summaryrefslogtreecommitdiff
path: root/target/linux/cns3xxx/patches-3.1/200-dwc_otg.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/cns3xxx/patches-3.1/200-dwc_otg.patch')
-rw-r--r--target/linux/cns3xxx/patches-3.1/200-dwc_otg.patch22680
1 files changed, 22680 insertions, 0 deletions
diff --git a/target/linux/cns3xxx/patches-3.1/200-dwc_otg.patch b/target/linux/cns3xxx/patches-3.1/200-dwc_otg.patch
new file mode 100644
index 0000000..c53189f
--- /dev/null
+++ b/target/linux/cns3xxx/patches-3.1/200-dwc_otg.patch
@@ -0,0 +1,22680 @@
+--- a/drivers/Makefile
++++ b/drivers/Makefile
+@@ -68,6 +68,7 @@ obj-$(CONFIG_PARIDE) += block/paride/
+ obj-$(CONFIG_TC) += tc/
+ obj-$(CONFIG_UWB) += uwb/
+ obj-$(CONFIG_USB_OTG_UTILS) += usb/
++obj-$(CONFIG_USB_DWC_OTG) += usb/dwc/
+ obj-$(CONFIG_USB) += usb/
+ obj-$(CONFIG_PCI) += usb/
+ obj-$(CONFIG_USB_GADGET) += usb/
+--- a/drivers/usb/Kconfig
++++ b/drivers/usb/Kconfig
+@@ -120,6 +120,8 @@ source "drivers/usb/musb/Kconfig"
+
+ source "drivers/usb/renesas_usbhs/Kconfig"
+
++source "drivers/usb/dwc/Kconfig"
++
+ source "drivers/usb/class/Kconfig"
+
+ source "drivers/usb/storage/Kconfig"
+--- /dev/null
++++ b/drivers/usb/dwc/Kconfig
+@@ -0,0 +1,44 @@
++#
++# USB Dual Role (OTG-ready) Controller Drivers
++# for silicon based on Synopsys DesignWare IP
++#
++
++comment "Enable Host or Gadget support for DesignWare OTG controller"
++depends on !USB && USB_GADGET=n
++
++config USB_DWC_OTG
++ tristate "Synopsys DWC OTG Controller"
++ depends on USB
++ help
++ This driver provides USB Device Controller support for the
++ Synopsys DesignWare USB OTG Core used on the Cavium CNS34xx SOC.
++
++config DWC_DEBUG
++ bool "Enable DWC Debugging"
++ depends on USB_DWC_OTG
++ default n
++ help
++ Enable DWC driver debugging
++
++choice
++ prompt "DWC Mode Selection"
++ depends on USB_DWC_OTG
++ default DWC_HOST_ONLY
++ help
++ Select the DWC Core in OTG, Host only, or Device only mode.
++
++config DWC_HOST_ONLY
++ bool "DWC Host Only Mode"
++
++config DWC_OTG_MODE
++ bool "DWC OTG Mode"
++ select USB_GADGET
++ select USB_GADGET_SELECTED
++
++config DWC_DEVICE_ONLY
++ bool "DWC Device Only Mode"
++ select USB_GADGET
++ select USB_GADGET_SELECTED
++
++endchoice
++
+--- /dev/null
++++ b/drivers/usb/dwc/Makefile
+@@ -0,0 +1,26 @@
++#
++# Makefile for DWC_otg Highspeed USB controller driver
++#
++
++EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
++#EXTRA_CFLAGS += -Dlinux -DDWC_HS_ELECT_TST
++#EXTRA_CFLAGS += -DDWC_EN_ISOC
++
++ifneq ($(CONFIG_DWC_HOST_ONLY),)
++EXTRA_CFLAGS += -DDWC_HOST_ONLY
++endif
++
++ifneq ($(CONFIG_DWC_DEVICE_ONLY),)
++EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
++endif
++
++ifneq ($(CONFIG_DWC_DEBUG),)
++EXTRA_CFLAGS += -DDEBUG
++endif
++
++obj-$(CONFIG_USB_DWC_OTG) := dwc_otg.o
++
++dwc_otg-objs := otg_driver.o otg_attