc_otg_module_params.
++ mpi_enable);
++ }
++ if (dwc_otg_module_params.pti_enable != -1) {
++ retval +=
++ dwc_otg_set_param_pti_enable(core_if,
++ dwc_otg_module_params.
++ pti_enable);
++ }
++ if (dwc_otg_module_params.lpm_enable != -1) {
++ retval +=
++ dwc_otg_set_param_lpm_enable(core_if,
++ dwc_otg_module_params.
++ lpm_enable);
++ }
++ if (dwc_otg_module_params.ic_usb_cap != -1) {
++ retval +=
++ dwc_otg_set_param_ic_usb_cap(core_if,
++ dwc_otg_module_params.
++ ic_usb_cap);
++ }
++ if (dwc_otg_module_params.tx_thr_length != -1) {
++ retval +=
++ dwc_otg_set_param_tx_thr_length(core_if,
++ dwc_otg_module_params.tx_thr_length);
++ }
++ if (dwc_otg_module_params.rx_thr_length != -1) {
++ retval +=
++ dwc_otg_set_param_rx_thr_length(core_if,
++ dwc_otg_module_params.
++ rx_thr_length);
++ }
++ if (dwc_otg_module_params.ahb_thr_ratio != -1) {
++ retval +=
++ dwc_otg_set_param_ahb_thr_ratio(core_if,
++ dwc_otg_module_params.ahb_thr_ratio);
++ }
++ if (dwc_otg_module_params.power_down != -1) {
++ retval +=
++ dwc_otg_set_param_power_down(core_if,
++ dwc_otg_module_params.power_down);
++ }
++ if (dwc_otg_module_params.reload_ctl != -1) {
++ retval +=
++ dwc_otg_set_param_reload_ctl(core_if,
++ dwc_otg_module_params.reload_ctl);
++ }
++
++ if (dwc_otg_module_params.dev_out_nak != -1) {
++ retval +=
++ dwc_otg_set_param_dev_out_nak(core_if,
++ dwc_otg_module_params.dev_out_nak);
++ }
++
++ if (dwc_otg_module_params.cont_on_bna != -1) {
++ retval +=
++ dwc_otg_set_param_cont_on_bna(core_if,
++ dwc_otg_module_params.cont_on_bna);
++ }
++
++ if (dwc_otg_module_params.ahb_single != -1) {
++ retval +=
++ dwc_otg_set_param_ahb_single(core_if,
++ dwc_otg_module_params.ahb_single);
++ }
++
++ if (dwc_otg_module_params.otg_ver != -1) {
++ retval +=
++ dwc_otg_set_param_otg_ver(core_if,
++ dwc_otg_module_params.otg_ver);
++ }
++ if (dwc_otg_module_params.adp_enable != -1) {
++ retval +=
++ dwc_otg_set_param_adp_enable(core_if,
++ dwc_otg_module_params.
++ adp_enable);
++ }
++ return retval;
++}
++
++/**
++ * This function is the top level interrupt handler for the Common
++ * (Device and host modes) interrupts.
++ */
++static irqreturn_t dwc_otg_common_irq(int irq, void *dev)
++{
++ int32_t retval = IRQ_NONE;
++
++ retval = dwc_otg_handle_common_intr(dev);
++ if (retval != 0) {
++ S3C2410X_CLEAR_EINTPEND();
++ }
++ return IRQ_RETVAL(retval);
++}
++
++/**
++ * This function is called when a lm_device is unregistered with the
++ * dwc_otg_driver. This happens, for example, when the rmmod command is
++ * executed. The device may or may not be electrically present. If it is
++ * present, the driver stops device processing. Any resources used on behalf
++ * of this device are freed.
++ *
++ * @param _dev
++ */
++#ifdef LM_INTERFACE
++#define REM_RETVAL(n)
++static void dwc_otg_driver_remove( struct lm_device *_dev )
++{ dwc_otg_device_t *otg_dev = lm_get_drvdata(_dev);
++#elif defined(PCI_INTERFACE)
++#define REM_RETVAL(n)
++static void dwc_otg_driver_remove( struct pci_dev *_dev )
++{ dwc_otg_device_t *otg_dev = pci_get_drvdata(_dev);
++#elif defined(PLATFORM_INTERFACE)
++#define REM_RETVAL(n) n
++static int dwc_otg_driver_remove( struct platform_device *_dev )
++{ dwc_otg_device_t *otg_dev = platform_get_drvdata(_dev);
++#endif
++
++ DWC_DEBUGPL(DBG_ANY, "%s(%p) otg_dev %p\n", __func__, _dev, otg_dev);
++
++ if (!otg_dev) {
++ /* Memory allocation for the dwc_otg_device failed. */
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
++ return REM_RETVAL(-ENOMEM);
++ }
++#ifndef DWC_DEVICE_ONLY
++ if (otg_dev->hcd) {
++ hcd_remove(_dev);
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
++ return REM_RETVAL(-EINVAL);
++ }
++#endif
++
++#ifndef DWC_HOST_ONLY
++ if (otg_dev->pcd) {
++ pcd_remove(_dev);
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->pcd NULL!\n", __func__);
++ return REM_RETVAL(-EINVAL);
++ }
++#endif
++ /*
++ * Free the IRQ
++ */
++ if (otg_dev->common_irq_installed) {
++#ifdef PLATFORM_INTERFACE
++ free_irq(platform_get_irq(_dev, 0), otg_dev);
++#else
++ free_irq(_dev->irq, otg_dev);
++#endif
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "%s: There is no installed irq!\n", __func__);
++ return REM_RETVAL(-ENXIO);
++ }
++
++ if (otg_dev->core_if) {
++ dwc_otg_cil_remove(otg_dev->core_if);
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->core_if NULL!\n", __func__);
++ return REM_RETVAL(-ENXIO);
++ }
++
++ /*
++ * Remove the device attributes
++ */
++ dwc_otg_attr_remove(_dev);
++
++ /*
++ * Return the memory.
++ */
++ if (otg_dev->os_dep.base) {
++ iounmap(otg_dev->os_dep.base);
++ }
++ DWC_FREE(otg_dev);
++
++ /*
++ * Clear the drvdata pointer.
++ */
++#ifdef LM_INTERFACE
++ lm_set_drvdata(_dev, 0);
++#elif defined(PCI_INTERFACE)
++ release_mem_region(otg_dev->os_dep.rsrc_start,
++ otg_dev->os_dep.rsrc_len);
++ pci_set_drvdata(_dev, 0);
++#elif defined(PLATFORM_INTERFACE)
++ platform_set_drvdata(_dev, 0);
++#endif
++ return REM_RETVAL(0);
++}
++
++/**
++ * This function is called when an lm_device is bound to a
++ * dwc_otg_driver. It creates the driver components required to
++ * control the device (CIL, HCD, and PCD) and it initializes the
++ * device. The driver components are stored in a dwc_otg_device
++ * structure. A reference to the dwc_otg_device is saved in the
++ * lm_device. This allows the driver to access the dwc_otg_device
++ * structure on subsequent calls to driver methods for this device.
++ *
++ * @param _dev Bus device
++ */
++static int dwc_otg_driver_probe(
++#ifdef LM_INTERFACE
++ struct lm_device *_dev
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *_dev,
++ const struct pci_device_id *id
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *_dev
++#endif
++ )
++{
++ int retval = 0;
++ dwc_otg_device_t *dwc_otg_device;
++ int devirq;
++
++ dev_dbg(&_dev->dev, "dwc_otg_driver_probe(%p)\n", _dev);
++#ifdef LM_INTERFACE
++ dev_dbg(&_dev->dev, "start=0x%08x\n", (unsigned)_dev->resource.start);
++#elif defined(PCI_INTERFACE)
++ if (!id) {
++ DWC_ERROR("Invalid pci_device_id %p", id);
++ return -EINVAL;
++ }
++
++ if (!_dev || (pci_enable_device(_dev) < 0)) {
++ DWC_ERROR("Invalid pci_device %p", _dev);
++ return -ENODEV;
++ }
++ dev_dbg(&_dev->dev, "start=0x%08x\n", (unsigned)pci_resource_start(_dev,0));
++ /* other stuff needed as well? */
++
++#elif defined(PLATFORM_INTERFACE)
++ dev_dbg(&_dev->dev, "start=0x%08x (len 0x%x)\n",
++ (unsigned)_dev->resource->start,
++ (unsigned)(_dev->resource->end - _dev->resource->start));
++#endif
++
++ dwc_otg_device = DWC_ALLOC(sizeof(dwc_otg_device_t));
++
++ if (!dwc_otg_device) {
++ dev_err(&_dev->dev, "kmalloc of dwc_otg_device failed\n");
++ return -ENOMEM;
++ }
++
++ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
++ dwc_otg_device->os_dep.reg_offset = 0xFFFFFFFF;
++
++ /*
++ * Map the DWC_otg Core memory into virtual address space.
++ */
++#ifdef LM_INTERFACE
++ dwc_otg_device->os_dep.base = ioremap(_dev->resource.start, SZ_256K);
++
++ if (!dwc_otg_device->os_dep.base) {
++ dev_err(&_dev->dev, "ioremap() failed\n");
++ DWC_FREE(dwc_otg_device);
++ return -ENOMEM;
++ }
++ dev_dbg(&_dev->dev, "base=0x%08x\n",
++ (unsigned)dwc_otg_device->os_dep.base);
++#elif defined(PCI_INTERFACE)
++ _dev->current_state = PCI_D0;
++ _dev->dev.power.power_state = PMSG_ON;
++
++ if (!_dev->irq) {
++ DWC_ERROR("Found HC with no IRQ. Check BIOS/PCI %s setup!",
++ pci_name(_dev));
++ iounmap(dwc_otg_device->os_dep.base);
++ DWC_FREE(dwc_otg_device);
++ return -ENODEV;
++ }
++
++ dwc_otg_device->os_dep.rsrc_start = pci_resource_start(_dev, 0);
++ dwc_otg_device->os_dep.rsrc_len = pci_resource_len(_dev, 0);
++ DWC_DEBUGPL(DBG_ANY, "PCI resource: start=%08x, len=%08x\n",
++ (unsigned)dwc_otg_device->os_dep.rsrc_start,
++ (unsigned)dwc_otg_device->os_dep.rsrc_len);
++ if (!request_mem_region
++ (dwc_otg_device->os_dep.rsrc_start, dwc_otg_device->os_dep.rsrc_len,
++ "dwc_otg")) {
++ dev_dbg(&_dev->dev, "error requesting memory\n");
++ iounmap(dwc_otg_device->os_dep.base);
++ DWC_FREE(dwc_otg_device);
++ return -EFAULT;
++ }
++
++ dwc_otg_device->os_dep.base =
++ ioremap_nocache(dwc_otg_device->os_dep.rsrc_start,
++ dwc_otg_device->os_dep.rsrc_len);
++ if (dwc_otg_device->os_dep.base == NULL) {
++ dev_dbg(&_dev->dev, "error mapping memory\n");
++ release_mem_region(dwc_otg_device->os_dep.rsrc_start,
++ dwc_otg_device->os_dep.rsrc_len);
++ iounmap(dwc_otg_device->os_dep.base);
++ DWC_FREE(dwc_otg_device);
++ return -EFAULT;
++ }
++ dev_dbg(&_dev->dev, "base=0x%p (before adjust) \n",
++ dwc_otg_device->os_dep.base);
++ dwc_otg_device->os_dep.base = (char *)dwc_otg_device->os_dep.base;
++ dev_dbg(&_dev->dev, "base=0x%p (after adjust) \n",
++ dwc_otg_device->os_dep.base);
++ dev_dbg(&_dev->dev, "%s: mapped PA 0x%x to VA 0x%p\n", __func__,
++ (unsigned)dwc_otg_device->os_dep.rsrc_start,
++ dwc_otg_device->os_dep.base);
++
++ pci_set_master(_dev);
++ pci_set_drvdata(_dev, dwc_otg_device);
++#elif defined(PLATFORM_INTERFACE)
++ DWC_DEBUGPL(DBG_ANY,"Platform resource: start=%08x, len=%08x\n",
++ _dev->resource->start,
++ _dev->resource->end - _dev->resource->start + 1);
++#if 1
++ if (!request_mem_region(_dev->resource[0].start,
++ _dev->resource[0].end - _dev->resource[0].start + 1,
++ "dwc_otg")) {
++ dev_dbg(&_dev->dev, "error reserving mapped memory\n");
++ retval = -EFAULT;
++ goto fail;
++ }
++
++ dwc_otg_device->os_dep.base = ioremap_nocache(_dev->resource[0].start,
++ _dev->resource[0].end -
++ _dev->resource[0].start+1);
++ if (fiq_fix_enable)
++ {
++ if (!request_mem_region(_dev->resource[1].start,
++ _dev->resource[1].end - _dev->resource[1].start + 1,
++ "dwc_otg")) {
++ dev_dbg(&_dev->dev, "error reserving mapped memory\n");
++ retval = -EFAULT;
++ goto fail;
++ }
++
++ dwc_otg_device->os_dep.mphi_base = ioremap_nocache(_dev->resource[1].start,
++ _dev->resource[1].end -
++ _dev->resource[1].start + 1);
++ dummy_send = (void *) kmalloc(16, GFP_ATOMIC);
++ }
++
++#else
++ {
++ struct map_desc desc = {
++ .virtual = IO_ADDRESS((unsigned)_dev->resource->start),
++ .pfn = __phys_to_pfn((unsigned)_dev->resource->start),
++ .length = SZ_128K,
++ .type = MT_DEVICE
++ };
++ iotable_init(&desc, 1);
++ dwc_otg_device->os_dep.base = (void *)desc.virtual;
++ }
++#endif
++ if (!dwc_otg_device->os_dep.base) {
++ dev_err(&_dev->dev, "ioremap() failed\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++ dev_dbg(&_dev->dev, "base=0x%08x\n",
++ (unsigned)dwc_otg_device->os_dep.base);
++#endif
++
++ /*
++ * Initialize driver data to point to the global DWC_otg
++ * Device structure.
++ */
++#ifdef LM_INTERFACE
++ lm_set_drvdata(_dev, dwc_otg_device);
++#elif defined(PLATFORM_INTERFACE)
++ platform_set_drvdata(_dev, dwc_otg_device);
++#endif
++ dev_dbg(&_dev->dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
++
++ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->os_dep.base);
++ DWC_DEBUGPL(DBG_HCDV, "probe of device %p given core_if %p\n",
++ dwc_otg_device, dwc_otg_device->core_if);//GRAYG
++
++ if (!dwc_otg_device->core_if) {
++ dev_err(&_dev->dev, "CIL initialization failed!\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++
++ dev_dbg(&_dev->dev, "Calling get_gsnpsid\n");
++ /*
++ * Attempt to ensure this device is really a DWC_otg Controller.
++ * Read and verify the SNPSID register contents. The value should be
++ * 0x45F42XXX or 0x45F42XXX, which corresponds to either "OT2" or "OTG3",
++ * as in "OTG version 2.XX" or "OTG version 3.XX".
++ */
++
++ if (((dwc_otg_get_gsnpsid(dwc_otg_device->core_if) & 0xFFFFF000) != 0x4F542000) &&
++ ((dwc_otg_get_gsnpsid(dwc_otg_device->core_if) & 0xFFFFF000) != 0x4F543000)) {
++ dev_err(&_dev->dev, "Bad value for SNPSID: 0x%08x\n",
++ dwc_otg_get_gsnpsid(dwc_otg_device->core_if));
++ retval = -EINVAL;
++ goto fail;
++ }
++
++ /*
++ * Validate parameter values.
++ */
++ dev_dbg(&_dev->dev, "Calling set_parameters\n");
++ if (set_parameters(dwc_otg_device->core_if)) {
++ retval = -EINVAL;
++ goto fail;
++ }
++
++ /*
++ * Create Device Attributes in sysfs
++ */
++ dev_dbg(&_dev->dev, "Calling attr_create\n");
++ dwc_otg_attr_create(_dev);
++
++ /*
++ * Disable the global interrupt until all the interrupt
++ * handlers are installed.
++ */
++ dev_dbg(&_dev->dev, "Calling disable_global_interrupts\n");
++ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
++
++ /*
++ * Install the interrupt handler for the common interrupts before
++ * enabling common interrupts in core_init below.
++ */
++
++#if defined(PLATFORM_INTERFACE)
++ devirq = platform_get_irq(_dev, 0);
++#else
++ devirq = _dev->irq;
++#endif
++ DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n",
++ devirq);
++ dev_dbg(&_dev->dev, "Calling request_irq(%d)\n", devirq);
++ retval = request_irq(devirq, dwc_otg_common_irq,
++ IRQF_SHARED,
++ "dwc_otg", dwc_otg_device);
++ if (retval) {
++ DWC_ERROR("request of irq%d failed\n", devirq);
++ retval = -EBUSY;
++ goto fail;
++ } else {
++ dwc_otg_device->common_irq_installed = 1;
++ }
++
++#ifndef IRQF_TRIGGER_LOW
++#if defined(LM_INTERFACE) || defined(PLATFORM_INTERFACE)
++ dev_dbg(&_dev->dev, "Calling set_irq_type\n");
++ set_irq_type(devirq,
++#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30))
++ IRQT_LOW
++#else
++ IRQ_TYPE_LEVEL_LOW
++#endif
++ );
++#endif
++#endif /*IRQF_TRIGGER_LOW*/
++
++ /*
++ * Initialize the DWC_otg core.
++ */
++ dev_dbg(&_dev->dev, "Calling dwc_otg_core_init\n");
++ dwc_otg_core_init(dwc_otg_device->core_if);
++
++#ifndef DWC_HOST_ONLY
++ /*
++ * Initialize the PCD
++ */
++ dev_dbg(&_dev->dev, "Calling pcd_init\n");
++ retval = pcd_init(_dev);
++ if (retval != 0) {
++ DWC_ERROR("pcd_init failed\n");
++ dwc_otg_device->pcd = NULL;
++ goto fail;
++ }
++#endif
++#ifndef DWC_DEVICE_ONLY
++ /*
++ * Initialize the HCD
++ */
++ dev_dbg(&_dev->dev, "Calling hcd_init\n");
++ retval = hcd_init(_dev);
++ if (retval != 0) {
++ DWC_ERROR("hcd_init failed\n");
++ dwc_otg_device->hcd = NULL;
++ goto fail;
++ }
++#endif
++ /* Recover from drvdata having been overwritten by hcd_init() */
++#ifdef LM_INTERFACE
++ lm_set_drvdata(_dev, dwc_otg_device);
++#elif defined(PLATFORM_INTERFACE)
++ platform_set_drvdata(_dev, dwc_otg_device);
++#elif defined(PCI_INTERFACE)
++ pci_set_drvdata(_dev, dwc_otg_device);
++ dwc_otg_device->os_dep.pcidev = _dev;
++#endif
++
++ /*
++ * Enable the global interrupt after all the interrupt
++ * handlers are installed if there is no ADP support else
++ * perform initial actions required for Internal ADP logic.
++ */
++ if (!dwc_otg_get_param_adp_enable(dwc_otg_device->core_if)) {
++ dev_dbg(&_dev->dev, "Calling enable_global_interrupts\n");
++ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
++ dev_dbg(&_dev->dev, "Done\n");
++ } else
++ dwc_otg_adp_start(dwc_otg_device->core_if,
++ dwc_otg_is_host_mode(dwc_otg_device->core_if));
++
++ return 0;
++
++fail:
++ dwc_otg_driver_remove(_dev);
++ return retval;
++}
++
++/**
++ * This structure defines the methods to be called by a bus driver
++ * during the lifecycle of a device on that bus. Both drivers and
++ * devices are registered with a bus driver. The bus driver matches
++ * devices to drivers based on information in the device and driver
++ * structures.
++ *
++ * The probe function is called when the bus driver matches a device
++ * to this driver. The remove function is called when a device is
++ * unregistered with the bus driver.
++ */
++#ifdef LM_INTERFACE
++static struct lm_driver dwc_otg_driver = {
++ .drv = {.name = (char *)dwc_driver_name,},
++ .probe = dwc_otg_driver_probe,
++ .remove = dwc_otg_driver_remove,
++ // 'suspend' and 'resume' absent
++};
++#elif defined(PCI_INTERFACE)
++static const struct pci_device_id pci_ids[] = { {
++ PCI_DEVICE(0x16c3, 0xabcd),
++ .driver_data =
++ (unsigned long)0xdeadbeef,
++ }, { /* end: all zeroes */ }
++};
++
++MODULE_DEVICE_TABLE(pci, pci_ids);
++
++/* pci driver glue; this is a "new style" PCI driver module */
++static struct pci_driver dwc_otg_driver = {
++ .name = "dwc_otg",
++ .id_table = pci_ids,
++
++ .probe = dwc_otg_driver_probe,
++ .remove = dwc_otg_driver_remove,
++
++ .driver = {
++ .name = (char *)dwc_driver_name,
++ },
++};
++#elif defined(PLATFORM_INTERFACE)
++static struct platform_device_id platform_ids[] = {
++ {
++ .name = "bcm2708_usb",
++ .driver_data = (kernel_ulong_t) 0xdeadbeef,
++ },
++ { /* end: all zeroes */ }
++};
++MODULE_DEVICE_TABLE(platform, platform_ids);
++
++static struct platform_driver dwc_otg_driver = {
++ .driver = {
++ .name = (char *)dwc_driver_name,
++ },
++ .id_table = platform_ids,
++
++ .probe = dwc_otg_driver_probe,
++ .remove = dwc_otg_driver_remove,
++ // no 'shutdown', 'suspend', 'resume', 'suspend_late' or 'resume_early'
++};
++#endif
++
++/**
++ * This function is called when the dwc_otg_driver is installed with the
++ * insmod command. It registers the dwc_otg_driver structure with the
++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function
++ * to be called. In addition, the bus driver will automatically expose
++ * attributes defined for the device and driver in the special sysfs file
++ * system.
++ *
++ * @return
++ */
++static int __init dwc_otg_driver_init(void)
++{
++ int retval = 0;
++ int error;
++ struct device_driver *drv;
++ printk(KERN_INFO "%s: version %s (%s bus)\n", dwc_driver_name,
++ DWC_DRIVER_VERSION,
++#ifdef LM_INTERFACE
++ "logicmodule");
++ retval = lm_driver_register(&dwc_otg_driver);
++ drv = &dwc_otg_driver.drv;
++#elif defined(PCI_INTERFACE)
++ "pci");
++ retval = pci_register_driver(&dwc_otg_driver);
++ drv = &dwc_otg_driver.driver;
++#elif defined(PLATFORM_INTERFACE)
++ "platform");
++ retval = platform_driver_register(&dwc_otg_driver);
++ drv = &dwc_otg_driver.driver;
++#endif
++ if (retval < 0) {
++ printk(KERN_ERR "%s retval=%d\n", __func__, retval);
++ return retval;
++ }
++ printk(KERN_DEBUG "dwc_otg: FIQ %s\n", fiq_fix_enable ? "enabled":"disabled");
++ printk(KERN_DEBUG "dwc_otg: NAK holdoff %s\n", nak_holdoff_enable ? "enabled":"disabled");
++
++ error = driver_create_file(drv, &driver_attr_version);
++#ifdef DEBUG
++ error = driver_create_file(drv, &driver_attr_debuglevel);
++#endif
++ return retval;
++}
++
++module_init(dwc_otg_driver_init);
++
++/**
++ * This function is called when the driver is removed from the kernel
++ * with the rmmod command. The driver unregisters itself with its bus
++ * driver.
++ *
++ */
++static void __exit dwc_otg_driver_cleanup(void)
++{
++ printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n");
++
++#ifdef LM_INTERFACE
++ driver_remove_file(&dwc_otg_driver.drv, &driver_attr_debuglevel);
++ driver_remove_file(&dwc_otg_driver.drv, &driver_attr_version);
++ lm_driver_unregister(&dwc_otg_driver);
++#elif defined(PCI_INTERFACE)
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
++ pci_unregister_driver(&dwc_otg_driver);
++#elif defined(PLATFORM_INTERFACE)
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_debuglevel);
++ driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
++ platform_driver_unregister(&dwc_otg_driver);
++#endif
++
++ printk(KERN_INFO "%s module removed\n", dwc_driver_name);
++}
++
++module_exit(dwc_otg_driver_cleanup);
++
++MODULE_DESCRIPTION(DWC_DRIVER_DESC);
++MODULE_AUTHOR("Synopsys Inc.");
++MODULE_LICENSE("GPL");
++
++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
++module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
++MODULE_PARM_DESC(opt, "OPT Mode");
++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
++
++module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int,
++ 0444);
++MODULE_PARM_DESC(dma_desc_enable,
++ "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
++
++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int,
++ 0444);
++MODULE_PARM_DESC(dma_burst_size,
++ "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
++module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
++module_param_named(host_support_fs_ls_low_power,
++ dwc_otg_module_params.host_support_fs_ls_low_power, int,
++ 0444);
++MODULE_PARM_DESC(host_support_fs_ls_low_power,
++ "Support Low Power w/FS or LS 0=Support 1=Don't Support");
++module_param_named(host_ls_low_power_phy_clk,
++ dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
++MODULE_PARM_DESC(host_ls_low_power_phy_clk,
++ "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
++module_param_named(enable_dynamic_fifo,
++ dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int,
++ 0444);
++MODULE_PARM_DESC(data_fifo_size,
++ "Total number of words in the data FIFO memory 32-32768");
++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size,
++ int, 0444);
++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(dev_nperio_tx_fifo_size,
++ dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(dev_nperio_tx_fifo_size,
++ "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(dev_perio_tx_fifo_size_1,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_2,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_3,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_4,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_5,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_6,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_7,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_8,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_9,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_10,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_11,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_12,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_13,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_14,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_15,
++ dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15,
++ "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size,
++ int, 0444);
++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(host_nperio_tx_fifo_size,
++ dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_nperio_tx_fifo_size,
++ "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(host_perio_tx_fifo_size,
++ dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_perio_tx_fifo_size,
++ "Number of words in the host periodic Tx FIFO 16-32768");
++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size,
++ int, 0444);
++/** @todo Set the max to 512K, modify checks */
++MODULE_PARM_DESC(max_transfer_size,
++ "The maximum transfer size supported in bytes 2047-65535");
++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count,
++ int, 0444);
++MODULE_PARM_DESC(max_packet_count,
++ "The maximum number of packets in a transfer 15-511");
++module_param_named(host_channels, dwc_otg_module_params.host_channels, int,
++ 0444);
++MODULE_PARM_DESC(host_channels,
++ "The number of host channel registers to use 1-16");
++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int,
++ 0444);
++MODULE_PARM_DESC(dev_endpoints,
++ "The number of endpoints in addition to EP0 available for device mode 1-15");
++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int,
++ 0444);
++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ddr,
++ "ULPI at double or single data rate 0=Single 1=Double");
++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus,
++ int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ext_vbus,
++ "ULPI PHY using internal or external vbus 0=Internal");
++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
++module_param_named(debug, g_dbg_lvl, int, 0444);
++MODULE_PARM_DESC(debug, "");
++
++module_param_named(en_multiple_tx_fifo,
++ dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
++MODULE_PARM_DESC(en_multiple_tx_fifo,
++ "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
++module_param_named(dev_tx_fifo_size_1,
++ dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_2,
++ dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_3,
++ dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_4,
++ dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_5,
++ dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_6,
++ dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_7,
++ dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_8,
++ dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_9,
++ dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_10,
++ dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_11,
++ dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_12,
++ dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_13,
++ dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_14,
++ dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_15,
++ dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
++
++module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
++MODULE_PARM_DESC(thr_ctl,
++ "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
++module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int,
++ 0444);
++MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
++module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int,
++ 0444);
++MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
++
++module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
++module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
++module_param_named(lpm_enable, dwc_otg_module_params.lpm_enable, int, 0444);
++MODULE_PARM_DESC(lpm_enable, "LPM Enable 0=LPM Disabled 1=LPM Enabled");
++module_param_named(ic_usb_cap, dwc_otg_module_params.ic_usb_cap, int, 0444);
++MODULE_PARM_DESC(ic_usb_cap,
++ "IC_USB Capability 0=IC_USB Disabled 1=IC_USB Enabled");
++module_param_named(ahb_thr_ratio, dwc_otg_module_params.ahb_thr_ratio, int,
++ 0444);
++MODULE_PARM_DESC(ahb_thr_ratio, "AHB Threshold Ratio");
++module_param_named(power_down, dwc_otg_module_params.power_down, int, 0444);
++MODULE_PARM_DESC(power_down, "Power Down Mode");
++module_param_named(reload_ctl, dwc_otg_module_params.reload_ctl, int, 0444);
++MODULE_PARM_DESC(reload_ctl, "HFIR Reload Control");
++module_param_named(dev_out_nak, dwc_otg_module_params.dev_out_nak, int, 0444);
++MODULE_PARM_DESC(dev_out_nak, "Enable Device OUT NAK");
++module_param_named(cont_on_bna, dwc_otg_module_params.cont_on_bna, int, 0444);
++MODULE_PARM_DESC(cont_on_bna, "Enable Enable Continue on BNA");
++module_param_named(ahb_single, dwc_otg_module_params.ahb_single, int, 0444);
++MODULE_PARM_DESC(ahb_single, "Enable AHB Single Support");
++module_param_named(adp_enable, dwc_otg_module_params.adp_enable, int, 0444);
++MODULE_PARM_DESC(adp_enable, "ADP Enable 0=ADP Disabled 1=ADP Enabled");
++module_param_named(otg_ver, dwc_otg_module_params.otg_ver, int, 0444);
++MODULE_PARM_DESC(otg_ver, "OTG revision supported 0=OTG 1.3 1=OTG 2.0");
++module_param(microframe_schedule, bool, 0444);
++MODULE_PARM_DESC(microframe_schedule, "Enable the microframe scheduler");
++
++module_param(fiq_fix_enable, bool, 0444);
++MODULE_PARM_DESC(fiq_fix_enable, "Enable the fiq fix");
++module_param(nak_holdoff_enable, bool, 0444);
++MODULE_PARM_DESC(nak_holdoff_enable, "Enable the NAK holdoff");
++
++/** @page "Module Parameters"
++ *
++ * The following parameters may be specified when starting the module.
++ * These parameters define how the DWC_otg controller should be
++ * configured. Parameter values are passed to the CIL initialization
++ * function dwc_otg_cil_init
++ *
++ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
++ *
++
++ <table>
++ <tr><td>Parameter Name</td><td>Meaning</td></tr>
++
++ <tr>
++ <td>otg_cap</td>
++ <td>Specifies the OTG capabilities. The driver will automatically detect the
++ value for this parameter if none is specified.
++ - 0: HNP and SRP capable (default, if available)
++ - 1: SRP Only capable
++ - 2: No HNP/SRP capable
++ </td></tr>
++
++ <tr>
++ <td>dma_enable</td>
++ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Slave
++ - 1: DMA (default, if available)
++ </td></tr>
++
++ <tr>
++ <td>dma_burst_size</td>
++ <td>The DMA Burst size (applicable only for External DMA Mode).
++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ </td></tr>
++
++ <tr>
++ <td>speed</td>
++ <td>Specifies the maximum speed of operation in host and device mode. The
++ actual speed depends on the speed of the attached device and the value of
++ phy_type.
++ - 0: High Speed (default)
++ - 1: Full Speed
++ </td></tr>
++
++ <tr>
++ <td>host_support_fs_ls_low_power</td>
++ <td>Specifies whether low power mode is supported when attached to a Full
++ Speed or Low Speed device in host mode.
++ - 0: Don't support low power mode (default)
++ - 1: Support low power mode
++ </td></tr>
++
++ <tr>
++ <td>host_ls_low_power_phy_clk</td>
++ <td>Specifies the PHY clock rate in low power mode when connected to a Low
++ Speed device in host mode. This parameter is applicable only if
++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
++ - 0: 48 MHz (default)
++ - 1: 6 MHz
++ </td></tr>
++
++ <tr>
++ <td>enable_dynamic_fifo</td>
++ <td> Specifies whether FIFOs may be resized by the driver software.
++ - 0: Use cC FIFO size parameters
++ - 1: Allow dynamic FIFO sizing (default)
++ </td></tr>
++
++ <tr>
++ <td>data_fifo_size</td>
++ <td>Total number of 4-byte words in the data FIFO memory. This memory
++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
++ - Values: 32 to 32768 (default 8192)
++
++ Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ </td></tr>
++
++ <tr>
++ <td>dev_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1064)
++ </td></tr>
++
++ <tr>
++ <td>dev_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
++ dynamic FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
++ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
++ when dynamic FIFO sizing is enabled.
++ - Values: 4 to 768 (default 256)
++ </td></tr>
++
++ <tr>
++ <td>host_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
++ dynamic FIFO sizing is enabled in the core.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_perio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>max_transfer_size</td>
++ <td>The maximum transfer size supported in bytes.
++ - Values: 2047 to 65,535 (default 65,535)
++ </td></tr>
++
++ <tr>
++ <td>max_packet_count</td>
++ <td>The maximum number of packets in a transfer.
++ - Values: 15 to 511 (default 511)
++ </td></tr>
++
++ <tr>
++ <td>host_channels</td>
++ <td>The number of host channel registers to use.
++ - Values: 1 to 16 (default 12)
++
++ Note: The FPGA configuration supports a maximum of 12 host channels.
++ </td></tr>
++
++ <tr>
++ <td>dev_endpoints</td>
++ <td>The number of endpoints in addition to EP0 available for device mode
++ operations.
++ - Values: 1 to 15 (default 6 IN and OUT)
++
++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
++ addition to EP0.
++ </td></tr>
++
++ <tr>
++ <td>phy_type</td>
++ <td>Specifies the type of PHY interface to use. By default, the driver will
++ automatically detect the phy_type.
++ - 0: Full Speed
++ - 1: UTMI+ (default, if available)
++ - 2: ULPI
++ </td></tr>
++
++ <tr>
++ <td>phy_utmi_width</td>
++ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
++ phy_type of UTMI+. Also, this parameter is applicable only if the
++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
++ core has been configured to work at either data path width.
++ - Values: 8 or 16 bits (default 16)
++ </td></tr>
++
++ <tr>
++ <td>phy_ulpi_ddr</td>
++ <td>Specifies whether the ULPI operates at double or single data rate. This
++ parameter is only applicable if phy_type is ULPI.
++ - 0: single data rate ULPI interface with 8 bit wide data bus (default)
++ - 1: double data rate ULPI interface with 4 bit wide data bus
++ </td></tr>
++
++ <tr>
++ <td>i2c_enable</td>
++ <td>Specifies whether to use the I2C interface for full speed PHY. This
++ parameter is only applicable if PHY_TYPE is FS.
++ - 0: Disabled (default)
++ - 1: Enabled
++ </td></tr>
++
++ <tr>
++ <td>ulpi_fs_ls</td>
++ <td>Specifies whether to use ULPI FS/LS mode only.
++ - 0: Disabled (default)
++ - 1: Enabled
++ </td></tr>
++
++ <tr>
++ <td>ts_dline</td>
++ <td>Specifies whether term select D-Line pulsing for all PHYs is enabled.
++ - 0: Disabled (default)
++ - 1: Enabled
++ </td></tr>
++
++ <tr>
++ <td>en_multiple_tx_fifo</td>
++ <td>Specifies whether dedicatedto tx fifos are enabled for non periodic IN EPs.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Disabled
++ - 1: Enabled (default, if available)
++ </td></tr>
++
++ <tr>
++ <td>dev_tx_fifo_size_n (n = 1 to 15)</td>
++ <td>Number of 4-byte words in each of the Tx FIFOs in device mode
++ when dynamic FIFO sizing is enabled.
++ - Values: 4 to 768 (default 256)
++ </td></tr>
++
++ <tr>
++ <td>tx_thr_length</td>
++ <td>Transmit Threshold length in 32 bit double words
++ - Values: 8 to 128 (default 64)
++ </td></tr>
++
++ <tr>
++ <td>rx_thr_length</td>
++ <td>Receive Threshold length in 32 bit double words
++ - Values: 8 to 128 (default 64)
++ </td></tr>
++
++<tr>
++ <td>thr_ctl</td>
++ <td>Specifies whether to enable Thresholding for Device mode. Bits 0, 1, 2 of
++ this parmater specifies if thresholding is enabled for non-Iso Tx, Iso Tx and
++ Rx transfers accordingly.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - Values: 0 to 7 (default 0)
++ Bit values indicate:
++ - 0: Thresholding disabled
++ - 1: Thresholding enabled
++ </td></tr>
++
++<tr>
++ <td>dma_desc_enable</td>
++ <td>Specifies whether to enable Descriptor DMA mode.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Descriptor DMA disabled
++ - 1: Descriptor DMA (default, if available)
++ </td></tr>
++
++<tr>
++ <td>mpi_enable</td>
++ <td>Specifies whether to enable MPI enhancement mode.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: MPI disabled (default)
++ - 1: MPI enable
++ </td></tr>
++
++<tr>
++ <td>pti_enable</td>
++ <td>Specifies whether to enable PTI enhancement support.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: PTI disabled (default)
++ - 1: PTI enable
++ </td></tr>
++
++<tr>
++ <td>lpm_enable</td>
++ <td>Specifies whether to enable LPM support.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: LPM disabled
++ - 1: LPM enable (default, if available)
++ </td></tr>
++
++<tr>
++ <td>ic_usb_cap</td>
++ <td>Specifies whether to enable IC_USB capability.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: IC_USB disabled (default, if available)
++ - 1: IC_USB enable
++ </td></tr>
++
++<tr>
++ <td>ahb_thr_ratio</td>
++ <td>Specifies AHB Threshold ratio.
++ - Values: 0 to 3 (default 0)
++ </td></tr>
++
++<tr>
++ <td>power_down</td>
++ <td>Specifies Power Down(Hibernation) Mode.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Power Down disabled (default)
++ - 2: Power Down enabled
++ </td></tr>
++
++ <tr>
++ <td>reload_ctl</td>
++ <td>Specifies whether dynamic reloading of the HFIR register is allowed during
++ run time. The driver will automatically detect the value for this parameter if
++ none is specified. In case the HFIR value is reloaded when HFIR.RldCtrl == 1'b0
++ the core might misbehave.
++ - 0: Reload Control disabled (default)
++ - 1: Reload Control enabled
++ </td></tr>
++
++ <tr>
++ <td>dev_out_nak</td>
++ <td>Specifies whether Device OUT NAK enhancement enabled or no.
++ The driver will automatically detect the value for this parameter if
++ none is specified. This parameter is valid only when OTG_EN_DESC_DMA == 1b1.
++ - 0: The core does not set NAK after Bulk OUT transfer complete (default)
++ - 1: The core sets NAK after Bulk OUT transfer complete
++ </td></tr>
++
++ <tr>
++ <td>cont_on_bna</td>
++ <td>Specifies whether Enable Continue on BNA enabled or no.
++ After receiving BNA interrupt the core disables the endpoint,when the
++ endpoint is re-enabled by the application the
++ - 0: Core starts processing from the DOEPDMA descriptor (default)
++ - 1: Core starts processing from the descriptor which received the BNA.
++ This parameter is valid only when OTG_EN_DESC_DMA == 1b1.
++ </td></tr>
++
++ <tr>
++ <td>ahb_single</td>
++ <td>This bit when programmed supports SINGLE transfers for remainder data
++ in a transfer for DMA mode of operation.
++ - 0: The remainder data will be sent using INCR burst size (default)
++ - 1: The remainder data will be sent using SINGLE burst size.
++ </td></tr>
++
++<tr>
++ <td>adp_enable</td>
++ <td>Specifies whether ADP feature is enabled.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: ADP feature disabled (default)
++ - 1: ADP feature enabled
++ </td></tr>
++
++ <tr>
++ <td>otg_ver</td>
++ <td>Specifies whether OTG is performing as USB OTG Revision 2.0 or Revision 1.3
++ USB OTG device.
++ - 0: OTG 2.0 support disabled (default)
++ - 1: OTG 2.0 support enabled
++ </td></tr>
++
++*/
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_driver.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_driver.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_driver.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_driver.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,86 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
++ * $Revision: #19 $
++ * $Date: 2010/11/15 $
++ * $Change: 1627671 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_DRIVER_H__
++#define __DWC_OTG_DRIVER_H__
++
++/** @file
++ * This file contains the interface to the Linux driver.
++ */
++#include "dwc_otg_os_dep.h"
++#include "dwc_otg_core_if.h"
++
++/* Type declarations */
++struct dwc_otg_pcd;
++struct dwc_otg_hcd;
++
++/**
++ * This structure is a wrapper that encapsulates the driver components used to
++ * manage a single DWC_otg controller.
++ */
++typedef struct dwc_otg_device {
++ /** Structure containing OS-dependent stuff. KEEP THIS STRUCT AT THE
++ * VERY BEGINNING OF THE DEVICE STRUCT. OSes such as FreeBSD and NetBSD
++ * require this. */
++ struct os_dependent os_dep;
++
++ /** Pointer to the core interface structure. */
++ dwc_otg_core_if_t *core_if;
++
++ /** Pointer to the PCD structure. */
++ struct dwc_otg_pcd *pcd;
++
++ /** Pointer to the HCD structure. */
++ struct dwc_otg_hcd *hcd;
++
++ /** Flag to indicate whether the common IRQ handler is installed. */
++ uint8_t common_irq_installed;
++
++} dwc_otg_device_t;
++
++/*We must clear S3C24XX_EINTPEND external interrupt register
++ * because after clearing in this register trigerred IRQ from
++ * H/W core in kernel interrupt can be occured again before OTG
++ * handlers clear all IRQ sources of Core registers because of
++ * timing latencies and Low Level IRQ Type.
++ */
++#ifdef CONFIG_MACH_IPMATE
++#define S3C2410X_CLEAR_EINTPEND() \
++do { \
++ __raw_writel(1UL << 11,S3C24XX_EINTPEND); \
++} while (0)
++#else
++#define S3C2410X_CLEAR_EINTPEND() do { } while (0)
++#endif
++
++#endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,3533 @@
++
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
++ * $Revision: #104 $
++ * $Date: 2011/10/24 $
++ * $Change: 1871159 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/** @file
++ * This file implements HCD Core. All code in this file is portable and doesn't
++ * use any OS specific functions.
++ * Interface provided by HCD Core is defined in <code><hcd_if.h></code>
++ * header file.
++ */
++
++#include <linux/usb.h>
++#include <linux/usb/hcd.h>
++
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++extern bool microframe_schedule, nak_holdoff_enable;
++
++//#define DEBUG_HOST_CHANNELS
++#ifdef DEBUG_HOST_CHANNELS
++static int last_sel_trans_num_per_scheduled = 0;
++static int last_sel_trans_num_nonper_scheduled = 0;
++static int last_sel_trans_num_avail_hc_at_start = 0;
++static int last_sel_trans_num_avail_hc_at_end = 0;
++#endif /* DEBUG_HOST_CHANNELS */
++
++extern int g_next_sched_frame, g_np_count, g_np_sent;
++
++dwc_otg_hcd_t *dwc_otg_hcd_alloc_hcd(void)
++{
++ return DWC_ALLOC(sizeof(dwc_otg_hcd_t));
++}
++
++/**
++ * Connection timeout function. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds.
++ */
++void dwc_otg_hcd_connect_timeout(void *ptr)
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, ptr);
++ DWC_PRINTF("Connect Timeout\n");
++ __DWC_ERROR("Device Not Connected/Responding\n");
++}
++
++#if defined(DEBUG)
++static void dump_channel_info(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ if (qh->channel != NULL) {
++ dwc_hc_t *hc = qh->channel;
++ dwc_list_link_t *item;
++ dwc_otg_qh_t *qh_item;
++ int num_channels = hcd->core_if->core_params->host_channels;
++ int i;
++
++ dwc_otg_hc_regs_t *hc_regs;
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++ hctsiz_data_t hctsiz;
++ uint32_t hcdma;
++
++ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcsplt.d32 = DWC_READ_REG32(&hc_regs->hcsplt);
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++ hcdma = DWC_READ_REG32(&hc_regs->hcdma);
++
++ DWC_PRINTF(" Assigned to channel %p:\n", hc);
++ DWC_PRINTF(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32,
++ hcsplt.d32);
++ DWC_PRINTF(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32,
++ hcdma);
++ DWC_PRINTF(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINTF(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINTF(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINTF(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINTF(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINTF(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINTF(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINTF(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINTF(" qh: %p\n", hc->qh);
++ DWC_PRINTF(" NP inactive sched:\n");
++ DWC_LIST_FOREACH(item, &hcd->non_periodic_sched_inactive) {
++ qh_item =
++ DWC_LIST_ENTRY(item, dwc_otg_qh_t, qh_list_entry);
++ DWC_PRINTF(" %p\n", qh_item);
++ }
++ DWC_PRINTF(" NP active sched:\n");
++ DWC_LIST_FOREACH(item, &hcd->non_periodic_sched_active) {
++ qh_item =
++ DWC_LIST_ENTRY(item, dwc_otg_qh_t, qh_list_entry);
++ DWC_PRINTF(" %p\n", qh_item);
++ }
++ DWC_PRINTF(" Channels: \n");
++ for (i = 0; i < num_channels; i++) {
++ dwc_hc_t *hc = hcd->hc_ptr_array[i];
++ DWC_PRINTF(" %2d: %p\n", i, hc);
++ }
++ }
++}
++#else
++#define dump_channel_info(hcd, qh)
++#endif /* DEBUG */
++
++/**
++ * Work queue function for starting the HCD when A-Cable is connected.
++ * The hcd_start() must be called in a process context.
++ */
++static void hcd_start_func(void *_vp)
++{
++ dwc_otg_hcd_t *hcd = (dwc_otg_hcd_t *) _vp;
++
++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, hcd);
++ if (hcd) {
++ hcd->fops->start(hcd);
++ }
++}
++
++static void del_xfer_timers(dwc_otg_hcd_t * hcd)
++{
++#ifdef DEBUG
++ int i;
++ int num_channels = hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ DWC_TIMER_CANCEL(hcd->core_if->hc_xfer_timer[i]);
++ }
++#endif
++}
++
++static void del_timers(dwc_otg_hcd_t * hcd)
++{
++ del_xfer_timers(hcd);
++ DWC_TIMER_CANCEL(hcd->conn_timer);
++}
++
++/**
++ * Processes all the URBs in a single list of QHs. Completes them with
++ * -ETIMEDOUT and frees the QTD.
++ */
++static void kill_urbs_in_qh_list(dwc_otg_hcd_t * hcd, dwc_list_link_t * qh_list)
++{
++ dwc_list_link_t *qh_item;
++ dwc_otg_qh_t *qh;
++ dwc_otg_qtd_t *qtd, *qtd_tmp;
++
++ DWC_LIST_FOREACH(qh_item, qh_list) {
++ qh = DWC_LIST_ENTRY(qh_item, dwc_otg_qh_t, qh_list_entry);
++ DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp,
++ &qh->qtd_list, qtd_list_entry) {
++ qtd = DWC_CIRCLEQ_FIRST(&qh->qtd_list);
++ if (qtd->urb != NULL) {
++ hcd->fops->complete(hcd, qtd->urb->priv,
++ qtd->urb, -DWC_E_TIMEOUT);
++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
++ }
++
++ }
++ }
++}
++
++/**
++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
++ * and periodic schedules. The QTD associated with each URB is removed from
++ * the schedule and freed. This function may be called when a disconnect is
++ * detected or when the HCD is being stopped.
++ */
++static void kill_all_urbs(dwc_otg_hcd_t * hcd)
++{
++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
++}
++
++/**
++ * Start the connection timer. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds. The
++ * timer is deleted if a port connect interrupt occurs before the
++ * timer expires.
++ */
++static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t * hcd)
++{
++ DWC_TIMER_SCHEDULE(hcd->conn_timer, 10000 /* 10 secs */ );
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_session_start_cb(void *p)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd;
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
++ dwc_otg_hcd = p;
++ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
++ return 1;
++}
++
++/**
++ * HCD Callback function for starting the HCD when A-Cable is
++ * connected.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_start_cb(void *p)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = p;
++ dwc_otg_core_if_t *core_if;
++ hprt0_data_t hprt0;
++
++ core_if = dwc_otg_hcd->core_if;
++
++ if (core_if->op_state == B_HOST) {
++ /*
++ * Reset the port. During a HNP mode switch the reset
++ * needs to occur within 1ms and have a duration of at
++ * least 50ms.
++ */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtrst = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ }
++ DWC_WORKQ_SCHEDULE_DELAYED(core_if->wq_otg,
++ hcd_start_func, dwc_otg_hcd, 50,
++ "start hcd");
++
++ return 1;
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_disconnect_cb(void *p)
++{
++ gintsts_data_t intr;
++ dwc_otg_hcd_t *dwc_otg_hcd = p;
++
++ /*
++ * Set status flags for the hub driver.
++ */
++ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ dwc_otg_hcd->flags.b.port_connect_status = 0;
++
++ /*
++ * Shutdown any transfers in process by clearing the Tx FIFO Empty
++ * interrupt mask and status bits and disabling subsequent host
++ * channel interrupts.
++ */
++ intr.d32 = 0;
++ intr.b.nptxfempty = 1;
++ intr.b.ptxfempty = 1;
++ intr.b.hcintr = 1;
++ DWC_MODIFY_REG32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk,
++ intr.d32, 0);
++ DWC_MODIFY_REG32(&dwc_otg_hcd->core_if->core_global_regs->gintsts,
++ intr.d32, 0);
++
++ del_timers(dwc_otg_hcd);
++
++ /*
++ * Turn off the vbus power only if the core has transitioned to device
++ * mode. If still in host mode, need to keep power on to detect a
++ * reconnection.
++ */
++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
++ hprt0_data_t hprt0 = {.d32 = 0 };
++ DWC_PRINTF("Disconnect: PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ DWC_WRITE_REG32(dwc_otg_hcd->core_if->host_if->hprt0,
++ hprt0.d32);
++ }
++
++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
++ }
++
++ /* Respond with an error status to all URBs in the schedule. */
++ kill_all_urbs(dwc_otg_hcd);
++
++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
++ /* Clean up any host channels that were in use. */
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++ dwc_otg_hc_regs_t *hc_regs;
++ hcchar_data_t hcchar;
++
++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++
++ if (!dwc_otg_hcd->core_if->dma_enable) {
++ /* Flush out any channel requests in slave mode. */
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (DWC_CIRCLEQ_EMPTY_ENTRY
++ (channel, hc_list_entry)) {
++ hc_regs =
++ dwc_otg_hcd->core_if->
++ host_if->hc_regs[i];
++ hcchar.d32 =
++ DWC_READ_REG32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ DWC_WRITE_REG32
++ (&hc_regs->hcchar,
++ hcchar.d32);
++ }
++ }
++ }
++ }
++
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (DWC_CIRCLEQ_EMPTY_ENTRY(channel, hc_list_entry)) {
++ hc_regs =
++ dwc_otg_hcd->core_if->host_if->hc_regs[i];
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ /* Halt the channel. */
++ hcchar.b.chdis = 1;
++ DWC_WRITE_REG32(&hc_regs->hcchar,
++ hcchar.d32);
++ }
++
++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if,
++ channel);
++ DWC_CIRCLEQ_INSERT_TAIL
++ (&dwc_otg_hcd->free_hc_list, channel,
++ hc_list_entry);
++ /*
++ * Added for Descriptor DMA to prevent channel double cleanup
++ * in release_channel_ddma(). Which called from ep_disable
++ * when device disconnect.
++ */
++ channel->qh = NULL;
++ }
++ }
++ }
++
++ if (dwc_otg_hcd->fops->disconnect) {
++ dwc_otg_hcd->fops->disconnect(dwc_otg_hcd);
++ }
++
++ return 1;
++}
++
++/**
++ * HCD Callback function for stopping the HCD.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_stop_cb(void *p)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = p;
++
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
++ dwc_otg_hcd_stop(dwc_otg_hcd);
++ return 1;
++}
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++/**
++ * HCD Callback function for sleep of HCD.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int dwc_otg_hcd_sleep_cb(void *p)
++{
++ dwc_otg_hcd_t *hcd = p;
++
++ dwc_otg_hcd_free_hc_from_lpm(hcd);
++
++ return 0;
++}
++#endif
++
++
++/**
++ * HCD Callback function for Remote Wakeup.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int dwc_otg_hcd_rem_wakeup_cb(void *p)
++{
++ dwc_otg_hcd_t *hcd = p;
++
++ if (hcd->core_if->lx_state == DWC_OTG_L2) {
++ hcd->flags.b.port_suspend_change = 1;
++ }
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ else {
++ hcd->flags.b.port_l1_change = 1;
++ }
++#endif
++ return 0;
++}
++
++/**
++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
++ * stopped.
++ */
++void dwc_otg_hcd_stop(dwc_otg_hcd_t * hcd)
++{
++ hprt0_data_t hprt0 = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
++
++ /*
++ * The root hub should be disconnected before this function is called.
++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
++ * and the QH lists (via ..._hcd_endpoint_disable).
++ */
++
++ /* Turn off all host-specific interrupts. */
++ dwc_otg_disable_host_interrupts(hcd->core_if);
++
++ /* Turn off the vbus power */
++ DWC_PRINTF("PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ DWC_WRITE_REG32(hcd->core_if->host_if->hprt0, hprt0.d32);
++ dwc_mdelay(1);
++}
++
++int dwc_otg_hcd_urb_enqueue(dwc_otg_hcd_t * hcd,
++ dwc_otg_hcd_urb_t * dwc_otg_urb, void **ep_handle,
++ int atomic_alloc)
++{
++ dwc_irqflags_t flags;
++ int retval = 0;
++ uint8_t needs_scheduling = 0;
++ dwc_otg_transaction_type_e tr_type;
++ dwc_otg_qtd_t *qtd;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++#ifdef DEBUG /* integrity checks (Broadcom) */
++ if (NULL == hcd->core_if) {
++ DWC_ERROR("**** DWC OTG HCD URB Enqueue - HCD has NULL core_if\n");
++ /* No longer connected. */
++ return -DWC_E_INVALID;
++ }
++#endif
++ if (!hcd->flags.b.port_connect_status) {
++ /* No longer connected. */
++ DWC_ERROR("Not connected\n");
++ return -DWC_E_NO_DEVICE;
++ }
++
++ qtd = dwc_otg_hcd_qtd_create(dwc_otg_urb, atomic_alloc);
++ if (qtd == NULL) {
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
++ return -DWC_E_NO_MEMORY;
++ }
++#ifdef DEBUG /* integrity checks (Broadcom) */
++ if (qtd->urb == NULL) {
++ DWC_ERROR("**** DWC OTG HCD URB Enqueue created QTD with no URBs\n");
++ return -DWC_E_NO_MEMORY;
++ }
++ if (qtd->urb->priv == NULL) {
++ DWC_ERROR("**** DWC OTG HCD URB Enqueue created QTD URB with no URB handle\n");
++ return -DWC_E_NO_MEMORY;
++ }
++#endif
++ intr_mask.d32 = DWC_READ_REG32(&hcd->core_if->core_global_regs->gintmsk);
++ if(!intr_mask.b.sofintr) needs_scheduling = 1;
++ if((((dwc_otg_qh_t *)ep_handle)->ep_type == UE_BULK) && !(qtd->urb->flags & URB_GIVEBACK_ASAP))
++ /* Do not schedule SG transactions until qtd has URB_GIVEBACK_ASAP set */
++ needs_scheduling = 0;
++
++ retval = dwc_otg_hcd_qtd_add(qtd, hcd, (dwc_otg_qh_t **) ep_handle, atomic_alloc);
++ // creates a new queue in ep_handle if it doesn't exist already
++ if (retval < 0) {
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
++ "Error status %d\n", retval);
++ dwc_otg_hcd_qtd_free(qtd);
++ return retval;
++ }
++
++ if(needs_scheduling) {
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++ }
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++ }
++ return retval;
++}
++
++int dwc_otg_hcd_urb_dequeue(dwc_otg_hcd_t * hcd,
++ dwc_otg_hcd_urb_t * dwc_otg_urb)
++{
++ dwc_otg_qh_t *qh;
++ dwc_otg_qtd_t *urb_qtd;
++ BUG_ON(!hcd);
++ BUG_ON(!dwc_otg_urb);
++
++#ifdef DEBUG /* integrity checks (Broadcom) */
++
++ if (hcd == NULL) {
++ DWC_ERROR("**** DWC OTG HCD URB Dequeue has NULL HCD\n");
++ return -DWC_E_INVALID;
++ }
++ if (dwc_otg_urb == NULL) {
++ DWC_ERROR("**** DWC OTG HCD URB Dequeue has NULL URB\n");
++ return -DWC_E_INVALID;
++ }
++ if (dwc_otg_urb->qtd == NULL) {
++ DWC_ERROR("**** DWC OTG HCD URB Dequeue with NULL QTD\n");
++ return -DWC_E_INVALID;
++ }
++ urb_qtd = dwc_otg_urb->qtd;
++ BUG_ON(!urb_qtd);
++ if (urb_qtd->qh == NULL) {
++ DWC_ERROR("**** DWC OTG HCD URB Dequeue with QTD with NULL Q handler\n");
++ return -DWC_E_INVALID;
++ }
++#else
++ urb_qtd = dwc_otg_urb->qtd;
++ BUG_ON(!urb_qtd);
++#endif
++ qh = urb_qtd->qh;
++ BUG_ON(!qh);
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ if (urb_qtd->in_process) {
++ dump_channel_info(hcd, qh);
++ }
++ }
++#ifdef DEBUG /* integrity checks (Broadcom) */
++ if (hcd->core_if == NULL) {
++ DWC_ERROR("**** DWC OTG HCD URB Dequeue HCD has NULL core_if\n");
++ return -DWC_E_INVALID;
++ }
++#endif
++ if (urb_qtd->in_process && qh->channel) {
++ /* The QTD is in process (it has been assigned to a channel). */
++ if (hcd->flags.b.port_connect_status) {
++ /*
++ * If still connected (i.e. in host mode), halt the
++ * channel so it can be used for other transfers. If
++ * no longer connected, the host registers can't be
++ * written to halt the channel since the core is in
++ * device mode.
++ */
++ dwc_otg_hc_halt(hcd->core_if, qh->channel,
++ DWC_OTG_HC_XFER_URB_DEQUEUE);
++ }
++ }
++
++ /*
++ * Free the QTD and clean up the associated QH. Leave the QH in the
++ * schedule if it has any remaining QTDs.
++ */
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue - "
++ "delete %sQueue handler\n",
++ hcd->core_if->dma_desc_enable?"DMA ":"");
++ if (!hcd->core_if->dma_desc_enable) {
++ uint8_t b = urb_qtd->in_process;
++ dwc_otg_hcd_qtd_remove_and_free(hcd, urb_qtd, qh);
++ if (b) {
++ dwc_otg_hcd_qh_deactivate(hcd, qh, 0);
++ qh->channel = NULL;
++ } else if (DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ }
++ } else {
++ dwc_otg_hcd_qtd_remove_and_free(hcd, urb_qtd, qh);
++ }
++ return 0;
++}
++
++int dwc_otg_hcd_endpoint_disable(dwc_otg_hcd_t * hcd, void *ep_handle,
++ int retry)
++{
++ dwc_otg_qh_t *qh = (dwc_otg_qh_t *) ep_handle;
++ int retval = 0;
++ dwc_irqflags_t flags;
++
++ if (retry < 0) {
++ retval = -DWC_E_INVALID;
++ goto done;
++ }
++
++ if (!qh) {
++ retval = -DWC_E_INVALID;
++ goto done;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++
++ while (!DWC_CIRCLEQ_EMPTY(&qh->qtd_list) && retry) {
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++ retry--;
++ dwc_msleep(5);
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++ }
++
++ dwc_otg_hcd_qh_remove(hcd, qh);
++
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++ /*
++ * Split dwc_otg_hcd_qh_remove_and_free() into qh_remove
++ * and qh_free to prevent stack dump on DWC_DMA_FREE() with
++ * irq_disabled (spinlock_irqsave) in dwc_otg_hcd_desc_list_free()
++ * and dwc_otg_hcd_frame_list_alloc().
++ */
++ dwc_otg_hcd_qh_free(hcd, qh);
++
++done:
++ return retval;
++}
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,30)
++int dwc_otg_hcd_endpoint_reset(dwc_otg_hcd_t * hcd, void *ep_handle)
++{
++ int retval = 0;
++ dwc_otg_qh_t *qh = (dwc_otg_qh_t *) ep_handle;
++ if (!qh)
++ return -DWC_E_INVALID;
++
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ return retval;
++}
++#endif
++
++/**
++ * HCD Callback structure for handling mode switching.
++ */
++static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
++ .start = dwc_otg_hcd_start_cb,
++ .stop = dwc_otg_hcd_stop_cb,
++ .disconnect = dwc_otg_hcd_disconnect_cb,
++ .session_start = dwc_otg_hcd_session_start_cb,
++ .resume_wakeup = dwc_otg_hcd_rem_wakeup_cb,
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ .sleep = dwc_otg_hcd_sleep_cb,
++#endif
++ .p = 0,
++};
++
++/**
++ * Reset tasklet function
++ */
++static void reset_tasklet_func(void *data)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *) data;
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ hprt0_data_t hprt0;
++
++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
++
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtrst = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ dwc_mdelay(60);
++
++ hprt0.b.prtrst = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ dwc_otg_hcd->flags.b.port_reset_change = 1;
++}
++
++static void completion_tasklet_func(void *ptr)
++{
++ dwc_otg_hcd_t *hcd = (dwc_otg_hcd_t *) ptr;
++ struct urb *urb;
++ urb_tq_entry_t *item;
++ dwc_irqflags_t flags;
++
++ /* This could just be spin_lock_irq */
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++ while (!DWC_TAILQ_EMPTY(&hcd->completed_urb_list)) {
++ item = DWC_TAILQ_FIRST(&hcd->completed_urb_list);
++ urb = item->urb;
++ DWC_TAILQ_REMOVE(&hcd->completed_urb_list, item,
++ urb_tq_entries);
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++ DWC_FREE(item);
++
++ usb_hcd_giveback_urb(hcd->priv, urb, urb->status);
++
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++ }
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++ return;
++}
++
++static void qh_list_free(dwc_otg_hcd_t * hcd, dwc_list_link_t * qh_list)
++{
++ dwc_list_link_t *item;
++ dwc_otg_qh_t *qh;
++ dwc_irqflags_t flags;
++
++ if (!qh_list->next) {
++ /* The list hasn't been initialized yet. */
++ return;
++ }
++ /*
++ * Hold spinlock here. Not needed in that case if bellow
++ * function is being called from ISR
++ */
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++ /* Ensure there are no QTDs or URBs left. */
++ kill_urbs_in_qh_list(hcd, qh_list);
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++
++ DWC_LIST_FOREACH(item, qh_list) {
++ qh = DWC_LIST_ENTRY(item, dwc_otg_qh_t, qh_list_entry);
++ dwc_otg_hcd_qh_remove_and_free(hcd, qh);
++ }
++}
++
++/**
++ * Exit from Hibernation if Host did not detect SRP from connected SRP capable
++ * Device during SRP time by host power up.
++ */
++void dwc_otg_hcd_power_up(void *ptr)
++{
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *) ptr;
++
++ DWC_PRINTF("%s called\n", __FUNCTION__);
++
++ if (!core_if->hibernation_suspend) {
++ DWC_PRINTF("Already exited from Hibernation\n");
++ return;
++ }
++
++ /* Switch on the voltage to the core */
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Reset the core */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Disable power clamps */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ /* Remove reset the core signal */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnrstn = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Disable PMU interrupt */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ core_if->hibernation_suspend = 0;
++
++ /* Disable PMU */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++ dwc_udelay(10);
++
++ /* Enable VBUS */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.dis_vbus = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, gpwrdn.d32, 0);
++
++ core_if->op_state = A_HOST;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_hcd_start(core_if);
++}
++
++/**
++ * Frees secondary storage associated with the dwc_otg_hcd structure contained
++ * in the struct usb_hcd field.
++ */
++static void dwc_otg_hcd_free(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ int i;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
++
++ del_timers(dwc_otg_hcd);
++
++ /* Free memory for QH/QTD lists */
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
++
++ /* Free memory for the host channels. */
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
++
++#ifdef DEBUG
++ if (dwc_otg_hcd->core_if->hc_xfer_timer[i]) {
++ DWC_TIMER_FREE(dwc_otg_hcd->core_if->hc_xfer_timer[i]);
++ }
++#endif
++ if (hc != NULL) {
++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n",
++ i, hc);
++ DWC_FREE(hc);
++ }
++ }
++
++ if (dwc_otg_hcd->core_if->dma_enable) {
++ if (dwc_otg_hcd->status_buf_dma) {
++ DWC_DMA_FREE(DWC_OTG_HCD_STATUS_BUF_SIZE,
++ dwc_otg_hcd->status_buf,
++ dwc_otg_hcd->status_buf_dma);
++ }
++ } else if (dwc_otg_hcd->status_buf != NULL) {
++ DWC_FREE(dwc_otg_hcd->status_buf);
++ }
++ DWC_SPINLOCK_FREE(dwc_otg_hcd->channel_lock);
++ DWC_SPINLOCK_FREE(dwc_otg_hcd->lock);
++ /* Set core_if's lock pointer to NULL */
++ dwc_otg_hcd->core_if->lock = NULL;
++
++ DWC_TIMER_FREE(dwc_otg_hcd->conn_timer);
++ DWC_TASK_FREE(dwc_otg_hcd->reset_tasklet);
++ DWC_TASK_FREE(dwc_otg_hcd->completion_tasklet);
++
++#ifdef DWC_DEV_SRPCAP
++ if (dwc_otg_hcd->core_if->power_down == 2 &&
++ dwc_otg_hcd->core_if->pwron_timer) {
++ DWC_TIMER_FREE(dwc_otg_hcd->core_if->pwron_timer);
++ }
++#endif
++ DWC_FREE(dwc_otg_hcd);
++}
++
++int init_hcd_usecs(dwc_otg_hcd_t *_hcd);
++
++int dwc_otg_hcd_init(dwc_otg_hcd_t * hcd, dwc_otg_core_if_t * core_if)
++{
++ int retval = 0;
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++
++ hcd->lock = DWC_SPINLOCK_ALLOC();
++ hcd->channel_lock = DWC_SPINLOCK_ALLOC();
++ DWC_DEBUGPL(DBG_HCDV, "init of HCD %p given core_if %p\n",
++ hcd, core_if);
++ if (!hcd->lock) {
++ DWC_ERROR("Could not allocate lock for pcd");
++ DWC_FREE(hcd);
++ retval = -DWC_E_NO_MEMORY;
++ goto out;
++ }
++ hcd->core_if = core_if;
++
++ /* Register the HCD CIL Callbacks */
++ dwc_otg_cil_register_hcd_callbacks(hcd->core_if,
++ &hcd_cil_callbacks, hcd);
++
++ /* Initialize the non-periodic schedule. */
++ DWC_LIST_INIT(&hcd->non_periodic_sched_inactive);
++ DWC_LIST_INIT(&hcd->non_periodic_sched_active);
++
++ /* Initialize the periodic schedule. */
++ DWC_LIST_INIT(&hcd->periodic_sched_inactive);
++ DWC_LIST_INIT(&hcd->periodic_sched_ready);
++ DWC_LIST_INIT(&hcd->periodic_sched_assigned);
++ DWC_LIST_INIT(&hcd->periodic_sched_queued);
++ DWC_TAILQ_INIT(&hcd->completed_urb_list);
++ /*
++ * Create a host channel descriptor for each host channel implemented
++ * in the controller. Initialize the channel descriptor array.
++ */
++ DWC_CIRCLEQ_INIT(&hcd->free_hc_list);
++ num_channels = hcd->core_if->core_params->host_channels;
++ DWC_MEMSET(hcd->hc_ptr_array, 0, sizeof(hcd->hc_ptr_array));
++ for (i = 0; i < num_channels; i++) {
++ channel = DWC_ALLOC(sizeof(dwc_hc_t));
++ if (channel == NULL) {
++ retval = -DWC_E_NO_MEMORY;
++ DWC_ERROR("%s: host channel allocation failed\n",
++ __func__);
++ dwc_otg_hcd_free(hcd);
++ goto out;
++ }
++ channel->hc_num = i;
++ hcd->hc_ptr_array[i] = channel;
++#ifdef DEBUG
++ hcd->core_if->hc_xfer_timer[i] =
++ DWC_TIMER_ALLOC("hc timer", hc_xfer_timeout,
++ &hcd->core_if->hc_xfer_info[i]);
++#endif
++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i,
++ channel);
++ }
++
++ /* Initialize the Connection timeout timer. */
++ hcd->conn_timer = DWC_TIMER_ALLOC("Connection timer",
++ dwc_otg_hcd_connect_timeout, 0);
++
++ printk(KERN_DEBUG "dwc_otg: Microframe scheduler %s\n", microframe_schedule ? "enabled":"disabled");
++ if (microframe_schedule)
++ init_hcd_usecs(hcd);
++
++ /* Initialize reset tasklet. */
++ hcd->reset_tasklet = DWC_TASK_ALLOC("reset_tasklet", reset_tasklet_func, hcd);
++
++ hcd->completion_tasklet = DWC_TASK_ALLOC("completion_tasklet",
++ completion_tasklet_func, hcd);
++#ifdef DWC_DEV_SRPCAP
++ if (hcd->core_if->power_down == 2) {
++ /* Initialize Power on timer for Host power up in case hibernation */
++ hcd->core_if->pwron_timer = DWC_TIMER_ALLOC("PWRON TIMER",
++ dwc_otg_hcd_power_up, core_if);
++ }
++#endif
++
++ /*
++ * Allocate space for storing data on status transactions. Normally no
++ * data is sent, but this space acts as a bit bucket. This must be
++ * done after usb_add_hcd since that function allocates the DMA buffer
++ * pool.
++ */
++ if (hcd->core_if->dma_enable) {
++ hcd->status_buf =
++ DWC_DMA_ALLOC(DWC_OTG_HCD_STATUS_BUF_SIZE,
++ &hcd->status_buf_dma);
++ } else {
++ hcd->status_buf = DWC_ALLOC(DWC_OTG_HCD_STATUS_BUF_SIZE);
++ }
++ if (!hcd->status_buf) {
++ retval = -DWC_E_NO_MEMORY;
++ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
++ dwc_otg_hcd_free(hcd);
++ goto out;
++ }
++
++ hcd->otg_port = 1;
++ hcd->frame_list = NULL;
++ hcd->frame_list_dma = 0;
++ hcd->periodic_qh_count = 0;
++out:
++ return retval;
++}
++
++void dwc_otg_hcd_remove(dwc_otg_hcd_t * hcd)
++{
++ /* Turn off all host-specific interrupts. */
++ dwc_otg_disable_host_interrupts(hcd->core_if);
++
++ dwc_otg_hcd_free(hcd);
++}
++
++/**
++ * Initializes dynamic portions of the DWC_otg HCD state.
++ */
++static void dwc_otg_hcd_reinit(dwc_otg_hcd_t * hcd)
++{
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++ dwc_hc_t *channel_tmp;
++
++ hcd->flags.d32 = 0;
++
++ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
++ if (!microframe_schedule) {
++ hcd->non_periodic_channels = 0;
++ hcd->periodic_channels = 0;
++ } else {
++ hcd->available_host_channels = hcd->core_if->core_params->host_channels;
++ }
++ /*
++ * Put all channels in the free channel list and clean up channel
++ * states.
++ */
++ DWC_CIRCLEQ_FOREACH_SAFE(channel, channel_tmp,
++ &hcd->free_hc_list, hc_list_entry) {
++ DWC_CIRCLEQ_REMOVE(&hcd->free_hc_list, channel, hc_list_entry);
++ }
++
++ num_channels = hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ channel = hcd->hc_ptr_array[i];
++ DWC_CIRCLEQ_INSERT_TAIL(&hcd->free_hc_list, channel,
++ hc_list_entry);
++ dwc_otg_hc_cleanup(hcd->core_if, channel);
++ }
++
++ /* Initialize the DWC core for host mode operation. */
++ dwc_otg_core_host_init(hcd->core_if);
++
++ /* Set core_if's lock pointer to the hcd->lock */
++ hcd->core_if->lock = hcd->lock;
++}
++
++/**
++ * Assigns transactions from a QTD to a free host channel and initializes the
++ * host channel to perform the transactions. The host channel is removed from
++ * the free list.
++ *
++ * @param hcd The HCD state structure.
++ * @param qh Transactions from the first QTD for this QH are selected and
++ * assigned to a free host channel.
++ */
++static void assign_and_init_hc(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ dwc_hc_t *hc;
++ dwc_otg_qtd_t *qtd;
++ dwc_otg_hcd_urb_t *urb;
++ void* ptr = NULL;
++
++ qtd = DWC_CIRCLEQ_FIRST(&qh->qtd_list);
++
++ urb = qtd->urb;
++
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p) - urb %x, actual_length %d\n", __func__, hcd, qh, (unsigned int)urb, urb->actual_length);
++
++ if (((urb->actual_length < 0) || (urb->actual_length > urb->length)) && !dwc_otg_hcd_is_pipe_in(&urb->pipe_info))
++ urb->actual_length = urb->length;
++
++
++ hc = DWC_CIRCLEQ_FIRST(&hcd->free_hc_list);
++
++ /* Remove the host channel from the free list. */
++ DWC_CIRCLEQ_REMOVE_INIT(&hcd->free_hc_list, hc, hc_list_entry);
++
++ qh->channel = hc;
++
++ qtd->in_process = 1;
++
++ /*
++ * Use usb_pipedevice to determine device address. This address is
++ * 0 before the SET_ADDRESS command and the correct address afterward.
++ */
++ hc->dev_addr = dwc_otg_hcd_get_dev_addr(&urb->pipe_info);
++ hc->ep_num = dwc_otg_hcd_get_ep_num(&urb->pipe_info);
++ hc->speed = qh->dev_speed;
++ hc->max_packet = dwc_max_packet(qh->maxp);
++
++ hc->xfer_started = 0;
++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
++ hc->error_state = (qtd->error_count > 0);
++ hc->halt_on_queue = 0;
++ hc->halt_pending = 0;
++ hc->requests = 0;
++
++ /*
++ * The following values may be modified in the transfer type section
++ * below. The xfer_len value may be reduced when the transfer is
++ * started to accommodate the max widths of the XferSize and PktCnt
++ * fields in the HCTSIZn register.
++ */
++
++ hc->ep_is_in = (dwc_otg_hcd_is_pipe_in(&urb->pipe_info) != 0);
++ if (hc->ep_is_in) {
++ hc->do_ping = 0;
++ } else {
++ hc->do_ping = qh->ping_state;
++ }
++
++ hc->data_pid_start = qh->data_toggle;
++ hc->multi_count = 1;
++
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *) urb->dma + urb->actual_length;
++
++ /* For non-dword aligned case */
++ if (((unsigned long)hc->xfer_buff & 0x3)
++ && !hcd->core_if->dma_desc_enable) {
++ ptr = (uint8_t *) urb->buf + urb->actual_length;
++ }
++ } else {
++ hc->xfer_buff = (uint8_t *) urb->buf + urb->actual_length;
++ }
++ hc->xfer_len = urb->length - urb->actual_length;
++ hc->xfer_count = 0;
++
++ /*
++ * Set the split attributes
++ */
++ hc->do_split = 0;
++ if (qh->do_split) {
++ uint32_t hub_addr, port_addr;
++ hc->do_split = 1;
++ hc->xact_pos = qtd->isoc_split_pos;
++ hc->complete_split = qtd->complete_split;
++ hcd->fops->hub_info(hcd, urb->priv, &hub_addr, &port_addr);
++ hc->hub_addr = (uint8_t) hub_addr;
++ hc->port_addr = (uint8_t) port_addr;
++ }
++
++ switch (dwc_otg_hcd_get_pipe_type(&urb->pipe_info)) {
++ case UE_CONTROL:
++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
++ switch (qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
++ hc->do_ping = 0;
++ hc->ep_is_in = 0;
++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *) urb->setup_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *) urb->setup_packet;
++ }
++ hc->xfer_len = 8;
++ ptr = NULL;
++ break;
++ case DWC_OTG_CONTROL_DATA:
++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
++ hc->data_pid_start = qtd->data_toggle;
++ break;
++ case DWC_OTG_CONTROL_STATUS:
++ /*
++ * Direction is opposite of data direction or IN if no
++ * data.
++ */
++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
++ if (urb->length == 0) {
++ hc->ep_is_in = 1;
++ } else {
++ hc->ep_is_in =
++ dwc_otg_hcd_is_pipe_out(&urb->pipe_info);
++ }
++ if (hc->ep_is_in) {
++ hc->do_ping = 0;
++ }
++
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++
++ hc->xfer_len = 0;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *) hcd->status_buf_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *) hcd->status_buf;
++ }
++ ptr = NULL;
++ break;
++ }
++ break;
++ case UE_BULK:
++ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
++ break;
++ case UE_INTERRUPT:
++ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
++ break;
++ case UE_ISOCHRONOUS:
++ {
++ struct dwc_otg_hcd_iso_packet_desc *frame_desc;
++
++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
++
++ if (hcd->core_if->dma_desc_enable)
++ break;
++
++ frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
++
++ frame_desc->status = 0;
++
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *) urb->dma;
++ } else {
++ hc->xfer_buff = (uint8_t *) urb->buf;
++ }
++ hc->xfer_buff +=
++ frame_desc->offset + qtd->isoc_split_offset;
++ hc->xfer_len =
++ frame_desc->length - qtd->isoc_split_offset;
++
++ /* For non-dword aligned buffers */
++ if (((unsigned long)hc->xfer_buff & 0x3)
++ && hcd->core_if->dma_enable) {
++ ptr =
++ (uint8_t *) urb->buf + frame_desc->offset +
++ qtd->isoc_split_offset;
++ } else
++ ptr = NULL;
++
++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++ if (hc->xfer_len <= 188) {
++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ } else {
++ hc->xact_pos =
++ DWC_HCSPLIT_XACTPOS_BEGIN;
++ }
++ }
++ }
++ break;
++ }
++ /* non DWORD-aligned buffer case */
++ if (ptr) {
++ uint32_t buf_size;
++ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ buf_size = hcd->core_if->core_params->max_transfer_size;
++ } else {
++ buf_size = 4096;
++ }
++ if (!qh->dw_align_buf) {
++ qh->dw_align_buf = DWC_DMA_ALLOC_ATOMIC(buf_size,
++ &qh->dw_align_buf_dma);
++ if (!qh->dw_align_buf) {
++ DWC_ERROR
++ ("%s: Failed to allocate memory to handle "
++ "non-dword aligned buffer case\n",
++ __func__);
++ return;
++ }
++ }
++ if (!hc->ep_is_in) {
++ dwc_memcpy(qh->dw_align_buf, ptr, hc->xfer_len);
++ }
++ hc->align_buff = qh->dw_align_buf_dma;
++ } else {
++ hc->align_buff = 0;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This value may be modified when the transfer is started to
++ * reflect the actual transfer length.
++ */
++ hc->multi_count = dwc_hb_mult(qh->maxp);
++ }
++
++ if (hcd->core_if->dma_desc_enable)
++ hc->desc_list_addr = qh->desc_list_dma;
++
++ dwc_otg_hc_init(hcd->core_if, hc);
++ hc->qh = qh;
++}
++
++/**
++ * This function selects transactions from the HCD transfer schedule and
++ * assigns them to available host channels. It is called from HCD interrupt
++ * handler functions.
++ *
++ * @param hcd The HCD state structure.
++ *
++ * @return The types of new transactions that were assigned to host channels.
++ */
++dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t * hcd)
++{
++ dwc_list_link_t *qh_ptr;
++ dwc_otg_qh_t *qh;
++ int num_channels;
++ dwc_irqflags_t flags;
++ dwc_spinlock_t *channel_lock = hcd->channel_lock;
++ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
++#endif
++
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_per_scheduled = 0;
++ last_sel_trans_num_nonper_scheduled = 0;
++ last_sel_trans_num_avail_hc_at_start = hcd->available_host_channels;
++#endif /* DEBUG_HOST_CHANNELS */
++
++ /* Process entries in the periodic ready list. */
++ qh_ptr = DWC_LIST_FIRST(&hcd->periodic_sched_ready);
++
++ while (qh_ptr != &hcd->periodic_sched_ready &&
++ !DWC_CIRCLEQ_EMPTY(&hcd->free_hc_list)) {
++ if (microframe_schedule) {
++ // Make sure we leave one channel for non periodic transactions.
++ DWC_SPINLOCK_IRQSAVE(channel_lock, &flags);
++ if (hcd->available_host_channels <= 1) {
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++ break;
++ }
++ hcd->available_host_channels--;
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_per_scheduled++;
++#endif /* DEBUG_HOST_CHANNELS */
++ }
++ qh = DWC_LIST_ENTRY(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ assign_and_init_hc(hcd, qh);
++
++ /*
++ * Move the QH from the periodic ready schedule to the
++ * periodic assigned schedule.
++ */
++ qh_ptr = DWC_LIST_NEXT(qh_ptr);
++ DWC_SPINLOCK_IRQSAVE(channel_lock, &flags);
++ DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_assigned,
++ &qh->qh_list_entry);
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++
++ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
++ }
++
++ /*
++ * Process entries in the inactive portion of the non-periodic
++ * schedule. Some free host channels may not be used if they are
++ * reserved for periodic transfers.
++ */
++ qh_ptr = hcd->non_periodic_sched_inactive.next;
++ num_channels = hcd->core_if->core_params->host_channels;
++ while (qh_ptr != &hcd->non_periodic_sched_inactive &&
++ (microframe_schedule || hcd->non_periodic_channels <
++ num_channels - hcd->periodic_channels) &&
++ !DWC_CIRCLEQ_EMPTY(&hcd->free_hc_list)) {
++
++ qh = DWC_LIST_ENTRY(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++
++ /*
++ * Check to see if this is a NAK'd retransmit, in which case ignore for retransmission
++ * we hold off on bulk retransmissions to reduce NAK interrupt overhead for full-speed
++ * cheeky devices that just hold off using NAKs
++ */
++ if (nak_holdoff_enable && qh->do_split) {
++ if (qh->nak_frame != 0xffff &&
++ dwc_full_frame_num(qh->nak_frame) ==
++ dwc_full_frame_num(dwc_otg_hcd_get_frame_number(hcd))) {
++ /*
++ * Revisit: Need to avoid trampling on periodic scheduling.
++ * Currently we are safe because g_np_count != g_np_sent whenever we hit this,
++ * but if this behaviour is changed then periodic endpoints will get a slower
++ * polling rate.
++ */
++ g_next_sched_frame = ((qh->nak_frame + 8) & ~7) & DWC_HFNUM_MAX_FRNUM;
++ qh_ptr = DWC_LIST_NEXT(qh_ptr);
++ continue;
++ } else {
++ qh->nak_frame = 0xffff;
++ }
++ }
++ if (microframe_schedule) {
++ DWC_SPINLOCK_IRQSAVE(channel_lock, &flags);
++ if (hcd->available_host_channels < 1) {
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++ break;
++ }
++ hcd->available_host_channels--;
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_nonper_scheduled++;
++#endif /* DEBUG_HOST_CHANNELS */
++ }
++
++ assign_and_init_hc(hcd, qh);
++
++ /*
++ * Move the QH from the non-periodic inactive schedule to the
++ * non-periodic active schedule.
++ */
++ qh_ptr = DWC_LIST_NEXT(qh_ptr);
++ DWC_SPINLOCK_IRQSAVE(channel_lock, &flags);
++ DWC_LIST_MOVE_HEAD(&hcd->non_periodic_sched_active,
++ &qh->qh_list_entry);
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++
++ g_np_sent++;
++
++ if (ret_val == DWC_OTG_TRANSACTION_NONE) {
++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
++ } else {
++ ret_val = DWC_OTG_TRANSACTION_ALL;
++ }
++
++ if (!microframe_schedule)
++ hcd->non_periodic_channels++;
++ }
++
++#ifdef DEBUG_HOST_CHANNELS
++ last_sel_trans_num_avail_hc_at_end = hcd->available_host_channels;
++#endif /* DEBUG_HOST_CHANNELS */
++ return ret_val;
++}
++
++/**
++ * Attempts to queue a single transaction request for a host channel
++ * associated with either a periodic or non-periodic transfer. This function
++ * assumes that there is space available in the appropriate request queue. For
++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
++ * is available in the appropriate Tx FIFO.
++ *
++ * @param hcd The HCD state structure.
++ * @param hc Host channel descriptor associated with either a periodic or
++ * non-periodic transfer.
++ * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
++ * transfers.
++ *
++ * @return 1 if a request is queued and more requests may be needed to
++ * complete the transfer, 0 if no more requests are required for this
++ * transfer, -1 if there is insufficient space in the Tx FIFO.
++ */
++static int queue_transaction(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc, uint16_t fifo_dwords_avail)
++{
++ int retval;
++
++ if (hcd->core_if->dma_enable) {
++ if (hcd->core_if->dma_desc_enable) {
++ if (!hc->xfer_started
++ || (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) {
++ dwc_otg_hcd_start_xfer_ddma(hcd, hc->qh);
++ hc->qh->ping_state = 0;
++ }
++ } else if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ hc->qh->ping_state = 0;
++ }
++ retval = 0;
++ } else if (hc->halt_pending) {
++ /* Don't queue a request if the channel has been halted. */
++ retval = 0;
++ } else if (hc->halt_on_queue) {
++ dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
++ retval = 0;
++ } else if (hc->do_ping) {
++ if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ }
++ retval = 0;
++ } else if (!hc->ep_is_in || hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ if ((fifo_dwords_avail * 4) >= hc->max_packet) {
++ if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ retval = 1;
++ } else {
++ retval =
++ dwc_otg_hc_continue_transfer(hcd->core_if,
++ hc);
++ }
++ } else {
++ retval = -1;
++ }
++ } else {
++ if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ retval = 1;
++ } else {
++ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
++ }
++ }
++
++ return retval;
++}
++
++/**
++ * Processes periodic channels for the next frame and queues transactions for
++ * these channels to the DWC_otg controller. After queueing transactions, the
++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
++ * to queue as Periodic Tx FIFO or request queue space becomes available.
++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
++ */
++static void process_periodic_channels(dwc_otg_hcd_t * hcd)
++{
++ hptxsts_data_t tx_status;
++ dwc_list_link_t *qh_ptr;
++ dwc_otg_qh_t *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++
++ dwc_otg_host_global_regs_t *host_regs;
++ host_regs = hcd->core_if->host_if->host_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = DWC_READ_REG32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " P Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++
++ qh_ptr = hcd->periodic_sched_assigned.next;
++ while (qh_ptr != &hcd->periodic_sched_assigned) {
++ tx_status.d32 = DWC_READ_REG32(&host_regs->hptxsts);
++ if (tx_status.b.ptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = DWC_LIST_ENTRY(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++
++ /*
++ * Set a flag if we're queuing high-bandwidth in slave mode.
++ * The flag prevents any halts to get into the request queue in
++ * the middle of multiple high-bandwidth packets getting queued.
++ */
++ if (!hcd->core_if->dma_enable && qh->channel->multi_count > 1) {
++ hcd->core_if->queuing_high_bandwidth = 1;
++ }
++ status =
++ queue_transaction(hcd, qh->channel,
++ tx_status.b.ptxfspcavail);
++ if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /*
++ * In Slave mode, stay on the current transfer until there is
++ * nothing more to do or the high-bandwidth request count is
++ * reached. In DMA mode, only need to queue one request. The
++ * controller automatically handles multiple packets for
++ * high-bandwidth transfers.
++ */
++ if (hcd->core_if->dma_enable || status == 0 ||
++ qh->channel->requests == qh->channel->multi_count) {
++ qh_ptr = qh_ptr->next;
++ /*
++ * Move the QH from the periodic assigned schedule to
++ * the periodic queued schedule.
++ */
++ DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_queued,
++ &qh->qh_list_entry);
++
++ /* done queuing high bandwidth */
++ hcd->core_if->queuing_high_bandwidth = 0;
++ }
++ }
++
++ if (!hcd->core_if->dma_enable) {
++ dwc_otg_core_global_regs_t *global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ global_regs = hcd->core_if->core_global_regs;
++ intr_mask.b.ptxfempty = 1;
++#ifdef DEBUG
++ tx_status.d32 = DWC_READ_REG32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " P Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV,
++ " P Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++ if (!DWC_LIST_EMPTY(&hcd->periodic_sched_assigned) ||
++ no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the periodic Tx
++ * FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ DWC_MODIFY_REG32(&global_regs->gintmsk, 0,
++ intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ DWC_MODIFY_REG32(&global_regs->gintmsk, intr_mask.d32,
++ 0);
++ }
++ }
++}
++
++/**
++ * Processes active non-periodic channels and queues transactions for these
++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
++ * FIFO Empty interrupt is enabled if there are more transactions to queue as
++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
++ * FIFO Empty interrupt is disabled.
++ */
++static void process_non_periodic_channels(dwc_otg_hcd_t * hcd)
++{
++ gnptxsts_data_t tx_status;
++ dwc_list_link_t *orig_qh_ptr;
++ dwc_otg_qh_t *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++ int more_to_do = 0;
++
++ dwc_otg_core_global_regs_t *global_regs =
++ hcd->core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = DWC_READ_REG32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " NP Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ /*
++ * Keep track of the starting point. Skip over the start-of-list
++ * entry.
++ */
++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++ }
++ orig_qh_ptr = hcd->non_periodic_qh_ptr;
++
++ /*
++ * Process once through the active list or until no more space is
++ * available in the request queue or the Tx FIFO.
++ */
++ do {
++ tx_status.d32 = DWC_READ_REG32(&global_regs->gnptxsts);
++ if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = DWC_LIST_ENTRY(hcd->non_periodic_qh_ptr, dwc_otg_qh_t,
++ qh_list_entry);
++ status =
++ queue_transaction(hcd, qh->channel,
++ tx_status.b.nptxfspcavail);
++
++ if (status > 0) {
++ more_to_do = 1;
++ } else if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /* Advance to next QH, skipping start-of-list entry. */
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
++ hcd->non_periodic_qh_ptr =
++ hcd->non_periodic_qh_ptr->next;
++ }
++
++ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
++
++ if (!hcd->core_if->dma_enable) {
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ intr_mask.b.nptxfempty = 1;
++
++#ifdef DEBUG
++ tx_status.d32 = DWC_READ_REG32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV,
++ " NP Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV,
++ " NP Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ if (more_to_do || no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the non-periodic
++ * Tx FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ DWC_MODIFY_REG32(&global_regs->gintmsk, 0,
++ intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ DWC_MODIFY_REG32(&global_regs->gintmsk, intr_mask.d32,
++ 0);
++ }
++ }
++}
++
++/**
++ * This function processes the currently active host channels and queues
++ * transactions for these channels to the DWC_otg controller. It is called
++ * from HCD interrupt handler functions.
++ *
++ * @param hcd The HCD state structure.
++ * @param tr_type The type(s) of transactions to queue (non-periodic,
++ * periodic, or both).
++ */
++void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t * hcd,
++ dwc_otg_transaction_type_e tr_type)
++{
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
++#endif
++ /* Process host channels associated with periodic transfers. */
++ if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
++ tr_type == DWC_OTG_TRANSACTION_ALL) &&
++ !DWC_LIST_EMPTY(&hcd->periodic_sched_assigned)) {
++
++ process_periodic_channels(hcd);
++ }
++
++ /* Process host channels associated with non-periodic transfers. */
++ if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
++ tr_type == DWC_OTG_TRANSACTION_ALL) {
++ if (!DWC_LIST_EMPTY(&hcd->non_periodic_sched_active)) {
++ process_non_periodic_channels(hcd);
++ } else {
++ /*
++ * Ensure NP Tx FIFO empty interrupt is disabled when
++ * there are no non-periodic transfers to process.
++ */
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++ gintmsk.b.nptxfempty = 1;
++ DWC_MODIFY_REG32(&hcd->core_if->
++ core_global_regs->gintmsk, gintmsk.d32,
++ 0);
++ }
++ }
++}
++
++#ifdef DWC_HS_ELECT_TST
++/*
++ * Quick and dirty hack to implement the HS Electrical Test
++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
++ *
++ * This code was copied from our userspace app "hset". It sends a
++ * Get Device Descriptor control sequence in two parts, first the
++ * Setup packet by itself, followed some time later by the In and
++ * Ack packets. Rather than trying to figure out how to add this
++ * functionality to the normal driver code, we just hijack the
++ * hardware, using these two function to drive the hardware
++ * directly.
++ */
++
++static dwc_otg_core_global_regs_t *global_regs;
++static dwc_otg_host_global_regs_t *hc_global_regs;
++static dwc_otg_hc_regs_t *hc_regs;
++static uint32_t *data_fifo;
++
++static void do_setup(void)
++{
++ gintsts_data_t gintsts;
++ hctsiz_data_t hctsiz;
++ hcchar_data_t hcchar;
++ haint_data_t haint;
++ hcint_data_t hcint;
++
++ /* Enable HAINTs */
++ DWC_WRITE_REG32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ DWC_WRITE_REG32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /*
++ * Send Setup packet (Get Device Descriptor)
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chdis = 1;
++// hcchar.b.chen = 1;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ dwc_mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
++ DWC_WRITE_REG32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++
++ /* Fill FIFO with Setup data for Get Device Descriptor */
++ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
++ DWC_WRITE_REG32(data_fifo++, 0x01000680);
++ DWC_WRITE_REG32(data_fifo++, 0x00080000);
++
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ /* Disable HCINTs */
++ DWC_WRITE_REG32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ DWC_WRITE_REG32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++}
++
++static void do_in_ack(void)
++{
++ gintsts_data_t gintsts;
++ hctsiz_data_t hctsiz;
++ hcchar_data_t hcchar;
++ haint_data_t haint;
++ hcint_data_t hcint;
++ host_grxsts_data_t grxsts;
++
++ /* Enable HAINTs */
++ DWC_WRITE_REG32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ DWC_WRITE_REG32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /*
++ * Receive Control In packet
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ dwc_mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ DWC_WRITE_REG32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 1;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++ /* Read RXSTS */
++ grxsts.d32 = DWC_READ_REG32(&global_regs->grxstsp);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer */
++ if (grxsts.b.bcnt > 0) {
++ int i;
++ int word_count = (grxsts.b.bcnt + 3) / 4;
++
++ data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
++
++ for (i = 0; i < word_count; i++) {
++ (void)DWC_READ_REG32(data_fifo++);
++ }
++ }
++ break;
++
++ default:
++ break;
++ }
++
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++ /* Read RXSTS */
++ grxsts.d32 = DWC_READ_REG32(&global_regs->grxstsp);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ break;
++
++ default:
++ break;
++ }
++
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++// usleep(100000);
++// mdelay(100);
++ dwc_mdelay(1);
++
++ /*
++ * Send handshake packet
++ */
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ dwc_mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 0;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ DWC_WRITE_REG32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ DWC_WRITE_REG32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ /* Disable HCINTs */
++ DWC_WRITE_REG32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ DWC_WRITE_REG32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = DWC_READ_REG32(&hc_global_regs->haint);
++
++ /* Read HCINT */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++
++ /* Read HCCHAR */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++
++ /* Clear HCINT */
++ DWC_WRITE_REG32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ DWC_WRITE_REG32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = DWC_READ_REG32(&global_regs->gintsts);
++}
++#endif
++
++/** Handles hub class-specific requests. */
++int dwc_otg_hcd_hub_control(dwc_otg_hcd_t * dwc_otg_hcd,
++ uint16_t typeReq,
++ uint16_t wValue,
++ uint16_t wIndex, uint8_t * buf, uint16_t wLength)
++{
++ int retval = 0;
++
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ usb_hub_descriptor_t *hub_desc;
++ hprt0_data_t hprt0 = {.d32 = 0 };
++
++ uint32_t port_status;
++
++ switch (typeReq) {
++ case UCR_CLEAR_HUB_FEATURE:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearHubFeature 0x%x\n", wValue);
++ switch (wValue) {
++ case UHF_C_HUB_LOCAL_POWER:
++ case UHF_C_HUB_OVER_CURRENT:
++ /* Nothing required here */
++ break;
++ default:
++ retval = -DWC_E_INVALID;
++ DWC_ERROR("DWC OTG HCD - "
++ "ClearHubFeature request %xh unknown\n",
++ wValue);
++ }
++ break;
++ case UCR_CLEAR_PORT_FEATURE:
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ if (wValue != UHF_PORT_L1)
++#endif
++ if (!wIndex || wIndex > 1)
++ goto error;
++
++ switch (wValue) {
++ case UHF_PORT_ENABLE:
++ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtena = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case UHF_PORT_SUSPEND:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
++
++ if (core_if->power_down == 2) {
++ dwc_otg_host_hibernation_restore(core_if, 0, 0);
++ } else {
++ DWC_WRITE_REG32(core_if->pcgcctl, 0);
++ dwc_mdelay(5);
++
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtres = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ hprt0.b.prtsusp = 0;
++ /* Clear Resume bit */
++ dwc_mdelay(100);
++ hprt0.b.prtres = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ }
++ break;
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ case UHF_PORT_L1:
++ {
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ glpmcfg_data_t lpmcfg = {.d32 = 0 };
++
++ lpmcfg.d32 =
++ DWC_READ_REG32(&core_if->
++ core_global_regs->glpmcfg);
++ lpmcfg.b.en_utmi_sleep = 0;
++ lpmcfg.b.hird_thres &= (~(1 << 4));
++ lpmcfg.b.prt_sleep_sts = 1;
++ DWC_WRITE_REG32(&core_if->
++ core_global_regs->glpmcfg,
++ lpmcfg.d32);
++
++ /* Clear Enbl_L1Gating bit. */
++ pcgcctl.b.enbl_sleep_gating = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32,
++ 0);
++
++ dwc_mdelay(5);
++
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtres = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0,
++ hprt0.d32);
++ /* This bit will be cleared in wakeup interrupt handle */
++ break;
++ }
++#endif
++ case UHF_PORT_POWER:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case UHF_PORT_INDICATOR:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
++ /* Port inidicator not supported */
++ break;
++ case UHF_C_PORT_CONNECTION:
++ /* Clears drivers internal connect status change
++ * flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
++ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
++ break;
++ case UHF_C_PORT_RESET:
++ /* Clears the driver's internal Port Reset Change
++ * flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
++ dwc_otg_hcd->flags.b.port_reset_change = 0;
++ break;
++ case UHF_C_PORT_ENABLE:
++ /* Clears the driver's internal Port
++ * Enable/Disable Change flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
++ dwc_otg_hcd->flags.b.port_enable_change = 0;
++ break;
++ case UHF_C_PORT_SUSPEND:
++ /* Clears the driver's internal Port Suspend
++ * Change flag, which is set when resume signaling on
++ * the host port is complete */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
++ dwc_otg_hcd->flags.b.port_suspend_change = 0;
++ break;
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ case UHF_C_PORT_L1:
++ dwc_otg_hcd->flags.b.port_l1_change = 0;
++ break;
++#endif
++ case UHF_C_PORT_OVER_CURRENT:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
++ dwc_otg_hcd->flags.b.port_over_current_change = 0;
++ break;
++ default:
++ retval = -DWC_E_INVALID;
++ DWC_ERROR("DWC OTG HCD - "
++ "ClearPortFeature request %xh "
++ "unknown or unsupported\n", wValue);
++ }
++ break;
++ case UCR_GET_HUB_DESCRIPTOR:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubDescriptor\n");
++ hub_desc = (usb_hub_descriptor_t *) buf;
++ hub_desc->bDescLength = 9;
++ hub_desc->bDescriptorType = 0x29;
++ hub_desc->bNbrPorts = 1;
++ USETW(hub_desc->wHubCharacteristics, 0x08);
++ hub_desc->bPwrOn2PwrGood = 1;
++ hub_desc->bHubContrCurrent = 0;
++ hub_desc->DeviceRemovable[0] = 0;
++ hub_desc->DeviceRemovable[1] = 0xff;
++ break;
++ case UCR_GET_HUB_STATUS:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubStatus\n");
++ DWC_MEMSET(buf, 0, 4);
++ break;
++ case UCR_GET_PORT_STATUS:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetPortStatus wIndex = 0x%04x FLAGS=0x%08x\n",
++ wIndex, dwc_otg_hcd->flags.d32);
++ if (!wIndex || wIndex > 1)
++ goto error;
++
++ port_status = 0;
++
++ if (dwc_otg_hcd->flags.b.port_connect_status_change)
++ port_status |= (1 << UHF_C_PORT_CONNECTION);
++
++ if (dwc_otg_hcd->flags.b.port_enable_change)
++ port_status |= (1 << UHF_C_PORT_ENABLE);
++
++ if (dwc_otg_hcd->flags.b.port_suspend_change)
++ port_status |= (1 << UHF_C_PORT_SUSPEND);
++
++ if (dwc_otg_hcd->flags.b.port_l1_change)
++ port_status |= (1 << UHF_C_PORT_L1);
++
++ if (dwc_otg_hcd->flags.b.port_reset_change) {
++ port_status |= (1 << UHF_C_PORT_RESET);
++ }
++
++ if (dwc_otg_hcd->flags.b.port_over_current_change) {
++ DWC_WARN("Overcurrent change detected\n");
++ port_status |= (1 << UHF_C_PORT_OVER_CURRENT);
++ }
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return 0's for the remainder of the port status
++ * since the port register can't be read if the core
++ * is in device mode.
++ */
++ *((__le32 *) buf) = dwc_cpu_to_le32(&port_status);
++ break;
++ }
++
++ hprt0.d32 = DWC_READ_REG32(core_if->host_if->hprt0);
++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
++
++ if (hprt0.b.prtconnsts)
++ port_status |= (1 << UHF_PORT_CONNECTION);
++
++ if (hprt0.b.prtena)
++ port_status |= (1 << UHF_PORT_ENABLE);
++
++ if (hprt0.b.prtsusp)
++ port_status |= (1 << UHF_PORT_SUSPEND);
++
++ if (hprt0.b.prtovrcurract)
++ port_status |= (1 << UHF_PORT_OVER_CURRENT);
++
++ if (hprt0.b.prtrst)
++ port_status |= (1 << UHF_PORT_RESET);
++
++ if (hprt0.b.prtpwr)
++ port_status |= (1 << UHF_PORT_POWER);
++
++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
++ port_status |= (1 << UHF_PORT_HIGH_SPEED);
++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
++ port_status |= (1 << UHF_PORT_LOW_SPEED);
++
++ if (hprt0.b.prttstctl)
++ port_status |= (1 << UHF_PORT_TEST);
++ if (dwc_otg_get_lpm_portsleepstatus(dwc_otg_hcd->core_if)) {
++ port_status |= (1 << UHF_PORT_L1);
++ }
++ /*
++ For Synopsys HW emulation of Power down wkup_control asserts the
++ hreset_n and prst_n on suspned. This causes the HPRT0 to be zero.
++ We intentionally tell the software that port is in L2Suspend state.
++ Only for STE.
++ */
++ if ((core_if->power_down == 2)
++ && (core_if->hibernation_suspend == 1)) {
++ port_status |= (1 << UHF_PORT_SUSPEND);
++ }
++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
++
++ *((__le32 *) buf) = dwc_cpu_to_le32(&port_status);
++
++ break;
++ case UCR_SET_HUB_FEATURE:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetHubFeature\n");
++ /* No HUB features supported */
++ break;
++ case UCR_SET_PORT_FEATURE:
++ if (wValue != UHF_PORT_TEST && (!wIndex || wIndex > 1))
++ goto error;
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return without doing anything since the port
++ * register can't be written if the core is in device
++ * mode.
++ */
++ break;
++ }
++
++ switch (wValue) {
++ case UHF_PORT_SUSPEND:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
++ if (dwc_otg_hcd_otg_port(dwc_otg_hcd) != wIndex) {
++ goto error;
++ }
++ if (core_if->power_down == 2) {
++ int timeout = 300;
++ dwc_irqflags_t flags;
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ gusbcfg_data_t gusbcfg = {.d32 = 0 };
++#ifdef DWC_DEV_SRPCAP
++ int32_t otg_cap_param = core_if->core_params->otg_cap;
++#endif
++ DWC_PRINTF("Preparing for complete power-off\n");
++
++ /* Save registers before hibernation */
++ dwc_otg_save_global_regs(core_if);
++ dwc_otg_save_host_regs(core_if);
++
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 1;
++ hprt0.b.prtena = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ /* Spin hprt0.b.prtsusp to became 1 */
++ do {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ if (hprt0.b.prtsusp) {
++ break;
++ }
++ dwc_mdelay(1);
++ } while (--timeout);
++ if (!timeout) {
++ DWC_WARN("Suspend wasn't genereted\n");
++ }
++ dwc_udelay(10);
++
++ /*
++ * We need to disable interrupts to prevent servicing of any IRQ
++ * during going to hibernation
++ */
++ DWC_SPINLOCK_IRQSAVE(dwc_otg_hcd->lock, &flags);
++ core_if->lx_state = DWC_OTG_L2;
++#ifdef DWC_DEV_SRPCAP
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 0;
++ hprt0.b.prtena = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0,
++ hprt0.d32);
++#endif
++ gusbcfg.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->
++ gusbcfg);
++ if (gusbcfg.b.ulpi_utmi_sel == 1) {
++ /* ULPI interface */
++ /* Suspend the Phy Clock */
++ pcgcctl.d32 = 0;
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0,
++ pcgcctl.d32);
++ dwc_udelay(10);
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ } else {
++ /* UTMI+ Interface */
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0, pcgcctl.d32);
++ dwc_udelay(10);
++ }
++#ifdef DWC_DEV_SRPCAP
++ gpwrdn.d32 = 0;
++ gpwrdn.b.dis_vbus = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++#endif
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ gpwrdn.d32 = 0;
++#ifdef DWC_DEV_SRPCAP
++ gpwrdn.b.srp_det_msk = 1;
++#endif
++ gpwrdn.b.disconn_det_msk = 1;
++ gpwrdn.b.lnstchng_msk = 1;
++ gpwrdn.b.sts_chngint_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Enable Power Down Clamp and all interrupts in GPWRDN */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnclmp = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++ dwc_udelay(10);
++
++ /* Switch off VDD */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++
++#ifdef DWC_DEV_SRPCAP
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE)
++ {
++ core_if->pwron_timer_started = 1;
++ DWC_TIMER_SCHEDULE(core_if->pwron_timer, 6000 /* 6 secs */ );
++ }
++#endif
++ /* Save gpwrdn register for further usage if stschng interrupt */
++ core_if->gr_backup->gpwrdn_local =
++ DWC_READ_REG32(&core_if->core_global_regs->gpwrdn);
++
++ /* Set flag to indicate that we are in hibernation */
++ core_if->hibernation_suspend = 1;
++ DWC_SPINUNLOCK_IRQRESTORE(dwc_otg_hcd->lock,flags);
++
++ DWC_PRINTF("Host hibernation completed\n");
++ // Exit from case statement
++ break;
++
++ }
++ if (dwc_otg_hcd_otg_port(dwc_otg_hcd) == wIndex &&
++ dwc_otg_hcd->fops->get_b_hnp_enable(dwc_otg_hcd)) {
++ gotgctl_data_t gotgctl = {.d32 = 0 };
++ gotgctl.b.hstsethnpen = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gotgctl, 0, gotgctl.d32);
++ core_if->op_state = A_SUSPEND;
++ }
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ {
++ dwc_irqflags_t flags;
++ /* Update lx_state */
++ DWC_SPINLOCK_IRQSAVE(dwc_otg_hcd->lock, &flags);
++ core_if->lx_state = DWC_OTG_L2;
++ DWC_SPINUNLOCK_IRQRESTORE(dwc_otg_hcd->lock, flags);
++ }
++ /* Suspend the Phy Clock */
++ {
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, 0,
++ pcgcctl.d32);
++ dwc_udelay(10);
++ }
++
++ /* For HNP the bus must be suspended for at least 200ms. */
++ if (dwc_otg_hcd->fops->get_b_hnp_enable(dwc_otg_hcd)) {
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32, 0);
++ dwc_mdelay(200);
++ }
++
++ /** @todo - check how sw can wait for 1 sec to check asesvld??? */
++#if 0 //vahrama !!!!!!!!!!!!!!!!!!
++ if (core_if->adp_enable) {
++ gotgctl_data_t gotgctl = {.d32 = 0 };
++ gpwrdn_data_t gpwrdn;
++
++ while (gotgctl.b.asesvld == 1) {
++ gotgctl.d32 =
++ DWC_READ_REG32(&core_if->
++ core_global_regs->
++ gotgctl);
++ dwc_mdelay(100);
++ }
++
++ /* Enable Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++
++ /* Unmask SRP detected interrupt from Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.srp_det_msk = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->
++ gpwrdn, 0, gpwrdn.d32);
++
++ dwc_otg_adp_probe_start(core_if);
++ }
++#endif
++ break;
++ case UHF_PORT_POWER:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case UHF_PORT_RESET:
++ if ((core_if->power_down == 2)
++ && (core_if->hibernation_suspend == 1)) {
++ /* If we are going to exit from Hibernated
++ * state via USB RESET.
++ */
++ dwc_otg_host_hibernation_restore(core_if, 0, 1);
++ } else {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++
++ DWC_DEBUGPL(DBG_HCD,
++ "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_RESET\n");
++ {
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ pcgcctl.b.enbl_sleep_gating = 1;
++ pcgcctl.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, pcgcctl.d32, 0);
++ DWC_WRITE_REG32(core_if->pcgcctl, 0);
++ }
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ {
++ glpmcfg_data_t lpmcfg;
++ lpmcfg.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ if (lpmcfg.b.prt_sleep_sts) {
++ lpmcfg.b.en_utmi_sleep = 0;
++ lpmcfg.b.hird_thres &= (~(1 << 4));
++ DWC_WRITE_REG32
++ (&core_if->core_global_regs->glpmcfg,
++ lpmcfg.d32);
++ dwc_mdelay(1);
++ }
++ }
++#endif
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ /* Clear suspend bit if resetting from suspended state. */
++ hprt0.b.prtsusp = 0;
++ /* When B-Host the Port reset bit is set in
++ * the Start HCD Callback function, so that
++ * the reset is started within 1ms of the HNP
++ * success interrupt. */
++ if (!dwc_otg_hcd_is_b_host(dwc_otg_hcd)) {
++ hprt0.b.prtpwr = 1;
++ hprt0.b.prtrst = 1;
++ DWC_PRINTF("Indeed it is in host mode hprt0 = %08x\n",hprt0.d32);
++ DWC_WRITE_REG32(core_if->host_if->hprt0,
++ hprt0.d32);
++ }
++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
++ dwc_mdelay(60);
++ hprt0.b.prtrst = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ core_if->lx_state = DWC_OTG_L0; /* Now back to the on state */
++ }
++ break;
++#ifdef DWC_HS_ELECT_TST
++ case UHF_PORT_TEST:
++ {
++ uint32_t t;
++ gintmsk_data_t gintmsk;
++
++ t = (wIndex >> 8); /* MSB wIndex USB */
++ DWC_DEBUGPL(DBG_HCD,
++ "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n",
++ t);
++ DWC_WARN("USB_PORT_FEAT_TEST %d\n", t);
++ if (t < 6) {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prttstctl = t;
++ DWC_WRITE_REG32(core_if->host_if->hprt0,
++ hprt0.d32);
++ } else {
++ /* Setup global vars with reg addresses (quick and
++ * dirty hack, should be cleaned up)
++ */
++ global_regs = core_if->core_global_regs;
++ hc_global_regs =
++ core_if->host_if->host_global_regs;
++ hc_regs =
++ (dwc_otg_hc_regs_t *) ((char *)
++ global_regs +
++ 0x500);
++ data_fifo =
++ (uint32_t *) ((char *)global_regs +
++ 0x1000);
++
++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
++ /* Save current interrupt mask */
++ gintmsk.d32 =
++ DWC_READ_REG32
++ (&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ DWC_WRITE_REG32(&global_regs->gintmsk, 0);
++
++ /* 15 second delay per the test spec */
++ dwc_mdelay(15000);
++
++ /* Drive suspend on the root port */
++ hprt0.d32 =
++ dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 1;
++ hprt0.b.prtres = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* 15 second delay per the test spec */
++ dwc_mdelay(15000);
++
++ /* Drive resume on the root port */
++ hprt0.d32 =
++ dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 0;
++ hprt0.b.prtres = 1;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++ dwc_mdelay(100);
++
++ /* Clear the resume bit */
++ hprt0.b.prtres = 0;
++ DWC_WRITE_REG32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Restore interrupts */
++ DWC_WRITE_REG32(&global_regs->gintmsk, gintmsk.d32);
++ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
++ /* Save current interrupt mask */
++ gintmsk.d32 =
++ DWC_READ_REG32
++ (&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ DWC_WRITE_REG32(&global_regs->gintmsk, 0);
++
++ /* 15 second delay per the test spec */
++ dwc_mdelay(15000);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /* 15 second delay so nothing else happens for awhile */
++ dwc_mdelay(15000);
++
++ /* Restore interrupts */
++ DWC_WRITE_REG32(&global_regs->gintmsk, gintmsk.d32);
++ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
++ /* Save current interrupt mask */
++ gintmsk.d32 =
++ DWC_READ_REG32
++ (&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ DWC_WRITE_REG32(&global_regs->gintmsk, 0);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /* 15 second delay so nothing else happens for awhile */
++ dwc_mdelay(15000);
++
++ /* Send the In and Ack packets */
++ do_in_ack();
++
++ /* 15 second delay so nothing else happens for awhile */
++ dwc_mdelay(15000);
++
++ /* Restore interrupts */
++ DWC_WRITE_REG32(&global_regs->gintmsk, gintmsk.d32);
++ }
++ }
++ break;
++ }
++#endif /* DWC_HS_ELECT_TST */
++
++ case UHF_PORT_INDICATOR:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
++ /* Not supported */
++ break;
++ default:
++ retval = -DWC_E_INVALID;
++ DWC_ERROR("DWC OTG HCD - "
++ "SetPortFeature request %xh "
++ "unknown or unsupported\n", wValue);
++ break;
++ }
++ break;
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ case UCR_SET_AND_TEST_PORT_FEATURE:
++ if (wValue != UHF_PORT_L1) {
++ goto error;
++ }
++ {
++ int portnum, hird, devaddr, remwake;
++ glpmcfg_data_t lpmcfg;
++ uint32_t time_usecs;
++ gintsts_data_t gintsts;
++ gintmsk_data_t gintmsk;
++
++ if (!dwc_otg_get_param_lpm_enable(core_if)) {
++ goto error;
++ }
++ if (wValue != UHF_PORT_L1 || wLength != 1) {
++ goto error;
++ }
++ /* Check if the port currently is in SLEEP state */
++ lpmcfg.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ if (lpmcfg.b.prt_sleep_sts) {
++ DWC_INFO("Port is already in sleep mode\n");
++ buf[0] = 0; /* Return success */
++ break;
++ }
++
++ portnum = wIndex & 0xf;
++ hird = (wIndex >> 4) & 0xf;
++ devaddr = (wIndex >> 8) & 0x7f;
++ remwake = (wIndex >> 15);
++
++ if (portnum != 1) {
++ retval = -DWC_E_INVALID;
++ DWC_WARN
++ ("Wrong port number(%d) in SetandTestPortFeature request\n",
++ portnum);
++ break;
++ }
++
++ DWC_PRINTF
++ ("SetandTestPortFeature request: portnum = %d, hird = %d, devaddr = %d, rewake = %d\n",
++ portnum, hird, devaddr, remwake);
++ /* Disable LPM interrupt */
++ gintmsk.d32 = 0;
++ gintmsk.b.lpmtranrcvd = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk,
++ gintmsk.d32, 0);
++
++ if (dwc_otg_hcd_send_lpm
++ (dwc_otg_hcd, devaddr, hird, remwake)) {
++ retval = -DWC_E_INVALID;
++ break;
++ }
++
++ time_usecs = 10 * (lpmcfg.b.retry_count + 1);
++ /* We will consider timeout if time_usecs microseconds pass,
++ * and we don't receive LPM transaction status.
++ * After receiving non-error responce(ACK/NYET/STALL) from device,
++ * core will set lpmtranrcvd bit.
++ */
++ do {
++ gintsts.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ if (gintsts.b.lpmtranrcvd) {
++ break;
++ }
++ dwc_udelay(1);
++ } while (--time_usecs);
++ /* lpm_int bit will be cleared in LPM interrupt handler */
++
++ /* Now fill status
++ * 0x00 - Success
++ * 0x10 - NYET
++ * 0x11 - Timeout
++ */
++ if (!gintsts.b.lpmtranrcvd) {
++ buf[0] = 0x3; /* Completion code is Timeout */
++ dwc_otg_hcd_free_hc_from_lpm(dwc_otg_hcd);
++ } else {
++ lpmcfg.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ if (lpmcfg.b.lpm_resp == 0x3) {
++ /* ACK responce from the device */
++ buf[0] = 0x00; /* Success */
++ } else if (lpmcfg.b.lpm_resp == 0x2) {
++ /* NYET responce from the device */
++ buf[0] = 0x2;
++ } else {
++ /* Otherwise responce with Timeout */
++ buf[0] = 0x3;
++ }
++ }
++ DWC_PRINTF("Device responce to LPM trans is %x\n",
++ lpmcfg.b.lpm_resp);
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, 0,
++ gintmsk.d32);
++
++ break;
++ }
++#endif /* CONFIG_USB_DWC_OTG_LPM */
++ default:
++error:
++ retval = -DWC_E_INVALID;
++ DWC_WARN("DWC OTG HCD - "
++ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
++ typeReq, wIndex, wValue);
++ break;
++ }
++
++ return retval;
++}
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++/** Returns index of host channel to perform LPM transaction. */
++int dwc_otg_hcd_get_hc_for_lpm_tran(dwc_otg_hcd_t * hcd, uint8_t devaddr)
++{
++ dwc_otg_core_if_t *core_if = hcd->core_if;
++ dwc_hc_t *hc;
++ hcchar_data_t hcchar;
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++
++ if (DWC_CIRCLEQ_EMPTY(&hcd->free_hc_list)) {
++ DWC_PRINTF("No free channel to select for LPM transaction\n");
++ return -1;
++ }
++
++ hc = DWC_CIRCLEQ_FIRST(&hcd->free_hc_list);
++
++ /* Mask host channel interrupts. */
++ gintmsk.b.hcintr = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
++
++ /* Fill fields that core needs for LPM transaction */
++ hcchar.b.devaddr = devaddr;
++ hcchar.b.epnum = 0;
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.mps = 64;
++ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
++ hcchar.b.epdir = 0; /* OUT */
++ DWC_WRITE_REG32(&core_if->host_if->hc_regs[hc->hc_num]->hcchar,
++ hcchar.d32);
++
++ /* Remove the host channel from the free list. */
++ DWC_CIRCLEQ_REMOVE_INIT(&hcd->free_hc_list, hc, hc_list_entry);
++
++ DWC_PRINTF("hcnum = %d devaddr = %d\n", hc->hc_num, devaddr);
++
++ return hc->hc_num;
++}
++
++/** Release hc after performing LPM transaction */
++void dwc_otg_hcd_free_hc_from_lpm(dwc_otg_hcd_t * hcd)
++{
++ dwc_hc_t *hc;
++ glpmcfg_data_t lpmcfg;
++ uint8_t hc_num;
++
++ lpmcfg.d32 = DWC_READ_REG32(&hcd->core_if->core_global_regs->glpmcfg);
++ hc_num = lpmcfg.b.lpm_chan_index;
++
++ hc = hcd->hc_ptr_array[hc_num];
++
++ DWC_PRINTF("Freeing channel %d after LPM\n", hc_num);
++ /* Return host channel to free list */
++ DWC_CIRCLEQ_INSERT_TAIL(&hcd->free_hc_list, hc, hc_list_entry);
++}
++
++int dwc_otg_hcd_send_lpm(dwc_otg_hcd_t * hcd, uint8_t devaddr, uint8_t hird,
++ uint8_t bRemoteWake)
++{
++ glpmcfg_data_t lpmcfg;
++ pcgcctl_data_t pcgcctl = {.d32 = 0 };
++ int channel;
++
++ channel = dwc_otg_hcd_get_hc_for_lpm_tran(hcd, devaddr);
++ if (channel < 0) {
++ return channel;
++ }
++
++ pcgcctl.b.enbl_sleep_gating = 1;
++ DWC_MODIFY_REG32(hcd->core_if->pcgcctl, 0, pcgcctl.d32);
++
++ /* Read LPM config register */
++ lpmcfg.d32 = DWC_READ_REG32(&hcd->core_if->core_global_regs->glpmcfg);
++
++ /* Program LPM transaction fields */
++ lpmcfg.b.rem_wkup_en = bRemoteWake;
++ lpmcfg.b.hird = hird;
++ lpmcfg.b.hird_thres = 0x1c;
++ lpmcfg.b.lpm_chan_index = channel;
++ lpmcfg.b.en_utmi_sleep = 1;
++ /* Program LPM config register */
++ DWC_WRITE_REG32(&hcd->core_if->core_global_regs->glpmcfg, lpmcfg.d32);
++
++ /* Send LPM transaction */
++ lpmcfg.b.send_lpm = 1;
++ DWC_WRITE_REG32(&hcd->core_if->core_global_regs->glpmcfg, lpmcfg.d32);
++
++ return 0;
++}
++
++#endif /* CONFIG_USB_DWC_OTG_LPM */
++
++int dwc_otg_hcd_is_status_changed(dwc_otg_hcd_t * hcd, int port)
++{
++ int retval;
++
++ if (port != 1) {
++ return -DWC_E_INVALID;
++ }
++
++ retval = (hcd->flags.b.port_connect_status_change ||
++ hcd->flags.b.port_reset_change ||
++ hcd->flags.b.port_enable_change ||
++ hcd->flags.b.port_suspend_change ||
++ hcd->flags.b.port_over_current_change);
++#ifdef DEBUG
++ if (retval) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
++ " Root port status changed\n");
++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
++ hcd->flags.b.port_connect_status_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
++ hcd->flags.b.port_reset_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
++ hcd->flags.b.port_enable_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
++ hcd->flags.b.port_suspend_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
++ hcd->flags.b.port_over_current_change);
++ }
++#endif
++ return retval;
++}
++
++int dwc_otg_hcd_get_frame_number(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ hfnum_data_t hfnum;
++ hfnum.d32 =
++ DWC_READ_REG32(&dwc_otg_hcd->core_if->host_if->host_global_regs->
++ hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n",
++ hfnum.b.frnum);
++#endif
++ return hfnum.b.frnum;
++}
++
++int dwc_otg_hcd_start(dwc_otg_hcd_t * hcd,
++ struct dwc_otg_hcd_function_ops *fops)
++{
++ int retval = 0;
++
++ hcd->fops = fops;
++ if (!dwc_otg_is_device_mode(hcd->core_if) &&
++ (!hcd->core_if->adp_enable || hcd->core_if->adp.adp_started)) {
++ dwc_otg_hcd_reinit(hcd);
++ } else {
++ retval = -DWC_E_NO_DEVICE;
++ }
++
++ return retval;
++}
++
++void *dwc_otg_hcd_get_priv_data(dwc_otg_hcd_t * hcd)
++{
++ return hcd->priv;
++}
++
++void dwc_otg_hcd_set_priv_data(dwc_otg_hcd_t * hcd, void *priv_data)
++{
++ hcd->priv = priv_data;
++}
++
++uint32_t dwc_otg_hcd_otg_port(dwc_otg_hcd_t * hcd)
++{
++ return hcd->otg_port;
++}
++
++uint32_t dwc_otg_hcd_is_b_host(dwc_otg_hcd_t * hcd)
++{
++ uint32_t is_b_host;
++ if (hcd->core_if->op_state == B_HOST) {
++ is_b_host = 1;
++ } else {
++ is_b_host = 0;
++ }
++
++ return is_b_host;
++}
++
++dwc_otg_hcd_urb_t *dwc_otg_hcd_urb_alloc(dwc_otg_hcd_t * hcd,
++ int iso_desc_count, int atomic_alloc)
++{
++ dwc_otg_hcd_urb_t *dwc_otg_urb;
++ uint32_t size;
++
++ size =
++ sizeof(*dwc_otg_urb) +
++ iso_desc_count * sizeof(struct dwc_otg_hcd_iso_packet_desc);
++ if (atomic_alloc)
++ dwc_otg_urb = DWC_ALLOC_ATOMIC(size);
++ else
++ dwc_otg_urb = DWC_ALLOC(size);
++
++ if (dwc_otg_urb)
++ dwc_otg_urb->packet_count = iso_desc_count;
++ else {
++ DWC_ERROR("**** DWC OTG HCD URB alloc - "
++ "%salloc of %db failed\n",
++ atomic_alloc?"atomic ":"", size);
++ }
++ return dwc_otg_urb;
++}
++
++void dwc_otg_hcd_urb_set_pipeinfo(dwc_otg_hcd_urb_t * dwc_otg_urb,
++ uint8_t dev_addr, uint8_t ep_num,
++ uint8_t ep_type, uint8_t ep_dir, uint16_t mps)
++{
++ dwc_otg_hcd_fill_pipe(&dwc_otg_urb->pipe_info, dev_addr, ep_num,
++ ep_type, ep_dir, mps);
++#if 0
++ DWC_PRINTF
++ ("addr = %d, ep_num = %d, ep_dir = 0x%x, ep_type = 0x%x, mps = %d\n",
++ dev_addr, ep_num, ep_dir, ep_type, mps);
++#endif
++}
++
++void dwc_otg_hcd_urb_set_params(dwc_otg_hcd_urb_t * dwc_otg_urb,
++ void *urb_handle, void *buf, dwc_dma_t dma,
++ uint32_t buflen, void *setup_packet,
++ dwc_dma_t setup_dma, uint32_t flags,
++ uint16_t interval)
++{
++ dwc_otg_urb->priv = urb_handle;
++ dwc_otg_urb->buf = buf;
++ dwc_otg_urb->dma = dma;
++ dwc_otg_urb->length = buflen;
++ dwc_otg_urb->setup_packet = setup_packet;
++ dwc_otg_urb->setup_dma = setup_dma;
++ dwc_otg_urb->flags = flags;
++ dwc_otg_urb->interval = interval;
++ dwc_otg_urb->status = -DWC_E_IN_PROGRESS;
++}
++
++uint32_t dwc_otg_hcd_urb_get_status(dwc_otg_hcd_urb_t * dwc_otg_urb)
++{
++ return dwc_otg_urb->status;
++}
++
++uint32_t dwc_otg_hcd_urb_get_actual_length(dwc_otg_hcd_urb_t * dwc_otg_urb)
++{
++ return dwc_otg_urb->actual_length;
++}
++
++uint32_t dwc_otg_hcd_urb_get_error_count(dwc_otg_hcd_urb_t * dwc_otg_urb)
++{
++ return dwc_otg_urb->error_count;
++}
++
++void dwc_otg_hcd_urb_set_iso_desc_params(dwc_otg_hcd_urb_t * dwc_otg_urb,
++ int desc_num, uint32_t offset,
++ uint32_t length)
++{
++ dwc_otg_urb->iso_descs[desc_num].offset = offset;
++ dwc_otg_urb->iso_descs[desc_num].length = length;
++}
++
++uint32_t dwc_otg_hcd_urb_get_iso_desc_status(dwc_otg_hcd_urb_t * dwc_otg_urb,
++ int desc_num)
++{
++ return dwc_otg_urb->iso_descs[desc_num].status;
++}
++
++uint32_t dwc_otg_hcd_urb_get_iso_desc_actual_length(dwc_otg_hcd_urb_t *
++ dwc_otg_urb, int desc_num)
++{
++ return dwc_otg_urb->iso_descs[desc_num].actual_length;
++}
++
++int dwc_otg_hcd_is_bandwidth_allocated(dwc_otg_hcd_t * hcd, void *ep_handle)
++{
++ int allocated = 0;
++ dwc_otg_qh_t *qh = (dwc_otg_qh_t *) ep_handle;
++
++ if (qh) {
++ if (!DWC_LIST_EMPTY(&qh->qh_list_entry)) {
++ allocated = 1;
++ }
++ }
++ return allocated;
++}
++
++int dwc_otg_hcd_is_bandwidth_freed(dwc_otg_hcd_t * hcd, void *ep_handle)
++{
++ dwc_otg_qh_t *qh = (dwc_otg_qh_t *) ep_handle;
++ int freed = 0;
++ DWC_ASSERT(qh, "qh is not allocated\n");
++
++ if (DWC_LIST_EMPTY(&qh->qh_list_entry)) {
++ freed = 1;
++ }
++
++ return freed;
++}
++
++uint8_t dwc_otg_hcd_get_ep_bandwidth(dwc_otg_hcd_t * hcd, void *ep_handle)
++{
++ dwc_otg_qh_t *qh = (dwc_otg_qh_t *) ep_handle;
++ DWC_ASSERT(qh, "qh is not allocated\n");
++ return qh->usecs;
++}
++
++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t * hcd)
++{
++#ifdef DEBUG
++ int num_channels;
++ int i;
++ gnptxsts_data_t np_tx_status;
++ hptxsts_data_t p_tx_status;
++
++ num_channels = hcd->core_if->core_params->host_channels;
++ DWC_PRINTF("\n");
++ DWC_PRINTF
++ ("************************************************************\n");
++ DWC_PRINTF("HCD State:\n");
++ DWC_PRINTF(" Num channels: %d\n", num_channels);
++ for (i = 0; i < num_channels; i++) {
++ dwc_hc_t *hc = hcd->hc_ptr_array[i];
++ DWC_PRINTF(" Channel %d:\n", i);
++ DWC_PRINTF(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINTF(" speed: %d\n", hc->speed);
++ DWC_PRINTF(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINTF(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINTF(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINTF(" multi_count: %d\n", hc->multi_count);
++ DWC_PRINTF(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINTF(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINTF(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINTF(" xfer_count: %d\n", hc->xfer_count);
++ DWC_PRINTF(" halt_on_queue: %d\n", hc->halt_on_queue);
++ DWC_PRINTF(" halt_pending: %d\n", hc->halt_pending);
++ DWC_PRINTF(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINTF(" do_split: %d\n", hc->do_split);
++ DWC_PRINTF(" complete_split: %d\n", hc->complete_split);
++ DWC_PRINTF(" hub_addr: %d\n", hc->hub_addr);
++ DWC_PRINTF(" port_addr: %d\n", hc->port_addr);
++ DWC_PRINTF(" xact_pos: %d\n", hc->xact_pos);
++ DWC_PRINTF(" requests: %d\n", hc->requests);
++ DWC_PRINTF(" qh: %p\n", hc->qh);
++ if (hc->xfer_started) {
++ hfnum_data_t hfnum;
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ hfnum.d32 =
++ DWC_READ_REG32(&hcd->core_if->
++ host_if->host_global_regs->hfnum);
++ hcchar.d32 =
++ DWC_READ_REG32(&hcd->core_if->host_if->
++ hc_regs[i]->hcchar);
++ hctsiz.d32 =
++ DWC_READ_REG32(&hcd->core_if->host_if->
++ hc_regs[i]->hctsiz);
++ hcint.d32 =
++ DWC_READ_REG32(&hcd->core_if->host_if->
++ hc_regs[i]->hcint);
++ hcintmsk.d32 =
++ DWC_READ_REG32(&hcd->core_if->host_if->
++ hc_regs[i]->hcintmsk);
++ DWC_PRINTF(" hfnum: 0x%08x\n", hfnum.d32);
++ DWC_PRINTF(" hcchar: 0x%08x\n", hcchar.d32);
++ DWC_PRINTF(" hctsiz: 0x%08x\n", hctsiz.d32);
++ DWC_PRINTF(" hcint: 0x%08x\n", hcint.d32);
++ DWC_PRINTF(" hcintmsk: 0x%08x\n", hcintmsk.d32);
++ }
++ if (hc->xfer_started && hc->qh) {
++ dwc_otg_qtd_t *qtd;
++ dwc_otg_hcd_urb_t *urb;
++
++ DWC_CIRCLEQ_FOREACH(qtd, &hc->qh->qtd_list, qtd_list_entry) {
++ if (!qtd->in_process)
++ break;
++
++ urb = qtd->urb;
++ DWC_PRINTF(" URB Info:\n");
++ DWC_PRINTF(" qtd: %p, urb: %p\n", qtd, urb);
++ if (urb) {
++ DWC_PRINTF(" Dev: %d, EP: %d %s\n",
++ dwc_otg_hcd_get_dev_addr(&urb->
++ pipe_info),
++ dwc_otg_hcd_get_ep_num(&urb->
++ pipe_info),
++ dwc_otg_hcd_is_pipe_in(&urb->
++ pipe_info) ?
++ "IN" : "OUT");
++ DWC_PRINTF(" Max packet size: %d\n",
++ dwc_otg_hcd_get_mps(&urb->
++ pipe_info));
++ DWC_PRINTF(" transfer_buffer: %p\n",
++ urb->buf);
++ DWC_PRINTF(" transfer_dma: %p\n",
++ (void *)urb->dma);
++ DWC_PRINTF(" transfer_buffer_length: %d\n",
++ urb->length);
++ DWC_PRINTF(" actual_length: %d\n",
++ urb->actual_length);
++ }
++ }
++ }
++ }
++ DWC_PRINTF(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
++ DWC_PRINTF(" periodic_channels: %d\n", hcd->periodic_channels);
++ DWC_PRINTF(" periodic_usecs: %d\n", hcd->periodic_usecs);
++ np_tx_status.d32 =
++ DWC_READ_REG32(&hcd->core_if->core_global_regs->gnptxsts);
++ DWC_PRINTF(" NP Tx Req Queue Space Avail: %d\n",
++ np_tx_status.b.nptxqspcavail);
++ DWC_PRINTF(" NP Tx FIFO Space Avail: %d\n",
++ np_tx_status.b.nptxfspcavail);
++ p_tx_status.d32 =
++ DWC_READ_REG32(&hcd->core_if->host_if->host_global_regs->hptxsts);
++ DWC_PRINTF(" P Tx Req Queue Space Avail: %d\n",
++ p_tx_status.b.ptxqspcavail);
++ DWC_PRINTF(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
++ dwc_otg_hcd_dump_frrem(hcd);
++ dwc_otg_dump_global_registers(hcd->core_if);
++ dwc_otg_dump_host_registers(hcd->core_if);
++ DWC_PRINTF
++ ("************************************************************\n");
++ DWC_PRINTF("\n");
++#endif
++}
++
++#ifdef DEBUG
++void dwc_print_setup_data(uint8_t * setup)
++{
++ int i;
++ if (CHK_DEBUG_LEVEL(DBG_HCD)) {
++ DWC_PRINTF("Setup Data = MSB ");
++ for (i = 7; i >= 0; i--)
++ DWC_PRINTF("%02x ", setup[i]);
++ DWC_PRINTF("\n");
++ DWC_PRINTF(" bmRequestType Tranfer = %s\n",
++ (setup[0] & 0x80) ? "Device-to-Host" :
++ "Host-to-Device");
++ DWC_PRINTF(" bmRequestType Type = ");
++ switch ((setup[0] & 0x60) >> 5) {
++ case 0:
++ DWC_PRINTF("Standard\n");
++ break;
++ case 1:
++ DWC_PRINTF("Class\n");
++ break;
++ case 2:
++ DWC_PRINTF("Vendor\n");
++ break;
++ case 3:
++ DWC_PRINTF("Reserved\n");
++ break;
++ }
++ DWC_PRINTF(" bmRequestType Recipient = ");
++ switch (setup[0] & 0x1f) {
++ case 0:
++ DWC_PRINTF("Device\n");
++ break;
++ case 1:
++ DWC_PRINTF("Interface\n");
++ break;
++ case 2:
++ DWC_PRINTF("Endpoint\n");
++ break;
++ case 3:
++ DWC_PRINTF("Other\n");
++ break;
++ default:
++ DWC_PRINTF("Reserved\n");
++ break;
++ }
++ DWC_PRINTF(" bRequest = 0x%0x\n", setup[1]);
++ DWC_PRINTF(" wValue = 0x%0x\n", *((uint16_t *) & setup[2]));
++ DWC_PRINTF(" wIndex = 0x%0x\n", *((uint16_t *) & setup[4]));
++ DWC_PRINTF(" wLength = 0x%0x\n\n", *((uint16_t *) & setup[6]));
++ }
++}
++#endif
++
++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t * hcd)
++{
++#if 0
++ DWC_PRINTF("Frame remaining at SOF:\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->frrem_samples, hcd->frrem_accum,
++ (hcd->frrem_samples > 0) ?
++ hcd->frrem_accum / hcd->frrem_samples : 0);
++
++ DWC_PRINTF("\n");
++ DWC_PRINTF("Frame remaining at start_transfer (uframe 7):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->core_if->hfnum_7_samples,
++ hcd->core_if->hfnum_7_frrem_accum,
++ (hcd->core_if->hfnum_7_samples >
++ 0) ? hcd->core_if->hfnum_7_frrem_accum /
++ hcd->core_if->hfnum_7_samples : 0);
++ DWC_PRINTF("Frame remaining at start_transfer (uframe 0):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->core_if->hfnum_0_samples,
++ hcd->core_if->hfnum_0_frrem_accum,
++ (hcd->core_if->hfnum_0_samples >
++ 0) ? hcd->core_if->hfnum_0_frrem_accum /
++ hcd->core_if->hfnum_0_samples : 0);
++ DWC_PRINTF("Frame remaining at start_transfer (uframe 1-6):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->core_if->hfnum_other_samples,
++ hcd->core_if->hfnum_other_frrem_accum,
++ (hcd->core_if->hfnum_other_samples >
++ 0) ? hcd->core_if->hfnum_other_frrem_accum /
++ hcd->core_if->hfnum_other_samples : 0);
++
++ DWC_PRINTF("\n");
++ DWC_PRINTF("Frame remaining at sample point A (uframe 7):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a,
++ (hcd->hfnum_7_samples_a > 0) ?
++ hcd->hfnum_7_frrem_accum_a / hcd->hfnum_7_samples_a : 0);
++ DWC_PRINTF("Frame remaining at sample point A (uframe 0):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a,
++ (hcd->hfnum_0_samples_a > 0) ?
++ hcd->hfnum_0_frrem_accum_a / hcd->hfnum_0_samples_a : 0);
++ DWC_PRINTF("Frame remaining at sample point A (uframe 1-6):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a,
++ (hcd->hfnum_other_samples_a > 0) ?
++ hcd->hfnum_other_frrem_accum_a /
++ hcd->hfnum_other_samples_a : 0);
++
++ DWC_PRINTF("\n");
++ DWC_PRINTF("Frame remaining at sample point B (uframe 7):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b,
++ (hcd->hfnum_7_samples_b > 0) ?
++ hcd->hfnum_7_frrem_accum_b / hcd->hfnum_7_samples_b : 0);
++ DWC_PRINTF("Frame remaining at sample point B (uframe 0):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b,
++ (hcd->hfnum_0_samples_b > 0) ?
++ hcd->hfnum_0_frrem_accum_b / hcd->hfnum_0_samples_b : 0);
++ DWC_PRINTF("Frame remaining at sample point B (uframe 1-6):\n");
++ DWC_PRINTF(" samples %u, accum %llu, avg %llu\n",
++ hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b,
++ (hcd->hfnum_other_samples_b > 0) ?
++ hcd->hfnum_other_frrem_accum_b /
++ hcd->hfnum_other_samples_b : 0);
++#endif
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_ddma.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_ddma.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_ddma.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_ddma.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1132 @@
++/*==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_ddma.c $
++ * $Revision: #10 $
++ * $Date: 2011/10/20 $
++ * $Change: 1869464 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/** @file
++ * This file contains Descriptor DMA support implementation for host mode.
++ */
++
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++extern bool microframe_schedule;
++
++static inline uint8_t frame_list_idx(uint16_t frame)
++{
++ return (frame & (MAX_FRLIST_EN_NUM - 1));
++}
++
++static inline uint16_t desclist_idx_inc(uint16_t idx, uint16_t inc, uint8_t speed)
++{
++ return (idx + inc) &
++ (((speed ==
++ DWC_OTG_EP_SPEED_HIGH) ? MAX_DMA_DESC_NUM_HS_ISOC :
++ MAX_DMA_DESC_NUM_GENERIC) - 1);
++}
++
++static inline uint16_t desclist_idx_dec(uint16_t idx, uint16_t inc, uint8_t speed)
++{
++ return (idx - inc) &
++ (((speed ==
++ DWC_OTG_EP_SPEED_HIGH) ? MAX_DMA_DESC_NUM_HS_ISOC :
++ MAX_DMA_DESC_NUM_GENERIC) - 1);
++}
++
++static inline uint16_t max_desc_num(dwc_otg_qh_t * qh)
++{
++ return (((qh->ep_type == UE_ISOCHRONOUS)
++ && (qh->dev_speed == DWC_OTG_EP_SPEED_HIGH))
++ ? MAX_DMA_DESC_NUM_HS_ISOC : MAX_DMA_DESC_NUM_GENERIC);
++}
++static inline uint16_t frame_incr_val(dwc_otg_qh_t * qh)
++{
++ return ((qh->dev_speed == DWC_OTG_EP_SPEED_HIGH)
++ ? ((qh->interval + 8 - 1) / 8)
++ : qh->interval);
++}
++
++static int desc_list_alloc(dwc_otg_qh_t * qh)
++{
++ int retval = 0;
++
++ qh->desc_list = (dwc_otg_host_dma_desc_t *)
++ DWC_DMA_ALLOC(sizeof(dwc_otg_host_dma_desc_t) * max_desc_num(qh),
++ &qh->desc_list_dma);
++
++ if (!qh->desc_list) {
++ retval = -DWC_E_NO_MEMORY;
++ DWC_ERROR("%s: DMA descriptor list allocation failed\n", __func__);
++
++ }
++
++ dwc_memset(qh->desc_list, 0x00,
++ sizeof(dwc_otg_host_dma_desc_t) * max_desc_num(qh));
++
++ qh->n_bytes =
++ (uint32_t *) DWC_ALLOC(sizeof(uint32_t) * max_desc_num(qh));
++
++ if (!qh->n_bytes) {
++ retval = -DWC_E_NO_MEMORY;
++ DWC_ERROR
++ ("%s: Failed to allocate array for descriptors' size actual values\n",
++ __func__);
++
++ }
++ return retval;
++
++}
++
++static void desc_list_free(dwc_otg_qh_t * qh)
++{
++ if (qh->desc_list) {
++ DWC_DMA_FREE(max_desc_num(qh), qh->desc_list,
++ qh->desc_list_dma);
++ qh->desc_list = NULL;
++ }
++
++ if (qh->n_bytes) {
++ DWC_FREE(qh->n_bytes);
++ qh->n_bytes = NULL;
++ }
++}
++
++static int frame_list_alloc(dwc_otg_hcd_t * hcd)
++{
++ int retval = 0;
++ if (hcd->frame_list)
++ return 0;
++
++ hcd->frame_list = DWC_DMA_ALLOC(4 * MAX_FRLIST_EN_NUM,
++ &hcd->frame_list_dma);
++ if (!hcd->frame_list) {
++ retval = -DWC_E_NO_MEMORY;
++ DWC_ERROR("%s: Frame List allocation failed\n", __func__);
++ }
++
++ dwc_memset(hcd->frame_list, 0x00, 4 * MAX_FRLIST_EN_NUM);
++
++ return retval;
++}
++
++static void frame_list_free(dwc_otg_hcd_t * hcd)
++{
++ if (!hcd->frame_list)
++ return;
++
++ DWC_DMA_FREE(4 * MAX_FRLIST_EN_NUM, hcd->frame_list, hcd->frame_list_dma);
++ hcd->frame_list = NULL;
++}
++
++static void per_sched_enable(dwc_otg_hcd_t * hcd, uint16_t fr_list_en)
++{
++
++ hcfg_data_t hcfg;
++
++ hcfg.d32 = DWC_READ_REG32(&hcd->core_if->host_if->host_global_regs->hcfg);
++
++ if (hcfg.b.perschedena) {
++ /* already enabled */
++ return;
++ }
++
++ DWC_WRITE_REG32(&hcd->core_if->host_if->host_global_regs->hflbaddr,
++ hcd->frame_list_dma);
++
++ switch (fr_list_en) {
++ case 64:
++ hcfg.b.frlisten = 3;
++ break;
++ case 32:
++ hcfg.b.frlisten = 2;
++ break;
++ case 16:
++ hcfg.b.frlisten = 1;
++ break;
++ case 8:
++ hcfg.b.frlisten = 0;
++ break;
++ default:
++ break;
++ }
++
++ hcfg.b.perschedena = 1;
++
++ DWC_DEBUGPL(DBG_HCD, "Enabling Periodic schedule\n");
++ DWC_WRITE_REG32(&hcd->core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++
++}
++
++static void per_sched_disable(dwc_otg_hcd_t * hcd)
++{
++ hcfg_data_t hcfg;
++
++ hcfg.d32 = DWC_READ_REG32(&hcd->core_if->host_if->host_global_regs->hcfg);
++
++ if (!hcfg.b.perschedena) {
++ /* already disabled */
++ return;
++ }
++ hcfg.b.perschedena = 0;
++
++ DWC_DEBUGPL(DBG_HCD, "Disabling Periodic schedule\n");
++ DWC_WRITE_REG32(&hcd->core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++}
++
++/*
++ * Activates/Deactivates FrameList entries for the channel
++ * based on endpoint servicing period.
++ */
++void update_frame_list(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh, uint8_t enable)
++{
++ uint16_t i, j, inc;
++ dwc_hc_t *hc = NULL;
++
++ if (!qh->channel) {
++ DWC_ERROR("qh->channel = %p", qh->channel);
++ return;
++ }
++
++ if (!hcd) {
++ DWC_ERROR("------hcd = %p", hcd);
++ return;
++ }
++
++ if (!hcd->frame_list) {
++ DWC_ERROR("-------hcd->frame_list = %p", hcd->frame_list);
++ return;
++ }
++
++ hc = qh->channel;
++ inc = frame_incr_val(qh);
++ if (qh->ep_type == UE_ISOCHRONOUS)
++ i = frame_list_idx(qh->sched_frame);
++ else
++ i = 0;
++
++ j = i;
++ do {
++ if (enable)
++ hcd->frame_list[j] |= (1 << hc->hc_num);
++ else
++ hcd->frame_list[j] &= ~(1 << hc->hc_num);
++ j = (j + inc) & (MAX_FRLIST_EN_NUM - 1);
++ }
++ while (j != i);
++ if (!enable)
++ return;
++ hc->schinfo = 0;
++ if (qh->channel->speed == DWC_OTG_EP_SPEED_HIGH) {
++ j = 1;
++ /* TODO - check this */
++ inc = (8 + qh->interval - 1) / qh->interval;
++ for (i = 0; i < inc; i++) {
++ hc->schinfo |= j;
++ j = j << qh->interval;
++ }
++ } else {
++ hc->schinfo = 0xff;
++ }
++}
++
++#if 1
++void dump_frame_list(dwc_otg_hcd_t * hcd)
++{
++ int i = 0;
++ DWC_PRINTF("--FRAME LIST (hex) --\n");
++ for (i = 0; i < MAX_FRLIST_EN_NUM; i++) {
++ DWC_PRINTF("%x\t", hcd->frame_list[i]);
++ if (!(i % 8) && i)
++ DWC_PRINTF("\n");
++ }
++ DWC_PRINTF("\n----\n");
++
++}
++#endif
++
++static void release_channel_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ dwc_irqflags_t flags;
++ dwc_spinlock_t *channel_lock = hcd->channel_lock;
++
++ dwc_hc_t *hc = qh->channel;
++ if (dwc_qh_is_non_per(qh)) {
++ DWC_SPINLOCK_IRQSAVE(channel_lock, &flags);
++ if (!microframe_schedule)
++ hcd->non_periodic_channels--;
++ else
++ hcd->available_host_channels++;
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++ } else
++ update_frame_list(hcd, qh, 0);
++
++ /*
++ * The condition is added to prevent double cleanup try in case of device
++ * disconnect. See channel cleanup in dwc_otg_hcd_disconnect_cb().
++ */
++ if (hc->qh) {
++ dwc_otg_hc_cleanup(hcd->core_if, hc);
++ DWC_CIRCLEQ_INSERT_TAIL(&hcd->free_hc_list, hc, hc_list_entry);
++ hc->qh = NULL;
++ }
++
++ qh->channel = NULL;
++ qh->ntd = 0;
++
++ if (qh->desc_list) {
++ dwc_memset(qh->desc_list, 0x00,
++ sizeof(dwc_otg_host_dma_desc_t) * max_desc_num(qh));
++ }
++}
++
++/**
++ * Initializes a QH structure's Descriptor DMA related members.
++ * Allocates memory for descriptor list.
++ * On first periodic QH, allocates memory for FrameList
++ * and enables periodic scheduling.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh The QH to init.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qh_init_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ int retval = 0;
++
++ if (qh->do_split) {
++ DWC_ERROR("SPLIT Transfers are not supported in Descriptor DMA.\n");
++ return -1;
++ }
++
++ retval = desc_list_alloc(qh);
++
++ if ((retval == 0)
++ && (qh->ep_type == UE_ISOCHRONOUS || qh->ep_type == UE_INTERRUPT)) {
++ if (!hcd->frame_list) {
++ retval = frame_list_alloc(hcd);
++ /* Enable periodic schedule on first periodic QH */
++ if (retval == 0)
++ per_sched_enable(hcd, MAX_FRLIST_EN_NUM);
++ }
++ }
++
++ qh->ntd = 0;
++
++ return retval;
++}
++
++/**
++ * Frees descriptor list memory associated with the QH.
++ * If QH is periodic and the last, frees FrameList memory
++ * and disables periodic scheduling.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh The QH to init.
++ */
++void dwc_otg_hcd_qh_free_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ desc_list_free(qh);
++
++ /*
++ * Channel still assigned due to some reasons.
++ * Seen on Isoc URB dequeue. Channel halted but no subsequent
++ * ChHalted interrupt to release the channel. Afterwards
++ * when it comes here from endpoint disable routine
++ * channel remains assigned.
++ */
++ if (qh->channel)
++ release_channel_ddma(hcd, qh);
++
++ if ((qh->ep_type == UE_ISOCHRONOUS || qh->ep_type == UE_INTERRUPT)
++ && (microframe_schedule || !hcd->periodic_channels) && hcd->frame_list) {
++
++ per_sched_disable(hcd);
++ frame_list_free(hcd);
++ }
++}
++
++static uint8_t frame_to_desc_idx(dwc_otg_qh_t * qh, uint16_t frame_idx)
++{
++ if (qh->dev_speed == DWC_OTG_EP_SPEED_HIGH) {
++ /*
++ * Descriptor set(8 descriptors) index
++ * which is 8-aligned.
++ */
++ return (frame_idx & ((MAX_DMA_DESC_NUM_HS_ISOC / 8) - 1)) * 8;
++ } else {
++ return (frame_idx & (MAX_DMA_DESC_NUM_GENERIC - 1));
++ }
++}
++
++/*
++ * Determine starting frame for Isochronous transfer.
++ * Few frames skipped to prevent race condition with HC.
++ */
++static uint8_t calc_starting_frame(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
++ uint8_t * skip_frames)
++{
++ uint16_t frame = 0;
++ hcd->frame_number = dwc_otg_hcd_get_frame_number(hcd);
++
++ /* sched_frame is always frame number(not uFrame) both in FS and HS !! */
++
++ /*
++ * skip_frames is used to limit activated descriptors number
++ * to avoid the situation when HC services the last activated
++ * descriptor firstly.
++ * Example for FS:
++ * Current frame is 1, scheduled frame is 3. Since HC always fetches the descriptor
++ * corresponding to curr_frame+1, the descriptor corresponding to frame 2
++ * will be fetched. If the number of descriptors is max=64 (or greather) the
++ * list will be fully programmed with Active descriptors and it is possible
++ * case(rare) that the latest descriptor(considering rollback) corresponding
++ * to frame 2 will be serviced first. HS case is more probable because, in fact,
++ * up to 11 uframes(16 in the code) may be skipped.
++ */
++ if (qh->dev_speed == DWC_OTG_EP_SPEED_HIGH) {
++ /*
++ * Consider uframe counter also, to start xfer asap.
++ * If half of the frame elapsed skip 2 frames otherwise
++ * just 1 frame.
++ * Starting descriptor index must be 8-aligned, so
++ * if the current frame is near to complete the next one
++ * is skipped as well.
++ */
++
++ if (dwc_micro_frame_num(hcd->frame_number) >= 5) {
++ *skip_frames = 2 * 8;
++ frame = dwc_frame_num_inc(hcd->frame_number, *skip_frames);
++ } else {
++ *skip_frames = 1 * 8;
++ frame = dwc_frame_num_inc(hcd->frame_number, *skip_frames);
++ }
++
++ frame = dwc_full_frame_num(frame);
++ } else {
++ /*
++ * Two frames are skipped for FS - the current and the next.
++ * But for descriptor programming, 1 frame(descriptor) is enough,
++ * see example above.
++ */
++ *skip_frames = 1;
++ frame = dwc_frame_num_inc(hcd->frame_number, 2);
++ }
++
++ return frame;
++}
++
++/*
++ * Calculate initial descriptor index for isochronous transfer
++ * based on scheduled frame.
++ */
++static uint8_t recalc_initial_desc_idx(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ uint16_t frame = 0, fr_idx, fr_idx_tmp;
++ uint8_t skip_frames = 0;
++ /*
++ * With current ISOC processing algorithm the channel is being
++ * released when no more QTDs in the list(qh->ntd == 0).
++ * Thus this function is called only when qh->ntd == 0 and qh->channel == 0.
++ *
++ * So qh->channel != NULL branch is not used and just not removed from the
++ * source file. It is required for another possible approach which is,
++ * do not disable and release the channel when ISOC session completed,
++ * just move QH to inactive schedule until new QTD arrives.
++ * On new QTD, the QH moved back to 'ready' schedule,
++ * starting frame and therefore starting desc_index are recalculated.
++ * In this case channel is released only on ep_disable.
++ */
++
++ /* Calculate starting descriptor index. For INTERRUPT endpoint it is always 0. */
++ if (qh->channel) {
++ frame = calc_starting_frame(hcd, qh, &skip_frames);
++ /*
++ * Calculate initial descriptor index based on FrameList current bitmap
++ * and servicing period.
++ */
++ fr_idx_tmp = frame_list_idx(frame);
++ fr_idx =
++ (MAX_FRLIST_EN_NUM + frame_list_idx(qh->sched_frame) -
++ fr_idx_tmp)
++ % frame_incr_val(qh);
++ fr_idx = (fr_idx + fr_idx_tmp) % MAX_FRLIST_EN_NUM;
++ } else {
++ qh->sched_frame = calc_starting_frame(hcd, qh, &skip_frames);
++ fr_idx = frame_list_idx(qh->sched_frame);
++ }
++
++ qh->td_first = qh->td_last = frame_to_desc_idx(qh, fr_idx);
++
++ return skip_frames;
++}
++
++#define ISOC_URB_GIVEBACK_ASAP
++
++#define MAX_ISOC_XFER_SIZE_FS 1023
++#define MAX_ISOC_XFER_SIZE_HS 3072
++#define DESCNUM_THRESHOLD 4
++
++static void init_isoc_dma_desc(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
++ uint8_t skip_frames)
++{
++ struct dwc_otg_hcd_iso_packet_desc *frame_desc;
++ dwc_otg_qtd_t *qtd;
++ dwc_otg_host_dma_desc_t *dma_desc;
++ uint16_t idx, inc, n_desc, ntd_max, max_xfer_size;
++
++ idx = qh->td_last;
++ inc = qh->interval;
++ n_desc = 0;
++
++ ntd_max = (max_desc_num(qh) + qh->interval - 1) / qh->interval;
++ if (skip_frames && !qh->channel)
++ ntd_max = ntd_max - skip_frames / qh->interval;
++
++ max_xfer_size =
++ (qh->dev_speed ==
++ DWC_OTG_EP_SPEED_HIGH) ? MAX_ISOC_XFER_SIZE_HS :
++ MAX_ISOC_XFER_SIZE_FS;
++
++ DWC_CIRCLEQ_FOREACH(qtd, &qh->qtd_list, qtd_list_entry) {
++ while ((qh->ntd < ntd_max)
++ && (qtd->isoc_frame_index_last <
++ qtd->urb->packet_count)) {
++
++ dma_desc = &qh->desc_list[idx];
++ dwc_memset(dma_desc, 0x00, sizeof(dwc_otg_host_dma_desc_t));
++
++ frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index_last];
++
++ if (frame_desc->length > max_xfer_size)
++ qh->n_bytes[idx] = max_xfer_size;
++ else
++ qh->n_bytes[idx] = frame_desc->length;
++ dma_desc->status.b_isoc.n_bytes = qh->n_bytes[idx];
++ dma_desc->status.b_isoc.a = 1;
++ dma_desc->status.b_isoc.sts = 0;
++
++ dma_desc->buf = qtd->urb->dma + frame_desc->offset;
++
++ qh->ntd++;
++
++ qtd->isoc_frame_index_last++;
++
++#ifdef ISOC_URB_GIVEBACK_ASAP
++ /*
++ * Set IOC for each descriptor corresponding to the
++ * last frame of the URB.
++ */
++ if (qtd->isoc_frame_index_last ==
++ qtd->urb->packet_count)
++ dma_desc->status.b_isoc.ioc = 1;
++
++#endif
++ idx = desclist_idx_inc(idx, inc, qh->dev_speed);
++ n_desc++;
++
++ }
++ qtd->in_process = 1;
++ }
++
++ qh->td_last = idx;
++
++#ifdef ISOC_URB_GIVEBACK_ASAP
++ /* Set IOC for the last descriptor if descriptor list is full */
++ if (qh->ntd == ntd_max) {
++ idx = desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
++ qh->desc_list[idx].status.b_isoc.ioc = 1;
++ }
++#else
++ /*
++ * Set IOC bit only for one descriptor.
++ * Always try to be ahead of HW processing,
++ * i.e. on IOC generation driver activates next descriptors but
++ * core continues to process descriptors followed the one with IOC set.
++ */
++
++ if (n_desc > DESCNUM_THRESHOLD) {
++ /*
++ * Move IOC "up". Required even if there is only one QTD
++ * in the list, cause QTDs migth continue to be queued,
++ * but during the activation it was only one queued.
++ * Actually more than one QTD might be in the list if this function called
++ * from XferCompletion - QTDs was queued during HW processing of the previous
++ * descriptor chunk.
++ */
++ idx = dwc_desclist_idx_dec(idx, inc * ((qh->ntd + 1) / 2), qh->dev_speed);
++ } else {
++ /*
++ * Set the IOC for the latest descriptor
++ * if either number of descriptor is not greather than threshold
++ * or no more new descriptors activated.
++ */
++ idx = dwc_desclist_idx_dec(qh->td_last, inc, qh->dev_speed);
++ }
++
++ qh->desc_list[idx].status.b_isoc.ioc = 1;
++#endif
++}
++
++static void init_non_isoc_dma_desc(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++
++ dwc_hc_t *hc;
++ dwc_otg_host_dma_desc_t *dma_desc;
++ dwc_otg_qtd_t *qtd;
++ int num_packets, len, n_desc = 0;
++
++ hc = qh->channel;
++
++ /*
++ * Start with hc->xfer_buff initialized in
++ * assign_and_init_hc(), then if SG transfer consists of multiple URBs,
++ * this pointer re-assigned to the buffer of the currently processed QTD.
++ * For non-SG request there is always one QTD active.
++ */
++
++ DWC_CIRCLEQ_FOREACH(qtd, &qh->qtd_list, qtd_list_entry) {
++
++ if (n_desc) {
++ /* SG request - more than 1 QTDs */
++ hc->xfer_buff = (uint8_t *)qtd->urb->dma + qtd->urb->actual_length;
++ hc->xfer_len = qtd->urb->length - qtd->urb->actual_length;
++ }
++
++ qtd->n_desc = 0;
++
++ do {
++ dma_desc = &qh->desc_list[n_desc];
++ len = hc->xfer_len;
++
++ if (len > MAX_DMA_DESC_SIZE)
++ len = MAX_DMA_DESC_SIZE - hc->max_packet + 1;
++
++ if (hc->ep_is_in) {
++ if (len > 0) {
++ num_packets = (len + hc->max_packet - 1) / hc->max_packet;
++ } else {
++ /* Need 1 packet for transfer length of 0. */
++ num_packets = 1;
++ }
++ /* Always program an integral # of max packets for IN transfers. */
++ len = num_packets * hc->max_packet;
++ }
++
++ dma_desc->status.b.n_bytes = len;
++
++ qh->n_bytes[n_desc] = len;
++
++ if ((qh->ep_type == UE_CONTROL)
++ && (qtd->control_phase == DWC_OTG_CONTROL_SETUP))
++ dma_desc->status.b.sup = 1; /* Setup Packet */
++
++ dma_desc->status.b.a = 1; /* Active descriptor */
++ dma_desc->status.b.sts = 0;
++
++ dma_desc->buf =
++ ((unsigned long)hc->xfer_buff & 0xffffffff);
++
++ /*
++ * Last descriptor(or single) of IN transfer
++ * with actual size less than MaxPacket.
++ */
++ if (len > hc->xfer_len) {
++ hc->xfer_len = 0;
++ } else {
++ hc->xfer_buff += len;
++ hc->xfer_len -= len;
++ }
++
++ qtd->n_desc++;
++ n_desc++;
++ }
++ while ((hc->xfer_len > 0) && (n_desc != MAX_DMA_DESC_NUM_GENERIC));
++
++
++ qtd->in_process = 1;
++
++ if (qh->ep_type == UE_CONTROL)
++ break;
++
++ if (n_desc == MAX_DMA_DESC_NUM_GENERIC)
++ break;
++ }
++
++ if (n_desc) {
++ /* Request Transfer Complete interrupt for the last descriptor */
++ qh->desc_list[n_desc - 1].status.b.ioc = 1;
++ /* End of List indicator */
++ qh->desc_list[n_desc - 1].status.b.eol = 1;
++
++ hc->ntd = n_desc;
++ }
++}
++
++/**
++ * For Control and Bulk endpoints initializes descriptor list
++ * and starts the transfer.
++ *
++ * For Interrupt and Isochronous endpoints initializes descriptor list
++ * then updates FrameList, marking appropriate entries as active.
++ * In case of Isochronous, the starting descriptor index is calculated based
++ * on the scheduled frame, but only on the first transfer descriptor within a session.
++ * Then starts the transfer via enabling the channel.
++ * For Isochronous endpoint the channel is not halted on XferComplete
++ * interrupt so remains assigned to the endpoint(QH) until session is done.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh The QH to init.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++void dwc_otg_hcd_start_xfer_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ /* Channel is already assigned */
++ dwc_hc_t *hc = qh->channel;
++ uint8_t skip_frames = 0;
++
++ switch (hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ init_non_isoc_dma_desc(hcd, qh);
++
++ dwc_otg_hc_start_transfer_ddma(hcd->core_if, hc);
++ break;
++ case DWC_OTG_EP_TYPE_INTR:
++ init_non_isoc_dma_desc(hcd, qh);
++
++ update_frame_list(hcd, qh, 1);
++
++ dwc_otg_hc_start_transfer_ddma(hcd->core_if, hc);
++ break;
++ case DWC_OTG_EP_TYPE_ISOC:
++
++ if (!qh->ntd)
++ skip_frames = recalc_initial_desc_idx(hcd, qh);
++
++ init_isoc_dma_desc(hcd, qh, skip_frames);
++
++ if (!hc->xfer_started) {
++
++ update_frame_list(hcd, qh, 1);
++
++ /*
++ * Always set to max, instead of actual size.
++ * Otherwise ntd will be changed with
++ * channel being enabled. Not recommended.
++ *
++ */
++ hc->ntd = max_desc_num(qh);
++ /* Enable channel only once for ISOC */
++ dwc_otg_hc_start_transfer_ddma(hcd->core_if, hc);
++ }
++
++ break;
++ default:
++
++ break;
++ }
++}
++
++static void complete_isoc_xfer_ddma(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_halt_status_e halt_status)
++{
++ struct dwc_otg_hcd_iso_packet_desc *frame_desc;
++ dwc_otg_qtd_t *qtd, *qtd_tmp;
++ dwc_otg_qh_t *qh;
++ dwc_otg_host_dma_desc_t *dma_desc;
++ uint16_t idx, remain;
++ uint8_t urb_compl;
++
++ qh = hc->qh;
++ idx = qh->td_first;
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE) {
++ DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry)
++ qtd->in_process = 0;
++ return;
++ } else if ((halt_status == DWC_OTG_HC_XFER_AHB_ERR) ||
++ (halt_status == DWC_OTG_HC_XFER_BABBLE_ERR)) {
++ /*
++ * Channel is halted in these error cases.
++ * Considered as serious issues.
++ * Complete all URBs marking all frames as failed,
++ * irrespective whether some of the descriptors(frames) succeeded or no.
++ * Pass error code to completion routine as well, to
++ * update urb->status, some of class drivers might use it to stop
++ * queing transfer requests.
++ */
++ int err = (halt_status == DWC_OTG_HC_XFER_AHB_ERR)
++ ? (-DWC_E_IO)
++ : (-DWC_E_OVERFLOW);
++
++ DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry) {
++ for (idx = 0; idx < qtd->urb->packet_count; idx++) {
++ frame_desc = &qtd->urb->iso_descs[idx];
++ frame_desc->status = err;
++ }
++ hcd->fops->complete(hcd, qtd->urb->priv, qtd->urb, err);
++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
++ }
++ return;
++ }
++
++ DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry) {
++
++ if (!qtd->in_process)
++ break;
++
++ urb_compl = 0;
++
++ do {
++
++ dma_desc = &qh->desc_list[idx];
++
++ frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index];
++ remain = hc->ep_is_in ? dma_desc->status.b_isoc.n_bytes : 0;
++
++ if (dma_desc->status.b_isoc.sts == DMA_DESC_STS_PKTERR) {
++ /*
++ * XactError or, unable to complete all the transactions
++ * in the scheduled micro-frame/frame,
++ * both indicated by DMA_DESC_STS_PKTERR.
++ */
++ qtd->urb->error_count++;
++ frame_desc->actual_length = qh->n_bytes[idx] - remain;
++ frame_desc->status = -DWC_E_PROTOCOL;
++ } else {
++ /* Success */
++
++ frame_desc->actual_length = qh->n_bytes[idx] - remain;
++ frame_desc->status = 0;
++ }
++
++ if (++qtd->isoc_frame_index == qtd->urb->packet_count) {
++ /*
++ * urb->status is not used for isoc transfers here.
++ * The individual frame_desc status are used instead.
++ */
++
++ hcd->fops->complete(hcd, qtd->urb->priv, qtd->urb, 0);
++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
++
++ /*
++ * This check is necessary because urb_dequeue can be called
++ * from urb complete callback(sound driver example).
++ * All pending URBs are dequeued there, so no need for
++ * further processing.
++ */
++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE) {
++ return;
++ }
++
++ urb_compl = 1;
++
++ }
++
++ qh->ntd--;
++
++ /* Stop if IOC requested descriptor reached */
++ if (dma_desc->status.b_isoc.ioc) {
++ idx = desclist_idx_inc(idx, qh->interval, hc->speed);
++ goto stop_scan;
++ }
++
++ idx = desclist_idx_inc(idx, qh->interval, hc->speed);
++
++ if (urb_compl)
++ break;
++ }
++ while (idx != qh->td_first);
++ }
++stop_scan:
++ qh->td_first = idx;
++}
++
++uint8_t update_non_isoc_urb_state_ddma(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_host_dma_desc_t * dma_desc,
++ dwc_otg_halt_status_e halt_status,
++ uint32_t n_bytes, uint8_t * xfer_done)
++{
++
++ uint16_t remain = hc->ep_is_in ? dma_desc->status.b.n_bytes : 0;
++ dwc_otg_hcd_urb_t *urb = qtd->urb;
++
++ if (halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ urb->status = -DWC_E_IO;
++ return 1;
++ }
++ if (dma_desc->status.b.sts == DMA_DESC_STS_PKTERR) {
++ switch (halt_status) {
++ case DWC_OTG_HC_XFER_STALL:
++ urb->status = -DWC_E_PIPE;
++ break;
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ urb->status = -DWC_E_OVERFLOW;
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ urb->status = -DWC_E_PROTOCOL;
++ break;
++ default:
++ DWC_ERROR("%s: Unhandled descriptor error status (%d)\n", __func__,
++ halt_status);
++ break;
++ }
++ return 1;
++ }
++
++ if (dma_desc->status.b.a == 1) {
++ DWC_DEBUGPL(DBG_HCDV,
++ "Active descriptor encountered on channel %d\n",
++ hc->hc_num);
++ return 0;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL) {
++ if (qtd->control_phase == DWC_OTG_CONTROL_DATA) {
++ urb->actual_length += n_bytes - remain;
++ if (remain || urb->actual_length == urb->length) {
++ /*
++ * For Control Data stage do not set urb->status=0 to prevent
++ * URB callback. Set it when Status phase done. See below.
++ */
++ *xfer_done = 1;
++ }
++
++ } else if (qtd->control_phase == DWC_OTG_CONTROL_STATUS) {
++ urb->status = 0;
++ *xfer_done = 1;
++ }
++ /* No handling for SETUP stage */
++ } else {
++ /* BULK and INTR */
++ urb->actual_length += n_bytes - remain;
++ if (remain || urb->actual_length == urb->length) {
++ urb->status = 0;
++ *xfer_done = 1;
++ }
++ }
++
++ return 0;
++}
++
++static void complete_non_isoc_xfer_ddma(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_halt_status_e halt_status)
++{
++ dwc_otg_hcd_urb_t *urb = NULL;
++ dwc_otg_qtd_t *qtd, *qtd_tmp;
++ dwc_otg_qh_t *qh;
++ dwc_otg_host_dma_desc_t *dma_desc;
++ uint32_t n_bytes, n_desc, i;
++ uint8_t failed = 0, xfer_done;
++
++ n_desc = 0;
++
++ qh = hc->qh;
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE) {
++ DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &hc->qh->qtd_list, qtd_list_entry) {
++ qtd->in_process = 0;
++ }
++ return;
++ }
++
++ DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
++
++ urb = qtd->urb;
++
++ n_bytes = 0;
++ xfer_done = 0;
++
++ for (i = 0; i < qtd->n_desc; i++) {
++ dma_desc = &qh->desc_list[n_desc];
++
++ n_bytes = qh->n_bytes[n_desc];
++
++ failed =
++ update_non_isoc_urb_state_ddma(hcd, hc, qtd,
++ dma_desc,
++ halt_status, n_bytes,
++ &xfer_done);
++
++ if (failed
++ || (xfer_done
++ && (urb->status != -DWC_E_IN_PROGRESS))) {
++
++ hcd->fops->complete(hcd, urb->priv, urb,
++ urb->status);
++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
++
++ if (failed)
++ goto stop_scan;
++ } else if (qh->ep_type == UE_CONTROL) {
++ if (qtd->control_phase == DWC_OTG_CONTROL_SETUP) {
++ if (urb->length > 0) {
++ qtd->control_phase = DWC_OTG_CONTROL_DATA;
++ } else {
++ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ }
++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
++ } else if (qtd->control_phase == DWC_OTG_CONTROL_DATA) {
++ if (xfer_done) {
++ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
++ } else if (i + 1 == qtd->n_desc) {
++ /*
++ * Last descriptor for Control data stage which is
++ * not completed yet.
++ */
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++ }
++ }
++ }
++
++ n_desc++;
++ }
++
++ }
++
++stop_scan:
++
++ if (qh->ep_type != UE_CONTROL) {
++ /*
++ * Resetting the data toggle for bulk
++ * and interrupt endpoints in case of stall. See handle_hc_stall_intr()
++ */
++ if (halt_status == DWC_OTG_HC_XFER_STALL)
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ else
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++ }
++
++ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
++ hcint_data_t hcint;
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++ if (hcint.b.nyet) {
++ /*
++ * Got a NYET on the last transaction of the transfer. It
++ * means that the endpoint should be in the PING state at the
++ * beginning of the next transfer.
++ */
++ qh->ping_state = 1;
++ clear_hc_int(hc_regs, nyet);
++ }
++
++ }
++
++}
++
++/**
++ * This function is called from interrupt handlers.
++ * Scans the descriptor list, updates URB's status and
++ * calls completion routine for the URB if it's done.
++ * Releases the channel to be used by other transfers.
++ * In case of Isochronous endpoint the channel is not halted until
++ * the end of the session, i.e. QTD list is empty.
++ * If periodic channel released the FrameList is updated accordingly.
++ *
++ * Calls transaction selection routines to activate pending transfers.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param hc Host channel, the transfer is completed on.
++ * @param hc_regs Host channel registers.
++ * @param halt_status Reason the channel is being halted,
++ * or just XferComplete for isochronous transfer
++ */
++void dwc_otg_hcd_complete_xfer_ddma(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_halt_status_e halt_status)
++{
++ uint8_t continue_isoc_xfer = 0;
++ dwc_otg_transaction_type_e tr_type;
++ dwc_otg_qh_t *qh = hc->qh;
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++
++ complete_isoc_xfer_ddma(hcd, hc, hc_regs, halt_status);
++
++ /* Release the channel if halted or session completed */
++ if (halt_status != DWC_OTG_HC_XFER_COMPLETE ||
++ DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
++
++ /* Halt the channel if session completed */
++ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
++ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
++ }
++
++ release_channel_ddma(hcd, qh);
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ } else {
++ /* Keep in assigned schedule to continue transfer */
++ DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_assigned,
++ &qh->qh_list_entry);
++ continue_isoc_xfer = 1;
++
++ }
++ /** @todo Consider the case when period exceeds FrameList size.
++ * Frame Rollover interrupt should be used.
++ */
++ } else {
++ /* Scan descriptor list to complete the URB(s), then release the channel */
++ complete_non_isoc_xfer_ddma(hcd, hc, hc_regs, halt_status);
++
++ release_channel_ddma(hcd, qh);
++ dwc_otg_hcd_qh_remove(hcd, qh);
++
++ if (!DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
++ /* Add back to inactive non-periodic schedule on normal completion */
++ dwc_otg_hcd_qh_add(hcd, qh);
++ }
++
++ }
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE || continue_isoc_xfer) {
++ if (continue_isoc_xfer) {
++ if (tr_type == DWC_OTG_TRANSACTION_NONE) {
++ tr_type = DWC_OTG_TRANSACTION_PERIODIC;
++ } else if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC) {
++ tr_type = DWC_OTG_TRANSACTION_ALL;
++ }
++ }
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++ }
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,839 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
++ * $Revision: #58 $
++ * $Date: 2011/09/15 $
++ * $Change: 1846647 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++#ifndef __DWC_HCD_H__
++#define __DWC_HCD_H__
++
++#include "dwc_otg_os_dep.h"
++#include "usb.h"
++#include "dwc_otg_hcd_if.h"
++#include "dwc_otg_core_if.h"
++#include "dwc_list.h"
++#include "dwc_otg_cil.h"
++
++/**
++ * @file
++ *
++ * This file contains the structures, constants, and interfaces for
++ * the Host Contoller Driver (HCD).
++ *
++ * The Host Controller Driver (HCD) is responsible for translating requests
++ * from the USB Driver into the appropriate actions on the DWC_otg controller.
++ * It isolates the USBD from the specifics of the controller by providing an
++ * API to the USBD.
++ */
++
++struct dwc_otg_hcd_pipe_info {
++ uint8_t dev_addr;
++ uint8_t ep_num;
++ uint8_t pipe_type;
++ uint8_t pipe_dir;
++ uint16_t mps;
++};
++
++struct dwc_otg_hcd_iso_packet_desc {
++ uint32_t offset;
++ uint32_t length;
++ uint32_t actual_length;
++ uint32_t status;
++};
++
++struct dwc_otg_qtd;
++
++struct dwc_otg_hcd_urb {
++ void *priv;
++ struct dwc_otg_qtd *qtd;
++ void *buf;
++ dwc_dma_t dma;
++ void *setup_packet;
++ dwc_dma_t setup_dma;
++ uint32_t length;
++ uint32_t actual_length;
++ uint32_t status;
++ uint32_t error_count;
++ uint32_t packet_count;
++ uint32_t flags;
++ uint16_t interval;
++ struct dwc_otg_hcd_pipe_info pipe_info;
++ struct dwc_otg_hcd_iso_packet_desc iso_descs[0];
++};
++
++static inline uint8_t dwc_otg_hcd_get_ep_num(struct dwc_otg_hcd_pipe_info *pipe)
++{
++ return pipe->ep_num;
++}
++
++static inline uint8_t dwc_otg_hcd_get_pipe_type(struct dwc_otg_hcd_pipe_info
++ *pipe)
++{
++ return pipe->pipe_type;
++}
++
++static inline uint16_t dwc_otg_hcd_get_mps(struct dwc_otg_hcd_pipe_info *pipe)
++{
++ return pipe->mps;
++}
++
++static inline uint8_t dwc_otg_hcd_get_dev_addr(struct dwc_otg_hcd_pipe_info
++ *pipe)
++{
++ return pipe->dev_addr;
++}
++
++static inline uint8_t dwc_otg_hcd_is_pipe_isoc(struct dwc_otg_hcd_pipe_info
++ *pipe)
++{
++ return (pipe->pipe_type == UE_ISOCHRONOUS);
++}
++
++static inline uint8_t dwc_otg_hcd_is_pipe_int(struct dwc_otg_hcd_pipe_info
++ *pipe)
++{
++ return (pipe->pipe_type == UE_INTERRUPT);
++}
++
++static inline uint8_t dwc_otg_hcd_is_pipe_bulk(struct dwc_otg_hcd_pipe_info
++ *pipe)
++{
++ return (pipe->pipe_type == UE_BULK);
++}
++
++static inline uint8_t dwc_otg_hcd_is_pipe_control(struct dwc_otg_hcd_pipe_info
++ *pipe)
++{
++ return (pipe->pipe_type == UE_CONTROL);
++}
++
++static inline uint8_t dwc_otg_hcd_is_pipe_in(struct dwc_otg_hcd_pipe_info *pipe)
++{
++ return (pipe->pipe_dir == UE_DIR_IN);
++}
++
++static inline uint8_t dwc_otg_hcd_is_pipe_out(struct dwc_otg_hcd_pipe_info
++ *pipe)
++{
++ return (!dwc_otg_hcd_is_pipe_in(pipe));
++}
++
++static inline void dwc_otg_hcd_fill_pipe(struct dwc_otg_hcd_pipe_info *pipe,
++ uint8_t devaddr, uint8_t ep_num,
++ uint8_t pipe_type, uint8_t pipe_dir,
++ uint16_t mps)
++{
++ pipe->dev_addr = devaddr;
++ pipe->ep_num = ep_num;
++ pipe->pipe_type = pipe_type;
++ pipe->pipe_dir = pipe_dir;
++ pipe->mps = mps;
++}
++
++/**
++ * Phases for control transfers.
++ */
++typedef enum dwc_otg_control_phase {
++ DWC_OTG_CONTROL_SETUP,
++ DWC_OTG_CONTROL_DATA,
++ DWC_OTG_CONTROL_STATUS
++} dwc_otg_control_phase_e;
++
++/** Transaction types. */
++typedef enum dwc_otg_transaction_type {
++ DWC_OTG_TRANSACTION_NONE,
++ DWC_OTG_TRANSACTION_PERIODIC,
++ DWC_OTG_TRANSACTION_NON_PERIODIC,
++ DWC_OTG_TRANSACTION_ALL
++} dwc_otg_transaction_type_e;
++
++struct dwc_otg_qh;
++
++/**
++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
++ * interrupt, or isochronous transfer. A single QTD is created for each URB
++ * (of one of these types) submitted to the HCD. The transfer associated with
++ * a QTD may require one or multiple transactions.
++ *
++ * A QTD is linked to a Queue Head, which is entered in either the
++ * non-periodic or periodic schedule for execution. When a QTD is chosen for
++ * execution, some or all of its transactions may be executed. After
++ * execution, the state of the QTD is updated. The QTD may be retired if all
++ * its transactions are complete or if an error occurred. Otherwise, it
++ * remains in the schedule so more transactions can be executed later.
++ */
++typedef struct dwc_otg_qtd {
++ /**
++ * Determines the PID of the next data packet for the data phase of
++ * control transfers. Ignored for other transfer types.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Current phase for control transfers (Setup, Data, or Status). */
++ dwc_otg_control_phase_e control_phase;
++
++ /** Keep track of the current split type
++ * for FS/LS endpoints on a HS Hub */
++ uint8_t complete_split;
++
++ /** How many bytes transferred during SSPLIT OUT */
++ uint32_t ssplit_out_xfer_count;
++
++ /**
++ * Holds the number of bus errors that have occurred for a transaction
++ * within this transfer.
++ */
++ uint8_t error_count;
++
++ /**
++ * Index of the next frame descriptor for an isochronous transfer. A
++ * frame descriptor describes the buffer position and length of the
++ * data to be transferred in the next scheduled (micro)frame of an
++ * isochronous transfer. It also holds status for that transaction.
++ * The frame index starts at 0.
++ */
++ uint16_t isoc_frame_index;
++
++ /** Position of the ISOC split on full/low speed */
++ uint8_t isoc_split_pos;
++
++ /** Position of the ISOC split in the buffer for the current frame */
++ uint16_t isoc_split_offset;
++
++ /** URB for this transfer */
++ struct dwc_otg_hcd_urb *urb;
++
++ struct dwc_otg_qh *qh;
++
++ /** This list of QTDs */
++ DWC_CIRCLEQ_ENTRY(dwc_otg_qtd) qtd_list_entry;
++
++ /** Indicates if this QTD is currently processed by HW. */
++ uint8_t in_process;
++
++ /** Number of DMA descriptors for this QTD */
++ uint8_t n_desc;
++
++ /**
++ * Last activated frame(packet) index.
++ * Used in Descriptor DMA mode only.
++ */
++ uint16_t isoc_frame_index_last;
++
++} dwc_otg_qtd_t;
++
++DWC_CIRCLEQ_HEAD(dwc_otg_qtd_list, dwc_otg_qtd);
++
++/**
++ * A Queue Head (QH) holds the static characteristics of an endpoint and
++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
++ * be entered in either the non-periodic or periodic schedule.
++ */
++typedef struct dwc_otg_qh {
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - UE_CONTROL
++ * - UE_BULK
++ * - UE_INTERRUPT
++ * - UE_ISOCHRONOUS
++ */
++ uint8_t ep_type;
++ uint8_t ep_is_in;
++
++ /** wMaxPacketSize Field of Endpoint Descriptor. */
++ uint16_t maxp;
++
++ /**
++ * Device speed.
++ * One of the following values:
++ * - DWC_OTG_EP_SPEED_LOW
++ * - DWC_OTG_EP_SPEED_FULL
++ * - DWC_OTG_EP_SPEED_HIGH
++ */
++ uint8_t dev_speed;
++
++ /**
++ * Determines the PID of the next data packet for non-control
++ * transfers. Ignored for control transfers.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Ping state if 1. */
++ uint8_t ping_state;
++
++ /**
++ * List of QTDs for this QH.
++ */
++ struct dwc_otg_qtd_list qtd_list;
++
++ /** Host channel currently processing transfers for this QH. */
++ struct dwc_hc *channel;
++
++ /** Full/low speed endpoint on high-speed hub requires split. */
++ uint8_t do_split;
++
++ /** @name Periodic schedule information */
++ /** @{ */
++
++ /** Bandwidth in microseconds per (micro)frame. */
++ uint16_t usecs;
++
++ /** Interval between transfers in (micro)frames. */
++ uint16_t interval;
++
++ /**
++ * (micro)frame to initialize a periodic transfer. The transfer
++ * executes in the following (micro)frame.
++ */
++ uint16_t sched_frame;
++
++ /*
++ ** Frame a NAK was received on this queue head, used to minimise NAK retransmission
++ */
++ uint16_t nak_frame;
++
++ /** (micro)frame at which last start split was initialized. */
++ uint16_t start_split_frame;
++
++ /** @} */
++
++ /**
++ * Used instead of original buffer if
++ * it(physical address) is not dword-aligned.
++ */
++ uint8_t *dw_align_buf;
++ dwc_dma_t dw_align_buf_dma;
++
++ /** Entry for QH in either the periodic or non-periodic schedule. */
++ dwc_list_link_t qh_list_entry;
++
++ /** @name Descriptor DMA support */
++ /** @{ */
++
++ /** Descriptor List. */
++ dwc_otg_host_dma_desc_t *desc_list;
++
++ /** Descriptor List physical address. */
++ dwc_dma_t desc_list_dma;
++
++ /**
++ * Xfer Bytes array.
++ * Each element corresponds to a descriptor and indicates
++ * original XferSize size value for the descriptor.
++ */
++ uint32_t *n_bytes;
++
++ /** Actual number of transfer descriptors in a list. */
++ uint16_t ntd;
++
++ /** First activated isochronous transfer descriptor index. */
++ uint8_t td_first;
++ /** Last activated isochronous transfer descriptor index. */
++ uint8_t td_last;
++
++ /** @} */
++
++
++ uint16_t speed;
++ uint16_t frame_usecs[8];
++} dwc_otg_qh_t;
++
++DWC_CIRCLEQ_HEAD(hc_list, dwc_hc);
++
++typedef struct urb_tq_entry {
++ struct urb *urb;
++ DWC_TAILQ_ENTRY(urb_tq_entry) urb_tq_entries;
++} urb_tq_entry_t;
++
++DWC_TAILQ_HEAD(urb_list, urb_tq_entry);
++
++/**
++ * This structure holds the state of the HCD, including the non-periodic and
++ * periodic schedules.
++ */
++struct dwc_otg_hcd {
++ /** The DWC otg device pointer */
++ struct dwc_otg_device *otg_dev;
++ /** DWC OTG Core Interface Layer */
++ dwc_otg_core_if_t *core_if;
++
++ /** Function HCD driver callbacks */
++ struct dwc_otg_hcd_function_ops *fops;
++
++ /** Internal DWC HCD Flags */
++ volatile union dwc_otg_hcd_internal_flags {
++ uint32_t d32;
++ struct {
++ unsigned port_connect_status_change:1;
++ unsigned port_connect_status:1;
++ unsigned port_reset_change:1;
++ unsigned port_enable_change:1;
++ unsigned port_suspend_change:1;
++ unsigned port_over_current_change:1;
++ unsigned port_l1_change:1;
++ unsigned reserved:26;
++ } b;
++ } flags;
++
++ /**
++ * Inactive items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are not
++ * currently assigned to a host channel.
++ */
++ dwc_list_link_t non_periodic_sched_inactive;
++
++ /**
++ * Active items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are
++ * currently assigned to a host channel.
++ */
++ dwc_list_link_t non_periodic_sched_active;
++
++ /**
++ * Pointer to the next Queue Head to process in the active
++ * non-periodic schedule.
++ */
++ dwc_list_link_t *non_periodic_qh_ptr;
++
++ /**
++ * Inactive items in the periodic schedule. This is a list of QHs for
++ * periodic transfers that are _not_ scheduled for the next frame.
++ * Each QH in the list has an interval counter that determines when it
++ * needs to be scheduled for execution. This scheduling mechanism
++ * allows only a simple calculation for periodic bandwidth used (i.e.
++ * must assume that all periodic transfers may need to execute in the
++ * same frame). However, it greatly simplifies scheduling and should
++ * be sufficient for the vast majority of OTG hosts, which need to
++ * connect to a small number of peripherals at one time.
++ *
++ * Items move from this list to periodic_sched_ready when the QH
++ * interval counter is 0 at SOF.
++ */
++ dwc_list_link_t periodic_sched_inactive;
++
++ /**
++ * List of periodic QHs that are ready for execution in the next
++ * frame, but have not yet been assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_assigned as host
++ * channels become available during the current frame.
++ */
++ dwc_list_link_t periodic_sched_ready;
++
++ /**
++ * List of periodic QHs to be executed in the next frame that are
++ * assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_queued as the
++ * transactions for the QH are queued to the DWC_otg controller.
++ */
++ dwc_list_link_t periodic_sched_assigned;
++
++ /**
++ * List of periodic QHs that have been queued for execution.
++ *
++ * Items move from this list to either periodic_sched_inactive or
++ * periodic_sched_ready when the channel associated with the transfer
++ * is released. If the interval for the QH is 1, the item moves to
++ * periodic_sched_ready because it must be rescheduled for the next
++ * frame. Otherwise, the item moves to periodic_sched_inactive.
++ */
++ dwc_list_link_t periodic_sched_queued;
++
++ /**
++ * Total bandwidth claimed so far for periodic transfers. This value
++ * is in microseconds per (micro)frame. The assumption is that all
++ * periodic transfers may occur in the same (micro)frame.
++ */
++ uint16_t periodic_usecs;
++
++ /**
++ * Total bandwidth claimed so far for all periodic transfers
++ * in a frame.
++ * This will include a mixture of HS and FS transfers.
++ * Units are microseconds per (micro)frame.
++ * We have a budget per frame and have to schedule
++ * transactions accordingly.
++ * Watch out for the fact that things are actually scheduled for the
++ * "next frame".
++ */
++ uint16_t frame_usecs[8];
++
++
++ /**
++ * Frame number read from the core at SOF. The value ranges from 0 to
++ * DWC_HFNUM_MAX_FRNUM.
++ */
++ uint16_t frame_number;
++
++ /**
++ * Count of periodic QHs, if using several eps. For SOF enable/disable.
++ */
++ uint16_t periodic_qh_count;
++
++ /**
++ * Free host channels in the controller. This is a list of
++ * dwc_hc_t items.
++ */
++ struct hc_list free_hc_list;
++ /**
++ * Number of host channels assigned to periodic transfers. Currently
++ * assuming that there is a dedicated host channel for each periodic
++ * transaction and at least one host channel available for
++ * non-periodic transactions.
++ */
++ int periodic_channels; /* microframe_schedule==0 */
++
++ /**
++ * Number of host channels assigned to non-periodic transfers.
++ */
++ int non_periodic_channels; /* microframe_schedule==0 */
++
++ /**
++ * Number of host channels assigned to non-periodic transfers.
++ */
++ int available_host_channels;
++
++ /**
++ * Array of pointers to the host channel descriptors. Allows accessing
++ * a host channel descriptor given the host channel number. This is
++ * useful in interrupt handlers.
++ */
++ struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS];
++
++ /**
++ * Buffer to use for any data received during the status phase of a
++ * control transfer. Normally no data is transferred during the status
++ * phase. This buffer is used as a bit bucket.
++ */
++ uint8_t *status_buf;
++
++ /**
++ * DMA address for status_buf.
++ */
++ dma_addr_t status_buf_dma;
++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
++
++ /**
++ * Connection timer. An OTG host must display a message if the device
++ * does not connect. Started when the VBus power is turned on via
++ * sysfs attribute "buspower".
++ */
++ dwc_timer_t *conn_timer;
++
++ /* Tasket to do a reset */
++ dwc_tasklet_t *reset_tasklet;
++
++ dwc_tasklet_t *completion_tasklet;
++ struct urb_list completed_urb_list;
++
++ /* */
++ dwc_spinlock_t *lock;
++ dwc_spinlock_t *channel_lock;
++ /**
++ * Private data that could be used by OS wrapper.
++ */
++ void *priv;
++
++ uint8_t otg_port;
++
++ /** Frame List */
++ uint32_t *frame_list;
++
++ /** Frame List DMA address */
++ dma_addr_t frame_list_dma;
++
++#ifdef DEBUG
++ uint32_t frrem_samples;
++ uint64_t frrem_accum;
++
++ uint32_t hfnum_7_samples_a;
++ uint64_t hfnum_7_frrem_accum_a;
++ uint32_t hfnum_0_samples_a;
++ uint64_t hfnum_0_frrem_accum_a;
++ uint32_t hfnum_other_samples_a;
++ uint64_t hfnum_other_frrem_accum_a;
++
++ uint32_t hfnum_7_samples_b;
++ uint64_t hfnum_7_frrem_accum_b;
++ uint32_t hfnum_0_samples_b;
++ uint64_t hfnum_0_frrem_accum_b;
++ uint32_t hfnum_other_samples_b;
++ uint64_t hfnum_other_frrem_accum_b;
++#endif
++};
++
++/** @name Transaction Execution Functions */
++/** @{ */
++extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t
++ * hcd);
++extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t * hcd,
++ dwc_otg_transaction_type_e tr_type);
++
++/** @} */
++
++/** @name Interrupt Handler Functions */
++/** @{ */
++extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t * dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t * dwc_otg_hcd, int32_t);
++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *
++ dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *
++ dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *
++ dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *
++ dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t * dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *
++ dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t * dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t * dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t * dwc_otg_hcd,
++ uint32_t num);
++extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t * dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *
++ dwc_otg_hcd);
++/** @} */
++
++/** @name Schedule Queue Functions */
++/** @{ */
++
++/* Implemented in dwc_otg_hcd_queue.c */
++extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t * hcd,
++ dwc_otg_hcd_urb_t * urb, int atomic_alloc);
++extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
++extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
++extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
++extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
++ int sched_csplit);
++
++/** Remove and free a QH */
++static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t * hcd,
++ dwc_otg_qh_t * qh)
++{
++ dwc_irqflags_t flags;
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++ dwc_otg_hcd_qh_free(hcd, qh);
++}
++
++/** Allocates memory for a QH structure.
++ * @return Returns the memory allocate or NULL on error. */
++static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(int atomic_alloc)
++{
++ if (atomic_alloc)
++ return (dwc_otg_qh_t *) DWC_ALLOC_ATOMIC(sizeof(dwc_otg_qh_t));
++ else
++ return (dwc_otg_qh_t *) DWC_ALLOC(sizeof(dwc_otg_qh_t));
++}
++
++extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(dwc_otg_hcd_urb_t * urb,
++ int atomic_alloc);
++extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t * qtd, dwc_otg_hcd_urb_t * urb);
++extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * qtd, dwc_otg_hcd_t * dwc_otg_hcd,
++ dwc_otg_qh_t ** qh, int atomic_alloc);
++
++/** Allocates memory for a QTD structure.
++ * @return Returns the memory allocate or NULL on error. */
++static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(int atomic_alloc)
++{
++ if (atomic_alloc)
++ return (dwc_otg_qtd_t *) DWC_ALLOC_ATOMIC(sizeof(dwc_otg_qtd_t));
++ else
++ return (dwc_otg_qtd_t *) DWC_ALLOC(sizeof(dwc_otg_qtd_t));
++}
++
++/** Frees the memory for a QTD structure. QTD should already be removed from
++ * list.
++ * @param qtd QTD to free.*/
++static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t * qtd)
++{
++ DWC_FREE(qtd);
++}
++
++/** Removes a QTD from list.
++ * @param hcd HCD instance.
++ * @param qtd QTD to remove from list.
++ * @param qh QTD belongs to.
++ */
++static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t * hcd,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_qh_t * qh)
++{
++ DWC_CIRCLEQ_REMOVE(&qh->qtd_list, qtd, qtd_list_entry);
++}
++
++/** Remove and free a QTD
++ * Need to disable IRQ and hold hcd lock while calling this function out of
++ * interrupt servicing chain */
++static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t * hcd,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_qh_t * qh)
++{
++ dwc_otg_hcd_qtd_remove(hcd, qtd, qh);
++ dwc_otg_hcd_qtd_free(qtd);
++}
++
++/** @} */
++
++/** @name Descriptor DMA Supporting Functions */
++/** @{ */
++
++extern void dwc_otg_hcd_start_xfer_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
++extern void dwc_otg_hcd_complete_xfer_ddma(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_halt_status_e halt_status);
++
++extern int dwc_otg_hcd_qh_init_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
++extern void dwc_otg_hcd_qh_free_ddma(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh);
++
++/** @} */
++
++/** @name Internal Functions */
++/** @{ */
++dwc_otg_qh_t *dwc_urb_to_qh(dwc_otg_hcd_urb_t * urb);
++/** @} */
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++extern int dwc_otg_hcd_get_hc_for_lpm_tran(dwc_otg_hcd_t * hcd,
++ uint8_t devaddr);
++extern void dwc_otg_hcd_free_hc_from_lpm(dwc_otg_hcd_t * hcd);
++#endif
++
++/** Gets the QH that contains the list_head */
++#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
++
++/** Gets the QTD that contains the list_head */
++#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
++
++/** Check if QH is non-periodic */
++#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == UE_BULK) || \
++ (_qh_ptr_->ep_type == UE_CONTROL))
++
++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
++
++/** Packet size for any kind of endpoint descriptor */
++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
++
++/**
++ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
++ * frame number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
++{
++ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
++ (DWC_HFNUM_MAX_FRNUM >> 1);
++}
++
++/**
++ * Returns true if _frame1 is greater than _frame2. The comparison is done
++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
++ * number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
++{
++ return (frame1 != frame2) &&
++ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
++ (DWC_HFNUM_MAX_FRNUM >> 1));
++}
++
++/**
++ * Increments _frame by the amount specified by _inc. The addition is done
++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
++ */
++static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
++{
++ return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
++}
++
++static inline uint16_t dwc_full_frame_num(uint16_t frame)
++{
++ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
++}
++
++static inline uint16_t dwc_micro_frame_num(uint16_t frame)
++{
++ return frame & 0x7;
++}
++
++void dwc_otg_hcd_save_data_toggle(dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd);
++
++#ifdef DEBUG
++/**
++ * Macro to sample the remaining PHY clocks left in the current frame. This
++ * may be used during debugging to determine the average time it takes to
++ * execute sections of code. There are two possible sample points, "a" and
++ * "b", so the _letter argument must be one of these values.
++ *
++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
++ * example, "cat /sys/devices/lm0/hcd_frrem".
++ */
++#define dwc_sample_frrem(_hcd, _qh, _letter) \
++{ \
++ hfnum_data_t hfnum; \
++ dwc_otg_qtd_t *qtd; \
++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
++ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
++ hfnum.d32 = DWC_READ_REG32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
++ switch (hfnum.b.frnum & 0x7) { \
++ case 7: \
++ _hcd->hfnum_7_samples_##_letter++; \
++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ case 0: \
++ _hcd->hfnum_0_samples_##_letter++; \
++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ default: \
++ _hcd->hfnum_other_samples_##_letter++; \
++ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ } \
++ } \
++}
++#else
++#define dwc_sample_frrem(_hcd, _qh, _letter)
++#endif
++#endif
++#endif /* DWC_DEVICE_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_if.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_if.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_if.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_if.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,417 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_if.h $
++ * $Revision: #12 $
++ * $Date: 2011/10/26 $
++ * $Change: 1873028 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++#ifndef __DWC_HCD_IF_H__
++#define __DWC_HCD_IF_H__
++
++#include "dwc_otg_core_if.h"
++
++/** @file
++ * This file defines DWC_OTG HCD Core API.
++ */
++
++struct dwc_otg_hcd;
++typedef struct dwc_otg_hcd dwc_otg_hcd_t;
++
++struct dwc_otg_hcd_urb;
++typedef struct dwc_otg_hcd_urb dwc_otg_hcd_urb_t;
++
++/** @name HCD Function Driver Callbacks */
++/** @{ */
++
++/** This function is called whenever core switches to host mode. */
++typedef int (*dwc_otg_hcd_start_cb_t) (dwc_otg_hcd_t * hcd);
++
++/** This function is called when device has been disconnected */
++typedef int (*dwc_otg_hcd_disconnect_cb_t) (dwc_otg_hcd_t * hcd);
++
++/** Wrapper provides this function to HCD to core, so it can get hub information to which device is connected */
++typedef int (*dwc_otg_hcd_hub_info_from_urb_cb_t) (dwc_otg_hcd_t * hcd,
++ void *urb_handle,
++ uint32_t * hub_addr,
++ uint32_t * port_addr);
++/** Via this function HCD core gets device speed */
++typedef int (*dwc_otg_hcd_speed_from_urb_cb_t) (dwc_otg_hcd_t * hcd,
++ void *urb_handle);
++
++/** This function is called when urb is completed */
++typedef int (*dwc_otg_hcd_complete_urb_cb_t) (dwc_otg_hcd_t * hcd,
++ void *urb_handle,
++ dwc_otg_hcd_urb_t * dwc_otg_urb,
++ int32_t status);
++
++/** Via this function HCD core gets b_hnp_enable parameter */
++typedef int (*dwc_otg_hcd_get_b_hnp_enable) (dwc_otg_hcd_t * hcd);
++
++struct dwc_otg_hcd_function_ops {
++ dwc_otg_hcd_start_cb_t start;
++ dwc_otg_hcd_disconnect_cb_t disconnect;
++ dwc_otg_hcd_hub_info_from_urb_cb_t hub_info;
++ dwc_otg_hcd_speed_from_urb_cb_t speed;
++ dwc_otg_hcd_complete_urb_cb_t complete;
++ dwc_otg_hcd_get_b_hnp_enable get_b_hnp_enable;
++};
++/** @} */
++
++/** @name HCD Core API */
++/** @{ */
++/** This function allocates dwc_otg_hcd structure and returns pointer on it. */
++extern dwc_otg_hcd_t *dwc_otg_hcd_alloc_hcd(void);
++
++/** This function should be called to initiate HCD Core.
++ *
++ * @param hcd The HCD
++ * @param core_if The DWC_OTG Core
++ *
++ * Returns -DWC_E_NO_MEMORY if no enough memory.
++ * Returns 0 on success
++ */
++extern int dwc_otg_hcd_init(dwc_otg_hcd_t * hcd, dwc_otg_core_if_t * core_if);
++
++/** Frees HCD
++ *
++ * @param hcd The HCD
++ */
++extern void dwc_otg_hcd_remove(dwc_otg_hcd_t * hcd);
++
++/** This function should be called on every hardware interrupt.
++ *
++ * @param dwc_otg_hcd The HCD
++ *
++ * Returns non zero if interrupt is handled
++ * Return 0 if interrupt is not handled
++ */
++extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t * dwc_otg_hcd);
++
++/** This function is used to handle the fast interrupt
++ *
++ */
++extern void __attribute__ ((naked)) dwc_otg_hcd_handle_fiq(void);
++
++/**
++ * Returns private data set by
++ * dwc_otg_hcd_set_priv_data function.
++ *
++ * @param hcd The HCD
++ */
++extern void *dwc_otg_hcd_get_priv_data(dwc_otg_hcd_t * hcd);
++
++/**
++ * Set private data.
++ *
++ * @param hcd The HCD
++ * @param priv_data pointer to be stored in private data
++ */
++extern void dwc_otg_hcd_set_priv_data(dwc_otg_hcd_t * hcd, void *priv_data);
++
++/**
++ * This function initializes the HCD Core.
++ *
++ * @param hcd The HCD
++ * @param fops The Function Driver Operations data structure containing pointers to all callbacks.
++ *
++ * Returns -DWC_E_NO_DEVICE if Core is currently is in device mode.
++ * Returns 0 on success
++ */
++extern int dwc_otg_hcd_start(dwc_otg_hcd_t * hcd,
++ struct dwc_otg_hcd_function_ops *fops);
++
++/**
++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
++ * stopped.
++ *
++ * @param hcd The HCD
++ */
++extern void dwc_otg_hcd_stop(dwc_otg_hcd_t * hcd);
++
++/**
++ * Handles hub class-specific requests.
++ *
++ * @param dwc_otg_hcd The HCD
++ * @param typeReq Request Type
++ * @param wValue wValue from control request
++ * @param wIndex wIndex from control request
++ * @param buf data buffer
++ * @param wLength data buffer length
++ *
++ * Returns -DWC_E_INVALID if invalid argument is passed
++ * Returns 0 on success
++ */
++extern int dwc_otg_hcd_hub_control(dwc_otg_hcd_t * dwc_otg_hcd,
++ uint16_t typeReq, uint16_t wValue,
++ uint16_t wIndex, uint8_t * buf,
++ uint16_t wLength);
++
++/**
++ * Returns otg port number.
++ *
++ * @param hcd The HCD
++ */
++extern uint32_t dwc_otg_hcd_otg_port(dwc_otg_hcd_t * hcd);
++
++/**
++ * Returns OTG version - either 1.3 or 2.0.
++ *
++ * @param core_if The core_if structure pointer
++ */
++extern uint16_t dwc_otg_get_otg_version(dwc_otg_core_if_t * core_if);
++
++/**
++ * Returns 1 if currently core is acting as B host, and 0 otherwise.
++ *
++ * @param hcd The HCD
++ */
++extern uint32_t dwc_otg_hcd_is_b_host(dwc_otg_hcd_t * hcd);
++
++/**
++ * Returns current frame number.
++ *
++ * @param hcd The HCD
++ */
++extern int dwc_otg_hcd_get_frame_number(dwc_otg_hcd_t * hcd);
++
++/**
++ * Dumps hcd state.
++ *
++ * @param hcd The HCD
++ */
++extern void dwc_otg_hcd_dump_state(dwc_otg_hcd_t * hcd);
++
++/**
++ * Dump the average frame remaining at SOF. This can be used to
++ * determine average interrupt latency. Frame remaining is also shown for
++ * start transfer and two additional sample points.
++ * Currently this function is not implemented.
++ *
++ * @param hcd The HCD
++ */
++extern void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t * hcd);
++
++/**
++ * Sends LPM transaction to the local device.
++ *
++ * @param hcd The HCD
++ * @param devaddr Device Address
++ * @param hird Host initiated resume duration
++ * @param bRemoteWake Value of bRemoteWake field in LPM transaction
++ *
++ * Returns negative value if sending LPM transaction was not succeeded.
++ * Returns 0 on success.
++ */
++extern int dwc_otg_hcd_send_lpm(dwc_otg_hcd_t * hcd, uint8_t devaddr,
++ uint8_t hird, uint8_t bRemoteWake);
++
++/* URB interface */
++
++/**
++ * Allocates memory for dwc_otg_hcd_urb structure.
++ * Allocated memory should be freed by call of DWC_FREE.
++ *
++ * @param hcd The HCD
++ * @param iso_desc_count Count of ISOC descriptors
++ * @param atomic_alloc Specefies whether to perform atomic allocation.
++ */
++extern dwc_otg_hcd_urb_t *dwc_otg_hcd_urb_alloc(dwc_otg_hcd_t * hcd,
++ int iso_desc_count,
++ int atomic_alloc);
++
++/**
++ * Set pipe information in URB.
++ *
++ * @param hcd_urb DWC_OTG URB
++ * @param devaddr Device Address
++ * @param ep_num Endpoint Number
++ * @param ep_type Endpoint Type
++ * @param ep_dir Endpoint Direction
++ * @param mps Max Packet Size
++ */
++extern void dwc_otg_hcd_urb_set_pipeinfo(dwc_otg_hcd_urb_t * hcd_urb,
++ uint8_t devaddr, uint8_t ep_num,
++ uint8_t ep_type, uint8_t ep_dir,
++ uint16_t mps);
++
++/* Transfer flags */
++#define URB_GIVEBACK_ASAP 0x1
++#define URB_SEND_ZERO_PACKET 0x2
++
++/**
++ * Sets dwc_otg_hcd_urb parameters.
++ *
++ * @param urb DWC_OTG URB allocated by dwc_otg_hcd_urb_alloc function.
++ * @param urb_handle Unique handle for request, this will be passed back
++ * to function driver in completion callback.
++ * @param buf The buffer for the data
++ * @param dma The DMA buffer for the data
++ * @param buflen Transfer length
++ * @param sp Buffer for setup data
++ * @param sp_dma DMA address of setup data buffer
++ * @param flags Transfer flags
++ * @param interval Polling interval for interrupt or isochronous transfers.
++ */
++extern void dwc_otg_hcd_urb_set_params(dwc_otg_hcd_urb_t * urb,
++ void *urb_handle, void *buf,
++ dwc_dma_t dma, uint32_t buflen, void *sp,
++ dwc_dma_t sp_dma, uint32_t flags,
++ uint16_t interval);
++
++/** Gets status from dwc_otg_hcd_urb
++ *
++ * @param dwc_otg_urb DWC_OTG URB
++ */
++extern uint32_t dwc_otg_hcd_urb_get_status(dwc_otg_hcd_urb_t * dwc_otg_urb);
++
++/** Gets actual length from dwc_otg_hcd_urb
++ *
++ * @param dwc_otg_urb DWC_OTG URB
++ */
++extern uint32_t dwc_otg_hcd_urb_get_actual_length(dwc_otg_hcd_urb_t *
++ dwc_otg_urb);
++
++/** Gets error count from dwc_otg_hcd_urb. Only for ISOC URBs
++ *
++ * @param dwc_otg_urb DWC_OTG URB
++ */
++extern uint32_t dwc_otg_hcd_urb_get_error_count(dwc_otg_hcd_urb_t *
++ dwc_otg_urb);
++
++/** Set ISOC descriptor offset and length
++ *
++ * @param dwc_otg_urb DWC_OTG URB
++ * @param desc_num ISOC descriptor number
++ * @param offset Offset from beginig of buffer.
++ * @param length Transaction length
++ */
++extern void dwc_otg_hcd_urb_set_iso_desc_params(dwc_otg_hcd_urb_t * dwc_otg_urb,
++ int desc_num, uint32_t offset,
++ uint32_t length);
++
++/** Get status of ISOC descriptor, specified by desc_num
++ *
++ * @param dwc_otg_urb DWC_OTG URB
++ * @param desc_num ISOC descriptor number
++ */
++extern uint32_t dwc_otg_hcd_urb_get_iso_desc_status(dwc_otg_hcd_urb_t *
++ dwc_otg_urb, int desc_num);
++
++/** Get actual length of ISOC descriptor, specified by desc_num
++ *
++ * @param dwc_otg_urb DWC_OTG URB
++ * @param desc_num ISOC descriptor number
++ */
++extern uint32_t dwc_otg_hcd_urb_get_iso_desc_actual_length(dwc_otg_hcd_urb_t *
++ dwc_otg_urb,
++ int desc_num);
++
++/** Queue URB. After transfer is completes, the complete callback will be called with the URB status
++ *
++ * @param dwc_otg_hcd The HCD
++ * @param dwc_otg_urb DWC_OTG URB
++ * @param ep_handle Out parameter for returning endpoint handle
++ * @param atomic_alloc Flag to do atomic allocation if needed
++ *
++ * Returns -DWC_E_NO_DEVICE if no device is connected.
++ * Returns -DWC_E_NO_MEMORY if there is no enough memory.
++ * Returns 0 on success.
++ */
++extern int dwc_otg_hcd_urb_enqueue(dwc_otg_hcd_t * dwc_otg_hcd,
++ dwc_otg_hcd_urb_t * dwc_otg_urb,
++ void **ep_handle, int atomic_alloc);
++
++/** De-queue the specified URB
++ *
++ * @param dwc_otg_hcd The HCD
++ * @param dwc_otg_urb DWC_OTG URB
++ */
++extern int dwc_otg_hcd_urb_dequeue(dwc_otg_hcd_t * dwc_otg_hcd,
++ dwc_otg_hcd_urb_t * dwc_otg_urb);
++
++/** Frees resources in the DWC_otg controller related to a given endpoint.
++ * Any URBs for the endpoint must already be dequeued.
++ *
++ * @param hcd The HCD
++ * @param ep_handle Endpoint handle, returned by dwc_otg_hcd_urb_enqueue function
++ * @param retry Number of retries if there are queued transfers.
++ *
++ * Returns -DWC_E_INVALID if invalid arguments are passed.
++ * Returns 0 on success
++ */
++extern int dwc_otg_hcd_endpoint_disable(dwc_otg_hcd_t * hcd, void *ep_handle,
++ int retry);
++
++/* Resets the data toggle in qh structure. This function can be called from
++ * usb_clear_halt routine.
++ *
++ * @param hcd The HCD
++ * @param ep_handle Endpoint handle, returned by dwc_otg_hcd_urb_enqueue function
++ *
++ * Returns -DWC_E_INVALID if invalid arguments are passed.
++ * Returns 0 on success
++ */
++extern int dwc_otg_hcd_endpoint_reset(dwc_otg_hcd_t * hcd, void *ep_handle);
++
++/** Returns 1 if status of specified port is changed and 0 otherwise.
++ *
++ * @param hcd The HCD
++ * @param port Port number
++ */
++extern int dwc_otg_hcd_is_status_changed(dwc_otg_hcd_t * hcd, int port);
++
++/** Call this function to check if bandwidth was allocated for specified endpoint.
++ * Only for ISOC and INTERRUPT endpoints.
++ *
++ * @param hcd The HCD
++ * @param ep_handle Endpoint handle
++ */
++extern int dwc_otg_hcd_is_bandwidth_allocated(dwc_otg_hcd_t * hcd,
++ void *ep_handle);
++
++/** Call this function to check if bandwidth was freed for specified endpoint.
++ *
++ * @param hcd The HCD
++ * @param ep_handle Endpoint handle
++ */
++extern int dwc_otg_hcd_is_bandwidth_freed(dwc_otg_hcd_t * hcd, void *ep_handle);
++
++/** Returns bandwidth allocated for specified endpoint in microseconds.
++ * Only for ISOC and INTERRUPT endpoints.
++ *
++ * @param hcd The HCD
++ * @param ep_handle Endpoint handle
++ */
++extern uint8_t dwc_otg_hcd_get_ep_bandwidth(dwc_otg_hcd_t * hcd,
++ void *ep_handle);
++
++/** @} */
++
++#endif /* __DWC_HCD_IF_H__ */
++#endif /* DWC_DEVICE_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,2258 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
++ * $Revision: #89 $
++ * $Date: 2011/10/20 $
++ * $Change: 1869487 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_mphi_fix.h"
++
++#include <linux/jiffies.h>
++#include <mach/hardware.h>
++
++
++extern bool microframe_schedule;
++
++/** @file
++ * This file contains the implementation of the HCD Interrupt handlers.
++ */
++
++/*
++ * Some globals to communicate between the FIQ and INTERRUPT
++ */
++
++void * dummy_send;
++mphi_regs_t c_mphi_regs;
++int fiq_done, int_done;
++int g_next_sched_frame, g_np_count, g_np_sent, g_work_expected;
++static int mphi_int_count = 0 ;
++
++extern bool fiq_fix_enable, nak_holdoff_enable;
++
++hcchar_data_t nak_hcchar;
++hctsiz_data_t nak_hctsiz;
++hcsplt_data_t nak_hcsplt;
++int nak_count;
++
++void __attribute__ ((naked)) dwc_otg_hcd_handle_fiq(void)
++{
++ gintsts_data_t gintsts;
++ hfnum_data_t hfnum;
++
++ /* entry takes care to store registers we will be treading on here */
++ asm __volatile__ (
++ "mov ip, sp ;"
++ /* stash FIQ and normal regs */
++ "stmdb sp!, {r0-r12, lr};"
++ /* !! THIS SETS THE FRAME, adjust to > sizeof locals */
++ "sub fp, ip, #256 ;"
++ );
++
++ fiq_done++;
++ gintsts.d32 = FIQ_READ_IO_ADDRESS(USB_BASE + 0x14) & FIQ_READ_IO_ADDRESS(USB_BASE + 0x18);
++ hfnum.d32 = FIQ_READ_IO_ADDRESS(USB_BASE + 0x408);
++
++ if(gintsts.d32)
++ {
++ if(gintsts.b.sofintr && g_np_count == g_np_sent && dwc_frame_num_gt(g_next_sched_frame, hfnum.b.frnum))
++ {
++ /*
++ * If np_count != np_sent that means we need to queue non-periodic (bulk) packets this packet
++ * g_next_sched_frame is the next frame we have periodic packets for
++ *
++ * if neither of these are required for this frame then just clear the interrupt
++ */
++ gintsts.d32 = 0;
++ gintsts.b.sofintr = 1;
++ FIQ_WRITE_IO_ADDRESS((USB_BASE + 0x14), gintsts.d32);
++
++ g_work_expected = 0;
++ }
++ else
++ {
++ g_work_expected = 1;
++ /* To enable the MPHI interrupt (INT 32)
++ */
++ FIQ_WRITE( c_mphi_regs.outdda, (int) dummy_send);
++ FIQ_WRITE( c_mphi_regs.outddb, (1 << 29));
++
++ mphi_int_count++;
++ /* Clear the USB global interrupt so we don't just sit in the FIQ */
++ FIQ_MODIFY_IO_ADDRESS((USB_BASE + 0x8),1,0);
++
++ }
++ }
++ mb();
++
++ /* exit back to normal mode restoring everything */
++ asm __volatile__ (
++ /* return FIQ regs back to pristine state
++ * and get normal regs back
++ */
++ "ldmia sp!, {r0-r12, lr};"
++
++ /* return */
++ "subs pc, lr, #4;"
++ );
++}
++
++/** This function handles interrupts for the HCD. */
++int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ int retval = 0;
++ static int last_time;
++
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ gintsts_data_t gintsts;
++ hfnum_data_t hfnum;
++
++#ifdef DEBUG
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++
++#endif
++
++ /* Exit from ISR if core is hibernated */
++ if (core_if->hibernation_suspend == 1) {
++ goto exit_handler_routine;
++ }
++ DWC_SPINLOCK(dwc_otg_hcd->lock);
++ /* Check if HOST Mode */
++ if (dwc_otg_is_host_mode(core_if)) {
++ gintsts.d32 = dwc_otg_read_core_intr(core_if);
++ if (!gintsts.d32) {
++ goto exit_handler_routine;
++ }
++#ifdef DEBUG
++ /* Don't print debug message in the interrupt handler on SOF */
++#ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#endif
++ DWC_DEBUGPL(DBG_HCDI, "\n");
++#endif
++
++#ifdef DEBUG
++#ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#endif
++ DWC_DEBUGPL(DBG_HCDI,
++ "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x core_if=%p\n",
++ gintsts.d32, core_if);
++#endif
++ hfnum.d32 = DWC_READ_REG32(&dwc_otg_hcd->core_if->host_if->host_global_regs->hfnum);
++ if (gintsts.b.sofintr && g_np_count == g_np_sent && dwc_frame_num_gt(g_next_sched_frame, hfnum.b.frnum))
++ {
++ /* Note, we should never get here if the FIQ is doing it's job properly*/
++ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd, g_work_expected);
++ }
++ else if (gintsts.b.sofintr) {
++ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd, g_work_expected);
++ }
++ if (gintsts.b.rxstsqlvl) {
++ retval |=
++ dwc_otg_hcd_handle_rx_status_q_level_intr
++ (dwc_otg_hcd);
++ }
++ if (gintsts.b.nptxfempty) {
++ retval |=
++ dwc_otg_hcd_handle_np_tx_fifo_empty_intr
++ (dwc_otg_hcd);
++ }
++ if (gintsts.b.i2cintr) {
++ /** @todo Implement i2cintr handler. */
++ }
++ if (gintsts.b.portintr) {
++ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
++ }
++ if (gintsts.b.hcintr) {
++ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
++ }
++ if (gintsts.b.ptxfempty) {
++ retval |=
++ dwc_otg_hcd_handle_perio_tx_fifo_empty_intr
++ (dwc_otg_hcd);
++ }
++#ifdef DEBUG
++#ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#endif
++ {
++ DWC_DEBUGPL(DBG_HCDI,
++ "DWC OTG HCD Finished Servicing Interrupts\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
++ DWC_READ_REG32(&global_regs->gintsts));
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
++ DWC_READ_REG32(&global_regs->gintmsk));
++ }
++#endif
++
++#ifdef DEBUG
++#ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#endif
++ DWC_DEBUGPL(DBG_HCDI, "\n");
++#endif
++
++ }
++
++exit_handler_routine:
++
++ if (fiq_fix_enable)
++ {
++ /* Clear the MPHI interrupt */
++ DWC_WRITE_REG32(c_mphi_regs.intstat, (1<<16));
++ if (mphi_int_count >= 60)
++ {
++ DWC_WRITE_REG32(c_mphi_regs.ctrl, ((1<<31) + (1<<16)));
++ while(!(DWC_READ_REG32(c_mphi_regs.ctrl) & (1 << 17)))
++ ;
++ DWC_WRITE_REG32(c_mphi_regs.ctrl, (1<<31));
++ mphi_int_count = 0;
++ }
++ int_done++;
++ if((jiffies / HZ) > last_time)
++ {
++ /* Once a second output the fiq and irq numbers, useful for debug */
++ last_time = jiffies / HZ;
++ DWC_DEBUGPL(DBG_USER, "int_done = %d fiq_done = %d\n", int_done, fiq_done);
++ }
++
++ /* Re-Enable FIQ interrupt from USB peripheral */
++ DWC_MODIFY_REG32((uint32_t *)IO_ADDRESS(USB_BASE + 0x8), 0 , 1);
++ }
++
++ DWC_SPINUNLOCK(dwc_otg_hcd->lock);
++ return retval;
++}
++
++#ifdef DWC_TRACK_MISSED_SOFS
++
++#warning Compiling code to track missed SOFs
++#define FRAME_NUM_ARRAY_SIZE 1000
++/**
++ * This function is for debug only.
++ */
++static inline void track_missed_sofs(uint16_t curr_frame_number)
++{
++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static int frame_num_idx = 0;
++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
++ static int dumped_frame_num_array = 0;
++
++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
++ if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) !=
++ curr_frame_number) {
++ frame_num_array[frame_num_idx] = curr_frame_number;
++ last_frame_num_array[frame_num_idx++] = last_frame_num;
++ }
++ } else if (!dumped_frame_num_array) {
++ int i;
++ DWC_PRINTF("Frame Last Frame\n");
++ DWC_PRINTF("----- ----------\n");
++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
++ DWC_PRINTF("0x%04x 0x%04x\n",
++ frame_num_array[i], last_frame_num_array[i]);
++ }
++ dumped_frame_num_array = 1;
++ }
++ last_frame_num = curr_frame_number;
++}
++#endif
++
++/**
++ * Handles the start-of-frame interrupt in host mode. Non-periodic
++ * transactions may be queued to the DWC_otg controller for the current
++ * (micro)frame. Periodic transactions may be queued to the controller for the
++ * next (micro)frame.
++ */
++int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t * hcd, int32_t work_expected)
++{
++ hfnum_data_t hfnum;
++ dwc_list_link_t *qh_entry;
++ dwc_otg_qh_t *qh;
++ dwc_otg_transaction_type_e tr_type;
++ gintsts_data_t gintsts = {.d32 = 0 };
++ int did_something = 0;
++ int32_t next_sched_frame = -1;
++
++ hfnum.d32 =
++ DWC_READ_REG32(&hcd->core_if->host_if->host_global_regs->hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
++#endif
++ hcd->frame_number = hfnum.b.frnum;
++
++#ifdef DEBUG
++ hcd->frrem_accum += hfnum.b.frrem;
++ hcd->frrem_samples++;
++#endif
++
++#ifdef DWC_TRACK_MISSED_SOFS
++ track_missed_sofs(hcd->frame_number);
++#endif
++ /* Determine whether any periodic QHs should be executed. */
++ qh_entry = DWC_LIST_FIRST(&hcd->periodic_sched_inactive);
++ while (qh_entry != &hcd->periodic_sched_inactive) {
++ qh = DWC_LIST_ENTRY(qh_entry, dwc_otg_qh_t, qh_list_entry);
++ qh_entry = qh_entry->next;
++ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
++ /*
++ * Move QH to the ready list to be executed next
++ * (micro)frame.
++ */
++ DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_ready,
++ &qh->qh_list_entry);
++
++ did_something = 1;
++ }
++ else
++ {
++ if(next_sched_frame < 0 || dwc_frame_num_le(qh->sched_frame, next_sched_frame))
++ {
++ next_sched_frame = qh->sched_frame;
++ }
++ }
++ }
++
++ g_next_sched_frame = next_sched_frame;
++
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++ did_something = 1;
++ }
++ if(work_expected && !did_something)
++ DWC_DEBUGPL(DBG_USER, "Nothing to do !! frame = %x, g_next_sched_frame = %x\n", (int) hfnum.b.frnum, g_next_sched_frame);
++ if(!work_expected && did_something)
++ DWC_DEBUGPL(DBG_USER, "Unexpected work done !! frame = %x, g_next_sched_frame = %x\n", (int) hfnum.b.frnum, g_next_sched_frame);
++
++
++ /* Clear interrupt */
++ gintsts.b.sofintr = 1;
++ DWC_WRITE_REG32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
++ * least one packet in the Rx FIFO. The packets are moved from the FIFO to
++ * memory if the DWC_otg controller is operating in Slave mode. */
++int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ host_grxsts_data_t grxsts;
++ dwc_hc_t *hc = NULL;
++
++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
++
++ grxsts.d32 =
++ DWC_READ_REG32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
++
++ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
++ if (!hc) {
++ DWC_ERROR("Unable to get corresponding channel\n");
++ return 0;
++ }
++
++ /* Packet Status */
++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid,
++ hc->data_pid_start);
++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer. */
++ if (grxsts.b.bcnt > 0) {
++ dwc_otg_read_packet(dwc_otg_hcd->core_if,
++ hc->xfer_buff, grxsts.b.bcnt);
++
++ /* Update the HC fields for the next packet received. */
++ hc->xfer_count += grxsts.b.bcnt;
++ hc->xfer_buff += grxsts.b.bcnt;
++ }
++
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
++ case DWC_GRXSTS_PKTSTS_CH_HALTED:
++ /* Handled in interrupt, just ignore data */
++ break;
++ default:
++ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n",
++ grxsts.b.pktsts);
++ break;
++ }
++
++ return 1;
++}
++
++/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
++ * data packets may be written to the FIFO for OUT transfers. More requests
++ * may be written to the non-periodic request queue for IN transfers. This
++ * interrupt is enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_NON_PERIODIC);
++ return 1;
++}
++
++/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
++ * packets may be written to the FIFO for OUT transfers. More requests may be
++ * written to the periodic request queue for IN transfers. This interrupt is
++ * enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_PERIODIC);
++ return 1;
++}
++
++/** There are multiple conditions that can cause a port interrupt. This function
++ * determines which interrupt conditions have occurred and handles them
++ * appropriately. */
++int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ int retval = 0;
++ hprt0_data_t hprt0;
++ hprt0_data_t hprt0_modify;
++
++ hprt0.d32 = DWC_READ_REG32(dwc_otg_hcd->core_if->host_if->hprt0);
++ hprt0_modify.d32 = DWC_READ_REG32(dwc_otg_hcd->core_if->host_if->hprt0);
++
++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
++ * GINTSTS */
++
++ hprt0_modify.b.prtena = 0;
++ hprt0_modify.b.prtconndet = 0;
++ hprt0_modify.b.prtenchng = 0;
++ hprt0_modify.b.prtovrcurrchng = 0;
++
++ /* Port Connect Detected
++ * Set flag and clear if detected */
++ if (dwc_otg_hcd->core_if->hibernation_suspend == 1) {
++ // Dont modify port status if we are in hibernation state
++ hprt0_modify.b.prtconndet = 1;
++ hprt0_modify.b.prtenchng = 1;
++ DWC_WRITE_REG32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
++ hprt0.d32 = DWC_READ_REG32(dwc_otg_hcd->core_if->host_if->hprt0);
++ return retval;
++ }
++
++ if (hprt0.b.prtconndet) {
++ /** @todo - check if steps performed in 'else' block should be perfromed regardles adp */
++ if (dwc_otg_hcd->core_if->adp_enable &&
++ dwc_otg_hcd->core_if->adp.vbuson_timer_started == 1) {
++ DWC_PRINTF("PORT CONNECT DETECTED ----------------\n");
++ DWC_TIMER_CANCEL(dwc_otg_hcd->core_if->adp.vbuson_timer);
++ dwc_otg_hcd->core_if->adp.vbuson_timer_started = 0;
++ /* TODO - check if this is required, as
++ * host initialization was already performed
++ * after initial ADP probing
++ */
++ /*dwc_otg_hcd->core_if->adp.vbuson_timer_started = 0;
++ dwc_otg_core_init(dwc_otg_hcd->core_if);
++ dwc_otg_enable_global_interrupts(dwc_otg_hcd->core_if);
++ cil_hcd_start(dwc_otg_hcd->core_if);*/
++ } else {
++
++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
++ "Port Connect Detected--\n", hprt0.d32);
++ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ dwc_otg_hcd->flags.b.port_connect_status = 1;
++ hprt0_modify.b.prtconndet = 1;
++
++ /* B-Device has connected, Delete the connection timer. */
++ DWC_TIMER_CANCEL(dwc_otg_hcd->conn_timer);
++ }
++ /* The Hub driver asserts a reset when it sees port connect
++ * status change flag */
++ retval |= 1;
++ }
++
++ /* Port Enable Changed
++ * Clear if detected - Set internal flag if disabled */
++ if (hprt0.b.prtenchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Enable Changed--\n", hprt0.d32);
++ hprt0_modify.b.prtenchng = 1;
++ if (hprt0.b.prtena == 1) {
++ hfir_data_t hfir;
++ int do_reset = 0;
++ dwc_otg_core_params_t *params =
++ dwc_otg_hcd->core_if->core_params;
++ dwc_otg_core_global_regs_t *global_regs =
++ dwc_otg_hcd->core_if->core_global_regs;
++ dwc_otg_host_if_t *host_if =
++ dwc_otg_hcd->core_if->host_if;
++
++ /* Every time when port enables calculate
++ * HFIR.FrInterval
++ */
++ hfir.d32 = DWC_READ_REG32(&host_if->host_global_regs->hfir);
++ hfir.b.frint = calc_frame_interval(dwc_otg_hcd->core_if);
++ DWC_WRITE_REG32(&host_if->host_global_regs->hfir, hfir.d32);
++
++ /* Check if we need to adjust the PHY clock speed for
++ * low power and adjust it */
++ if (params->host_support_fs_ls_low_power) {
++ gusbcfg_data_t usbcfg;
++
++ usbcfg.d32 =
++ DWC_READ_REG32(&global_regs->gusbcfg);
++
++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED
++ || hprt0.b.prtspd ==
++ DWC_HPRT0_PRTSPD_FULL_SPEED) {
++ /*
++ * Low power
++ */
++ hcfg_data_t hcfg;
++ if (usbcfg.b.phylpwrclksel == 0) {
++ /* Set PHY low power clock select for FS/LS devices */
++ usbcfg.b.phylpwrclksel = 1;
++ DWC_WRITE_REG32
++ (&global_regs->gusbcfg,
++ usbcfg.d32);
++ do_reset = 1;
++ }
++
++ hcfg.d32 =
++ DWC_READ_REG32
++ (&host_if->host_global_regs->hcfg);
++
++ if (hprt0.b.prtspd ==
++ DWC_HPRT0_PRTSPD_LOW_SPEED
++ && params->host_ls_low_power_phy_clk
++ ==
++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)
++ {
++ /* 6 MHZ */
++ DWC_DEBUGPL(DBG_CIL,
++ "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
++ if (hcfg.b.fslspclksel !=
++ DWC_HCFG_6_MHZ) {
++ hcfg.b.fslspclksel =
++ DWC_HCFG_6_MHZ;
++ DWC_WRITE_REG32
++ (&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ } else {
++ /* 48 MHZ */
++ DWC_DEBUGPL(DBG_CIL,
++ "FS_PHY programming HCFG to 48 MHz ()\n");
++ if (hcfg.b.fslspclksel !=
++ DWC_HCFG_48_MHZ) {
++ hcfg.b.fslspclksel =
++ DWC_HCFG_48_MHZ;
++ DWC_WRITE_REG32
++ (&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ }
++ } else {
++ /*
++ * Not low power
++ */
++ if (usbcfg.b.phylpwrclksel == 1) {
++ usbcfg.b.phylpwrclksel = 0;
++ DWC_WRITE_REG32
++ (&global_regs->gusbcfg,
++ usbcfg.d32);
++ do_reset = 1;
++ }
++ }
++
++ if (do_reset) {
++ DWC_TASK_SCHEDULE(dwc_otg_hcd->reset_tasklet);
++ }
++ }
++
++ if (!do_reset) {
++ /* Port has been enabled set the reset change flag */
++ dwc_otg_hcd->flags.b.port_reset_change = 1;
++ }
++ } else {
++ dwc_otg_hcd->flags.b.port_enable_change = 1;
++ }
++ retval |= 1;
++ }
++
++ /** Overcurrent Change Interrupt */
++ if (hprt0.b.prtovrcurrchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Overcurrent Changed--\n", hprt0.d32);
++ dwc_otg_hcd->flags.b.port_over_current_change = 1;
++ hprt0_modify.b.prtovrcurrchng = 1;
++ retval |= 1;
++ }
++
++ /* Clear Port Interrupts */
++ DWC_WRITE_REG32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
++
++ return retval;
++}
++
++/** This interrupt indicates that one or more host channels has a pending
++ * interrupt. There are multiple conditions that can cause each host channel
++ * interrupt. This function determines which conditions have occurred for each
++ * host channel interrupt and handles them appropriately. */
++int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ int i;
++ int retval = 0;
++ haint_data_t haint;
++
++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
++ * GINTSTS */
++
++ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
++
++ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
++ if (haint.b2.chint & (1 << i)) {
++ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
++ }
++ }
++
++ return retval;
++}
++
++/**
++ * Gets the actual length of a transfer after the transfer halts. _halt_status
++ * holds the reason for the halt.
++ *
++ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
++ * *short_read is set to 1 upon return if less than the requested
++ * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
++ * return. short_read may also be NULL on entry, in which case it remains
++ * unchanged.
++ */
++static uint32_t get_actual_xfer_length(dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_halt_status_e halt_status,
++ int *short_read)
++{
++ hctsiz_data_t hctsiz;
++ uint32_t length;
++
++ if (short_read != NULL) {
++ *short_read = 0;
++ }
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++
++ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
++ if (hc->ep_is_in) {
++ length = hc->xfer_len - hctsiz.b.xfersize;
++ if (short_read != NULL) {
++ *short_read = (hctsiz.b.xfersize != 0);
++ }
++ } else if (hc->qh->do_split) {
++ length = qtd->ssplit_out_xfer_count;
++ } else {
++ length = hc->xfer_len;
++ }
++ } else {
++ /*
++ * Must use the hctsiz.pktcnt field to determine how much data
++ * has been transferred. This field reflects the number of
++ * packets that have been transferred via the USB. This is
++ * always an integral number of packets if the transfer was
++ * halted before its normal completion. (Can't use the
++ * hctsiz.xfersize field because that reflects the number of
++ * bytes transferred via the AHB, not the USB).
++ */
++ length =
++ (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
++ }
++
++ return length;
++}
++
++/**
++ * Updates the state of the URB after a Transfer Complete interrupt on the
++ * host channel. Updates the actual_length field of the URB based on the
++ * number of bytes transferred via the host channel. Sets the URB status
++ * if the data transfer is finished.
++ *
++ * @return 1 if the data transfer specified by the URB is completely finished,
++ * 0 otherwise.
++ */
++static int update_urb_state_xfer_comp(dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_hcd_urb_t * urb,
++ dwc_otg_qtd_t * qtd)
++{
++ int xfer_done = 0;
++ int short_read = 0;
++
++ int xfer_length;
++
++ xfer_length = get_actual_xfer_length(hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_COMPLETE,
++ &short_read);
++
++
++ /* non DWORD-aligned buffer case handling. */
++ if (hc->align_buff && xfer_length && hc->ep_is_in) {
++ dwc_memcpy(urb->buf + urb->actual_length, hc->qh->dw_align_buf,
++ xfer_length);
++ }
++
++ urb->actual_length += xfer_length;
++
++ if (xfer_length && (hc->ep_type == DWC_OTG_EP_TYPE_BULK) &&
++ (urb->flags & URB_SEND_ZERO_PACKET)
++ && (urb->actual_length == urb->length)
++ && !(urb->length % hc->max_packet)) {
++ xfer_done = 0;
++ } else if (short_read || urb->actual_length >= urb->length) {
++ xfer_done = 1;
++ urb->status = 0;
++ }
++
++#ifdef DEBUG
++ {
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (hc->ep_is_in ? "IN" : "OUT"),
++ hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n",
++ hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
++ urb->length);
++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n",
++ urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
++ short_read, xfer_done);
++ }
++#endif
++
++ return xfer_done;
++}
++
++/*
++ * Save the starting data toggle for the next transfer. The data toggle is
++ * saved in the QH for non-control transfers and it's saved in the QTD for
++ * control transfers.
++ */
++void dwc_otg_hcd_save_data_toggle(dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs, dwc_otg_qtd_t * qtd)
++{
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++
++ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
++ dwc_otg_qh_t *qh = hc->qh;
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ } else {
++ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
++ }
++ } else {
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
++ } else {
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ }
++ }
++}
++
++/**
++ * Updates the state of an Isochronous URB when the transfer is stopped for
++ * any reason. The fields of the current entry in the frame descriptor array
++ * are set based on the transfer state and the input _halt_status. Completes
++ * the Isochronous URB if all the URB frames have been completed.
++ *
++ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
++ */
++static dwc_otg_halt_status_e
++update_isoc_urb_state(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd, dwc_otg_halt_status_e halt_status)
++{
++ dwc_otg_hcd_urb_t *urb = qtd->urb;
++ dwc_otg_halt_status_e ret_val = halt_status;
++ struct dwc_otg_hcd_iso_packet_desc *frame_desc;
++
++ frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
++ switch (halt_status) {
++ case DWC_OTG_HC_XFER_COMPLETE:
++ frame_desc->status = 0;
++ frame_desc->actual_length =
++ get_actual_xfer_length(hc, hc_regs, qtd, halt_status, NULL);
++
++ /* non DWORD-aligned buffer case handling. */
++ if (hc->align_buff && frame_desc->actual_length && hc->ep_is_in) {
++ dwc_memcpy(urb->buf + frame_desc->offset + qtd->isoc_split_offset,
++ hc->qh->dw_align_buf, frame_desc->actual_length);
++ }
++
++ break;
++ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
++ urb->error_count++;
++ if (hc->ep_is_in) {
++ frame_desc->status = -DWC_E_NO_STREAM_RES;
++ } else {
++ frame_desc->status = -DWC_E_COMMUNICATION;
++ }
++ frame_desc->actual_length = 0;
++ break;
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ urb->error_count++;
++ frame_desc->status = -DWC_E_OVERFLOW;
++ /* Don't need to update actual_length in this case. */
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ urb->error_count++;
++ frame_desc->status = -DWC_E_PROTOCOL;
++ frame_desc->actual_length =
++ get_actual_xfer_length(hc, hc_regs, qtd, halt_status, NULL);
++
++ /* non DWORD-aligned buffer case handling. */
++ if (hc->align_buff && frame_desc->actual_length && hc->ep_is_in) {
++ dwc_memcpy(urb->buf + frame_desc->offset + qtd->isoc_split_offset,
++ hc->qh->dw_align_buf, frame_desc->actual_length);
++ }
++ /* Skip whole frame */
++ if (hc->qh->do_split && (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) &&
++ hc->ep_is_in && hcd->core_if->dma_enable) {
++ qtd->complete_split = 0;
++ qtd->isoc_split_offset = 0;
++ }
++
++ break;
++ default:
++ DWC_ASSERT(1, "Unhandled _halt_status (%d)\n", halt_status);
++ break;
++ }
++ if (++qtd->isoc_frame_index == urb->packet_count) {
++ /*
++ * urb->status is not used for isoc transfers.
++ * The individual frame_desc statuses are used instead.
++ */
++ hcd->fops->complete(hcd, urb->priv, urb, 0);
++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ ret_val = DWC_OTG_HC_XFER_COMPLETE;
++ }
++ return ret_val;
++}
++
++/**
++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
++ * still linked to the QH, the QH is added to the end of the inactive
++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
++ * schedule if no more QTDs are linked to the QH.
++ */
++static void deactivate_qh(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh, int free_qtd)
++{
++ int continue_split = 0;
++ dwc_otg_qtd_t *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
++
++ qtd = DWC_CIRCLEQ_FIRST(&qh->qtd_list);
++
++ if (qtd->complete_split) {
++ continue_split = 1;
++ } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
++ qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
++ continue_split = 1;
++ }
++
++ if (free_qtd) {
++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd, qh);
++ continue_split = 0;
++ }
++
++ qh->channel = NULL;
++ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
++}
++
++/**
++ * Releases a host channel for use by other transfers. Attempts to select and
++ * queue more transactions since at least one host channel is available.
++ *
++ * @param hcd The HCD state structure.
++ * @param hc The host channel to release.
++ * @param qtd The QTD associated with the host channel. This QTD may be freed
++ * if the transfer is complete or an error has occurred.
++ * @param halt_status Reason the channel is being released. This status
++ * determines the actions taken by this function.
++ */
++static void release_channel(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ dwc_otg_transaction_type_e tr_type;
++ int free_qtd;
++ dwc_irqflags_t flags;
++ dwc_spinlock_t *channel_lock = hcd->channel_lock;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d, xfer_len %d\n",
++ __func__, hc->hc_num, halt_status, hc->xfer_len);
++
++ switch (halt_status) {
++ case DWC_OTG_HC_XFER_URB_COMPLETE:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_AHB_ERR:
++ case DWC_OTG_HC_XFER_STALL:
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ if (qtd->error_count >= 3) {
++ DWC_DEBUGPL(DBG_HCDV,
++ " Complete URB with transaction error\n");
++ free_qtd = 1;
++ qtd->urb->status = -DWC_E_PROTOCOL;
++ hcd->fops->complete(hcd, qtd->urb->priv,
++ qtd->urb, -DWC_E_PROTOCOL);
++ } else {
++ free_qtd = 0;
++ }
++ break;
++ case DWC_OTG_HC_XFER_URB_DEQUEUE:
++ /*
++ * The QTD has already been removed and the QH has been
++ * deactivated. Don't want to do anything except release the
++ * host channel and try to queue more transfers.
++ */
++ goto cleanup;
++ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
++ free_qtd = 0;
++ break;
++ case DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE:
++ DWC_DEBUGPL(DBG_HCDV,
++ " Complete URB with I/O error\n");
++ free_qtd = 1;
++ qtd->urb->status = -DWC_E_IO;
++ hcd->fops->complete(hcd, qtd->urb->priv,
++ qtd->urb, -DWC_E_IO);
++ break;
++ default:
++ free_qtd = 0;
++ break;
++ }
++
++ deactivate_qh(hcd, hc->qh, free_qtd);
++
++cleanup:
++ /*
++ * Release the host channel for use by other transfers. The cleanup
++ * function clears the channel interrupt enables and conditions, so
++ * there's no need to clear the Channel Halted interrupt separately.
++ */
++ dwc_otg_hc_cleanup(hcd->core_if, hc);
++ DWC_CIRCLEQ_INSERT_TAIL(&hcd->free_hc_list, hc, hc_list_entry);
++
++ if (!microframe_schedule) {
++ switch (hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ hcd->non_periodic_channels--;
++ break;
++
++ default:
++ /*
++ * Don't release reservations for periodic channels here.
++ * That's done when a periodic transfer is descheduled (i.e.
++ * when the QH is removed from the periodic schedule).
++ */
++ break;
++ }
++ } else {
++
++ DWC_SPINLOCK_IRQSAVE(channel_lock, &flags);
++ hcd->available_host_channels++;
++ DWC_SPINUNLOCK_IRQRESTORE(channel_lock, flags);
++ }
++
++ /* Try to queue more transfers now that there's a free channel. */
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++ }
++}
++
++/**
++ * Halts a host channel. If the channel cannot be halted immediately because
++ * the request queue is full, this function ensures that the FIFO empty
++ * interrupt for the appropriate queue is enabled so that the halt request can
++ * be queued when there is space in the request queue.
++ *
++ * This function may also be called in DMA mode. In that case, the channel is
++ * simply released since the core always halts the channel automatically in
++ * DMA mode.
++ */
++static void halt_channel(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_qtd_t * qtd, dwc_otg_halt_status_e halt_status)
++{
++ if (hcd->core_if->dma_enable) {
++ release_channel(hcd, hc, qtd, halt_status);
++ return;
++ }
++
++ /* Slave mode processing... */
++ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
++
++ if (hc->halt_on_queue) {
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++ dwc_otg_core_global_regs_t *global_regs;
++ global_regs = hcd->core_if->core_global_regs;
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ /*
++ * Make sure the Non-periodic Tx FIFO empty interrupt
++ * is enabled so that the non-periodic schedule will
++ * be processed.
++ */
++ gintmsk.b.nptxfempty = 1;
++ DWC_MODIFY_REG32(&global_regs->gintmsk, 0, gintmsk.d32);
++ } else {
++ /*
++ * Move the QH from the periodic queued schedule to
++ * the periodic assigned schedule. This allows the
++ * halt to be queued when the periodic schedule is
++ * processed.
++ */
++ DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_assigned,
++ &hc->qh->qh_list_entry);
++
++ /*
++ * Make sure the Periodic Tx FIFO Empty interrupt is
++ * enabled so that the periodic schedule will be
++ * processed.
++ */
++ gintmsk.b.ptxfempty = 1;
++ DWC_MODIFY_REG32(&global_regs->gintmsk, 0, gintmsk.d32);
++ }
++ }
++}
++
++/**
++ * Performs common cleanup for non-periodic transfers after a Transfer
++ * Complete interrupt. This function should be called after any endpoint type
++ * specific handling is finished to release the host channel.
++ */
++static void complete_non_periodic_xfer(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ hcint_data_t hcint;
++
++ qtd->error_count = 0;
++
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++ if (hcint.b.nyet) {
++ /*
++ * Got a NYET on the last transaction of the transfer. This
++ * means that the endpoint should be in the PING state at the
++ * beginning of the next transfer.
++ */
++ hc->qh->ping_state = 1;
++ clear_hc_int(hc_regs, nyet);
++ }
++
++ /*
++ * Always halt and release the host channel to make it available for
++ * more transfers. There may still be more phases for a control
++ * transfer or more data packets for a bulk transfer at this point,
++ * but the host channel is still halted. A channel will be reassigned
++ * to the transfer when the non-periodic schedule is processed after
++ * the channel is released. This allows transactions to be queued
++ * properly via dwc_otg_hcd_queue_transactions, which also enables the
++ * Tx FIFO Empty interrupt if necessary.
++ */
++ if (hc->ep_is_in) {
++ /*
++ * IN transfers in Slave mode require an explicit disable to
++ * halt the channel. (In DMA mode, this call simply releases
++ * the channel.)
++ */
++ halt_channel(hcd, hc, qtd, halt_status);
++ } else {
++ /*
++ * The channel is automatically disabled by the core for OUT
++ * transfers in Slave mode.
++ */
++ release_channel(hcd, hc, qtd, halt_status);
++ }
++}
++
++/**
++ * Performs common cleanup for periodic transfers after a Transfer Complete
++ * interrupt. This function should be called after any endpoint type specific
++ * handling is finished to release the host channel.
++ */
++static void complete_periodic_xfer(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ hctsiz_data_t hctsiz;
++ qtd->error_count = 0;
++
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
++ /* Core halts channel in these cases. */
++ release_channel(hcd, hc, qtd, halt_status);
++ } else {
++ /* Flush any outstanding requests from the Tx queue. */
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++}
++
++static int32_t handle_xfercomp_isoc_split_in(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ uint32_t len;
++ struct dwc_otg_hcd_iso_packet_desc *frame_desc;
++ frame_desc = &qtd->urb->iso_descs[qtd->isoc_frame_index];
++
++ len = get_actual_xfer_length(hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_COMPLETE, NULL);
++
++ if (!len) {
++ qtd->complete_split = 0;
++ qtd->isoc_split_offset = 0;
++ return 0;
++ }
++ frame_desc->actual_length += len;
++
++ if (hc->align_buff && len)
++ dwc_memcpy(qtd->urb->buf + frame_desc->offset +
++ qtd->isoc_split_offset, hc->qh->dw_align_buf, len);
++ qtd->isoc_split_offset += len;
++
++ if (frame_desc->length == frame_desc->actual_length) {
++ frame_desc->status = 0;
++ qtd->isoc_frame_index++;
++ qtd->complete_split = 0;
++ qtd->isoc_split_offset = 0;
++ }
++
++ if (qtd->isoc_frame_index == qtd->urb->packet_count) {
++ hcd->fops->complete(hcd, qtd->urb->priv, qtd->urb, 0);
++ release_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_URB_COMPLETE);
++ } else {
++ release_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NO_HALT_STATUS);
++ }
++
++ return 1; /* Indicates that channel released */
++}
++
++/**
++ * Handles a host channel Transfer Complete interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ int urb_xfer_done;
++ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ dwc_otg_hcd_urb_t *urb = qtd->urb;
++ int pipe_type = dwc_otg_hcd_get_pipe_type(&urb->pipe_info);
++
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "Transfer Complete--\n", hc->hc_num);
++
++ if (hcd->core_if->dma_desc_enable) {
++ dwc_otg_hcd_complete_xfer_ddma(hcd, hc, hc_regs, halt_status);
++ if (pipe_type == UE_ISOCHRONOUS) {
++ /* Do not disable the interrupt, just clear it */
++ clear_hc_int(hc_regs, xfercomp);
++ return 1;
++ }
++ goto handle_xfercomp_done;
++ }
++
++ /*
++ * Handle xfer complete on CSPLIT.
++ */
++
++ if (hc->qh->do_split) {
++ if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && hc->ep_is_in
++ && hcd->core_if->dma_enable) {
++ if (qtd->complete_split
++ && handle_xfercomp_isoc_split_in(hcd, hc, hc_regs,
++ qtd))
++ goto handle_xfercomp_done;
++ } else {
++ qtd->complete_split = 0;
++ }
++ }
++
++ /* Update the QTD and URB states. */
++ switch (pipe_type) {
++ case UE_CONTROL:
++ switch (qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ if (urb->length > 0) {
++ qtd->control_phase = DWC_OTG_CONTROL_DATA;
++ } else {
++ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ }
++ DWC_DEBUGPL(DBG_HCDV,
++ " Control setup transaction done\n");
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ case DWC_OTG_CONTROL_DATA:{
++ urb_xfer_done =
++ update_urb_state_xfer_comp(hc, hc_regs, urb,
++ qtd);
++ if (urb_xfer_done) {
++ qtd->control_phase =
++ DWC_OTG_CONTROL_STATUS;
++ DWC_DEBUGPL(DBG_HCDV,
++ " Control data transfer done\n");
++ } else {
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++ }
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ }
++ case DWC_OTG_CONTROL_STATUS:
++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
++ if (urb->status == -DWC_E_IN_PROGRESS) {
++ urb->status = 0;
++ }
++ hcd->fops->complete(hcd, urb->priv, urb, urb->status);
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ break;
++ }
++
++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ case UE_BULK:
++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
++ urb_xfer_done =
++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++ if (urb_xfer_done) {
++ hcd->fops->complete(hcd, urb->priv, urb, urb->status);
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ case UE_INTERRUPT:
++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
++ urb_xfer_done =
++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++
++ /*
++ * Interrupt URB is done on the first transfer complete
++ * interrupt.
++ */
++ if (urb_xfer_done) {
++ hcd->fops->complete(hcd, urb->priv, urb, urb->status);
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ case UE_ISOCHRONOUS:
++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
++ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++ halt_status =
++ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_COMPLETE);
++ }
++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ }
++
++handle_xfercomp_done:
++ disable_hc_int(hc_regs, xfercompl);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel STALL interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_stall_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ dwc_otg_hcd_urb_t *urb = qtd->urb;
++ int pipe_type = dwc_otg_hcd_get_pipe_type(&urb->pipe_info);
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "STALL Received--\n", hc->hc_num);
++
++ if (hcd->core_if->dma_desc_enable) {
++ dwc_otg_hcd_complete_xfer_ddma(hcd, hc, hc_regs, DWC_OTG_HC_XFER_STALL);
++ goto handle_stall_done;
++ }
++
++ if (pipe_type == UE_CONTROL) {
++ hcd->fops->complete(hcd, urb->priv, urb, -DWC_E_PIPE);
++ }
++
++ if (pipe_type == UE_BULK || pipe_type == UE_INTERRUPT) {
++ hcd->fops->complete(hcd, urb->priv, urb, -DWC_E_PIPE);
++ /*
++ * USB protocol requires resetting the data toggle for bulk
++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
++ * setup command is issued to the endpoint. Anticipate the
++ * CLEAR_FEATURE command since a STALL has occurred and reset
++ * the data toggle now.
++ */
++ hc->qh->data_toggle = 0;
++ }
++
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
++
++handle_stall_done:
++ disable_hc_int(hc_regs, stall);
++
++ return 1;
++}
++
++/*
++ * Updates the state of the URB when a transfer has been stopped due to an
++ * abnormal condition before the transfer completes. Modifies the
++ * actual_length field of the URB to reflect the number of bytes that have
++ * actually been transferred via the host channel.
++ */
++static void update_urb_state_xfer_intr(dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_hcd_urb_t * urb,
++ dwc_otg_qtd_t * qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
++ halt_status, NULL);
++ /* non DWORD-aligned buffer case handling. */
++ if (hc->align_buff && bytes_transferred && hc->ep_is_in) {
++ dwc_memcpy(urb->buf + urb->actual_length, hc->qh->dw_align_buf,
++ bytes_transferred);
++ }
++
++ urb->actual_length += bytes_transferred;
++
++#ifdef DEBUG
++ {
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (hc->ep_is_in ? "IN" : "OUT"),
++ hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n",
++ hc->start_pkt_count);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n",
++ bytes_transferred);
++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n",
++ urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
++ urb->length);
++ }
++#endif
++}
++
++/**
++ * Handles a host channel NAK interrupt. This handler may be called in either
++ * DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nak_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "NAK Received--\n", hc->hc_num);
++
++ /*
++ * When we get bulk NAKs then remember this so we holdoff on this qh until
++ * the beginning of the next frame
++ */
++ switch(dwc_otg_hcd_get_pipe_type(&qtd->urb->pipe_info)) {
++ case UE_BULK:
++ //case UE_INTERRUPT:
++ //case UE_CONTROL:
++ if (nak_holdoff_enable)
++ hc->qh->nak_frame = dwc_otg_hcd_get_frame_number(hcd);
++ }
++
++ /*
++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
++ * interrupt. Re-start the SSPLIT transfer.
++ */
++ if (hc->do_split) {
++ if (hc->complete_split) {
++ qtd->error_count = 0;
++ }
++ qtd->complete_split = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ goto handle_nak_done;
++ }
++
++ switch (dwc_otg_hcd_get_pipe_type(&qtd->urb->pipe_info)) {
++ case UE_CONTROL:
++ case UE_BULK:
++ if (hcd->core_if->dma_enable && hc->ep_is_in) {
++ /*
++ * NAK interrupts are enabled on bulk/control IN
++ * transfers in DMA mode for the sole purpose of
++ * resetting the error count after a transaction error
++ * occurs. The core will continue transferring data.
++ */
++ qtd->error_count = 0;
++ goto handle_nak_done;
++ }
++
++ /*
++ * NAK interrupts normally occur during OUT transfers in DMA
++ * or Slave mode. For IN transfers, more requests will be
++ * queued as request queue space is available.
++ */
++ qtd->error_count = 0;
++
++ if (!hc->qh->ping_state) {
++ update_urb_state_xfer_intr(hc, hc_regs,
++ qtd->urb, qtd,
++ DWC_OTG_HC_XFER_NAK);
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++
++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH)
++ hc->qh->ping_state = 1;
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will
++ * start/continue.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ break;
++ case UE_INTERRUPT:
++ qtd->error_count = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ break;
++ case UE_ISOCHRONOUS:
++ /* Should never get called for isochronous transfers. */
++ DWC_ASSERT(1, "NACK interrupt for ISOC transfer\n");
++ break;
++ }
++
++handle_nak_done:
++ disable_hc_int(hc_regs, nak);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel ACK interrupt. This interrupt is enabled when
++ * performing the PING protocol in Slave mode, when errors occur during
++ * either Slave mode or DMA mode, and during Start Split transactions.
++ */
++static int32_t handle_hc_ack_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "ACK Received--\n", hc->hc_num);
++
++ if (hc->do_split) {
++ /*
++ * Handle ACK on SSPLIT.
++ * ACK should not occur in CSPLIT.
++ */
++ if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
++ qtd->ssplit_out_xfer_count = hc->xfer_len;
++ }
++ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
++ /* Don't need complete for isochronous out transfers. */
++ qtd->complete_split = 1;
++ }
++
++ /* ISOC OUT */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
++ switch (hc->xact_pos) {
++ case DWC_HCSPLIT_XACTPOS_ALL:
++ break;
++ case DWC_HCSPLIT_XACTPOS_END:
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ qtd->isoc_split_offset = 0;
++ break;
++ case DWC_HCSPLIT_XACTPOS_BEGIN:
++ case DWC_HCSPLIT_XACTPOS_MID:
++ /*
++ * For BEGIN or MID, calculate the length for
++ * the next microframe to determine the correct
++ * SSPLIT token, either MID or END.
++ */
++ {
++ struct dwc_otg_hcd_iso_packet_desc
++ *frame_desc;
++
++ frame_desc =
++ &qtd->urb->
++ iso_descs[qtd->isoc_frame_index];
++ qtd->isoc_split_offset += 188;
++
++ if ((frame_desc->length -
++ qtd->isoc_split_offset) <= 188) {
++ qtd->isoc_split_pos =
++ DWC_HCSPLIT_XACTPOS_END;
++ } else {
++ qtd->isoc_split_pos =
++ DWC_HCSPLIT_XACTPOS_MID;
++ }
++
++ }
++ break;
++ }
++ } else {
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++ }
++ } else {
++ qtd->error_count = 0;
++
++ if (hc->qh->ping_state) {
++ hc->qh->ping_state = 0;
++ /*
++ * Halt the channel so the transfer can be re-started
++ * from the appropriate point. This only happens in
++ * Slave mode. In DMA mode, the ping_state is cleared
++ * when the transfer is started because the core
++ * automatically executes the PING, then the transfer.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++ }
++ }
++
++ /*
++ * If the ACK occurred when _not_ in the PING state, let the channel
++ * continue transferring data after clearing the error count.
++ */
++
++ disable_hc_int(hc_regs, ack);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel NYET interrupt. This interrupt should only occur on
++ * Bulk and Control OUT endpoints and for complete split transactions. If a
++ * NYET occurs at the same time as a Transfer Complete interrupt, it is
++ * handled in the xfercomp interrupt handler, not here. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "NYET Received--\n", hc->hc_num);
++
++ /*
++ * NYET on CSPLIT
++ * re-do the CSPLIT immediately on non-periodic
++ */
++ if (hc->do_split && hc->complete_split) {
++ if (hc->ep_is_in && (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)
++ && hcd->core_if->dma_enable) {
++ qtd->complete_split = 0;
++ qtd->isoc_split_offset = 0;
++ if (++qtd->isoc_frame_index == qtd->urb->packet_count) {
++ hcd->fops->complete(hcd, qtd->urb->priv, qtd->urb, 0);
++ release_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_URB_COMPLETE);
++ }
++ else
++ release_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NO_HALT_STATUS);
++ goto handle_nyet_done;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ int frnum = dwc_otg_hcd_get_frame_number(hcd);
++
++ if (dwc_full_frame_num(frnum) !=
++ dwc_full_frame_num(hc->qh->sched_frame)) {
++ /*
++ * No longer in the same full speed frame.
++ * Treat this as a transaction error.
++ */
++#if 0
++ /** @todo Fix system performance so this can
++ * be treated as an error. Right now complete
++ * splits cannot be scheduled precisely enough
++ * due to other system activity, so this error
++ * occurs regularly in Slave mode.
++ */
++ qtd->error_count++;
++#endif
++ qtd->complete_split = 0;
++ halt_channel(hcd, hc, qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++ /** @todo add support for isoc release */
++ goto handle_nyet_done;
++ }
++ }
++
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++ goto handle_nyet_done;
++ }
++
++ hc->qh->ping_state = 1;
++ qtd->error_count = 0;
++
++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
++ DWC_OTG_HC_XFER_NYET);
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++
++ /*
++ * Halt the channel and re-start the transfer so the PING
++ * protocol will start.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++
++handle_nyet_done:
++ disable_hc_int(hc_regs, nyet);
++ return 1;
++}
++
++/**
++ * Handles a host channel babble interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_babble_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "Babble Error--\n", hc->hc_num);
++
++ if (hcd->core_if->dma_desc_enable) {
++ dwc_otg_hcd_complete_xfer_ddma(hcd, hc, hc_regs,
++ DWC_OTG_HC_XFER_BABBLE_ERR);
++ goto handle_babble_done;
++ }
++
++ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ hcd->fops->complete(hcd, qtd->urb->priv,
++ qtd->urb, -DWC_E_OVERFLOW);
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
++ } else {
++ dwc_otg_halt_status_e halt_status;
++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_BABBLE_ERR);
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++
++handle_babble_done:
++ disable_hc_int(hc_regs, bblerr);
++ return 1;
++}
++
++/**
++ * Handles a host channel AHB error interrupt. This handler is only called in
++ * DMA mode.
++ */
++static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++ hctsiz_data_t hctsiz;
++ uint32_t hcdma;
++ char *pipetype, *speed;
++
++ dwc_otg_hcd_urb_t *urb = qtd->urb;
++
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "AHB Error--\n", hc->hc_num);
++
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hcsplt.d32 = DWC_READ_REG32(&hc_regs->hcsplt);
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++ hcdma = DWC_READ_REG32(&hc_regs->hcdma);
++
++ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
++ DWC_ERROR(" Device address: %d\n",
++ dwc_otg_hcd_get_dev_addr(&urb->pipe_info));
++ DWC_ERROR(" Endpoint: %d, %s\n",
++ dwc_otg_hcd_get_ep_num(&urb->pipe_info),
++ (dwc_otg_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT"));
++
++ switch (dwc_otg_hcd_get_pipe_type(&urb->pipe_info)) {
++ case UE_CONTROL:
++ pipetype = "CONTROL";
++ break;
++ case UE_BULK:
++ pipetype = "BULK";
++ break;
++ case UE_INTERRUPT:
++ pipetype = "INTERRUPT";
++ break;
++ case UE_ISOCHRONOUS:
++ pipetype = "ISOCHRONOUS";
++ break;
++ default:
++ pipetype = "UNKNOWN";
++ break;
++ }
++
++ DWC_ERROR(" Endpoint type: %s\n", pipetype);
++
++ switch (hc->speed) {
++ case DWC_OTG_EP_SPEED_HIGH:
++ speed = "HIGH";
++ break;
++ case DWC_OTG_EP_SPEED_FULL:
++ speed = "FULL";
++ break;
++ case DWC_OTG_EP_SPEED_LOW:
++ speed = "LOW";
++ break;
++ default:
++ speed = "UNKNOWN";
++ break;
++ };
++
++ DWC_ERROR(" Speed: %s\n", speed);
++
++ DWC_ERROR(" Max packet size: %d\n",
++ dwc_otg_hcd_get_mps(&urb->pipe_info));
++ DWC_ERROR(" Data buffer length: %d\n", urb->length);
++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
++ urb->buf, (void *)urb->dma);
++ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
++ urb->setup_packet, (void *)urb->setup_dma);
++ DWC_ERROR(" Interval: %d\n", urb->interval);
++
++ /* Core haltes the channel for Descriptor DMA mode */
++ if (hcd->core_if->dma_desc_enable) {
++ dwc_otg_hcd_complete_xfer_ddma(hcd, hc, hc_regs,
++ DWC_OTG_HC_XFER_AHB_ERR);
++ goto handle_ahberr_done;
++ }
++
++ hcd->fops->complete(hcd, urb->priv, urb, -DWC_E_IO);
++
++ /*
++ * Force a channel halt. Don't call halt_channel because that won't
++ * write to the HCCHARn register in DMA mode to force the halt.
++ */
++ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
++handle_ahberr_done:
++ disable_hc_int(hc_regs, ahberr);
++ return 1;
++}
++
++/**
++ * Handles a host channel transaction error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "Transaction Error--\n", hc->hc_num);
++
++ if (hcd->core_if->dma_desc_enable) {
++ dwc_otg_hcd_complete_xfer_ddma(hcd, hc, hc_regs,
++ DWC_OTG_HC_XFER_XACT_ERR);
++ goto handle_xacterr_done;
++ }
++
++ switch (dwc_otg_hcd_get_pipe_type(&qtd->urb->pipe_info)) {
++ case UE_CONTROL:
++ case UE_BULK:
++ qtd->error_count++;
++ if (!hc->qh->ping_state) {
++
++ update_urb_state_xfer_intr(hc, hc_regs,
++ qtd->urb, qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++ if (!hc->ep_is_in && hc->speed == DWC_OTG_EP_SPEED_HIGH) {
++ hc->qh->ping_state = 1;
++ }
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will start.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ break;
++ case UE_INTERRUPT:
++ qtd->error_count++;
++ if (hc->do_split && hc->complete_split) {
++ qtd->complete_split = 0;
++ }
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ break;
++ case UE_ISOCHRONOUS:
++ {
++ dwc_otg_halt_status_e halt_status;
++ halt_status =
++ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++ break;
++ }
++handle_xacterr_done:
++ disable_hc_int(hc_regs, xacterr);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel frame overrun interrupt. This handler may be called
++ * in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "Frame Overrun--\n", hc->hc_num);
++
++ switch (dwc_otg_hcd_get_pipe_type(&qtd->urb->pipe_info)) {
++ case UE_CONTROL:
++ case UE_BULK:
++ break;
++ case UE_INTERRUPT:
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
++ break;
++ case UE_ISOCHRONOUS:
++ {
++ dwc_otg_halt_status_e halt_status;
++ halt_status =
++ update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN);
++
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++ break;
++ }
++
++ disable_hc_int(hc_regs, frmovrun);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel data toggle error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "Data Toggle Error on %s transfer--\n",
++ hc->hc_num, (hc->ep_is_in ? "IN" : "OUT"));
++
++ /* Data toggles on split transactions cause the hc to halt.
++ * restart transfer */
++ if(hc->qh->do_split)
++ {
++ qtd->error_count++;
++ dwc_otg_hcd_save_data_toggle(hc, hc_regs, qtd);
++ update_urb_state_xfer_intr(hc, hc_regs,
++ qtd->urb, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ } else if (hc->ep_is_in) {
++ qtd->error_count = 0;
++ }
++
++ disable_hc_int(hc_regs, datatglerr);
++
++ return 1;
++}
++
++#ifdef DEBUG
++/**
++ * This function is for debug only. It checks that a valid halt status is set
++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
++ * taken and a warning is issued.
++ * @return 1 if halt status is ok, 0 otherwise.
++ */
++static inline int halt_status_ok(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ hcsplt_data_t hcsplt;
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
++ /*
++ * This code is here only as a check. This condition should
++ * never happen. Ignore the halt if it does occur.
++ */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ hctsiz.d32 = DWC_READ_REG32(&hc_regs->hctsiz);
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++ hcintmsk.d32 = DWC_READ_REG32(&hc_regs->hcintmsk);
++ hcsplt.d32 = DWC_READ_REG32(&hc_regs->hcsplt);
++ DWC_WARN
++ ("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
++ "hcint 0x%08x, hcintmsk 0x%08x, "
++ "hcsplt 0x%08x, qtd->complete_split %d\n", __func__,
++ hc->hc_num, hcchar.d32, hctsiz.d32, hcint.d32,
++ hcintmsk.d32, hcsplt.d32, qtd->complete_split);
++
++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
++ __func__, hc->hc_num);
++ DWC_WARN("\n");
++ clear_hc_int(hc_regs, chhltd);
++ return 0;
++ }
++
++ /*
++ * This code is here only as a check. hcchar.chdis should
++ * never be set when the halt interrupt occurs. Halt the
++ * channel again if it does occur.
++ */
++ hcchar.d32 = DWC_READ_REG32(&hc_regs->hcchar);
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
++ "hcchar 0x%08x, trying to halt again\n",
++ __func__, hcchar.d32);
++ clear_hc_int(hc_regs, chhltd);
++ hc->halt_pending = 0;
++ halt_channel(hcd, hc, qtd, hc->halt_status);
++ return 0;
++ }
++
++ return 1;
++}
++#endif
++
++/**
++ * Handles a host Channel Halted interrupt in DMA mode. This handler
++ * determines the reason the channel halted and proceeds accordingly.
++ */
++static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ int out_nak_enh = 0;
++
++ /* For core with OUT NAK enhancement, the flow for high-
++ * speed CONTROL/BULK OUT is handled a little differently.
++ */
++ if (hcd->core_if->snpsid >= OTG_CORE_REV_2_71a) {
++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
++ (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
++ out_nak_enh = 1;
++ }
++ }
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ (hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR
++ && !hcd->core_if->dma_desc_enable)) {
++ /*
++ * Just release the channel. A dequeue can happen on a
++ * transfer timeout. In the case of an AHB Error, the channel
++ * was forced to halt because there's no way to gracefully
++ * recover.
++ */
++ if (hcd->core_if->dma_desc_enable)
++ dwc_otg_hcd_complete_xfer_ddma(hcd, hc, hc_regs,
++ hc->halt_status);
++ else
++ release_channel(hcd, hc, qtd, hc->halt_status);
++ return;
++ }
++
++ /* Read the HCINTn register to determine the cause for the halt. */
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++ hcintmsk.d32 = DWC_READ_REG32(&hc_regs->hcintmsk);
++
++ if (hcint.b.xfercomp) {
++ /** @todo This is here because of a possible hardware bug. Spec
++ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
++ * interrupt w/ACK bit set should occur, but I only see the
++ * XFERCOMP bit, even with it masked out. This is a workaround
++ * for that behavior. Should fix this when hardware is fixed.
++ */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++ }
++ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.stall) {
++ handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.xacterr && !hcd->core_if->dma_desc_enable) {
++ if (out_nak_enh) {
++ if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
++ DWC_DEBUGPL(DBG_HCD, "XactErr with NYET/NAK/ACK\n");
++ qtd->error_count = 0;
++ } else {
++ DWC_DEBUGPL(DBG_HCD, "XactErr without NYET/NAK/ACK\n");
++ }
++ }
++
++ /*
++ * Must handle xacterr before nak or ack. Could get a xacterr
++ * at the same time as either of these on a BULK/CONTROL OUT
++ * that started with a PING. The xacterr takes precedence.
++ */
++ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.xcs_xact && hcd->core_if->dma_desc_enable) {
++ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.ahberr && hcd->core_if->dma_desc_enable) {
++ handle_hc_ahberr_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.bblerr) {
++ handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.frmovrun) {
++ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.datatglerr) {
++ handle_hc_datatglerr_intr(hcd, hc, hc_regs, qtd);
++ } else if (!out_nak_enh) {
++ if (hcint.b.nyet) {
++ /*
++ * Must handle nyet before nak or ack. Could get a nyet at the
++ * same time as either of those on a BULK/CONTROL OUT that
++ * started with a PING. The nyet takes precedence.
++ */
++ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.nak && !hcintmsk.b.nak) {
++ /*
++ * If nak is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the nak is handled by
++ * the nak interrupt handler, not here. Handle nak here for
++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
++ * rewinding the buffer pointer.
++ */
++ handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.ack && !hcintmsk.b.ack) {
++ /*
++ * If ack is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the ack is handled by
++ * the ack interrupt handler, not here. Handle ack here for
++ * split transfers. Start splits halt on ACK.
++ */
++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++ } else {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * A periodic transfer halted with no other channel
++ * interrupts set. Assume it was halted by the core
++ * because it could not be completed in its scheduled
++ * (micro)frame.
++ */
++#ifdef DEBUG
++ DWC_PRINTF
++ ("%s: Halt channel %d (assume incomplete periodic transfer)\n",
++ __func__, hc->hc_num);
++#endif
++ halt_channel(hcd, hc, qtd,
++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
++ } else {
++ DWC_ERROR
++ ("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
++ "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
++ __func__, hc->hc_num, hcint.d32,
++ DWC_READ_REG32(&hcd->
++ core_if->core_global_regs->
++ gintsts));
++ }
++
++ }
++ } else {
++ DWC_PRINTF("NYET/NAK/ACK/other in non-error case, 0x%08x\n",
++ hcint.d32);
++ }
++}
++
++/**
++ * Handles a host channel Channel Halted interrupt.
++ *
++ * In slave mode, this handler is called only when the driver specifically
++ * requests a halt. This occurs during handling other host channel interrupts
++ * (e.g. nak, xacterr, stall, nyet, etc.).
++ *
++ * In DMA mode, this is the interrupt that occurs when the core has finished
++ * processing a transfer on a channel. Other host channel interrupts (except
++ * ahberr) are disabled in DMA mode.
++ */
++static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t * hcd,
++ dwc_hc_t * hc,
++ dwc_otg_hc_regs_t * hc_regs,
++ dwc_otg_qtd_t * qtd)
++{
++ DWC_DEBUGPL(DBG_HCDI, "--Host Channel %d Interrupt: "
++ "Channel Halted--\n", hc->hc_num);
++
++ if (hcd->core_if->dma_enable) {
++ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
++ } else {
++#ifdef DEBUG
++ if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
++ return 1;
++ }
++#endif
++ release_channel(hcd, hc, qtd, hc->halt_status);
++ }
++
++ return 1;
++}
++
++/** Handles interrupt for a specific Host Channel */
++int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t * dwc_otg_hcd, uint32_t num)
++{
++ int retval = 0;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ dwc_hc_t *hc;
++ dwc_otg_hc_regs_t *hc_regs;
++ dwc_otg_qtd_t *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
++
++ hc = dwc_otg_hcd->hc_ptr_array[num];
++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
++ qtd = DWC_CIRCLEQ_FIRST(&hc->qh->qtd_list);
++
++ hcint.d32 = DWC_READ_REG32(&hc_regs->hcint);
++ hcintmsk.d32 = DWC_READ_REG32(&hc_regs->hcintmsk);
++ DWC_DEBUGPL(DBG_HCDV,
++ " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
++ hcint.d32 = hcint.d32 & hcintmsk.d32;
++
++ if (!dwc_otg_hcd->core_if->dma_enable) {
++ if (hcint.b.chhltd && hcint.d32 != 0x2) {
++ hcint.b.chhltd = 0;
++ }
++ }
++
++ if (hcint.b.xfercomp) {
++ retval |=
++ handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ /*
++ * If NYET occurred at same time as Xfer Complete, the NYET is
++ * handled by the Xfer Complete interrupt handler. Don't want
++ * to call the NYET interrupt handler in this case.
++ */
++ hcint.b.nyet = 0;
++ }
++ if (hcint.b.chhltd) {
++ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.ahberr) {
++ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.stall) {
++ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.nak) {
++ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.ack) {
++ if(!hcint.b.chhltd)
++ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.nyet) {
++ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.xacterr) {
++ retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.bblerr) {
++ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.frmovrun) {
++ retval |=
++ handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.datatglerr) {
++ retval |=
++ handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++
++ return retval;
++}
++#endif /* DWC_DEVICE_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_linux.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_linux.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_linux.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_linux.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,955 @@
++
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_linux.c $
++ * $Revision: #20 $
++ * $Date: 2011/10/26 $
++ * $Change: 1872981 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ * @file
++ *
++ * This file contains the implementation of the HCD. In Linux, the HCD
++ * implements the hc_driver API.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++#include <linux/dma-mapping.h>
++#include <linux/version.h>
++#include <asm/io.h>
++#include <asm/fiq.h>
++#include <linux/usb.h>
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35)
++#include <../drivers/usb/core/hcd.h>
++#else
++#include <linux/usb/hcd.h>
++#endif
++
++#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,30))
++#define USB_URB_EP_LINKING 1
++#else
++#define USB_URB_EP_LINKING 0
++#endif
++
++#include "dwc_otg_hcd_if.h"
++#include "dwc_otg_dbg.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_mphi_fix.h"
++
++/**
++ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
++ * qualified with its direction (possible 32 endpoints per device).
++ */
++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
++
++static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
++
++extern bool fiq_fix_enable;
++
++/** @name Linux HC Driver API Functions */
++/** @{ */
++/* manage i/o requests, device state */
++static int dwc_otg_urb_enqueue(struct usb_hcd *hcd,
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++ struct usb_host_endpoint *ep,
++#endif
++ struct urb *urb, gfp_t mem_flags);
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30)
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++static int dwc_otg_urb_dequeue(struct usb_hcd *hcd, struct urb *urb);
++#endif
++#else /* kernels at or post 2.6.30 */
++static int dwc_otg_urb_dequeue(struct usb_hcd *hcd,
++ struct urb *urb, int status);
++#endif /* LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30) */
++
++static void endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep);
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,30)
++static void endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep);
++#endif
++static irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
++extern int hcd_start(struct usb_hcd *hcd);
++extern void hcd_stop(struct usb_hcd *hcd);
++static int get_frame_number(struct usb_hcd *hcd);
++extern int hub_status_data(struct usb_hcd *hcd, char *buf);
++extern int hub_control(struct usb_hcd *hcd,
++ u16 typeReq,
++ u16 wValue, u16 wIndex, char *buf, u16 wLength);
++
++struct wrapper_priv_data {
++ dwc_otg_hcd_t *dwc_otg_hcd;
++};
++
++/** @} */
++
++static struct hc_driver dwc_otg_hc_driver = {
++
++ .description = dwc_otg_hcd_name,
++ .product_desc = "DWC OTG Controller",
++ .hcd_priv_size = sizeof(struct wrapper_priv_data),
++
++ .irq = dwc_otg_hcd_irq,
++
++ .flags = HCD_MEMORY | HCD_USB2,
++
++ //.reset =
++ .start = hcd_start,
++ //.suspend =
++ //.resume =
++ .stop = hcd_stop,
++
++ .urb_enqueue = dwc_otg_urb_enqueue,
++ .urb_dequeue = dwc_otg_urb_dequeue,
++ .endpoint_disable = endpoint_disable,
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,30)
++ .endpoint_reset = endpoint_reset,
++#endif
++ .get_frame_number = get_frame_number,
++
++ .hub_status_data = hub_status_data,
++ .hub_control = hub_control,
++ //.bus_suspend =
++ //.bus_resume =
++};
++
++/** Gets the dwc_otg_hcd from a struct usb_hcd */
++static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
++{
++ struct wrapper_priv_data *p;
++ p = (struct wrapper_priv_data *)(hcd->hcd_priv);
++ return p->dwc_otg_hcd;
++}
++
++/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t * dwc_otg_hcd)
++{
++ return dwc_otg_hcd_get_priv_data(dwc_otg_hcd);
++}
++
++/** Gets the usb_host_endpoint associated with an URB. */
++inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
++{
++ struct usb_device *dev = urb->dev;
++ int ep_num = usb_pipeendpoint(urb->pipe);
++
++ if (usb_pipein(urb->pipe))
++ return dev->ep_in[ep_num];
++ else
++ return dev->ep_out[ep_num];
++}
++
++static int _disconnect(dwc_otg_hcd_t * hcd)
++{
++ struct usb_hcd *usb_hcd = dwc_otg_hcd_to_hcd(hcd);
++
++ usb_hcd->self.is_b_host = 0;
++ return 0;
++}
++
++static int _start(dwc_otg_hcd_t * hcd)
++{
++ struct usb_hcd *usb_hcd = dwc_otg_hcd_to_hcd(hcd);
++
++ usb_hcd->self.is_b_host = dwc_otg_hcd_is_b_host(hcd);
++ hcd_start(usb_hcd);
++
++ return 0;
++}
++
++static int _hub_info(dwc_otg_hcd_t * hcd, void *urb_handle, uint32_t * hub_addr,
++ uint32_t * port_addr)
++{
++ struct urb *urb = (struct urb *)urb_handle;
++ struct usb_bus *bus;
++#if 1 //GRAYG - temporary
++ if (NULL == urb_handle)
++ DWC_ERROR("**** %s - NULL URB handle\n", __func__);//GRAYG
++ if (NULL == urb->dev)
++ DWC_ERROR("**** %s - URB has no device\n", __func__);//GRAYG
++ if (NULL == port_addr)
++ DWC_ERROR("**** %s - NULL port_address\n", __func__);//GRAYG
++#endif
++ if (urb->dev->tt) {
++ if (NULL == urb->dev->tt->hub) {
++ DWC_ERROR("**** %s - (URB's transactor has no TT - giving no hub)\n",
++ __func__); //GRAYG
++ //*hub_addr = (u8)usb_pipedevice(urb->pipe); //GRAYG
++ *hub_addr = 0; //GRAYG
++ // we probably shouldn't have a transaction translator if
++ // there's no associated hub?
++ } else {
++ bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
++ if (urb->dev->tt->hub == bus->root_hub)
++ *hub_addr = 0;
++ else
++ *hub_addr = urb->dev->tt->hub->devnum;
++ }
++ *port_addr = urb->dev->tt->multi ? urb->dev->ttport : 1;
++ } else {
++ *hub_addr = 0;
++ *port_addr = urb->dev->ttport;
++ }
++ return 0;
++}
++
++static int _speed(dwc_otg_hcd_t * hcd, void *urb_handle)
++{
++ struct urb *urb = (struct urb *)urb_handle;
++ return urb->dev->speed;
++}
++
++static int _get_b_hnp_enable(dwc_otg_hcd_t * hcd)
++{
++ struct usb_hcd *usb_hcd = dwc_otg_hcd_to_hcd(hcd);
++ return usb_hcd->self.b_hnp_enable;
++}
++
++static void allocate_bus_bandwidth(struct usb_hcd *hcd, uint32_t bw,
++ struct urb *urb)
++{
++ hcd_to_bus(hcd)->bandwidth_allocated += bw / urb->interval;
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ hcd_to_bus(hcd)->bandwidth_isoc_reqs++;
++ } else {
++ hcd_to_bus(hcd)->bandwidth_int_reqs++;
++ }
++}
++
++static void free_bus_bandwidth(struct usb_hcd *hcd, uint32_t bw,
++ struct urb *urb)
++{
++ hcd_to_bus(hcd)->bandwidth_allocated -= bw / urb->interval;
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ hcd_to_bus(hcd)->bandwidth_isoc_reqs--;
++ } else {
++ hcd_to_bus(hcd)->bandwidth_int_reqs--;
++ }
++}
++
++/**
++ * Sets the final status of an URB and returns it to the device driver. Any
++ * required cleanup of the URB is performed. The HCD lock should be held on
++ * entry.
++ */
++static int _complete(dwc_otg_hcd_t * hcd, void *urb_handle,
++ dwc_otg_hcd_urb_t * dwc_otg_urb, int32_t status)
++{
++ struct urb *urb = (struct urb *)urb_handle;
++ urb_tq_entry_t *new_entry;
++ int rc = 0;
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINTF("%s: urb %p, device %d, ep %d %s, status=%d\n",
++ __func__, urb, usb_pipedevice(urb->pipe),
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "IN" : "OUT", status);
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < urb->number_of_packets; i++) {
++ DWC_PRINTF(" ISO Desc %d status: %d\n",
++ i, urb->iso_frame_desc[i].status);
++ }
++ }
++ }
++ new_entry = DWC_ALLOC_ATOMIC(sizeof(urb_tq_entry_t));
++ urb->actual_length = dwc_otg_hcd_urb_get_actual_length(dwc_otg_urb);
++ /* Convert status value. */
++ switch (status) {
++ case -DWC_E_PROTOCOL:
++ status = -EPROTO;
++ break;
++ case -DWC_E_IN_PROGRESS:
++ status = -EINPROGRESS;
++ break;
++ case -DWC_E_PIPE:
++ status = -EPIPE;
++ break;
++ case -DWC_E_IO:
++ status = -EIO;
++ break;
++ case -DWC_E_TIMEOUT:
++ status = -ETIMEDOUT;
++ break;
++ case -DWC_E_OVERFLOW:
++ status = -EOVERFLOW;
++ break;
++ default:
++ if (status) {
++ DWC_PRINTF("Uknown urb status %d\n", status);
++
++ }
++ }
++
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++
++ urb->error_count = dwc_otg_hcd_urb_get_error_count(dwc_otg_urb);
++ for (i = 0; i < urb->number_of_packets; ++i) {
++ urb->iso_frame_desc[i].actual_length =
++ dwc_otg_hcd_urb_get_iso_desc_actual_length
++ (dwc_otg_urb, i);
++ urb->iso_frame_desc[i].status =
++ dwc_otg_hcd_urb_get_iso_desc_status(dwc_otg_urb, i);
++ }
++ }
++
++ urb->status = status;
++ urb->hcpriv = NULL;
++ if (!status) {
++ if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
++ (urb->actual_length < urb->transfer_buffer_length)) {
++ urb->status = -EREMOTEIO;
++ }
++ }
++
++ if ((usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) ||
++ (usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) {
++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
++ if (ep) {
++ free_bus_bandwidth(dwc_otg_hcd_to_hcd(hcd),
++ dwc_otg_hcd_get_ep_bandwidth(hcd,
++ ep->hcpriv),
++ urb);
++ }
++ }
++
++ DWC_FREE(dwc_otg_urb);
++ if (!new_entry) {
++ DWC_ERROR("dwc_otg_hcd: complete: cannot allocate URB TQ entry\n");
++ urb->status = -EPROTO;
++ /* don't schedule the tasklet -
++ * directly return the packet here with error. */
++#if USB_URB_EP_LINKING
++ usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(hcd), urb);
++#endif
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb);
++#else
++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, urb->status);
++#endif
++ } else {
++ new_entry->urb = urb;
++#if USB_URB_EP_LINKING
++ rc = usb_hcd_check_unlink_urb(dwc_otg_hcd_to_hcd(hcd), urb, urb->status);
++ if(0 == rc) {
++ usb_hcd_unlink_urb_from_ep(dwc_otg_hcd_to_hcd(hcd), urb);
++ }
++#endif
++ if(0 == rc) {
++ DWC_TAILQ_INSERT_TAIL(&hcd->completed_urb_list, new_entry,
++ urb_tq_entries);
++ DWC_TASK_HI_SCHEDULE(hcd->completion_tasklet);
++ }
++ }
++ return 0;
++}
++
++static struct dwc_otg_hcd_function_ops hcd_fops = {
++ .start = _start,
++ .disconnect = _disconnect,
++ .hub_info = _hub_info,
++ .speed = _speed,
++ .complete = _complete,
++ .get_b_hnp_enable = _get_b_hnp_enable,
++};
++
++static struct fiq_handler fh = {
++ .name = "usb_fiq",
++};
++static uint8_t fiqStack[1024];
++
++extern mphi_regs_t c_mphi_regs;
++/**
++ * Initializes the HCD. This function allocates memory for and initializes the
++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
++ * USB bus with the core and calls the hc_driver->start() function. It returns
++ * a negative error on failure.
++ */
++int hcd_init(dwc_bus_dev_t *_dev)
++{
++ struct usb_hcd *hcd = NULL;
++ dwc_otg_hcd_t *dwc_otg_hcd = NULL;
++ dwc_otg_device_t *otg_dev = DWC_OTG_BUSDRVDATA(_dev);
++ int retval = 0;
++ u64 dmamask;
++ struct pt_regs regs;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT otg_dev=%p\n", otg_dev);
++
++ /* Set device flags indicating whether the HCD supports DMA. */
++ if (dwc_otg_is_dma_enable(otg_dev->core_if))
++ dmamask = DMA_BIT_MASK(32);
++ else
++ dmamask = 0;
++
++#if defined(LM_INTERFACE) || defined(PLATFORM_INTERFACE)
++ dma_set_mask(&_dev->dev, dmamask);
++ dma_set_coherent_mask(&_dev->dev, dmamask);
++#elif defined(PCI_INTERFACE)
++ pci_set_dma_mask(_dev, dmamask);
++ pci_set_consistent_dma_mask(_dev, dmamask);
++#endif
++
++ if (fiq_fix_enable)
++ {
++ // Set up fiq
++ claim_fiq(&fh);
++ set_fiq_handler(__FIQ_Branch, 4);
++ memset(&regs,0,sizeof(regs));
++ regs.ARM_r8 = (long)dwc_otg_hcd_handle_fiq;
++ regs.ARM_r9 = (long)0;
++ regs.ARM_sp = (long)fiqStack + sizeof(fiqStack) - 4;
++ set_fiq_regs(&regs);
++ }
++
++ /*
++ * Allocate memory for the base HCD plus the DWC OTG HCD.
++ * Initialize the base HCD.
++ */
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30)
++ hcd = usb_create_hcd(&dwc_otg_hc_driver, &_dev->dev, _dev->dev.bus_id);
++#else
++ hcd = usb_create_hcd(&dwc_otg_hc_driver, &_dev->dev, dev_name(&_dev->dev));
++ hcd->has_tt = 1;
++// hcd->uses_new_polling = 1;
++// hcd->poll_rh = 0;
++#endif
++ if (!hcd) {
++ retval = -ENOMEM;
++ goto error1;
++ }
++
++ hcd->regs = otg_dev->os_dep.base;
++
++ if (fiq_fix_enable)
++ {
++ //Set the mphi periph to the required registers
++ c_mphi_regs.base = otg_dev->os_dep.mphi_base;
++ c_mphi_regs.ctrl = otg_dev->os_dep.mphi_base + 0x4c;
++ c_mphi_regs.outdda = otg_dev->os_dep.mphi_base + 0x28;
++ c_mphi_regs.outddb = otg_dev->os_dep.mphi_base + 0x2c;
++ c_mphi_regs.intstat = otg_dev->os_dep.mphi_base + 0x50;
++
++ //Enable mphi peripheral
++ writel((1<<31),c_mphi_regs.ctrl);
++#ifdef DEBUG
++ if (readl(c_mphi_regs.ctrl) & 0x80000000)
++ DWC_DEBUGPL(DBG_USER, "MPHI periph has been enabled\n");
++ else
++ DWC_DEBUGPL(DBG_USER, "MPHI periph has NOT been enabled\n");
++#endif
++ // Enable FIQ interrupt from USB peripheral
++ enable_fiq(INTERRUPT_VC_USB);
++ }
++ /* Initialize the DWC OTG HCD. */
++ dwc_otg_hcd = dwc_otg_hcd_alloc_hcd();
++ if (!dwc_otg_hcd) {
++ goto error2;
++ }
++ ((struct wrapper_priv_data *)(hcd->hcd_priv))->dwc_otg_hcd =
++ dwc_otg_hcd;
++ otg_dev->hcd = dwc_otg_hcd;
++
++ if (dwc_otg_hcd_init(dwc_otg_hcd, otg_dev->core_if)) {
++ goto error2;
++ }
++
++ otg_dev->hcd->otg_dev = otg_dev;
++ hcd->self.otg_port = dwc_otg_hcd_otg_port(dwc_otg_hcd);
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,33) //don't support for LM(with 2.6.20.1 kernel)
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35) //version field absent later
++ hcd->self.otg_version = dwc_otg_get_otg_version(otg_dev->core_if);
++#endif
++ /* Don't support SG list at this point */
++ hcd->self.sg_tablesize = 0;
++#endif
++ /*
++ * Finish generic HCD initialization and start the HCD. This function
++ * allocates the DMA buffer pool, registers the USB bus, requests the
++ * IRQ line, and calls hcd_start method.
++ */
++#ifdef PLATFORM_INTERFACE
++ retval = usb_add_hcd(hcd, platform_get_irq(_dev, 0), IRQF_SHARED | IRQF_DISABLED);
++#else
++ retval = usb_add_hcd(hcd, _dev->irq, IRQF_SHARED | IRQF_DISABLED);
++#endif
++ if (retval < 0) {
++ goto error2;
++ }
++
++ dwc_otg_hcd_set_priv_data(dwc_otg_hcd, hcd);
++ return 0;
++
++error2:
++ usb_put_hcd(hcd);
++error1:
++ return retval;
++}
++
++/**
++ * Removes the HCD.
++ * Frees memory and resources associated with the HCD and deregisters the bus.
++ */
++void hcd_remove(dwc_bus_dev_t *_dev)
++{
++ dwc_otg_device_t *otg_dev = DWC_OTG_BUSDRVDATA(_dev);
++ dwc_otg_hcd_t *dwc_otg_hcd;
++ struct usb_hcd *hcd;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE otg_dev=%p\n", otg_dev);
++
++ if (!otg_dev) {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
++ return;
++ }
++
++ dwc_otg_hcd = otg_dev->hcd;
++
++ if (!dwc_otg_hcd) {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
++ return;
++ }
++
++ hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
++
++ if (!hcd) {
++ DWC_DEBUGPL(DBG_ANY,
++ "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n",
++ __func__);
++ return;
++ }
++ usb_remove_hcd(hcd);
++ dwc_otg_hcd_set_priv_data(dwc_otg_hcd, NULL);
++ dwc_otg_hcd_remove(dwc_otg_hcd);
++ usb_put_hcd(hcd);
++}
++
++/* =========================================================================
++ * Linux HC Driver Functions
++ * ========================================================================= */
++
++/** Initializes the DWC_otg controller and its root hub and prepares it for host
++ * mode operation. Activates the root port. Returns 0 on success and a negative
++ * error code on failure. */
++int hcd_start(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ struct usb_bus *bus;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
++ bus = hcd_to_bus(hcd);
++
++ hcd->state = HC_STATE_RUNNING;
++ if (dwc_otg_hcd_start(dwc_otg_hcd, &hcd_fops)) {
++ return 0;
++ }
++
++ /* Initialize and connect root hub if one is not already attached */
++ if (bus->root_hub) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
++ /* Inform the HUB driver to resume. */
++ usb_hcd_resume_root_hub(hcd);
++ }
++
++ return 0;
++}
++
++/**
++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
++ * stopped.
++ */
++void hcd_stop(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ dwc_otg_hcd_stop(dwc_otg_hcd);
++}
++
++/** Returns the current frame number. */
++static int get_frame_number(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ return dwc_otg_hcd_get_frame_number(dwc_otg_hcd);
++}
++
++#ifdef DEBUG
++static void dump_urb_info(struct urb *urb, char *fn_name)
++{
++ DWC_PRINTF("%s, urb %p\n", fn_name, urb);
++ DWC_PRINTF(" Device address: %d\n", usb_pipedevice(urb->pipe));
++ DWC_PRINTF(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++ DWC_PRINTF(" Endpoint type: %s\n", ( {
++ char *pipetype;
++ switch (usb_pipetype(urb->pipe)) {
++case PIPE_CONTROL:
++pipetype = "CONTROL"; break; case PIPE_BULK:
++pipetype = "BULK"; break; case PIPE_INTERRUPT:
++pipetype = "INTERRUPT"; break; case PIPE_ISOCHRONOUS:
++pipetype = "ISOCHRONOUS"; break; default:
++ pipetype = "UNKNOWN"; break;};
++ pipetype;}
++ )) ;
++ DWC_PRINTF(" Speed: %s\n", ( {
++ char *speed; switch (urb->dev->speed) {
++case USB_SPEED_HIGH:
++speed = "HIGH"; break; case USB_SPEED_FULL:
++speed = "FULL"; break; case USB_SPEED_LOW:
++speed = "LOW"; break; default:
++ speed = "UNKNOWN"; break;};
++ speed;}
++ )) ;
++ DWC_PRINTF(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++ DWC_PRINTF(" Data buffer length: %d\n", urb->transfer_buffer_length);
++ DWC_PRINTF(" Transfer buffer: %p, Transfer DMA: %p\n",
++ urb->transfer_buffer, (void *)urb->transfer_dma);
++ DWC_PRINTF(" Setup buffer: %p, Setup DMA: %p\n",
++ urb->setup_packet, (void *)urb->setup_dma);
++ DWC_PRINTF(" Interval: %d\n", urb->interval);
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < urb->number_of_packets; i++) {
++ DWC_PRINTF(" ISO Desc %d:\n", i);
++ DWC_PRINTF(" offset: %d, length %d\n",
++ urb->iso_frame_desc[i].offset,
++ urb->iso_frame_desc[i].length);
++ }
++ }
++}
++#endif
++
++/** Starts processing a USB transfer request specified by a USB Request Block
++ * (URB). mem_flags indicates the type of memory allocation to use while
++ * processing this URB. */
++static int dwc_otg_urb_enqueue(struct usb_hcd *hcd,
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++ struct usb_host_endpoint *ep,
++#endif
++ struct urb *urb, gfp_t mem_flags)
++{
++ int retval = 0;
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,28)
++ struct usb_host_endpoint *ep = urb->ep;
++#endif
++#if USB_URB_EP_LINKING
++ dwc_irqflags_t irqflags;
++#endif
++ void **ref_ep_hcpriv = &ep->hcpriv;
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ dwc_otg_hcd_urb_t *dwc_otg_urb;
++ int i;
++ int alloc_bandwidth = 0;
++ uint8_t ep_type = 0;
++ uint32_t flags = 0;
++ void *buf;
++
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ dump_urb_info(urb, "dwc_otg_urb_enqueue");
++ }
++#endif
++
++ if (!urb->transfer_buffer && urb->transfer_buffer_length)
++ return -EINVAL;
++
++ if ((usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
++ || (usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) {
++ if (!dwc_otg_hcd_is_bandwidth_allocated
++ (dwc_otg_hcd, ref_ep_hcpriv)) {
++ alloc_bandwidth = 1;
++ }
++ }
++
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ ep_type = USB_ENDPOINT_XFER_CONTROL;
++ break;
++ case PIPE_ISOCHRONOUS:
++ ep_type = USB_ENDPOINT_XFER_ISOC;
++ break;
++ case PIPE_BULK:
++ ep_type = USB_ENDPOINT_XFER_BULK;
++ break;
++ case PIPE_INTERRUPT:
++ ep_type = USB_ENDPOINT_XFER_INT;
++ break;
++ default:
++ DWC_WARN("Wrong EP type - %d\n", usb_pipetype(urb->pipe));
++ }
++
++ /* # of packets is often 0 - do we really need to call this then? */
++ dwc_otg_urb = dwc_otg_hcd_urb_alloc(dwc_otg_hcd,
++ urb->number_of_packets,
++ mem_flags == GFP_ATOMIC ? 1 : 0);
++
++ if(dwc_otg_urb == NULL)
++ return -ENOMEM;
++
++ urb->hcpriv = dwc_otg_urb;
++ if (!dwc_otg_urb && urb->number_of_packets)
++ return -ENOMEM;
++
++ dwc_otg_hcd_urb_set_pipeinfo(dwc_otg_urb, usb_pipedevice(urb->pipe),
++ usb_pipeendpoint(urb->pipe), ep_type,
++ usb_pipein(urb->pipe),
++ usb_maxpacket(urb->dev, urb->pipe,
++ !(usb_pipein(urb->pipe))));
++
++ buf = urb->transfer_buffer;
++ if (hcd->self.uses_dma) {
++ /*
++ * Calculate virtual address from physical address,
++ * because some class driver may not fill transfer_buffer.
++ * In Buffer DMA mode virual address is used,
++ * when handling non DWORD aligned buffers.
++ */
++ //buf = phys_to_virt(urb->transfer_dma);
++ // DMA addresses are bus addresses not physical addresses!
++ buf = dma_to_virt(&urb->dev->dev, urb->transfer_dma);
++ }
++
++ if (!(urb->transfer_flags & URB_NO_INTERRUPT))
++ flags |= URB_GIVEBACK_ASAP;
++ if (urb->transfer_flags & URB_ZERO_PACKET)
++ flags |= URB_SEND_ZERO_PACKET;
++
++ dwc_otg_hcd_urb_set_params(dwc_otg_urb, urb, buf,
++ urb->transfer_dma,
++ urb->transfer_buffer_length,
++ urb->setup_packet,
++ urb->setup_dma, flags, urb->interval);
++
++ for (i = 0; i < urb->number_of_packets; ++i) {
++ dwc_otg_hcd_urb_set_iso_desc_params(dwc_otg_urb, i,
++ urb->
++ iso_frame_desc[i].offset,
++ urb->
++ iso_frame_desc[i].length);
++ }
++
++#if USB_URB_EP_LINKING
++ DWC_SPINLOCK_IRQSAVE(dwc_otg_hcd->lock, &irqflags);
++ retval = usb_hcd_link_urb_to_ep(hcd, urb);
++ DWC_SPINUNLOCK_IRQRESTORE(dwc_otg_hcd->lock, irqflags);
++ if (0 == retval)
++#endif
++ {
++ retval = dwc_otg_hcd_urb_enqueue(dwc_otg_hcd, dwc_otg_urb,
++ /*(dwc_otg_qh_t **)*/
++ ref_ep_hcpriv,
++ mem_flags == GFP_ATOMIC ? 1 : 0);
++ if (0 == retval) {
++ if (alloc_bandwidth) {
++ allocate_bus_bandwidth(hcd,
++ dwc_otg_hcd_get_ep_bandwidth(
++ dwc_otg_hcd, *ref_ep_hcpriv),
++ urb);
++ }
++ } else {
++#if USB_URB_EP_LINKING
++ dwc_irqflags_t irqflags;
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG dwc_otg_hcd_urb_enqueue failed rc %d\n", retval);
++ DWC_SPINLOCK_IRQSAVE(dwc_otg_hcd->lock, &irqflags);
++ usb_hcd_unlink_urb_from_ep(hcd, urb);
++ DWC_SPINUNLOCK_IRQRESTORE(dwc_otg_hcd->lock, irqflags);
++#endif
++ if (retval == -DWC_E_NO_DEVICE) {
++ retval = -ENODEV;
++ }
++ }
++ }
++ return retval;
++}
++
++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
++ * success. */
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++static int dwc_otg_urb_dequeue(struct usb_hcd *hcd, struct urb *urb)
++#else
++static int dwc_otg_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
++#endif
++{
++ dwc_irqflags_t flags;
++ dwc_otg_hcd_t *dwc_otg_hcd;
++ int rc;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
++
++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ dump_urb_info(urb, "dwc_otg_urb_dequeue");
++ }
++#endif
++
++ DWC_SPINLOCK_IRQSAVE(dwc_otg_hcd->lock, &flags);
++ rc = usb_hcd_check_unlink_urb(hcd, urb, status);
++ if (0 == rc) {
++ if(urb->hcpriv != NULL) {
++ dwc_otg_hcd_urb_dequeue(dwc_otg_hcd,
++ (dwc_otg_hcd_urb_t *)urb->hcpriv);
++
++ DWC_FREE(urb->hcpriv);
++ urb->hcpriv = NULL;
++ }
++ }
++
++ if (0 == rc) {
++ /* Higher layer software sets URB status. */
++#if USB_URB_EP_LINKING
++ usb_hcd_unlink_urb_from_ep(hcd, urb);
++#endif
++ DWC_SPINUNLOCK_IRQRESTORE(dwc_otg_hcd->lock, flags);
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++ usb_hcd_giveback_urb(hcd, urb);
++#else
++ usb_hcd_giveback_urb(hcd, urb, status);
++#endif
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINTF("Called usb_hcd_giveback_urb() \n");
++ DWC_PRINTF(" 1urb->status = %d\n", urb->status);
++ }
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue OK\n");
++ } else {
++ DWC_SPINUNLOCK_IRQRESTORE(dwc_otg_hcd->lock, flags);
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue failed - rc %d\n",
++ rc);
++ }
++
++ return rc;
++}
++
++/* Frees resources in the DWC_otg controller related to a given endpoint. Also
++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
++ * must already be dequeued. */
++static void endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ DWC_DEBUGPL(DBG_HCD,
++ "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
++ "endpoint=%d\n", ep->desc.bEndpointAddress,
++ dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
++ dwc_otg_hcd_endpoint_disable(dwc_otg_hcd, ep->hcpriv, 250);
++ ep->hcpriv = NULL;
++}
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,30)
++/* Resets endpoint specific parameter values, in current version used to reset
++ * the data toggle(as a WA). This function can be called from usb_clear_halt routine */
++static void endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
++{
++ dwc_irqflags_t flags;
++ struct usb_device *udev = NULL;
++ int epnum = usb_endpoint_num(&ep->desc);
++ int is_out = usb_endpoint_dir_out(&ep->desc);
++ int is_control = usb_endpoint_xfer_control(&ep->desc);
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ struct device *dev = DWC_OTG_OS_GETDEV(dwc_otg_hcd->otg_dev->os_dep);
++
++ if (dev)
++ udev = to_usb_device(dev);
++ else
++ return;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP RESET: Endpoint Num=0x%02d\n", epnum);
++
++ DWC_SPINLOCK_IRQSAVE(dwc_otg_hcd->lock, &flags);
++ usb_settoggle(udev, epnum, is_out, 0);
++ if (is_control)
++ usb_settoggle(udev, epnum, !is_out, 0);
++
++ if (ep->hcpriv) {
++ dwc_otg_hcd_endpoint_reset(dwc_otg_hcd, ep->hcpriv);
++ }
++ DWC_SPINUNLOCK_IRQRESTORE(dwc_otg_hcd->lock, flags);
++}
++#endif
++
++/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
++ * interrupt.
++ *
++ * This function is called by the USB core when an interrupt occurs */
++static irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ int32_t retval = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
++ if (retval != 0) {
++ S3C2410X_CLEAR_EINTPEND();
++ }
++ return IRQ_RETVAL(retval);
++}
++
++/** Creates Status Change bitmap for the root hub and root port. The bitmap is
++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
++ * is the status change indicator for the single root port. Returns 1 if either
++ * change indicator is 1, otherwise returns 0. */
++int hub_status_data(struct usb_hcd *hcd, char *buf)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ buf[0] = 0;
++ buf[0] |= (dwc_otg_hcd_is_status_changed(dwc_otg_hcd, 1)) << 1;
++
++ return (buf[0] != 0);
++}
++
++/** Handles hub class-specific requests. */
++int hub_control(struct usb_hcd *hcd,
++ u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength)
++{
++ int retval;
++
++ retval = dwc_otg_hcd_hub_control(hcd_to_dwc_otg_hcd(hcd),
++ typeReq, wValue, wIndex, buf, wLength);
++
++ switch (retval) {
++ case -DWC_E_INVALID:
++ retval = -EINVAL;
++ break;
++ }
++
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,958 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
++ * $Revision: #44 $
++ * $Date: 2011/10/26 $
++ * $Change: 1873028 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ * @file
++ *
++ * This file contains the functions to manage Queue Heads and Queue
++ * Transfer Descriptors.
++ */
++
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++extern bool microframe_schedule;
++
++/**
++ * Free each QTD in the QH's QTD-list then free the QH. QH should already be
++ * removed from a list. QTD list should already be empty if called from URB
++ * Dequeue.
++ *
++ * @param hcd HCD instance.
++ * @param qh The QH to free.
++ */
++void dwc_otg_hcd_qh_free(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ dwc_otg_qtd_t *qtd, *qtd_tmp;
++
++ /* Free each QTD in the QTD list */
++ DWC_SPINLOCK(hcd->lock);
++ DWC_CIRCLEQ_FOREACH_SAFE(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) {
++ DWC_CIRCLEQ_REMOVE(&qh->qtd_list, qtd, qtd_list_entry);
++ dwc_otg_hcd_qtd_free(qtd);
++ }
++
++ if (hcd->core_if->dma_desc_enable) {
++ dwc_otg_hcd_qh_free_ddma(hcd, qh);
++ } else if (qh->dw_align_buf) {
++ uint32_t buf_size;
++ if (qh->ep_type == UE_ISOCHRONOUS) {
++ buf_size = 4096;
++ } else {
++ buf_size = hcd->core_if->core_params->max_transfer_size;
++ }
++ DWC_DMA_FREE(buf_size, qh->dw_align_buf, qh->dw_align_buf_dma);
++ }
++
++ DWC_FREE(qh);
++ DWC_SPINUNLOCK(hcd->lock);
++ return;
++}
++
++#define BitStuffTime(bytecount) ((8 * 7* bytecount) / 6)
++#define HS_HOST_DELAY 5 /* nanoseconds */
++#define FS_LS_HOST_DELAY 1000 /* nanoseconds */
++#define HUB_LS_SETUP 333 /* nanoseconds */
++#define NS_TO_US(ns) ((ns + 500) / 1000)
++ /* convert & round nanoseconds to microseconds */
++
++static uint32_t calc_bus_time(int speed, int is_in, int is_isoc, int bytecount)
++{
++ unsigned long retval;
++
++ switch (speed) {
++ case USB_SPEED_HIGH:
++ if (is_isoc) {
++ retval =
++ ((38 * 8 * 2083) +
++ (2083 * (3 + BitStuffTime(bytecount)))) / 1000 +
++ HS_HOST_DELAY;
++ } else {
++ retval =
++ ((55 * 8 * 2083) +
++ (2083 * (3 + BitStuffTime(bytecount)))) / 1000 +
++ HS_HOST_DELAY;
++ }
++ break;
++ case USB_SPEED_FULL:
++ if (is_isoc) {
++ retval =
++ (8354 * (31 + 10 * BitStuffTime(bytecount))) / 1000;
++ if (is_in) {
++ retval = 7268 + FS_LS_HOST_DELAY + retval;
++ } else {
++ retval = 6265 + FS_LS_HOST_DELAY + retval;
++ }
++ } else {
++ retval =
++ (8354 * (31 + 10 * BitStuffTime(bytecount))) / 1000;
++ retval = 9107 + FS_LS_HOST_DELAY + retval;
++ }
++ break;
++ case USB_SPEED_LOW:
++ if (is_in) {
++ retval =
++ (67667 * (31 + 10 * BitStuffTime(bytecount))) /
++ 1000;
++ retval =
++ 64060 + (2 * HUB_LS_SETUP) + FS_LS_HOST_DELAY +
++ retval;
++ } else {
++ retval =
++ (66700 * (31 + 10 * BitStuffTime(bytecount))) /
++ 1000;
++ retval =
++ 64107 + (2 * HUB_LS_SETUP) + FS_LS_HOST_DELAY +
++ retval;
++ }
++ break;
++ default:
++ DWC_WARN("Unknown device speed\n");
++ retval = -1;
++ }
++
++ return NS_TO_US(retval);
++}
++
++/**
++ * Initializes a QH structure.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh The QH to init.
++ * @param urb Holds the information about the device/endpoint that we need
++ * to initialize the QH.
++ */
++#define SCHEDULE_SLOP 10
++void qh_init(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh, dwc_otg_hcd_urb_t * urb)
++{
++ char *speed, *type;
++ int dev_speed;
++ uint32_t hub_addr, hub_port;
++
++ dwc_memset(qh, 0, sizeof(dwc_otg_qh_t));
++
++ /* Initialize QH */
++ qh->ep_type = dwc_otg_hcd_get_pipe_type(&urb->pipe_info);
++ qh->ep_is_in = dwc_otg_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
++
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ qh->maxp = dwc_otg_hcd_get_mps(&urb->pipe_info);
++ DWC_CIRCLEQ_INIT(&qh->qtd_list);
++ DWC_LIST_INIT(&qh->qh_list_entry);
++ qh->channel = NULL;
++
++ /* FS/LS Enpoint on HS Hub
++ * NOT virtual root hub */
++ dev_speed = hcd->fops->speed(hcd, urb->priv);
++
++ hcd->fops->hub_info(hcd, urb->priv, &hub_addr, &hub_port);
++ qh->do_split = 0;
++ if (microframe_schedule)
++ qh->speed = dev_speed;
++
++ qh->nak_frame = 0xffff;
++
++ if (((dev_speed == USB_SPEED_LOW) ||
++ (dev_speed == USB_SPEED_FULL)) &&
++ (hub_addr != 0 && hub_addr != 1)) {
++ DWC_DEBUGPL(DBG_HCD,
++ "QH init: EP %d: TT found at hub addr %d, for port %d\n",
++ dwc_otg_hcd_get_ep_num(&urb->pipe_info), hub_addr,
++ hub_port);
++ qh->do_split = 1;
++ }
++
++ if (qh->ep_type == UE_INTERRUPT || qh->ep_type == UE_ISOCHRONOUS) {
++ /* Compute scheduling parameters once and save them. */
++ hprt0_data_t hprt;
++
++ /** @todo Account for split transfers in the bus time. */
++ int bytecount =
++ dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
++
++ qh->usecs =
++ calc_bus_time((qh->do_split ? USB_SPEED_HIGH : dev_speed),
++ qh->ep_is_in, (qh->ep_type == UE_ISOCHRONOUS),
++ bytecount);
++ /* Start in a slightly future (micro)frame. */
++ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
++ SCHEDULE_SLOP);
++ qh->interval = urb->interval;
++
++#if 0
++ /* Increase interrupt polling rate for debugging. */
++ if (qh->ep_type == UE_INTERRUPT) {
++ qh->interval = 8;
++ }
++#endif
++ hprt.d32 = DWC_READ_REG32(hcd->core_if->host_if->hprt0);
++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
++ ((dev_speed == USB_SPEED_LOW) ||
++ (dev_speed == USB_SPEED_FULL))) {
++ qh->interval *= 8;
++ qh->sched_frame |= 0x7;
++ qh->start_split_frame = qh->sched_frame;
++ }
++
++ }
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
++ dwc_otg_hcd_get_dev_addr(&urb->pipe_info));
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
++ dwc_otg_hcd_get_ep_num(&urb->pipe_info),
++ dwc_otg_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
++ switch (dev_speed) {
++ case USB_SPEED_LOW:
++ qh->dev_speed = DWC_OTG_EP_SPEED_LOW;
++ speed = "low";
++ break;
++ case USB_SPEED_FULL:
++ qh->dev_speed = DWC_OTG_EP_SPEED_FULL;
++ speed = "full";
++ break;
++ case USB_SPEED_HIGH:
++ qh->dev_speed = DWC_OTG_EP_SPEED_HIGH;
++ speed = "high";
++ break;
++ default:
++ speed = "?";
++ break;
++ }
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
++
++ switch (qh->ep_type) {
++ case UE_ISOCHRONOUS:
++ type = "isochronous";
++ break;
++ case UE_INTERRUPT:
++ type = "interrupt";
++ break;
++ case UE_CONTROL:
++ type = "control";
++ break;
++ case UE_BULK:
++ type = "bulk";
++ break;
++ default:
++ type = "?";
++ break;
++ }
++
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n", type);
++
++#ifdef DEBUG
++ if (qh->ep_type == UE_INTERRUPT) {
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
++ qh->usecs);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
++ qh->interval);
++ }
++#endif
++
++}
++
++/**
++ * This function allocates and initializes a QH.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param urb Holds the information about the device/endpoint that we need
++ * to initialize the QH.
++ * @param atomic_alloc Flag to do atomic allocation if needed
++ *
++ * @return Returns pointer to the newly allocated QH, or NULL on error. */
++dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t * hcd,
++ dwc_otg_hcd_urb_t * urb, int atomic_alloc)
++{
++ dwc_otg_qh_t *qh;
++
++ /* Allocate memory */
++ /** @todo add memflags argument */
++ qh = dwc_otg_hcd_qh_alloc(atomic_alloc);
++ if (qh == NULL) {
++ DWC_ERROR("qh allocation failed");
++ return NULL;
++ }
++
++ qh_init(hcd, qh, urb);
++
++ if (hcd->core_if->dma_desc_enable
++ && (dwc_otg_hcd_qh_init_ddma(hcd, qh) < 0)) {
++ dwc_otg_hcd_qh_free(hcd, qh);
++ return NULL;
++ }
++
++ return qh;
++}
++
++/* microframe_schedule=0 start */
++
++/**
++ * Checks that a channel is available for a periodic transfer.
++ *
++ * @return 0 if successful, negative error code otherise.
++ */
++static int periodic_channel_available(dwc_otg_hcd_t * hcd)
++{
++ /*
++ * Currently assuming that there is a dedicated host channnel for each
++ * periodic transaction plus at least one host channel for
++ * non-periodic transactions.
++ */
++ int status;
++ int num_channels;
++
++ num_channels = hcd->core_if->core_params->host_channels;
++ if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels)
++ && (hcd->periodic_channels < num_channels - 1)) {
++ status = 0;
++ } else {
++ DWC_INFO("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
++ __func__, num_channels, hcd->periodic_channels, hcd->non_periodic_channels); //NOTICE
++ status = -DWC_E_NO_SPACE;
++ }
++
++ return status;
++}
++
++/**
++ * Checks that there is sufficient bandwidth for the specified QH in the
++ * periodic schedule. For simplicity, this calculation assumes that all the
++ * transfers in the periodic schedule may occur in the same (micro)frame.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH containing periodic bandwidth required.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int check_periodic_bandwidth(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ int status;
++ int16_t max_claimed_usecs;
++
++ status = 0;
++
++ if ((qh->dev_speed == DWC_OTG_EP_SPEED_HIGH) || qh->do_split) {
++ /*
++ * High speed mode.
++ * Max periodic usecs is 80% x 125 usec = 100 usec.
++ */
++
++ max_claimed_usecs = 100 - qh->usecs;
++ } else {
++ /*
++ * Full speed mode.
++ * Max periodic usecs is 90% x 1000 usec = 900 usec.
++ */
++ max_claimed_usecs = 900 - qh->usecs;
++ }
++
++ if (hcd->periodic_usecs > max_claimed_usecs) {
++ DWC_INFO("%s: already claimed usecs %d, required usecs %d\n", __func__, hcd->periodic_usecs, qh->usecs); //NOTICE
++ status = -DWC_E_NO_SPACE;
++ }
++
++ return status;
++}
++
++/* microframe_schedule=0 end */
++
++/**
++ * Microframe scheduler
++ * track the total use in hcd->frame_usecs
++ * keep each qh use in qh->frame_usecs
++ * when surrendering the qh then donate the time back
++ */
++const unsigned short max_uframe_usecs[]={ 100, 100, 100, 100, 100, 100, 30, 0 };
++
++/*
++ * called from dwc_otg_hcd.c:dwc_otg_hcd_init
++ */
++int init_hcd_usecs(dwc_otg_hcd_t *_hcd)
++{
++ int i;
++ for (i=0; i<8; i++) {
++ _hcd->frame_usecs[i] = max_uframe_usecs[i];
++ }
++ return 0;
++}
++
++static int find_single_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
++{
++ int i;
++ unsigned short utime;
++ int t_left;
++ int ret;
++ int done;
++
++ ret = -1;
++ utime = _qh->usecs;
++ t_left = utime;
++ i = 0;
++ done = 0;
++ while (done == 0) {
++ /* At the start _hcd->frame_usecs[i] = max_uframe_usecs[i]; */
++ if (utime <= _hcd->frame_usecs[i]) {
++ _hcd->frame_usecs[i] -= utime;
++ _qh->frame_usecs[i] += utime;
++ t_left -= utime;
++ ret = i;
++ done = 1;
++ return ret;
++ } else {
++ i++;
++ if (i == 8) {
++ done = 1;
++ ret = -1;
++ }
++ }
++ }
++ return ret;
++ }
++
++/*
++ * use this for FS apps that can span multiple uframes
++ */
++static int find_multi_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
++{
++ int i;
++ int j;
++ unsigned short utime;
++ int t_left;
++ int ret;
++ int done;
++ unsigned short xtime;
++
++ ret = -1;
++ utime = _qh->usecs;
++ t_left = utime;
++ i = 0;
++ done = 0;
++loop:
++ while (done == 0) {
++ if(_hcd->frame_usecs[i] <= 0) {
++ i++;
++ if (i == 8) {
++ done = 1;
++ ret = -1;
++ }
++ goto loop;
++ }
++
++ /*
++ * we need n consecutive slots
++ * so use j as a start slot j plus j+1 must be enough time (for now)
++ */
++ xtime= _hcd->frame_usecs[i];
++ for (j = i+1 ; j < 8 ; j++ ) {
++ /*
++ * if we add this frame remaining time to xtime we may
++ * be OK, if not we need to test j for a complete frame
++ */
++ if ((xtime+_hcd->frame_usecs[j]) < utime) {
++ if (_hcd->frame_usecs[j] < max_uframe_usecs[j]) {
++ j = 8;
++ ret = -1;
++ continue;
++ }
++ }
++ if (xtime >= utime) {
++ ret = i;
++ j = 8; /* stop loop with a good value ret */
++ continue;
++ }
++ /* add the frame time to x time */
++ xtime += _hcd->frame_usecs[j];
++ /* we must have a fully available next frame or break */
++ if ((xtime < utime)
++ && (_hcd->frame_usecs[j] == max_uframe_usecs[j])) {
++ ret = -1;
++ j = 8; /* stop loop with a bad value ret */
++ continue;
++ }
++ }
++ if (ret >= 0) {
++ t_left = utime;
++ for (j = i; (t_left>0) && (j < 8); j++ ) {
++ t_left -= _hcd->frame_usecs[j];
++ if ( t_left <= 0 ) {
++ _qh->frame_usecs[j] += _hcd->frame_usecs[j] + t_left;
++ _hcd->frame_usecs[j]= -t_left;
++ ret = i;
++ done = 1;
++ } else {
++ _qh->frame_usecs[j] += _hcd->frame_usecs[j];
++ _hcd->frame_usecs[j] = 0;
++ }
++ }
++ } else {
++ i++;
++ if (i == 8) {
++ done = 1;
++ ret = -1;
++ }
++ }
++ }
++ return ret;
++}
++
++static int find_uframe(dwc_otg_hcd_t * _hcd, dwc_otg_qh_t * _qh)
++{
++ int ret;
++ ret = -1;
++
++ if (_qh->speed == USB_SPEED_HIGH) {
++ /* if this is a hs transaction we need a full frame */
++ ret = find_single_uframe(_hcd, _qh);
++ } else {
++ /* if this is a fs transaction we may need a sequence of frames */
++ ret = find_multi_uframe(_hcd, _qh);
++ }
++ return ret;
++}
++
++/**
++ * Checks that the max transfer size allowed in a host channel is large enough
++ * to handle the maximum data transfer in a single (micro)frame for a periodic
++ * transfer.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH for a periodic endpoint.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int check_max_xfer_size(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ int status;
++ uint32_t max_xfer_size;
++ uint32_t max_channel_xfer_size;
++
++ status = 0;
++
++ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
++ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
++
++ if (max_xfer_size > max_channel_xfer_size) {
++ DWC_INFO("%s: Periodic xfer length %d > " "max xfer length for channel %d\n",
++ __func__, max_xfer_size, max_channel_xfer_size); //NOTICE
++ status = -DWC_E_NO_SPACE;
++ }
++
++ return status;
++}
++
++
++extern int g_next_sched_frame, g_np_count, g_np_sent;
++
++/**
++ * Schedules an interrupt or isochronous transfer in the periodic schedule.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH for the periodic transfer. The QH should already contain the
++ * scheduling information.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int schedule_periodic(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ int status = 0;
++
++ if (microframe_schedule) {
++ int frame;
++ status = find_uframe(hcd, qh);
++ frame = -1;
++ if (status == 0) {
++ frame = 7;
++ } else {
++ if (status > 0 )
++ frame = status-1;
++ }
++
++ /* Set the new frame up */
++ if (frame > -1) {
++ qh->sched_frame &= ~0x7;
++ qh->sched_frame |= (frame & 7);
++ }
++
++ if (status != -1)
++ status = 0;
++ } else {
++ status = periodic_channel_available(hcd);
++ if (status) {
++ DWC_INFO("%s: No host channel available for periodic " "transfer.\n", __func__); //NOTICE
++ return status;
++ }
++
++ status = check_periodic_bandwidth(hcd, qh);
++ }
++ if (status) {
++ DWC_INFO("%s: Insufficient periodic bandwidth for "
++ "periodic transfer.\n", __func__);
++ return status;
++ }
++ status = check_max_xfer_size(hcd, qh);
++ if (status) {
++ DWC_INFO("%s: Channel max transfer size too small "
++ "for periodic transfer.\n", __func__);
++ return status;
++ }
++
++ if (hcd->core_if->dma_desc_enable) {
++ /* Don't rely on SOF and start in ready schedule */
++ DWC_LIST_INSERT_TAIL(&hcd->periodic_sched_ready, &qh->qh_list_entry);
++ }
++ else {
++ if(DWC_LIST_EMPTY(&hcd->periodic_sched_inactive) || dwc_frame_num_le(qh->sched_frame, g_next_sched_frame))
++ {
++ g_next_sched_frame = qh->sched_frame;
++
++ }
++ /* Always start in the inactive schedule. */
++ DWC_LIST_INSERT_TAIL(&hcd->periodic_sched_inactive, &qh->qh_list_entry);
++ }
++
++ if (!microframe_schedule) {
++ /* Reserve the periodic channel. */
++ hcd->periodic_channels++;
++ }
++
++ /* Update claimed usecs per (micro)frame. */
++ hcd->periodic_usecs += qh->usecs;
++
++ return status;
++}
++
++
++/**
++ * This function adds a QH to either the non periodic or periodic schedule if
++ * it is not already in the schedule. If the QH is already in the schedule, no
++ * action is taken.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qh_add(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ int status = 0;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ if (!DWC_LIST_EMPTY(&qh->qh_list_entry)) {
++ /* QH already in a schedule. */
++ return status;
++ }
++
++ /* Add the new QH to the appropriate schedule */
++ if (dwc_qh_is_non_per(qh)) {
++ /* Always start in the inactive schedule. */
++ DWC_LIST_INSERT_TAIL(&hcd->non_periodic_sched_inactive,
++ &qh->qh_list_entry);
++ g_np_count++;
++ } else {
++ status = schedule_periodic(hcd, qh);
++ if ( !hcd->periodic_qh_count ) {
++ intr_mask.b.sofintr = 1;
++ DWC_MODIFY_REG32(&hcd->core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++ hcd->periodic_qh_count++;
++ }
++
++ return status;
++}
++
++/**
++ * Removes an interrupt or isochronous transfer from the periodic schedule.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH for the periodic transfer.
++ */
++static void deschedule_periodic(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ int i;
++ DWC_LIST_REMOVE_INIT(&qh->qh_list_entry);
++
++ /* Update claimed usecs per (micro)frame. */
++ hcd->periodic_usecs -= qh->usecs;
++
++ if (!microframe_schedule) {
++ /* Release the periodic channel reservation. */
++ hcd->periodic_channels--;
++ } else {
++ for (i = 0; i < 8; i++) {
++ hcd->frame_usecs[i] += qh->frame_usecs[i];
++ qh->frame_usecs[i] = 0;
++ }
++ }
++}
++
++/**
++ * Removes a QH from either the non-periodic or periodic schedule. Memory is
++ * not freed.
++ *
++ * @param hcd The HCD state structure.
++ * @param qh QH to remove from schedule. */
++void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh)
++{
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ if (DWC_LIST_EMPTY(&qh->qh_list_entry)) {
++ /* QH is not in a schedule. */
++ return;
++ }
++
++ if (dwc_qh_is_non_per(qh)) {
++ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
++ hcd->non_periodic_qh_ptr =
++ hcd->non_periodic_qh_ptr->next;
++ }
++ DWC_LIST_REMOVE_INIT(&qh->qh_list_entry);
++ } else {
++ deschedule_periodic(hcd, qh);
++ hcd->periodic_qh_count--;
++ if( !hcd->periodic_qh_count ) {
++ intr_mask.b.sofintr = 1;
++ DWC_MODIFY_REG32(&hcd->core_if->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++ }
++ }
++}
++
++/**
++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
++ * non-periodic schedule. The QH is added to the inactive non-periodic
++ * schedule if any QTDs are still attached to the QH.
++ *
++ * For periodic QHs, the QH is removed from the periodic queued schedule. If
++ * there are any QTDs still attached to the QH, the QH is added to either the
++ * periodic inactive schedule or the periodic ready schedule and its next
++ * scheduled frame is calculated. The QH is placed in the ready schedule if
++ * the scheduled frame has been reached already. Otherwise it's placed in the
++ * inactive schedule. If there are no QTDs attached to the QH, the QH is
++ * completely removed from the periodic schedule.
++ */
++void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t * hcd, dwc_otg_qh_t * qh,
++ int sched_next_periodic_split)
++{
++ if (dwc_qh_is_non_per(qh)) {
++
++ dwc_otg_qh_t *qh_tmp;
++ dwc_list_link_t *qh_list;
++ DWC_LIST_FOREACH(qh_list, &hcd->non_periodic_sched_inactive)
++ {
++ qh_tmp = DWC_LIST_ENTRY(qh_list, struct dwc_otg_qh, qh_list_entry);
++ if(qh_tmp == qh)
++ {
++ /*
++ * FIQ is being disabled because this one nevers gets a np_count increment
++ * This is still not absolutely correct, but it should fix itself with
++ * just an unnecessary extra interrupt
++ */
++ g_np_sent = g_np_count;
++ }
++ }
++
++
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ if (!DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
++ /* Add back to inactive non-periodic schedule. */
++ dwc_otg_hcd_qh_add(hcd, qh);
++ }
++ } else {
++ uint16_t frame_number = dwc_otg_hcd_get_frame_number(hcd);
++
++ if (qh->do_split) {
++ /* Schedule the next continuing periodic split transfer */
++ if (sched_next_periodic_split) {
++
++ qh->sched_frame = frame_number;
++
++ if (dwc_frame_num_le(frame_number,
++ dwc_frame_num_inc
++ (qh->start_split_frame,
++ 1))) {
++ /*
++ * Allow one frame to elapse after start
++ * split microframe before scheduling
++ * complete split, but DONT if we are
++ * doing the next start split in the
++ * same frame for an ISOC out.
++ */
++ if ((qh->ep_type != UE_ISOCHRONOUS) ||
++ (qh->ep_is_in != 0)) {
++ qh->sched_frame =
++ dwc_frame_num_inc(qh->sched_frame, 1);
++ }
++ }
++ } else {
++ qh->sched_frame =
++ dwc_frame_num_inc(qh->start_split_frame,
++ qh->interval);
++ if (dwc_frame_num_le
++ (qh->sched_frame, frame_number)) {
++ qh->sched_frame = frame_number;
++ }
++ qh->sched_frame |= 0x7;
++ qh->start_split_frame = qh->sched_frame;
++ }
++ } else {
++ qh->sched_frame =
++ dwc_frame_num_inc(qh->sched_frame, qh->interval);
++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
++ qh->sched_frame = frame_number;
++ }
++ }
++
++ if (DWC_CIRCLEQ_EMPTY(&qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ } else {
++ /*
++ * Remove from periodic_sched_queued and move to
++ * appropriate queue.
++ */
++ if ((microframe_schedule && dwc_frame_num_le(qh->sched_frame, frame_number)) ||
++ (!microframe_schedule && qh->sched_frame == frame_number)) {
++ DWC_LIST_MOVE_HEAD(&hcd->periodic_sched_ready,
++ &qh->qh_list_entry);
++ } else {
++ if(!dwc_frame_num_le(g_next_sched_frame, qh->sched_frame))
++ {
++ g_next_sched_frame = qh->sched_frame;
++ }
++
++ DWC_LIST_MOVE_HEAD
++ (&hcd->periodic_sched_inactive,
++ &qh->qh_list_entry);
++ }
++ }
++ }
++}
++
++/**
++ * This function allocates and initializes a QTD.
++ *
++ * @param urb The URB to create a QTD from. Each URB-QTD pair will end up
++ * pointing to each other so each pair should have a unique correlation.
++ * @param atomic_alloc Flag to do atomic alloc if needed
++ *
++ * @return Returns pointer to the newly allocated QTD, or NULL on error. */
++dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(dwc_otg_hcd_urb_t * urb, int atomic_alloc)
++{
++ dwc_otg_qtd_t *qtd;
++
++ qtd = dwc_otg_hcd_qtd_alloc(atomic_alloc);
++ if (qtd == NULL) {
++ return NULL;
++ }
++
++ dwc_otg_hcd_qtd_init(qtd, urb);
++ return qtd;
++}
++
++/**
++ * Initializes a QTD structure.
++ *
++ * @param qtd The QTD to initialize.
++ * @param urb The URB to use for initialization. */
++void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t * qtd, dwc_otg_hcd_urb_t * urb)
++{
++ dwc_memset(qtd, 0, sizeof(dwc_otg_qtd_t));
++ qtd->urb = urb;
++ if (dwc_otg_hcd_get_pipe_type(&urb->pipe_info) == UE_CONTROL) {
++ /*
++ * The only time the QTD data toggle is used is on the data
++ * phase of control transfers. This phase always starts with
++ * DATA1.
++ */
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ qtd->control_phase = DWC_OTG_CONTROL_SETUP;
++ }
++
++ /* start split */
++ qtd->complete_split = 0;
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ qtd->isoc_split_offset = 0;
++ qtd->in_process = 0;
++
++ /* Store the qtd ptr in the urb to reference what QTD. */
++ urb->qtd = qtd;
++ return;
++}
++
++/**
++ * This function adds a QTD to the QTD-list of a QH. It will find the correct
++ * QH to place the QTD into. If it does not find a QH, then it will create a
++ * new QH. If the QH to which the QTD is added is not currently scheduled, it
++ * is placed into the proper schedule based on its EP type.
++ *
++ * @param[in] qtd The QTD to add
++ * @param[in] hcd The DWC HCD structure
++ * @param[out] qh out parameter to return queue head
++ * @param atomic_alloc Flag to do atomic alloc if needed
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t * qtd,
++ dwc_otg_hcd_t * hcd, dwc_otg_qh_t ** qh, int atomic_alloc)
++{
++ int retval = 0;
++ dwc_irqflags_t flags;
++
++ dwc_otg_hcd_urb_t *urb = qtd->urb;
++
++ /*
++ * Get the QH which holds the QTD-list to insert to. Create QH if it
++ * doesn't exist.
++ */
++ if (*qh == NULL) {
++ *qh = dwc_otg_hcd_qh_create(hcd, urb, atomic_alloc);
++ if (*qh == NULL) {
++ retval = -DWC_E_NO_MEMORY;
++ goto done;
++ }
++ }
++ DWC_SPINLOCK_IRQSAVE(hcd->lock, &flags);
++ retval = dwc_otg_hcd_qh_add(hcd, *qh);
++ if (retval == 0) {
++ DWC_CIRCLEQ_INSERT_TAIL(&((*qh)->qtd_list), qtd,
++ qtd_list_entry);
++ qtd->qh = *qh;
++ }
++ DWC_SPINUNLOCK_IRQRESTORE(hcd->lock, flags);
++
++done:
++
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,113 @@
++#include "dwc_otg_regs.h"
++#include "dwc_otg_dbg.h"
++
++void dwc_debug_print_core_int_reg(gintsts_data_t gintsts, const char* function_name)
++{
++ DWC_DEBUGPL(DBG_USER, "*** Debugging from within the %s function: ***\n"
++ "curmode: %1i Modemismatch: %1i otgintr: %1i sofintr: %1i\n"
++ "rxstsqlvl: %1i nptxfempty : %1i ginnakeff: %1i goutnakeff: %1i\n"
++ "ulpickint: %1i i2cintr: %1i erlysuspend:%1i usbsuspend: %1i\n"
++ "usbreset: %1i enumdone: %1i isooutdrop: %1i eopframe: %1i\n"
++ "restoredone: %1i epmismatch: %1i inepint: %1i outepintr: %1i\n"
++ "incomplisoin:%1i incomplisoout:%1i fetsusp: %1i resetdet: %1i\n"
++ "portintr: %1i hcintr: %1i ptxfempty: %1i lpmtranrcvd:%1i\n"
++ "conidstschng:%1i disconnect: %1i sessreqintr:%1i wkupintr: %1i\n",
++ function_name,
++ gintsts.b.curmode,
++ gintsts.b.modemismatch,
++ gintsts.b.otgintr,
++ gintsts.b.sofintr,
++ gintsts.b.rxstsqlvl,
++ gintsts.b.nptxfempty,
++ gintsts.b.ginnakeff,
++ gintsts.b.goutnakeff,
++ gintsts.b.ulpickint,
++ gintsts.b.i2cintr,
++ gintsts.b.erlysuspend,
++ gintsts.b.usbsuspend,
++ gintsts.b.usbreset,
++ gintsts.b.enumdone,
++ gintsts.b.isooutdrop,
++ gintsts.b.eopframe,
++ gintsts.b.restoredone,
++ gintsts.b.epmismatch,
++ gintsts.b.inepint,
++ gintsts.b.outepintr,
++ gintsts.b.incomplisoin,
++ gintsts.b.incomplisoout,
++ gintsts.b.fetsusp,
++ gintsts.b.resetdet,
++ gintsts.b.portintr,
++ gintsts.b.hcintr,
++ gintsts.b.ptxfempty,
++ gintsts.b.lpmtranrcvd,
++ gintsts.b.conidstschng,
++ gintsts.b.disconnect,
++ gintsts.b.sessreqintr,
++ gintsts.b.wkupintr);
++ return;
++}
++
++void dwc_debug_core_int_mask(gintmsk_data_t gintmsk, const char* function_name)
++{
++ DWC_DEBUGPL(DBG_USER, "Interrupt Mask status (called from %s) :\n"
++ "modemismatch: %1i otgintr: %1i sofintr: %1i rxstsqlvl: %1i\n"
++ "nptxfempty: %1i ginnakeff: %1i goutnakeff: %1i ulpickint: %1i\n"
++ "i2cintr: %1i erlysuspend:%1i usbsuspend: %1i usbreset: %1i\n"
++ "enumdone: %1i isooutdrop: %1i eopframe: %1i restoredone: %1i\n"
++ "epmismatch: %1i inepintr: %1i outepintr: %1i incomplisoin:%1i\n"
++ "incomplisoout:%1i fetsusp: %1i resetdet: %1i portintr: %1i\n"
++ "hcintr: %1i ptxfempty: %1i lpmtranrcvd:%1i conidstschng:%1i\n"
++ "disconnect: %1i sessreqintr:%1i wkupintr: %1i\n",
++ function_name,
++ gintmsk.b.modemismatch,
++ gintmsk.b.otgintr,
++ gintmsk.b.sofintr,
++ gintmsk.b.rxstsqlvl,
++ gintmsk.b.nptxfempty,
++ gintmsk.b.ginnakeff,
++ gintmsk.b.goutnakeff,
++ gintmsk.b.ulpickint,
++ gintmsk.b.i2cintr,
++ gintmsk.b.erlysuspend,
++ gintmsk.b.usbsuspend,
++ gintmsk.b.usbreset,
++ gintmsk.b.enumdone,
++ gintmsk.b.isooutdrop,
++ gintmsk.b.eopframe,
++ gintmsk.b.restoredone,
++ gintmsk.b.epmismatch,
++ gintmsk.b.inepintr,
++ gintmsk.b.outepintr,
++ gintmsk.b.incomplisoin,
++ gintmsk.b.incomplisoout,
++ gintmsk.b.fetsusp,
++ gintmsk.b.resetdet,
++ gintmsk.b.portintr,
++ gintmsk.b.hcintr,
++ gintmsk.b.ptxfempty,
++ gintmsk.b.lpmtranrcvd,
++ gintmsk.b.conidstschng,
++ gintmsk.b.disconnect,
++ gintmsk.b.sessreqintr,
++ gintmsk.b.wkupintr);
++ return;
++}
++
++void dwc_debug_otg_int(gotgint_data_t gotgint, const char* function_name)
++{
++ DWC_DEBUGPL(DBG_USER, "otg int register (from %s function):\n"
++ "sesenddet:%1i sesreqsucstschung:%2i hstnegsucstschng:%1i\n"
++ "hstnegdet:%1i adevtoutchng: %2i debdone: %1i\n"
++ "mvic: %1i\n",
++ function_name,
++ gotgint.b.sesenddet,
++ gotgint.b.sesreqsucstschng,
++ gotgint.b.hstnegsucstschng,
++ gotgint.b.hstnegdet,
++ gotgint.b.adevtoutchng,
++ gotgint.b.debdone,
++ gotgint.b.mvic);
++
++ return;
++}
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_mphi_fix.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,36 @@
++#ifndef __DWC_OTG_MPHI_FIX_H__
++#define __DWC_OTG_MPHI_FIX_H__
++
++#define FIQ_WRITE_IO_ADDRESS(_addr_,_data_) *(volatile uint32_t *) IO_ADDRESS(_addr_) = _data_
++#define FIQ_READ_IO_ADDRESS(_addr_) *(volatile uint32_t *) IO_ADDRESS(_addr_)
++#define FIQ_MODIFY_IO_ADDRESS(_addr_,_clear_,_set_) FIQ_WRITE_IO_ADDRESS(_addr_ , (FIQ_READ_IO_ADDRESS(_addr_)&~_clear_)|_set_)
++#define FIQ_WRITE(_addr_,_data_) *(volatile uint32_t *) _addr_ = _data_
++
++typedef struct {
++ volatile void* base;
++ volatile void* ctrl;
++ volatile void* outdda;
++ volatile void* outddb;
++ volatile void* intstat;
++} mphi_regs_t;
++
++void dwc_debug_print_core_int_reg(gintsts_data_t gintsts, const char* function_name);
++void dwc_debug_core_int_mask(gintsts_data_t gintmsk, const char* function_name);
++void dwc_debug_otg_int(gotgint_data_t gotgint, const char* function_name);
++
++
++
++#ifdef DEBUG
++#define DWC_DBG_PRINT_CORE_INT(_arg_) dwc_debug_print_core_int_reg(_arg_,__func__)
++#define DWC_DBG_PRINT_CORE_INT_MASK(_arg_) dwc_debug_core_int_mask(_arg_,__func__)
++#define DWC_DBG_PRINT_OTG_INT(_arg_) dwc_debug_otg_int(_arg_,__func__)
++
++#else
++#define DWC_DBG_PRINT_CORE_INT(_arg_)
++#define DWC_DBG_PRINT_CORE_INT_MASK(_arg_)
++#define DWC_DBG_PRINT_OTG_INT(_arg_)
++
++
++#endif
++
++#endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_os_dep.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_os_dep.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_os_dep.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_os_dep.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,188 @@
++#ifndef _DWC_OS_DEP_H_
++#define _DWC_OS_DEP_H_
++
++/**
++ * @file
++ *
++ * This file contains OS dependent structures.
++ *
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/slab.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/ctype.h>
++#include <linux/string.h>
++#include <linux/dma-mapping.h>
++#include <linux/jiffies.h>
++#include <linux/delay.h>
++#include <linux/timer.h>
++#include <linux/workqueue.h>
++#include <linux/stat.h>
++#include <linux/pci.h>
++
++#include <linux/version.h>
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
++# include <linux/irq.h>
++#endif
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,21)
++# include <linux/usb/ch9.h>
++#else
++# include <linux/usb_ch9.h>
++#endif
++
++#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,24)
++# include <linux/usb/gadget.h>
++#else
++# include <linux/usb_gadget.h>
++#endif
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
++# include <asm/irq.h>
++#endif
++
++#ifdef PCI_INTERFACE
++# include <asm/io.h>
++#endif
++
++#ifdef LM_INTERFACE
++# include <asm/unaligned.h>
++# include <asm/sizes.h>
++# include <asm/param.h>
++# include <asm/io.h>
++# if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30))
++# include <asm/arch/hardware.h>
++# include <asm/arch/lm.h>
++# include <asm/arch/irqs.h>
++# include <asm/arch/regs-irq.h>
++# else
++/* in 2.6.31, at least, we seem to have lost the generic LM infrastructure -
++ here we assume that the machine architecture provides definitions
++ in its own header
++*/
++# include <mach/lm.h>
++# include <mach/hardware.h>
++# endif
++#endif
++
++#ifdef PLATFORM_INTERFACE
++#include <linux/platform_device.h>
++#include <asm/mach/map.h>
++#endif
++
++/** The OS page size */
++#define DWC_OS_PAGE_SIZE PAGE_SIZE
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,14)
++typedef int gfp_t;
++#endif
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18)
++# define IRQF_SHARED SA_SHIRQ
++#endif
++
++typedef struct os_dependent {
++ /** Base address returned from ioremap() */
++ void *base;
++
++ /** Register offset for Diagnostic API */
++ uint32_t reg_offset;
++
++ /** Base address for MPHI peripheral */
++ void *mphi_base;
++
++#ifdef LM_INTERFACE
++ struct lm_device *lmdev;
++#elif defined(PCI_INTERFACE)
++ struct pci_dev *pcidev;
++
++ /** Start address of a PCI region */
++ resource_size_t rsrc_start;
++
++ /** Length address of a PCI region */
++ resource_size_t rsrc_len;
++#elif defined(PLATFORM_INTERFACE)
++ struct platform_device *platformdev;
++#endif
++
++} os_dependent_t;
++
++#ifdef __cplusplus
++}
++#endif
++
++
++
++/* Type for the our device on the chosen bus */
++#if defined(LM_INTERFACE)
++typedef struct lm_device dwc_bus_dev_t;
++#elif defined(PCI_INTERFACE)
++typedef struct pci_dev dwc_bus_dev_t;
++#elif defined(PLATFORM_INTERFACE)
++typedef struct platform_device dwc_bus_dev_t;
++#endif
++
++/* Helper macro to retrieve drvdata from the device on the chosen bus */
++#if defined(LM_INTERFACE)
++#define DWC_OTG_BUSDRVDATA(_dev) lm_get_drvdata(_dev)
++#elif defined(PCI_INTERFACE)
++#define DWC_OTG_BUSDRVDATA(_dev) pci_get_drvdata(_dev)
++#elif defined(PLATFORM_INTERFACE)
++#define DWC_OTG_BUSDRVDATA(_dev) platform_get_drvdata(_dev)
++#endif
++
++/**
++ * Helper macro returning the otg_device structure of a given struct device
++ *
++ * c.f. static dwc_otg_device_t *dwc_otg_drvdev(struct device *_dev)
++ */
++#ifdef LM_INTERFACE
++#define DWC_OTG_GETDRVDEV(_var, _dev) do { \
++ struct lm_device *lm_dev = \
++ container_of(_dev, struct lm_device, dev); \
++ _var = lm_get_drvdata(lm_dev); \
++ } while (0)
++
++#elif defined(PCI_INTERFACE)
++#define DWC_OTG_GETDRVDEV(_var, _dev) do { \
++ _var = dev_get_drvdata(_dev); \
++ } while (0)
++
++#elif defined(PLATFORM_INTERFACE)
++#define DWC_OTG_GETDRVDEV(_var, _dev) do { \
++ struct platform_device *platform_dev = \
++ container_of(_dev, struct platform_device, dev); \
++ _var = platform_get_drvdata(platform_dev); \
++ } while (0)
++#endif
++
++
++/**
++ * Helper macro returning the struct dev of the given struct os_dependent
++ *
++ * c.f. static struct device *dwc_otg_getdev(struct os_dependent *osdep)
++ */
++#ifdef LM_INTERFACE
++#define DWC_OTG_OS_GETDEV(_osdep) \
++ ((_osdep).lmdev == NULL? NULL: &(_osdep).lmdev->dev)
++#elif defined(PCI_INTERFACE)
++#define DWC_OTG_OS_GETDEV(_osdep) \
++ ((_osdep).pci_dev == NULL? NULL: &(_osdep).pci_dev->dev)
++#elif defined(PLATFORM_INTERFACE)
++#define DWC_OTG_OS_GETDEV(_osdep) \
++ ((_osdep).platformdev == NULL? NULL: &(_osdep).platformdev->dev)
++#endif
++
++
++
++
++#endif /* _DWC_OS_DEP_H_ */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,2708 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
++ * $Revision: #101 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++
++/** @file
++ * This file implements PCD Core. All code in this file is portable and doesn't
++ * use any OS specific functions.
++ * PCD Core provides Interface, defined in <code><dwc_otg_pcd_if.h></code>
++ * header file, which can be used to implement OS specific PCD interface.
++ *
++ * An important function of the PCD is managing interrupts generated
++ * by the DWC_otg controller. The implementation of the DWC_otg device
++ * mode interrupt service routines is in dwc_otg_pcd_intr.c.
++ *
++ * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
++ * @todo Does it work when the request size is greater than DEPTSIZ
++ * transfer size
++ *
++ */
++
++#include "dwc_otg_pcd.h"
++
++#ifdef DWC_UTE_CFI
++#include "dwc_otg_cfi.h"
++
++extern int init_cfi(cfiobject_t * cfiobj);
++#endif
++
++/**
++ * Choose endpoint from ep arrays using usb_ep structure.
++ */
++static dwc_otg_pcd_ep_t *get_ep_from_handle(dwc_otg_pcd_t * pcd, void *handle)
++{
++ int i;
++ if (pcd->ep0.priv == handle) {
++ return &pcd->ep0;
++ }
++ for (i = 0; i < MAX_EPS_CHANNELS - 1; i++) {
++ if (pcd->in_ep[i].priv == handle)
++ return &pcd->in_ep[i];
++ if (pcd->out_ep[i].priv == handle)
++ return &pcd->out_ep[i];
++ }
++
++ return NULL;
++}
++
++/**
++ * This function completes a request. It call's the request call back.
++ */
++void dwc_otg_request_done(dwc_otg_pcd_ep_t * ep, dwc_otg_pcd_request_t * req,
++ int32_t status)
++{
++ unsigned stopped = ep->stopped;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(ep %p req %p)\n", __func__, ep, req);
++ DWC_CIRCLEQ_REMOVE_INIT(&ep->queue, req, queue_entry);
++
++ /* don't modify queue heads during completion callback */
++ ep->stopped = 1;
++ /* spin_unlock/spin_lock now done in fops->complete() */
++ ep->pcd->fops->complete(ep->pcd, ep->priv, req->priv, status,
++ req->actual);
++
++ if (ep->pcd->request_pending > 0) {
++ --ep->pcd->request_pending;
++ }
++
++ ep->stopped = stopped;
++ DWC_FREE(req);
++}
++
++/**
++ * This function terminates all the requsts in the EP request queue.
++ */
++void dwc_otg_request_nuke(dwc_otg_pcd_ep_t * ep)
++{
++ dwc_otg_pcd_request_t *req;
++
++ ep->stopped = 1;
++
++ /* called with irqs blocked?? */
++ while (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++ dwc_otg_request_done(ep, req, -DWC_E_SHUTDOWN);
++ }
++}
++
++void dwc_otg_pcd_start(dwc_otg_pcd_t * pcd,
++ const struct dwc_otg_pcd_function_ops *fops)
++{
++ pcd->fops = fops;
++}
++
++/**
++ * PCD Callback function for initializing the PCD when switching to
++ * device mode.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_start_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *) p;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++
++ /*
++ * Initialized the Core for Device mode.
++ */
++ if (dwc_otg_is_device_mode(core_if)) {
++ dwc_otg_core_dev_init(core_if);
++ /* Set core_if's lock pointer to the pcd->lock */
++ core_if->lock = pcd->lock;
++ }
++ return 1;
++}
++
++/** CFI-specific buffer allocation function for EP */
++#ifdef DWC_UTE_CFI
++uint8_t *cfiw_ep_alloc_buffer(dwc_otg_pcd_t * pcd, void *pep, dwc_dma_t * addr,
++ size_t buflen, int flags)
++{
++ dwc_otg_pcd_ep_t *ep;
++ ep = get_ep_from_handle(pcd, pep);
++ if (!ep) {
++ DWC_WARN("bad ep\n");
++ return -DWC_E_INVALID;
++ }
++
++ return pcd->cfi->ops.ep_alloc_buf(pcd->cfi, pcd, ep, addr, buflen,
++ flags);
++}
++#else
++uint8_t *cfiw_ep_alloc_buffer(dwc_otg_pcd_t * pcd, void *pep, dwc_dma_t * addr,
++ size_t buflen, int flags);
++#endif
++
++/**
++ * PCD Callback function for notifying the PCD when resuming from
++ * suspend.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_resume_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *) p;
++
++ if (pcd->fops->resume) {
++ pcd->fops->resume(pcd);
++ }
++
++ /* Stop the SRP timeout timer. */
++ if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS)
++ || (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
++ if (GET_CORE_IF(pcd)->srp_timer_started) {
++ GET_CORE_IF(pcd)->srp_timer_started = 0;
++ DWC_TIMER_CANCEL(GET_CORE_IF(pcd)->srp_timer);
++ }
++ }
++ return 1;
++}
++
++/**
++ * PCD Callback function for notifying the PCD device is suspended.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_suspend_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *) p;
++
++ if (pcd->fops->suspend) {
++ DWC_SPINUNLOCK(pcd->lock);
++ pcd->fops->suspend(pcd);
++ DWC_SPINLOCK(pcd->lock);
++ }
++
++ return 1;
++}
++
++/**
++ * PCD Callback function for stopping the PCD when switching to Host
++ * mode.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_stop_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *) p;
++ extern void dwc_otg_pcd_stop(dwc_otg_pcd_t * _pcd);
++
++ dwc_otg_pcd_stop(pcd);
++ return 1;
++}
++
++/**
++ * PCD Callback structure for handling mode switching.
++ */
++static dwc_otg_cil_callbacks_t pcd_callbacks = {
++ .start = dwc_otg_pcd_start_cb,
++ .stop = dwc_otg_pcd_stop_cb,
++ .suspend = dwc_otg_pcd_suspend_cb,
++ .resume_wakeup = dwc_otg_pcd_resume_cb,
++ .p = 0, /* Set at registration */
++};
++
++/**
++ * This function allocates a DMA Descriptor chain for the Endpoint
++ * buffer to be used for a transfer to/from the specified endpoint.
++ */
++dwc_otg_dev_dma_desc_t *dwc_otg_ep_alloc_desc_chain(dwc_dma_t * dma_desc_addr,
++ uint32_t count)
++{
++ return DWC_DMA_ALLOC_ATOMIC(count * sizeof(dwc_otg_dev_dma_desc_t),
++ dma_desc_addr);
++}
++
++/**
++ * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
++ */
++void dwc_otg_ep_free_desc_chain(dwc_otg_dev_dma_desc_t * desc_addr,
++ uint32_t dma_desc_addr, uint32_t count)
++{
++ DWC_DMA_FREE(count * sizeof(dwc_otg_dev_dma_desc_t), desc_addr,
++ dma_desc_addr);
++}
++
++#ifdef DWC_EN_ISOC
++
++/**
++ * This function initializes a descriptor chain for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP to start the transfer on.
++ *
++ */
++void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * dwc_ep)
++{
++
++ dsts_data_t dsts = {.d32 = 0 };
++ depctl_data_t depctl = {.d32 = 0 };
++ volatile uint32_t *addr;
++ int i, j;
++ uint32_t len;
++
++ if (dwc_ep->is_in)
++ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
++ else
++ dwc_ep->desc_cnt =
++ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm /
++ dwc_ep->bInterval;
++
++ /** Allocate descriptors for double buffering */
++ dwc_ep->iso_desc_addr =
++ dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,
++ dwc_ep->desc_cnt * 2);
++ if (dwc_ep->desc_addr) {
++ DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
++ return;
++ }
++
++ dsts.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++
++ /** ISO OUT EP */
++ if (dwc_ep->is_in == 0) {
++ dev_dma_desc_sts_t sts = {.d32 = 0 };
++ dwc_otg_dev_dma_desc_t *dma_desc = dwc_ep->iso_desc_addr;
++ dma_addr_t dma_ad;
++ uint32_t data_per_desc;
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[dwc_ep->num];
++ int offset;
++
++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
++ dma_ad = (dma_addr_t) DWC_READ_REG32(&(out_regs->doepdma));
++
++ /** Buffer 0 descriptors setup */
++ dma_ad = dwc_ep->dma_addr0;
++
++ sts.b_iso_out.bs = BS_HOST_READY;
++ sts.b_iso_out.rxsts = 0;
++ sts.b_iso_out.l = 0;
++ sts.b_iso_out.sp = 0;
++ sts.b_iso_out.ioc = 0;
++ sts.b_iso_out.pid = 0;
++ sts.b_iso_out.framenum = 0;
++
++ offset = 0;
++ for (i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm;
++ i += dwc_ep->pkt_per_frm) {
++
++ for (j = 0; j < dwc_ep->pkt_per_frm; ++j) {
++ uint32_t len = (j + 1) * dwc_ep->maxpacket;
++ if (len > dwc_ep->data_per_frame)
++ data_per_desc =
++ dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket;
++ else
++ data_per_desc = dwc_ep->maxpacket;
++ len = data_per_desc % 4;
++ if (len)
++ data_per_desc += 4 - len;
++
++ sts.b_iso_out.rxbytes = data_per_desc;
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ offset += data_per_desc;
++ dma_desc++;
++ dma_ad += data_per_desc;
++ }
++ }
++
++ for (j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) {
++ uint32_t len = (j + 1) * dwc_ep->maxpacket;
++ if (len > dwc_ep->data_per_frame)
++ data_per_desc =
++ dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket;
++ else
++ data_per_desc = dwc_ep->maxpacket;
++ len = data_per_desc % 4;
++ if (len)
++ data_per_desc += 4 - len;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ offset += data_per_desc;
++ dma_desc++;
++ dma_ad += data_per_desc;
++ }
++
++ sts.b_iso_out.ioc = 1;
++ len = (j + 1) * dwc_ep->maxpacket;
++ if (len > dwc_ep->data_per_frame)
++ data_per_desc =
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket;
++ else
++ data_per_desc = dwc_ep->maxpacket;
++ len = data_per_desc % 4;
++ if (len)
++ data_per_desc += 4 - len;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++ dma_desc++;
++
++ /** Buffer 1 descriptors setup */
++ sts.b_iso_out.ioc = 0;
++ dma_ad = dwc_ep->dma_addr1;
++
++ offset = 0;
++ for (i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm;
++ i += dwc_ep->pkt_per_frm) {
++ for (j = 0; j < dwc_ep->pkt_per_frm; ++j) {
++ uint32_t len = (j + 1) * dwc_ep->maxpacket;
++ if (len > dwc_ep->data_per_frame)
++ data_per_desc =
++ dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket;
++ else
++ data_per_desc = dwc_ep->maxpacket;
++ len = data_per_desc % 4;
++ if (len)
++ data_per_desc += 4 - len;
++
++ data_per_desc =
++ sts.b_iso_out.rxbytes = data_per_desc;
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ offset += data_per_desc;
++ dma_desc++;
++ dma_ad += data_per_desc;
++ }
++ }
++ for (j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) {
++ data_per_desc =
++ ((j + 1) * dwc_ep->maxpacket >
++ dwc_ep->data_per_frame) ? dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc +=
++ (data_per_desc % 4) ? (4 - data_per_desc % 4) : 0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ offset += data_per_desc;
++ dma_desc++;
++ dma_ad += data_per_desc;
++ }
++
++ sts.b_iso_out.ioc = 1;
++ sts.b_iso_out.l = 1;
++ data_per_desc =
++ ((j + 1) * dwc_ep->maxpacket >
++ dwc_ep->data_per_frame) ? dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc +=
++ (data_per_desc % 4) ? (4 - data_per_desc % 4) : 0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ dwc_ep->next_frame = 0;
++
++ /** Write dma_ad into DOEPDMA register */
++ DWC_WRITE_REG32(&(out_regs->doepdma),
++ (uint32_t) dwc_ep->iso_dma_desc_addr);
++
++ }
++ /** ISO IN EP */
++ else {
++ dev_dma_desc_sts_t sts = {.d32 = 0 };
++ dwc_otg_dev_dma_desc_t *dma_desc = dwc_ep->iso_desc_addr;
++ dma_addr_t dma_ad;
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[dwc_ep->num];
++ unsigned int frmnumber;
++ fifosize_data_t txfifosize, rxfifosize;
++
++ txfifosize.d32 =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->
++ dtxfsts);
++ rxfifosize.d32 =
++ DWC_READ_REG32(&core_if->core_global_regs->grxfsiz);
++
++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
++
++ dma_ad = dwc_ep->dma_addr0;
++
++ dsts.d32 =
++ DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++
++ sts.b_iso_in.bs = BS_HOST_READY;
++ sts.b_iso_in.txsts = 0;
++ sts.b_iso_in.sp =
++ (dwc_ep->data_per_frame % dwc_ep->maxpacket) ? 1 : 0;
++ sts.b_iso_in.ioc = 0;
++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
++
++ frmnumber = dwc_ep->next_frame;
++
++ sts.b_iso_in.framenum = frmnumber;
++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
++ sts.b_iso_in.l = 0;
++
++ /** Buffer 0 descriptors setup */
++ for (i = 0; i < dwc_ep->desc_cnt - 1; i++) {
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++ dma_desc++;
++
++ dma_ad += dwc_ep->data_per_frame;
++ sts.b_iso_in.framenum += dwc_ep->bInterval;
++ }
++
++ sts.b_iso_in.ioc = 1;
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++ ++dma_desc;
++
++ /** Buffer 1 descriptors setup */
++ sts.b_iso_in.ioc = 0;
++ dma_ad = dwc_ep->dma_addr1;
++
++ for (i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm;
++ i += dwc_ep->pkt_per_frm) {
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++ dma_desc++;
++
++ dma_ad += dwc_ep->data_per_frame;
++ sts.b_iso_in.framenum += dwc_ep->bInterval;
++
++ sts.b_iso_in.ioc = 0;
++ }
++ sts.b_iso_in.ioc = 1;
++ sts.b_iso_in.l = 1;
++
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
++
++ /** Write dma_ad into diepdma register */
++ DWC_WRITE_REG32(&(in_regs->diepdma),
++ (uint32_t) dwc_ep->iso_dma_desc_addr);
++ }
++ /** Enable endpoint, clear nak */
++ depctl.d32 = 0;
++ depctl.b.epena = 1;
++ depctl.b.usbactep = 1;
++ depctl.b.cnak = 1;
++
++ DWC_MODIFY_REG32(addr, depctl.d32, depctl.d32);
++ depctl.d32 = DWC_READ_REG32(addr);
++}
++
++/**
++ * This function initializes a descriptor chain for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * ep)
++{
++ depctl_data_t depctl = {.d32 = 0 };
++ volatile uint32_t *addr;
++
++ if (ep->is_in) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ } else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ }
++
++ if (core_if->dma_enable == 0 || core_if->dma_desc_enable != 0) {
++ return;
++ } else {
++ deptsiz_data_t deptsiz = {.d32 = 0 };
++
++ ep->xfer_len =
++ ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
++ ep->pkt_cnt =
++ (ep->xfer_len - 1 + ep->maxpacket) / ep->maxpacket;
++ ep->xfer_count = 0;
++ ep->xfer_buff =
++ (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
++ ep->dma_addr =
++ (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
++
++ if (ep->is_in) {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.mc = ep->pkt_per_frm;
++ deptsiz.b.xfersize = ep->xfer_len;
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - 1 + ep->maxpacket) / ep->maxpacket;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[ep->num]->
++ dieptsiz, deptsiz.d32);
++
++ /* Write the DMA register */
++ DWC_WRITE_REG32(&
++ (core_if->dev_if->in_ep_regs[ep->num]->
++ diepdma), (uint32_t) ep->dma_addr);
++
++ } else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len + (ep->maxpacket - 1)) /
++ ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[ep->num]->
++ doeptsiz, deptsiz.d32);
++
++ /* Write the DMA register */
++ DWC_WRITE_REG32(&
++ (core_if->dev_if->out_ep_regs[ep->num]->
++ doepdma), (uint32_t) ep->dma_addr);
++
++ }
++ /** Enable endpoint, clear nak */
++ depctl.d32 = 0;
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++
++ DWC_MODIFY_REG32(addr, depctl.d32, depctl.d32);
++ }
++}
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++
++static void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * ep)
++{
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable) {
++ if (ep->is_in) {
++ ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
++ } else {
++ ep->desc_cnt = ep->pkt_cnt;
++ }
++ dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
++ } else {
++ if (core_if->pti_enh_enable) {
++ dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
++ } else {
++ ep->cur_pkt_addr =
++ (ep->proc_buf_num) ? ep->xfer_buff1 : ep->
++ xfer_buff0;
++ ep->cur_pkt_dma_addr =
++ (ep->proc_buf_num) ? ep->dma_addr1 : ep->
++ dma_addr0;
++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
++ }
++ }
++ } else {
++ ep->cur_pkt_addr =
++ (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
++ ep->cur_pkt_dma_addr =
++ (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
++ }
++}
++
++/**
++ * This function stops transfer for an EP and
++ * resets the ep's variables.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++
++void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ depctl_data_t depctl = {.d32 = 0 };
++ volatile uint32_t *addr;
++
++ if (ep->is_in == 1) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ } else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ }
++
++ /* disable the ep */
++ depctl.d32 = DWC_READ_REG32(addr);
++
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++
++ DWC_WRITE_REG32(addr, depctl.d32);
++
++ if (core_if->dma_desc_enable &&
++ ep->iso_desc_addr && ep->iso_dma_desc_addr) {
++ dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,
++ ep->iso_dma_desc_addr,
++ ep->desc_cnt * 2);
++ }
++
++ /* reset varibales */
++ ep->dma_addr0 = 0;
++ ep->dma_addr1 = 0;
++ ep->xfer_buff0 = 0;
++ ep->xfer_buff1 = 0;
++ ep->data_per_frame = 0;
++ ep->data_pattern_frame = 0;
++ ep->sync_frame = 0;
++ ep->buf_proc_intrvl = 0;
++ ep->bInterval = 0;
++ ep->proc_buf_num = 0;
++ ep->pkt_per_frm = 0;
++ ep->pkt_per_frm = 0;
++ ep->desc_cnt = 0;
++ ep->iso_desc_addr = 0;
++ ep->iso_dma_desc_addr = 0;
++}
++
++int dwc_otg_pcd_iso_ep_start(dwc_otg_pcd_t * pcd, void *ep_handle,
++ uint8_t * buf0, uint8_t * buf1, dwc_dma_t dma0,
++ dwc_dma_t dma1, int sync_frame, int dp_frame,
++ int data_per_frame, int start_frame,
++ int buf_proc_intrvl, void *req_handle,
++ int atomic_alloc)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_irqflags_t flags = 0;
++ dwc_ep_t *dwc_ep;
++ int32_t frm_data;
++ dsts_data_t dsts;
++ dwc_otg_core_if_t *core_if;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++
++ if (!ep || !ep->desc || ep->dwc_ep.num == 0) {
++ DWC_WARN("bad ep\n");
++ return -DWC_E_INVALID;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++ core_if = GET_CORE_IF(pcd);
++ dwc_ep = &ep->dwc_ep;
++
++ if (ep->iso_req_handle) {
++ DWC_WARN("ISO request in progress\n");
++ }
++
++ dwc_ep->dma_addr0 = dma0;
++ dwc_ep->dma_addr1 = dma1;
++
++ dwc_ep->xfer_buff0 = buf0;
++ dwc_ep->xfer_buff1 = buf1;
++
++ dwc_ep->data_per_frame = data_per_frame;
++
++ /** @todo - pattern data support is to be implemented in the future */
++ dwc_ep->data_pattern_frame = dp_frame;
++ dwc_ep->sync_frame = sync_frame;
++
++ dwc_ep->buf_proc_intrvl = buf_proc_intrvl;
++
++ dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
++
++ dwc_ep->proc_buf_num = 0;
++
++ dwc_ep->pkt_per_frm = 0;
++ frm_data = ep->dwc_ep.data_per_frame;
++ while (frm_data > 0) {
++ dwc_ep->pkt_per_frm++;
++ frm_data -= ep->dwc_ep.maxpacket;
++ }
++
++ dsts.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++
++ if (start_frame == -1) {
++ dwc_ep->next_frame = dsts.b.soffn + 1;
++ if (dwc_ep->bInterval != 1) {
++ dwc_ep->next_frame =
++ dwc_ep->next_frame + (dwc_ep->bInterval - 1 -
++ dwc_ep->next_frame %
++ dwc_ep->bInterval);
++ }
++ } else {
++ dwc_ep->next_frame = start_frame;
++ }
++
++ if (!core_if->pti_enh_enable) {
++ dwc_ep->pkt_cnt =
++ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm /
++ dwc_ep->bInterval;
++ } else {
++ dwc_ep->pkt_cnt =
++ (dwc_ep->data_per_frame *
++ (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
++ - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
++ }
++
++ if (core_if->dma_desc_enable) {
++ dwc_ep->desc_cnt =
++ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm /
++ dwc_ep->bInterval;
++ }
++
++ if (atomic_alloc) {
++ dwc_ep->pkt_info =
++ DWC_ALLOC_ATOMIC(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
++ } else {
++ dwc_ep->pkt_info =
++ DWC_ALLOC(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
++ }
++ if (!dwc_ep->pkt_info) {
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ return -DWC_E_NO_MEMORY;
++ }
++ if (core_if->pti_enh_enable) {
++ dwc_memset(dwc_ep->pkt_info, 0,
++ sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
++ }
++
++ dwc_ep->cur_pkt = 0;
++ ep->iso_req_handle = req_handle;
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
++ return 0;
++}
++
++int dwc_otg_pcd_iso_ep_stop(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle)
++{
++ dwc_irqflags_t flags = 0;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++ if (!ep || !ep->desc || ep->dwc_ep.num == 0) {
++ DWC_WARN("bad ep\n");
++ return -DWC_E_INVALID;
++ }
++ dwc_ep = &ep->dwc_ep;
++
++ dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
++
++ DWC_FREE(dwc_ep->pkt_info);
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++ if (ep->iso_req_handle != req_handle) {
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ return -DWC_E_INVALID;
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++ ep->iso_req_handle = 0;
++ return 0;
++}
++
++/**
++ * This function is used for perodical data exchnage between PCD and gadget drivers.
++ * for Isochronous EPs
++ *
++ * - Every time a sync period completes this function is called to
++ * perform data exchange between PCD and gadget
++ */
++void dwc_otg_iso_buffer_done(dwc_otg_pcd_t * pcd, dwc_otg_pcd_ep_t * ep,
++ void *req_handle)
++{
++ int i;
++ dwc_ep_t *dwc_ep;
++
++ dwc_ep = &ep->dwc_ep;
++
++ DWC_SPINUNLOCK(ep->pcd->lock);
++ pcd->fops->isoc_complete(pcd, ep->priv, ep->iso_req_handle,
++ dwc_ep->proc_buf_num ^ 0x1);
++ DWC_SPINLOCK(ep->pcd->lock);
++
++ for (i = 0; i < dwc_ep->pkt_cnt; ++i) {
++ dwc_ep->pkt_info[i].status = 0;
++ dwc_ep->pkt_info[i].offset = 0;
++ dwc_ep->pkt_info[i].length = 0;
++ }
++}
++
++int dwc_otg_pcd_get_iso_packet_count(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *iso_req_handle)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++ if (!ep->desc || ep->dwc_ep.num == 0) {
++ DWC_WARN("bad ep\n");
++ return -DWC_E_INVALID;
++ }
++ dwc_ep = &ep->dwc_ep;
++
++ return dwc_ep->pkt_cnt;
++}
++
++void dwc_otg_pcd_get_iso_packet_params(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *iso_req_handle, int packet,
++ int *status, int *actual, int *offset)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++ if (!ep)
++ DWC_WARN("bad ep\n");
++
++ dwc_ep = &ep->dwc_ep;
++
++ *status = dwc_ep->pkt_info[packet].status;
++ *actual = dwc_ep->pkt_info[packet].length;
++ *offset = dwc_ep->pkt_info[packet].offset;
++}
++
++#endif /* DWC_EN_ISOC */
++
++static void dwc_otg_pcd_init_ep(dwc_otg_pcd_t * pcd, dwc_otg_pcd_ep_t * pcd_ep,
++ uint32_t is_in, uint32_t ep_num)
++{
++ /* Init EP structure */
++ pcd_ep->desc = 0;
++ pcd_ep->pcd = pcd;
++ pcd_ep->stopped = 1;
++ pcd_ep->queue_sof = 0;
++
++ /* Init DWC ep structure */
++ pcd_ep->dwc_ep.is_in = is_in;
++ pcd_ep->dwc_ep.num = ep_num;
++ pcd_ep->dwc_ep.active = 0;
++ pcd_ep->dwc_ep.tx_fifo_num = 0;
++ /* Control until ep is actvated */
++ pcd_ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
++ pcd_ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
++ pcd_ep->dwc_ep.dma_addr = 0;
++ pcd_ep->dwc_ep.start_xfer_buff = 0;
++ pcd_ep->dwc_ep.xfer_buff = 0;
++ pcd_ep->dwc_ep.xfer_len = 0;
++ pcd_ep->dwc_ep.xfer_count = 0;
++ pcd_ep->dwc_ep.sent_zlp = 0;
++ pcd_ep->dwc_ep.total_len = 0;
++ pcd_ep->dwc_ep.desc_addr = 0;
++ pcd_ep->dwc_ep.dma_desc_addr = 0;
++ DWC_CIRCLEQ_INIT(&pcd_ep->queue);
++}
++
++/**
++ * Initialize ep's
++ */
++static void dwc_otg_pcd_reinit(dwc_otg_pcd_t * pcd)
++{
++ int i;
++ uint32_t hwcfg1;
++ dwc_otg_pcd_ep_t *ep;
++ int in_ep_cntr, out_ep_cntr;
++ uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
++ uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
++
++ /**
++ * Initialize the EP0 structure.
++ */
++ ep = &pcd->ep0;
++ dwc_otg_pcd_init_ep(pcd, ep, 0, 0);
++
++ in_ep_cntr = 0;
++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
++ for (i = 1; in_ep_cntr < num_in_eps; i++) {
++ if ((hwcfg1 & 0x1) == 0) {
++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
++ in_ep_cntr++;
++ /**
++ * @todo NGS: Add direction to EP, based on contents
++ * of HWCFG1. Need a copy of HWCFG1 in pcd structure?
++ * sprintf(";r
++ */
++ dwc_otg_pcd_init_ep(pcd, ep, 1 /* IN */ , i);
++
++ DWC_CIRCLEQ_INIT(&ep->queue);
++ }
++ hwcfg1 >>= 2;
++ }
++
++ out_ep_cntr = 0;
++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
++ for (i = 1; out_ep_cntr < num_out_eps; i++) {
++ if ((hwcfg1 & 0x1) == 0) {
++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
++ out_ep_cntr++;
++ /**
++ * @todo NGS: Add direction to EP, based on contents
++ * of HWCFG1. Need a copy of HWCFG1 in pcd structure?
++ * sprintf(";r
++ */
++ dwc_otg_pcd_init_ep(pcd, ep, 0 /* OUT */ , i);
++ DWC_CIRCLEQ_INIT(&ep->queue);
++ }
++ hwcfg1 >>= 2;
++ }
++
++ pcd->ep0state = EP0_DISCONNECT;
++ pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
++ pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
++}
++
++/**
++ * This function is called when the SRP timer expires. The SRP should
++ * complete within 6 seconds.
++ */
++static void srp_timeout(void *ptr)
++{
++ gotgctl_data_t gotgctl;
++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *) ptr;
++ volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
++
++ gotgctl.d32 = DWC_READ_REG32(addr);
++
++ core_if->srp_timer_started = 0;
++
++ if (core_if->adp_enable) {
++ if (gotgctl.b.bsesvld == 0) {
++ gpwrdn_data_t gpwrdn = {.d32 = 0 };
++ DWC_PRINTF("SRP Timeout BSESSVLD = 0\n");
++ /* Power off the core */
++ if (core_if->power_down == 2) {
++ gpwrdn.b.pwrdnswtch = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->gpwrdn,
++ gpwrdn.d32, 0);
++ }
++
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuintsel = 1;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gpwrdn, 0,
++ gpwrdn.d32);
++ dwc_otg_adp_probe_start(core_if);
++ } else {
++ DWC_PRINTF("SRP Timeout BSESSVLD = 1\n");
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++ }
++ }
++
++ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
++ (core_if->core_params->i2c_enable)) {
++ DWC_PRINTF("SRP Timeout\n");
++
++ if ((core_if->srp_success) && (gotgctl.b.bsesvld)) {
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ }
++
++ /* Clear Session Request */
++ gotgctl.d32 = 0;
++ gotgctl.b.sesreq = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gotgctl,
++ gotgctl.d32, 0);
++
++ core_if->srp_success = 0;
++ } else {
++ __DWC_ERROR("Device not connected/responding\n");
++ gotgctl.b.sesreq = 0;
++ DWC_WRITE_REG32(addr, gotgctl.d32);
++ }
++ } else if (gotgctl.b.sesreq) {
++ DWC_PRINTF("SRP Timeout\n");
++
++ __DWC_ERROR("Device not connected/responding\n");
++ gotgctl.b.sesreq = 0;
++ DWC_WRITE_REG32(addr, gotgctl.d32);
++ } else {
++ DWC_PRINTF(" SRP GOTGCTL=%0x\n", gotgctl.d32);
++ }
++}
++
++/**
++ * Tasklet
++ *
++ */
++extern void start_next_request(dwc_otg_pcd_ep_t * ep);
++
++static void start_xfer_tasklet_func(void *data)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *) data;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++
++ int i;
++ depctl_data_t diepctl;
++
++ DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
++
++ diepctl.d32 = DWC_READ_REG32(&core_if->dev_if->in_ep_regs[0]->diepctl);
++
++ if (pcd->ep0.queue_sof) {
++ pcd->ep0.queue_sof = 0;
++ start_next_request(&pcd->ep0);
++ // break;
++ }
++
++ for (i = 0; i < core_if->dev_if->num_in_eps; i++) {
++ depctl_data_t diepctl;
++ diepctl.d32 =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[i]->diepctl);
++
++ if (pcd->in_ep[i].queue_sof) {
++ pcd->in_ep[i].queue_sof = 0;
++ start_next_request(&pcd->in_ep[i]);
++ // break;
++ }
++ }
++
++ return;
++}
++
++/**
++ * This function initialized the PCD portion of the driver.
++ *
++ */
++dwc_otg_pcd_t *dwc_otg_pcd_init(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_pcd_t *pcd = NULL;
++ dwc_otg_dev_if_t *dev_if;
++ int i;
++
++ /*
++ * Allocate PCD structure
++ */
++ pcd = DWC_ALLOC(sizeof(dwc_otg_pcd_t));
++
++ if (pcd == NULL) {
++ return NULL;
++ }
++
++ pcd->lock = DWC_SPINLOCK_ALLOC();
++ DWC_DEBUGPL(DBG_HCDV, "Init of PCD %p given core_if %p\n",
++ pcd, core_if);//GRAYG
++ if (!pcd->lock) {
++ DWC_ERROR("Could not allocate lock for pcd");
++ DWC_FREE(pcd);
++ return NULL;
++ }
++ /* Set core_if's lock pointer to hcd->lock */
++ core_if->lock = pcd->lock;
++ pcd->core_if = core_if;
++
++ dev_if = core_if->dev_if;
++ dev_if->isoc_ep = NULL;
++
++ if (core_if->hwcfg4.b.ded_fifo_en) {
++ DWC_PRINTF("Dedicated Tx FIFOs mode\n");
++ } else {
++ DWC_PRINTF("Shared Tx FIFO mode\n");
++ }
++
++ /*
++ * Initialized the Core for Device mode here if there is nod ADP support.
++ * Otherwise it will be done later in dwc_otg_adp_start routine.
++ */
++ if (dwc_otg_is_device_mode(core_if) /*&& !core_if->adp_enable*/) {
++ dwc_otg_core_dev_init(core_if);
++ }
++
++ /*
++ * Register the PCD Callbacks.
++ */
++ dwc_otg_cil_register_pcd_callbacks(core_if, &pcd_callbacks, pcd);
++
++ /*
++ * Initialize the DMA buffer for SETUP packets
++ */
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ pcd->setup_pkt =
++ DWC_DMA_ALLOC(sizeof(*pcd->setup_pkt) * 5,
++ &pcd->setup_pkt_dma_handle);
++ if (pcd->setup_pkt == NULL) {
++ DWC_FREE(pcd);
++ return NULL;
++ }
++
++ pcd->status_buf =
++ DWC_DMA_ALLOC(sizeof(uint16_t),
++ &pcd->status_buf_dma_handle);
++ if (pcd->status_buf == NULL) {
++ DWC_DMA_FREE(sizeof(*pcd->setup_pkt) * 5,
++ pcd->setup_pkt, pcd->setup_pkt_dma_handle);
++ DWC_FREE(pcd);
++ return NULL;
++ }
++
++ if (GET_CORE_IF(pcd)->dma_desc_enable) {
++ dev_if->setup_desc_addr[0] =
++ dwc_otg_ep_alloc_desc_chain
++ (&dev_if->dma_setup_desc_addr[0], 1);
++ dev_if->setup_desc_addr[1] =
++ dwc_otg_ep_alloc_desc_chain
++ (&dev_if->dma_setup_desc_addr[1], 1);
++ dev_if->in_desc_addr =
++ dwc_otg_ep_alloc_desc_chain
++ (&dev_if->dma_in_desc_addr, 1);
++ dev_if->out_desc_addr =
++ dwc_otg_ep_alloc_desc_chain
++ (&dev_if->dma_out_desc_addr, 1);
++ pcd->data_terminated = 0;
++
++ if (dev_if->setup_desc_addr[0] == 0
++ || dev_if->setup_desc_addr[1] == 0
++ || dev_if->in_desc_addr == 0
++ || dev_if->out_desc_addr == 0) {
++
++ if (dev_if->out_desc_addr)
++ dwc_otg_ep_free_desc_chain
++ (dev_if->out_desc_addr,
++ dev_if->dma_out_desc_addr, 1);
++ if (dev_if->in_desc_addr)
++ dwc_otg_ep_free_desc_chain
++ (dev_if->in_desc_addr,
++ dev_if->dma_in_desc_addr, 1);
++ if (dev_if->setup_desc_addr[1])
++ dwc_otg_ep_free_desc_chain
++ (dev_if->setup_desc_addr[1],
++ dev_if->dma_setup_desc_addr[1], 1);
++ if (dev_if->setup_desc_addr[0])
++ dwc_otg_ep_free_desc_chain
++ (dev_if->setup_desc_addr[0],
++ dev_if->dma_setup_desc_addr[0], 1);
++
++ DWC_DMA_FREE(sizeof(*pcd->setup_pkt) * 5,
++ pcd->setup_pkt,
++ pcd->setup_pkt_dma_handle);
++ DWC_DMA_FREE(sizeof(*pcd->status_buf),
++ pcd->status_buf,
++ pcd->status_buf_dma_handle);
++
++ DWC_FREE(pcd);
++
++ return NULL;
++ }
++ }
++ } else {
++ pcd->setup_pkt = DWC_ALLOC(sizeof(*pcd->setup_pkt) * 5);
++ if (pcd->setup_pkt == NULL) {
++ DWC_FREE(pcd);
++ return NULL;
++ }
++
++ pcd->status_buf = DWC_ALLOC(sizeof(uint16_t));
++ if (pcd->status_buf == NULL) {
++ DWC_FREE(pcd->setup_pkt);
++ DWC_FREE(pcd);
++ return NULL;
++ }
++ }
++
++ dwc_otg_pcd_reinit(pcd);
++
++ /* Allocate the cfi object for the PCD */
++#ifdef DWC_UTE_CFI
++ pcd->cfi = DWC_ALLOC(sizeof(cfiobject_t));
++ if (NULL == pcd->cfi)
++ goto fail;
++ if (init_cfi(pcd->cfi)) {
++ CFI_INFO("%s: Failed to init the CFI object\n", __func__);
++ goto fail;
++ }
++#endif
++
++ /* Initialize tasklets */
++ pcd->start_xfer_tasklet = DWC_TASK_ALLOC("xfer_tasklet",
++ start_xfer_tasklet_func, pcd);
++ pcd->test_mode_tasklet = DWC_TASK_ALLOC("test_mode_tasklet",
++ do_test_mode, pcd);
++
++ /* Initialize SRP timer */
++ core_if->srp_timer = DWC_TIMER_ALLOC("SRP TIMER", srp_timeout, core_if);
++
++ if (core_if->core_params->dev_out_nak) {
++ /**
++ * Initialize xfer timeout timer. Implemented for
++ * 2.93a feature "Device DDMA OUT NAK Enhancement"
++ */
++ for(i = 0; i < MAX_EPS_CHANNELS; i++) {
++ pcd->core_if->ep_xfer_timer[i] =
++ DWC_TIMER_ALLOC("ep timer", ep_xfer_timeout,
++ &pcd->core_if->ep_xfer_info[i]);
++ }
++ }
++
++ return pcd;
++#ifdef DWC_UTE_CFI
++fail:
++#endif
++ if (pcd->setup_pkt)
++ DWC_FREE(pcd->setup_pkt);
++ if (pcd->status_buf)
++ DWC_FREE(pcd->status_buf);
++#ifdef DWC_UTE_CFI
++ if (pcd->cfi)
++ DWC_FREE(pcd->cfi);
++#endif
++ if (pcd)
++ DWC_FREE(pcd);
++ return NULL;
++
++}
++
++/**
++ * Remove PCD specific data
++ */
++void dwc_otg_pcd_remove(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
++ int i;
++ if (pcd->core_if->core_params->dev_out_nak) {
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ DWC_TIMER_CANCEL(pcd->core_if->ep_xfer_timer[i]);
++ pcd->core_if->ep_xfer_info[i].state = 0;
++ }
++ }
++
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ DWC_DMA_FREE(sizeof(*pcd->setup_pkt) * 5, pcd->setup_pkt,
++ pcd->setup_pkt_dma_handle);
++ DWC_DMA_FREE(sizeof(uint16_t), pcd->status_buf,
++ pcd->status_buf_dma_handle);
++ if (GET_CORE_IF(pcd)->dma_desc_enable) {
++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0],
++ dev_if->dma_setup_desc_addr
++ [0], 1);
++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1],
++ dev_if->dma_setup_desc_addr
++ [1], 1);
++ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr,
++ dev_if->dma_in_desc_addr, 1);
++ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr,
++ dev_if->dma_out_desc_addr,
++ 1);
++ }
++ } else {
++ DWC_FREE(pcd->setup_pkt);
++ DWC_FREE(pcd->status_buf);
++ }
++ DWC_SPINLOCK_FREE(pcd->lock);
++ /* Set core_if's lock pointer to NULL */
++ pcd->core_if->lock = NULL;
++
++ DWC_TASK_FREE(pcd->start_xfer_tasklet);
++ DWC_TASK_FREE(pcd->test_mode_tasklet);
++ if (pcd->core_if->core_params->dev_out_nak) {
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ if (pcd->core_if->ep_xfer_timer[i]) {
++ DWC_TIMER_FREE(pcd->core_if->ep_xfer_timer[i]);
++ }
++ }
++ }
++
++/* Release the CFI object's dynamic memory */
++#ifdef DWC_UTE_CFI
++ if (pcd->cfi->ops.release) {
++ pcd->cfi->ops.release(pcd->cfi);
++ }
++#endif
++
++ DWC_FREE(pcd);
++}
++
++/**
++ * Returns whether registered pcd is dual speed or not
++ */
++uint32_t dwc_otg_pcd_is_dualspeed(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++
++ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) ||
++ ((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls))) {
++ return 0;
++ }
++
++ return 1;
++}
++
++/**
++ * Returns whether registered pcd is OTG capable or not
++ */
++uint32_t dwc_otg_pcd_is_otg(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ gusbcfg_data_t usbcfg = {.d32 = 0 };
++
++ usbcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->gusbcfg);
++ if (!usbcfg.b.srpcap || !usbcfg.b.hnpcap) {
++ return 0;
++ }
++
++ return 1;
++}
++
++/**
++ * This function assigns periodic Tx FIFO to an periodic EP
++ * in shared Tx FIFO mode
++ */
++static uint32_t assign_tx_fifo(dwc_otg_core_if_t * core_if)
++{
++ uint32_t TxMsk = 1;
++ int i;
++
++ for (i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i) {
++ if ((TxMsk & core_if->tx_msk) == 0) {
++ core_if->tx_msk |= TxMsk;
++ return i + 1;
++ }
++ TxMsk <<= 1;
++ }
++ return 0;
++}
++
++/**
++ * This function assigns periodic Tx FIFO to an periodic EP
++ * in shared Tx FIFO mode
++ */
++static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t * core_if)
++{
++ uint32_t PerTxMsk = 1;
++ int i;
++ for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i) {
++ if ((PerTxMsk & core_if->p_tx_msk) == 0) {
++ core_if->p_tx_msk |= PerTxMsk;
++ return i + 1;
++ }
++ PerTxMsk <<= 1;
++ }
++ return 0;
++}
++
++/**
++ * This function releases periodic Tx FIFO
++ * in shared Tx FIFO mode
++ */
++static void release_perio_tx_fifo(dwc_otg_core_if_t * core_if,
++ uint32_t fifo_num)
++{
++ core_if->p_tx_msk =
++ (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
++}
++
++/**
++ * This function releases periodic Tx FIFO
++ * in shared Tx FIFO mode
++ */
++static void release_tx_fifo(dwc_otg_core_if_t * core_if, uint32_t fifo_num)
++{
++ core_if->tx_msk =
++ (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
++}
++
++/**
++ * This function is being called from gadget
++ * to enable PCD endpoint.
++ */
++int dwc_otg_pcd_ep_enable(dwc_otg_pcd_t * pcd,
++ const uint8_t * ep_desc, void *usb_ep)
++{
++ int num, dir;
++ dwc_otg_pcd_ep_t *ep = NULL;
++ const usb_endpoint_descriptor_t *desc;
++ dwc_irqflags_t flags;
++ fifosize_data_t dptxfsiz = {.d32 = 0 };
++ gdfifocfg_data_t gdfifocfg = {.d32 = 0 };
++ gdfifocfg_data_t gdfifocfgbase = {.d32 = 0 };
++ int retval = 0;
++ int i, epcount;
++
++ desc = (const usb_endpoint_descriptor_t *)ep_desc;
++
++ if (!desc) {
++ pcd->ep0.priv = usb_ep;
++ ep = &pcd->ep0;
++ retval = -DWC_E_INVALID;
++ goto out;
++ }
++
++ num = UE_GET_ADDR(desc->bEndpointAddress);
++ dir = UE_GET_DIR(desc->bEndpointAddress);
++
++ if (!desc->wMaxPacketSize) {
++ DWC_WARN("bad maxpacketsize\n");
++ retval = -DWC_E_INVALID;
++ goto out;
++ }
++
++ if (dir == UE_DIR_IN) {
++ epcount = pcd->core_if->dev_if->num_in_eps;
++ for (i = 0; i < epcount; i++) {
++ if (num == pcd->in_ep[i].dwc_ep.num) {
++ ep = &pcd->in_ep[i];
++ break;
++ }
++ }
++ } else {
++ epcount = pcd->core_if->dev_if->num_out_eps;
++ for (i = 0; i < epcount; i++) {
++ if (num == pcd->out_ep[i].dwc_ep.num) {
++ ep = &pcd->out_ep[i];
++ break;
++ }
++ }
++ }
++
++ if (!ep) {
++ DWC_WARN("bad address\n");
++ retval = -DWC_E_INVALID;
++ goto out;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++
++ ep->desc = desc;
++ ep->priv = usb_ep;
++
++ /*
++ * Activate the EP
++ */
++ ep->stopped = 0;
++
++ ep->dwc_ep.is_in = (dir == UE_DIR_IN);
++ ep->dwc_ep.maxpacket = UGETW(desc->wMaxPacketSize);
++
++ ep->dwc_ep.type = desc->bmAttributes & UE_XFERTYPE;
++
++ if (ep->dwc_ep.is_in) {
++ if (!GET_CORE_IF(pcd)->en_multiple_tx_fifo) {
++ ep->dwc_ep.tx_fifo_num = 0;
++
++ if (ep->dwc_ep.type == UE_ISOCHRONOUS) {
++ /*
++ * if ISOC EP then assign a Periodic Tx FIFO.
++ */
++ ep->dwc_ep.tx_fifo_num =
++ assign_perio_tx_fifo(GET_CORE_IF(pcd));
++ }
++ } else {
++ /*
++ * if Dedicated FIFOs mode is on then assign a Tx FIFO.
++ */
++ ep->dwc_ep.tx_fifo_num =
++ assign_tx_fifo(GET_CORE_IF(pcd));
++ }
++
++ /* Calculating EP info controller base address */
++ if (ep->dwc_ep.tx_fifo_num
++ && GET_CORE_IF(pcd)->en_multiple_tx_fifo) {
++ gdfifocfg.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->
++ core_global_regs->gdfifocfg);
++ gdfifocfgbase.d32 = gdfifocfg.d32 >> 16;
++ dptxfsiz.d32 =
++ (DWC_READ_REG32
++ (&GET_CORE_IF(pcd)->core_global_regs->
++ dtxfsiz[ep->dwc_ep.tx_fifo_num - 1]) >> 16);
++ gdfifocfg.b.epinfobase =
++ gdfifocfgbase.d32 + dptxfsiz.d32;
++ if (GET_CORE_IF(pcd)->snpsid <= OTG_CORE_REV_2_94a) {
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->
++ core_global_regs->gdfifocfg,
++ gdfifocfg.d32);
++ }
++ }
++ }
++ /* Set initial data PID. */
++ if (ep->dwc_ep.type == UE_BULK) {
++ ep->dwc_ep.data_pid_start = 0;
++ }
++
++ /* Alloc DMA Descriptors */
++ if (GET_CORE_IF(pcd)->dma_desc_enable) {
++#ifndef DWC_UTE_PER_IO
++ if (ep->dwc_ep.type != UE_ISOCHRONOUS) {
++#endif
++ ep->dwc_ep.desc_addr =
++ dwc_otg_ep_alloc_desc_chain(&ep->
++ dwc_ep.dma_desc_addr,
++ MAX_DMA_DESC_CNT);
++ if (!ep->dwc_ep.desc_addr) {
++ DWC_WARN("%s, can't allocate DMA descriptor\n",
++ __func__);
++ retval = -DWC_E_SHUTDOWN;
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ goto out;
++ }
++#ifndef DWC_UTE_PER_IO
++ }
++#endif
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "Activate %s: type=%d, mps=%d desc=%p\n",
++ (ep->dwc_ep.is_in ? "IN" : "OUT"),
++ ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
++#ifdef DWC_UTE_PER_IO
++ ep->dwc_ep.xiso_bInterval = 1 << (ep->desc->bInterval - 1);
++#endif
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ ep->dwc_ep.bInterval = 1 << (ep->desc->bInterval - 1);
++ ep->dwc_ep.frame_num = 0xFFFFFFFF;
++ }
++
++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
++
++#ifdef DWC_UTE_CFI
++ if (pcd->cfi->ops.ep_enable) {
++ pcd->cfi->ops.ep_enable(pcd->cfi, pcd, ep);
++ }
++#endif
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++out:
++ return retval;
++}
++
++/**
++ * This function is being called from gadget
++ * to disable PCD endpoint.
++ */
++int dwc_otg_pcd_ep_disable(dwc_otg_pcd_t * pcd, void *ep_handle)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_irqflags_t flags;
++ dwc_otg_dev_dma_desc_t *desc_addr;
++ dwc_dma_t dma_desc_addr;
++ gdfifocfg_data_t gdfifocfgbase = {.d32 = 0 };
++ gdfifocfg_data_t gdfifocfg = {.d32 = 0 };
++ fifosize_data_t dptxfsiz = {.d32 = 0 };
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++
++ if (!ep || !ep->desc) {
++ DWC_DEBUGPL(DBG_PCD, "bad ep address\n");
++ return -DWC_E_INVALID;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++
++ dwc_otg_request_nuke(ep);
++
++ dwc_otg_ep_deactivate(GET_CORE_IF(pcd), &ep->dwc_ep);
++ if (pcd->core_if->core_params->dev_out_nak) {
++ DWC_TIMER_CANCEL(pcd->core_if->ep_xfer_timer[ep->dwc_ep.num]);
++ pcd->core_if->ep_xfer_info[ep->dwc_ep.num].state = 0;
++ }
++ ep->desc = NULL;
++ ep->stopped = 1;
++
++ gdfifocfg.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->core_global_regs->gdfifocfg);
++ gdfifocfgbase.d32 = gdfifocfg.d32 >> 16;
++
++ if (ep->dwc_ep.is_in) {
++ if (GET_CORE_IF(pcd)->en_multiple_tx_fifo) {
++ /* Flush the Tx FIFO */
++ dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd),
++ ep->dwc_ep.tx_fifo_num);
++ }
++ release_perio_tx_fifo(GET_CORE_IF(pcd), ep->dwc_ep.tx_fifo_num);
++ release_tx_fifo(GET_CORE_IF(pcd), ep->dwc_ep.tx_fifo_num);
++ if (GET_CORE_IF(pcd)->en_multiple_tx_fifo) {
++ /* Decreasing EPinfo Base Addr */
++ dptxfsiz.d32 =
++ (DWC_READ_REG32
++ (&GET_CORE_IF(pcd)->
++ core_global_regs->dtxfsiz[ep->dwc_ep.tx_fifo_num-1]) >> 16);
++ gdfifocfg.b.epinfobase = gdfifocfgbase.d32 - dptxfsiz.d32;
++ if (GET_CORE_IF(pcd)->snpsid <= OTG_CORE_REV_2_94a) {
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gdfifocfg,
++ gdfifocfg.d32);
++ }
++ }
++ }
++
++ /* Free DMA Descriptors */
++ if (GET_CORE_IF(pcd)->dma_desc_enable) {
++ if (ep->dwc_ep.type != UE_ISOCHRONOUS) {
++ desc_addr = ep->dwc_ep.desc_addr;
++ dma_desc_addr = ep->dwc_ep.dma_desc_addr;
++
++ /* Cannot call dma_free_coherent() with IRQs disabled */
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ dwc_otg_ep_free_desc_chain(desc_addr, dma_desc_addr,
++ MAX_DMA_DESC_CNT);
++
++ goto out_unlocked;
++ }
++ }
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++out_unlocked:
++ DWC_DEBUGPL(DBG_PCD, "%d %s disabled\n", ep->dwc_ep.num,
++ ep->dwc_ep.is_in ? "IN" : "OUT");
++ return 0;
++
++}
++
++/******************************************************************************/
++#ifdef DWC_UTE_PER_IO
++
++/**
++ * Free the request and its extended parts
++ *
++ */
++void dwc_pcd_xiso_ereq_free(dwc_otg_pcd_ep_t * ep, dwc_otg_pcd_request_t * req)
++{
++ DWC_FREE(req->ext_req.per_io_frame_descs);
++ DWC_FREE(req);
++}
++
++/**
++ * Start the next request in the endpoint's queue.
++ *
++ */
++int dwc_otg_pcd_xiso_start_next_request(dwc_otg_pcd_t * pcd,
++ dwc_otg_pcd_ep_t * ep)
++{
++ int i;
++ dwc_otg_pcd_request_t *req = NULL;
++ dwc_ep_t *dwcep = NULL;
++ struct dwc_iso_xreq_port *ereq = NULL;
++ struct dwc_iso_pkt_desc_port *ddesc_iso;
++ uint16_t nat;
++ depctl_data_t diepctl;
++
++ dwcep = &ep->dwc_ep;
++
++ if (dwcep->xiso_active_xfers > 0) {
++#if 0 //Disable this to decrease s/w overhead that is crucial for Isoc transfers
++ DWC_WARN("There are currently active transfers for EP%d \
++ (active=%d; queued=%d)", dwcep->num, dwcep->xiso_active_xfers,
++ dwcep->xiso_queued_xfers);
++#endif
++ return 0;
++ }
++
++ nat = UGETW(ep->desc->wMaxPacketSize);
++ nat = (nat >> 11) & 0x03;
++
++ if (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++ ereq = &req->ext_req;
++ ep->stopped = 0;
++
++ /* Get the frame number */
++ dwcep->xiso_frame_num =
++ dwc_otg_get_frame_number(GET_CORE_IF(pcd));
++ DWC_DEBUG("FRM_NUM=%d", dwcep->xiso_frame_num);
++
++ ddesc_iso = ereq->per_io_frame_descs;
++
++ if (dwcep->is_in) {
++ /* Setup DMA Descriptor chain for IN Isoc request */
++ for (i = 0; i < ereq->pio_pkt_count; i++) {
++ //if ((i % (nat + 1)) == 0)
++ if ( i > 0 )
++ dwcep->xiso_frame_num =
++ (dwcep->xiso_bInterval +
++ dwcep->xiso_frame_num) & 0x3FFF;
++ dwcep->desc_addr[i].buf =
++ req->dma + ddesc_iso[i].offset;
++ dwcep->desc_addr[i].status.b_iso_in.txbytes =
++ ddesc_iso[i].length;
++ dwcep->desc_addr[i].status.b_iso_in.framenum =
++ dwcep->xiso_frame_num;
++ dwcep->desc_addr[i].status.b_iso_in.bs =
++ BS_HOST_READY;
++ dwcep->desc_addr[i].status.b_iso_in.txsts = 0;
++ dwcep->desc_addr[i].status.b_iso_in.sp =
++ (ddesc_iso[i].length %
++ dwcep->maxpacket) ? 1 : 0;
++ dwcep->desc_addr[i].status.b_iso_in.ioc = 0;
++ dwcep->desc_addr[i].status.b_iso_in.pid = nat + 1;
++ dwcep->desc_addr[i].status.b_iso_in.l = 0;
++
++ /* Process the last descriptor */
++ if (i == ereq->pio_pkt_count - 1) {
++ dwcep->desc_addr[i].status.b_iso_in.ioc = 1;
++ dwcep->desc_addr[i].status.b_iso_in.l = 1;
++ }
++ }
++
++ /* Setup and start the transfer for this endpoint */
++ dwcep->xiso_active_xfers++;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->dev_if->
++ in_ep_regs[dwcep->num]->diepdma,
++ dwcep->dma_desc_addr);
++ diepctl.d32 = 0;
++ diepctl.b.epena = 1;
++ diepctl.b.cnak = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->dev_if->
++ in_ep_regs[dwcep->num]->diepctl, 0,
++ diepctl.d32);
++ } else {
++ /* Setup DMA Descriptor chain for OUT Isoc request */
++ for (i = 0; i < ereq->pio_pkt_count; i++) {
++ //if ((i % (nat + 1)) == 0)
++ dwcep->xiso_frame_num = (dwcep->xiso_bInterval +
++ dwcep->xiso_frame_num) & 0x3FFF;
++ dwcep->desc_addr[i].buf =
++ req->dma + ddesc_iso[i].offset;
++ dwcep->desc_addr[i].status.b_iso_out.rxbytes =
++ ddesc_iso[i].length;
++ dwcep->desc_addr[i].status.b_iso_out.framenum =
++ dwcep->xiso_frame_num;
++ dwcep->desc_addr[i].status.b_iso_out.bs =
++ BS_HOST_READY;
++ dwcep->desc_addr[i].status.b_iso_out.rxsts = 0;
++ dwcep->desc_addr[i].status.b_iso_out.sp =
++ (ddesc_iso[i].length %
++ dwcep->maxpacket) ? 1 : 0;
++ dwcep->desc_addr[i].status.b_iso_out.ioc = 0;
++ dwcep->desc_addr[i].status.b_iso_out.pid = nat + 1;
++ dwcep->desc_addr[i].status.b_iso_out.l = 0;
++
++ /* Process the last descriptor */
++ if (i == ereq->pio_pkt_count - 1) {
++ dwcep->desc_addr[i].status.b_iso_out.ioc = 1;
++ dwcep->desc_addr[i].status.b_iso_out.l = 1;
++ }
++ }
++
++ /* Setup and start the transfer for this endpoint */
++ dwcep->xiso_active_xfers++;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->
++ dev_if->out_ep_regs[dwcep->num]->
++ doepdma, dwcep->dma_desc_addr);
++ diepctl.d32 = 0;
++ diepctl.b.epena = 1;
++ diepctl.b.cnak = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->
++ dev_if->out_ep_regs[dwcep->num]->
++ doepctl, 0, diepctl.d32);
++ }
++
++ } else {
++ ep->stopped = 1;
++ }
++
++ return 0;
++}
++
++/**
++ * - Remove the request from the queue
++ */
++void complete_xiso_ep(dwc_otg_pcd_ep_t * ep)
++{
++ dwc_otg_pcd_request_t *req = NULL;
++ struct dwc_iso_xreq_port *ereq = NULL;
++ struct dwc_iso_pkt_desc_port *ddesc_iso = NULL;
++ dwc_ep_t *dwcep = NULL;
++ int i;
++
++ //DWC_DEBUG();
++ dwcep = &ep->dwc_ep;
++
++ /* Get the first pending request from the queue */
++ if (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++ if (!req) {
++ DWC_PRINTF("complete_ep 0x%p, req = NULL!\n", ep);
++ return;
++ }
++ dwcep->xiso_active_xfers--;
++ dwcep->xiso_queued_xfers--;
++ /* Remove this request from the queue */
++ DWC_CIRCLEQ_REMOVE_INIT(&ep->queue, req, queue_entry);
++ } else {
++ DWC_PRINTF("complete_ep 0x%p, ep->queue empty!\n", ep);
++ return;
++ }
++
++ ep->stopped = 1;
++ ereq = &req->ext_req;
++ ddesc_iso = ereq->per_io_frame_descs;
++
++ if (dwcep->xiso_active_xfers < 0) {
++ DWC_WARN("EP#%d (xiso_active_xfers=%d)", dwcep->num,
++ dwcep->xiso_active_xfers);
++ }
++
++ /* Fill the Isoc descs of portable extended req from dma descriptors */
++ for (i = 0; i < ereq->pio_pkt_count; i++) {
++ if (dwcep->is_in) { /* IN endpoints */
++ ddesc_iso[i].actual_length = ddesc_iso[i].length -
++ dwcep->desc_addr[i].status.b_iso_in.txbytes;
++ ddesc_iso[i].status =
++ dwcep->desc_addr[i].status.b_iso_in.txsts;
++ } else { /* OUT endpoints */
++ ddesc_iso[i].actual_length = ddesc_iso[i].length -
++ dwcep->desc_addr[i].status.b_iso_out.rxbytes;
++ ddesc_iso[i].status =
++ dwcep->desc_addr[i].status.b_iso_out.rxsts;
++ }
++ }
++
++ DWC_SPINUNLOCK(ep->pcd->lock);
++
++ /* Call the completion function in the non-portable logic */
++ ep->pcd->fops->xisoc_complete(ep->pcd, ep->priv, req->priv, 0,
++ &req->ext_req);
++
++ DWC_SPINLOCK(ep->pcd->lock);
++
++ /* Free the request - specific freeing needed for extended request object */
++ dwc_pcd_xiso_ereq_free(ep, req);
++
++ /* Start the next request */
++ dwc_otg_pcd_xiso_start_next_request(ep->pcd, ep);
++
++ return;
++}
++
++/**
++ * Create and initialize the Isoc pkt descriptors of the extended request.
++ *
++ */
++static int dwc_otg_pcd_xiso_create_pkt_descs(dwc_otg_pcd_request_t * req,
++ void *ereq_nonport,
++ int atomic_alloc)
++{
++ struct dwc_iso_xreq_port *ereq = NULL;
++ struct dwc_iso_xreq_port *req_mapped = NULL;
++ struct dwc_iso_pkt_desc_port *ipds = NULL; /* To be created in this function */
++ uint32_t pkt_count;
++ int i;
++
++ ereq = &req->ext_req;
++ req_mapped = (struct dwc_iso_xreq_port *)ereq_nonport;
++ pkt_count = req_mapped->pio_pkt_count;
++
++ /* Create the isoc descs */
++ if (atomic_alloc) {
++ ipds = DWC_ALLOC_ATOMIC(sizeof(*ipds) * pkt_count);
++ } else {
++ ipds = DWC_ALLOC(sizeof(*ipds) * pkt_count);
++ }
++
++ if (!ipds) {
++ DWC_ERROR("Failed to allocate isoc descriptors");
++ return -DWC_E_NO_MEMORY;
++ }
++
++ /* Initialize the extended request fields */
++ ereq->per_io_frame_descs = ipds;
++ ereq->error_count = 0;
++ ereq->pio_alloc_pkt_count = pkt_count;
++ ereq->pio_pkt_count = pkt_count;
++ ereq->tr_sub_flags = req_mapped->tr_sub_flags;
++
++ /* Init the Isoc descriptors */
++ for (i = 0; i < pkt_count; i++) {
++ ipds[i].length = req_mapped->per_io_frame_descs[i].length;
++ ipds[i].offset = req_mapped->per_io_frame_descs[i].offset;
++ ipds[i].status = req_mapped->per_io_frame_descs[i].status; /* 0 */
++ ipds[i].actual_length =
++ req_mapped->per_io_frame_descs[i].actual_length;
++ }
++
++ return 0;
++}
++
++static void prn_ext_request(struct dwc_iso_xreq_port *ereq)
++{
++ struct dwc_iso_pkt_desc_port *xfd = NULL;
++ int i;
++
++ DWC_DEBUG("per_io_frame_descs=%p", ereq->per_io_frame_descs);
++ DWC_DEBUG("tr_sub_flags=%d", ereq->tr_sub_flags);
++ DWC_DEBUG("error_count=%d", ereq->error_count);
++ DWC_DEBUG("pio_alloc_pkt_count=%d", ereq->pio_alloc_pkt_count);
++ DWC_DEBUG("pio_pkt_count=%d", ereq->pio_pkt_count);
++ DWC_DEBUG("res=%d", ereq->res);
++
++ for (i = 0; i < ereq->pio_pkt_count; i++) {
++ xfd = &ereq->per_io_frame_descs[0];
++ DWC_DEBUG("FD #%d", i);
++
++ DWC_DEBUG("xfd->actual_length=%d", xfd->actual_length);
++ DWC_DEBUG("xfd->length=%d", xfd->length);
++ DWC_DEBUG("xfd->offset=%d", xfd->offset);
++ DWC_DEBUG("xfd->status=%d", xfd->status);
++ }
++}
++
++/**
++ *
++ */
++int dwc_otg_pcd_xiso_ep_queue(dwc_otg_pcd_t * pcd, void *ep_handle,
++ uint8_t * buf, dwc_dma_t dma_buf, uint32_t buflen,
++ int zero, void *req_handle, int atomic_alloc,
++ void *ereq_nonport)
++{
++ dwc_otg_pcd_request_t *req = NULL;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_irqflags_t flags;
++ int res;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++ if (!ep) {
++ DWC_WARN("bad ep\n");
++ return -DWC_E_INVALID;
++ }
++
++ /* We support this extension only for DDMA mode */
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC)
++ if (!GET_CORE_IF(pcd)->dma_desc_enable)
++ return -DWC_E_INVALID;
++
++ /* Create a dwc_otg_pcd_request_t object */
++ if (atomic_alloc) {
++ req = DWC_ALLOC_ATOMIC(sizeof(*req));
++ } else {
++ req = DWC_ALLOC(sizeof(*req));
++ }
++
++ if (!req) {
++ return -DWC_E_NO_MEMORY;
++ }
++
++ /* Create the Isoc descs for this request which shall be the exact match
++ * of the structure sent to us from the non-portable logic */
++ res =
++ dwc_otg_pcd_xiso_create_pkt_descs(req, ereq_nonport, atomic_alloc);
++ if (res) {
++ DWC_WARN("Failed to init the Isoc descriptors");
++ DWC_FREE(req);
++ return res;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++
++ DWC_CIRCLEQ_INIT_ENTRY(req, queue_entry);
++ req->buf = buf;
++ req->dma = dma_buf;
++ req->length = buflen;
++ req->sent_zlp = zero;
++ req->priv = req_handle;
++
++ //DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++ ep->dwc_ep.dma_addr = dma_buf;
++ ep->dwc_ep.start_xfer_buff = buf;
++ ep->dwc_ep.xfer_buff = buf;
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = buflen;
++
++ /* Add this request to the tail */
++ DWC_CIRCLEQ_INSERT_TAIL(&ep->queue, req, queue_entry);
++ ep->dwc_ep.xiso_queued_xfers++;
++
++//DWC_DEBUG("CP_0");
++//DWC_DEBUG("req->ext_req.tr_sub_flags=%d", req->ext_req.tr_sub_flags);
++//prn_ext_request((struct dwc_iso_xreq_port *) ereq_nonport);
++//prn_ext_request(&req->ext_req);
++
++ //DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++ /* If the req->status == ASAP then check if there is any active transfer
++ * for this endpoint. If no active transfers, then get the first entry
++ * from the queue and start that transfer
++ */
++ if (req->ext_req.tr_sub_flags == DWC_EREQ_TF_ASAP) {
++ res = dwc_otg_pcd_xiso_start_next_request(pcd, ep);
++ if (res) {
++ DWC_WARN("Failed to start the next Isoc transfer");
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ DWC_FREE(req);
++ return res;
++ }
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ return 0;
++}
++
++#endif
++/* END ifdef DWC_UTE_PER_IO ***************************************************/
++int dwc_otg_pcd_ep_queue(dwc_otg_pcd_t * pcd, void *ep_handle,
++ uint8_t * buf, dwc_dma_t dma_buf, uint32_t buflen,
++ int zero, void *req_handle, int atomic_alloc)
++{
++ dwc_irqflags_t flags;
++ dwc_otg_pcd_request_t *req;
++ dwc_otg_pcd_ep_t *ep;
++ uint32_t max_transfer;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++ if (!ep || (!ep->desc && ep->dwc_ep.num != 0)) {
++ DWC_WARN("bad ep\n");
++ return -DWC_E_INVALID;
++ }
++
++ if (atomic_alloc) {
++ req = DWC_ALLOC_ATOMIC(sizeof(*req));
++ } else {
++ req = DWC_ALLOC(sizeof(*req));
++ }
++
++ if (!req) {
++ return -DWC_E_NO_MEMORY;
++ }
++ DWC_CIRCLEQ_INIT_ENTRY(req, queue_entry);
++ if (!GET_CORE_IF(pcd)->core_params->opt) {
++ if (ep->dwc_ep.num != 0) {
++ DWC_ERROR("queue req %p, len %d buf %p\n",
++ req_handle, buflen, buf);
++ }
++ }
++
++ req->buf = buf;
++ req->dma = dma_buf;
++ req->length = buflen;
++ req->sent_zlp = zero;
++ req->priv = req_handle;
++ req->dw_align_buf = NULL;
++ if ((dma_buf & 0x3) && GET_CORE_IF(pcd)->dma_enable
++ && !GET_CORE_IF(pcd)->dma_desc_enable)
++ req->dw_align_buf = DWC_DMA_ALLOC(buflen,
++ &req->dw_align_buf_dma);
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++
++ /*
++ * After adding request to the queue for IN ISOC wait for In Token Received
++ * when TX FIFO is empty interrupt and for OUT ISOC wait for OUT Token
++ * Received when EP is disabled interrupt to obtain starting microframe
++ * (odd/even) start transfer
++ */
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ if (req != 0) {
++ depctl_data_t depctl = {.d32 =
++ DWC_READ_REG32(&pcd->core_if->dev_if->
++ in_ep_regs[ep->dwc_ep.num]->
++ diepctl) };
++ ++pcd->request_pending;
++
++ DWC_CIRCLEQ_INSERT_TAIL(&ep->queue, req, queue_entry);
++ if (ep->dwc_ep.is_in) {
++ depctl.b.cnak = 1;
++ DWC_WRITE_REG32(&pcd->core_if->dev_if->
++ in_ep_regs[ep->dwc_ep.num]->
++ diepctl, depctl.d32);
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ }
++ return 0;
++ }
++
++ /*
++ * For EP0 IN without premature status, zlp is required?
++ */
++ if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
++ DWC_DEBUGPL(DBG_PCDV, "%d-OUT ZLP\n", ep->dwc_ep.num);
++ //_req->zero = 1;
++ }
++
++ /* Start the transfer */
++ if (DWC_CIRCLEQ_EMPTY(&ep->queue) && !ep->stopped) {
++ /* EP0 Transfer? */
++ if (ep->dwc_ep.num == 0) {
++ switch (pcd->ep0state) {
++ case EP0_IN_DATA_PHASE:
++ DWC_DEBUGPL(DBG_PCD,
++ "%s ep0: EP0_IN_DATA_PHASE\n",
++ __func__);
++ break;
++
++ case EP0_OUT_DATA_PHASE:
++ DWC_DEBUGPL(DBG_PCD,
++ "%s ep0: EP0_OUT_DATA_PHASE\n",
++ __func__);
++ if (pcd->request_config) {
++ /* Complete STATUS PHASE */
++ ep->dwc_ep.is_in = 1;
++ pcd->ep0state = EP0_IN_STATUS_PHASE;
++ }
++ break;
++
++ case EP0_IN_STATUS_PHASE:
++ DWC_DEBUGPL(DBG_PCD,
++ "%s ep0: EP0_IN_STATUS_PHASE\n",
++ __func__);
++ break;
++
++ default:
++ DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
++ pcd->ep0state);
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ return -DWC_E_SHUTDOWN;
++ }
++
++ ep->dwc_ep.dma_addr = dma_buf;
++ ep->dwc_ep.start_xfer_buff = buf;
++ ep->dwc_ep.xfer_buff = buf;
++ ep->dwc_ep.xfer_len = buflen;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
++
++ if (zero) {
++ if ((ep->dwc_ep.xfer_len %
++ ep->dwc_ep.maxpacket == 0)
++ && (ep->dwc_ep.xfer_len != 0)) {
++ ep->dwc_ep.sent_zlp = 1;
++ }
++
++ }
++
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd),
++ &ep->dwc_ep);
++ } // non-ep0 endpoints
++ else {
++#ifdef DWC_UTE_CFI
++ if (ep->dwc_ep.buff_mode != BM_STANDARD) {
++ /* store the request length */
++ ep->dwc_ep.cfi_req_len = buflen;
++ pcd->cfi->ops.build_descriptors(pcd->cfi, pcd,
++ ep, req);
++ } else {
++#endif
++ max_transfer =
++ GET_CORE_IF(ep->pcd)->core_params->
++ max_transfer_size;
++
++ /* Setup and start the Transfer */
++ if (req->dw_align_buf){
++ if (ep->dwc_ep.is_in)
++ dwc_memcpy(req->dw_align_buf,
++ buf, buflen);
++ ep->dwc_ep.dma_addr =
++ req->dw_align_buf_dma;
++ ep->dwc_ep.start_xfer_buff =
++ req->dw_align_buf;
++ ep->dwc_ep.xfer_buff =
++ req->dw_align_buf;
++ } else {
++ ep->dwc_ep.dma_addr = dma_buf;
++ ep->dwc_ep.start_xfer_buff = buf;
++ ep->dwc_ep.xfer_buff = buf;
++ }
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = buflen;
++
++ ep->dwc_ep.maxxfer = max_transfer;
++ if (GET_CORE_IF(pcd)->dma_desc_enable) {
++ uint32_t out_max_xfer =
++ DDMA_MAX_TRANSFER_SIZE -
++ (DDMA_MAX_TRANSFER_SIZE % 4);
++ if (ep->dwc_ep.is_in) {
++ if (ep->dwc_ep.maxxfer >
++ DDMA_MAX_TRANSFER_SIZE) {
++ ep->dwc_ep.maxxfer =
++ DDMA_MAX_TRANSFER_SIZE;
++ }
++ } else {
++ if (ep->dwc_ep.maxxfer >
++ out_max_xfer) {
++ ep->dwc_ep.maxxfer =
++ out_max_xfer;
++ }
++ }
++ }
++ if (ep->dwc_ep.maxxfer < ep->dwc_ep.total_len) {
++ ep->dwc_ep.maxxfer -=
++ (ep->dwc_ep.maxxfer %
++ ep->dwc_ep.maxpacket);
++ }
++
++ if (zero) {
++ if ((ep->dwc_ep.total_len %
++ ep->dwc_ep.maxpacket == 0)
++ && (ep->dwc_ep.total_len != 0)) {
++ ep->dwc_ep.sent_zlp = 1;
++ }
++ }
++#ifdef DWC_UTE_CFI
++ }
++#endif
++ dwc_otg_ep_start_transfer(GET_CORE_IF(pcd),
++ &ep->dwc_ep);
++ }
++ }
++
++ if (req != 0) {
++ ++pcd->request_pending;
++ DWC_CIRCLEQ_INSERT_TAIL(&ep->queue, req, queue_entry);
++ if (ep->dwc_ep.is_in && ep->stopped
++ && !(GET_CORE_IF(pcd)->dma_enable)) {
++ /** @todo NGS Create a function for this. */
++ diepmsk_data_t diepmsk = {.d32 = 0 };
++ diepmsk.b.intktxfemp = 1;
++ if (GET_CORE_IF(pcd)->multiproc_int_enable) {
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->
++ dev_if->dev_global_regs->diepeachintmsk
++ [ep->dwc_ep.num], 0,
++ diepmsk.d32);
++ } else {
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->
++ dev_if->dev_global_regs->
++ diepmsk, 0, diepmsk.d32);
++ }
++
++ }
++ }
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++ return 0;
++}
++
++int dwc_otg_pcd_ep_dequeue(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle)
++{
++ dwc_irqflags_t flags;
++ dwc_otg_pcd_request_t *req;
++ dwc_otg_pcd_ep_t *ep;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++ if (!ep || (!ep->desc && ep->dwc_ep.num != 0)) {
++ DWC_WARN("bad argument\n");
++ return -DWC_E_INVALID;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++
++ /* make sure it's actually queued on this endpoint */
++ DWC_CIRCLEQ_FOREACH(req, &ep->queue, queue_entry) {
++ if (req->priv == (void *)req_handle) {
++ break;
++ }
++ }
++
++ if (req->priv != (void *)req_handle) {
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ return -DWC_E_INVALID;
++ }
++
++ if (!DWC_CIRCLEQ_EMPTY_ENTRY(req, queue_entry)) {
++ dwc_otg_request_done(ep, req, -DWC_E_RESTART);
++ } else {
++ req = NULL;
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++ return req ? 0 : -DWC_E_SHUTDOWN;
++
++}
++
++/**
++ * dwc_otg_pcd_ep_wedge - sets the halt feature and ignores clear requests
++ *
++ * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
++ * requests. If the gadget driver clears the halt status, it will
++ * automatically unwedge the endpoint.
++ *
++ * Returns zero on success, else negative DWC error code.
++ */
++int dwc_otg_pcd_ep_wedge(dwc_otg_pcd_t * pcd, void *ep_handle)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_irqflags_t flags;
++ int retval = 0;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++
++ if ((!ep->desc && ep != &pcd->ep0) ||
++ (ep->desc && (ep->desc->bmAttributes == UE_ISOCHRONOUS))) {
++ DWC_WARN("%s, bad ep\n", __func__);
++ return -DWC_E_INVALID;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++ if (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ DWC_WARN("%d %s XFer In process\n", ep->dwc_ep.num,
++ ep->dwc_ep.is_in ? "IN" : "OUT");
++ retval = -DWC_E_AGAIN;
++ } else {
++ /* This code needs to be reviewed */
++ if (ep->dwc_ep.is_in == 1 && GET_CORE_IF(pcd)->dma_desc_enable) {
++ dtxfsts_data_t txstatus;
++ fifosize_data_t txfifosize;
++
++ txfifosize.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->
++ core_global_regs->dtxfsiz[ep->dwc_ep.
++ tx_fifo_num]);
++ txstatus.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->
++ dev_if->in_ep_regs[ep->dwc_ep.num]->
++ dtxfsts);
++
++ if (txstatus.b.txfspcavail < txfifosize.b.depth) {
++ DWC_WARN("%s() Data In Tx Fifo\n", __func__);
++ retval = -DWC_E_AGAIN;
++ } else {
++ if (ep->dwc_ep.num == 0) {
++ pcd->ep0state = EP0_STALL;
++ }
++
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(GET_CORE_IF(pcd),
++ &ep->dwc_ep);
++ }
++ } else {
++ if (ep->dwc_ep.num == 0) {
++ pcd->ep0state = EP0_STALL;
++ }
++
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
++ }
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++ return retval;
++}
++
++int dwc_otg_pcd_ep_halt(dwc_otg_pcd_t * pcd, void *ep_handle, int value)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_irqflags_t flags;
++ int retval = 0;
++
++ ep = get_ep_from_handle(pcd, ep_handle);
++
++ if (!ep || (!ep->desc && ep != &pcd->ep0) ||
++ (ep->desc && (ep->desc->bmAttributes == UE_ISOCHRONOUS))) {
++ DWC_WARN("%s, bad ep\n", __func__);
++ return -DWC_E_INVALID;
++ }
++
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++ if (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ DWC_WARN("%d %s XFer In process\n", ep->dwc_ep.num,
++ ep->dwc_ep.is_in ? "IN" : "OUT");
++ retval = -DWC_E_AGAIN;
++ } else if (value == 0) {
++ dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
++ } else if (value == 1) {
++ if (ep->dwc_ep.is_in == 1 && GET_CORE_IF(pcd)->dma_desc_enable) {
++ dtxfsts_data_t txstatus;
++ fifosize_data_t txfifosize;
++
++ txfifosize.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->core_global_regs->
++ dtxfsiz[ep->dwc_ep.tx_fifo_num]);
++ txstatus.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->dev_if->
++ in_ep_regs[ep->dwc_ep.num]->dtxfsts);
++
++ if (txstatus.b.txfspcavail < txfifosize.b.depth) {
++ DWC_WARN("%s() Data In Tx Fifo\n", __func__);
++ retval = -DWC_E_AGAIN;
++ } else {
++ if (ep->dwc_ep.num == 0) {
++ pcd->ep0state = EP0_STALL;
++ }
++
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(GET_CORE_IF(pcd),
++ &ep->dwc_ep);
++ }
++ } else {
++ if (ep->dwc_ep.num == 0) {
++ pcd->ep0state = EP0_STALL;
++ }
++
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
++ }
++ } else if (value == 2) {
++ ep->dwc_ep.stall_clear_flag = 0;
++ } else if (value == 3) {
++ ep->dwc_ep.stall_clear_flag = 1;
++ }
++
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++
++ return retval;
++}
++
++/**
++ * This function initiates remote wakeup of the host from suspend state.
++ */
++void dwc_otg_pcd_rem_wkup_from_suspend(dwc_otg_pcd_t * pcd, int set)
++{
++ dctl_data_t dctl = { 0 };
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dsts_data_t dsts;
++
++ dsts.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++ if (!dsts.b.suspsts) {
++ DWC_WARN("Remote wakeup while is not in suspend state\n");
++ }
++ /* Check if DEVICE_REMOTE_WAKEUP feature enabled */
++ if (pcd->remote_wakeup_enable) {
++ if (set) {
++
++ if (core_if->adp_enable) {
++ gpwrdn_data_t gpwrdn;
++
++ dwc_otg_adp_probe_stop(core_if);
++
++ /* Mask SRP detected interrupt from Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.srp_det_msk = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->gpwrdn,
++ gpwrdn.d32, 0);
++
++ /* Disable Power Down Logic */
++ gpwrdn.d32 = 0;
++ gpwrdn.b.pmuactv = 1;
++ DWC_MODIFY_REG32(&core_if->
++ core_global_regs->gpwrdn,
++ gpwrdn.d32, 0);
++
++ /*
++ * Initialize the Core for Device mode.
++ */
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ cil_pcd_start(core_if);
++
++ dwc_otg_initiate_srp(core_if);
++ }
++
++ dctl.b.rmtwkupsig = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ dctl, 0, dctl.d32);
++ DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
++
++ dwc_mdelay(2);
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ dctl, dctl.d32, 0);
++ DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
++ }
++ } else {
++ DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
++ }
++}
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++/**
++ * This function initiates remote wakeup of the host from L1 sleep state.
++ */
++void dwc_otg_pcd_rem_wkup_from_sleep(dwc_otg_pcd_t * pcd, int set)
++{
++ glpmcfg_data_t lpmcfg;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++
++ /* Check if we are in L1 state */
++ if (!lpmcfg.b.prt_sleep_sts) {
++ DWC_DEBUGPL(DBG_PCD, "Device is not in sleep state\n");
++ return;
++ }
++
++ /* Check if host allows remote wakeup */
++ if (!lpmcfg.b.rem_wkup_en) {
++ DWC_DEBUGPL(DBG_PCD, "Host does not allow remote wakeup\n");
++ return;
++ }
++
++ /* Check if Resume OK */
++ if (!lpmcfg.b.sleep_state_resumeok) {
++ DWC_DEBUGPL(DBG_PCD, "Sleep state resume is not OK\n");
++ return;
++ }
++
++ lpmcfg.d32 = DWC_READ_REG32(&core_if->core_global_regs->glpmcfg);
++ lpmcfg.b.en_utmi_sleep = 0;
++ lpmcfg.b.hird_thres &= (~(1 << 4));
++ DWC_WRITE_REG32(&core_if->core_global_regs->glpmcfg, lpmcfg.d32);
++
++ if (set) {
++ dctl_data_t dctl = {.d32 = 0 };
++ dctl.b.rmtwkupsig = 1;
++ /* Set RmtWkUpSig bit to start remote wakup signaling.
++ * Hardware will automatically clear this bit.
++ */
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl,
++ 0, dctl.d32);
++ DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
++ }
++
++}
++#endif
++
++/**
++ * Performs remote wakeup.
++ */
++void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t * pcd, int set)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_irqflags_t flags;
++ if (dwc_otg_is_device_mode(core_if)) {
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ if (core_if->lx_state == DWC_OTG_L1) {
++ dwc_otg_pcd_rem_wkup_from_sleep(pcd, set);
++ } else {
++#endif
++ dwc_otg_pcd_rem_wkup_from_suspend(pcd, set);
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ }
++#endif
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++ }
++ return;
++}
++
++void dwc_otg_pcd_disconnect_us(dwc_otg_pcd_t * pcd, int no_of_usecs)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dctl_data_t dctl = { 0 };
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ dctl.b.sftdiscon = 1;
++ DWC_PRINTF("Soft disconnect for %d useconds\n",no_of_usecs);
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ dwc_udelay(no_of_usecs);
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32,0);
++
++ } else{
++ DWC_PRINTF("NOT SUPPORTED IN HOST MODE\n");
++ }
++ return;
++
++}
++
++int dwc_otg_pcd_wakeup(dwc_otg_pcd_t * pcd)
++{
++ dsts_data_t dsts;
++ gotgctl_data_t gotgctl;
++
++ /*
++ * This function starts the Protocol if no session is in progress. If
++ * a session is already in progress, but the device is suspended,
++ * remote wakeup signaling is started.
++ */
++
++ /* Check if valid session */
++ gotgctl.d32 =
++ DWC_READ_REG32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
++ if (gotgctl.b.bsesvld) {
++ /* Check if suspend state */
++ dsts.d32 =
++ DWC_READ_REG32(&
++ (GET_CORE_IF(pcd)->dev_if->
++ dev_global_regs->dsts));
++ if (dsts.b.suspsts) {
++ dwc_otg_pcd_remote_wakeup(pcd, 1);
++ }
++ } else {
++ dwc_otg_pcd_initiate_srp(pcd);
++ }
++
++ return 0;
++
++}
++
++/**
++ * Start the SRP timer to detect when the SRP does not complete within
++ * 6 seconds.
++ *
++ * @param pcd the pcd structure.
++ */
++void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t * pcd)
++{
++ dwc_irqflags_t flags;
++ DWC_SPINLOCK_IRQSAVE(pcd->lock, &flags);
++ dwc_otg_initiate_srp(GET_CORE_IF(pcd));
++ DWC_SPINUNLOCK_IRQRESTORE(pcd->lock, flags);
++}
++
++int dwc_otg_pcd_get_frame_number(dwc_otg_pcd_t * pcd)
++{
++ return dwc_otg_get_frame_number(GET_CORE_IF(pcd));
++}
++
++int dwc_otg_pcd_is_lpm_enabled(dwc_otg_pcd_t * pcd)
++{
++ return GET_CORE_IF(pcd)->core_params->lpm_enable;
++}
++
++uint32_t get_b_hnp_enable(dwc_otg_pcd_t * pcd)
++{
++ return pcd->b_hnp_enable;
++}
++
++uint32_t get_a_hnp_support(dwc_otg_pcd_t * pcd)
++{
++ return pcd->a_hnp_support;
++}
++
++uint32_t get_a_alt_hnp_support(dwc_otg_pcd_t * pcd)
++{
++ return pcd->a_alt_hnp_support;
++}
++
++int dwc_otg_pcd_get_rmwkup_enable(dwc_otg_pcd_t * pcd)
++{
++ return pcd->remote_wakeup_enable;
++}
++
++#endif /* DWC_HOST_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,266 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
++ * $Revision: #48 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++#if !defined(__DWC_PCD_H__)
++#define __DWC_PCD_H__
++
++#include "dwc_otg_os_dep.h"
++#include "usb.h"
++#include "dwc_otg_cil.h"
++#include "dwc_otg_pcd_if.h"
++struct cfiobject;
++
++/**
++ * @file
++ *
++ * This file contains the structures, constants, and interfaces for
++ * the Perpherial Contoller Driver (PCD).
++ *
++ * The Peripheral Controller Driver (PCD) for Linux will implement the
++ * Gadget API, so that the existing Gadget drivers can be used. For
++ * the Mass Storage Function driver the File-backed USB Storage Gadget
++ * (FBS) driver will be used. The FBS driver supports the
++ * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
++ * transports.
++ *
++ */
++
++/** Invalid DMA Address */
++#define DWC_DMA_ADDR_INVALID (~(dwc_dma_t)0)
++
++/** Max Transfer size for any EP */
++#define DDMA_MAX_TRANSFER_SIZE 65535
++
++/**
++ * Get the pointer to the core_if from the pcd pointer.
++ */
++#define GET_CORE_IF( _pcd ) (_pcd->core_if)
++
++/**
++ * States of EP0.
++ */
++typedef enum ep0_state {
++ EP0_DISCONNECT, /* no host */
++ EP0_IDLE,
++ EP0_IN_DATA_PHASE,
++ EP0_OUT_DATA_PHASE,
++ EP0_IN_STATUS_PHASE,
++ EP0_OUT_STATUS_PHASE,
++ EP0_STALL,
++} ep0state_e;
++
++/** Fordward declaration.*/
++struct dwc_otg_pcd;
++
++/** DWC_otg iso request structure.
++ *
++ */
++typedef struct usb_iso_request dwc_otg_pcd_iso_request_t;
++
++#ifdef DWC_UTE_PER_IO
++
++/**
++ * This shall be the exact analogy of the same type structure defined in the
++ * usb_gadget.h. Each descriptor contains
++ */
++struct dwc_iso_pkt_desc_port {
++ uint32_t offset;
++ uint32_t length; /* expected length */
++ uint32_t actual_length;
++ uint32_t status;
++};
++
++struct dwc_iso_xreq_port {
++ /** transfer/submission flag */
++ uint32_t tr_sub_flags;
++ /** Start the request ASAP */
++#define DWC_EREQ_TF_ASAP 0x00000002
++ /** Just enqueue the request w/o initiating a transfer */
++#define DWC_EREQ_TF_ENQUEUE 0x00000004
++
++ /**
++ * count of ISO packets attached to this request - shall
++ * not exceed the pio_alloc_pkt_count
++ */
++ uint32_t pio_pkt_count;
++ /** count of ISO packets allocated for this request */
++ uint32_t pio_alloc_pkt_count;
++ /** number of ISO packet errors */
++ uint32_t error_count;
++ /** reserved for future extension */
++ uint32_t res;
++ /** Will be allocated and freed in the UTE gadget and based on the CFC value */
++ struct dwc_iso_pkt_desc_port *per_io_frame_descs;
++};
++#endif
++/** DWC_otg request structure.
++ * This structure is a list of requests.
++ */
++typedef struct dwc_otg_pcd_request {
++ void *priv;
++ void *buf;
++ dwc_dma_t dma;
++ uint32_t length;
++ uint32_t actual;
++ unsigned sent_zlp:1;
++ /**
++ * Used instead of original buffer if
++ * it(physical address) is not dword-aligned.
++ **/
++ uint8_t *dw_align_buf;
++ dwc_dma_t dw_align_buf_dma;
++
++ DWC_CIRCLEQ_ENTRY(dwc_otg_pcd_request) queue_entry;
++#ifdef DWC_UTE_PER_IO
++ struct dwc_iso_xreq_port ext_req;
++ //void *priv_ereq_nport; /* */
++#endif
++} dwc_otg_pcd_request_t;
++
++DWC_CIRCLEQ_HEAD(req_list, dwc_otg_pcd_request);
++
++/** PCD EP structure.
++ * This structure describes an EP, there is an array of EPs in the PCD
++ * structure.
++ */
++typedef struct dwc_otg_pcd_ep {
++ /** USB EP Descriptor */
++ const usb_endpoint_descriptor_t *desc;
++
++ /** queue of dwc_otg_pcd_requests. */
++ struct req_list queue;
++ unsigned stopped:1;
++ unsigned disabling:1;
++ unsigned dma:1;
++ unsigned queue_sof:1;
++
++#ifdef DWC_EN_ISOC
++ /** ISOC req handle passed */
++ void *iso_req_handle;
++#endif //_EN_ISOC_
++
++ /** DWC_otg ep data. */
++ dwc_ep_t dwc_ep;
++
++ /** Pointer to PCD */
++ struct dwc_otg_pcd *pcd;
++
++ void *priv;
++} dwc_otg_pcd_ep_t;
++
++/** DWC_otg PCD Structure.
++ * This structure encapsulates the data for the dwc_otg PCD.
++ */
++struct dwc_otg_pcd {
++ const struct dwc_otg_pcd_function_ops *fops;
++ /** The DWC otg device pointer */
++ struct dwc_otg_device *otg_dev;
++ /** Core Interface */
++ dwc_otg_core_if_t *core_if;
++ /** State of EP0 */
++ ep0state_e ep0state;
++ /** EP0 Request is pending */
++ unsigned ep0_pending:1;
++ /** Indicates when SET CONFIGURATION Request is in process */
++ unsigned request_config:1;
++ /** The state of the Remote Wakeup Enable. */
++ unsigned remote_wakeup_enable:1;
++ /** The state of the B-Device HNP Enable. */
++ unsigned b_hnp_enable:1;
++ /** The state of A-Device HNP Support. */
++ unsigned a_hnp_support:1;
++ /** The state of the A-Device Alt HNP support. */
++ unsigned a_alt_hnp_support:1;
++ /** Count of pending Requests */
++ unsigned request_pending;
++
++ /** SETUP packet for EP0
++ * This structure is allocated as a DMA buffer on PCD initialization
++ * with enough space for up to 3 setup packets.
++ */
++ union {
++ usb_device_request_t req;
++ uint32_t d32[2];
++ } *setup_pkt;
++
++ dwc_dma_t setup_pkt_dma_handle;
++
++ /* Additional buffer and flag for CTRL_WR premature case */
++ uint8_t *backup_buf;
++ unsigned data_terminated;
++
++ /** 2-byte dma buffer used to return status from GET_STATUS */
++ uint16_t *status_buf;
++ dwc_dma_t status_buf_dma_handle;
++
++ /** EP0 */
++ dwc_otg_pcd_ep_t ep0;
++
++ /** Array of IN EPs. */
++ dwc_otg_pcd_ep_t in_ep[MAX_EPS_CHANNELS - 1];
++ /** Array of OUT EPs. */
++ dwc_otg_pcd_ep_t out_ep[MAX_EPS_CHANNELS - 1];
++ /** number of valid EPs in the above array. */
++// unsigned num_eps : 4;
++ dwc_spinlock_t *lock;
++
++ /** Tasklet to defer starting of TEST mode transmissions until
++ * Status Phase has been completed.
++ */
++ dwc_tasklet_t *test_mode_tasklet;
++
++ /** Tasklet to delay starting of xfer in DMA mode */
++ dwc_tasklet_t *start_xfer_tasklet;
++
++ /** The test mode to enter when the tasklet is executed. */
++ unsigned test_mode;
++ /** The cfi_api structure that implements most of the CFI API
++ * and OTG specific core configuration functionality
++ */
++#ifdef DWC_UTE_CFI
++ struct cfiobject *cfi;
++#endif
++
++};
++
++//FIXME this functions should be static, and this prototypes should be removed
++extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t * ep);
++extern void dwc_otg_request_done(dwc_otg_pcd_ep_t * ep,
++ dwc_otg_pcd_request_t * req, int32_t status);
++
++void dwc_otg_iso_buffer_done(dwc_otg_pcd_t * pcd, dwc_otg_pcd_ep_t * ep,
++ void *req_handle);
++
++extern void do_test_mode(void *data);
++#endif
++#endif /* DWC_HOST_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd_if.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd_if.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd_if.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd_if.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,360 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_if.h $
++ * $Revision: #11 $
++ * $Date: 2011/10/26 $
++ * $Change: 1873028 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++
++#if !defined(__DWC_PCD_IF_H__)
++#define __DWC_PCD_IF_H__
++
++//#include "dwc_os.h"
++#include "dwc_otg_core_if.h"
++
++/** @file
++ * This file defines DWC_OTG PCD Core API.
++ */
++
++struct dwc_otg_pcd;
++typedef struct dwc_otg_pcd dwc_otg_pcd_t;
++
++/** Maxpacket size for EP0 */
++#define MAX_EP0_SIZE 64
++/** Maxpacket size for any EP */
++#define MAX_PACKET_SIZE 1024
++
++/** @name Function Driver Callbacks */
++/** @{ */
++
++/** This function will be called whenever a previously queued request has
++ * completed. The status value will be set to -DWC_E_SHUTDOWN to indicated a
++ * failed or aborted transfer, or -DWC_E_RESTART to indicate the device was reset,
++ * or -DWC_E_TIMEOUT to indicate it timed out, or -DWC_E_INVALID to indicate invalid
++ * parameters. */
++typedef int (*dwc_completion_cb_t) (dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle, int32_t status,
++ uint32_t actual);
++/**
++ * This function will be called whenever a previousle queued ISOC request has
++ * completed. Count of ISOC packets could be read using dwc_otg_pcd_get_iso_packet_count
++ * function.
++ * The status of each ISOC packet could be read using dwc_otg_pcd_get_iso_packet_*
++ * functions.
++ */
++typedef int (*dwc_isoc_completion_cb_t) (dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle, int proc_buf_num);
++/** This function should handle any SETUP request that cannot be handled by the
++ * PCD Core. This includes most GET_DESCRIPTORs, SET_CONFIGS, Any
++ * class-specific requests, etc. The function must non-blocking.
++ *
++ * Returns 0 on success.
++ * Returns -DWC_E_NOT_SUPPORTED if the request is not supported.
++ * Returns -DWC_E_INVALID if the setup request had invalid parameters or bytes.
++ * Returns -DWC_E_SHUTDOWN on any other error. */
++typedef int (*dwc_setup_cb_t) (dwc_otg_pcd_t * pcd, uint8_t * bytes);
++/** This is called whenever the device has been disconnected. The function
++ * driver should take appropriate action to clean up all pending requests in the
++ * PCD Core, remove all endpoints (except ep0), and initialize back to reset
++ * state. */
++typedef int (*dwc_disconnect_cb_t) (dwc_otg_pcd_t * pcd);
++/** This function is called when device has been connected. */
++typedef int (*dwc_connect_cb_t) (dwc_otg_pcd_t * pcd, int speed);
++/** This function is called when device has been suspended */
++typedef int (*dwc_suspend_cb_t) (dwc_otg_pcd_t * pcd);
++/** This function is called when device has received LPM tokens, i.e.
++ * device has been sent to sleep state. */
++typedef int (*dwc_sleep_cb_t) (dwc_otg_pcd_t * pcd);
++/** This function is called when device has been resumed
++ * from suspend(L2) or L1 sleep state. */
++typedef int (*dwc_resume_cb_t) (dwc_otg_pcd_t * pcd);
++/** This function is called whenever hnp params has been changed.
++ * User can call get_b_hnp_enable, get_a_hnp_support, get_a_alt_hnp_support functions
++ * to get hnp parameters. */
++typedef int (*dwc_hnp_params_changed_cb_t) (dwc_otg_pcd_t * pcd);
++/** This function is called whenever USB RESET is detected. */
++typedef int (*dwc_reset_cb_t) (dwc_otg_pcd_t * pcd);
++
++typedef int (*cfi_setup_cb_t) (dwc_otg_pcd_t * pcd, void *ctrl_req_bytes);
++
++/**
++ *
++ * @param ep_handle Void pointer to the usb_ep structure
++ * @param ereq_port Pointer to the extended request structure created in the
++ * portable part.
++ */
++typedef int (*xiso_completion_cb_t) (dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle, int32_t status,
++ void *ereq_port);
++/** Function Driver Ops Data Structure */
++struct dwc_otg_pcd_function_ops {
++ dwc_connect_cb_t connect;
++ dwc_disconnect_cb_t disconnect;
++ dwc_setup_cb_t setup;
++ dwc_completion_cb_t complete;
++ dwc_isoc_completion_cb_t isoc_complete;
++ dwc_suspend_cb_t suspend;
++ dwc_sleep_cb_t sleep;
++ dwc_resume_cb_t resume;
++ dwc_reset_cb_t reset;
++ dwc_hnp_params_changed_cb_t hnp_changed;
++ cfi_setup_cb_t cfi_setup;
++#ifdef DWC_UTE_PER_IO
++ xiso_completion_cb_t xisoc_complete;
++#endif
++};
++/** @} */
++
++/** @name Function Driver Functions */
++/** @{ */
++
++/** Call this function to get pointer on dwc_otg_pcd_t,
++ * this pointer will be used for all PCD API functions.
++ *
++ * @param core_if The DWC_OTG Core
++ */
++extern dwc_otg_pcd_t *dwc_otg_pcd_init(dwc_otg_core_if_t * core_if);
++
++/** Frees PCD allocated by dwc_otg_pcd_init
++ *
++ * @param pcd The PCD
++ */
++extern void dwc_otg_pcd_remove(dwc_otg_pcd_t * pcd);
++
++/** Call this to bind the function driver to the PCD Core.
++ *
++ * @param pcd Pointer on dwc_otg_pcd_t returned by dwc_otg_pcd_init function.
++ * @param fops The Function Driver Ops data structure containing pointers to all callbacks.
++ */
++extern void dwc_otg_pcd_start(dwc_otg_pcd_t * pcd,
++ const struct dwc_otg_pcd_function_ops *fops);
++
++/** Enables an endpoint for use. This function enables an endpoint in
++ * the PCD. The endpoint is described by the ep_desc which has the
++ * same format as a USB ep descriptor. The ep_handle parameter is used to refer
++ * to the endpoint from other API functions and in callbacks. Normally this
++ * should be called after a SET_CONFIGURATION/SET_INTERFACE to configure the
++ * core for that interface.
++ *
++ * Returns -DWC_E_INVALID if invalid parameters were passed.
++ * Returns -DWC_E_SHUTDOWN if any other error ocurred.
++ * Returns 0 on success.
++ *
++ * @param pcd The PCD
++ * @param ep_desc Endpoint descriptor
++ * @param usb_ep Handle on endpoint, that will be used to identify endpoint.
++ */
++extern int dwc_otg_pcd_ep_enable(dwc_otg_pcd_t * pcd,
++ const uint8_t * ep_desc, void *usb_ep);
++
++/** Disable the endpoint referenced by ep_handle.
++ *
++ * Returns -DWC_E_INVALID if invalid parameters were passed.
++ * Returns -DWC_E_SHUTDOWN if any other error occurred.
++ * Returns 0 on success. */
++extern int dwc_otg_pcd_ep_disable(dwc_otg_pcd_t * pcd, void *ep_handle);
++
++/** Queue a data transfer request on the endpoint referenced by ep_handle.
++ * After the transfer is completes, the complete callback will be called with
++ * the request status.
++ *
++ * @param pcd The PCD
++ * @param ep_handle The handle of the endpoint
++ * @param buf The buffer for the data
++ * @param dma_buf The DMA buffer for the data
++ * @param buflen The length of the data transfer
++ * @param zero Specifies whether to send zero length last packet.
++ * @param req_handle Set this handle to any value to use to reference this
++ * request in the ep_dequeue function or from the complete callback
++ * @param atomic_alloc If driver need to perform atomic allocations
++ * for internal data structures.
++ *
++ * Returns -DWC_E_INVALID if invalid parameters were passed.
++ * Returns -DWC_E_SHUTDOWN if any other error ocurred.
++ * Returns 0 on success. */
++extern int dwc_otg_pcd_ep_queue(dwc_otg_pcd_t * pcd, void *ep_handle,
++ uint8_t * buf, dwc_dma_t dma_buf,
++ uint32_t buflen, int zero, void *req_handle,
++ int atomic_alloc);
++#ifdef DWC_UTE_PER_IO
++/**
++ *
++ * @param ereq_nonport Pointer to the extended request part of the
++ * usb_request structure defined in usb_gadget.h file.
++ */
++extern int dwc_otg_pcd_xiso_ep_queue(dwc_otg_pcd_t * pcd, void *ep_handle,
++ uint8_t * buf, dwc_dma_t dma_buf,
++ uint32_t buflen, int zero,
++ void *req_handle, int atomic_alloc,
++ void *ereq_nonport);
++
++#endif
++
++/** De-queue the specified data transfer that has not yet completed.
++ *
++ * Returns -DWC_E_INVALID if invalid parameters were passed.
++ * Returns -DWC_E_SHUTDOWN if any other error ocurred.
++ * Returns 0 on success. */
++extern int dwc_otg_pcd_ep_dequeue(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle);
++
++/** Halt (STALL) an endpoint or clear it.
++ *
++ * Returns -DWC_E_INVALID if invalid parameters were passed.
++ * Returns -DWC_E_SHUTDOWN if any other error ocurred.
++ * Returns -DWC_E_AGAIN if the STALL cannot be sent and must be tried again later
++ * Returns 0 on success. */
++extern int dwc_otg_pcd_ep_halt(dwc_otg_pcd_t * pcd, void *ep_handle, int value);
++
++/** This function */
++extern int dwc_otg_pcd_ep_wedge(dwc_otg_pcd_t * pcd, void *ep_handle);
++
++/** This function should be called on every hardware interrupt */
++extern int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t * pcd);
++
++/** This function returns current frame number */
++extern int dwc_otg_pcd_get_frame_number(dwc_otg_pcd_t * pcd);
++
++/**
++ * Start isochronous transfers on the endpoint referenced by ep_handle.
++ * For isochronous transfers duble buffering is used.
++ * After processing each of buffers comlete callback will be called with
++ * status for each transaction.
++ *
++ * @param pcd The PCD
++ * @param ep_handle The handle of the endpoint
++ * @param buf0 The virtual address of first data buffer
++ * @param buf1 The virtual address of second data buffer
++ * @param dma0 The DMA address of first data buffer
++ * @param dma1 The DMA address of second data buffer
++ * @param sync_frame Data pattern frame number
++ * @param dp_frame Data size for pattern frame
++ * @param data_per_frame Data size for regular frame
++ * @param start_frame Frame number to start transfers, if -1 then start transfers ASAP.
++ * @param buf_proc_intrvl Interval of ISOC Buffer processing
++ * @param req_handle Handle of ISOC request
++ * @param atomic_alloc Specefies whether to perform atomic allocation for
++ * internal data structures.
++ *
++ * Returns -DWC_E_NO_MEMORY if there is no enough memory.
++ * Returns -DWC_E_INVALID if incorrect arguments are passed to the function.
++ * Returns -DW_E_SHUTDOWN for any other error.
++ * Returns 0 on success
++ */
++extern int dwc_otg_pcd_iso_ep_start(dwc_otg_pcd_t * pcd, void *ep_handle,
++ uint8_t * buf0, uint8_t * buf1,
++ dwc_dma_t dma0, dwc_dma_t dma1,
++ int sync_frame, int dp_frame,
++ int data_per_frame, int start_frame,
++ int buf_proc_intrvl, void *req_handle,
++ int atomic_alloc);
++
++/** Stop ISOC transfers on endpoint referenced by ep_handle.
++ *
++ * @param pcd The PCD
++ * @param ep_handle The handle of the endpoint
++ * @param req_handle Handle of ISOC request
++ *
++ * Returns -DWC_E_INVALID if incorrect arguments are passed to the function
++ * Returns 0 on success
++ */
++int dwc_otg_pcd_iso_ep_stop(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle);
++
++/** Get ISOC packet status.
++ *
++ * @param pcd The PCD
++ * @param ep_handle The handle of the endpoint
++ * @param iso_req_handle Isochronoush request handle
++ * @param packet Number of packet
++ * @param status Out parameter for returning status
++ * @param actual Out parameter for returning actual length
++ * @param offset Out parameter for returning offset
++ *
++ */
++extern void dwc_otg_pcd_get_iso_packet_params(dwc_otg_pcd_t * pcd,
++ void *ep_handle,
++ void *iso_req_handle, int packet,
++ int *status, int *actual,
++ int *offset);
++
++/** Get ISOC packet count.
++ *
++ * @param pcd The PCD
++ * @param ep_handle The handle of the endpoint
++ * @param iso_req_handle
++ */
++extern int dwc_otg_pcd_get_iso_packet_count(dwc_otg_pcd_t * pcd,
++ void *ep_handle,
++ void *iso_req_handle);
++
++/** This function starts the SRP Protocol if no session is in progress. If
++ * a session is already in progress, but the device is suspended,
++ * remote wakeup signaling is started.
++ */
++extern int dwc_otg_pcd_wakeup(dwc_otg_pcd_t * pcd);
++
++/** This function returns 1 if LPM support is enabled, and 0 otherwise. */
++extern int dwc_otg_pcd_is_lpm_enabled(dwc_otg_pcd_t * pcd);
++
++/** This function returns 1 if remote wakeup is allowed and 0, otherwise. */
++extern int dwc_otg_pcd_get_rmwkup_enable(dwc_otg_pcd_t * pcd);
++
++/** Initiate SRP */
++extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t * pcd);
++
++/** Starts remote wakeup signaling. */
++extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t * pcd, int set);
++
++/** Starts micorsecond soft disconnect. */
++extern void dwc_otg_pcd_disconnect_us(dwc_otg_pcd_t * pcd, int no_of_usecs);
++/** This function returns whether device is dualspeed.*/
++extern uint32_t dwc_otg_pcd_is_dualspeed(dwc_otg_pcd_t * pcd);
++
++/** This function returns whether device is otg. */
++extern uint32_t dwc_otg_pcd_is_otg(dwc_otg_pcd_t * pcd);
++
++/** These functions allow to get hnp parameters */
++extern uint32_t get_b_hnp_enable(dwc_otg_pcd_t * pcd);
++extern uint32_t get_a_hnp_support(dwc_otg_pcd_t * pcd);
++extern uint32_t get_a_alt_hnp_support(dwc_otg_pcd_t * pcd);
++
++/** CFI specific Interface functions */
++/** Allocate a cfi buffer */
++extern uint8_t *cfiw_ep_alloc_buffer(dwc_otg_pcd_t * pcd, void *pep,
++ dwc_dma_t * addr, size_t buflen,
++ int flags);
++
++/******************************************************************************/
++
++/** @} */
++
++#endif /* __DWC_PCD_IF_H__ */
++
++#endif /* DWC_HOST_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd_intr.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd_intr.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd_intr.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd_intr.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,5147 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
++ * $Revision: #116 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++
++#include "dwc_otg_pcd.h"
++
++#ifdef DWC_UTE_CFI
++#include "dwc_otg_cfi.h"
++#endif
++
++#ifdef DWC_UTE_PER_IO
++extern void complete_xiso_ep(dwc_otg_pcd_ep_t * ep);
++#endif
++//#define PRINT_CFI_DMA_DESCS
++
++#define DEBUG_EP0
++
++/**
++ * This function updates OTG.
++ */
++static void dwc_otg_pcd_update_otg(dwc_otg_pcd_t * pcd, const unsigned reset)
++{
++
++ if (reset) {
++ pcd->b_hnp_enable = 0;
++ pcd->a_hnp_support = 0;
++ pcd->a_alt_hnp_support = 0;
++ }
++
++ if (pcd->fops->hnp_changed) {
++ pcd->fops->hnp_changed(pcd);
++ }
++}
++
++/** @file
++ * This file contains the implementation of the PCD Interrupt handlers.
++ *
++ * The PCD handles the device interrupts. Many conditions can cause a
++ * device interrupt. When an interrupt occurs, the device interrupt
++ * service routine determines the cause of the interrupt and
++ * dispatches handling to the appropriate function. These interrupt
++ * handling functions are described below.
++ * All interrupt registers are processed from LSB to MSB.
++ */
++
++/**
++ * This function prints the ep0 state for debug purposes.
++ */
++static inline void print_ep0_state(dwc_otg_pcd_t * pcd)
++{
++#ifdef DEBUG
++ char str[40];
++
++ switch (pcd->ep0state) {
++ case EP0_DISCONNECT:
++ dwc_strcpy(str, "EP0_DISCONNECT");
++ break;
++ case EP0_IDLE:
++ dwc_strcpy(str, "EP0_IDLE");
++ break;
++ case EP0_IN_DATA_PHASE:
++ dwc_strcpy(str, "EP0_IN_DATA_PHASE");
++ break;
++ case EP0_OUT_DATA_PHASE:
++ dwc_strcpy(str, "EP0_OUT_DATA_PHASE");
++ break;
++ case EP0_IN_STATUS_PHASE:
++ dwc_strcpy(str, "EP0_IN_STATUS_PHASE");
++ break;
++ case EP0_OUT_STATUS_PHASE:
++ dwc_strcpy(str, "EP0_OUT_STATUS_PHASE");
++ break;
++ case EP0_STALL:
++ dwc_strcpy(str, "EP0_STALL");
++ break;
++ default:
++ dwc_strcpy(str, "EP0_INVALID");
++ }
++
++ DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
++#endif
++}
++
++/**
++ * This function calculate the size of the payload in the memory
++ * for out endpoints and prints size for debug purposes(used in
++ * 2.93a DevOutNak feature).
++ */
++static inline void print_memory_payload(dwc_otg_pcd_t * pcd, dwc_ep_t * ep)
++{
++#ifdef DEBUG
++ deptsiz_data_t deptsiz_init = {.d32 = 0 };
++ deptsiz_data_t deptsiz_updt = {.d32 = 0 };
++ int pack_num;
++ unsigned payload;
++
++ deptsiz_init.d32 = pcd->core_if->start_doeptsiz_val[ep->num];
++ deptsiz_updt.d32 =
++ DWC_READ_REG32(&pcd->core_if->dev_if->
++ out_ep_regs[ep->num]->doeptsiz);
++ /* Payload will be */
++ payload = deptsiz_init.b.xfersize - deptsiz_updt.b.xfersize;
++ /* Packet count is decremented every time a packet
++ * is written to the RxFIFO not in to the external memory
++ * So, if payload == 0, then it means no packet was sent to ext memory*/
++ pack_num = (!payload) ? 0 : (deptsiz_init.b.pktcnt - deptsiz_updt.b.pktcnt);
++ DWC_DEBUGPL(DBG_PCDV,
++ "Payload for EP%d-%s\n",
++ ep->num, (ep->is_in ? "IN" : "OUT"));
++ DWC_DEBUGPL(DBG_PCDV,
++ "Number of transfered bytes = 0x%08x\n", payload);
++ DWC_DEBUGPL(DBG_PCDV,
++ "Number of transfered packets = %d\n", pack_num);
++#endif
++}
++
++
++#ifdef DWC_UTE_CFI
++static inline void print_desc(struct dwc_otg_dma_desc *ddesc,
++ const uint8_t * epname, int descnum)
++{
++ CFI_INFO
++ ("%s DMA_DESC(%d) buf=0x%08x bytes=0x%04x; sp=0x%x; l=0x%x; sts=0x%02x; bs=0x%02x\n",
++ epname, descnum, ddesc->buf, ddesc->status.b.bytes,
++ ddesc->status.b.sp, ddesc->status.b.l, ddesc->status.b.sts,
++ ddesc->status.b.bs);
++}
++#endif
++
++/**
++ * This function returns pointer to in ep struct with number ep_num
++ */
++static inline dwc_otg_pcd_ep_t *get_in_ep(dwc_otg_pcd_t * pcd, uint32_t ep_num)
++{
++ int i;
++ int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
++ if (ep_num == 0) {
++ return &pcd->ep0;
++ } else {
++ for (i = 0; i < num_in_eps; ++i) {
++ if (pcd->in_ep[i].dwc_ep.num == ep_num)
++ return &pcd->in_ep[i];
++ }
++ return 0;
++ }
++}
++
++/**
++ * This function returns pointer to out ep struct with number ep_num
++ */
++static inline dwc_otg_pcd_ep_t *get_out_ep(dwc_otg_pcd_t * pcd, uint32_t ep_num)
++{
++ int i;
++ int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
++ if (ep_num == 0) {
++ return &pcd->ep0;
++ } else {
++ for (i = 0; i < num_out_eps; ++i) {
++ if (pcd->out_ep[i].dwc_ep.num == ep_num)
++ return &pcd->out_ep[i];
++ }
++ return 0;
++ }
++}
++
++/**
++ * This functions gets a pointer to an EP from the wIndex address
++ * value of the control request.
++ */
++dwc_otg_pcd_ep_t *get_ep_by_addr(dwc_otg_pcd_t * pcd, u16 wIndex)
++{
++ dwc_otg_pcd_ep_t *ep;
++ uint32_t ep_num = UE_GET_ADDR(wIndex);
++
++ if (ep_num == 0) {
++ ep = &pcd->ep0;
++ } else if (UE_GET_DIR(wIndex) == UE_DIR_IN) { /* in ep */
++ ep = &pcd->in_ep[ep_num - 1];
++ } else {
++ ep = &pcd->out_ep[ep_num - 1];
++ }
++
++ return ep;
++}
++
++/**
++ * This function checks the EP request queue, if the queue is not
++ * empty the next request is started.
++ */
++void start_next_request(dwc_otg_pcd_ep_t * ep)
++{
++ dwc_otg_pcd_request_t *req = 0;
++ uint32_t max_transfer =
++ GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
++
++#ifdef DWC_UTE_CFI
++ struct dwc_otg_pcd *pcd;
++ pcd = ep->pcd;
++#endif
++
++ if (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++
++#ifdef DWC_UTE_CFI
++ if (ep->dwc_ep.buff_mode != BM_STANDARD) {
++ ep->dwc_ep.cfi_req_len = req->length;
++ pcd->cfi->ops.build_descriptors(pcd->cfi, pcd, ep, req);
++ } else {
++#endif
++ /* Setup and start the Transfer */
++ if (req->dw_align_buf) {
++ ep->dwc_ep.dma_addr = req->dw_align_buf_dma;
++ ep->dwc_ep.start_xfer_buff = req->dw_align_buf;
++ ep->dwc_ep.xfer_buff = req->dw_align_buf;
++ } else {
++ ep->dwc_ep.dma_addr = req->dma;
++ ep->dwc_ep.start_xfer_buff = req->buf;
++ ep->dwc_ep.xfer_buff = req->buf;
++ }
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = req->length;
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++
++ ep->dwc_ep.maxxfer = max_transfer;
++ if (GET_CORE_IF(ep->pcd)->dma_desc_enable) {
++ uint32_t out_max_xfer = DDMA_MAX_TRANSFER_SIZE
++ - (DDMA_MAX_TRANSFER_SIZE % 4);
++ if (ep->dwc_ep.is_in) {
++ if (ep->dwc_ep.maxxfer >
++ DDMA_MAX_TRANSFER_SIZE) {
++ ep->dwc_ep.maxxfer =
++ DDMA_MAX_TRANSFER_SIZE;
++ }
++ } else {
++ if (ep->dwc_ep.maxxfer > out_max_xfer) {
++ ep->dwc_ep.maxxfer =
++ out_max_xfer;
++ }
++ }
++ }
++ if (ep->dwc_ep.maxxfer < ep->dwc_ep.total_len) {
++ ep->dwc_ep.maxxfer -=
++ (ep->dwc_ep.maxxfer % ep->dwc_ep.maxpacket);
++ }
++ if (req->sent_zlp) {
++ if ((ep->dwc_ep.total_len %
++ ep->dwc_ep.maxpacket == 0)
++ && (ep->dwc_ep.total_len != 0)) {
++ ep->dwc_ep.sent_zlp = 1;
++ }
++
++ }
++#ifdef DWC_UTE_CFI
++ }
++#endif
++ dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
++ } else if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ DWC_PRINTF("There are no more ISOC requests \n");
++ ep->dwc_ep.frame_num = 0xFFFFFFFF;
++ }
++}
++
++/**
++ * This function handles the SOF Interrupts. At this time the SOF
++ * Interrupt is disabled.
++ */
++int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_PCD, "SOF\n");
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.sofintr = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This function handles the Rx Status Queue Level Interrupt, which
++ * indicates that there is a least one packet in the Rx FIFO. The
++ * packets are moved from the FIFO to memory, where they will be
++ * processed when the Endpoint Interrupt Register indicates Transfer
++ * Complete or SETUP Phase Done.
++ *
++ * Repeat the following until the Rx Status Queue is empty:
++ * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
++ * info
++ * -# If Receive FIFO is empty then skip to step Clear the interrupt
++ * and exit
++ * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
++ * SETUP data to the buffer
++ * -# If OUT Data Packet call dwc_otg_read_packet to copy the data
++ * to the destination buffer
++ */
++int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ gintmsk_data_t gintmask = {.d32 = 0 };
++ device_grxsts_data_t status;
++ dwc_otg_pcd_ep_t *ep;
++ gintsts_data_t gintsts;
++#ifdef DEBUG
++ static char *dpid_str[] = { "D0", "D2", "D1", "MDATA" };
++#endif
++
++ //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
++ /* Disable the Rx Status Queue Level interrupt */
++ gintmask.b.rxstsqlvl = 1;
++ DWC_MODIFY_REG32(&global_regs->gintmsk, gintmask.d32, 0);
++
++ /* Get the Status from the top of the FIFO */
++ status.d32 = DWC_READ_REG32(&global_regs->grxstsp);
++
++ DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
++ "pktsts:%x Frame:%d(0x%0x)\n",
++ status.b.epnum, status.b.bcnt,
++ dpid_str[status.b.dpid],
++ status.b.pktsts, status.b.fn, status.b.fn);
++ /* Get pointer to EP structure */
++ ep = get_out_ep(pcd, status.b.epnum);
++
++ switch (status.b.pktsts) {
++ case DWC_DSTS_GOUT_NAK:
++ DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
++ break;
++ case DWC_STS_DATA_UPDT:
++ DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
++ if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
++ /** @todo NGS Check for buffer overflow? */
++ dwc_otg_read_packet(core_if,
++ ep->dwc_ep.xfer_buff,
++ status.b.bcnt);
++ ep->dwc_ep.xfer_count += status.b.bcnt;
++ ep->dwc_ep.xfer_buff += status.b.bcnt;
++ }
++ break;
++ case DWC_STS_XFER_COMP:
++ DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
++ break;
++ case DWC_DSTS_SETUP_COMP:
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
++#endif
++ break;
++ case DWC_DSTS_SETUP_UPDT:
++ dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD,
++ "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
++ pcd->setup_pkt->req.bmRequestType,
++ pcd->setup_pkt->req.bRequest,
++ UGETW(pcd->setup_pkt->req.wValue),
++ UGETW(pcd->setup_pkt->req.wIndex),
++ UGETW(pcd->setup_pkt->req.wLength));
++#endif
++ ep->dwc_ep.xfer_count += status.b.bcnt;
++ break;
++ default:
++ DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
++ status.b.pktsts);
++ break;
++ }
++
++ /* Enable the Rx Status Queue Level interrupt */
++ DWC_MODIFY_REG32(&global_regs->gintmsk, 0, gintmask.d32);
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
++ return 1;
++}
++
++/**
++ * This function examines the Device IN Token Learning Queue to
++ * determine the EP number of the last IN token received. This
++ * implementation is for the Mass Storage device where there are only
++ * 2 IN EPs (Control-IN and BULK-IN).
++ *
++ * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
++ * are 8 EP Numbers in each of the other possible DTKNQ Registers.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ *
++ */
++static inline int get_ep_of_last_in_token(dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_device_global_regs_t *dev_global_regs =
++ core_if->dev_if->dev_global_regs;
++ const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
++ /* Number of Token Queue Registers */
++ const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
++ dtknq1_data_t dtknqr1;
++ uint32_t in_tkn_epnums[4];
++ int ndx = 0;
++ int i = 0;
++ volatile uint32_t *addr = &dev_global_regs->dtknqr1;
++ int epnum = 0;
++
++ //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
++
++ /* Read the DTKNQ Registers */
++ for (i = 0; i < DTKNQ_REG_CNT; i++) {
++ in_tkn_epnums[i] = DWC_READ_REG32(addr);
++ DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i + 1,
++ in_tkn_epnums[i]);
++ if (addr == &dev_global_regs->dvbusdis) {
++ addr = &dev_global_regs->dtknqr3_dthrctl;
++ } else {
++ ++addr;
++ }
++
++ }
++
++ /* Copy the DTKNQR1 data to the bit field. */
++ dtknqr1.d32 = in_tkn_epnums[0];
++ /* Get the EP numbers */
++ in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
++ ndx = dtknqr1.b.intknwptr - 1;
++
++ //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
++ if (ndx == -1) {
++ /** @todo Find a simpler way to calculate the max
++ * queue position.*/
++ int cnt = TOKEN_Q_DEPTH;
++ if (TOKEN_Q_DEPTH <= 6) {
++ cnt = TOKEN_Q_DEPTH - 1;
++ } else if (TOKEN_Q_DEPTH <= 14) {
++ cnt = TOKEN_Q_DEPTH - 7;
++ } else if (TOKEN_Q_DEPTH <= 22) {
++ cnt = TOKEN_Q_DEPTH - 15;
++ } else {
++ cnt = TOKEN_Q_DEPTH - 23;
++ }
++ epnum = (in_tkn_epnums[DTKNQ_REG_CNT - 1] >> (cnt * 4)) & 0xF;
++ } else {
++ if (ndx <= 5) {
++ epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
++ } else if (ndx <= 13) {
++ ndx -= 6;
++ epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
++ } else if (ndx <= 21) {
++ ndx -= 14;
++ epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
++ } else if (ndx <= 29) {
++ ndx -= 22;
++ epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
++ }
++ }
++ //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
++ return epnum;
++}
++
++/**
++ * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
++ * The active request is checked for the next packet to be loaded into
++ * the non-periodic Tx FIFO.
++ */
++int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ dwc_otg_dev_in_ep_regs_t *ep_regs;
++ gnptxsts_data_t txstatus = {.d32 = 0 };
++ gintsts_data_t gintsts;
++
++ int epnum = 0;
++ dwc_otg_pcd_ep_t *ep = 0;
++ uint32_t len = 0;
++ int dwords;
++
++ /* Get the epnum from the IN Token Learning Queue. */
++ epnum = get_ep_of_last_in_token(core_if);
++ ep = get_in_ep(pcd, epnum);
++
++ DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %d \n", epnum);
++
++ ep_regs = core_if->dev_if->in_ep_regs[epnum];
++
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++ dwords = (len + 3) / 4;
++
++ /* While there is space in the queue and space in the FIFO and
++ * More data to tranfer, Write packets to the Tx FIFO */
++ txstatus.d32 = DWC_READ_REG32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n", txstatus.d32);
++
++ while (txstatus.b.nptxqspcavail > 0 &&
++ txstatus.b.nptxfspcavail > dwords &&
++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
++ /* Write the FIFO */
++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++
++ dwords = (len + 3) / 4;
++ txstatus.d32 = DWC_READ_REG32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n", txstatus.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
++ DWC_READ_REG32(&global_regs->gnptxsts));
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.nptxfempty = 1;
++ DWC_WRITE_REG32(&global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This function is called when dedicated Tx FIFO Empty interrupt occurs.
++ * The active request is checked for the next packet to be loaded into
++ * apropriate Tx FIFO.
++ */
++static int32_t write_empty_tx_fifo(dwc_otg_pcd_t * pcd, uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_dev_in_ep_regs_t *ep_regs;
++ dtxfsts_data_t txstatus = {.d32 = 0 };
++ dwc_otg_pcd_ep_t *ep = 0;
++ uint32_t len = 0;
++ int dwords;
++
++ ep = get_in_ep(pcd, epnum);
++
++ DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %d \n", epnum);
++
++ ep_regs = core_if->dev_if->in_ep_regs[epnum];
++
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++
++ dwords = (len + 3) / 4;
++
++ /* While there is space in the queue and space in the FIFO and
++ * More data to tranfer, Write packets to the Tx FIFO */
++ txstatus.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
++
++ while (txstatus.b.txfspcavail > dwords &&
++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
++ ep->dwc_ep.xfer_len != 0) {
++ /* Write the FIFO */
++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
++
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++
++ dwords = (len + 3) / 4;
++ txstatus.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "dtxfsts[%d]=0x%08x\n", epnum,
++ txstatus.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n", epnum,
++ DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dtxfsts));
++
++ return 1;
++}
++
++/**
++ * This function is called when the Device is disconnected. It stops
++ * any active requests and informs the Gadget driver of the
++ * disconnect.
++ */
++void dwc_otg_pcd_stop(dwc_otg_pcd_t * pcd)
++{
++ int i, num_in_eps, num_out_eps;
++ dwc_otg_pcd_ep_t *ep;
++
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_SPINLOCK(pcd->lock);
++
++ num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
++ num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
++ /* don't disconnect drivers more than once */
++ if (pcd->ep0state == EP0_DISCONNECT) {
++ DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
++ DWC_SPINUNLOCK(pcd->lock);
++ return;
++ }
++ pcd->ep0state = EP0_DISCONNECT;
++
++ /* Reset the OTG state. */
++ dwc_otg_pcd_update_otg(pcd, 1);
++
++ /* Disable the NP Tx Fifo Empty Interrupt. */
++ intr_mask.b.nptxfempty = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Flush the FIFOs */
++ /**@todo NGS Flush Periodic FIFOs */
++ dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
++ dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
++
++ /* prevent new request submissions, kill any outstanding requests */
++ ep = &pcd->ep0;
++ dwc_otg_request_nuke(ep);
++ /* prevent new request submissions, kill any outstanding requests */
++ for (i = 0; i < num_in_eps; i++) {
++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
++ dwc_otg_request_nuke(ep);
++ }
++ /* prevent new request submissions, kill any outstanding requests */
++ for (i = 0; i < num_out_eps; i++) {
++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
++ dwc_otg_request_nuke(ep);
++ }
++
++ /* report disconnect; the driver is already quiesced */
++ if (pcd->fops->disconnect) {
++ DWC_SPINUNLOCK(pcd->lock);
++ pcd->fops->disconnect(pcd);
++ DWC_SPINLOCK(pcd->lock);
++ }
++ DWC_SPINUNLOCK(pcd->lock);
++}
++
++/**
++ * This interrupt indicates that ...
++ */
++int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t * pcd)
++{
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ gintsts_data_t gintsts;
++
++ DWC_PRINTF("INTERRUPT Handler not implemented for %s\n", "i2cintr");
++ intr_mask.b.i2cintr = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.i2cintr = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++ return 1;
++}
++
++/**
++ * This interrupt indicates that ...
++ */
++int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t * pcd)
++{
++ gintsts_data_t gintsts;
++#if defined(VERBOSE)
++ DWC_PRINTF("Early Suspend Detected\n");
++#endif
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.erlysuspend = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++ return 1;
++}
++
++/**
++ * This function configures EPO to receive SETUP packets.
++ *
++ * @todo NGS: Update the comments from the HW FS.
++ *
++ * -# Program the following fields in the endpoint specific registers
++ * for Control OUT EP 0, in order to receive a setup packet
++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
++ * setup packets)
++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
++ * to back setup packets)
++ * - In DMA mode, DOEPDMA0 Register with a memory address to
++ * store any setup packets received
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param pcd Programming view of the PCD.
++ */
++static inline void ep0_out_start(dwc_otg_core_if_t * core_if,
++ dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ deptsiz0_data_t doeptsize0 = {.d32 = 0 };
++ dwc_otg_dev_dma_desc_t *dma_desc;
++ depctl_data_t doepctl = {.d32 = 0 };
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "%s() doepctl0=%0x\n", __func__,
++ DWC_READ_REG32(&dev_if->out_ep_regs[0]->doepctl));
++#endif
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ doepctl.d32 = DWC_READ_REG32(&dev_if->out_ep_regs[0]->doepctl);
++ if (doepctl.b.epena) {
++ return;
++ }
++ }
++
++ doeptsize0.b.supcnt = 3;
++ doeptsize0.b.pktcnt = 1;
++ doeptsize0.b.xfersize = 8 * 3;
++
++ if (core_if->dma_enable) {
++ if (!core_if->dma_desc_enable) {
++ /** put here as for Hermes mode deptisz register should not be written */
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[0]->doeptsiz,
++ doeptsize0.d32);
++
++ /** @todo dma needs to handle multiple setup packets (up to 3) */
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[0]->doepdma,
++ pcd->setup_pkt_dma_handle);
++ } else {
++ dev_if->setup_desc_index =
++ (dev_if->setup_desc_index + 1) & 1;
++ dma_desc =
++ dev_if->setup_desc_addr[dev_if->setup_desc_index];
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ dma_desc->status.b.sr = 0;
++ dma_desc->status.b.mtrf = 0;
++ }
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
++ dma_desc->buf = pcd->setup_pkt_dma_handle;
++ dma_desc->status.b.sts = 0;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DOEPDMA0 Register write */
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[0]->doepdma,
++ dev_if->dma_setup_desc_addr
++ [dev_if->setup_desc_index]);
++ }
++
++ } else {
++ /** put here as for Hermes mode deptisz register should not be written */
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[0]->doeptsiz,
++ doeptsize0.d32);
++ }
++
++ /** DOEPCTL0 Register write cnak will be set after setup interrupt */
++ doepctl.d32 = 0;
++ doepctl.b.epena = 1;
++ if (core_if->snpsid <= OTG_CORE_REV_2_94a) {
++ doepctl.b.cnak = 1;
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
++ } else {
++ DWC_MODIFY_REG32(&dev_if->out_ep_regs[0]->doepctl, 0, doepctl.d32);
++ }
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n",
++ DWC_READ_REG32(&dev_if->out_ep_regs[0]->doepctl));
++ DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n",
++ DWC_READ_REG32(&dev_if->in_ep_regs[0]->diepctl));
++#endif
++}
++
++/**
++ * This interrupt occurs when a USB Reset is detected. When the USB
++ * Reset Interrupt occurs the device state is set to DEFAULT and the
++ * EP0 state is set to IDLE.
++ * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
++ * -# Unmask the following interrupt bits
++ * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
++ * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
++ * - DOEPMSK.SETUP = 1
++ * - DOEPMSK.XferCompl = 1
++ * - DIEPMSK.XferCompl = 1
++ * - DIEPMSK.TimeOut = 1
++ * -# Program the following fields in the endpoint specific registers
++ * for Control OUT EP 0, in order to receive a setup packet
++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
++ * setup packets)
++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
++ * to back setup packets)
++ * - In DMA mode, DOEPDMA0 Register with a memory address to
++ * store any setup packets received
++ * At this point, all the required initialization, except for enabling
++ * the control 0 OUT endpoint is done, for receiving SETUP packets.
++ */
++int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ depctl_data_t doepctl = {.d32 = 0 };
++ depctl_data_t diepctl = {.d32 = 0 };
++ daint_data_t daintmsk = {.d32 = 0 };
++ doepmsk_data_t doepmsk = {.d32 = 0 };
++ diepmsk_data_t diepmsk = {.d32 = 0 };
++ dcfg_data_t dcfg = {.d32 = 0 };
++ grstctl_t resetctl = {.d32 = 0 };
++ dctl_data_t dctl = {.d32 = 0 };
++ int i = 0;
++ gintsts_data_t gintsts;
++ pcgcctl_data_t power = {.d32 = 0 };
++
++ power.d32 = DWC_READ_REG32(core_if->pcgcctl);
++ if (power.b.stoppclk) {
++ power.d32 = 0;
++ power.b.stoppclk = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, power.d32, 0);
++
++ power.b.pwrclmp = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, power.d32, 0);
++
++ power.b.rstpdwnmodule = 1;
++ DWC_MODIFY_REG32(core_if->pcgcctl, power.d32, 0);
++ }
++
++ core_if->lx_state = DWC_OTG_L0;
++
++ DWC_PRINTF("USB RESET\n");
++#ifdef DWC_EN_ISOC
++ for (i = 1; i < 16; ++i) {
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++ ep = get_in_ep(pcd, i);
++ if (ep != 0) {
++ dwc_ep = &ep->dwc_ep;
++ dwc_ep->next_frame = 0xffffffff;
++ }
++ }
++#endif /* DWC_EN_ISOC */
++
++ /* reset the HNP settings */
++ dwc_otg_pcd_update_otg(pcd, 1);
++
++ /* Clear the Remote Wakeup Signalling */
++ dctl.b.rmtwkupsig = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32, 0);
++
++ /* Set NAK for all OUT EPs */
++ doepctl.b.snak = 1;
++ for (i = 0; i <= dev_if->num_out_eps; i++) {
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[i]->doepctl, doepctl.d32);
++ }
++
++ /* Flush the NP Tx FIFO */
++ dwc_otg_flush_tx_fifo(core_if, 0x10);
++ /* Flush the Learning Queue */
++ resetctl.b.intknqflsh = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->grstctl, resetctl.d32);
++
++ if (!core_if->core_params->en_multiple_tx_fifo && core_if->dma_enable) {
++ core_if->start_predict = 0;
++ for (i = 0; i<= core_if->dev_if->num_in_eps; ++i) {
++ core_if->nextep_seq[i] = 0xff; // 0xff - EP not active
++ }
++ core_if->nextep_seq[0] = 0;
++ core_if->first_in_nextep_seq = 0;
++ diepctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[0]->diepctl);
++ diepctl.b.nextep = 0;
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
++
++ /* Update IN Endpoint Mismatch Count by active IN NP EP count + 1 */
++ dcfg.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.epmscnt = 2;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "%s first_in_nextep_seq= %2d; nextep_seq[]:\n",
++ __func__, core_if->first_in_nextep_seq);
++ for (i=0; i <= core_if->dev_if->num_in_eps; i++) {
++ DWC_DEBUGPL(DBG_PCDV, "%2d\n", core_if->nextep_seq[i]);
++ }
++ }
++
++ if (core_if->multiproc_int_enable) {
++ daintmsk.b.inep0 = 1;
++ daintmsk.b.outep0 = 1;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->deachintmsk,
++ daintmsk.d32);
++
++ doepmsk.b.setup = 1;
++ doepmsk.b.xfercompl = 1;
++ doepmsk.b.ahberr = 1;
++ doepmsk.b.epdisabled = 1;
++
++ if ((core_if->dma_desc_enable) ||
++ (core_if->dma_enable
++ && core_if->snpsid >= OTG_CORE_REV_3_00a)) {
++ doepmsk.b.stsphsercvd = 1;
++ }
++ if (core_if->dma_desc_enable)
++ doepmsk.b.bna = 1;
++/*
++ doepmsk.b.babble = 1;
++ doepmsk.b.nyet = 1;
++
++ if (core_if->dma_enable) {
++ doepmsk.b.nak = 1;
++ }
++*/
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->doepeachintmsk[0],
++ doepmsk.d32);
++
++ diepmsk.b.xfercompl = 1;
++ diepmsk.b.timeout = 1;
++ diepmsk.b.epdisabled = 1;
++ diepmsk.b.ahberr = 1;
++ diepmsk.b.intknepmis = 1;
++ if (!core_if->en_multiple_tx_fifo && core_if->dma_enable)
++ diepmsk.b.intknepmis = 0;
++
++/* if (core_if->dma_desc_enable) {
++ diepmsk.b.bna = 1;
++ }
++*/
++/*
++ if (core_if->dma_enable) {
++ diepmsk.b.nak = 1;
++ }
++*/
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->diepeachintmsk[0],
++ diepmsk.d32);
++ } else {
++ daintmsk.b.inep0 = 1;
++ daintmsk.b.outep0 = 1;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->daintmsk,
++ daintmsk.d32);
++
++ doepmsk.b.setup = 1;
++ doepmsk.b.xfercompl = 1;
++ doepmsk.b.ahberr = 1;
++ doepmsk.b.epdisabled = 1;
++
++ if ((core_if->dma_desc_enable) ||
++ (core_if->dma_enable
++ && core_if->snpsid >= OTG_CORE_REV_3_00a)) {
++ doepmsk.b.stsphsercvd = 1;
++ }
++ if (core_if->dma_desc_enable)
++ doepmsk.b.bna = 1;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
++
++ diepmsk.b.xfercompl = 1;
++ diepmsk.b.timeout = 1;
++ diepmsk.b.epdisabled = 1;
++ diepmsk.b.ahberr = 1;
++ if (!core_if->en_multiple_tx_fifo && core_if->dma_enable)
++ diepmsk.b.intknepmis = 0;
++/*
++ if (core_if->dma_desc_enable) {
++ diepmsk.b.bna = 1;
++ }
++*/
++
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
++ }
++
++ /* Reset Device Address */
++ dcfg.d32 = DWC_READ_REG32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.devaddr = 0;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ /* setup EP0 to receive SETUP packets */
++ if (core_if->snpsid <= OTG_CORE_REV_2_94a)
++ ep0_out_start(core_if, pcd);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.usbreset = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * Get the device speed from the device status register and convert it
++ * to USB speed constant.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static int get_device_speed(dwc_otg_core_if_t * core_if)
++{
++ dsts_data_t dsts;
++ int speed = 0;
++ dsts.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dsts);
++
++ switch (dsts.b.enumspd) {
++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
++ speed = USB_SPEED_HIGH;
++ break;
++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
++ speed = USB_SPEED_FULL;
++ break;
++
++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
++ speed = USB_SPEED_LOW;
++ break;
++ }
++
++ return speed;
++}
++
++/**
++ * Read the device status register and set the device speed in the
++ * data structure.
++ * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
++ */
++int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ gintsts_data_t gintsts;
++ gusbcfg_data_t gusbcfg;
++ dwc_otg_core_global_regs_t *global_regs =
++ GET_CORE_IF(pcd)->core_global_regs;
++ uint8_t utmi16b, utmi8b;
++ int speed;
++ DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
++
++ if (GET_CORE_IF(pcd)->snpsid >= OTG_CORE_REV_2_60a) {
++ utmi16b = 6; //vahrama old value was 6;
++ utmi8b = 9;
++ } else {
++ utmi16b = 4;
++ utmi8b = 8;
++ }
++ dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
++ if (GET_CORE_IF(pcd)->snpsid >= OTG_CORE_REV_3_00a) {
++ ep0_out_start(GET_CORE_IF(pcd), pcd);
++ }
++
++#ifdef DEBUG_EP0
++ print_ep0_state(pcd);
++#endif
++
++ if (pcd->ep0state == EP0_DISCONNECT) {
++ pcd->ep0state = EP0_IDLE;
++ } else if (pcd->ep0state == EP0_STALL) {
++ pcd->ep0state = EP0_IDLE;
++ }
++
++ pcd->ep0state = EP0_IDLE;
++
++ ep0->stopped = 0;
++
++ speed = get_device_speed(GET_CORE_IF(pcd));
++ pcd->fops->connect(pcd, speed);
++
++ /* Set USB turnaround time based on device speed and PHY interface. */
++ gusbcfg.d32 = DWC_READ_REG32(&global_regs->gusbcfg);
++ if (speed == USB_SPEED_HIGH) {
++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type ==
++ DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
++ /* ULPI interface */
++ gusbcfg.b.usbtrdtim = 9;
++ }
++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type ==
++ DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
++ /* UTMI+ interface */
++ if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
++ gusbcfg.b.usbtrdtim = utmi8b;
++ } else if (GET_CORE_IF(pcd)->hwcfg4.
++ b.utmi_phy_data_width == 1) {
++ gusbcfg.b.usbtrdtim = utmi16b;
++ } else if (GET_CORE_IF(pcd)->
++ core_params->phy_utmi_width == 8) {
++ gusbcfg.b.usbtrdtim = utmi8b;
++ } else {
++ gusbcfg.b.usbtrdtim = utmi16b;
++ }
++ }
++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type ==
++ DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
++ /* UTMI+ OR ULPI interface */
++ if (gusbcfg.b.ulpi_utmi_sel == 1) {
++ /* ULPI interface */
++ gusbcfg.b.usbtrdtim = 9;
++ } else {
++ /* UTMI+ interface */
++ if (GET_CORE_IF(pcd)->
++ core_params->phy_utmi_width == 16) {
++ gusbcfg.b.usbtrdtim = utmi16b;
++ } else {
++ gusbcfg.b.usbtrdtim = utmi8b;
++ }
++ }
++ }
++ } else {
++ /* Full or low speed */
++ gusbcfg.b.usbtrdtim = 9;
++ }
++ DWC_WRITE_REG32(&global_regs->gusbcfg, gusbcfg.d32);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.enumdone = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++ return 1;
++}
++
++/**
++ * This interrupt indicates that the ISO OUT Packet was dropped due to
++ * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs
++ * read all the data from the Rx FIFO.
++ */
++int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t * pcd)
++{
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ gintsts_data_t gintsts;
++
++ DWC_WARN("INTERRUPT Handler not implemented for %s\n",
++ "ISOC Out Dropped");
++
++ intr_mask.b.isooutdrop = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.isooutdrop = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates the end of the portion of the micro-frame
++ * for periodic transactions. If there is a periodic transaction for
++ * the next frame, load the packets into the EP periodic Tx FIFO.
++ */
++int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t * pcd)
++{
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ gintsts_data_t gintsts;
++ DWC_PRINTF("INTERRUPT Handler not implemented for %s\n", "EOP");
++
++ intr_mask.b.eopframe = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.eopframe = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that EP of the packet on the top of the
++ * non-periodic Tx FIFO does not match EP of the IN Token received.
++ *
++ * The "Device IN Token Queue" Registers are read to determine the
++ * order the IN Tokens have been received. The non-periodic Tx FIFO
++ * is flushed, so it can be reloaded in the order seen in the IN Token
++ * Queue.
++ */
++int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_pcd_t * pcd)
++{
++ gintsts_data_t gintsts;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dctl_data_t dctl;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ if (!core_if->en_multiple_tx_fifo && core_if->dma_enable) {
++ core_if->start_predict = 1;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
++
++ gintsts.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ if (!gintsts.b.ginnakeff) {
++ /* Disable EP Mismatch interrupt */
++ intr_mask.d32 = 0;
++ intr_mask.b.epmismatch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
++ /* Enable the Global IN NAK Effective Interrupt */
++ intr_mask.d32 = 0;
++ intr_mask.b.ginnakeff = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, 0, intr_mask.d32);
++ /* Set the global non-periodic IN NAK handshake */
++ dctl.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dctl);
++ dctl.b.sgnpinnak = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
++ } else {
++ DWC_PRINTF("gintsts.b.ginnakeff = 1! dctl.b.sgnpinnak not set\n");
++ }
++ /* Disabling of all EP's will be done in dwc_otg_pcd_handle_in_nak_effective()
++ * handler after Global IN NAK Effective interrupt will be asserted */
++ }
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.epmismatch = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt is valid only in DMA mode. This interrupt indicates that the
++ * core has stopped fetching data for IN endpoints due to the unavailability of
++ * TxFIFO space or Request Queue space. This interrupt is used by the
++ * application for an endpoint mismatch algorithm.
++ *
++ * @param pcd The PCD
++ */
++int32_t dwc_otg_pcd_handle_ep_fetsusp_intr(dwc_otg_pcd_t * pcd)
++{
++ gintsts_data_t gintsts;
++ gintmsk_data_t gintmsk_data;
++ dctl_data_t dctl;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
++
++ /* Clear the global non-periodic IN NAK handshake */
++ dctl.d32 = 0;
++ dctl.b.cgnpinnak = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++
++ /* Mask GINTSTS.FETSUSP interrupt */
++ gintmsk_data.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintmsk);
++ gintmsk_data.b.fetsusp = 0;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, gintmsk_data.d32);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.fetsusp = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++/**
++ * This funcion stalls EP0.
++ */
++static inline void ep0_do_stall(dwc_otg_pcd_t * pcd, const int err_val)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ usb_device_request_t *ctrl = &pcd->setup_pkt->req;
++ DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
++ ctrl->bmRequestType, ctrl->bRequest, err_val);
++
++ ep0->dwc_ep.is_in = 1;
++ dwc_otg_ep_set_stall(GET_CORE_IF(pcd), &ep0->dwc_ep);
++ pcd->ep0.stopped = 1;
++ pcd->ep0state = EP0_IDLE;
++ ep0_out_start(GET_CORE_IF(pcd), pcd);
++}
++
++/**
++ * This functions delegates the setup command to the gadget driver.
++ */
++static inline void do_gadget_setup(dwc_otg_pcd_t * pcd,
++ usb_device_request_t * ctrl)
++{
++ int ret = 0;
++ DWC_SPINUNLOCK(pcd->lock);
++ ret = pcd->fops->setup(pcd, (uint8_t *) ctrl);
++ DWC_SPINLOCK(pcd->lock);
++ if (ret < 0) {
++ ep0_do_stall(pcd, ret);
++ }
++
++ /** @todo This is a g_file_storage gadget driver specific
++ * workaround: a DELAYED_STATUS result from the fsg_setup
++ * routine will result in the gadget queueing a EP0 IN status
++ * phase for a two-stage control transfer. Exactly the same as
++ * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
++ * specific request. Need a generic way to know when the gadget
++ * driver will queue the status phase. Can we assume when we
++ * call the gadget driver setup() function that it will always
++ * queue and require the following flag? Need to look into
++ * this.
++ */
++
++ if (ret == 256 + 999) {
++ pcd->request_config = 1;
++ }
++}
++
++#ifdef DWC_UTE_CFI
++/**
++ * This functions delegates the CFI setup commands to the gadget driver.
++ * This function will return a negative value to indicate a failure.
++ */
++static inline int cfi_gadget_setup(dwc_otg_pcd_t * pcd,
++ struct cfi_usb_ctrlrequest *ctrl_req)
++{
++ int ret = 0;
++
++ if (pcd->fops && pcd->fops->cfi_setup) {
++ DWC_SPINUNLOCK(pcd->lock);
++ ret = pcd->fops->cfi_setup(pcd, ctrl_req);
++ DWC_SPINLOCK(pcd->lock);
++ if (ret < 0) {
++ ep0_do_stall(pcd, ret);
++ return ret;
++ }
++ }
++
++ return ret;
++}
++#endif
++
++/**
++ * This function starts the Zero-Length Packet for the IN status phase
++ * of a 2 stage control transfer.
++ */
++static inline void do_setup_in_status_phase(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ if (pcd->ep0state == EP0_STALL) {
++ return;
++ }
++
++ pcd->ep0state = EP0_IN_STATUS_PHASE;
++
++ /* Prepare for more SETUP Packets */
++ DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
++ if ((GET_CORE_IF(pcd)->snpsid >= OTG_CORE_REV_3_00a)
++ && (pcd->core_if->dma_desc_enable)
++ && (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len)) {
++ DWC_DEBUGPL(DBG_PCDV,
++ "Data terminated wait next packet in out_desc_addr\n");
++ pcd->backup_buf = phys_to_virt(ep0->dwc_ep.dma_addr);
++ pcd->data_terminated = 1;
++ }
++ ep0->dwc_ep.xfer_len = 0;
++ ep0->dwc_ep.xfer_count = 0;
++ ep0->dwc_ep.is_in = 1;
++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
++
++ /* Prepare for more SETUP Packets */
++ //ep0_out_start(GET_CORE_IF(pcd), pcd);
++}
++
++/**
++ * This function starts the Zero-Length Packet for the OUT status phase
++ * of a 2 stage control transfer.
++ */
++static inline void do_setup_out_status_phase(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ if (pcd->ep0state == EP0_STALL) {
++ DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
++ return;
++ }
++ pcd->ep0state = EP0_OUT_STATUS_PHASE;
++
++ DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
++ ep0->dwc_ep.xfer_len = 0;
++ ep0->dwc_ep.xfer_count = 0;
++ ep0->dwc_ep.is_in = 0;
++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
++
++ /* Prepare for more SETUP Packets */
++ if (GET_CORE_IF(pcd)->dma_enable == 0) {
++ ep0_out_start(GET_CORE_IF(pcd), pcd);
++ }
++}
++
++/**
++ * Clear the EP halt (STALL) and if pending requests start the
++ * transfer.
++ */
++static inline void pcd_clear_halt(dwc_otg_pcd_t * pcd, dwc_otg_pcd_ep_t * ep)
++{
++ if (ep->dwc_ep.stall_clear_flag == 0)
++ dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
++
++ /* Reactive the EP */
++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
++ if (ep->stopped) {
++ ep->stopped = 0;
++ /* If there is a request in the EP queue start it */
++
++ /** @todo FIXME: this causes an EP mismatch in DMA mode.
++ * epmismatch not yet implemented. */
++
++ /*
++ * Above fixme is solved by implmenting a tasklet to call the
++ * start_next_request(), outside of interrupt context at some
++ * time after the current time, after a clear-halt setup packet.
++ * Still need to implement ep mismatch in the future if a gadget
++ * ever uses more than one endpoint at once
++ */
++ ep->queue_sof = 1;
++ DWC_TASK_SCHEDULE(pcd->start_xfer_tasklet);
++ }
++ /* Start Control Status Phase */
++ do_setup_in_status_phase(pcd);
++}
++
++/**
++ * This function is called when the SET_FEATURE TEST_MODE Setup packet
++ * is sent from the host. The Device Control register is written with
++ * the Test Mode bits set to the specified Test Mode. This is done as
++ * a tasklet so that the "Status" phase of the control transfer
++ * completes before transmitting the TEST packets.
++ *
++ * @todo This has not been tested since the tasklet struct was put
++ * into the PCD struct!
++ *
++ */
++void do_test_mode(void *data)
++{
++ dctl_data_t dctl;
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *) data;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ int test_mode = pcd->test_mode;
++
++// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
++
++ dctl.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dctl);
++ switch (test_mode) {
++ case 1: // TEST_J
++ dctl.b.tstctl = 1;
++ break;
++
++ case 2: // TEST_K
++ dctl.b.tstctl = 2;
++ break;
++
++ case 3: // TEST_SE0_NAK
++ dctl.b.tstctl = 3;
++ break;
++
++ case 4: // TEST_PACKET
++ dctl.b.tstctl = 4;
++ break;
++
++ case 5: // TEST_FORCE_ENABLE
++ dctl.b.tstctl = 5;
++ break;
++ }
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
++}
++
++/**
++ * This function process the GET_STATUS Setup Commands.
++ */
++static inline void do_get_status(dwc_otg_pcd_t * pcd)
++{
++ usb_device_request_t ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ uint16_t *status = pcd->status_buf;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD,
++ "GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bmRequestType, ctrl.bRequest,
++ UGETW(ctrl.wValue), UGETW(ctrl.wIndex),
++ UGETW(ctrl.wLength));
++#endif
++
++ switch (UT_GET_RECIPIENT(ctrl.bmRequestType)) {
++ case UT_DEVICE:
++ if(UGETW(ctrl.wIndex) == 0xF000) { /* OTG Status selector */
++ DWC_PRINTF("wIndex - %d\n", UGETW(ctrl.wIndex));
++ DWC_PRINTF("OTG VERSION - %d\n", core_if->otg_ver);
++ DWC_PRINTF("OTG CAP - %d, %d\n",
++ core_if->core_params->otg_cap,
++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
++ if (core_if->otg_ver == 1
++ && core_if->core_params->otg_cap ==
++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
++ uint8_t *otgsts = (uint8_t*)pcd->status_buf;
++ *otgsts = (core_if->otg_sts & 0x1);
++ pcd->ep0_pending = 1;
++ ep0->dwc_ep.start_xfer_buff =
++ (uint8_t *) otgsts;
++ ep0->dwc_ep.xfer_buff = (uint8_t *) otgsts;
++ ep0->dwc_ep.dma_addr =
++ pcd->status_buf_dma_handle;
++ ep0->dwc_ep.xfer_len = 1;
++ ep0->dwc_ep.xfer_count = 0;
++ ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd),
++ &ep0->dwc_ep);
++ return;
++ } else {
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++ break;
++ } else {
++ *status = 0x1; /* Self powered */
++ *status |= pcd->remote_wakeup_enable << 1;
++ break;
++ }
++ case UT_INTERFACE:
++ *status = 0;
++ break;
++
++ case UT_ENDPOINT:
++ ep = get_ep_by_addr(pcd, UGETW(ctrl.wIndex));
++ if (ep == 0 || UGETW(ctrl.wLength) > 2) {
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++ /** @todo check for EP stall */
++ *status = ep->stopped;
++ break;
++ }
++ pcd->ep0_pending = 1;
++ ep0->dwc_ep.start_xfer_buff = (uint8_t *) status;
++ ep0->dwc_ep.xfer_buff = (uint8_t *) status;
++ ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
++ ep0->dwc_ep.xfer_len = 2;
++ ep0->dwc_ep.xfer_count = 0;
++ ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
++}
++
++/**
++ * This function process the SET_FEATURE Setup Commands.
++ */
++static inline void do_set_feature(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ usb_device_request_t ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep = 0;
++ int32_t otg_cap_param = core_if->core_params->otg_cap;
++ gotgctl_data_t gotgctl = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bmRequestType, ctrl.bRequest,
++ UGETW(ctrl.wValue), UGETW(ctrl.wIndex),
++ UGETW(ctrl.wLength));
++ DWC_DEBUGPL(DBG_PCD, "otg_cap=%d\n", otg_cap_param);
++
++ switch (UT_GET_RECIPIENT(ctrl.bmRequestType)) {
++ case UT_DEVICE:
++ switch (UGETW(ctrl.wValue)) {
++ case UF_DEVICE_REMOTE_WAKEUP:
++ pcd->remote_wakeup_enable = 1;
++ break;
++
++ case UF_TEST_MODE:
++ /* Setup the Test Mode tasklet to do the Test
++ * Packet generation after the SETUP Status
++ * phase has completed. */
++
++ /** @todo This has not been tested since the
++ * tasklet struct was put into the PCD
++ * struct! */
++ pcd->test_mode = UGETW(ctrl.wIndex) >> 8;
++ DWC_TASK_SCHEDULE(pcd->test_mode_tasklet);
++ break;
++
++ case UF_DEVICE_B_HNP_ENABLE:
++ DWC_DEBUGPL(DBG_PCDV,
++ "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
++
++ /* dev may initiate HNP */
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
++ pcd->b_hnp_enable = 1;
++ dwc_otg_pcd_update_otg(pcd, 0);
++ DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
++ /**@todo Is the gotgctl.devhnpen cleared
++ * by a USB Reset? */
++ gotgctl.b.devhnpen = 1;
++ gotgctl.b.hnpreq = 1;
++ DWC_WRITE_REG32(&global_regs->gotgctl,
++ gotgctl.d32);
++ } else {
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++ break;
++
++ case UF_DEVICE_A_HNP_SUPPORT:
++ /* RH port supports HNP */
++ DWC_DEBUGPL(DBG_PCDV,
++ "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
++ pcd->a_hnp_support = 1;
++ dwc_otg_pcd_update_otg(pcd, 0);
++ } else {
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++ break;
++
++ case UF_DEVICE_A_ALT_HNP_SUPPORT:
++ /* other RH port does */
++ DWC_DEBUGPL(DBG_PCDV,
++ "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
++ pcd->a_alt_hnp_support = 1;
++ dwc_otg_pcd_update_otg(pcd, 0);
++ } else {
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++ break;
++
++ default:
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++
++ }
++ do_setup_in_status_phase(pcd);
++ break;
++
++ case UT_INTERFACE:
++ do_gadget_setup(pcd, &ctrl);
++ break;
++
++ case UT_ENDPOINT:
++ if (UGETW(ctrl.wValue) == UF_ENDPOINT_HALT) {
++ ep = get_ep_by_addr(pcd, UGETW(ctrl.wIndex));
++ if (ep == 0) {
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
++ }
++ do_setup_in_status_phase(pcd);
++ break;
++ }
++}
++
++/**
++ * This function process the CLEAR_FEATURE Setup Commands.
++ */
++static inline void do_clear_feature(dwc_otg_pcd_t * pcd)
++{
++ usb_device_request_t ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep = 0;
++
++ DWC_DEBUGPL(DBG_PCD,
++ "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bmRequestType, ctrl.bRequest,
++ UGETW(ctrl.wValue), UGETW(ctrl.wIndex),
++ UGETW(ctrl.wLength));
++
++ switch (UT_GET_RECIPIENT(ctrl.bmRequestType)) {
++ case UT_DEVICE:
++ switch (UGETW(ctrl.wValue)) {
++ case UF_DEVICE_REMOTE_WAKEUP:
++ pcd->remote_wakeup_enable = 0;
++ break;
++
++ case UF_TEST_MODE:
++ /** @todo Add CLEAR_FEATURE for TEST modes. */
++ break;
++
++ default:
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++ do_setup_in_status_phase(pcd);
++ break;
++
++ case UT_ENDPOINT:
++ ep = get_ep_by_addr(pcd, UGETW(ctrl.wIndex));
++ if (ep == 0) {
++ ep0_do_stall(pcd, -DWC_E_NOT_SUPPORTED);
++ return;
++ }
++
++ pcd_clear_halt(pcd, ep);
++
++ break;
++ }
++}
++
++/**
++ * This function process the SET_ADDRESS Setup Commands.
++ */
++static inline void do_set_address(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
++ usb_device_request_t ctrl = pcd->setup_pkt->req;
++
++ if (ctrl.bmRequestType == UT_DEVICE) {
++ dcfg_data_t dcfg = {.d32 = 0 };
++
++#ifdef DEBUG_EP0
++// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
++#endif
++ dcfg.b.devaddr = UGETW(ctrl.wValue);
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
++ do_setup_in_status_phase(pcd);
++ }
++}
++
++/**
++ * This function processes SETUP commands. In Linux, the USB Command
++ * processing is done in two places - the first being the PCD and the
++ * second in the Gadget Driver (for example, the File-Backed Storage
++ * Gadget Driver).
++ *
++ * <table>
++ * <tr><td>Command </td><td>Driver </td><td>Description</td></tr>
++ *
++ * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
++ * defined in chapter 9 of the USB 2.0 Specification chapter 9
++ * </td></tr>
++ *
++ * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
++ * requests are the ENDPOINT_HALT feature is procesed, all others the
++ * interface requests are ignored.</td></tr>
++ *
++ * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
++ * requests are processed by the PCD. Interface requests are passed
++ * to the Gadget Driver.</td></tr>
++ *
++ * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
++ * with device address received </td></tr>
++ *
++ * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
++ * requested descriptor</td></tr>
++ *
++ * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
++ * not implemented by any of the existing Gadget Drivers.</td></tr>
++ *
++ * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
++ * all EPs and enable EPs for new configuration.</td></tr>
++ *
++ * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
++ * the current configuration</td></tr>
++ *
++ * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
++ * EPs and enable EPs for new configuration.</td></tr>
++ *
++ * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
++ * current interface.</td></tr>
++ *
++ * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
++ * message.</td></tr>
++ * </table>
++ *
++ * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
++ * processed by pcd_setup. Calling the Function Driver's setup function from
++ * pcd_setup processes the gadget SETUP commands.
++ */
++static inline void pcd_setup(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ usb_device_request_t ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++
++ deptsiz0_data_t doeptsize0 = {.d32 = 0 };
++
++#ifdef DWC_UTE_CFI
++ int retval = 0;
++ struct cfi_usb_ctrlrequest cfi_req;
++#endif
++
++ doeptsize0.d32 = DWC_READ_REG32(&dev_if->out_ep_regs[0]->doeptsiz);
++
++ /** In BDMA more then 1 setup packet is not supported till 3.00a */
++ if (core_if->dma_enable && core_if->dma_desc_enable == 0
++ && (doeptsize0.b.supcnt < 2)
++ && (core_if->snpsid < OTG_CORE_REV_2_94a)) {
++ DWC_ERROR
++ ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n");
++ }
++ if ((core_if->snpsid >= OTG_CORE_REV_3_00a)
++ && (core_if->dma_enable == 1) && (core_if->dma_desc_enable == 0)) {
++ ctrl =
++ (pcd->setup_pkt +
++ (3 - doeptsize0.b.supcnt - 1 +
++ ep0->dwc_ep.stp_rollover))->req;
++ }
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bmRequestType, ctrl.bRequest,
++ UGETW(ctrl.wValue), UGETW(ctrl.wIndex),
++ UGETW(ctrl.wLength));
++#endif
++
++ /* Clean up the request queue */
++ dwc_otg_request_nuke(ep0);
++ ep0->stopped = 0;
++
++ if (ctrl.bmRequestType & UE_DIR_IN) {
++ ep0->dwc_ep.is_in = 1;
++ pcd->ep0state = EP0_IN_DATA_PHASE;
++ } else {
++ ep0->dwc_ep.is_in = 0;
++ pcd->ep0state = EP0_OUT_DATA_PHASE;
++ }
++
++ if (UGETW(ctrl.wLength) == 0) {
++ ep0->dwc_ep.is_in = 1;
++ pcd->ep0state = EP0_IN_STATUS_PHASE;
++ }
++
++ if (UT_GET_TYPE(ctrl.bmRequestType) != UT_STANDARD) {
++
++#ifdef DWC_UTE_CFI
++ DWC_MEMCPY(&cfi_req, &ctrl, sizeof(usb_device_request_t));
++
++ //printk(KERN_ALERT "CFI: req_type=0x%02x; req=0x%02x\n",
++ ctrl.bRequestType, ctrl.bRequest);
++ if (UT_GET_TYPE(cfi_req.bRequestType) == UT_VENDOR) {
++ if (cfi_req.bRequest > 0xB0 && cfi_req.bRequest < 0xBF) {
++ retval = cfi_setup(pcd, &cfi_req);
++ if (retval < 0) {
++ ep0_do_stall(pcd, retval);
++ pcd->ep0_pending = 0;
++ return;
++ }
++
++ /* if need gadget setup then call it and check the retval */
++ if (pcd->cfi->need_gadget_att) {
++ retval =
++ cfi_gadget_setup(pcd,
++ &pcd->
++ cfi->ctrl_req);
++ if (retval < 0) {
++ pcd->ep0_pending = 0;
++ return;
++ }
++ }
++
++ if (pcd->cfi->need_status_in_complete) {
++ do_setup_in_status_phase(pcd);
++ }
++ return;
++ }
++ }
++#endif
++
++ /* handle non-standard (class/vendor) requests in the gadget driver */
++ do_gadget_setup(pcd, &ctrl);
++ return;
++ }
++
++ /** @todo NGS: Handle bad setup packet? */
++
++///////////////////////////////////////////
++//// --- Standard Request handling --- ////
++
++ switch (ctrl.bRequest) {
++ case UR_GET_STATUS:
++ do_get_status(pcd);
++ break;
++
++ case UR_CLEAR_FEATURE:
++ do_clear_feature(pcd);
++ break;
++
++ case UR_SET_FEATURE:
++ do_set_feature(pcd);
++ break;
++
++ case UR_SET_ADDRESS:
++ do_set_address(pcd);
++ break;
++
++ case UR_SET_INTERFACE:
++ case UR_SET_CONFIG:
++// _pcd->request_config = 1; /* Configuration changed */
++ do_gadget_setup(pcd, &ctrl);
++ break;
++
++ case UR_SYNCH_FRAME:
++ do_gadget_setup(pcd, &ctrl);
++ break;
++
++ default:
++ /* Call the Gadget Driver's setup functions */
++ do_gadget_setup(pcd, &ctrl);
++ break;
++ }
++}
++
++/**
++ * This function completes the ep0 control transfer.
++ */
++static int32_t ep0_complete_request(dwc_otg_pcd_ep_t * ep)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
++ dev_if->in_ep_regs[ep->dwc_ep.num];
++#ifdef DEBUG_EP0
++ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
++ dev_if->out_ep_regs[ep->dwc_ep.num];
++#endif
++ deptsiz0_data_t deptsiz;
++ dev_dma_desc_sts_t desc_sts;
++ dwc_otg_pcd_request_t *req;
++ int is_last = 0;
++ dwc_otg_pcd_t *pcd = ep->pcd;
++
++#ifdef DWC_UTE_CFI
++ struct cfi_usb_ctrlrequest *ctrlreq;
++ int retval = -DWC_E_NOT_SUPPORTED;
++#endif
++
++ desc_sts.b.bytes = 0;
++
++ if (pcd->ep0_pending && DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ if (ep->dwc_ep.is_in) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
++#endif
++ do_setup_out_status_phase(pcd);
++ } else {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
++#endif
++
++#ifdef DWC_UTE_CFI
++ ctrlreq = &pcd->cfi->ctrl_req;
++
++ if (UT_GET_TYPE(ctrlreq->bRequestType) == UT_VENDOR) {
++ if (ctrlreq->bRequest > 0xB0
++ && ctrlreq->bRequest < 0xBF) {
++
++ /* Return if the PCD failed to handle the request */
++ if ((retval =
++ pcd->cfi->ops.
++ ctrl_write_complete(pcd->cfi,
++ pcd)) < 0) {
++ CFI_INFO
++ ("ERROR setting a new value in the PCD(%d)\n",
++ retval);
++ ep0_do_stall(pcd, retval);
++ pcd->ep0_pending = 0;
++ return 0;
++ }
++
++ /* If the gadget needs to be notified on the request */
++ if (pcd->cfi->need_gadget_att == 1) {
++ //retval = do_gadget_setup(pcd, &pcd->cfi->ctrl_req);
++ retval =
++ cfi_gadget_setup(pcd,
++ &pcd->cfi->
++ ctrl_req);
++
++ /* Return from the function if the gadget failed to process
++ * the request properly - this should never happen !!!
++ */
++ if (retval < 0) {
++ CFI_INFO
++ ("ERROR setting a new value in the gadget(%d)\n",
++ retval);
++ pcd->ep0_pending = 0;
++ return 0;
++ }
++ }
++
++ CFI_INFO("%s: RETVAL=%d\n", __func__,
++ retval);
++ /* If we hit here then the PCD and the gadget has properly
++ * handled the request - so send the ZLP IN to the host.
++ */
++ /* @todo: MAS - decide whether we need to start the setup
++ * stage based on the need_setup value of the cfi object
++ */
++ do_setup_in_status_phase(pcd);
++ pcd->ep0_pending = 0;
++ return 1;
++ }
++ }
++#endif
++
++ do_setup_in_status_phase(pcd);
++ }
++ pcd->ep0_pending = 0;
++ return 1;
++ }
++
++ if (DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ return 0;
++ }
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++
++ if (pcd->ep0state == EP0_OUT_STATUS_PHASE
++ || pcd->ep0state == EP0_IN_STATUS_PHASE) {
++ is_last = 1;
++ } else if (ep->dwc_ep.is_in) {
++ deptsiz.d32 = DWC_READ_REG32(&in_ep_regs->dieptsiz);
++ if (core_if->dma_desc_enable != 0)
++ desc_sts = dev_if->in_desc_addr->status;
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "%d len=%d xfersize=%d pktcnt=%d\n",
++ ep->dwc_ep.num, ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++#endif
++
++ if (((core_if->dma_desc_enable == 0)
++ && (deptsiz.b.xfersize == 0))
++ || ((core_if->dma_desc_enable != 0)
++ && (desc_sts.b.bytes == 0))) {
++ req->actual = ep->dwc_ep.xfer_count;
++ /* Is a Zero Len Packet needed? */
++ if (req->sent_zlp) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
++#endif
++ req->sent_zlp = 0;
++ }
++ do_setup_out_status_phase(pcd);
++ }
++ } else {
++ /* ep0-OUT */
++#ifdef DEBUG_EP0
++ deptsiz.d32 = DWC_READ_REG32(&out_ep_regs->doeptsiz);
++ DWC_DEBUGPL(DBG_PCDV, "%d len=%d xsize=%d pktcnt=%d\n",
++ ep->dwc_ep.num, ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++#endif
++ req->actual = ep->dwc_ep.xfer_count;
++
++ /* Is a Zero Len Packet needed? */
++ if (req->sent_zlp) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
++#endif
++ req->sent_zlp = 0;
++ }
++ /* For older cores do setup in status phase in Slave/BDMA modes,
++ * starting from 3.00 do that only in slave, and for DMA modes
++ * just re-enable ep 0 OUT here*/
++ if (core_if->dma_enable == 0
++ || (core_if->dma_desc_enable == 0
++ && core_if->snpsid <= OTG_CORE_REV_2_94a)) {
++ do_setup_in_status_phase(pcd);
++ } else if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ DWC_DEBUGPL(DBG_PCDV,
++ "Enable out ep before in status phase\n");
++ ep0_out_start(core_if, pcd);
++ }
++ }
++
++ /* Complete the request */
++ if (is_last) {
++ dwc_otg_request_done(ep, req, 0);
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++ return 1;
++ }
++ return 0;
++}
++
++#ifdef DWC_UTE_CFI
++/**
++ * This function calculates traverses all the CFI DMA descriptors and
++ * and accumulates the bytes that are left to be transfered.
++ *
++ * @return The total bytes left to transfered, or a negative value as failure
++ */
++static inline int cfi_calc_desc_residue(dwc_otg_pcd_ep_t * ep)
++{
++ int32_t ret = 0;
++ int i;
++ struct dwc_otg_dma_desc *ddesc = NULL;
++ struct cfi_ep *cfiep;
++
++ /* See if the pcd_ep has its respective cfi_ep mapped */
++ cfiep = get_cfi_ep_by_pcd_ep(ep->pcd->cfi, ep);
++ if (!cfiep) {
++ CFI_INFO("%s: Failed to find ep\n", __func__);
++ return -1;
++ }
++
++ ddesc = ep->dwc_ep.descs;
++
++ for (i = 0; (i < cfiep->desc_count) && (i < MAX_DMA_DESCS_PER_EP); i++) {
++
++#if defined(PRINT_CFI_DMA_DESCS)
++ print_desc(ddesc, ep->ep.name, i);
++#endif
++ ret += ddesc->status.b.bytes;
++ ddesc++;
++ }
++
++ if (ret)
++ CFI_INFO("!!!!!!!!!! WARNING (%s) - residue=%d\n", __func__,
++ ret);
++
++ return ret;
++}
++#endif
++
++/**
++ * This function completes the request for the EP. If there are
++ * additional requests for the EP in the queue they will be started.
++ */
++static void complete_ep(dwc_otg_pcd_ep_t * ep)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
++ dev_if->in_ep_regs[ep->dwc_ep.num];
++ deptsiz_data_t deptsiz;
++ dev_dma_desc_sts_t desc_sts;
++ dwc_otg_pcd_request_t *req = 0;
++ dwc_otg_dev_dma_desc_t *dma_desc;
++ uint32_t byte_count = 0;
++ int is_last = 0;
++ int i;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s() %d-%s\n", __func__, ep->dwc_ep.num,
++ (ep->dwc_ep.is_in ? "IN" : "OUT"));
++
++ /* Get any pending requests */
++ if (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++ if (!req) {
++ DWC_PRINTF("complete_ep 0x%p, req = NULL!\n", ep);
++ return;
++ }
++ } else {
++ DWC_PRINTF("complete_ep 0x%p, ep->queue empty!\n", ep);
++ return;
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
++
++ if (ep->dwc_ep.is_in) {
++ deptsiz.d32 = DWC_READ_REG32(&in_ep_regs->dieptsiz);
++
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable == 0) {
++ if (deptsiz.b.xfersize == 0
++ && deptsiz.b.pktcnt == 0) {
++ byte_count =
++ ep->dwc_ep.xfer_len -
++ ep->dwc_ep.xfer_count;
++
++ ep->dwc_ep.xfer_buff += byte_count;
++ ep->dwc_ep.dma_addr += byte_count;
++ ep->dwc_ep.xfer_count += byte_count;
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "%d-%s len=%d xfersize=%d pktcnt=%d\n",
++ ep->dwc_ep.num,
++ (ep->dwc_ep.
++ is_in ? "IN" : "OUT"),
++ ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize,
++ deptsiz.b.pktcnt);
++
++ if (ep->dwc_ep.xfer_len <
++ ep->dwc_ep.total_len) {
++ dwc_otg_ep_start_transfer
++ (core_if, &ep->dwc_ep);
++ } else if (ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length transfer in case if it is queued
++ * a transfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Descriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 length.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer
++ (core_if, &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ } else {
++ if (ep->dwc_ep.type ==
++ DWC_OTG_EP_TYPE_ISOC) {
++ req->actual = 0;
++ dwc_otg_request_done(ep, req, 0);
++
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++
++ /* If there is a request in the queue start it. */
++ start_next_request(ep);
++ } else
++ DWC_WARN
++ ("Incomplete transfer (%d - %s [siz=%d pkt=%d])\n",
++ ep->dwc_ep.num,
++ (ep->dwc_ep.is_in ? "IN" : "OUT"),
++ deptsiz.b.xfersize,
++ deptsiz.b.pktcnt);
++ }
++ } else {
++ dma_desc = ep->dwc_ep.desc_addr;
++ byte_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++
++#ifdef DWC_UTE_CFI
++ CFI_INFO("%s: BUFFER_MODE=%d\n", __func__,
++ ep->dwc_ep.buff_mode);
++ if (ep->dwc_ep.buff_mode != BM_STANDARD) {
++ int residue;
++
++ residue = cfi_calc_desc_residue(ep);
++ if (residue < 0)
++ return;
++
++ byte_count = residue;
++ } else {
++#endif
++ for (i = 0; i < ep->dwc_ep.desc_cnt;
++ ++i) {
++ desc_sts = dma_desc->status;
++ byte_count += desc_sts.b.bytes;
++ dma_desc++;
++ }
++#ifdef DWC_UTE_CFI
++ }
++#endif
++ if (byte_count == 0) {
++ ep->dwc_ep.xfer_count =
++ ep->dwc_ep.total_len;
++ is_last = 1;
++ } else {
++ DWC_WARN("Incomplete transfer\n");
++ }
++ }
++ } else {
++ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
++ DWC_DEBUGPL(DBG_PCDV,
++ "%d-%s len=%d xfersize=%d pktcnt=%d\n",
++ ep->dwc_ep.num,
++ ep->dwc_ep.is_in ? "IN" : "OUT",
++ ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize,
++ deptsiz.b.pktcnt);
++
++ /* Check if the whole transfer was completed,
++ * if no, setup transfer for next portion of data
++ */
++ if (ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
++ dwc_otg_ep_start_transfer(core_if,
++ &ep->dwc_ep);
++ } else if (ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length trasfer in case if it is queued
++ * a trasfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Desriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 legth.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer(core_if,
++ &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ } else {
++ DWC_WARN
++ ("Incomplete transfer (%d-%s [siz=%d pkt=%d])\n",
++ ep->dwc_ep.num,
++ (ep->dwc_ep.is_in ? "IN" : "OUT"),
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ }
++ }
++ } else {
++ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
++ dev_if->out_ep_regs[ep->dwc_ep.num];
++ desc_sts.d32 = 0;
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable) {
++ dma_desc = ep->dwc_ep.desc_addr;
++ byte_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++
++#ifdef DWC_UTE_CFI
++ CFI_INFO("%s: BUFFER_MODE=%d\n", __func__,
++ ep->dwc_ep.buff_mode);
++ if (ep->dwc_ep.buff_mode != BM_STANDARD) {
++ int residue;
++ residue = cfi_calc_desc_residue(ep);
++ if (residue < 0)
++ return;
++ byte_count = residue;
++ } else {
++#endif
++
++ for (i = 0; i < ep->dwc_ep.desc_cnt;
++ ++i) {
++ desc_sts = dma_desc->status;
++ byte_count += desc_sts.b.bytes;
++ dma_desc++;
++ }
++
++#ifdef DWC_UTE_CFI
++ }
++#endif
++ /* Checking for interrupt Out transfers with not
++ * dword aligned mps sizes
++ */
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_INTR &&
++ (ep->dwc_ep.maxpacket%4)) {
++ ep->dwc_ep.xfer_count =
++ ep->dwc_ep.total_len - byte_count;
++ if ((ep->dwc_ep.xfer_len %
++ ep->dwc_ep.maxpacket)
++ && (ep->dwc_ep.xfer_len /
++ ep->dwc_ep.maxpacket <
++ MAX_DMA_DESC_CNT))
++ ep->dwc_ep.xfer_len -=
++ (ep->dwc_ep.desc_cnt -
++ 1) * ep->dwc_ep.maxpacket +
++ ep->dwc_ep.xfer_len %
++ ep->dwc_ep.maxpacket;
++ else
++ ep->dwc_ep.xfer_len -=
++ ep->dwc_ep.desc_cnt *
++ ep->dwc_ep.maxpacket;
++ if (ep->dwc_ep.xfer_len > 0) {
++ dwc_otg_ep_start_transfer
++ (core_if, &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ } else {
++ ep->dwc_ep.xfer_count =
++ ep->dwc_ep.total_len - byte_count +
++ ((4 -
++ (ep->dwc_ep.
++ total_len & 0x3)) & 0x3);
++ is_last = 1;
++ }
++ } else {
++ deptsiz.d32 = 0;
++ deptsiz.d32 =
++ DWC_READ_REG32(&out_ep_regs->doeptsiz);
++
++ byte_count = (ep->dwc_ep.xfer_len -
++ ep->dwc_ep.xfer_count -
++ deptsiz.b.xfersize);
++ ep->dwc_ep.xfer_buff += byte_count;
++ ep->dwc_ep.dma_addr += byte_count;
++ ep->dwc_ep.xfer_count += byte_count;
++
++ /* Check if the whole transfer was completed,
++ * if no, setup transfer for next portion of data
++ */
++ if (ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
++ dwc_otg_ep_start_transfer(core_if,
++ &ep->dwc_ep);
++ } else if (ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length trasfer in case if it is queued
++ * a trasfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Desriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 legth.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer(core_if,
++ &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ }
++ } else {
++ /* Check if the whole transfer was completed,
++ * if no, setup transfer for next portion of data
++ */
++ if (ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
++ } else if (ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length transfer in case if it is queued
++ * a transfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Descriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 length.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer(core_if,
++ &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ }
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "addr %p, %d-%s len=%d cnt=%d xsize=%d pktcnt=%d\n",
++ &out_ep_regs->doeptsiz, ep->dwc_ep.num,
++ ep->dwc_ep.is_in ? "IN" : "OUT",
++ ep->dwc_ep.xfer_len, ep->dwc_ep.xfer_count,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ }
++
++ /* Complete the request */
++ if (is_last) {
++#ifdef DWC_UTE_CFI
++ if (ep->dwc_ep.buff_mode != BM_STANDARD) {
++ req->actual = ep->dwc_ep.cfi_req_len - byte_count;
++ } else {
++#endif
++ req->actual = ep->dwc_ep.xfer_count;
++#ifdef DWC_UTE_CFI
++ }
++#endif
++ if (req->dw_align_buf) {
++ if (!ep->dwc_ep.is_in) {
++ dwc_memcpy(req->buf, req->dw_align_buf, req->length);
++ }
++ DWC_DMA_FREE(req->length, req->dw_align_buf,
++ req->dw_align_buf_dma);
++ }
++
++ dwc_otg_request_done(ep, req, 0);
++
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++
++ /* If there is a request in the queue start it. */
++ start_next_request(ep);
++ }
++}
++
++#ifdef DWC_EN_ISOC
++
++/**
++ * This function BNA interrupt for Isochronous EPs
++ *
++ */
++static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t * ep)
++{
++ dwc_ep_t *dwc_ep = &ep->dwc_ep;
++ volatile uint32_t *addr;
++ depctl_data_t depctl = {.d32 = 0 };
++ dwc_otg_pcd_t *pcd = ep->pcd;
++ dwc_otg_dev_dma_desc_t *dma_desc;
++ int i;
++
++ dma_desc =
++ dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
++
++ if (dwc_ep->is_in) {
++ dev_dma_desc_sts_t sts = {.d32 = 0 };
++ for (i = 0; i < dwc_ep->desc_cnt; ++i, ++dma_desc) {
++ sts.d32 = dma_desc->status.d32;
++ sts.b_iso_in.bs = BS_HOST_READY;
++ dma_desc->status.d32 = sts.d32;
++ }
++ } else {
++ dev_dma_desc_sts_t sts = {.d32 = 0 };
++ for (i = 0; i < dwc_ep->desc_cnt; ++i, ++dma_desc) {
++ sts.d32 = dma_desc->status.d32;
++ sts.b_iso_out.bs = BS_HOST_READY;
++ dma_desc->status.d32 = sts.d32;
++ }
++ }
++
++ if (dwc_ep->is_in == 0) {
++ addr =
++ &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->
++ num]->doepctl;
++ } else {
++ addr =
++ &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
++ }
++ depctl.b.epena = 1;
++ DWC_MODIFY_REG32(addr, depctl.d32, depctl.d32);
++}
++
++/**
++ * This function sets latest iso packet information(non-PTI mode)
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void set_current_pkt_info(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ deptsiz_data_t deptsiz = {.d32 = 0 };
++ dma_addr_t dma_addr;
++ uint32_t offset;
++
++ if (ep->proc_buf_num)
++ dma_addr = ep->dma_addr1;
++ else
++ dma_addr = ep->dma_addr0;
++
++ if (ep->is_in) {
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->dev_if->
++ in_ep_regs[ep->num]->dieptsiz);
++ offset = ep->data_per_frame;
++ } else {
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[ep->num]->doeptsiz);
++ offset =
++ ep->data_per_frame +
++ (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
++ }
++
++ if (!deptsiz.b.xfersize) {
++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
++ ep->pkt_info[ep->cur_pkt].offset =
++ ep->cur_pkt_dma_addr - dma_addr;
++ ep->pkt_info[ep->cur_pkt].status = 0;
++ } else {
++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
++ ep->pkt_info[ep->cur_pkt].offset =
++ ep->cur_pkt_dma_addr - dma_addr;
++ ep->pkt_info[ep->cur_pkt].status = -DWC_E_NO_DATA;
++ }
++ ep->cur_pkt_addr += offset;
++ ep->cur_pkt_dma_addr += offset;
++ ep->cur_pkt++;
++}
++
++/**
++ * This function sets latest iso packet information(DDMA mode)
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP to start the transfer on.
++ *
++ */
++static void set_ddma_iso_pkts_info(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * dwc_ep)
++{
++ dwc_otg_dev_dma_desc_t *dma_desc;
++ dev_dma_desc_sts_t sts = {.d32 = 0 };
++ iso_pkt_info_t *iso_packet;
++ uint32_t data_per_desc;
++ uint32_t offset;
++ int i, j;
++
++ iso_packet = dwc_ep->pkt_info;
++
++ /** Reinit closed DMA Descriptors*/
++ /** ISO OUT EP */
++ if (dwc_ep->is_in == 0) {
++ dma_desc =
++ dwc_ep->iso_desc_addr +
++ dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++ offset = 0;
++
++ for (i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm;
++ i += dwc_ep->pkt_per_frm) {
++ for (j = 0; j < dwc_ep->pkt_per_frm; ++j) {
++ data_per_desc =
++ ((j + 1) * dwc_ep->maxpacket >
++ dwc_ep->
++ data_per_frame) ? dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc +=
++ (data_per_desc % 4) ? (4 -
++ data_per_desc %
++ 4) : 0;
++
++ sts.d32 = dma_desc->status.d32;
++
++ /* Write status in iso_packet_decsriptor */
++ iso_packet->status =
++ sts.b_iso_out.rxsts +
++ (sts.b_iso_out.bs ^ BS_DMA_DONE);
++ if (iso_packet->status) {
++ iso_packet->status = -DWC_E_NO_DATA;
++ }
++
++ /* Received data length */
++ if (!sts.b_iso_out.rxbytes) {
++ iso_packet->length =
++ data_per_desc -
++ sts.b_iso_out.rxbytes;
++ } else {
++ iso_packet->length =
++ data_per_desc -
++ sts.b_iso_out.rxbytes + (4 -
++ dwc_ep->data_per_frame
++ % 4);
++ }
++
++ iso_packet->offset = offset;
++
++ offset += data_per_desc;
++ dma_desc++;
++ iso_packet++;
++ }
++ }
++
++ for (j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) {
++ data_per_desc =
++ ((j + 1) * dwc_ep->maxpacket >
++ dwc_ep->data_per_frame) ? dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc +=
++ (data_per_desc % 4) ? (4 - data_per_desc % 4) : 0;
++
++ sts.d32 = dma_desc->status.d32;
++
++ /* Write status in iso_packet_decsriptor */
++ iso_packet->status =
++ sts.b_iso_out.rxsts +
++ (sts.b_iso_out.bs ^ BS_DMA_DONE);
++ if (iso_packet->status) {
++ iso_packet->status = -DWC_E_NO_DATA;
++ }
++
++ /* Received data length */
++ iso_packet->length =
++ dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
++
++ iso_packet->offset = offset;
++
++ offset += data_per_desc;
++ iso_packet++;
++ dma_desc++;
++ }
++
++ sts.d32 = dma_desc->status.d32;
++
++ /* Write status in iso_packet_decsriptor */
++ iso_packet->status =
++ sts.b_iso_out.rxsts + (sts.b_iso_out.bs ^ BS_DMA_DONE);
++ if (iso_packet->status) {
++ iso_packet->status = -DWC_E_NO_DATA;
++ }
++ /* Received data length */
++ if (!sts.b_iso_out.rxbytes) {
++ iso_packet->length =
++ dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
++ } else {
++ iso_packet->length =
++ dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
++ (4 - dwc_ep->data_per_frame % 4);
++ }
++
++ iso_packet->offset = offset;
++ } else {
++/** ISO IN EP */
++
++ dma_desc =
++ dwc_ep->iso_desc_addr +
++ dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++
++ for (i = 0; i < dwc_ep->desc_cnt - 1; i++) {
++ sts.d32 = dma_desc->status.d32;
++
++ /* Write status in iso packet descriptor */
++ iso_packet->status =
++ sts.b_iso_in.txsts +
++ (sts.b_iso_in.bs ^ BS_DMA_DONE);
++ if (iso_packet->status != 0) {
++ iso_packet->status = -DWC_E_NO_DATA;
++
++ }
++ /* Bytes has been transfered */
++ iso_packet->length =
++ dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
++
++ dma_desc++;
++ iso_packet++;
++ }
++
++ sts.d32 = dma_desc->status.d32;
++ while (sts.b_iso_in.bs == BS_DMA_BUSY) {
++ sts.d32 = dma_desc->status.d32;
++ }
++
++ /* Write status in iso packet descriptor ??? do be done with ERROR codes */
++ iso_packet->status =
++ sts.b_iso_in.txsts + (sts.b_iso_in.bs ^ BS_DMA_DONE);
++ if (iso_packet->status != 0) {
++ iso_packet->status = -DWC_E_NO_DATA;
++ }
++
++ /* Bytes has been transfered */
++ iso_packet->length =
++ dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
++ }
++}
++
++/**
++ * This function reinitialize DMA Descriptors for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP to start the transfer on.
++ *
++ */
++static void reinit_ddma_iso_xfer(dwc_otg_core_if_t * core_if, dwc_ep_t * dwc_ep)
++{
++ int i, j;
++ dwc_otg_dev_dma_desc_t *dma_desc;
++ dma_addr_t dma_ad;
++ volatile uint32_t *addr;
++ dev_dma_desc_sts_t sts = {.d32 = 0 };
++ uint32_t data_per_desc;
++
++ if (dwc_ep->is_in == 0) {
++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
++ } else {
++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
++ }
++
++ if (dwc_ep->proc_buf_num == 0) {
++ /** Buffer 0 descriptors setup */
++ dma_ad = dwc_ep->dma_addr0;
++ } else {
++ /** Buffer 1 descriptors setup */
++ dma_ad = dwc_ep->dma_addr1;
++ }
++
++ /** Reinit closed DMA Descriptors*/
++ /** ISO OUT EP */
++ if (dwc_ep->is_in == 0) {
++ dma_desc =
++ dwc_ep->iso_desc_addr +
++ dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++
++ sts.b_iso_out.bs = BS_HOST_READY;
++ sts.b_iso_out.rxsts = 0;
++ sts.b_iso_out.l = 0;
++ sts.b_iso_out.sp = 0;
++ sts.b_iso_out.ioc = 0;
++ sts.b_iso_out.pid = 0;
++ sts.b_iso_out.framenum = 0;
++
++ for (i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm;
++ i += dwc_ep->pkt_per_frm) {
++ for (j = 0; j < dwc_ep->pkt_per_frm; ++j) {
++ data_per_desc =
++ ((j + 1) * dwc_ep->maxpacket >
++ dwc_ep->
++ data_per_frame) ? dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc +=
++ (data_per_desc % 4) ? (4 -
++ data_per_desc %
++ 4) : 0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ dma_ad += data_per_desc;
++ dma_desc++;
++ }
++ }
++
++ for (j = 0; j < dwc_ep->pkt_per_frm - 1; ++j) {
++
++ data_per_desc =
++ ((j + 1) * dwc_ep->maxpacket >
++ dwc_ep->data_per_frame) ? dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc +=
++ (data_per_desc % 4) ? (4 - data_per_desc % 4) : 0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ dma_desc++;
++ dma_ad += data_per_desc;
++ }
++
++ sts.b_iso_out.ioc = 1;
++ sts.b_iso_out.l = dwc_ep->proc_buf_num;
++
++ data_per_desc =
++ ((j + 1) * dwc_ep->maxpacket >
++ dwc_ep->data_per_frame) ? dwc_ep->data_per_frame -
++ j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc +=
++ (data_per_desc % 4) ? (4 - data_per_desc % 4) : 0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++ } else {
++/** ISO IN EP */
++
++ dma_desc =
++ dwc_ep->iso_desc_addr +
++ dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++
++ sts.b_iso_in.bs = BS_HOST_READY;
++ sts.b_iso_in.txsts = 0;
++ sts.b_iso_in.sp = 0;
++ sts.b_iso_in.ioc = 0;
++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
++ sts.b_iso_in.framenum = dwc_ep->next_frame;
++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
++ sts.b_iso_in.l = 0;
++
++ for (i = 0; i < dwc_ep->desc_cnt - 1; i++) {
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ sts.b_iso_in.framenum += dwc_ep->bInterval;
++ dma_ad += dwc_ep->data_per_frame;
++ dma_desc++;
++ }
++
++ sts.b_iso_in.ioc = 1;
++ sts.b_iso_in.l = dwc_ep->proc_buf_num;
++
++ dma_desc->buf = dma_ad;
++ dma_desc->status.d32 = sts.d32;
++
++ dwc_ep->next_frame =
++ sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
++ }
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++}
++
++/**
++ * This function is to handle Iso EP transfer complete interrupt
++ * in case Iso out packet was dropped
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP for wihich transfer complete was asserted
++ *
++ */
++static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t * core_if,
++ dwc_ep_t * dwc_ep)
++{
++ uint32_t dma_addr;
++ uint32_t drp_pkt;
++ uint32_t drp_pkt_cnt;
++ deptsiz_data_t deptsiz = {.d32 = 0 };
++ depctl_data_t depctl = {.d32 = 0 };
++ int i;
++
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[dwc_ep->num]->doeptsiz);
++
++ drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
++ drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
++
++ /* Setting dropped packets status */
++ for (i = 0; i < drp_pkt_cnt; ++i) {
++ dwc_ep->pkt_info[drp_pkt].status = -DWC_E_NO_DATA;
++ drp_pkt++;
++ deptsiz.b.pktcnt--;
++ }
++
++ if (deptsiz.b.pktcnt > 0) {
++ deptsiz.b.xfersize =
++ dwc_ep->xfer_len - (dwc_ep->pkt_cnt -
++ deptsiz.b.pktcnt) * dwc_ep->maxpacket;
++ } else {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 0;
++ }
++
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz,
++ deptsiz.d32);
++
++ if (deptsiz.b.pktcnt > 0) {
++ if (dwc_ep->proc_buf_num) {
++ dma_addr =
++ dwc_ep->dma_addr1 + dwc_ep->xfer_len -
++ deptsiz.b.xfersize;
++ } else {
++ dma_addr =
++ dwc_ep->dma_addr0 + dwc_ep->xfer_len -
++ deptsiz.b.xfersize;;
++ }
++
++ DWC_WRITE_REG32(&core_if->dev_if->
++ out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
++
++ /** Re-enable endpoint, clear nak */
++ depctl.d32 = 0;
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++
++ DWC_MODIFY_REG32(&core_if->dev_if->
++ out_ep_regs[dwc_ep->num]->doepctl, depctl.d32,
++ depctl.d32);
++ return 0;
++ } else {
++ return 1;
++ }
++}
++
++/**
++ * This function sets iso packets information(PTI mode)
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++static uint32_t set_iso_pkts_info(dwc_otg_core_if_t * core_if, dwc_ep_t * ep)
++{
++ int i, j;
++ dma_addr_t dma_ad;
++ iso_pkt_info_t *packet_info = ep->pkt_info;
++ uint32_t offset;
++ uint32_t frame_data;
++ deptsiz_data_t deptsiz;
++
++ if (ep->proc_buf_num == 0) {
++ /** Buffer 0 descriptors setup */
++ dma_ad = ep->dma_addr0;
++ } else {
++ /** Buffer 1 descriptors setup */
++ dma_ad = ep->dma_addr1;
++ }
++
++ if (ep->is_in) {
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->dev_if->in_ep_regs[ep->num]->
++ dieptsiz);
++ } else {
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->dev_if->out_ep_regs[ep->num]->
++ doeptsiz);
++ }
++
++ if (!deptsiz.b.xfersize) {
++ offset = 0;
++ for (i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm) {
++ frame_data = ep->data_per_frame;
++ for (j = 0; j < ep->pkt_per_frm; ++j) {
++
++ /* Packet status - is not set as initially
++ * it is set to 0 and if packet was sent
++ successfully, status field will remain 0*/
++
++ /* Bytes has been transfered */
++ packet_info->length =
++ (ep->maxpacket <
++ frame_data) ? ep->maxpacket : frame_data;
++
++ /* Received packet offset */
++ packet_info->offset = offset;
++ offset += packet_info->length;
++ frame_data -= packet_info->length;
++
++ packet_info++;
++ }
++ }
++ return 1;
++ } else {
++ /* This is a workaround for in case of Transfer Complete with
++ * PktDrpSts interrupts merging - in this case Transfer complete
++ * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
++ * set and with DOEPTSIZ register non zero. Investigations showed,
++ * that this happens when Out packet is dropped, but because of
++ * interrupts merging during first interrupt handling PktDrpSts
++ * bit is cleared and for next merged interrupts it is not reset.
++ * In this case SW hadles the interrupt as if PktDrpSts bit is set.
++ */
++ if (ep->is_in) {
++ return 1;
++ } else {
++ return handle_iso_out_pkt_dropped(core_if, ep);
++ }
++ }
++}
++
++/**
++ * This function is to handle Iso EP transfer complete interrupt
++ *
++ * @param pcd The PCD
++ * @param ep The EP for which transfer complete was asserted
++ *
++ */
++static void complete_iso_ep(dwc_otg_pcd_t * pcd, dwc_otg_pcd_ep_t * ep)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
++ dwc_ep_t *dwc_ep = &ep->dwc_ep;
++ uint8_t is_last = 0;
++
++ if (ep->dwc_ep.next_frame == 0xffffffff) {
++ DWC_WARN("Next frame is not set!\n");
++ return;
++ }
++
++ if (core_if->dma_enable) {
++ if (core_if->dma_desc_enable) {
++ set_ddma_iso_pkts_info(core_if, dwc_ep);
++ reinit_ddma_iso_xfer(core_if, dwc_ep);
++ is_last = 1;
++ } else {
++ if (core_if->pti_enh_enable) {
++ if (set_iso_pkts_info(core_if, dwc_ep)) {
++ dwc_ep->proc_buf_num =
++ (dwc_ep->proc_buf_num ^ 1) & 0x1;
++ dwc_otg_iso_ep_start_buf_transfer
++ (core_if, dwc_ep);
++ is_last = 1;
++ }
++ } else {
++ set_current_pkt_info(core_if, dwc_ep);
++ if (dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ is_last = 1;
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num =
++ (dwc_ep->proc_buf_num ^ 1) & 0x1;
++ if (dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr =
++ dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr =
++ dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr =
++ dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr =
++ dwc_ep->dma_addr0;
++ }
++
++ }
++ dwc_otg_iso_ep_start_frm_transfer(core_if,
++ dwc_ep);
++ }
++ }
++ } else {
++ set_current_pkt_info(core_if, dwc_ep);
++ if (dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ is_last = 1;
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++ if (dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
++ }
++
++ }
++ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
++ }
++ if (is_last)
++ dwc_otg_iso_buffer_done(pcd, ep, ep->iso_req_handle);
++}
++#endif /* DWC_EN_ISOC */
++
++/**
++ * This function handle BNA interrupt for Non Isochronous EPs
++ *
++ */
++static void dwc_otg_pcd_handle_noniso_bna(dwc_otg_pcd_ep_t * ep)
++{
++ dwc_ep_t *dwc_ep = &ep->dwc_ep;
++ volatile uint32_t *addr;
++ depctl_data_t depctl = {.d32 = 0 };
++ dwc_otg_pcd_t *pcd = ep->pcd;
++ dwc_otg_dev_dma_desc_t *dma_desc;
++ dev_dma_desc_sts_t sts = {.d32 = 0 };
++ dwc_otg_core_if_t *core_if = ep->pcd->core_if;
++ int i, start;
++
++ if (!dwc_ep->desc_cnt)
++ DWC_WARN("Ep%d %s Descriptor count = %d \n", dwc_ep->num,
++ (dwc_ep->is_in ? "IN" : "OUT"), dwc_ep->desc_cnt);
++
++ if (core_if->core_params->cont_on_bna && !dwc_ep->is_in
++ && dwc_ep->type != DWC_OTG_EP_TYPE_CONTROL) {
++ uint32_t doepdma;
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[dwc_ep->num];
++ doepdma = DWC_READ_REG32(&(out_regs->doepdma));
++ start = (doepdma - dwc_ep->dma_desc_addr)/sizeof(dwc_otg_dev_dma_desc_t);
++ dma_desc = &(dwc_ep->desc_addr[start]);
++ } else {
++ start = 0;
++ dma_desc = dwc_ep->desc_addr;
++ }
++
++
++ for (i = start; i < dwc_ep->desc_cnt; ++i, ++dma_desc) {
++ sts.d32 = dma_desc->status.d32;
++ sts.b.bs = BS_HOST_READY;
++ dma_desc->status.d32 = sts.d32;
++ }
++
++ if (dwc_ep->is_in == 0) {
++ addr =
++ &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->
++ doepctl;
++ } else {
++ addr =
++ &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
++ }
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++ DWC_MODIFY_REG32(addr, 0, depctl.d32);
++}
++
++/**
++ * This function handles EP0 Control transfers.
++ *
++ * The state of the control transfers are tracked in
++ * <code>ep0state</code>.
++ */
++static void handle_ep0(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ dev_dma_desc_sts_t desc_sts;
++ deptsiz0_data_t deptsiz;
++ uint32_t byte_count;
++
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
++ print_ep0_state(pcd);
++#endif
++
++// DWC_PRINTF("HANDLE EP0\n");
++
++ switch (pcd->ep0state) {
++ case EP0_DISCONNECT:
++ break;
++
++ case EP0_IDLE:
++ pcd->request_config = 0;
++
++ pcd_setup(pcd);
++ break;
++
++ case EP0_IN_DATA_PHASE:
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ? "IN" : "OUT"),
++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
++#endif
++
++ if (core_if->dma_enable != 0) {
++ /*
++ * For EP0 we can only program 1 packet at a time so we
++ * need to do the make calculations after each complete.
++ * Call write_packet to make the calculations, as in
++ * slave mode, and use those values to determine if we
++ * can complete.
++ */
++ if (core_if->dma_desc_enable == 0) {
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->
++ dev_if->in_ep_regs[0]->
++ dieptsiz);
++ byte_count =
++ ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
++ } else {
++ desc_sts =
++ core_if->dev_if->in_desc_addr->status;
++ byte_count =
++ ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
++ }
++ ep0->dwc_ep.xfer_count += byte_count;
++ ep0->dwc_ep.xfer_buff += byte_count;
++ ep0->dwc_ep.dma_addr += byte_count;
++ }
++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
++ dwc_otg_ep0_continue_transfer(GET_CORE_IF(pcd),
++ &ep0->dwc_ep);
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
++ } else if (ep0->dwc_ep.sent_zlp) {
++ dwc_otg_ep0_continue_transfer(GET_CORE_IF(pcd),
++ &ep0->dwc_ep);
++ ep0->dwc_ep.sent_zlp = 0;
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER sent zlp\n");
++ } else {
++ ep0_complete_request(ep0);
++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
++ }
++ break;
++ case EP0_OUT_DATA_PHASE:
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ? "IN" : "OUT"),
++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
++#endif
++ if (core_if->dma_enable != 0) {
++ if (core_if->dma_desc_enable == 0) {
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->
++ dev_if->out_ep_regs[0]->
++ doeptsiz);
++ byte_count =
++ ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
++ } else {
++ desc_sts =
++ core_if->dev_if->out_desc_addr->status;
++ byte_count =
++ ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
++ }
++ ep0->dwc_ep.xfer_count += byte_count;
++ ep0->dwc_ep.xfer_buff += byte_count;
++ ep0->dwc_ep.dma_addr += byte_count;
++ }
++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
++ dwc_otg_ep0_continue_transfer(GET_CORE_IF(pcd),
++ &ep0->dwc_ep);
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
++ } else if (ep0->dwc_ep.sent_zlp) {
++ dwc_otg_ep0_continue_transfer(GET_CORE_IF(pcd),
++ &ep0->dwc_ep);
++ ep0->dwc_ep.sent_zlp = 0;
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER sent zlp\n");
++ } else {
++ ep0_complete_request(ep0);
++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
++ }
++ break;
++
++ case EP0_IN_STATUS_PHASE:
++ case EP0_OUT_STATUS_PHASE:
++ DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
++ ep0_complete_request(ep0);
++ pcd->ep0state = EP0_IDLE;
++ ep0->stopped = 1;
++ ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */
++
++ /* Prepare for more SETUP Packets */
++ if (core_if->dma_enable) {
++ ep0_out_start(core_if, pcd);
++ }
++ break;
++
++ case EP0_STALL:
++ DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
++ break;
++ }
++#ifdef DEBUG_EP0
++ print_ep0_state(pcd);
++#endif
++}
++
++/**
++ * Restart transfer
++ */
++static void restart_transfer(dwc_otg_pcd_t * pcd, const uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if;
++ dwc_otg_dev_if_t *dev_if;
++ deptsiz_data_t dieptsiz = {.d32 = 0 };
++ dwc_otg_pcd_ep_t *ep;
++
++ ep = get_in_ep(pcd, epnum);
++
++#ifdef DWC_EN_ISOC
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ return;
++ }
++#endif /* DWC_EN_ISOC */
++
++ core_if = GET_CORE_IF(pcd);
++ dev_if = core_if->dev_if;
++
++ dieptsiz.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dieptsiz);
++
++ DWC_DEBUGPL(DBG_PCD, "xfer_buff=%p xfer_count=%0x xfer_len=%0x"
++ " stopped=%d\n", ep->dwc_ep.xfer_buff,
++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len, ep->stopped);
++ /*
++ * If xfersize is 0 and pktcnt in not 0, resend the last packet.
++ */
++ if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
++ ep->dwc_ep.start_xfer_buff != 0) {
++ if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
++ } else {
++ ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
++ /* convert packet size to dwords. */
++ ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
++ }
++ ep->stopped = 0;
++ DWC_DEBUGPL(DBG_PCD, "xfer_buff=%p xfer_count=%0x "
++ "xfer_len=%0x stopped=%d\n",
++ ep->dwc_ep.xfer_buff,
++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len,
++ ep->stopped);
++ if (epnum == 0) {
++ dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
++ } else {
++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
++ }
++ }
++}
++
++/*
++ * This function create new nextep sequnce based on Learn Queue.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ */
++void predict_nextep_seq( dwc_otg_core_if_t * core_if)
++{
++ dwc_otg_device_global_regs_t *dev_global_regs =
++ core_if->dev_if->dev_global_regs;
++ const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
++ /* Number of Token Queue Registers */
++ const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
++ dtknq1_data_t dtknqr1;
++ uint32_t in_tkn_epnums[4];
++ uint8_t seqnum[MAX_EPS_CHANNELS];
++ uint8_t intkn_seq[TOKEN_Q_DEPTH];
++ grstctl_t resetctl = {.d32 = 0 };
++ uint8_t temp;
++ int ndx = 0;
++ int start = 0;
++ int end = 0;
++ int sort_done = 0;
++ int i = 0;
++ volatile uint32_t *addr = &dev_global_regs->dtknqr1;
++
++
++ DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
++
++ /* Read the DTKNQ Registers */
++ for (i = 0; i < DTKNQ_REG_CNT; i++) {
++ in_tkn_epnums[i] = DWC_READ_REG32(addr);
++ DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i + 1,
++ in_tkn_epnums[i]);
++ if (addr == &dev_global_regs->dvbusdis) {
++ addr = &dev_global_regs->dtknqr3_dthrctl;
++ } else {
++ ++addr;
++ }
++
++ }
++
++ /* Copy the DTKNQR1 data to the bit field. */
++ dtknqr1.d32 = in_tkn_epnums[0];
++ if (dtknqr1.b.wrap_bit) {
++ ndx = dtknqr1.b.intknwptr;
++ end = ndx -1;
++ if (end < 0)
++ end = TOKEN_Q_DEPTH -1;
++ } else {
++ ndx = 0;
++ end = dtknqr1.b.intknwptr -1;
++ if (end < 0)
++ end = 0;
++ }
++ start = ndx;
++
++ /* Fill seqnum[] by initial values: EP number + 31 */
++ for (i=0; i <= core_if->dev_if->num_in_eps; i++) {
++ seqnum[i] = i +31;
++ }
++
++ /* Fill intkn_seq[] from in_tkn_epnums[0] */
++ for (i=0; i < 6; i++)
++ intkn_seq[i] = (in_tkn_epnums[0] >> ((7-i) * 4)) & 0xf;
++
++ if (TOKEN_Q_DEPTH > 6) {
++ /* Fill intkn_seq[] from in_tkn_epnums[1] */
++ for (i=6; i < 14; i++)
++ intkn_seq[i] =
++ (in_tkn_epnums[1] >> ((7 - (i - 6)) * 4)) & 0xf;
++ }
++
++ if (TOKEN_Q_DEPTH > 14) {
++ /* Fill intkn_seq[] from in_tkn_epnums[1] */
++ for (i=14; i < 22; i++)
++ intkn_seq[i] =
++ (in_tkn_epnums[2] >> ((7 - (i - 14)) * 4)) & 0xf;
++ }
++
++ if (TOKEN_Q_DEPTH > 22) {
++ /* Fill intkn_seq[] from in_tkn_epnums[1] */
++ for (i=22; i < 30; i++)
++ intkn_seq[i] =
++ (in_tkn_epnums[3] >> ((7 - (i - 22)) * 4)) & 0xf;
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "%s start=%d end=%d intkn_seq[]:\n", __func__,
++ start, end);
++ for (i=0; i<TOKEN_Q_DEPTH; i++)
++ DWC_DEBUGPL(DBG_PCDV,"%d\n", intkn_seq[i]);
++
++ /* Update seqnum based on intkn_seq[] */
++ i = 0;
++ do {
++ seqnum[intkn_seq[ndx]] = i;
++ ndx++;
++ i++;
++ if (ndx == TOKEN_Q_DEPTH)
++ ndx = 0;
++ } while ( i < TOKEN_Q_DEPTH );
++
++ /* Mark non active EP's in seqnum[] by 0xff */
++ for (i=0; i<=core_if->dev_if->num_in_eps; i++) {
++ if (core_if->nextep_seq[i] == 0xff )
++ seqnum[i] = 0xff;
++ }
++
++ /* Sort seqnum[] */
++ sort_done = 0;
++ while (!sort_done) {
++ sort_done = 1;
++ for (i=0; i<core_if->dev_if->num_in_eps; i++) {
++ if (seqnum[i] > seqnum[i+1]) {
++ temp = seqnum[i];
++ seqnum[i] = seqnum[i+1];
++ seqnum[i+1] = temp;
++ sort_done = 0;
++ }
++ }
++ }
++
++ ndx = start + seqnum[0];
++ if (ndx >= TOKEN_Q_DEPTH)
++ ndx = ndx % TOKEN_Q_DEPTH;
++ core_if->first_in_nextep_seq = intkn_seq[ndx];
++
++ /* Update seqnum[] by EP numbers */
++ for (i=0; i<=core_if->dev_if->num_in_eps; i++) {
++ ndx = start + i;
++ if (seqnum[i] < 31) {
++ ndx = start + seqnum[i];
++ if (ndx >= TOKEN_Q_DEPTH)
++ ndx = ndx % TOKEN_Q_DEPTH;
++ seqnum[i] = intkn_seq[ndx];
++ } else {
++ if (seqnum[i] < 0xff) {
++ seqnum[i] = seqnum[i] - 31;
++ } else {
++ break;
++ }
++ }
++ }
++
++ /* Update nextep_seq[] based on seqnum[] */
++ for (i=0; i<core_if->dev_if->num_in_eps; i++) {
++ if (seqnum[i] != 0xff) {
++ if (seqnum[i+1] != 0xff) {
++ core_if->nextep_seq[seqnum[i]] = seqnum[i+1];
++ } else {
++ core_if->nextep_seq[seqnum[i]] = core_if->first_in_nextep_seq;
++ break;
++ }
++ } else {
++ break;
++ }
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "%s first_in_nextep_seq= %2d; nextep_seq[]:\n",
++ __func__, core_if->first_in_nextep_seq);
++ for (i=0; i <= core_if->dev_if->num_in_eps; i++) {
++ DWC_DEBUGPL(DBG_PCDV,"%2d\n", core_if->nextep_seq[i]);
++ }
++
++ /* Flush the Learning Queue */
++ resetctl.d32 = DWC_READ_REG32(&core_if->core_global_regs->grstctl);
++ resetctl.b.intknqflsh = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->grstctl, resetctl.d32);
++
++
++}
++
++/**
++ * handle the IN EP disable interrupt.
++ */
++static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t * pcd,
++ const uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ deptsiz_data_t dieptsiz = {.d32 = 0 };
++ dctl_data_t dctl = {.d32 = 0 };
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++ gintmsk_data_t gintmsk_data;
++ depctl_data_t depctl;
++ uint32_t diepdma;
++ uint32_t remain_to_transfer = 0;
++ uint8_t i;
++ uint32_t xfer_size;
++
++ ep = get_in_ep(pcd, epnum);
++ dwc_ep = &ep->dwc_ep;
++
++ if (dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
++ complete_ep(ep);
++ return;
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "diepctl%d=%0x\n", epnum,
++ DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->diepctl));
++ dieptsiz.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->dieptsiz);
++ depctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->diepctl);
++
++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
++ dieptsiz.b.pktcnt, dieptsiz.b.xfersize);
++
++ if ((core_if->start_predict == 0) || (depctl.b.eptype & 1)) {
++ if (ep->stopped) {
++ if (core_if->en_multiple_tx_fifo)
++ /* Flush the Tx FIFO */
++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
++ /* Clear the Global IN NP NAK */
++ dctl.d32 = 0;
++ dctl.b.cgnpinnak = 1;
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++ /* Restart the transaction */
++ if (dieptsiz.b.pktcnt != 0 || dieptsiz.b.xfersize != 0) {
++ restart_transfer(pcd, epnum);
++ }
++ } else {
++ /* Restart the transaction */
++ if (dieptsiz.b.pktcnt != 0 || dieptsiz.b.xfersize != 0) {
++ restart_transfer(pcd, epnum);
++ }
++ DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
++ }
++ return;
++ }
++
++ if (core_if->start_predict > 2) { // NP IN EP
++ core_if->start_predict--;
++ return;
++ }
++
++ core_if->start_predict--;
++
++ if (core_if->start_predict == 1) { // All NP IN Ep's disabled now
++
++ predict_nextep_seq(core_if);
++
++ /* Update all active IN EP's NextEP field based of nextep_seq[] */
++ for ( i = 0; i <= core_if->dev_if->num_in_eps; i++) {
++ depctl.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ if (core_if->nextep_seq[i] != 0xff) { // Active NP IN EP
++ depctl.b.nextep = core_if->nextep_seq[i];
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
++ }
++ }
++ /* Flush Shared NP TxFIFO */
++ dwc_otg_flush_tx_fifo(core_if, 0);
++ /* Rewind buffers */
++ if (!core_if->dma_desc_enable) {
++ i = core_if->first_in_nextep_seq;
++ do {
++ ep = get_in_ep(pcd, i);
++ dieptsiz.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[i]->dieptsiz);
++ xfer_size = ep->dwc_ep.total_len - ep->dwc_ep.xfer_count;
++ if (xfer_size > ep->dwc_ep.maxxfer)
++ xfer_size = ep->dwc_ep.maxxfer;
++ depctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ if (dieptsiz.b.pktcnt != 0) {
++ if (xfer_size == 0) {
++ remain_to_transfer = 0;
++ } else {
++ if ((xfer_size % ep->dwc_ep.maxpacket) == 0) {
++ remain_to_transfer =
++ dieptsiz.b.pktcnt * ep->dwc_ep.maxpacket;
++ } else {
++ remain_to_transfer = ((dieptsiz.b.pktcnt -1) * ep->dwc_ep.maxpacket)
++ + (xfer_size % ep->dwc_ep.maxpacket);
++ }
++ }
++ diepdma = DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepdma);
++ dieptsiz.b.xfersize = remain_to_transfer;
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->dieptsiz, dieptsiz.d32);
++ diepdma = ep->dwc_ep.dma_addr + (xfer_size - remain_to_transfer);
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->diepdma, diepdma);
++ }
++ i = core_if->nextep_seq[i];
++ } while (i != core_if->first_in_nextep_seq);
++ } else { // dma_desc_enable
++ DWC_PRINTF("%s Learning Queue not supported in DDMA\n", __func__);
++ }
++
++ /* Restart transfers in predicted sequences */
++ i = core_if->first_in_nextep_seq;
++ do {
++ dieptsiz.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[i]->dieptsiz);
++ depctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ if (dieptsiz.b.pktcnt != 0) {
++ depctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
++ }
++ i = core_if->nextep_seq[i];
++ } while (i != core_if->first_in_nextep_seq);
++
++ /* Clear the global non-periodic IN NAK handshake */
++ dctl.d32 = 0;
++ dctl.b.cgnpinnak = 1;
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++
++ /* Unmask EP Mismatch interrupt */
++ gintmsk_data.d32 = 0;
++ gintmsk_data.b.epmismatch = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, 0, gintmsk_data.d32);
++
++ core_if->start_predict = 0;
++
++ }
++}
++
++/**
++ * Handler for the IN EP timeout handshake interrupt.
++ */
++static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t * pcd,
++ const uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++
++#ifdef DEBUG
++ deptsiz_data_t dieptsiz = {.d32 = 0 };
++ uint32_t num = 0;
++#endif
++ dctl_data_t dctl = {.d32 = 0 };
++ dwc_otg_pcd_ep_t *ep;
++
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ ep = get_in_ep(pcd, epnum);
++
++ /* Disable the NP Tx Fifo Empty Interrrupt */
++ if (!core_if->dma_enable) {
++ intr_mask.b.nptxfempty = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++ }
++ /** @todo NGS Check EP type.
++ * Implement for Periodic EPs */
++ /*
++ * Non-periodic EP
++ */
++ /* Enable the Global IN NAK Effective Interrupt */
++ intr_mask.b.ginnakeff = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk, 0, intr_mask.d32);
++
++ /* Set Global IN NAK */
++ dctl.b.sgnpinnak = 1;
++ DWC_MODIFY_REG32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++
++ ep->stopped = 1;
++
++#ifdef DEBUG
++ dieptsiz.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[num]->dieptsiz);
++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
++ dieptsiz.b.pktcnt, dieptsiz.b.xfersize);
++#endif
++
++#ifdef DISABLE_PERIODIC_EP
++ /*
++ * Set the NAK bit for this EP to
++ * start the disable process.
++ */
++ diepctl.d32 = 0;
++ diepctl.b.snak = 1;
++ DWC_MODIFY_REG32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32,
++ diepctl.d32);
++ ep->disabling = 1;
++ ep->stopped = 1;
++#endif
++}
++
++/**
++ * Handler for the IN EP NAK interrupt.
++ */
++static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t * pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t *core_if;
++ diepmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_PRINTF("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.nak = 1;
++
++ if (core_if->multiproc_int_enable) {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ diepeachintmsk[epnum], intr_mask.d32, 0);
++ } else {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->diepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * Handler for the OUT EP Babble interrupt.
++ */
++static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t * pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t *core_if;
++ doepmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_PRINTF("INTERRUPT Handler not implemented for %s\n",
++ "OUT EP Babble");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.babble = 1;
++
++ if (core_if->multiproc_int_enable) {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ doepeachintmsk[epnum], intr_mask.d32, 0);
++ } else {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->doepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * Handler for the OUT EP NAK interrupt.
++ */
++static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t * pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t *core_if;
++ doepmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_ANY, "INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.nak = 1;
++
++ if (core_if->multiproc_int_enable) {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ doepeachintmsk[epnum], intr_mask.d32, 0);
++ } else {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->doepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * Handler for the OUT EP NYET interrupt.
++ */
++static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t * pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t *core_if;
++ doepmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_PRINTF("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.nyet = 1;
++
++ if (core_if->multiproc_int_enable) {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->
++ doepeachintmsk[epnum], intr_mask.d32, 0);
++ } else {
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->doepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that an IN EP has a pending Interrupt.
++ * The sequence for handling the IN EP interrupt is shown below:
++ * -# Read the Device All Endpoint Interrupt register
++ * -# Repeat the following for each IN EP interrupt bit set (from
++ * LSB to MSB).
++ * -# Read the Device Endpoint Interrupt (DIEPINTn) register
++ * -# If "Transfer Complete" call the request complete function
++ * -# If "Endpoint Disabled" complete the EP disable procedure.
++ * -# If "AHB Error Interrupt" log error
++ * -# If "Time-out Handshake" log error
++ * -# If "IN Token Received when TxFIFO Empty" write packet to Tx
++ * FIFO.
++ * -# If "IN Token EP Mismatch" (disable, this is handled by EP
++ * Mismatch Interrupt)
++ */
++static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t * pcd)
++{
++#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
++do { \
++ diepint_data_t diepint = {.d32=0}; \
++ diepint.b.__intr = 1; \
++ DWC_WRITE_REG32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
++ diepint.d32); \
++} while (0)
++
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ diepint_data_t diepint = {.d32 = 0 };
++ depctl_data_t depctl = {.d32 = 0 };
++ uint32_t ep_intr;
++ uint32_t epnum = 0;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
++
++ /* Read in the device interrupt bits */
++ ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
++
++ /* Service the Device IN interrupts for each endpoint */
++ while (ep_intr) {
++ if (ep_intr & 0x1) {
++ uint32_t empty_msk;
++ /* Get EP pointer */
++ ep = get_in_ep(pcd, epnum);
++ dwc_ep = &ep->dwc_ep;
++
++ depctl.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->diepctl);
++ empty_msk =
++ DWC_READ_REG32(&dev_if->
++ dev_global_regs->dtknqr4_fifoemptymsk);
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n",
++ epnum, empty_msk, depctl.d32);
++
++ DWC_DEBUGPL(DBG_PCD,
++ "EP%d-%s: type=%d, mps=%d\n",
++ dwc_ep->num, (dwc_ep->is_in ? "IN" : "OUT"),
++ dwc_ep->type, dwc_ep->maxpacket);
++
++ diepint.d32 =
++ dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "EP %d Interrupt Register - 0x%x\n", epnum,
++ diepint.d32);
++ /* Transfer complete */
++ if (diepint.b.xfercompl) {
++ /* Disable the NP Tx FIFO Empty
++ * Interrupt */
++ if (core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ DWC_MODIFY_REG32
++ (&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++ } else {
++ /* Disable the Tx FIFO Empty Interrupt for this EP */
++ uint32_t fifoemptymsk =
++ 0x1 << dwc_ep->num;
++ DWC_MODIFY_REG32(&core_if->
++ dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ fifoemptymsk, 0);
++ }
++ /* Clear the bit in DIEPINTn for this interrupt */
++ CLEAR_IN_EP_INTR(core_if, epnum, xfercompl);
++
++ /* Complete the transfer */
++ if (epnum == 0) {
++ handle_ep0(pcd);
++ }
++#ifdef DWC_EN_ISOC
++ else if (dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ if (!ep->stopped)
++ complete_iso_ep(pcd, ep);
++ }
++#endif /* DWC_EN_ISOC */
++#ifdef DWC_UTE_PER_IO
++ else if (dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ if (!ep->stopped)
++ complete_xiso_ep(ep);
++ }
++#endif /* DWC_UTE_PER_IO */
++ else {
++ if (dwc_ep->type == DWC_OTG_EP_TYPE_ISOC &&
++ dwc_ep->bInterval > 1) {
++ dwc_ep->frame_num += dwc_ep->bInterval;
++ if (dwc_ep->frame_num > 0x3FFF)
++ {
++ dwc_ep->frm_overrun = 1;
++ dwc_ep->frame_num &= 0x3FFF;
++ } else
++ dwc_ep->frm_overrun = 0;
++ }
++ complete_ep(ep);
++ if(diepint.b.nak)
++ CLEAR_IN_EP_INTR(core_if, epnum, nak);
++ }
++ }
++ /* Endpoint disable */
++ if (diepint.b.epdisabled) {
++ DWC_DEBUGPL(DBG_ANY, "EP%d IN disabled\n",
++ epnum);
++ handle_in_ep_disable_intr(pcd, epnum);
++
++ /* Clear the bit in DIEPINTn for this interrupt */
++ CLEAR_IN_EP_INTR(core_if, epnum, epdisabled);
++ }
++ /* AHB Error */
++ if (diepint.b.ahberr) {
++ DWC_ERROR("EP%d IN AHB Error\n", epnum);
++ /* Clear the bit in DIEPINTn for this interrupt */
++ CLEAR_IN_EP_INTR(core_if, epnum, ahberr);
++ }
++ /* TimeOUT Handshake (non-ISOC IN EPs) */
++ if (diepint.b.timeout) {
++ DWC_ERROR("EP%d IN Time-out\n", epnum);
++ handle_in_ep_timeout_intr(pcd, epnum);
++
++ CLEAR_IN_EP_INTR(core_if, epnum, timeout);
++ }
++ /** IN Token received with TxF Empty */
++ if (diepint.b.intktxfemp) {
++ DWC_DEBUGPL(DBG_ANY,
++ "EP%d IN TKN TxFifo Empty\n",
++ epnum);
++ if (!ep->stopped && epnum != 0) {
++
++ diepmsk_data_t diepmsk = {.d32 = 0 };
++ diepmsk.b.intktxfemp = 1;
++
++ if (core_if->multiproc_int_enable) {
++ DWC_MODIFY_REG32
++ (&dev_if->dev_global_regs->diepeachintmsk
++ [epnum], diepmsk.d32, 0);
++ } else {
++ DWC_MODIFY_REG32
++ (&dev_if->dev_global_regs->diepmsk,
++ diepmsk.d32, 0);
++ }
++ } else if (core_if->dma_desc_enable
++ && epnum == 0
++ && pcd->ep0state ==
++ EP0_OUT_STATUS_PHASE) {
++ // EP0 IN set STALL
++ depctl.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs
++ [epnum]->diepctl);
++
++ /* set the disable and stall bits */
++ if (depctl.b.epena) {
++ depctl.b.epdis = 1;
++ }
++ depctl.b.stall = 1;
++ DWC_WRITE_REG32(&dev_if->in_ep_regs
++ [epnum]->diepctl,
++ depctl.d32);
++ }
++ CLEAR_IN_EP_INTR(core_if, epnum, intktxfemp);
++ }
++ /** IN Token Received with EP mismatch */
++ if (diepint.b.intknepmis) {
++ DWC_DEBUGPL(DBG_ANY,
++ "EP%d IN TKN EP Mismatch\n", epnum);
++ CLEAR_IN_EP_INTR(core_if, epnum, intknepmis);
++ }
++ /** IN Endpoint NAK Effective */
++ if (diepint.b.inepnakeff) {
++ DWC_DEBUGPL(DBG_ANY,
++ "EP%d IN EP NAK Effective\n",
++ epnum);
++ /* Periodic EP */
++ if (ep->disabling) {
++ depctl.d32 = 0;
++ depctl.b.snak = 1;
++ depctl.b.epdis = 1;
++ DWC_MODIFY_REG32(&dev_if->in_ep_regs
++ [epnum]->diepctl,
++ depctl.d32,
++ depctl.d32);
++ }
++ CLEAR_IN_EP_INTR(core_if, epnum, inepnakeff);
++
++ }
++
++ /** IN EP Tx FIFO Empty Intr */
++ if (diepint.b.emptyintr) {
++ DWC_DEBUGPL(DBG_ANY,
++ "EP%d Tx FIFO Empty Intr \n",
++ epnum);
++ write_empty_tx_fifo(pcd, epnum);
++
++ CLEAR_IN_EP_INTR(core_if, epnum, emptyintr);
++
++ }
++
++ /** IN EP BNA Intr */
++ if (diepint.b.bna) {
++ CLEAR_IN_EP_INTR(core_if, epnum, bna);
++ if (core_if->dma_desc_enable) {
++#ifdef DWC_EN_ISOC
++ if (dwc_ep->type ==
++ DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This checking is performed to prevent first "false" BNA
++ * handling occuring right after reconnect
++ */
++ if (dwc_ep->next_frame !=
++ 0xffffffff)
++ dwc_otg_pcd_handle_iso_bna(ep);
++ } else
++#endif /* DWC_EN_ISOC */
++ {
++ dwc_otg_pcd_handle_noniso_bna(ep);
++ }
++ }
++ }
++ /* NAK Interrutp */
++ if (diepint.b.nak) {
++ DWC_DEBUGPL(DBG_ANY, "EP%d IN NAK Interrupt\n",
++ epnum);
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ depctl_data_t depctl;
++ if (ep->dwc_ep.frame_num == 0xFFFFFFFF) {
++ ep->dwc_ep.frame_num = core_if->frame_num;
++ if (ep->dwc_ep.bInterval > 1) {
++ depctl.d32 = 0;
++ depctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[epnum]->diepctl);
++ if (ep->dwc_ep.frame_num & 0x1) {
++ depctl.b.setd1pid = 1;
++ depctl.b.setd0pid = 0;
++ } else {
++ depctl.b.setd0pid = 1;
++ depctl.b.setd1pid = 0;
++ }
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
++ }
++ start_next_request(ep);
++ }
++ ep->dwc_ep.frame_num += ep->dwc_ep.bInterval;
++ if (dwc_ep->frame_num > 0x3FFF) {
++ dwc_ep->frm_overrun = 1;
++ dwc_ep->frame_num &= 0x3FFF;
++ } else
++ dwc_ep->frm_overrun = 0;
++ }
++
++ CLEAR_IN_EP_INTR(core_if, epnum, nak);
++ }
++ }
++ epnum++;
++ ep_intr >>= 1;
++ }
++
++ return 1;
++#undef CLEAR_IN_EP_INTR
++}
++
++/**
++ * This interrupt indicates that an OUT EP has a pending Interrupt.
++ * The sequence for handling the OUT EP interrupt is shown below:
++ * -# Read the Device All Endpoint Interrupt register
++ * -# Repeat the following for each OUT EP interrupt bit set (from
++ * LSB to MSB).
++ * -# Read the Device Endpoint Interrupt (DOEPINTn) register
++ * -# If "Transfer Complete" call the request complete function
++ * -# If "Endpoint Disabled" complete the EP disable procedure.
++ * -# If "AHB Error Interrupt" log error
++ * -# If "Setup Phase Done" process Setup Packet (See Standard USB
++ * Command Processing)
++ */
++static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t * pcd)
++{
++#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
++do { \
++ doepint_data_t doepint = {.d32=0}; \
++ doepint.b.__intr = 1; \
++ DWC_WRITE_REG32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
++ doepint.d32); \
++} while (0)
++
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ uint32_t ep_intr;
++ doepint_data_t doepint = {.d32 = 0 };
++ uint32_t epnum = 0;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++ dctl_data_t dctl = {.d32 = 0 };
++ gintmsk_data_t gintmsk = {.d32 = 0 };
++
++
++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
++
++ /* Read in the device interrupt bits */
++ ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
++
++ while (ep_intr) {
++ if (ep_intr & 0x1) {
++ /* Get EP pointer */
++ ep = get_out_ep(pcd, epnum);
++ dwc_ep = &ep->dwc_ep;
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV,
++ "EP%d-%s: type=%d, mps=%d\n",
++ dwc_ep->num, (dwc_ep->is_in ? "IN" : "OUT"),
++ dwc_ep->type, dwc_ep->maxpacket);
++#endif
++ doepint.d32 =
++ dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
++ /* Moved this interrupt upper due to core deffect of asserting
++ * OUT EP 0 xfercompl along with stsphsrcvd in BDMA */
++ if (doepint.b.stsphsercvd) {
++ deptsiz0_data_t deptsiz;
++ CLEAR_OUT_EP_INTR(core_if, epnum, stsphsercvd);
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[0]->doeptsiz);
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a
++ && core_if->dma_enable
++ && core_if->dma_desc_enable == 0
++ && doepint.b.xfercompl
++ && deptsiz.b.xfersize == 24) {
++ CLEAR_OUT_EP_INTR(core_if, epnum,
++ xfercompl);
++ doepint.b.xfercompl = 0;
++ ep0_out_start(core_if, pcd);
++ }
++ if ((core_if->dma_desc_enable) ||
++ (core_if->dma_enable
++ && core_if->snpsid >=
++ OTG_CORE_REV_3_00a)) {
++ do_setup_in_status_phase(pcd);
++ }
++ }
++ /* Transfer complete */
++ if (doepint.b.xfercompl) {
++
++ if (epnum == 0) {
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if, epnum, xfercompl);
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a) {
++ DWC_DEBUGPL(DBG_PCDV, "DOEPINT=%x doepint=%x\n",
++ DWC_READ_REG32(&core_if->dev_if->out_ep_regs[0]->doepint),
++ doepint.d32);
++ DWC_DEBUGPL(DBG_PCDV, "DOEPCTL=%x \n",
++ DWC_READ_REG32(&core_if->dev_if->out_ep_regs[0]->doepctl));
++
++ if (core_if->snpsid >= OTG_CORE_REV_3_00a
++ && core_if->dma_enable == 0) {
++ doepint_data_t doepint;
++ doepint.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[0]->doepint);
++ if (pcd->ep0state == EP0_IDLE && doepint.b.sr) {
++ CLEAR_OUT_EP_INTR(core_if, epnum, sr);
++ goto exit_xfercompl;
++ }
++ }
++ /* In case of DDMA look at SR bit to go to the Data Stage */
++ if (core_if->dma_desc_enable) {
++ dev_dma_desc_sts_t status = {.d32 = 0};
++ if (pcd->ep0state == EP0_IDLE) {
++ status.d32 = core_if->dev_if->setup_desc_addr[core_if->
++ dev_if->setup_desc_index]->status.d32;
++ if(pcd->data_terminated) {
++ pcd->data_terminated = 0;
++ status.d32 = core_if->dev_if->out_desc_addr->status.d32;
++ dwc_memcpy(&pcd->setup_pkt->req, pcd->backup_buf, 8);
++ }
++ if (status.b.sr) {
++ if (doepint.b.setup) {
++ DWC_DEBUGPL(DBG_PCDV, "DMA DESC EP0_IDLE SR=1 setup=1\n");
++ /* Already started data stage, clear setup */
++ CLEAR_OUT_EP_INTR(core_if, epnum, setup);
++ doepint.b.setup = 0;
++ handle_ep0(pcd);
++ /* Prepare for more setup packets */
++ if (pcd->ep0state == EP0_IN_STATUS_PHASE ||
++ pcd->ep0state == EP0_IN_DATA_PHASE) {
++ ep0_out_start(core_if, pcd);
++ }
++
++ goto exit_xfercompl;
++ } else {
++ /* Prepare for more setup packets */
++ DWC_DEBUGPL(DBG_PCDV,
++ "EP0_IDLE SR=1 setup=0 new setup comes\n");
++ ep0_out_start(core_if, pcd);
++ }
++ }
++ } else {
++ dwc_otg_pcd_request_t *req;
++ dev_dma_desc_sts_t status = {.d32 = 0};
++ diepint_data_t diepint0;
++ diepint0.d32 = DWC_READ_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepint);
++
++ if (pcd->ep0state == EP0_STALL || pcd->ep0state == EP0_DISCONNECT) {
++ DWC_ERROR("EP0 is stalled/disconnected\n");
++ }
++
++ /* Clear IN xfercompl if set */
++ if (diepint0.b.xfercompl && (pcd->ep0state == EP0_IN_STATUS_PHASE
++ || pcd->ep0state == EP0_IN_DATA_PHASE)) {
++ DWC_WRITE_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepint, diepint0.d32);
++ }
++
++ status.d32 = core_if->dev_if->setup_desc_addr[core_if->
++ dev_if->setup_desc_index]->status.d32;
++
++ if (ep->dwc_ep.xfer_count != ep->dwc_ep.total_len
++ && (pcd->ep0state == EP0_OUT_DATA_PHASE))
++ status.d32 = core_if->dev_if->out_desc_addr->status.d32;
++ if (pcd->ep0state == EP0_OUT_STATUS_PHASE)
++ status.d32 = status.d32 = core_if->dev_if->
++ out_desc_addr->status.d32;
++
++ if (status.b.sr) {
++ if (DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ DWC_DEBUGPL(DBG_PCDV, "Request queue empty!!\n");
++ } else {
++ DWC_DEBUGPL(DBG_PCDV, "complete req!!\n");
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++ if (ep->dwc_ep.xfer_count != ep->dwc_ep.total_len &&
++ pcd->ep0state == EP0_OUT_DATA_PHASE) {
++ /* Read arrived setup packet from req->buf */
++ dwc_memcpy(&pcd->setup_pkt->req,
++ req->buf + ep->dwc_ep.xfer_count, 8);
++ }
++ req->actual = ep->dwc_ep.xfer_count;
++ dwc_otg_request_done(ep, req, -ECONNRESET);
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++ }
++ pcd->ep0state = EP0_IDLE;
++ if (doepint.b.setup) {
++ DWC_DEBUGPL(DBG_PCDV, "EP0_IDLE SR=1 setup=1\n");
++ /* Data stage started, clear setup */
++ CLEAR_OUT_EP_INTR(core_if, epnum, setup);
++ doepint.b.setup = 0;
++ handle_ep0(pcd);
++ /* Prepare for setup packets if ep0in was enabled*/
++ if (pcd->ep0state == EP0_IN_STATUS_PHASE) {
++ ep0_out_start(core_if, pcd);
++ }
++
++ goto exit_xfercompl;
++ } else {
++ /* Prepare for more setup packets */
++ DWC_DEBUGPL(DBG_PCDV,
++ "EP0_IDLE SR=1 setup=0 new setup comes 2\n");
++ ep0_out_start(core_if, pcd);
++ }
++ }
++ }
++ }
++ if (core_if->snpsid >= OTG_CORE_REV_2_94a && core_if->dma_enable
++ && core_if->dma_desc_enable == 0) {
++ doepint_data_t doepint_temp = {.d32 = 0};
++ deptsiz0_data_t doeptsize0 = {.d32 = 0 };
++ doepint_temp.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[ep->dwc_ep.num]->doepint);
++ doeptsize0.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[ep->dwc_ep.num]->doeptsiz);
++ if (pcd->ep0state == EP0_IDLE) {
++ if (doepint_temp.b.sr) {
++ CLEAR_OUT_EP_INTR(core_if, epnum, sr);
++ }
++ doepint.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[0]->doepint);
++ if (doeptsize0.b.supcnt == 3) {
++ DWC_DEBUGPL(DBG_ANY, "Rolling over!!!!!!!\n");
++ ep->dwc_ep.stp_rollover = 1;
++ }
++ if (doepint.b.setup) {
++retry:
++ /* Already started data stage, clear setup */
++ CLEAR_OUT_EP_INTR(core_if, epnum, setup);
++ doepint.b.setup = 0;
++ handle_ep0(pcd);
++ ep->dwc_ep.stp_rollover = 0;
++ /* Prepare for more setup packets */
++ if (pcd->ep0state == EP0_IN_STATUS_PHASE ||
++ pcd->ep0state == EP0_IN_DATA_PHASE) {
++ ep0_out_start(core_if, pcd);
++ }
++ goto exit_xfercompl;
++ } else {
++ /* Prepare for more setup packets */
++ DWC_DEBUGPL(DBG_ANY,
++ "EP0_IDLE SR=1 setup=0 new setup comes\n");
++ doepint.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[0]->doepint);
++ if(doepint.b.setup)
++ goto retry;
++ ep0_out_start(core_if, pcd);
++ }
++ } else {
++ dwc_otg_pcd_request_t *req;
++ diepint_data_t diepint0 = {.d32 = 0};
++ doepint_data_t doepint_temp = {.d32 = 0};
++ depctl_data_t diepctl0;
++ diepint0.d32 = DWC_READ_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepint);
++ diepctl0.d32 = DWC_READ_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepctl);
++
++ if (pcd->ep0state == EP0_IN_DATA_PHASE
++ || pcd->ep0state == EP0_IN_STATUS_PHASE) {
++ if (diepint0.b.xfercompl) {
++ DWC_WRITE_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepint, diepint0.d32);
++ }
++ if (diepctl0.b.epena) {
++ diepint_data_t diepint = {.d32 = 0};
++ diepctl0.b.snak = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepctl, diepctl0.d32);
++ do {
++ dwc_udelay(10);
++ diepint.d32 = DWC_READ_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepint);
++ } while (!diepint.b.inepnakeff);
++ diepint.b.inepnakeff = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepint, diepint.d32);
++ diepctl0.d32 = 0;
++ diepctl0.b.epdis = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[0]->diepctl,
++ diepctl0.d32);
++ do {
++ dwc_udelay(10);
++ diepint.d32 = DWC_READ_REG32(&core_if->dev_if->
++ in_ep_regs[0]->diepint);
++ } while (!diepint.b.epdisabled);
++ diepint.b.epdisabled = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->in_ep_regs[0]->diepint,
++ diepint.d32);
++ }
++ }
++ doepint_temp.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[ep->dwc_ep.num]->doepint);
++ if (doepint_temp.b.sr) {
++ CLEAR_OUT_EP_INTR(core_if, epnum, sr);
++ if (DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ DWC_DEBUGPL(DBG_PCDV, "Request queue empty!!\n");
++ } else {
++ DWC_DEBUGPL(DBG_PCDV, "complete req!!\n");
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++ if (ep->dwc_ep.xfer_count != ep->dwc_ep.total_len &&
++ pcd->ep0state == EP0_OUT_DATA_PHASE) {
++ /* Read arrived setup packet from req->buf */
++ dwc_memcpy(&pcd->setup_pkt->req,
++ req->buf + ep->dwc_ep.xfer_count, 8);
++ }
++ req->actual = ep->dwc_ep.xfer_count;
++ dwc_otg_request_done(ep, req, -ECONNRESET);
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++ }
++ pcd->ep0state = EP0_IDLE;
++ if (doepint.b.setup) {
++ DWC_DEBUGPL(DBG_PCDV, "EP0_IDLE SR=1 setup=1\n");
++ /* Data stage started, clear setup */
++ CLEAR_OUT_EP_INTR(core_if, epnum, setup);
++ doepint.b.setup = 0;
++ handle_ep0(pcd);
++ /* Prepare for setup packets if ep0in was enabled*/
++ if (pcd->ep0state == EP0_IN_STATUS_PHASE) {
++ ep0_out_start(core_if, pcd);
++ }
++ goto exit_xfercompl;
++ } else {
++ /* Prepare for more setup packets */
++ DWC_DEBUGPL(DBG_PCDV,
++ "EP0_IDLE SR=1 setup=0 new setup comes 2\n");
++ ep0_out_start(core_if, pcd);
++ }
++ }
++ }
++ }
++ if (core_if->dma_enable == 0 || pcd->ep0state != EP0_IDLE)
++ handle_ep0(pcd);
++exit_xfercompl:
++ DWC_DEBUGPL(DBG_PCDV, "DOEPINT=%x doepint=%x\n",
++ dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep), doepint.d32);
++ } else {
++ if (core_if->dma_desc_enable == 0
++ || pcd->ep0state != EP0_IDLE)
++ handle_ep0(pcd);
++ }
++#ifdef DWC_EN_ISOC
++ } else if (dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ if (doepint.b.pktdrpsts == 0) {
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if,
++ epnum,
++ xfercompl);
++ complete_iso_ep(pcd, ep);
++ } else {
++
++ doepint_data_t doepint = {.d32 = 0 };
++ doepint.b.xfercompl = 1;
++ doepint.b.pktdrpsts = 1;
++ DWC_WRITE_REG32
++ (&core_if->dev_if->out_ep_regs
++ [epnum]->doepint,
++ doepint.d32);
++ if (handle_iso_out_pkt_dropped
++ (core_if, dwc_ep)) {
++ complete_iso_ep(pcd,
++ ep);
++ }
++ }
++#endif /* DWC_EN_ISOC */
++#ifdef DWC_UTE_PER_IO
++ } else if (dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ CLEAR_OUT_EP_INTR(core_if, epnum, xfercompl);
++ if (!ep->stopped)
++ complete_xiso_ep(ep);
++#endif /* DWC_UTE_PER_IO */
++ } else {
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if, epnum,
++ xfercompl);
++
++ if (core_if->core_params->dev_out_nak) {
++ DWC_TIMER_CANCEL(pcd->core_if->ep_xfer_timer[epnum]);
++ pcd->core_if->ep_xfer_info[epnum].state = 0;
++#ifdef DEBUG
++ print_memory_payload(pcd, dwc_ep);
++#endif
++ }
++ complete_ep(ep);
++ }
++
++ }
++
++ /* Endpoint disable */
++ if (doepint.b.epdisabled) {
++
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if, epnum, epdisabled);
++ if (core_if->core_params->dev_out_nak) {
++#ifdef DEBUG
++ print_memory_payload(pcd, dwc_ep);
++#endif
++ /* In case of timeout condition */
++ if (core_if->ep_xfer_info[epnum].state == 2) {
++ dctl.d32 = DWC_READ_REG32(&core_if->dev_if->
++ dev_global_regs->dctl);
++ dctl.b.cgoutnak = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl,
++ dctl.d32);
++ /* Unmask goutnakeff interrupt which was masked
++ * during handle nak out interrupt */
++ gintmsk.b.goutnakeff = 1;
++ DWC_MODIFY_REG32(&core_if->core_global_regs->gintmsk,
++ 0, gintmsk.d32);
++
++ complete_ep(ep);
++ }
++ }
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC)
++ {
++ dctl_data_t dctl;
++ gintmsk_data_t intr_mask = {.d32 = 0};
++ dwc_otg_pcd_request_t *req = 0;
++
++ dctl.d32 = DWC_READ_REG32(&core_if->dev_if->
++ dev_global_regs->dctl);
++ dctl.b.cgoutnak = 1;
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl,
++ dctl.d32);
++
++ intr_mask.d32 = 0;
++ intr_mask.b.incomplisoout = 1;
++
++ /* Get any pending requests */
++ if (!DWC_CIRCLEQ_EMPTY(&ep->queue)) {
++ req = DWC_CIRCLEQ_FIRST(&ep->queue);
++ if (!req) {
++ DWC_PRINTF("complete_ep 0x%p, req = NULL!\n", ep);
++ } else {
++ dwc_otg_request_done(ep, req, 0);
++ start_next_request(ep);
++ }
++ } else {
++ DWC_PRINTF("complete_ep 0x%p, ep->queue empty!\n", ep);
++ }
++ }
++ }
++ /* AHB Error */
++ if (doepint.b.ahberr) {
++ DWC_ERROR("EP%d OUT AHB Error\n", epnum);
++ DWC_ERROR("EP%d DEPDMA=0x%08x \n",
++ epnum, core_if->dev_if->out_ep_regs[epnum]->doepdma);
++ CLEAR_OUT_EP_INTR(core_if, epnum, ahberr);
++ }
++ /* Setup Phase Done (contorl EPs) */
++ if (doepint.b.setup) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "EP%d SETUP Done\n", epnum);
++#endif
++ CLEAR_OUT_EP_INTR(core_if, epnum, setup);
++
++ handle_ep0(pcd);
++ }
++
++ /** OUT EP BNA Intr */
++ if (doepint.b.bna) {
++ CLEAR_OUT_EP_INTR(core_if, epnum, bna);
++ if (core_if->dma_desc_enable) {
++#ifdef DWC_EN_ISOC
++ if (dwc_ep->type ==
++ DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This checking is performed to prevent first "false" BNA
++ * handling occuring right after reconnect
++ */
++ if (dwc_ep->next_frame !=
++ 0xffffffff)
++ dwc_otg_pcd_handle_iso_bna(ep);
++ } else
++#endif /* DWC_EN_ISOC */
++ {
++ dwc_otg_pcd_handle_noniso_bna(ep);
++ }
++ }
++ }
++ /* Babble Interrupt */
++ if (doepint.b.babble) {
++ DWC_DEBUGPL(DBG_ANY, "EP%d OUT Babble\n",
++ epnum);
++ handle_out_ep_babble_intr(pcd, epnum);
++
++ CLEAR_OUT_EP_INTR(core_if, epnum, babble);
++ }
++ if (doepint.b.outtknepdis) {
++ DWC_DEBUGPL(DBG_ANY, "EP%d OUT Token received when EP is \
++ disabled\n",epnum);
++ if (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ doepmsk_data_t doepmsk = {.d32 = 0};
++ ep->dwc_ep.frame_num = core_if->frame_num;
++ if (ep->dwc_ep.bInterval > 1) {
++ depctl_data_t depctl;
++ depctl.d32 = DWC_READ_REG32(&core_if->dev_if->
++ out_ep_regs[epnum]->doepctl);
++ if (ep->dwc_ep.frame_num & 0x1) {
++ depctl.b.setd1pid = 1;
++ depctl.b.setd0pid = 0;
++ } else {
++ depctl.b.setd0pid = 1;
++ depctl.b.setd1pid = 0;
++ }
++ DWC_WRITE_REG32(&core_if->dev_if->
++ out_ep_regs[epnum]->doepctl, depctl.d32);
++ }
++ start_next_request(ep);
++ doepmsk.b.outtknepdis = 1;
++ DWC_MODIFY_REG32(&core_if->dev_if->dev_global_regs->doepmsk,
++ doepmsk.d32, 0);
++ }
++ CLEAR_OUT_EP_INTR(core_if, epnum, outtknepdis);
++ }
++
++ /* NAK Interrutp */
++ if (doepint.b.nak) {
++ DWC_DEBUGPL(DBG_ANY, "EP%d OUT NAK\n", epnum);
++ handle_out_ep_nak_intr(pcd, epnum);
++
++ CLEAR_OUT_EP_INTR(core_if, epnum, nak);
++ }
++ /* NYET Interrutp */
++ if (doepint.b.nyet) {
++ DWC_DEBUGPL(DBG_ANY, "EP%d OUT NYET\n", epnum);
++ handle_out_ep_nyet_intr(pcd, epnum);
++
++ CLEAR_OUT_EP_INTR(core_if, epnum, nyet);
++ }
++ }
++
++ epnum++;
++ ep_intr >>= 1;
++ }
++
++ return 1;
++
++#undef CLEAR_OUT_EP_INTR
++}
++static int drop_transfer(uint32_t trgt_fr, uint32_t curr_fr, uint8_t frm_overrun)
++{
++ int retval = 0;
++ if(!frm_overrun && curr_fr >= trgt_fr)
++ retval = 1;
++ else if (frm_overrun
++ && (curr_fr >= trgt_fr && ((curr_fr - trgt_fr) < 0x3FFF / 2)))
++ retval = 1;
++ return retval;
++}
++/**
++ * Incomplete ISO IN Transfer Interrupt.
++ * This interrupt indicates one of the following conditions occurred
++ * while transmitting an ISOC transaction.
++ * - Corrupted IN Token for ISOC EP.
++ * - Packet not complete in FIFO.
++ * The follow actions will be taken:
++ * -# Determine the EP
++ * -# Set incomplete flag in dwc_ep structure
++ * -# Disable EP; when "Endpoint Disabled" interrupt is received
++ * Flush FIFO
++ */
++int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t * pcd)
++{
++ gintsts_data_t gintsts;
++
++#ifdef DWC_EN_ISOC
++ dwc_otg_dev_if_t *dev_if;
++ deptsiz_data_t deptsiz = {.d32 = 0 };
++ depctl_data_t depctl = {.d32 = 0 };
++ dsts_data_t dsts = {.d32 = 0 };
++ dwc_ep_t *dwc_ep;
++ int i;
++
++ dev_if = GET_CORE_IF(pcd)->dev_if;
++
++ for (i = 1; i <= dev_if->num_in_eps; ++i) {
++ dwc_ep = &pcd->in_ep[i].dwc_ep;
++ if (dwc_ep->active && dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ deptsiz.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[i]->dieptsiz);
++ depctl.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++
++ if (depctl.b.epdis && deptsiz.d32) {
++ set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
++ if (dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num =
++ (dwc_ep->proc_buf_num ^ 1) & 0x1;
++
++ if (dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr =
++ dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr =
++ dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr =
++ dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr =
++ dwc_ep->dma_addr0;
++ }
++
++ }
++
++ dsts.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->dev_if->
++ dev_global_regs->dsts);
++ dwc_ep->next_frame = dsts.b.soffn;
++
++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF
++ (pcd),
++ dwc_ep);
++ }
++ }
++ }
++
++#else
++ depctl_data_t depctl = {.d32 = 0 };
++ dwc_ep_t *dwc_ep;
++ dwc_otg_dev_if_t *dev_if;
++ int i;
++ dev_if = GET_CORE_IF(pcd)->dev_if;
++
++ DWC_DEBUGPL(DBG_PCD,"Incomplete ISO IN \n");
++
++ for (i = 1; i <= dev_if->num_in_eps; ++i) {
++ dwc_ep = &pcd->in_ep[i-1].dwc_ep;
++ depctl.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ if (depctl.b.epena && dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ if (drop_transfer(dwc_ep->frame_num, GET_CORE_IF(pcd)->frame_num,
++ dwc_ep->frm_overrun))
++ {
++ depctl.d32 =
++ DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ depctl.b.snak = 1;
++ depctl.b.epdis = 1;
++ DWC_MODIFY_REG32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32, depctl.d32);
++ }
++ }
++ }
++
++ /*intr_mask.b.incomplisoin = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0); */
++#endif //DWC_EN_ISOC
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.incomplisoin = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * Incomplete ISO OUT Transfer Interrupt.
++ *
++ * This interrupt indicates that the core has dropped an ISO OUT
++ * packet. The following conditions can be the cause:
++ * - FIFO Full, the entire packet would not fit in the FIFO.
++ * - CRC Error
++ * - Corrupted Token
++ * The follow actions will be taken:
++ * -# Determine the EP
++ * -# Set incomplete flag in dwc_ep structure
++ * -# Read any data from the FIFO
++ * -# Disable EP. When "Endpoint Disabled" interrupt is received
++ * re-enable EP.
++ */
++int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t * pcd)
++{
++
++ gintsts_data_t gintsts;
++
++#ifdef DWC_EN_ISOC
++ dwc_otg_dev_if_t *dev_if;
++ deptsiz_data_t deptsiz = {.d32 = 0 };
++ depctl_data_t depctl = {.d32 = 0 };
++ dsts_data_t dsts = {.d32 = 0 };
++ dwc_ep_t *dwc_ep;
++ int i;
++
++ dev_if = GET_CORE_IF(pcd)->dev_if;
++
++ for (i = 1; i <= dev_if->num_out_eps; ++i) {
++ dwc_ep = &pcd->in_ep[i].dwc_ep;
++ if (pcd->out_ep[i].dwc_ep.active &&
++ pcd->out_ep[i].dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ deptsiz.d32 =
++ DWC_READ_REG32(&dev_if->out_ep_regs[i]->doeptsiz);
++ depctl.d32 =
++ DWC_READ_REG32(&dev_if->out_ep_regs[i]->doepctl);
++
++ if (depctl.b.epdis && deptsiz.d32) {
++ set_current_pkt_info(GET_CORE_IF(pcd),
++ &pcd->out_ep[i].dwc_ep);
++ if (dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num =
++ (dwc_ep->proc_buf_num ^ 1) & 0x1;
++
++ if (dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr =
++ dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr =
++ dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr =
++ dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr =
++ dwc_ep->dma_addr0;
++ }
++
++ }
++
++ dsts.d32 =
++ DWC_READ_REG32(&GET_CORE_IF(pcd)->dev_if->
++ dev_global_regs->dsts);
++ dwc_ep->next_frame = dsts.b.soffn;
++
++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF
++ (pcd),
++ dwc_ep);
++ }
++ }
++ }
++#else
++ /** @todo implement ISR */
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ dwc_otg_core_if_t *core_if;
++ deptsiz_data_t deptsiz = {.d32 = 0 };
++ depctl_data_t depctl = {.d32 = 0 };
++ dctl_data_t dctl = {.d32 = 0 };
++ dwc_ep_t *dwc_ep = NULL;
++ int i;
++ core_if = GET_CORE_IF(pcd);
++
++ for (i = 0; i < core_if->dev_if->num_out_eps; ++i) {
++ dwc_ep = &pcd->out_ep[i].dwc_ep;
++ depctl.d32 =
++ DWC_READ_REG32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl);
++ if (depctl.b.epena && depctl.b.dpid == (core_if->frame_num & 0x1)) {
++ core_if->dev_if->isoc_ep = dwc_ep;
++ deptsiz.d32 =
++ DWC_READ_REG32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
++ break;
++ }
++ }
++ dctl.d32 = DWC_READ_REG32(&core_if->dev_if->dev_global_regs->dctl);
++ gintsts.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintsts);
++ intr_mask.d32 = DWC_READ_REG32(&core_if->core_global_regs->gintmsk);
++
++ if (!intr_mask.b.goutnakeff) {
++ /* Unmask it */
++ intr_mask.b.goutnakeff = 1;
++ DWC_WRITE_REG32(&core_if->core_global_regs->gintmsk, intr_mask.d32);
++ }
++ if (!gintsts.b.goutnakeff) {
++ dctl.b.sgoutnak = 1;
++ }
++ DWC_WRITE_REG32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
++
++ depctl.d32 = DWC_READ_REG32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl);
++ if (depctl.b.epena) {
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ }
++ DWC_WRITE_REG32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl, depctl.d32);
++
++ intr_mask.d32 = 0;
++ intr_mask.b.incomplisoout = 1;
++
++#endif /* DWC_EN_ISOC */
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.incomplisoout = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This function handles the Global IN NAK Effective interrupt.
++ *
++ */
++int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
++ depctl_data_t diepctl = {.d32 = 0 };
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ gintsts_data_t gintsts;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ int i;
++
++ DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
++
++ /* Disable all active IN EPs */
++ for (i = 0; i <= dev_if->num_in_eps; i++) {
++ diepctl.d32 = DWC_READ_REG32(&dev_if->in_ep_regs[i]->diepctl);
++ if (!(diepctl.b.eptype & 1) && diepctl.b.epena) {
++ if (core_if->start_predict > 0)
++ core_if->start_predict++;
++ diepctl.b.epdis = 1;
++ diepctl.b.snak = 1;
++ DWC_WRITE_REG32(&dev_if->in_ep_regs[i]->diepctl, diepctl.d32);
++ }
++ }
++
++
++ /* Disable the Global IN NAK Effective Interrupt */
++ intr_mask.b.ginnakeff = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.ginnakeff = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * OUT NAK Effective.
++ *
++ */
++int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
++ gintmsk_data_t intr_mask = {.d32 = 0 };
++ gintsts_data_t gintsts;
++ depctl_data_t doepctl;
++ int i;
++
++ /* Disable the Global OUT NAK Effective Interrupt */
++ intr_mask.b.goutnakeff = 1;
++ DWC_MODIFY_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* If DEV OUT NAK enabled*/
++ if (pcd->core_if->core_params->dev_out_nak) {
++ /* Run over all out endpoints to determine the ep number on
++ * which the timeout has happened
++ */
++ for (i = 0; i <= dev_if->num_out_eps; i++) {
++ if ( pcd->core_if->ep_xfer_info[i].state == 2 )
++ break;
++ }
++ if (i > dev_if->num_out_eps) {
++ dctl_data_t dctl;
++ dctl.d32 =
++ DWC_READ_REG32(&dev_if->dev_global_regs->dctl);
++ dctl.b.cgoutnak = 1;
++ DWC_WRITE_REG32(&dev_if->dev_global_regs->dctl,
++ dctl.d32);
++ goto out;
++ }
++
++ /* Disable the endpoint */
++ doepctl.d32 = DWC_READ_REG32(&dev_if->out_ep_regs[i]->doepctl);
++ if (doepctl.b.epena) {
++ doepctl.b.epdis = 1;
++ doepctl.b.snak = 1;
++ }
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[i]->doepctl, doepctl.d32);
++ return 1;
++ }
++ /* We come here from Incomplete ISO OUT handler */
++ if (dev_if->isoc_ep) {
++ dwc_ep_t *dwc_ep = (dwc_ep_t *)dev_if->isoc_ep;
++ uint32_t epnum = dwc_ep->num;
++ doepint_data_t doepint;
++ doepint.d32 =
++ DWC_READ_REG32(&dev_if->out_ep_regs[dwc_ep->num]->doepint);
++ dev_if->isoc_ep = NULL;
++ doepctl.d32 =
++ DWC_READ_REG32(&dev_if->out_ep_regs[epnum]->doepctl);
++ DWC_PRINTF("Before disable DOEPCTL = %08x\n", doepctl.d32);
++ if (doepctl.b.epena) {
++ doepctl.b.epdis = 1;
++ doepctl.b.snak = 1;
++ }
++ DWC_WRITE_REG32(&dev_if->out_ep_regs[epnum]->doepctl,
++ doepctl.d32);
++ return 1;
++ } else
++ DWC_PRINTF("INTERRUPT Handler not implemented for %s\n",
++ "Global OUT NAK Effective\n");
++
++out:
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.goutnakeff = 1;
++ DWC_WRITE_REG32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * PCD interrupt handler.
++ *
++ * The PCD handles the device interrupts. Many conditions can cause a
++ * device interrupt. When an interrupt occurs, the device interrupt
++ * service routine determines the cause of the interrupt and
++ * dispatches handling to the appropriate function. These interrupt
++ * handling functions are described below.
++ *
++ * All interrupt registers are processed from LSB to MSB.
++ *
++ */
++int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++#ifdef VERBOSE
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++#endif
++ gintsts_data_t gintr_status;
++ int32_t retval = 0;
++
++ /* Exit from ISR if core is hibernated */
++ if (core_if->hibernation_suspend == 1) {
++ return retval;
++ }
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n",
++ __func__,
++ DWC_READ_REG32(&global_regs->gintsts),
++ DWC_READ_REG32(&global_regs->gintmsk));
++#endif
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ DWC_SPINLOCK(pcd->lock);
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n",
++ __func__,
++ DWC_READ_REG32(&global_regs->gintsts),
++ DWC_READ_REG32(&global_regs->gintmsk));
++#endif
++
++ gintr_status.d32 = dwc_otg_read_core_intr(core_if);
++
++ DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
++ __func__, gintr_status.d32);
++
++ if (gintr_status.b.sofintr) {
++ retval |= dwc_otg_pcd_handle_sof_intr(pcd);
++ }
++ if (gintr_status.b.rxstsqlvl) {
++ retval |=
++ dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
++ }
++ if (gintr_status.b.nptxfempty) {
++ retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
++ }
++ if (gintr_status.b.goutnakeff) {
++ retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
++ }
++ if (gintr_status.b.i2cintr) {
++ retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
++ }
++ if (gintr_status.b.erlysuspend) {
++ retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
++ }
++ if (gintr_status.b.usbreset) {
++ retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
++ }
++ if (gintr_status.b.enumdone) {
++ retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
++ }
++ if (gintr_status.b.isooutdrop) {
++ retval |=
++ dwc_otg_pcd_handle_isoc_out_packet_dropped_intr
++ (pcd);
++ }
++ if (gintr_status.b.eopframe) {
++ retval |=
++ dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
++ }
++ if (gintr_status.b.inepint) {
++ if (!core_if->multiproc_int_enable) {
++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
++ }
++ }
++ if (gintr_status.b.outepintr) {
++ if (!core_if->multiproc_int_enable) {
++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
++ }
++ }
++ if (gintr_status.b.epmismatch) {
++ retval |= dwc_otg_pcd_handle_ep_mismatch_intr(pcd);
++ }
++ if (gintr_status.b.fetsusp) {
++ retval |= dwc_otg_pcd_handle_ep_fetsusp_intr(pcd);
++ }
++ if (gintr_status.b.ginnakeff) {
++ retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
++ }
++ if (gintr_status.b.incomplisoin) {
++ retval |=
++ dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
++ }
++ if (gintr_status.b.incomplisoout) {
++ retval |=
++ dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
++ }
++
++ /* In MPI mode Device Endpoints interrupts are asserted
++ * without setting outepintr and inepint bits set, so these
++ * Interrupt handlers are called without checking these bit-fields
++ */
++ if (core_if->multiproc_int_enable) {
++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
++ }
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
++ DWC_READ_REG32(&global_regs->gintsts));
++#endif
++ DWC_SPINUNLOCK(pcd->lock);
++ }
++ return retval;
++}
++
++#endif /* DWC_HOST_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd_linux.c linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd_linux.c
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_pcd_linux.c 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_pcd_linux.c 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,1358 @@
++ /* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_linux.c $
++ * $Revision: #21 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++
++/** @file
++ * This file implements the Peripheral Controller Driver.
++ *
++ * The Peripheral Controller Driver (PCD) is responsible for
++ * translating requests from the Function Driver into the appropriate
++ * actions on the DWC_otg controller. It isolates the Function Driver
++ * from the specifics of the controller by providing an API to the
++ * Function Driver.
++ *
++ * The Peripheral Controller Driver for Linux will implement the
++ * Gadget API, so that the existing Gadget drivers can be used.
++ * (Gadget Driver is the Linux terminology for a Function Driver.)
++ *
++ * The Linux Gadget API is defined in the header file
++ * <code><linux/usb_gadget.h></code>. The USB EP operations API is
++ * defined in the structure <code>usb_ep_ops</code> and the USB
++ * Controller API is defined in the structure
++ * <code>usb_gadget_ops</code>.
++ *
++ */
++
++#include "dwc_otg_os_dep.h"
++#include "dwc_otg_pcd_if.h"
++#include "dwc_otg_pcd.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_dbg.h"
++
++static struct gadget_wrapper {
++ dwc_otg_pcd_t *pcd;
++
++ struct usb_gadget gadget;
++ struct usb_gadget_driver *driver;
++
++ struct usb_ep ep0;
++ struct usb_ep in_ep[16];
++ struct usb_ep out_ep[16];
++
++} *gadget_wrapper;
++
++/* Display the contents of the buffer */
++extern void dump_msg(const u8 * buf, unsigned int length);
++/**
++ * Get the dwc_otg_pcd_ep_t* from usb_ep* pointer - NULL in case
++ * if the endpoint is not found
++ */
++static struct dwc_otg_pcd_ep *ep_from_handle(dwc_otg_pcd_t * pcd, void *handle)
++{
++ int i;
++ if (pcd->ep0.priv == handle) {
++ return &pcd->ep0;
++ }
++
++ for (i = 0; i < MAX_EPS_CHANNELS - 1; i++) {
++ if (pcd->in_ep[i].priv == handle)
++ return &pcd->in_ep[i];
++ if (pcd->out_ep[i].priv == handle)
++ return &pcd->out_ep[i];
++ }
++
++ return NULL;
++}
++
++/* USB Endpoint Operations */
++/*
++ * The following sections briefly describe the behavior of the Gadget
++ * API endpoint operations implemented in the DWC_otg driver
++ * software. Detailed descriptions of the generic behavior of each of
++ * these functions can be found in the Linux header file
++ * include/linux/usb_gadget.h.
++ *
++ * The Gadget API provides wrapper functions for each of the function
++ * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
++ * function, which then calls the underlying PCD function. The
++ * following sections are named according to the wrapper
++ * functions. Within each section, the corresponding DWC_otg PCD
++ * function name is specified.
++ *
++ */
++
++/**
++ * This function is called by the Gadget Driver for each EP to be
++ * configured for the current configuration (SET_CONFIGURATION).
++ *
++ * This function initializes the dwc_otg_ep_t data structure, and then
++ * calls dwc_otg_ep_activate.
++ */
++static int ep_enable(struct usb_ep *usb_ep,
++ const struct usb_endpoint_descriptor *ep_desc)
++{
++ int retval;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, usb_ep, ep_desc);
++
++ if (!usb_ep || !ep_desc || ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
++ DWC_WARN("%s, bad ep or descriptor\n", __func__);
++ return -EINVAL;
++ }
++ if (usb_ep == &gadget_wrapper->ep0) {
++ DWC_WARN("%s, bad ep(0)\n", __func__);
++ return -EINVAL;
++ }
++
++ /* Check FIFO size? */
++ if (!ep_desc->wMaxPacketSize) {
++ DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
++ return -ERANGE;
++ }
++
++ if (!gadget_wrapper->driver ||
++ gadget_wrapper->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_WARN("%s, bogus device state\n", __func__);
++ return -ESHUTDOWN;
++ }
++
++ /* Delete after check - MAS */
++#if 0
++ nat = (uint32_t) ep_desc->wMaxPacketSize;
++ printk(KERN_ALERT "%s: nat (before) =%d\n", __func__, nat);
++ nat = (nat >> 11) & 0x03;
++ printk(KERN_ALERT "%s: nat (after) =%d\n", __func__, nat);
++#endif
++ retval = dwc_otg_pcd_ep_enable(gadget_wrapper->pcd,
++ (const uint8_t *)ep_desc,
++ (void *)usb_ep);
++ if (retval) {
++ DWC_WARN("dwc_otg_pcd_ep_enable failed\n");
++ return -EINVAL;
++ }
++
++ usb_ep->maxpacket = le16_to_cpu(ep_desc->wMaxPacketSize);
++
++ return 0;
++}
++
++/**
++ * This function is called when an EP is disabled due to disconnect or
++ * change in configuration. Any pending requests will terminate with a
++ * status of -ESHUTDOWN.
++ *
++ * This function modifies the dwc_otg_ep_t data structure for this EP,
++ * and then calls dwc_otg_ep_deactivate.
++ */
++static int ep_disable(struct usb_ep *usb_ep)
++{
++ int retval;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, usb_ep);
++ if (!usb_ep) {
++ DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
++ usb_ep ? usb_ep->name : NULL);
++ return -EINVAL;
++ }
++
++ retval = dwc_otg_pcd_ep_disable(gadget_wrapper->pcd, usb_ep);
++ if (retval) {
++ retval = -EINVAL;
++ }
++
++ return retval;
++}
++
++/**
++ * This function allocates a request object to use with the specified
++ * endpoint.
++ *
++ * @param ep The endpoint to be used with with the request
++ * @param gfp_flags the GFP_* flags to use.
++ */
++static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
++ gfp_t gfp_flags)
++{
++ struct usb_request *usb_req;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p,%d)\n", __func__, ep, gfp_flags);
++ if (0 == ep) {
++ DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
++ return 0;
++ }
++ usb_req = kmalloc(sizeof(*usb_req), gfp_flags);
++ if (0 == usb_req) {
++ DWC_WARN("%s() %s\n", __func__, "request allocation failed!\n");
++ return 0;
++ }
++ memset(usb_req, 0, sizeof(*usb_req));
++ usb_req->dma = DWC_DMA_ADDR_INVALID;
++
++ return usb_req;
++}
++
++/**
++ * This function frees a request object.
++ *
++ * @param ep The endpoint associated with the request
++ * @param req The request being freed
++ */
++static void dwc_otg_pcd_free_request(struct usb_ep *ep, struct usb_request *req)
++{
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, ep, req);
++
++ if (0 == ep || 0 == req) {
++ DWC_WARN("%s() %s\n", __func__,
++ "Invalid ep or req argument!\n");
++ return;
++ }
++
++ kfree(req);
++}
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++/**
++ * This function allocates an I/O buffer to be used for a transfer
++ * to/from the specified endpoint.
++ *
++ * @param usb_ep The endpoint to be used with with the request
++ * @param bytes The desired number of bytes for the buffer
++ * @param dma Pointer to the buffer's DMA address; must be valid
++ * @param gfp_flags the GFP_* flags to use.
++ * @return address of a new buffer or null is buffer could not be allocated.
++ */
++static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
++ dma_addr_t * dma, gfp_t gfp_flags)
++{
++ void *buf;
++ dwc_otg_pcd_t *pcd = 0;
++
++ pcd = gadget_wrapper->pcd;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
++ dma, gfp_flags);
++
++ /* Check dword alignment */
++ if ((bytes & 0x3UL) != 0) {
++ DWC_WARN("%s() Buffer size is not a multiple of"
++ "DWORD size (%d)", __func__, bytes);
++ }
++
++ buf = dma_alloc_coherent(NULL, bytes, dma, gfp_flags);
++
++ /* Check dword alignment */
++ if (((int)buf & 0x3UL) != 0) {
++ DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
++ __func__, buf);
++ }
++
++ return buf;
++}
++
++/**
++ * This function frees an I/O buffer that was allocated by alloc_buffer.
++ *
++ * @param usb_ep the endpoint associated with the buffer
++ * @param buf address of the buffer
++ * @param dma The buffer's DMA address
++ * @param bytes The number of bytes of the buffer
++ */
++static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
++ dma_addr_t dma, unsigned bytes)
++{
++ dwc_otg_pcd_t *pcd = 0;
++
++ pcd = gadget_wrapper->pcd;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p,%0x,%d)\n", __func__, buf, dma, bytes);
++
++ dma_free_coherent(NULL, bytes, buf, dma);
++}
++#endif
++
++/**
++ * This function is used to submit an I/O Request to an EP.
++ *
++ * - When the request completes the request's completion callback
++ * is called to return the request to the driver.
++ * - An EP, except control EPs, may have multiple requests
++ * pending.
++ * - Once submitted the request cannot be examined or modified.
++ * - Each request is turned into one or more packets.
++ * - A BULK EP can queue any amount of data; the transfer is
++ * packetized.
++ * - Zero length Packets are specified with the request 'zero'
++ * flag.
++ */
++static int ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
++ gfp_t gfp_flags)
++{
++ dwc_otg_pcd_t *pcd;
++ struct dwc_otg_pcd_ep *ep = NULL;
++ int retval = 0, is_isoc_ep = 0;
++ dma_addr_t dma_addr = DWC_DMA_ADDR_INVALID;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p,%d)\n",
++ __func__, usb_ep, usb_req, gfp_flags);
++
++ if (!usb_req || !usb_req->complete || !usb_req->buf) {
++ DWC_WARN("bad params\n");
++ return -EINVAL;
++ }
++
++ if (!usb_ep) {
++ DWC_WARN("bad ep\n");
++ return -EINVAL;
++ }
++
++ pcd = gadget_wrapper->pcd;
++ if (!gadget_wrapper->driver ||
++ gadget_wrapper->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n",
++ gadget_wrapper->gadget.speed);
++ DWC_WARN("bogus device state\n");
++ return -ESHUTDOWN;
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
++ usb_ep->name, usb_req, usb_req->length, usb_req->buf);
++
++ usb_req->status = -EINPROGRESS;
++ usb_req->actual = 0;
++
++ ep = ep_from_handle(pcd, usb_ep);
++ if (ep == NULL)
++ is_isoc_ep = 0;
++ else
++ is_isoc_ep = (ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) ? 1 : 0;
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++ dma_addr = usb_req->dma;
++#else
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ dwc_otg_device_t *otg_dev = gadget_wrapper->pcd->otg_dev;
++ struct device *dev = NULL;
++
++ if (otg_dev != NULL)
++ dev = DWC_OTG_OS_GETDEV(otg_dev->os_dep);
++
++ if (usb_req->length != 0 &&
++ usb_req->dma == DWC_DMA_ADDR_INVALID) {
++ dma_addr = dma_map_single(dev, usb_req->buf,
++ usb_req->length,
++ ep->dwc_ep.is_in ?
++ DMA_TO_DEVICE:
++ DMA_FROM_DEVICE);
++ }
++ }
++#endif
++
++#ifdef DWC_UTE_PER_IO
++ if (is_isoc_ep == 1) {
++ retval = dwc_otg_pcd_xiso_ep_queue(pcd, usb_ep, usb_req->buf, dma_addr,
++ usb_req->length, usb_req->zero, usb_req,
++ gfp_flags == GFP_ATOMIC ? 1 : 0, &usb_req->ext_req);
++ if (retval)
++ return -EINVAL;
++
++ return 0;
++ }
++#endif
++ retval = dwc_otg_pcd_ep_queue(pcd, usb_ep, usb_req->buf, dma_addr,
++ usb_req->length, usb_req->zero, usb_req,
++ gfp_flags == GFP_ATOMIC ? 1 : 0);
++ if (retval) {
++ return -EINVAL;
++ }
++
++ return 0;
++}
++
++/**
++ * This function cancels an I/O request from an EP.
++ */
++static int ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
++{
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p,%p)\n", __func__, usb_ep, usb_req);
++
++ if (!usb_ep || !usb_req) {
++ DWC_WARN("bad argument\n");
++ return -EINVAL;
++ }
++ if (!gadget_wrapper->driver ||
++ gadget_wrapper->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_WARN("bogus device state\n");
++ return -ESHUTDOWN;
++ }
++ if (dwc_otg_pcd_ep_dequeue(gadget_wrapper->pcd, usb_ep, usb_req)) {
++ return -EINVAL;
++ }
++
++ return 0;
++}
++
++/**
++ * usb_ep_set_halt stalls an endpoint.
++ *
++ * usb_ep_clear_halt clears an endpoint halt and resets its data
++ * toggle.
++ *
++ * Both of these functions are implemented with the same underlying
++ * function. The behavior depends on the value argument.
++ *
++ * @param[in] usb_ep the Endpoint to halt or clear halt.
++ * @param[in] value
++ * - 0 means clear_halt.
++ * - 1 means set_halt,
++ * - 2 means clear stall lock flag.
++ * - 3 means set stall lock flag.
++ */
++static int ep_halt(struct usb_ep *usb_ep, int value)
++{
++ int retval = 0;
++
++ DWC_DEBUGPL(DBG_PCD, "HALT %s %d\n", usb_ep->name, value);
++
++ if (!usb_ep) {
++ DWC_WARN("bad ep\n");
++ return -EINVAL;
++ }
++
++ retval = dwc_otg_pcd_ep_halt(gadget_wrapper->pcd, usb_ep, value);
++ if (retval == -DWC_E_AGAIN) {
++ return -EAGAIN;
++ } else if (retval) {
++ retval = -EINVAL;
++ }
++
++ return retval;
++}
++
++//#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,30))
++#if 0
++/**
++ * ep_wedge: sets the halt feature and ignores clear requests
++ *
++ * @usb_ep: the endpoint being wedged
++ *
++ * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
++ * requests. If the gadget driver clears the halt status, it will
++ * automatically unwedge the endpoint.
++ *
++ * Returns zero on success, else negative errno. *
++ * Check usb_ep_set_wedge() at "usb_gadget.h" for details
++ */
++static int ep_wedge(struct usb_ep *usb_ep)
++{
++ int retval = 0;
++
++ DWC_DEBUGPL(DBG_PCD, "WEDGE %s\n", usb_ep->name);
++
++ if (!usb_ep) {
++ DWC_WARN("bad ep\n");
++ return -EINVAL;
++ }
++
++ retval = dwc_otg_pcd_ep_wedge(gadget_wrapper->pcd, usb_ep);
++ if (retval == -DWC_E_AGAIN) {
++ retval = -EAGAIN;
++ } else if (retval) {
++ retval = -EINVAL;
++ }
++
++ return retval;
++}
++#endif
++
++#ifdef DWC_EN_ISOC
++/**
++ * This function is used to submit an ISOC Transfer Request to an EP.
++ *
++ * - Every time a sync period completes the request's completion callback
++ * is called to provide data to the gadget driver.
++ * - Once submitted the request cannot be modified.
++ * - Each request is turned into periodic data packets untill ISO
++ * Transfer is stopped..
++ */
++static int iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
++ gfp_t gfp_flags)
++{
++ int retval = 0;
++
++ if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
++ DWC_WARN("bad params\n");
++ return -EINVAL;
++ }
++
++ if (!usb_ep) {
++ DWC_PRINTF("bad params\n");
++ return -EINVAL;
++ }
++
++ req->status = -EINPROGRESS;
++
++ retval =
++ dwc_otg_pcd_iso_ep_start(gadget_wrapper->pcd, usb_ep, req->buf0,
++ req->buf1, req->dma0, req->dma1,
++ req->sync_frame, req->data_pattern_frame,
++ req->data_per_frame,
++ req->
++ flags & USB_REQ_ISO_ASAP ? -1 :
++ req->start_frame, req->buf_proc_intrvl,
++ req, gfp_flags == GFP_ATOMIC ? 1 : 0);
++
++ if (retval) {
++ return -EINVAL;
++ }
++
++ return retval;
++}
++
++/**
++ * This function stops ISO EP Periodic Data Transfer.
++ */
++static int iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
++{
++ int retval = 0;
++ if (!usb_ep) {
++ DWC_WARN("bad ep\n");
++ }
++
++ if (!gadget_wrapper->driver ||
++ gadget_wrapper->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n",
++ gadget_wrapper->gadget.speed);
++ DWC_WARN("bogus device state\n");
++ }
++
++ dwc_otg_pcd_iso_ep_stop(gadget_wrapper->pcd, usb_ep, req);
++ if (retval) {
++ retval = -EINVAL;
++ }
++
++ return retval;
++}
++
++static struct usb_iso_request *alloc_iso_request(struct usb_ep *ep,
++ int packets, gfp_t gfp_flags)
++{
++ struct usb_iso_request *pReq = NULL;
++ uint32_t req_size;
++
++ req_size = sizeof(struct usb_iso_request);
++ req_size +=
++ (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
++
++ pReq = kmalloc(req_size, gfp_flags);
++ if (!pReq) {
++ DWC_WARN("Can't allocate Iso Request\n");
++ return 0;
++ }
++ pReq->iso_packet_desc0 = (void *)(pReq + 1);
++
++ pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
++
++ return pReq;
++}
++
++static void free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
++{
++ kfree(req);
++}
++
++static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops = {
++ .ep_ops = {
++ .enable = ep_enable,
++ .disable = ep_disable,
++
++ .alloc_request = dwc_otg_pcd_alloc_request,
++ .free_request = dwc_otg_pcd_free_request,
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++ .alloc_buffer = dwc_otg_pcd_alloc_buffer,
++ .free_buffer = dwc_otg_pcd_free_buffer,
++#endif
++
++ .queue = ep_queue,
++ .dequeue = ep_dequeue,
++
++ .set_halt = ep_halt,
++ .fifo_status = 0,
++ .fifo_flush = 0,
++ },
++ .iso_ep_start = iso_ep_start,
++ .iso_ep_stop = iso_ep_stop,
++ .alloc_iso_request = alloc_iso_request,
++ .free_iso_request = free_iso_request,
++};
++
++#else
++
++ int (*enable) (struct usb_ep *ep,
++ const struct usb_endpoint_descriptor *desc);
++ int (*disable) (struct usb_ep *ep);
++
++ struct usb_request *(*alloc_request) (struct usb_ep *ep,
++ gfp_t gfp_flags);
++ void (*free_request) (struct usb_ep *ep, struct usb_request *req);
++
++ int (*queue) (struct usb_ep *ep, struct usb_request *req,
++ gfp_t gfp_flags);
++ int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
++
++ int (*set_halt) (struct usb_ep *ep, int value);
++ int (*set_wedge) (struct usb_ep *ep);
++
++ int (*fifo_status) (struct usb_ep *ep);
++ void (*fifo_flush) (struct usb_ep *ep);
++static struct usb_ep_ops dwc_otg_pcd_ep_ops = {
++ .enable = ep_enable,
++ .disable = ep_disable,
++
++ .alloc_request = dwc_otg_pcd_alloc_request,
++ .free_request = dwc_otg_pcd_free_request,
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,28)
++ .alloc_buffer = dwc_otg_pcd_alloc_buffer,
++ .free_buffer = dwc_otg_pcd_free_buffer,
++#else
++ /* .set_wedge = ep_wedge, */
++ .set_wedge = NULL, /* uses set_halt instead */
++#endif
++
++ .queue = ep_queue,
++ .dequeue = ep_dequeue,
++
++ .set_halt = ep_halt,
++ .fifo_status = 0,
++ .fifo_flush = 0,
++
++};
++
++#endif /* _EN_ISOC_ */
++/* Gadget Operations */
++/**
++ * The following gadget operations will be implemented in the DWC_otg
++ * PCD. Functions in the API that are not described below are not
++ * implemented.
++ *
++ * The Gadget API provides wrapper functions for each of the function
++ * pointers defined in usb_gadget_ops. The Gadget Driver calls the
++ * wrapper function, which then calls the underlying PCD function. The
++ * following sections are named according to the wrapper functions
++ * (except for ioctl, which doesn't have a wrapper function). Within
++ * each section, the corresponding DWC_otg PCD function name is
++ * specified.
++ *
++ */
++
++/**
++ *Gets the USB Frame number of the last SOF.
++ */
++static int get_frame_number(struct usb_gadget *gadget)
++{
++ struct gadget_wrapper *d;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, gadget);
++
++ if (gadget == 0) {
++ return -ENODEV;
++ }
++
++ d = container_of(gadget, struct gadget_wrapper, gadget);
++ return dwc_otg_pcd_get_frame_number(d->pcd);
++}
++
++#ifdef CONFIG_USB_DWC_OTG_LPM
++static int test_lpm_enabled(struct usb_gadget *gadget)
++{
++ struct gadget_wrapper *d;
++
++ d = container_of(gadget, struct gadget_wrapper, gadget);
++
++ return dwc_otg_pcd_is_lpm_enabled(d->pcd);
++}
++#endif
++
++/**
++ * Initiates Session Request Protocol (SRP) to wakeup the host if no
++ * session is in progress. If a session is already in progress, but
++ * the device is suspended, remote wakeup signaling is started.
++ *
++ */
++static int wakeup(struct usb_gadget *gadget)
++{
++ struct gadget_wrapper *d;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, gadget);
++
++ if (gadget == 0) {
++ return -ENODEV;
++ } else {
++ d = container_of(gadget, struct gadget_wrapper, gadget);
++ }
++ dwc_otg_pcd_wakeup(d->pcd);
++ return 0;
++}
++
++static const struct usb_gadget_ops dwc_otg_pcd_ops = {
++ .get_frame = get_frame_number,
++ .wakeup = wakeup,
++#ifdef CONFIG_USB_DWC_OTG_LPM
++ .lpm_support = test_lpm_enabled,
++#endif
++ // current versions must always be self-powered
++};
++
++static int _setup(dwc_otg_pcd_t * pcd, uint8_t * bytes)
++{
++ int retval = -DWC_E_NOT_SUPPORTED;
++ if (gadget_wrapper->driver && gadget_wrapper->driver->setup) {
++ retval = gadget_wrapper->driver->setup(&gadget_wrapper->gadget,
++ (struct usb_ctrlrequest
++ *)bytes);
++ }
++
++ if (retval == -ENOTSUPP) {
++ retval = -DWC_E_NOT_SUPPORTED;
++ } else if (retval < 0) {
++ retval = -DWC_E_INVALID;
++ }
++
++ return retval;
++}
++
++#ifdef DWC_EN_ISOC
++static int _isoc_complete(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle, int proc_buf_num)
++{
++ int i, packet_count;
++ struct usb_gadget_iso_packet_descriptor *iso_packet = 0;
++ struct usb_iso_request *iso_req = req_handle;
++
++ if (proc_buf_num) {
++ iso_packet = iso_req->iso_packet_desc1;
++ } else {
++ iso_packet = iso_req->iso_packet_desc0;
++ }
++ packet_count =
++ dwc_otg_pcd_get_iso_packet_count(pcd, ep_handle, req_handle);
++ for (i = 0; i < packet_count; ++i) {
++ int status;
++ int actual;
++ int offset;
++ dwc_otg_pcd_get_iso_packet_params(pcd, ep_handle, req_handle,
++ i, &status, &actual, &offset);
++ switch (status) {
++ case -DWC_E_NO_DATA:
++ status = -ENODATA;
++ break;
++ default:
++ if (status) {
++ DWC_PRINTF("unknown status in isoc packet\n");
++ }
++
++ }
++ iso_packet[i].status = status;
++ iso_packet[i].offset = offset;
++ iso_packet[i].actual_length = actual;
++ }
++
++ iso_req->status = 0;
++ iso_req->process_buffer(ep_handle, iso_req);
++
++ return 0;
++}
++#endif /* DWC_EN_ISOC */
++
++#ifdef DWC_UTE_PER_IO
++/**
++ * Copy the contents of the extended request to the Linux usb_request's
++ * extended part and call the gadget's completion.
++ *
++ * @param pcd Pointer to the pcd structure
++ * @param ep_handle Void pointer to the usb_ep structure
++ * @param req_handle Void pointer to the usb_request structure
++ * @param status Request status returned from the portable logic
++ * @param ereq_port Void pointer to the extended request structure
++ * created in the the portable part that contains the
++ * results of the processed iso packets.
++ */
++static int _xisoc_complete(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle, int32_t status, void *ereq_port)
++{
++ struct dwc_ute_iso_req_ext *ereqorg = NULL;
++ struct dwc_iso_xreq_port *ereqport = NULL;
++ struct dwc_ute_iso_packet_descriptor *desc_org = NULL;
++ int i;
++ struct usb_request *req;
++ //struct dwc_ute_iso_packet_descriptor *
++ //int status = 0;
++
++ req = (struct usb_request *)req_handle;
++ ereqorg = &req->ext_req;
++ ereqport = (struct dwc_iso_xreq_port *)ereq_port;
++ desc_org = ereqorg->per_io_frame_descs;
++
++ if (req && req->complete) {
++ /* Copy the request data from the portable logic to our request */
++ for (i = 0; i < ereqport->pio_pkt_count; i++) {
++ desc_org[i].actual_length =
++ ereqport->per_io_frame_descs[i].actual_length;
++ desc_org[i].status =
++ ereqport->per_io_frame_descs[i].status;
++ }
++
++ switch (status) {
++ case -DWC_E_SHUTDOWN:
++ req->status = -ESHUTDOWN;
++ break;
++ case -DWC_E_RESTART:
++ req->status = -ECONNRESET;
++ break;
++ case -DWC_E_INVALID:
++ req->status = -EINVAL;
++ break;
++ case -DWC_E_TIMEOUT:
++ req->status = -ETIMEDOUT;
++ break;
++ default:
++ req->status = status;
++ }
++
++ /* And call the gadget's completion */
++ req->complete(ep_handle, req);
++ }
++
++ return 0;
++}
++#endif /* DWC_UTE_PER_IO */
++
++static int _complete(dwc_otg_pcd_t * pcd, void *ep_handle,
++ void *req_handle, int32_t status, uint32_t actual)
++{
++ struct usb_request *req = (struct usb_request *)req_handle;
++#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,27)
++ struct dwc_otg_pcd_ep *ep = NULL;
++#endif
++
++ if (req && req->complete) {
++ switch (status) {
++ case -DWC_E_SHUTDOWN:
++ req->status = -ESHUTDOWN;
++ break;
++ case -DWC_E_RESTART:
++ req->status = -ECONNRESET;
++ break;
++ case -DWC_E_INVALID:
++ req->status = -EINVAL;
++ break;
++ case -DWC_E_TIMEOUT:
++ req->status = -ETIMEDOUT;
++ break;
++ default:
++ req->status = status;
++
++ }
++
++ req->actual = actual;
++ DWC_SPINUNLOCK(pcd->lock);
++ req->complete(ep_handle, req);
++ DWC_SPINLOCK(pcd->lock);
++ }
++#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,27)
++ ep = ep_from_handle(pcd, ep_handle);
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ if (req->length != 0) {
++ dwc_otg_device_t *otg_dev = gadget_wrapper->pcd->otg_dev;
++ struct device *dev = NULL;
++
++ if (otg_dev != NULL)
++ dev = DWC_OTG_OS_GETDEV(otg_dev->os_dep);
++
++ dma_unmap_single(dev, req->dma, req->length,
++ ep->dwc_ep.is_in ?
++ DMA_TO_DEVICE: DMA_FROM_DEVICE);
++ }
++ }
++#endif
++
++ return 0;
++}
++
++static int _connect(dwc_otg_pcd_t * pcd, int speed)
++{
++ gadget_wrapper->gadget.speed = speed;
++ return 0;
++}
++
++static int _disconnect(dwc_otg_pcd_t * pcd)
++{
++ if (gadget_wrapper->driver && gadget_wrapper->driver->disconnect) {
++ gadget_wrapper->driver->disconnect(&gadget_wrapper->gadget);
++ }
++ return 0;
++}
++
++static int _resume(dwc_otg_pcd_t * pcd)
++{
++ if (gadget_wrapper->driver && gadget_wrapper->driver->resume) {
++ gadget_wrapper->driver->resume(&gadget_wrapper->gadget);
++ }
++
++ return 0;
++}
++
++static int _suspend(dwc_otg_pcd_t * pcd)
++{
++ if (gadget_wrapper->driver && gadget_wrapper->driver->suspend) {
++ gadget_wrapper->driver->suspend(&gadget_wrapper->gadget);
++ }
++ return 0;
++}
++
++/**
++ * This function updates the otg values in the gadget structure.
++ */
++static int _hnp_changed(dwc_otg_pcd_t * pcd)
++{
++
++ if (!gadget_wrapper->gadget.is_otg)
++ return 0;
++
++ gadget_wrapper->gadget.b_hnp_enable = get_b_hnp_enable(pcd);
++ gadget_wrapper->gadget.a_hnp_support = get_a_hnp_support(pcd);
++ gadget_wrapper->gadget.a_alt_hnp_support = get_a_alt_hnp_support(pcd);
++ return 0;
++}
++
++static int _reset(dwc_otg_pcd_t * pcd)
++{
++ return 0;
++}
++
++#ifdef DWC_UTE_CFI
++static int _cfi_setup(dwc_otg_pcd_t * pcd, void *cfi_req)
++{
++ int retval = -DWC_E_INVALID;
++ if (gadget_wrapper->driver->cfi_feature_setup) {
++ retval =
++ gadget_wrapper->driver->
++ cfi_feature_setup(&gadget_wrapper->gadget,
++ (struct cfi_usb_ctrlrequest *)cfi_req);
++ }
++
++ return retval;
++}
++#endif
++
++static const struct dwc_otg_pcd_function_ops fops = {
++ .complete = _complete,
++#ifdef DWC_EN_ISOC
++ .isoc_complete = _isoc_complete,
++#endif
++ .setup = _setup,
++ .disconnect = _disconnect,
++ .connect = _connect,
++ .resume = _resume,
++ .suspend = _suspend,
++ .hnp_changed = _hnp_changed,
++ .reset = _reset,
++#ifdef DWC_UTE_CFI
++ .cfi_setup = _cfi_setup,
++#endif
++#ifdef DWC_UTE_PER_IO
++ .xisoc_complete = _xisoc_complete,
++#endif
++};
++
++/**
++ * This function is the top level PCD interrupt handler.
++ */
++static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev)
++{
++ dwc_otg_pcd_t *pcd = dev;
++ int32_t retval = IRQ_NONE;
++
++ retval = dwc_otg_pcd_handle_intr(pcd);
++ if (retval != 0) {
++ S3C2410X_CLEAR_EINTPEND();
++ }
++ return IRQ_RETVAL(retval);
++}
++
++/**
++ * This function initialized the usb_ep structures to there default
++ * state.
++ *
++ * @param d Pointer on gadget_wrapper.
++ */
++void gadget_add_eps(struct gadget_wrapper *d)
++{
++ static const char *names[] = {
++
++ "ep0",
++ "ep1in",
++ "ep2in",
++ "ep3in",
++ "ep4in",
++ "ep5in",
++ "ep6in",
++ "ep7in",
++ "ep8in",
++ "ep9in",
++ "ep10in",
++ "ep11in",
++ "ep12in",
++ "ep13in",
++ "ep14in",
++ "ep15in",
++ "ep1out",
++ "ep2out",
++ "ep3out",
++ "ep4out",
++ "ep5out",
++ "ep6out",
++ "ep7out",
++ "ep8out",
++ "ep9out",
++ "ep10out",
++ "ep11out",
++ "ep12out",
++ "ep13out",
++ "ep14out",
++ "ep15out"
++ };
++
++ int i;
++ struct usb_ep *ep;
++ int8_t dev_endpoints;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s\n", __func__);
++
++ INIT_LIST_HEAD(&d->gadget.ep_list);
++ d->gadget.ep0 = &d->ep0;
++ d->gadget.speed = USB_SPEED_UNKNOWN;
++
++ INIT_LIST_HEAD(&d->gadget.ep0->ep_list);
++
++ /**
++ * Initialize the EP0 structure.
++ */
++ ep = &d->ep0;
++
++ /* Init the usb_ep structure. */
++ ep->name = names[0];
++ ep->ops = (struct usb_ep_ops *)&dwc_otg_pcd_ep_ops;
++
++ /**
++ * @todo NGS: What should the max packet size be set to
++ * here? Before EP type is set?
++ */
++ ep->maxpacket = MAX_PACKET_SIZE;
++ dwc_otg_pcd_ep_enable(d->pcd, NULL, ep);
++
++ list_add_tail(&ep->ep_list, &d->gadget.ep_list);
++
++ /**
++ * Initialize the EP structures.
++ */
++ dev_endpoints = d->pcd->core_if->dev_if->num_in_eps;
++
++ for (i = 0; i < dev_endpoints; i++) {
++ ep = &d->in_ep[i];
++
++ /* Init the usb_ep structure. */
++ ep->name = names[d->pcd->in_ep[i].dwc_ep.num];
++ ep->ops = (struct usb_ep_ops *)&dwc_otg_pcd_ep_ops;
++
++ /**
++ * @todo NGS: What should the max packet size be set to
++ * here? Before EP type is set?
++ */
++ ep->maxpacket = MAX_PACKET_SIZE;
++ list_add_tail(&ep->ep_list, &d->gadget.ep_list);
++ }
++
++ dev_endpoints = d->pcd->core_if->dev_if->num_out_eps;
++
++ for (i = 0; i < dev_endpoints; i++) {
++ ep = &d->out_ep[i];
++
++ /* Init the usb_ep structure. */
++ ep->name = names[15 + d->pcd->out_ep[i].dwc_ep.num];
++ ep->ops = (struct usb_ep_ops *)&dwc_otg_pcd_ep_ops;
++
++ /**
++ * @todo NGS: What should the max packet size be set to
++ * here? Before EP type is set?
++ */
++ ep->maxpacket = MAX_PACKET_SIZE;
++
++ list_add_tail(&ep->ep_list, &d->gadget.ep_list);
++ }
++
++ /* remove ep0 from the list. There is a ep0 pointer. */
++ list_del_init(&d->ep0.ep_list);
++
++ d->ep0.maxpacket = MAX_EP0_SIZE;
++}
++
++/**
++ * This function releases the Gadget device.
++ * required by device_unregister().
++ *
++ * @todo Should this do something? Should it free the PCD?
++ */
++static void dwc_otg_pcd_gadget_release(struct device *dev)
++{
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, dev);
++}
++
++static struct gadget_wrapper *alloc_wrapper(dwc_bus_dev_t *_dev)
++{
++ static char pcd_name[] = "dwc_otg_pcd";
++ dwc_otg_device_t *otg_dev = DWC_OTG_BUSDRVDATA(_dev);
++ struct gadget_wrapper *d;
++ int retval;
++
++ d = DWC_ALLOC(sizeof(*d));
++ if (d == NULL) {
++ return NULL;
++ }
++
++ memset(d, 0, sizeof(*d));
++
++ d->gadget.name = pcd_name;
++ d->pcd = otg_dev->pcd;
++
++#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,30)
++ strcpy(d->gadget.dev.bus_id, "gadget");
++#else
++ dev_set_name(&d->gadget.dev, "%s", "gadget");
++#endif
++
++ d->gadget.dev.parent = &_dev->dev;
++ d->gadget.dev.release = dwc_otg_pcd_gadget_release;
++ d->gadget.ops = &dwc_otg_pcd_ops;
++ d->gadget.max_speed = dwc_otg_pcd_is_dualspeed(otg_dev->pcd) ? USB_SPEED_HIGH:USB_SPEED_FULL;
++ d->gadget.is_otg = dwc_otg_pcd_is_otg(otg_dev->pcd);
++
++ d->driver = 0;
++ /* Register the gadget device */
++ retval = device_register(&d->gadget.dev);
++ if (retval != 0) {
++ DWC_ERROR("device_register failed\n");
++ DWC_FREE(d);
++ return NULL;
++ }
++
++ return d;
++}
++
++static void free_wrapper(struct gadget_wrapper *d)
++{
++ if (d->driver) {
++ /* should have been done already by driver model core */
++ DWC_WARN("driver '%s' is still registered\n",
++ d->driver->driver.name);
++ usb_gadget_unregister_driver(d->driver);
++ }
++
++ device_unregister(&d->gadget.dev);
++ DWC_FREE(d);
++}
++
++/**
++ * This function initialized the PCD portion of the driver.
++ *
++ */
++int pcd_init(dwc_bus_dev_t *_dev)
++{
++ dwc_otg_device_t *otg_dev = DWC_OTG_BUSDRVDATA(_dev);
++ int retval = 0;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p) otg_dev=%p\n", __func__, _dev, otg_dev);
++
++ otg_dev->pcd = dwc_otg_pcd_init(otg_dev->core_if);
++
++ if (!otg_dev->pcd) {
++ DWC_ERROR("dwc_otg_pcd_init failed\n");
++ return -ENOMEM;
++ }
++
++ otg_dev->pcd->otg_dev = otg_dev;
++ gadget_wrapper = alloc_wrapper(_dev);
++
++ /*
++ * Initialize EP structures
++ */
++ gadget_add_eps(gadget_wrapper);
++ /*
++ * Setup interupt handler
++ */
++#ifdef PLATFORM_INTERFACE
++ DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n",
++ platform_get_irq(_dev, 0));
++ retval = request_irq(platform_get_irq(_dev, 0), dwc_otg_pcd_irq,
++ IRQF_SHARED, gadget_wrapper->gadget.name,
++ otg_dev->pcd);
++ if (retval != 0) {
++ DWC_ERROR("request of irq%d failed\n",
++ platform_get_irq(_dev, 0));
++ free_wrapper(gadget_wrapper);
++ return -EBUSY;
++ }
++#else
++ DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n",
++ _dev->irq);
++ retval = request_irq(_dev->irq, dwc_otg_pcd_irq,
++ IRQF_SHARED | IRQF_DISABLED,
++ gadget_wrapper->gadget.name, otg_dev->pcd);
++ if (retval != 0) {
++ DWC_ERROR("request of irq%d failed\n", _dev->irq);
++ free_wrapper(gadget_wrapper);
++ return -EBUSY;
++ }
++#endif
++
++ dwc_otg_pcd_start(gadget_wrapper->pcd, &fops);
++
++ return retval;
++}
++
++/**
++ * Cleanup the PCD.
++ */
++void pcd_remove(dwc_bus_dev_t *_dev)
++{
++ dwc_otg_device_t *otg_dev = DWC_OTG_BUSDRVDATA(_dev);
++ dwc_otg_pcd_t *pcd = otg_dev->pcd;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p) otg_dev %p\n", __func__, _dev, otg_dev);
++
++ /*
++ * Free the IRQ
++ */
++#ifdef PLATFORM_INTERFACE
++ free_irq(platform_get_irq(_dev, 0), pcd);
++#else
++ free_irq(_dev->irq, pcd);
++#endif
++ dwc_otg_pcd_remove(otg_dev->pcd);
++ free_wrapper(gadget_wrapper);
++ otg_dev->pcd = 0;
++}
++
++/**
++ * This function registers a gadget driver with the PCD.
++ *
++ * When a driver is successfully registered, it will receive control
++ * requests including set_configuration(), which enables non-control
++ * requests. then usb traffic follows until a disconnect is reported.
++ * then a host may connect again, or the driver might get unbound.
++ *
++ * @param driver The driver being registered
++ * @param bind The bind function of gadget driver
++ */
++
++int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
++{
++ int retval;
++
++ DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n",
++ driver->driver.name);
++
++ if (!driver || driver->max_speed == USB_SPEED_UNKNOWN ||
++ !driver->bind ||
++ !driver->unbind || !driver->disconnect || !driver->setup) {
++ DWC_DEBUGPL(DBG_PCDV, "EINVAL\n");
++ return -EINVAL;
++ }
++ if (gadget_wrapper == 0) {
++ DWC_DEBUGPL(DBG_PCDV, "ENODEV\n");
++ return -ENODEV;
++ }
++ if (gadget_wrapper->driver != 0) {
++ DWC_DEBUGPL(DBG_PCDV, "EBUSY (%p)\n", gadget_wrapper->driver);
++ return -EBUSY;
++ }
++
++ /* hook up the driver */
++ gadget_wrapper->driver = driver;
++ gadget_wrapper->gadget.dev.driver = &driver->driver;
++
++ DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
++ retval = driver->bind(&gadget_wrapper->gadget, gadget_wrapper->driver);
++ if (retval) {
++ DWC_ERROR("bind to driver %s --> error %d\n",
++ driver->driver.name, retval);
++ gadget_wrapper->driver = 0;
++ gadget_wrapper->gadget.dev.driver = 0;
++ return retval;
++ }
++ DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
++ driver->driver.name);
++ return 0;
++}
++EXPORT_SYMBOL(usb_gadget_probe_driver);
++
++/**
++ * This function unregisters a gadget driver
++ *
++ * @param driver The driver being unregistered
++ */
++int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
++{
++ //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
++
++ if (gadget_wrapper == 0) {
++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
++ -ENODEV);
++ return -ENODEV;
++ }
++ if (driver == 0 || driver != gadget_wrapper->driver) {
++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
++ -EINVAL);
++ return -EINVAL;
++ }
++
++ driver->unbind(&gadget_wrapper->gadget);
++ gadget_wrapper->driver = 0;
++
++ DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n", driver->driver.name);
++ return 0;
++}
++
++EXPORT_SYMBOL(usb_gadget_unregister_driver);
++
++#endif /* DWC_HOST_ONLY */
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_regs.h linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_regs.h
+--- linux-3.10/drivers/usb/host/dwc_otg/dwc_otg_regs.h 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/dwc_otg_regs.h 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,2550 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
++ * $Revision: #98 $
++ * $Date: 2012/08/10 $
++ * $Change: 2047372 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_REGS_H__
++#define __DWC_OTG_REGS_H__
++
++#include "dwc_otg_core_if.h"
++
++/**
++ * @file
++ *
++ * This file contains the data structures for accessing the DWC_otg core registers.
++ *
++ * The application interfaces with the HS OTG core by reading from and
++ * writing to the Control and Status Register (CSR) space through the
++ * AHB Slave interface. These registers are 32 bits wide, and the
++ * addresses are 32-bit-block aligned.
++ * CSRs are classified as follows:
++ * - Core Global Registers
++ * - Device Mode Registers
++ * - Device Global Registers
++ * - Device Endpoint Specific Registers
++ * - Host Mode Registers
++ * - Host Global Registers
++ * - Host Port CSRs
++ * - Host Channel Specific Registers
++ *
++ * Only the Core Global registers can be accessed in both Device and
++ * Host modes. When the HS OTG core is operating in one mode, either
++ * Device or Host, the application must not access registers from the
++ * other mode. When the core switches from one mode to another, the
++ * registers in the new mode of operation must be reprogrammed as they
++ * would be after a power-on reset.
++ */
++
++/****************************************************************************/
++/** DWC_otg Core registers .
++ * The dwc_otg_core_global_regs structure defines the size
++ * and relative field offsets for the Core Global registers.
++ */
++typedef struct dwc_otg_core_global_regs {
++ /** OTG Control and Status Register. <i>Offset: 000h</i> */
++ volatile uint32_t gotgctl;
++ /** OTG Interrupt Register. <i>Offset: 004h</i> */
++ volatile uint32_t gotgint;
++ /**Core AHB Configuration Register. <i>Offset: 008h</i> */
++ volatile uint32_t gahbcfg;
++
++#define DWC_GLBINTRMASK 0x0001
++#define DWC_DMAENABLE 0x0020
++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
++#define DWC_PTXEMPTYLVL_EMPTY 0x0100
++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
++
++ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
++ volatile uint32_t gusbcfg;
++ /**Core Reset Register. <i>Offset: 010h</i> */
++ volatile uint32_t grstctl;
++ /**Core Interrupt Register. <i>Offset: 014h</i> */
++ volatile uint32_t gintsts;
++ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
++ volatile uint32_t gintmsk;
++ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
++ volatile uint32_t grxstsr;
++ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
++ volatile uint32_t grxstsp;
++ /**Receive FIFO Size Register. <i>Offset: 024h</i> */
++ volatile uint32_t grxfsiz;
++ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
++ volatile uint32_t gnptxfsiz;
++ /**Non Periodic Transmit FIFO/Queue Status Register (Read
++ * Only). <i>Offset: 02Ch</i> */
++ volatile uint32_t gnptxsts;
++ /**I2C Access Register. <i>Offset: 030h</i> */
++ volatile uint32_t gi2cctl;
++ /**PHY Vendor Control Register. <i>Offset: 034h</i> */
++ volatile uint32_t gpvndctl;
++ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
++ volatile uint32_t ggpio;
++ /**User ID Register. <i>Offset: 03Ch</i> */
++ volatile uint32_t guid;
++ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
++ volatile uint32_t gsnpsid;
++ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
++ volatile uint32_t ghwcfg1;
++ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
++ volatile uint32_t ghwcfg2;
++#define DWC_SLAVE_ONLY_ARCH 0
++#define DWC_EXT_DMA_ARCH 1
++#define DWC_INT_DMA_ARCH 2
++
++#define DWC_MODE_HNP_SRP_CAPABLE 0
++#define DWC_MODE_SRP_ONLY_CAPABLE 1
++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
++#define DWC_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_MODE_SRP_CAPABLE_HOST 5
++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
++
++ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
++ volatile uint32_t ghwcfg3;
++ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
++ volatile uint32_t ghwcfg4;
++ /** Core LPM Configuration register <i>Offset: 054h</i>*/
++ volatile uint32_t glpmcfg;
++ /** Global PowerDn Register <i>Offset: 058h</i> */
++ volatile uint32_t gpwrdn;
++ /** Global DFIFO SW Config Register <i>Offset: 05Ch</i> */
++ volatile uint32_t gdfifocfg;
++ /** ADP Control Register <i>Offset: 060h</i> */
++ volatile uint32_t adpctl;
++ /** Reserved <i>Offset: 064h-0FFh</i> */
++ volatile uint32_t reserved39[39];
++ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
++ volatile uint32_t hptxfsiz;
++ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
++ otherwise Device Transmit FIFO#n Register.
++ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
++ volatile uint32_t dtxfsiz[15];
++} dwc_otg_core_global_regs_t;
++
++/**
++ * This union represents the bit fields of the Core OTG Control
++ * and Status Register (GOTGCTL). Set the bits using the bit
++ * fields then write the <i>d32</i> value to the register.
++ */
++typedef union gotgctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned sesreqscs:1;
++ unsigned sesreq:1;
++ unsigned vbvalidoven:1;
++ unsigned vbvalidovval:1;
++ unsigned avalidoven:1;
++ unsigned avalidovval:1;
++ unsigned bvalidoven:1;
++ unsigned bvalidovval:1;
++ unsigned hstnegscs:1;
++ unsigned hnpreq:1;
++ unsigned hstsethnpen:1;
++ unsigned devhnpen:1;
++ unsigned reserved12_15:4;
++ unsigned conidsts:1;
++ unsigned dbnctime:1;
++ unsigned asesvld:1;
++ unsigned bsesvld:1;
++ unsigned otgver:1;
++ unsigned reserved1:1;
++ unsigned multvalidbc:5;
++ unsigned chirpen:1;
++ unsigned reserved28_31:4;
++ } b;
++} gotgctl_data_t;
++
++/**
++ * This union represents the bit fields of the Core OTG Interrupt Register
++ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
++ * value to the register.
++ */
++typedef union gotgint_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Current Mode */
++ unsigned reserved0_1:2;
++
++ /** Session End Detected */
++ unsigned sesenddet:1;
++
++ unsigned reserved3_7:5;
++
++ /** Session Request Success Status Change */
++ unsigned sesreqsucstschng:1;
++ /** Host Negotiation Success Status Change */
++ unsigned hstnegsucstschng:1;
++
++ unsigned reserved10_16:7;
++
++ /** Host Negotiation Detected */
++ unsigned hstnegdet:1;
++ /** A-Device Timeout Change */
++ unsigned adevtoutchng:1;
++ /** Debounce Done */
++ unsigned debdone:1;
++ /** Multi-Valued input changed */
++ unsigned mvic:1;
++
++ unsigned reserved31_21:11;
++
++ } b;
++} gotgint_data_t;
++
++/**
++ * This union represents the bit fields of the Core AHB Configuration
++ * Register (GAHBCFG). Set/clear the bits using the bit fields then
++ * write the <i>d32</i> value to the register.
++ */
++typedef union gahbcfg_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned glblintrmsk:1;
++#define DWC_GAHBCFG_GLBINT_ENABLE 1
++
++ unsigned hburstlen:4;
++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
++
++ unsigned dmaenable:1;
++#define DWC_GAHBCFG_DMAENABLE 1
++ unsigned reserved:1;
++ unsigned nptxfemplvl_txfemplvl:1;
++ unsigned ptxfemplvl:1;
++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
++ unsigned reserved9_20:12;
++ unsigned remmemsupp:1;
++ unsigned notialldmawrit:1;
++ unsigned ahbsingle:1;
++ unsigned reserved24_31:8;
++ } b;
++} gahbcfg_data_t;
++
++/**
++ * This union represents the bit fields of the Core USB Configuration
++ * Register (GUSBCFG). Set the bits using the bit fields then write
++ * the <i>d32</i> value to the register.
++ */
++typedef union gusbcfg_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned toutcal:3;
++ unsigned phyif:1;
++ unsigned ulpi_utmi_sel:1;
++ unsigned fsintf:1;
++ unsigned physel:1;
++ unsigned ddrsel:1;
++ unsigned srpcap:1;
++ unsigned hnpcap:1;
++ unsigned usbtrdtim:4;
++ unsigned reserved1:1;
++ unsigned phylpwrclksel:1;
++ unsigned otgutmifssel:1;
++ unsigned ulpi_fsls:1;
++ unsigned ulpi_auto_res:1;
++ unsigned ulpi_clk_sus_m:1;
++ unsigned ulpi_ext_vbus_drv:1;
++ unsigned ulpi_int_vbus_indicator:1;
++ unsigned term_sel_dl_pulse:1;
++ unsigned indicator_complement:1;
++ unsigned indicator_pass_through:1;
++ unsigned ulpi_int_prot_dis:1;
++ unsigned ic_usb_cap:1;
++ unsigned ic_traffic_pull_remove:1;
++ unsigned tx_end_delay:1;
++ unsigned force_host_mode:1;
++ unsigned force_dev_mode:1;
++ unsigned reserved31:1;
++ } b;
++} gusbcfg_data_t;
++
++/**
++ * This union represents the bit fields of the Core Reset Register
++ * (GRSTCTL). Set/clear the bits using the bit fields then write the
++ * <i>d32</i> value to the register.
++ */
++typedef union grstctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Core Soft Reset (CSftRst) (Device and Host)
++ *
++ * The application can flush the control logic in the
++ * entire core using this bit. This bit resets the
++ * pipelines in the AHB Clock domain as well as the
++ * PHY Clock domain.
++ *
++ * The state machines are reset to an IDLE state, the
++ * control bits in the CSRs are cleared, all the
++ * transmit FIFOs and the receive FIFO are flushed.
++ *
++ * The status mask bits that control the generation of
++ * the interrupt, are cleared, to clear the
++ * interrupt. The interrupt status bits are not
++ * cleared, so the application can get the status of
++ * any events that occurred in the core after it has
++ * set this bit.
++ *
++ * Any transactions on the AHB are terminated as soon
++ * as possible following the protocol. Any
++ * transactions on the USB are terminated immediately.
++ *
++ * The configuration settings in the CSRs are
++ * unchanged, so the software doesn't have to
++ * reprogram these registers (Device
++ * Configuration/Host Configuration/Core System
++ * Configuration/Core PHY Configuration).
++ *
++ * The application can write to this bit, any time it
++ * wants to reset the core. This is a self clearing
++ * bit and the core clears this bit after all the
++ * necessary logic is reset in the core, which may
++ * take several clocks, depending on the current state
++ * of the core.
++ */
++ unsigned csftrst:1;
++ /** Hclk Soft Reset
++ *
++ * The application uses this bit to reset the control logic in
++ * the AHB clock domain. Only AHB clock domain pipelines are
++ * reset.
++ */
++ unsigned hsftrst:1;
++ /** Host Frame Counter Reset (Host Only)<br>
++ *
++ * The application can reset the (micro)frame number
++ * counter inside the core, using this bit. When the
++ * (micro)frame counter is reset, the subsequent SOF
++ * sent out by the core, will have a (micro)frame
++ * number of 0.
++ */
++ unsigned hstfrm:1;
++ /** In Token Sequence Learning Queue Flush
++ * (INTknQFlsh) (Device Only)
++ */
++ unsigned intknqflsh:1;
++ /** RxFIFO Flush (RxFFlsh) (Device and Host)
++ *
++ * The application can flush the entire Receive FIFO
++ * using this bit. The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is reading from the RxFIFO nor the MAC
++ * is writing the data in to the FIFO. The
++ * application should wait until the bit is cleared
++ * before performing any other operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned rxfflsh:1;
++ /** TxFIFO Flush (TxFFlsh) (Device and Host).
++ *
++ * This bit is used to selectively flush a single or
++ * all transmit FIFOs. The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is writing into the TxFIFO nor the MAC
++ * is reading the data out of the FIFO. The
++ * application should wait until the core clears this
++ * bit, before performing any operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned txfflsh:1;
++
++ /** TxFIFO Number (TxFNum) (Device and Host).
++ *
++ * This is the FIFO number which needs to be flushed,
++ * using the TxFIFO Flush bit. This field should not
++ * be changed until the TxFIFO Flush bit is cleared by
++ * the core.
++ * - 0x0 : Non Periodic TxFIFO Flush
++ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
++ * or Periodic TxFIFO in host mode
++ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
++ * - ...
++ * - 0xF : Periodic TxFIFO #15 Flush in device mode
++ * - 0x10: Flush all the Transmit NonPeriodic and
++ * Transmit Periodic FIFOs in the core
++ */
++ unsigned txfnum:5;
++ /** Reserved */
++ unsigned reserved11_29:19;
++ /** DMA Request Signal. Indicated DMA request is in
++ * probress. Used for debug purpose. */
++ unsigned dmareq:1;
++ /** AHB Master Idle. Indicates the AHB Master State
++ * Machine is in IDLE condition. */
++ unsigned ahbidle:1;
++ } b;
++} grstctl_t;
++
++/**
++ * This union represents the bit fields of the Core Interrupt Mask
++ * Register (GINTMSK). Set/clear the bits using the bit fields then
++ * write the <i>d32</i> value to the register.
++ */
++typedef union gintmsk_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved0:1;
++ unsigned modemismatch:1;
++ unsigned otgintr:1;
++ unsigned sofintr:1;
++ unsigned rxstsqlvl:1;
++ unsigned nptxfempty:1;
++ unsigned ginnakeff:1;
++ unsigned goutnakeff:1;
++ unsigned ulpickint:1;
++ unsigned i2cintr:1;
++ unsigned erlysuspend:1;
++ unsigned usbsuspend:1;
++ unsigned usbreset:1;
++ unsigned enumdone:1;
++ unsigned isooutdrop:1;
++ unsigned eopframe:1;
++ unsigned restoredone:1;
++ unsigned epmismatch:1;
++ unsigned inepintr:1;
++ unsigned outepintr:1;
++ unsigned incomplisoin:1;
++ unsigned incomplisoout:1;
++ unsigned fetsusp:1;
++ unsigned resetdet:1;
++ unsigned portintr:1;
++ unsigned hcintr:1;
++ unsigned ptxfempty:1;
++ unsigned lpmtranrcvd:1;
++ unsigned conidstschng:1;
++ unsigned disconnect:1;
++ unsigned sessreqintr:1;
++ unsigned wkupintr:1;
++ } b;
++} gintmsk_data_t;
++/**
++ * This union represents the bit fields of the Core Interrupt Register
++ * (GINTSTS). Set/clear the bits using the bit fields then write the
++ * <i>d32</i> value to the register.
++ */
++typedef union gintsts_data {
++ /** raw register data */
++ uint32_t d32;
++#define DWC_SOF_INTR_MASK 0x0008
++ /** register bits */
++ struct {
++#define DWC_HOST_MODE 1
++ unsigned curmode:1;
++ unsigned modemismatch:1;
++ unsigned otgintr:1;
++ unsigned sofintr:1;
++ unsigned rxstsqlvl:1;
++ unsigned nptxfempty:1;
++ unsigned ginnakeff:1;
++ unsigned goutnakeff:1;
++ unsigned ulpickint:1;
++ unsigned i2cintr:1;
++ unsigned erlysuspend:1;
++ unsigned usbsuspend:1;
++ unsigned usbreset:1;
++ unsigned enumdone:1;
++ unsigned isooutdrop:1;
++ unsigned eopframe:1;
++ unsigned restoredone:1;
++ unsigned epmismatch:1;
++ unsigned inepint:1;
++ unsigned outepintr:1;
++ unsigned incomplisoin:1;
++ unsigned incomplisoout:1;
++ unsigned fetsusp:1;
++ unsigned resetdet:1;
++ unsigned portintr:1;
++ unsigned hcintr:1;
++ unsigned ptxfempty:1;
++ unsigned lpmtranrcvd:1;
++ unsigned conidstschng:1;
++ unsigned disconnect:1;
++ unsigned sessreqintr:1;
++ unsigned wkupintr:1;
++ } b;
++} gintsts_data_t;
++
++/**
++ * This union represents the bit fields in the Device Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
++ * element then read out the bits using the <i>b</i>it elements.
++ */
++typedef union device_grxsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned epnum:4;
++ unsigned bcnt:11;
++ unsigned dpid:2;
++
++#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
++#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
++
++#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
++#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
++#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
++ unsigned pktsts:4;
++ unsigned fn:4;
++ unsigned reserved25_31:7;
++ } b;
++} device_grxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Host Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
++ * element then read out the bits using the <i>b</i>it elements.
++ */
++typedef union host_grxsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned chnum:4;
++ unsigned bcnt:11;
++ unsigned dpid:2;
++
++ unsigned pktsts:4;
++#define DWC_GRXSTS_PKTSTS_IN 0x2
++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
++
++ unsigned reserved21_31:11;
++ } b;
++} host_grxsts_data_t;
++
++/**
++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
++ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element
++ * then read out the bits using the <i>b</i>it elements.
++ */
++typedef union fifosize_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned startaddr:16;
++ unsigned depth:16;
++ } b;
++} fifosize_data_t;
++
++/**
++ * This union represents the bit fields in the Non-Periodic Transmit
++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
++ * <i>d32</i> element then read out the bits using the <i>b</i>it
++ * elements.
++ */
++typedef union gnptxsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned nptxfspcavail:16;
++ unsigned nptxqspcavail:8;
++ /** Top of the Non-Periodic Transmit Request Queue
++ * - bit 24 - Terminate (Last entry for the selected
++ * channel/EP)
++ * - bits 26:25 - Token Type
++ * - 2'b00 - IN/OUT
++ * - 2'b01 - Zero Length OUT
++ * - 2'b10 - PING/Complete Split
++ * - 2'b11 - Channel Halt
++ * - bits 30:27 - Channel/EP Number
++ */
++ unsigned nptxqtop_terminate:1;
++ unsigned nptxqtop_token:2;
++ unsigned nptxqtop_chnep:4;
++ unsigned reserved:1;
++ } b;
++} gnptxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Transmit
++ * FIFO Status Register (DTXFSTS). Read the register into the
++ * <i>d32</i> element then read out the bits using the <i>b</i>it
++ * elements.
++ */
++typedef union dtxfsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned txfspcavail:16;
++ unsigned reserved:16;
++ } b;
++} dtxfsts_data_t;
++
++/**
++ * This union represents the bit fields in the I2C Control Register
++ * (I2CCTL). Read the register into the <i>d32</i> element then read out the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union gi2cctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned rwdata:8;
++ unsigned regaddr:8;
++ unsigned addr:7;
++ unsigned i2cen:1;
++ unsigned ack:1;
++ unsigned i2csuspctl:1;
++ unsigned i2cdevaddr:2;
++ unsigned i2cdatse0:1;
++ unsigned reserved:1;
++ unsigned rw:1;
++ unsigned bsydne:1;
++ } b;
++} gi2cctl_data_t;
++
++/**
++ * This union represents the bit fields in the PHY Vendor Control Register
++ * (GPVNDCTL). Read the register into the <i>d32</i> element then read out the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union gpvndctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned regdata:8;
++ unsigned vctrl:8;
++ unsigned regaddr16_21:6;
++ unsigned regwr:1;
++ unsigned reserved23_24:2;
++ unsigned newregreq:1;
++ unsigned vstsbsy:1;
++ unsigned vstsdone:1;
++ unsigned reserved28_30:3;
++ unsigned disulpidrvr:1;
++ } b;
++} gpvndctl_data_t;
++
++/**
++ * This union represents the bit fields in the General Purpose
++ * Input/Output Register (GGPIO).
++ * Read the register into the <i>d32</i> element then read out the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union ggpio_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned gpi:16;
++ unsigned gpo:16;
++ } b;
++} ggpio_data_t;
++
++/**
++ * This union represents the bit fields in the User ID Register
++ * (GUID). Read the register into the <i>d32</i> element then read out the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union guid_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned rwdata:32;
++ } b;
++} guid_data_t;
++
++/**
++ * This union represents the bit fields in the Synopsys ID Register
++ * (GSNPSID). Read the register into the <i>d32</i> element then read out the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union gsnpsid_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned rwdata:32;
++ } b;
++} gsnpsid_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config1
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg1_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned ep_dir0:2;
++ unsigned ep_dir1:2;
++ unsigned ep_dir2:2;
++ unsigned ep_dir3:2;
++ unsigned ep_dir4:2;
++ unsigned ep_dir5:2;
++ unsigned ep_dir6:2;
++ unsigned ep_dir7:2;
++ unsigned ep_dir8:2;
++ unsigned ep_dir9:2;
++ unsigned ep_dir10:2;
++ unsigned ep_dir11:2;
++ unsigned ep_dir12:2;
++ unsigned ep_dir13:2;
++ unsigned ep_dir14:2;
++ unsigned ep_dir15:2;
++ } b;
++} hwcfg1_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config2
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg2_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /* GHWCFG2 */
++ unsigned op_mode:3;
++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
++
++ unsigned architecture:2;
++ unsigned point2point:1;
++ unsigned hs_phy_type:2;
++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
++
++ unsigned fs_phy_type:2;
++ unsigned num_dev_ep:4;
++ unsigned num_host_chan:4;
++ unsigned perio_ep_supported:1;
++ unsigned dynamic_fifo:1;
++ unsigned multi_proc_int:1;
++ unsigned reserved21:1;
++ unsigned nonperio_tx_q_depth:2;
++ unsigned host_perio_tx_q_depth:2;
++ unsigned dev_token_q_depth:5;
++ unsigned otg_enable_ic_usb:1;
++ } b;
++} hwcfg2_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config3
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg3_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /* GHWCFG3 */
++ unsigned xfer_size_cntr_width:4;
++ unsigned packet_size_cntr_width:3;
++ unsigned otg_func:1;
++ unsigned i2c:1;
++ unsigned vendor_ctrl_if:1;
++ unsigned optional_features:1;
++ unsigned synch_reset_type:1;
++ unsigned adp_supp:1;
++ unsigned otg_enable_hsic:1;
++ unsigned bc_support:1;
++ unsigned otg_lpm_en:1;
++ unsigned dfifo_depth:16;
++ } b;
++} hwcfg3_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config4
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg4_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned num_dev_perio_in_ep:4;
++ unsigned power_optimiz:1;
++ unsigned min_ahb_freq:1;
++ unsigned hiber:1;
++ unsigned xhiber:1;
++ unsigned reserved:6;
++ unsigned utmi_phy_data_width:2;
++ unsigned num_dev_mode_ctrl_ep:4;
++ unsigned iddig_filt_en:1;
++ unsigned vbus_valid_filt_en:1;
++ unsigned a_valid_filt_en:1;
++ unsigned b_valid_filt_en:1;
++ unsigned session_end_filt_en:1;
++ unsigned ded_fifo_en:1;
++ unsigned num_in_eps:4;
++ unsigned desc_dma:1;
++ unsigned desc_dma_dyn:1;
++ } b;
++} hwcfg4_data_t;
++
++/**
++ * This union represents the bit fields of the Core LPM Configuration
++ * Register (GLPMCFG). Set the bits using bit fields then write
++ * the <i>d32</i> value to the register.
++ */
++typedef union glpmctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** LPM-Capable (LPMCap) (Device and Host)
++ * The application uses this bit to control
++ * the DWC_otg core LPM capabilities.
++ */
++ unsigned lpm_cap_en:1;
++ /** LPM response programmed by application (AppL1Res) (Device)
++ * Handshake response to LPM token pre-programmed
++ * by device application software.
++ */
++ unsigned appl_resp:1;
++ /** Host Initiated Resume Duration (HIRD) (Device and Host)
++ * In Host mode this field indicates the value of HIRD
++ * to be sent in an LPM transaction.
++ * In Device mode this field is updated with the
++ * Received LPM Token HIRD bmAttribute
++ * when an ACK/NYET/STALL response is sent
++ * to an LPM transaction.
++ */
++ unsigned hird:4;
++ /** RemoteWakeEnable (bRemoteWake) (Device and Host)
++ * In Host mode this bit indicates the value of remote
++ * wake up to be sent in wIndex field of LPM transaction.
++ * In Device mode this field is updated with the
++ * Received LPM Token bRemoteWake bmAttribute
++ * when an ACK/NYET/STALL response is sent
++ * to an LPM transaction.
++ */
++ unsigned rem_wkup_en:1;
++ /** Enable utmi_sleep_n (EnblSlpM) (Device and Host)
++ * The application uses this bit to control
++ * the utmi_sleep_n assertion to the PHY when in L1 state.
++ */
++ unsigned en_utmi_sleep:1;
++ /** HIRD Threshold (HIRD_Thres) (Device and Host)
++ */
++ unsigned hird_thres:5;
++ /** LPM Response (CoreL1Res) (Device and Host)
++ * In Host mode this bit contains handsake response to
++ * LPM transaction.
++ * In Device mode the response of the core to
++ * LPM transaction received is reflected in these two bits.
++ - 0x0 : ERROR (No handshake response)
++ - 0x1 : STALL
++ - 0x2 : NYET
++ - 0x3 : ACK
++ */
++ unsigned lpm_resp:2;
++ /** Port Sleep Status (SlpSts) (Device and Host)
++ * This bit is set as long as a Sleep condition
++ * is present on the USB bus.
++ */
++ unsigned prt_sleep_sts:1;
++ /** Sleep State Resume OK (L1ResumeOK) (Device and Host)
++ * Indicates that the application or host
++ * can start resume from Sleep state.
++ */
++ unsigned sleep_state_resumeok:1;
++ /** LPM channel Index (LPM_Chnl_Indx) (Host)
++ * The channel number on which the LPM transaction
++ * has to be applied while sending
++ * an LPM transaction to the local device.
++ */
++ unsigned lpm_chan_index:4;
++ /** LPM Retry Count (LPM_Retry_Cnt) (Host)
++ * Number host retries that would be performed
++ * if the device response was not valid response.
++ */
++ unsigned retry_count:3;
++ /** Send LPM Transaction (SndLPM) (Host)
++ * When set by application software,
++ * an LPM transaction containing two tokens
++ * is sent.
++ */
++ unsigned send_lpm:1;
++ /** LPM Retry status (LPM_RetryCnt_Sts) (Host)
++ * Number of LPM Host Retries still remaining
++ * to be transmitted for the current LPM sequence
++ */
++ unsigned retry_count_sts:3;
++ unsigned reserved28_29:2;
++ /** In host mode once this bit is set, the host
++ * configures to drive the HSIC Idle state on the bus.
++ * It then waits for the device to initiate the Connect sequence.
++ * In device mode once this bit is set, the device waits for
++ * the HSIC Idle line state on the bus. Upon receving the Idle
++ * line state, it initiates the HSIC Connect sequence.
++ */
++ unsigned hsic_connect:1;
++ /** This bit overrides and functionally inverts
++ * the if_select_hsic input port signal.
++ */
++ unsigned inv_sel_hsic:1;
++ } b;
++} glpmcfg_data_t;
++
++/**
++ * This union represents the bit fields of the Core ADP Timer, Control and
++ * Status Register (ADPTIMCTLSTS). Set the bits using bit fields then write
++ * the <i>d32</i> value to the register.
++ */
++typedef union adpctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Probe Discharge (PRB_DSCHG)
++ * These bits set the times for TADP_DSCHG.
++ * These bits are defined as follows:
++ * 2'b00 - 4 msec
++ * 2'b01 - 8 msec
++ * 2'b10 - 16 msec
++ * 2'b11 - 32 msec
++ */
++ unsigned prb_dschg:2;
++ /** Probe Delta (PRB_DELTA)
++ * These bits set the resolution for RTIM value.
++ * The bits are defined in units of 32 kHz clock cycles as follows:
++ * 2'b00 - 1 cycles
++ * 2'b01 - 2 cycles
++ * 2'b10 - 3 cycles
++ * 2'b11 - 4 cycles
++ * For example if this value is chosen to 2'b01, it means that RTIM
++ * increments for every 3(three) 32Khz clock cycles.
++ */
++ unsigned prb_delta:2;
++ /** Probe Period (PRB_PER)
++ * These bits sets the TADP_PRD as shown in Figure 4 as follows:
++ * 2'b00 - 0.625 to 0.925 sec (typical 0.775 sec)
++ * 2'b01 - 1.25 to 1.85 sec (typical 1.55 sec)
++ * 2'b10 - 1.9 to 2.6 sec (typical 2.275 sec)
++ * 2'b11 - Reserved
++ */
++ unsigned prb_per:2;
++ /** These bits capture the latest time it took for VBUS to ramp from
++ * VADP_SINK to VADP_PRB.
++ * 0x000 - 1 cycles
++ * 0x001 - 2 cycles
++ * 0x002 - 3 cycles
++ * etc
++ * 0x7FF - 2048 cycles
++ * A time of 1024 cycles at 32 kHz corresponds to a time of 32 msec.
++ */
++ unsigned rtim:11;
++ /** Enable Probe (EnaPrb)
++ * When programmed to 1'b1, the core performs a probe operation.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned enaprb:1;
++ /** Enable Sense (EnaSns)
++ * When programmed to 1'b1, the core performs a Sense operation.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned enasns:1;
++ /** ADP Reset (ADPRes)
++ * When set, ADP controller is reset.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adpres:1;
++ /** ADP Enable (ADPEn)
++ * When set, the core performs either ADP probing or sensing
++ * based on EnaPrb or EnaSns.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adpen:1;
++ /** ADP Probe Interrupt (ADP_PRB_INT)
++ * When this bit is set, it means that the VBUS
++ * voltage is greater than VADP_PRB or VADP_PRB is reached.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adp_prb_int:1;
++ /**
++ * ADP Sense Interrupt (ADP_SNS_INT)
++ * When this bit is set, it means that the VBUS voltage is greater than
++ * VADP_SNS value or VADP_SNS is reached.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adp_sns_int:1;
++ /** ADP Tomeout Interrupt (ADP_TMOUT_INT)
++ * This bit is relevant only for an ADP probe.
++ * When this bit is set, it means that the ramp time has
++ * completed ie ADPCTL.RTIM has reached its terminal value
++ * of 0x7FF. This is a debug feature that allows software
++ * to read the ramp time after each cycle.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adp_tmout_int:1;
++ /** ADP Probe Interrupt Mask (ADP_PRB_INT_MSK)
++ * When this bit is set, it unmasks the interrupt due to ADP_PRB_INT.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adp_prb_int_msk:1;
++ /** ADP Sense Interrupt Mask (ADP_SNS_INT_MSK)
++ * When this bit is set, it unmasks the interrupt due to ADP_SNS_INT.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adp_sns_int_msk:1;
++ /** ADP Timoeout Interrupt Mask (ADP_TMOUT_MSK)
++ * When this bit is set, it unmasks the interrupt due to ADP_TMOUT_INT.
++ * This bit is valid only if OTG_Ver = 1'b1.
++ */
++ unsigned adp_tmout_int_msk:1;
++ /** Access Request
++ * 2'b00 - Read/Write Valid (updated by the core)
++ * 2'b01 - Read
++ * 2'b00 - Write
++ * 2'b00 - Reserved
++ */
++ unsigned ar:2;
++ /** Reserved */
++ unsigned reserved29_31:3;
++ } b;
++} adpctl_data_t;
++
++////////////////////////////////////////////
++// Device Registers
++/**
++ * Device Global Registers. <i>Offsets 800h-BFFh</i>
++ *
++ * The following structures define the size and relative field offsets
++ * for the Device Mode Registers.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_global_regs {
++ /** Device Configuration Register. <i>Offset 800h</i> */
++ volatile uint32_t dcfg;
++ /** Device Control Register. <i>Offset: 804h</i> */
++ volatile uint32_t dctl;
++ /** Device Status Register (Read Only). <i>Offset: 808h</i> */
++ volatile uint32_t dsts;
++ /** Reserved. <i>Offset: 80Ch</i> */
++ uint32_t unused;
++ /** Device IN Endpoint Common Interrupt Mask
++ * Register. <i>Offset: 810h</i> */
++ volatile uint32_t diepmsk;
++ /** Device OUT Endpoint Common Interrupt Mask
++ * Register. <i>Offset: 814h</i> */
++ volatile uint32_t doepmsk;
++ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
++ volatile uint32_t daint;
++ /** Device All Endpoints Interrupt Mask Register. <i>Offset:
++ * 81Ch</i> */
++ volatile uint32_t daintmsk;
++ /** Device IN Token Queue Read Register-1 (Read Only).
++ * <i>Offset: 820h</i> */
++ volatile uint32_t dtknqr1;
++ /** Device IN Token Queue Read Register-2 (Read Only).
++ * <i>Offset: 824h</i> */
++ volatile uint32_t dtknqr2;
++ /** Device VBUS discharge Register. <i>Offset: 828h</i> */
++ volatile uint32_t dvbusdis;
++ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
++ volatile uint32_t dvbuspulse;
++ /** Device IN Token Queue Read Register-3 (Read Only). /
++ * Device Thresholding control register (Read/Write)
++ * <i>Offset: 830h</i> */
++ volatile uint32_t dtknqr3_dthrctl;
++ /** Device IN Token Queue Read Register-4 (Read Only). /
++ * Device IN EPs empty Inr. Mask Register (Read/Write)
++ * <i>Offset: 834h</i> */
++ volatile uint32_t dtknqr4_fifoemptymsk;
++ /** Device Each Endpoint Interrupt Register (Read Only). /
++ * <i>Offset: 838h</i> */
++ volatile uint32_t deachint;
++ /** Device Each Endpoint Interrupt mask Register (Read/Write). /
++ * <i>Offset: 83Ch</i> */
++ volatile uint32_t deachintmsk;
++ /** Device Each In Endpoint Interrupt mask Register (Read/Write). /
++ * <i>Offset: 840h</i> */
++ volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
++ /** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
++ * <i>Offset: 880h</i> */
++ volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
++} dwc_otg_device_global_regs_t;
++
++/**
++ * This union represents the bit fields in the Device Configuration
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements. Write the
++ * <i>d32</i> member to the dcfg register.
++ */
++typedef union dcfg_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Device Speed */
++ unsigned devspd:2;
++ /** Non Zero Length Status OUT Handshake */
++ unsigned nzstsouthshk:1;
++#define DWC_DCFG_SEND_STALL 1
++
++ unsigned ena32khzs:1;
++ /** Device Addresses */
++ unsigned devaddr:7;
++ /** Periodic Frame Interval */
++ unsigned perfrint:2;
++#define DWC_DCFG_FRAME_INTERVAL_80 0
++#define DWC_DCFG_FRAME_INTERVAL_85 1
++#define DWC_DCFG_FRAME_INTERVAL_90 2
++#define DWC_DCFG_FRAME_INTERVAL_95 3
++
++ /** Enable Device OUT NAK for bulk in DDMA mode */
++ unsigned endevoutnak:1;
++
++ unsigned reserved14_17:4;
++ /** In Endpoint Mis-match count */
++ unsigned epmscnt:5;
++ /** Enable Descriptor DMA in Device mode */
++ unsigned descdma:1;
++ unsigned perschintvl:2;
++ unsigned resvalid:6;
++ } b;
++} dcfg_data_t;
++
++/**
++ * This union represents the bit fields in the Device Control
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union dctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Remote Wakeup */
++ unsigned rmtwkupsig:1;
++ /** Soft Disconnect */
++ unsigned sftdiscon:1;
++ /** Global Non-Periodic IN NAK Status */
++ unsigned gnpinnaksts:1;
++ /** Global OUT NAK Status */
++ unsigned goutnaksts:1;
++ /** Test Control */
++ unsigned tstctl:3;
++ /** Set Global Non-Periodic IN NAK */
++ unsigned sgnpinnak:1;
++ /** Clear Global Non-Periodic IN NAK */
++ unsigned cgnpinnak:1;
++ /** Set Global OUT NAK */
++ unsigned sgoutnak:1;
++ /** Clear Global OUT NAK */
++ unsigned cgoutnak:1;
++ /** Power-On Programming Done */
++ unsigned pwronprgdone:1;
++ /** Reserved */
++ unsigned reserved:1;
++ /** Global Multi Count */
++ unsigned gmc:2;
++ /** Ignore Frame Number for ISOC EPs */
++ unsigned ifrmnum:1;
++ /** NAK on Babble */
++ unsigned nakonbble:1;
++ /** Enable Continue on BNA */
++ unsigned encontonbna:1;
++
++ unsigned reserved18_31:14;
++ } b;
++} dctl_data_t;
++
++/**
++ * This union represents the bit fields in the Device Status
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union dsts_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Suspend Status */
++ unsigned suspsts:1;
++ /** Enumerated Speed */
++ unsigned enumspd:2;
++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
++ /** Erratic Error */
++ unsigned errticerr:1;
++ unsigned reserved4_7:4;
++ /** Frame or Microframe Number of the received SOF */
++ unsigned soffn:14;
++ unsigned reserved22_31:10;
++ } b;
++} dsts_data_t;
++
++/**
++ * This union represents the bit fields in the Device IN EP Interrupt
++ * Register and the Device IN EP Common Mask Register.
++ *
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union diepint_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Transfer complete mask */
++ unsigned xfercompl:1;
++ /** Endpoint disable mask */
++ unsigned epdisabled:1;
++ /** AHB Error mask */
++ unsigned ahberr:1;
++ /** TimeOUT Handshake mask (non-ISOC EPs) */
++ unsigned timeout:1;
++ /** IN Token received with TxF Empty mask */
++ unsigned intktxfemp:1;
++ /** IN Token Received with EP mismatch mask */
++ unsigned intknepmis:1;
++ /** IN Endpoint NAK Effective mask */
++ unsigned inepnakeff:1;
++ /** Reserved */
++ unsigned emptyintr:1;
++
++ unsigned txfifoundrn:1;
++
++ /** BNA Interrupt mask */
++ unsigned bna:1;
++
++ unsigned reserved10_12:3;
++ /** BNA Interrupt mask */
++ unsigned nak:1;
++
++ unsigned reserved14_31:18;
++ } b;
++} diepint_data_t;
++
++/**
++ * This union represents the bit fields in the Device IN EP
++ * Common/Dedicated Interrupt Mask Register.
++ */
++typedef union diepint_data diepmsk_data_t;
++
++/**
++ * This union represents the bit fields in the Device OUT EP Interrupt
++ * Registerand Device OUT EP Common Interrupt Mask Register.
++ *
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union doepint_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Transfer complete */
++ unsigned xfercompl:1;
++ /** Endpoint disable */
++ unsigned epdisabled:1;
++ /** AHB Error */
++ unsigned ahberr:1;
++ /** Setup Phase Done (contorl EPs) */
++ unsigned setup:1;
++ /** OUT Token Received when Endpoint Disabled */
++ unsigned outtknepdis:1;
++
++ unsigned stsphsercvd:1;
++ /** Back-to-Back SETUP Packets Received */
++ unsigned back2backsetup:1;
++
++ unsigned reserved7:1;
++ /** OUT packet Error */
++ unsigned outpkterr:1;
++ /** BNA Interrupt */
++ unsigned bna:1;
++
++ unsigned reserved10:1;
++ /** Packet Drop Status */
++ unsigned pktdrpsts:1;
++ /** Babble Interrupt */
++ unsigned babble:1;
++ /** NAK Interrupt */
++ unsigned nak:1;
++ /** NYET Interrupt */
++ unsigned nyet:1;
++ /** Bit indicating setup packet received */
++ unsigned sr:1;
++
++ unsigned reserved16_31:16;
++ } b;
++} doepint_data_t;
++
++/**
++ * This union represents the bit fields in the Device OUT EP
++ * Common/Dedicated Interrupt Mask Register.
++ */
++typedef union doepint_data doepmsk_data_t;
++
++/**
++ * This union represents the bit fields in the Device All EP Interrupt
++ * and Mask Registers.
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union daint_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** IN Endpoint bits */
++ unsigned in:16;
++ /** OUT Endpoint bits */
++ unsigned out:16;
++ } ep;
++ struct {
++ /** IN Endpoint bits */
++ unsigned inep0:1;
++ unsigned inep1:1;
++ unsigned inep2:1;
++ unsigned inep3:1;
++ unsigned inep4:1;
++ unsigned inep5:1;
++ unsigned inep6:1;
++ unsigned inep7:1;
++ unsigned inep8:1;
++ unsigned inep9:1;
++ unsigned inep10:1;
++ unsigned inep11:1;
++ unsigned inep12:1;
++ unsigned inep13:1;
++ unsigned inep14:1;
++ unsigned inep15:1;
++ /** OUT Endpoint bits */
++ unsigned outep0:1;
++ unsigned outep1:1;
++ unsigned outep2:1;
++ unsigned outep3:1;
++ unsigned outep4:1;
++ unsigned outep5:1;
++ unsigned outep6:1;
++ unsigned outep7:1;
++ unsigned outep8:1;
++ unsigned outep9:1;
++ unsigned outep10:1;
++ unsigned outep11:1;
++ unsigned outep12:1;
++ unsigned outep13:1;
++ unsigned outep14:1;
++ unsigned outep15:1;
++ } b;
++} daint_data_t;
++
++/**
++ * This union represents the bit fields in the Device IN Token Queue
++ * Read Registers.
++ * - Read the register into the <i>d32</i> member.
++ * - READ-ONLY Register
++ */
++typedef union dtknq1_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** In Token Queue Write Pointer */
++ unsigned intknwptr:5;
++ /** Reserved */
++ unsigned reserved05_06:2;
++ /** write pointer has wrapped. */
++ unsigned wrap_bit:1;
++ /** EP Numbers of IN Tokens 0 ... 4 */
++ unsigned epnums0_5:24;
++ } b;
++} dtknq1_data_t;
++
++/**
++ * This union represents Threshold control Register
++ * - Read and write the register into the <i>d32</i> member.
++ * - READ-WRITABLE Register
++ */
++typedef union dthrctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** non ISO Tx Thr. Enable */
++ unsigned non_iso_thr_en:1;
++ /** ISO Tx Thr. Enable */
++ unsigned iso_thr_en:1;
++ /** Tx Thr. Length */
++ unsigned tx_thr_len:9;
++ /** AHB Threshold ratio */
++ unsigned ahb_thr_ratio:2;
++ /** Reserved */
++ unsigned reserved13_15:3;
++ /** Rx Thr. Enable */
++ unsigned rx_thr_en:1;
++ /** Rx Thr. Length */
++ unsigned rx_thr_len:9;
++ unsigned reserved26:1;
++ /** Arbiter Parking Enable*/
++ unsigned arbprken:1;
++ /** Reserved */
++ unsigned reserved28_31:4;
++ } b;
++} dthrctl_data_t;
++
++/**
++ * Device Logical IN Endpoint-Specific Registers. <i>Offsets
++ * 900h-AFCh</i>
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_in_ep_regs {
++ /** Device IN Endpoint Control Register. <i>Offset:900h +
++ * (ep_num * 20h) + 00h</i> */
++ volatile uint32_t diepctl;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
++ uint32_t reserved04;
++ /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
++ * (ep_num * 20h) + 08h</i> */
++ volatile uint32_t diepint;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
++ uint32_t reserved0C;
++ /** Device IN Endpoint Transfer Size
++ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
++ volatile uint32_t dieptsiz;
++ /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
++ * (ep_num * 20h) + 14h</i> */
++ volatile uint32_t diepdma;
++ /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
++ * (ep_num * 20h) + 18h</i> */
++ volatile uint32_t dtxfsts;
++ /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
++ * (ep_num * 20h) + 1Ch</i> */
++ volatile uint32_t diepdmab;
++} dwc_otg_dev_in_ep_regs_t;
++
++/**
++ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
++ * B00h-CFCh</i>
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_out_ep_regs {
++ /** Device OUT Endpoint Control Register. <i>Offset:B00h +
++ * (ep_num * 20h) + 00h</i> */
++ volatile uint32_t doepctl;
++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 04h</i> */
++ uint32_t reserved04;
++ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
++ * (ep_num * 20h) + 08h</i> */
++ volatile uint32_t doepint;
++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
++ uint32_t reserved0C;
++ /** Device OUT Endpoint Transfer Size Register. <i>Offset:
++ * B00h + (ep_num * 20h) + 10h</i> */
++ volatile uint32_t doeptsiz;
++ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
++ * + (ep_num * 20h) + 14h</i> */
++ volatile uint32_t doepdma;
++ /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 18h</i> */
++ uint32_t unused;
++ /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
++ * + (ep_num * 20h) + 1Ch</i> */
++ uint32_t doepdmab;
++} dwc_otg_dev_out_ep_regs_t;
++
++/**
++ * This union represents the bit fields in the Device EP Control
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union depctl_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Maximum Packet Size
++ * IN/OUT EPn
++ * IN/OUT EP0 - 2 bits
++ * 2'b00: 64 Bytes
++ * 2'b01: 32
++ * 2'b10: 16
++ * 2'b11: 8 */
++ unsigned mps:11;
++#define DWC_DEP0CTL_MPS_64 0
++#define DWC_DEP0CTL_MPS_32 1
++#define DWC_DEP0CTL_MPS_16 2
++#define DWC_DEP0CTL_MPS_8 3
++
++ /** Next Endpoint
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved */
++ unsigned nextep:4;
++
++ /** USB Active Endpoint */
++ unsigned usbactep:1;
++
++ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
++ * This field contains the PID of the packet going to
++ * be received or transmitted on this endpoint. The
++ * application should program the PID of the first
++ * packet going to be received or transmitted on this
++ * endpoint , after the endpoint is
++ * activated. Application use the SetD1PID and
++ * SetD0PID fields of this register to program either
++ * D0 or D1 PID.
++ *
++ * The encoding for this field is
++ * - 0: D0
++ * - 1: D1
++ */
++ unsigned dpid:1;
++
++ /** NAK Status */
++ unsigned naksts:1;
++
++ /** Endpoint Type
++ * 2'b00: Control
++ * 2'b01: Isochronous
++ * 2'b10: Bulk
++ * 2'b11: Interrupt */
++ unsigned eptype:2;
++
++ /** Snoop Mode
++ * OUT EPn/OUT EP0
++ * IN EPn/IN EP0 - reserved */
++ unsigned snp:1;
++
++ /** Stall Handshake */
++ unsigned stall:1;
++
++ /** Tx Fifo Number
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved */
++ unsigned txfnum:4;
++
++ /** Clear NAK */
++ unsigned cnak:1;
++ /** Set NAK */
++ unsigned snak:1;
++ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA0. Set Even
++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to even (micro)
++ * frame.
++ */
++ unsigned setd0pid:1;
++ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA1 Set Odd
++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to odd (micro) frame.
++ */
++ unsigned setd1pid:1;
++
++ /** Endpoint Disable */
++ unsigned epdis:1;
++ /** Endpoint Enable */
++ unsigned epena:1;
++ } b;
++} depctl_data_t;
++
++/**
++ * This union represents the bit fields in the Device EP Transfer
++ * Size Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union deptsiz_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Transfer size */
++ unsigned xfersize:19;
++/** Max packet count for EP (pow(2,10)-1) */
++#define MAX_PKT_CNT 1023
++ /** Packet Count */
++ unsigned pktcnt:10;
++ /** Multi Count - Periodic IN endpoints */
++ unsigned mc:2;
++ unsigned reserved:1;
++ } b;
++} deptsiz_data_t;
++
++/**
++ * This union represents the bit fields in the Device EP 0 Transfer
++ * Size Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union deptsiz0_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Transfer size */
++ unsigned xfersize:7;
++ /** Reserved */
++ unsigned reserved7_18:12;
++ /** Packet Count */
++ unsigned pktcnt:2;
++ /** Reserved */
++ unsigned reserved21_28:8;
++ /**Setup Packet Count (DOEPTSIZ0 Only) */
++ unsigned supcnt:2;
++ unsigned reserved31;
++ } b;
++} deptsiz0_data_t;
++
++/////////////////////////////////////////////////
++// DMA Descriptor Specific Structures
++//
++
++/** Buffer status definitions */
++
++#define BS_HOST_READY 0x0
++#define BS_DMA_BUSY 0x1
++#define BS_DMA_DONE 0x2
++#define BS_HOST_BUSY 0x3
++
++/** Receive/Transmit status definitions */
++
++#define RTS_SUCCESS 0x0
++#define RTS_BUFFLUSH 0x1
++#define RTS_RESERVED 0x2
++#define RTS_BUFERR 0x3
++
++/**
++ * This union represents the bit fields in the DMA Descriptor
++ * status quadlet. Read the quadlet into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
++ * <i>b_iso_in</i> elements.
++ */
++typedef union dev_dma_desc_sts {
++ /** raw register data */
++ uint32_t d32;
++ /** quadlet bits */
++ struct {
++ /** Received number of bytes */
++ unsigned bytes:16;
++ /** NAK bit - only for OUT EPs */
++ unsigned nak:1;
++ unsigned reserved17_22:6;
++ /** Multiple Transfer - only for OUT EPs */
++ unsigned mtrf:1;
++ /** Setup Packet received - only for OUT EPs */
++ unsigned sr:1;
++ /** Interrupt On Complete */
++ unsigned ioc:1;
++ /** Short Packet */
++ unsigned sp:1;
++ /** Last */
++ unsigned l:1;
++ /** Receive Status */
++ unsigned sts:2;
++ /** Buffer Status */
++ unsigned bs:2;
++ } b;
++
++//#ifdef DWC_EN_ISOC
++ /** iso out quadlet bits */
++ struct {
++ /** Received number of bytes */
++ unsigned rxbytes:11;
++
++ unsigned reserved11:1;
++ /** Frame Number */
++ unsigned framenum:11;
++ /** Received ISO Data PID */
++ unsigned pid:2;
++ /** Interrupt On Complete */
++ unsigned ioc:1;
++ /** Short Packet */
++ unsigned sp:1;
++ /** Last */
++ unsigned l:1;
++ /** Receive Status */
++ unsigned rxsts:2;
++ /** Buffer Status */
++ unsigned bs:2;
++ } b_iso_out;
++
++ /** iso in quadlet bits */
++ struct {
++ /** Transmited number of bytes */
++ unsigned txbytes:12;
++ /** Frame Number */
++ unsigned framenum:11;
++ /** Transmited ISO Data PID */
++ unsigned pid:2;
++ /** Interrupt On Complete */
++ unsigned ioc:1;
++ /** Short Packet */
++ unsigned sp:1;
++ /** Last */
++ unsigned l:1;
++ /** Transmit Status */
++ unsigned txsts:2;
++ /** Buffer Status */
++ unsigned bs:2;
++ } b_iso_in;
++//#endif /* DWC_EN_ISOC */
++} dev_dma_desc_sts_t;
++
++/**
++ * DMA Descriptor structure
++ *
++ * DMA Descriptor structure contains two quadlets:
++ * Status quadlet and Data buffer pointer.
++ */
++typedef struct dwc_otg_dev_dma_desc {
++ /** DMA Descriptor status quadlet */
++ dev_dma_desc_sts_t status;
++ /** DMA Descriptor data buffer pointer */
++ uint32_t buf;
++} dwc_otg_dev_dma_desc_t;
++
++/**
++ * The dwc_otg_dev_if structure contains information needed to manage
++ * the DWC_otg controller acting in device mode. It represents the
++ * programming view of the device-specific aspects of the controller.
++ */
++typedef struct dwc_otg_dev_if {
++ /** Pointer to device Global registers.
++ * Device Global Registers starting at offset 800h
++ */
++ dwc_otg_device_global_regs_t *dev_global_regs;
++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
++
++ /**
++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
++ */
++ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_IN_EP_REG_OFFSET 0x900
++#define DWC_EP_REG_OFFSET 0x20
++
++ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
++ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
++
++ /* Device configuration information */
++ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
++ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
++ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
++
++ /** Size of periodic FIFOs (Bytes) */
++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
++
++ /** Size of Tx FIFOs (Bytes) */
++ uint16_t tx_fifo_size[MAX_TX_FIFOS];
++
++ /** Thresholding enable flags and length varaiables **/
++ uint16_t rx_thr_en;
++ uint16_t iso_tx_thr_en;
++ uint16_t non_iso_tx_thr_en;
++
++ uint16_t rx_thr_length;
++ uint16_t tx_thr_length;
++
++ /**
++ * Pointers to the DMA Descriptors for EP0 Control
++ * transfers (virtual and physical)
++ */
++
++ /** 2 descriptors for SETUP packets */
++ dwc_dma_t dma_setup_desc_addr[2];
++ dwc_otg_dev_dma_desc_t *setup_desc_addr[2];
++
++ /** Pointer to Descriptor with latest SETUP packet */
++ dwc_otg_dev_dma_desc_t *psetup;
++
++ /** Index of current SETUP handler descriptor */
++ uint32_t setup_desc_index;
++
++ /** Descriptor for Data In or Status In phases */
++ dwc_dma_t dma_in_desc_addr;
++ dwc_otg_dev_dma_desc_t *in_desc_addr;
++
++ /** Descriptor for Data Out or Status Out phases */
++ dwc_dma_t dma_out_desc_addr;
++ dwc_otg_dev_dma_desc_t *out_desc_addr;
++
++ /** Setup Packet Detected - if set clear NAK when queueing */
++ uint32_t spd;
++ /** Isoc ep pointer on which incomplete happens */
++ void *isoc_ep;
++
++} dwc_otg_dev_if_t;
++
++/////////////////////////////////////////////////
++// Host Mode Register Structures
++//
++/**
++ * The Host Global Registers structure defines the size and relative
++ * field offsets for the Host Mode Global Registers. Host Global
++ * Registers offsets 400h-7FFh.
++*/
++typedef struct dwc_otg_host_global_regs {
++ /** Host Configuration Register. <i>Offset: 400h</i> */
++ volatile uint32_t hcfg;
++ /** Host Frame Interval Register. <i>Offset: 404h</i> */
++ volatile uint32_t hfir;
++ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
++ volatile uint32_t hfnum;
++ /** Reserved. <i>Offset: 40Ch</i> */
++ uint32_t reserved40C;
++ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
++ volatile uint32_t hptxsts;
++ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
++ volatile uint32_t haint;
++ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
++ volatile uint32_t haintmsk;
++ /** Host Frame List Base Address Register . <i>Offset: 41Ch</i> */
++ volatile uint32_t hflbaddr;
++} dwc_otg_host_global_regs_t;
++
++/**
++ * This union represents the bit fields in the Host Configuration Register.
++ * Read the register into the <i>d32</i> member then set/clear the bits using
++ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
++ */
++typedef union hcfg_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** FS/LS Phy Clock Select */
++ unsigned fslspclksel:2;
++#define DWC_HCFG_30_60_MHZ 0
++#define DWC_HCFG_48_MHZ 1
++#define DWC_HCFG_6_MHZ 2
++
++ /** FS/LS Only Support */
++ unsigned fslssupp:1;
++ unsigned reserved3_6:4;
++ /** Enable 32-KHz Suspend Mode */
++ unsigned ena32khzs:1;
++ /** Resume Validation Periiod */
++ unsigned resvalid:8;
++ unsigned reserved16_22:7;
++ /** Enable Scatter/gather DMA in Host mode */
++ unsigned descdma:1;
++ /** Frame List Entries */
++ unsigned frlisten:2;
++ /** Enable Periodic Scheduling */
++ unsigned perschedena:1;
++ unsigned reserved27_30:4;
++ unsigned modechtimen:1;
++ } b;
++} hcfg_data_t;
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++typedef union hfir_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned frint:16;
++ unsigned hfirrldctrl:1;
++ unsigned reserved:15;
++ } b;
++} hfir_data_t;
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++typedef union hfnum_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned frnum:16;
++#define DWC_HFNUM_MAX_FRNUM 0x3FFF
++ unsigned frrem:16;
++ } b;
++} hfnum_data_t;
++
++typedef union hptxsts_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned ptxfspcavail:16;
++ unsigned ptxqspcavail:8;
++ /** Top of the Periodic Transmit Request Queue
++ * - bit 24 - Terminate (last entry for the selected channel)
++ * - bits 26:25 - Token Type
++ * - 2'b00 - Zero length
++ * - 2'b01 - Ping
++ * - 2'b10 - Disable
++ * - bits 30:27 - Channel Number
++ * - bit 31 - Odd/even microframe
++ */
++ unsigned ptxqtop_terminate:1;
++ unsigned ptxqtop_token:2;
++ unsigned ptxqtop_chnum:4;
++ unsigned ptxqtop_odd:1;
++ } b;
++} hptxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Host Port Control and Status
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hprt0 register.
++ */
++typedef union hprt0_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned prtconnsts:1;
++ unsigned prtconndet:1;
++ unsigned prtena:1;
++ unsigned prtenchng:1;
++ unsigned prtovrcurract:1;
++ unsigned prtovrcurrchng:1;
++ unsigned prtres:1;
++ unsigned prtsusp:1;
++ unsigned prtrst:1;
++ unsigned reserved9:1;
++ unsigned prtlnsts:2;
++ unsigned prtpwr:1;
++ unsigned prttstctl:4;
++ unsigned prtspd:2;
++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
++ unsigned reserved19_31:13;
++ } b;
++} hprt0_data_t;
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union haint_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned ch0:1;
++ unsigned ch1:1;
++ unsigned ch2:1;
++ unsigned ch3:1;
++ unsigned ch4:1;
++ unsigned ch5:1;
++ unsigned ch6:1;
++ unsigned ch7:1;
++ unsigned ch8:1;
++ unsigned ch9:1;
++ unsigned ch10:1;
++ unsigned ch11:1;
++ unsigned ch12:1;
++ unsigned ch13:1;
++ unsigned ch14:1;
++ unsigned ch15:1;
++ unsigned reserved:16;
++ } b;
++
++ struct {
++ unsigned chint:16;
++ unsigned reserved:16;
++ } b2;
++} haint_data_t;
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union haintmsk_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned ch0:1;
++ unsigned ch1:1;
++ unsigned ch2:1;
++ unsigned ch3:1;
++ unsigned ch4:1;
++ unsigned ch5:1;
++ unsigned ch6:1;
++ unsigned ch7:1;
++ unsigned ch8:1;
++ unsigned ch9:1;
++ unsigned ch10:1;
++ unsigned ch11:1;
++ unsigned ch12:1;
++ unsigned ch13:1;
++ unsigned ch14:1;
++ unsigned ch15:1;
++ unsigned reserved:16;
++ } b;
++
++ struct {
++ unsigned chint:16;
++ unsigned reserved:16;
++ } b2;
++} haintmsk_data_t;
++
++/**
++ * Host Channel Specific Registers. <i>500h-5FCh</i>
++ */
++typedef struct dwc_otg_hc_regs {
++ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
++ volatile uint32_t hcchar;
++ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
++ volatile uint32_t hcsplt;
++ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
++ volatile uint32_t hcint;
++ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
++ volatile uint32_t hcintmsk;
++ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
++ volatile uint32_t hctsiz;
++ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
++ volatile uint32_t hcdma;
++ volatile uint32_t reserved;
++ /** Host Channel 0 DMA Buffer Address Register. <i>Offset: 500h + (chan_num * 20h) + 1Ch</i> */
++ volatile uint32_t hcdmab;
++} dwc_otg_hc_regs_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Characteristics
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcchar register.
++ */
++typedef union hcchar_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Maximum packet size in bytes */
++ unsigned mps:11;
++
++ /** Endpoint number */
++ unsigned epnum:4;
++
++ /** 0: OUT, 1: IN */
++ unsigned epdir:1;
++
++ unsigned reserved:1;
++
++ /** 0: Full/high speed device, 1: Low speed device */
++ unsigned lspddev:1;
++
++ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
++ unsigned eptype:2;
++
++ /** Packets per frame for periodic transfers. 0 is reserved. */
++ unsigned multicnt:2;
++
++ /** Device address */
++ unsigned devaddr:7;
++
++ /**
++ * Frame to transmit periodic transaction.
++ * 0: even, 1: odd
++ */
++ unsigned oddfrm:1;
++
++ /** Channel disable */
++ unsigned chdis:1;
++
++ /** Channel enable */
++ unsigned chen:1;
++ } b;
++} hcchar_data_t;
++
++typedef union hcsplt_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Port Address */
++ unsigned prtaddr:7;
++
++ /** Hub Address */
++ unsigned hubaddr:7;
++
++ /** Transaction Position */
++ unsigned xactpos:2;
++#define DWC_HCSPLIT_XACTPOS_MID 0
++#define DWC_HCSPLIT_XACTPOS_END 1
++#define DWC_HCSPLIT_XACTPOS_BEGIN 2
++#define DWC_HCSPLIT_XACTPOS_ALL 3
++
++ /** Do Complete Split */
++ unsigned compsplt:1;
++
++ /** Reserved */
++ unsigned reserved:14;
++
++ /** Split Enble */
++ unsigned spltena:1;
++ } b;
++} hcsplt_data_t;
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union hcint_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Transfer Complete */
++ unsigned xfercomp:1;
++ /** Channel Halted */
++ unsigned chhltd:1;
++ /** AHB Error */
++ unsigned ahberr:1;
++ /** STALL Response Received */
++ unsigned stall:1;
++ /** NAK Response Received */
++ unsigned nak:1;
++ /** ACK Response Received */
++ unsigned ack:1;
++ /** NYET Response Received */
++ unsigned nyet:1;
++ /** Transaction Err */
++ unsigned xacterr:1;
++ /** Babble Error */
++ unsigned bblerr:1;
++ /** Frame Overrun */
++ unsigned frmovrun:1;
++ /** Data Toggle Error */
++ unsigned datatglerr:1;
++ /** Buffer Not Available (only for DDMA mode) */
++ unsigned bna:1;
++ /** Exessive transaction error (only for DDMA mode) */
++ unsigned xcs_xact:1;
++ /** Frame List Rollover interrupt */
++ unsigned frm_list_roll:1;
++ /** Reserved */
++ unsigned reserved14_31:18;
++ } b;
++} hcint_data_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Interrupt Mask
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcintmsk register.
++ */
++typedef union hcintmsk_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ unsigned xfercompl:1;
++ unsigned chhltd:1;
++ unsigned ahberr:1;
++ unsigned stall:1;
++ unsigned nak:1;
++ unsigned ack:1;
++ unsigned nyet:1;
++ unsigned xacterr:1;
++ unsigned bblerr:1;
++ unsigned frmovrun:1;
++ unsigned datatglerr:1;
++ unsigned bna:1;
++ unsigned xcs_xact:1;
++ unsigned frm_list_roll:1;
++ unsigned reserved14_31:18;
++ } b;
++} hcintmsk_data_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Transfer Size
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcchar register.
++ */
++
++typedef union hctsiz_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Total transfer size in bytes */
++ unsigned xfersize:19;
++
++ /** Data packets to transfer */
++ unsigned pktcnt:10;
++
++ /**
++ * Packet ID for next data packet
++ * 0: DATA0
++ * 1: DATA2
++ * 2: DATA1
++ * 3: MDATA (non-Control), SETUP (Control)
++ */
++ unsigned pid:2;
++#define DWC_HCTSIZ_DATA0 0
++#define DWC_HCTSIZ_DATA1 2
++#define DWC_HCTSIZ_DATA2 1
++#define DWC_HCTSIZ_MDATA 3
++#define DWC_HCTSIZ_SETUP 3
++
++ /** Do PING protocol when 1 */
++ unsigned dopng:1;
++ } b;
++
++ /** register bits */
++ struct {
++ /** Scheduling information */
++ unsigned schinfo:8;
++
++ /** Number of transfer descriptors.
++ * Max value:
++ * 64 in general,
++ * 256 only for HS isochronous endpoint.
++ */
++ unsigned ntd:8;
++
++ /** Data packets to transfer */
++ unsigned reserved16_28:13;
++
++ /**
++ * Packet ID for next data packet
++ * 0: DATA0
++ * 1: DATA2
++ * 2: DATA1
++ * 3: MDATA (non-Control)
++ */
++ unsigned pid:2;
++
++ /** Do PING protocol when 1 */
++ unsigned dopng:1;
++ } b_ddma;
++} hctsiz_data_t;
++
++/**
++ * This union represents the bit fields in the Host DMA Address
++ * Register used in Descriptor DMA mode.
++ */
++typedef union hcdma_data {
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ unsigned reserved0_2:3;
++ /** Current Transfer Descriptor. Not used for ISOC */
++ unsigned ctd:8;
++ /** Start Address of Descriptor List */
++ unsigned dma_addr:21;
++ } b;
++} hcdma_data_t;
++
++/**
++ * This union represents the bit fields in the DMA Descriptor
++ * status quadlet for host mode. Read the quadlet into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union host_dma_desc_sts {
++ /** raw register data */
++ uint32_t d32;
++ /** quadlet bits */
++
++ /* for non-isochronous */
++ struct {
++ /** Number of bytes */
++ unsigned n_bytes:17;
++ /** QTD offset to jump when Short Packet received - only for IN EPs */
++ unsigned qtd_offset:6;
++ /**
++ * Set to request the core to jump to alternate QTD if
++ * Short Packet received - only for IN EPs
++ */
++ unsigned a_qtd:1;
++ /**
++ * Setup Packet bit. When set indicates that buffer contains
++ * setup packet.
++ */
++ unsigned sup:1;
++ /** Interrupt On Complete */
++ unsigned ioc:1;
++ /** End of List */
++ unsigned eol:1;
++ unsigned reserved27:1;
++ /** Rx/Tx Status */
++ unsigned sts:2;
++#define DMA_DESC_STS_PKTERR 1
++ unsigned reserved30:1;
++ /** Active Bit */
++ unsigned a:1;
++ } b;
++ /* for isochronous */
++ struct {
++ /** Number of bytes */
++ unsigned n_bytes:12;
++ unsigned reserved12_24:13;
++ /** Interrupt On Complete */
++ unsigned ioc:1;
++ unsigned reserved26_27:2;
++ /** Rx/Tx Status */
++ unsigned sts:2;
++ unsigned reserved30:1;
++ /** Active Bit */
++ unsigned a:1;
++ } b_isoc;
++} host_dma_desc_sts_t;
++
++#define MAX_DMA_DESC_SIZE 131071
++#define MAX_DMA_DESC_NUM_GENERIC 64
++#define MAX_DMA_DESC_NUM_HS_ISOC 256
++#define MAX_FRLIST_EN_NUM 64
++/**
++ * Host-mode DMA Descriptor structure
++ *
++ * DMA Descriptor structure contains two quadlets:
++ * Status quadlet and Data buffer pointer.
++ */
++typedef struct dwc_otg_host_dma_desc {
++ /** DMA Descriptor status quadlet */
++ host_dma_desc_sts_t status;
++ /** DMA Descriptor data buffer pointer */
++ uint32_t buf;
++} dwc_otg_host_dma_desc_t;
++
++/** OTG Host Interface Structure.
++ *
++ * The OTG Host Interface Structure structure contains information
++ * needed to manage the DWC_otg controller acting in host mode. It
++ * represents the programming view of the host-specific aspects of the
++ * controller.
++ */
++typedef struct dwc_otg_host_if {
++ /** Host Global Registers starting at offset 400h.*/
++ dwc_otg_host_global_regs_t *host_global_regs;
++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
++
++ /** Host Port 0 Control and Status Register */
++ volatile uint32_t *hprt0;
++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
++
++ /** Host Channel Specific Registers at offsets 500h-5FCh. */
++ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
++#define DWC_OTG_CHAN_REGS_OFFSET 0x20
++
++ /* Host configuration information */
++ /** Number of Host Channels (range: 1-16) */
++ uint8_t num_host_channels;
++ /** Periodic EPs supported (0: no, 1: yes) */
++ uint8_t perio_eps_supported;
++ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
++ uint16_t perio_tx_fifo_size;
++
++} dwc_otg_host_if_t;
++
++/**
++ * This union represents the bit fields in the Power and Clock Gating Control
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union pcgcctl_data {
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** Stop Pclk */
++ unsigned stoppclk:1;
++ /** Gate Hclk */
++ unsigned gatehclk:1;
++ /** Power Clamp */
++ unsigned pwrclmp:1;
++ /** Reset Power Down Modules */
++ unsigned rstpdwnmodule:1;
++ /** Reserved */
++ unsigned reserved:1;
++ /** Enable Sleep Clock Gating (Enbl_L1Gating) */
++ unsigned enbl_sleep_gating:1;
++ /** PHY In Sleep (PhySleep) */
++ unsigned phy_in_sleep:1;
++ /** Deep Sleep*/
++ unsigned deep_sleep:1;
++ unsigned resetaftsusp:1;
++ unsigned restoremode:1;
++ unsigned enbl_extnd_hiber:1;
++ unsigned extnd_hiber_pwrclmp:1;
++ unsigned extnd_hiber_switch:1;
++ unsigned ess_reg_restored:1;
++ unsigned prt_clk_sel:2;
++ unsigned port_power:1;
++ unsigned max_xcvrselect:2;
++ unsigned max_termsel:1;
++ unsigned mac_dev_addr:7;
++ unsigned p2hd_dev_enum_spd:2;
++ unsigned p2hd_prt_spd:2;
++ unsigned if_dev_mode:1;
++ } b;
++} pcgcctl_data_t;
++
++/**
++ * This union represents the bit fields in the Global Data FIFO Software
++ * Configuration Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union gdfifocfg_data {
++ /* raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** OTG Data FIFO depth */
++ unsigned gdfifocfg:16;
++ /** Start address of EP info controller */
++ unsigned epinfobase:16;
++ } b;
++} gdfifocfg_data_t;
++
++/**
++ * This union represents the bit fields in the Global Power Down Register
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union gpwrdn_data {
++ /* raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct {
++ /** PMU Interrupt Select */
++ unsigned pmuintsel:1;
++ /** PMU Active */
++ unsigned pmuactv:1;
++ /** Restore */
++ unsigned restore:1;
++ /** Power Down Clamp */
++ unsigned pwrdnclmp:1;
++ /** Power Down Reset */
++ unsigned pwrdnrstn:1;
++ /** Power Down Switch */
++ unsigned pwrdnswtch:1;
++ /** Disable VBUS */
++ unsigned dis_vbus:1;
++ /** Line State Change */
++ unsigned lnstschng:1;
++ /** Line state change mask */
++ unsigned lnstchng_msk:1;
++ /** Reset Detected */
++ unsigned rst_det:1;
++ /** Reset Detect mask */
++ unsigned rst_det_msk:1;
++ /** Disconnect Detected */
++ unsigned disconn_det:1;
++ /** Disconnect Detect mask */
++ unsigned disconn_det_msk:1;
++ /** Connect Detected*/
++ unsigned connect_det:1;
++ /** Connect Detected Mask*/
++ unsigned connect_det_msk:1;
++ /** SRP Detected */
++ unsigned srp_det:1;
++ /** SRP Detect mask */
++ unsigned srp_det_msk:1;
++ /** Status Change Interrupt */
++ unsigned sts_chngint:1;
++ /** Status Change Interrupt Mask */
++ unsigned sts_chngint_msk:1;
++ /** Line State */
++ unsigned linestate:2;
++ /** Indicates current mode(status of IDDIG signal) */
++ unsigned idsts:1;
++ /** B Session Valid signal status*/
++ unsigned bsessvld:1;
++ /** ADP Event Detected */
++ unsigned adp_int:1;
++ /** Multi Valued ID pin */
++ unsigned mult_val_id_bc:5;
++ /** Reserved 24_31 */
++ unsigned reserved29_31:3;
++ } b;
++} gpwrdn_data_t;
++
++#endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/Makefile linux-rpi-3.10.y/drivers/usb/host/dwc_otg/Makefile
+--- linux-3.10/drivers/usb/host/dwc_otg/Makefile 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/Makefile 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,81 @@
++#
++# Makefile for DWC_otg Highspeed USB controller driver
++#
++
++ifneq ($(KERNELRELEASE),)
++
++# Use the BUS_INTERFACE variable to compile the software for either
++# PCI(PCI_INTERFACE) or LM(LM_INTERFACE) bus.
++ifeq ($(BUS_INTERFACE),)
++# BUS_INTERFACE = -DPCI_INTERFACE
++# BUS_INTERFACE = -DLM_INTERFACE
++ BUS_INTERFACE = -DPLATFORM_INTERFACE
++endif
++
++#EXTRA_CFLAGS += -DDEBUG
++#EXTRA_CFLAGS += -DDWC_OTG_DEBUGLEV=1 # reduce common debug msgs
++
++# Use one of the following flags to compile the software in host-only or
++# device-only mode.
++#EXTRA_CFLAGS += -DDWC_HOST_ONLY
++#EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
++
++EXTRA_CFLAGS += -Dlinux -DDWC_HS_ELECT_TST
++#EXTRA_CFLAGS += -DDWC_EN_ISOC
++EXTRA_CFLAGS += -I$(obj)/../dwc_common_port
++#EXTRA_CFLAGS += -I$(PORTLIB)
++EXTRA_CFLAGS += -DDWC_LINUX
++EXTRA_CFLAGS += $(CFI)
++EXTRA_CFLAGS += $(BUS_INTERFACE)
++#EXTRA_CFLAGS += -DDWC_DEV_SRPCAP
++
++obj-$(CONFIG_USB_DWCOTG) += dwc_otg.o
++
++dwc_otg-objs := dwc_otg_driver.o dwc_otg_attr.o
++dwc_otg-objs += dwc_otg_cil.o dwc_otg_cil_intr.o
++dwc_otg-objs += dwc_otg_pcd_linux.o dwc_otg_pcd.o dwc_otg_pcd_intr.o
++dwc_otg-objs += dwc_otg_hcd.o dwc_otg_hcd_linux.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o dwc_otg_hcd_ddma.o
++dwc_otg-objs += dwc_otg_adp.o
++dwc_otg-objs += dwc_otg_mphi_fix.o
++ifneq ($(CFI),)
++dwc_otg-objs += dwc_otg_cfi.o
++endif
++
++kernrelwd := $(subst ., ,$(KERNELRELEASE))
++kernrel3 := $(word 1,$(kernrelwd)).$(word 2,$(kernrelwd)).$(word 3,$(kernrelwd))
++
++ifneq ($(kernrel3),2.6.20)
++EXTRA_CFLAGS += $(CPPFLAGS)
++endif
++
++else
++
++PWD := $(shell pwd)
++PORTLIB := $(PWD)/../dwc_common_port
++
++# Command paths
++CTAGS := $(CTAGS)
++DOXYGEN := $(DOXYGEN)
++
++default: portlib
++ $(MAKE) -C$(KDIR) M=$(PWD) ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE) modules
++
++install: default
++ $(MAKE) -C$(KDIR) M=$(PORTLIB) modules_install
++ $(MAKE) -C$(KDIR) M=$(PWD) modules_install
++
++portlib:
++ $(MAKE) -C$(KDIR) M=$(PORTLIB) ARCH=$(ARCH) CROSS_COMPILE=$(CROSS_COMPILE) modules
++ cp $(PORTLIB)/Module.symvers $(PWD)/
++
++docs: $(wildcard *.[hc]) doc/doxygen.cfg
++ $(DOXYGEN) doc/doxygen.cfg
++
++tags: $(wildcard *.[hc])
++ $(CTAGS) -e $(wildcard *.[hc]) $(wildcard linux/*.[hc]) $(wildcard $(KDIR)/include/linux/usb*.h)
++
++
++clean:
++ rm -rf *.o *.ko .*cmd *.mod.c .tmp_versions Module.symvers
++
++endif
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/test/dwc_otg_test.pm linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/dwc_otg_test.pm
+--- linux-3.10/drivers/usb/host/dwc_otg/test/dwc_otg_test.pm 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/dwc_otg_test.pm 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,337 @@
++package dwc_otg_test;
++
++use strict;
++use Exporter ();
++
++use vars qw(@ISA @EXPORT
++$sysfsdir $paramdir $errors $params
++);
++
++@ISA = qw(Exporter);
++
++#
++# Globals
++#
++$sysfsdir = "/sys/devices/lm0";
++$paramdir = "/sys/module/dwc_otg";
++$errors = 0;
++
++$params = [
++ {
++ NAME => "otg_cap",
++ DEFAULT => 0,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 2
++ },
++ {
++ NAME => "dma_enable",
++ DEFAULT => 0,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 1
++ },
++ {
++ NAME => "dma_burst_size",
++ DEFAULT => 32,
++ ENUM => [1, 4, 8, 16, 32, 64, 128, 256],
++ LOW => 1,
++ HIGH => 256
++ },
++ {
++ NAME => "host_speed",
++ DEFAULT => 0,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 1
++ },
++ {
++ NAME => "host_support_fs_ls_low_power",
++ DEFAULT => 0,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 1
++ },
++ {
++ NAME => "host_ls_low_power_phy_clk",
++ DEFAULT => 0,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 1
++ },
++ {
++ NAME => "dev_speed",
++ DEFAULT => 0,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 1
++ },
++ {
++ NAME => "enable_dynamic_fifo",
++ DEFAULT => 1,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 1
++ },
++ {
++ NAME => "data_fifo_size",
++ DEFAULT => 8192,
++ ENUM => [],
++ LOW => 32,
++ HIGH => 32768
++ },
++ {
++ NAME => "dev_rx_fifo_size",
++ DEFAULT => 1064,
++ ENUM => [],
++ LOW => 16,
++ HIGH => 32768
++ },
++ {
++ NAME => "dev_nperio_tx_fifo_size",
++ DEFAULT => 1024,
++ ENUM => [],
++ LOW => 16,
++ HIGH => 32768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_1",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_2",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_3",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_4",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_5",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_6",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_7",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_8",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_9",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_10",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_11",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_12",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_13",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_14",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "dev_perio_tx_fifo_size_15",
++ DEFAULT => 256,
++ ENUM => [],
++ LOW => 4,
++ HIGH => 768
++ },
++ {
++ NAME => "host_rx_fifo_size",
++ DEFAULT => 1024,
++ ENUM => [],
++ LOW => 16,
++ HIGH => 32768
++ },
++ {
++ NAME => "host_nperio_tx_fifo_size",
++ DEFAULT => 1024,
++ ENUM => [],
++ LOW => 16,
++ HIGH => 32768
++ },
++ {
++ NAME => "host_perio_tx_fifo_size",
++ DEFAULT => 1024,
++ ENUM => [],
++ LOW => 16,
++ HIGH => 32768
++ },
++ {
++ NAME => "max_transfer_size",
++ DEFAULT => 65535,
++ ENUM => [],
++ LOW => 2047,
++ HIGH => 65535
++ },
++ {
++ NAME => "max_packet_count",
++ DEFAULT => 511,
++ ENUM => [],
++ LOW => 15,
++ HIGH => 511
++ },
++ {
++ NAME => "host_channels",
++ DEFAULT => 12,
++ ENUM => [],
++ LOW => 1,
++ HIGH => 16
++ },
++ {
++ NAME => "dev_endpoints",
++ DEFAULT => 6,
++ ENUM => [],
++ LOW => 1,
++ HIGH => 15
++ },
++ {
++ NAME => "phy_type",
++ DEFAULT => 1,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 2
++ },
++ {
++ NAME => "phy_utmi_width",
++ DEFAULT => 16,
++ ENUM => [8, 16],
++ LOW => 8,
++ HIGH => 16
++ },
++ {
++ NAME => "phy_ulpi_ddr",
++ DEFAULT => 0,
++ ENUM => [],
++ LOW => 0,
++ HIGH => 1
++ },
++ ];
++
++
++#
++#
++sub check_arch {
++ $_ = `uname -m`;
++ chomp;
++ unless (m/armv4tl/) {
++ warn "# \n# Can't execute on $_. Run on integrator platform.\n# \n";
++ return 0;
++ }
++ return 1;
++}
++
++#
++#
++sub load_module {
++ my $params = shift;
++ print "\nRemoving Module\n";
++ system "rmmod dwc_otg";
++ print "Loading Module\n";
++ if ($params ne "") {
++ print "Module Parameters: $params\n";
++ }
++ if (system("modprobe dwc_otg $params")) {
++ warn "Unable to load module\n";
++ return 0;
++ }
++ return 1;
++}
++
++#
++#
++sub test_status {
++ my $arg = shift;
++
++ print "\n";
++
++ if (defined $arg) {
++ warn "WARNING: $arg\n";
++ }
++
++ if ($errors > 0) {
++ warn "TEST FAILED with $errors errors\n";
++ return 0;
++ } else {
++ print "TEST PASSED\n";
++ return 0 if (defined $arg);
++ }
++ return 1;
++}
++
++#
++#
++@EXPORT = qw(
++$sysfsdir
++$paramdir
++$params
++$errors
++check_arch
++load_module
++test_status
++);
++
++1;
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/test/Makefile linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/Makefile
+--- linux-3.10/drivers/usb/host/dwc_otg/test/Makefile 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/Makefile 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,16 @@
++
++PERL=/usr/bin/perl
++PL_TESTS=test_sysfs.pl test_mod_param.pl
++
++.PHONY : test
++test : perl_tests
++
++perl_tests :
++ @echo
++ @echo Running perl tests
++ @for test in $(PL_TESTS); do \
++ if $(PERL) ./$$test ; then \
++ echo "=======> $$test, PASSED" ; \
++ else echo "=======> $$test, FAILED" ; \
++ fi \
++ done
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/test/test_mod_param.pl linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/test_mod_param.pl
+--- linux-3.10/drivers/usb/host/dwc_otg/test/test_mod_param.pl 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/test_mod_param.pl 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,133 @@
++#!/usr/bin/perl -w
++#
++# Run this program on the integrator.
++#
++# - Tests module parameter default values.
++# - Tests setting of valid module parameter values via modprobe.
++# - Tests invalid module parameter values.
++# -----------------------------------------------------------------------------
++use strict;
++use dwc_otg_test;
++
++check_arch() or die;
++
++#
++#
++sub test {
++ my ($param,$expected) = @_;
++ my $value = get($param);
++
++ if ($value == $expected) {
++ print "$param = $value, okay\n";
++ }
++
++ else {
++ warn "ERROR: value of $param != $expected, $value\n";
++ $errors ++;
++ }
++}
++
++#
++#
++sub get {
++ my $param = shift;
++ my $tmp = `cat $paramdir/$param`;
++ chomp $tmp;
++ return $tmp;
++}
++
++#
++#
++sub test_main {
++
++ print "\nTesting Module Parameters\n";
++
++ load_module("") or die;
++
++ # Test initial values
++ print "\nTesting Default Values\n";
++ foreach (@{$params}) {
++ test ($_->{NAME}, $_->{DEFAULT});
++ }
++
++ # Test low value
++ print "\nTesting Low Value\n";
++ my $cmd_params = "";
++ foreach (@{$params}) {
++ $cmd_params = $cmd_params . "$_->{NAME}=$_->{LOW} ";
++ }
++ load_module($cmd_params) or die;
++
++ foreach (@{$params}) {
++ test ($_->{NAME}, $_->{LOW});
++ }
++
++ # Test high value
++ print "\nTesting High Value\n";
++ $cmd_params = "";
++ foreach (@{$params}) {
++ $cmd_params = $cmd_params . "$_->{NAME}=$_->{HIGH} ";
++ }
++ load_module($cmd_params) or die;
++
++ foreach (@{$params}) {
++ test ($_->{NAME}, $_->{HIGH});
++ }
++
++ # Test Enum
++ print "\nTesting Enumerated\n";
++ foreach (@{$params}) {
++ if (defined $_->{ENUM}) {
++ my $value;
++ foreach $value (@{$_->{ENUM}}) {
++ $cmd_params = "$_->{NAME}=$value";
++ load_module($cmd_params) or die;
++ test ($_->{NAME}, $value);
++ }
++ }
++ }
++
++ # Test Invalid Values
++ print "\nTesting Invalid Values\n";
++ $cmd_params = "";
++ foreach (@{$params}) {
++ $cmd_params = $cmd_params . sprintf "$_->{NAME}=%d ", $_->{LOW}-1;
++ }
++ load_module($cmd_params) or die;
++
++ foreach (@{$params}) {
++ test ($_->{NAME}, $_->{DEFAULT});
++ }
++
++ $cmd_params = "";
++ foreach (@{$params}) {
++ $cmd_params = $cmd_params . sprintf "$_->{NAME}=%d ", $_->{HIGH}+1;
++ }
++ load_module($cmd_params) or die;
++
++ foreach (@{$params}) {
++ test ($_->{NAME}, $_->{DEFAULT});
++ }
++
++ print "\nTesting Enumerated\n";
++ foreach (@{$params}) {
++ if (defined $_->{ENUM}) {
++ my $value;
++ foreach $value (@{$_->{ENUM}}) {
++ $value = $value + 1;
++ $cmd_params = "$_->{NAME}=$value";
++ load_module($cmd_params) or die;
++ test ($_->{NAME}, $_->{DEFAULT});
++ $value = $value - 2;
++ $cmd_params = "$_->{NAME}=$value";
++ load_module($cmd_params) or die;
++ test ($_->{NAME}, $_->{DEFAULT});
++ }
++ }
++ }
++
++ test_status() or die;
++}
++
++test_main();
++0;
+diff -urN linux-3.10/drivers/usb/host/dwc_otg/test/test_sysfs.pl linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/test_sysfs.pl
+--- linux-3.10/drivers/usb/host/dwc_otg/test/test_sysfs.pl 1970-01-01 01:00:00.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/dwc_otg/test/test_sysfs.pl 2013-07-06 15:25:50.000000000 +0100
+@@ -0,0 +1,193 @@
++#!/usr/bin/perl -w
++#
++# Run this program on the integrator
++# - Tests select sysfs attributes.
++# - Todo ... test more attributes, hnp/srp, buspower/bussuspend, etc.
++# -----------------------------------------------------------------------------
++use strict;
++use dwc_otg_test;
++
++check_arch() or die;
++
++#
++#
++sub test {
++ my ($attr,$expected) = @_;
++ my $string = get($attr);
++
++ if ($string eq $expected) {
++ printf("$attr = $string, okay\n");
++ }
++ else {
++ warn "ERROR: value of $attr != $expected, $string\n";
++ $errors ++;
++ }
++}
++
++#
++#
++sub set {
++ my ($reg, $value) = @_;
++ system "echo $value > $sysfsdir/$reg";
++}
++
++#
++#
++sub get {
++ my $attr = shift;
++ my $string = `cat $sysfsdir/$attr`;
++ chomp $string;
++ if ($string =~ m/\s\=\s/) {
++ my $tmp;
++ ($tmp, $string) = split /\s=\s/, $string;
++ }
++ return $string;
++}
++
++#
++#
++sub test_main {
++ print("\nTesting Sysfs Attributes\n");
++
++ load_module("") or die;
++
++ # Test initial values of regoffset/regvalue/guid/gsnpsid
++ print("\nTesting Default Values\n");
++
++ test("regoffset", "0xffffffff");
++ test("regvalue", "invalid offset");
++ test("guid", "0x12345678"); # this will fail if it has been changed
++ test("gsnpsid", "0x4f54200a");
++
++ # Test operation of regoffset/regvalue
++ print("\nTesting regoffset\n");
++ set('regoffset', '5a5a5a5a');
++ test("regoffset", "0xffffffff");
++
++ set('regoffset', '0');
++ test("regoffset", "0x00000000");
++
++ set('regoffset', '40000');
++ test("regoffset", "0x00000000");
++
++ set('regoffset', '3ffff');
++ test("regoffset", "0x0003ffff");
++
++ set('regoffset', '1');
++ test("regoffset", "0x00000001");
++
++ print("\nTesting regvalue\n");
++ set('regoffset', '3c');
++ test("regvalue", "0x12345678");
++ set('regvalue', '5a5a5a5a');
++ test("regvalue", "0x5a5a5a5a");
++ set('regvalue','a5a5a5a5');
++ test("regvalue", "0xa5a5a5a5");
++ set('guid','12345678');
++
++ # Test HNP Capable
++ print("\nTesting HNP Capable bit\n");
++ set('hnpcapable', '1');
++ test("hnpcapable", "0x1");
++ set('hnpcapable','0');
++ test("hnpcapable", "0x0");
++
++ set('regoffset','0c');
++
++ my $old = get('gusbcfg');
++ print("setting hnpcapable\n");
++ set('hnpcapable', '1');
++ test("hnpcapable", "0x1");
++ test('gusbcfg', sprintf "0x%08x", (oct ($old) | (1<<9)));
++ test('regvalue', sprintf "0x%08x", (oct ($old) | (1<<9)));
++
++ $old = get('gusbcfg');
++ print("clearing hnpcapable\n");
++ set('hnpcapable', '0');
++ test("hnpcapable", "0x0");
++ test ('gusbcfg', sprintf "0x%08x", oct ($old) & (~(1<<9)));
++ test ('regvalue', sprintf "0x%08x", oct ($old) & (~(1<<9)));
++
++ # Test SRP Capable
++ print("\nTesting SRP Capable bit\n");
++ set('srpcapable', '1');
++ test("srpcapable", "0x1");
++ set('srpcapable','0');
++ test("srpcapable", "0x0");
++
++ set('regoffset','0c');
++
++ $old = get('gusbcfg');
++ print("setting srpcapable\n");
++ set('srpcapable', '1');
++ test("srpcapable", "0x1");
++ test('gusbcfg', sprintf "0x%08x", (oct ($old) | (1<<8)));
++ test('regvalue', sprintf "0x%08x", (oct ($old) | (1<<8)));
++
++ $old = get('gusbcfg');
++ print("clearing srpcapable\n");
++ set('srpcapable', '0');
++ test("srpcapable", "0x0");
++ test('gusbcfg', sprintf "0x%08x", oct ($old) & (~(1<<8)));
++ test('regvalue', sprintf "0x%08x", oct ($old) & (~(1<<8)));
++
++ # Test GGPIO
++ print("\nTesting GGPIO\n");
++ set('ggpio','5a5a5a5a');
++ test('ggpio','0x5a5a0000');
++ set('ggpio','a5a5a5a5');
++ test('ggpio','0xa5a50000');
++ set('ggpio','11110000');
++ test('ggpio','0x11110000');
++ set('ggpio','00001111');
++ test('ggpio','0x00000000');
++
++ # Test DEVSPEED
++ print("\nTesting DEVSPEED\n");
++ set('regoffset','800');
++ $old = get('regvalue');
++ set('devspeed','0');
++ test('devspeed','0x0');
++ test('regvalue',sprintf("0x%08x", oct($old) & ~(0x3)));
++ set('devspeed','1');
++ test('devspeed','0x1');
++ test('regvalue',sprintf("0x%08x", oct($old) & ~(0x3) | 1));
++ set('devspeed','2');
++ test('devspeed','0x2');
++ test('regvalue',sprintf("0x%08x", oct($old) & ~(0x3) | 2));
++ set('devspeed','3');
++ test('devspeed','0x3');
++ test('regvalue',sprintf("0x%08x", oct($old) & ~(0x3) | 3));
++ set('devspeed','4');
++ test('devspeed','0x0');
++ test('regvalue',sprintf("0x%08x", oct($old) & ~(0x3)));
++ set('devspeed','5');
++ test('devspeed','0x1');
++ test('regvalue',sprintf("0x%08x", oct($old) & ~(0x3) | 1));
++
++
++ # mode Returns the current mode:0 for device mode1 for host mode Read
++ # hnp Initiate the Host Negotiation Protocol. Read returns the status. Read/Write
++ # srp Initiate the Session Request Protocol. Read returns the status. Read/Write
++ # buspower Get or Set the Power State of the bus (0 - Off or 1 - On) Read/Write
++ # bussuspend Suspend the USB bus. Read/Write
++ # busconnected Get the connection status of the bus Read
++
++ # gotgctl Get or set the Core Control Status Register. Read/Write
++ ## gusbcfg Get or set the Core USB Configuration Register Read/Write
++ # grxfsiz Get or set the Receive FIFO Size Register Read/Write
++ # gnptxfsiz Get or set the non-periodic Transmit Size Register Read/Write
++ # gpvndctl Get or set the PHY Vendor Control Register Read/Write
++ ## ggpio Get the value in the lower 16-bits of the General Purpose IO Register or Set the upper 16 bits. Read/Write
++ ## guid Get or set the value of the User ID Register Read/Write
++ ## gsnpsid Get the value of the Synopsys ID Regester Read
++ ## devspeed Get or set the device speed setting in the DCFG register Read/Write
++ # enumspeed Gets the device enumeration Speed. Read
++ # hptxfsiz Get the value of the Host Periodic Transmit FIFO Read
++ # hprt0 Get or Set the value in the Host Port Control and Status Register Read/Write
++
++ test_status("TEST NYI") or die;
++}
++
++test_main();
++0;
+diff -urN linux-3.10/drivers/usb/host/Kconfig linux-rpi-3.10.y/drivers/usb/host/Kconfig
+--- linux-3.10/drivers/usb/host/Kconfig 2013-06-30 23:13:29.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/Kconfig 2013-07-06 15:25:50.000000000 +0100
+@@ -663,6 +663,19 @@
+ To compile this driver a module, choose M here: the module
+ will be called "hwa-hc".
+
++config USB_DWCOTG
++ tristate "Synopsis DWC host support"
++ depends on USB
++ help
++ The Synopsis DWC controller is a dual-role
++ host/peripheral/OTG ("On The Go") USB controllers.
++
++ Enable this option to support this IP in host controller mode.
++ If unsure, say N.
++
++ To compile this driver as a module, choose M here: the
++ modules built will be called dwc_otg and dwc_common_port.
++
+ config USB_IMX21_HCD
+ tristate "i.MX21 HCD support"
+ depends on ARM && ARCH_MXC
+diff -urN linux-3.10/drivers/usb/host/Makefile linux-rpi-3.10.y/drivers/usb/host/Makefile
+--- linux-3.10/drivers/usb/host/Makefile 2013-06-30 23:13:29.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/host/Makefile 2013-07-06 15:25:50.000000000 +0100
+@@ -47,6 +47,8 @@
+ obj-$(CONFIG_USB_R8A66597_HCD) += r8a66597-hcd.o
+ obj-$(CONFIG_USB_ISP1760_HCD) += isp1760.o
+ obj-$(CONFIG_USB_HWA_HCD) += hwa-hc.o
++
++obj-$(CONFIG_USB_DWCOTG) += dwc_otg/ dwc_common_port/
+ obj-$(CONFIG_USB_IMX21_HCD) += imx21-hcd.o
+ obj-$(CONFIG_USB_FSL_MPH_DR_OF) += fsl-mph-dr-of.o
+ obj-$(CONFIG_USB_OCTEON2_COMMON) += octeon2-common.o
+diff -urN linux-3.10/drivers/usb/Makefile linux-rpi-3.10.y/drivers/usb/Makefile
+--- linux-3.10/drivers/usb/Makefile 2013-06-30 23:13:29.000000000 +0100
++++ linux-rpi-3.10.y/drivers/usb/Makefile 2013-07-06 15:25:50.000000000 +0100
+@@ -23,6 +23,7 @@
+ obj-$(CONFIG_USB_R8A66597_HCD) += host/
+ obj-$(CONFIG_USB_HWA_HCD) += host/
+ obj-$(CONFIG_USB_ISP1760_HCD) += host/
++obj-$(CONFIG_USB_DWCOTG) += host/
+ obj-$(CONFIG_USB_IMX21_HCD) += host/
+ obj-$(CONFIG_USB_FSL_MPH_DR_OF) += host/
+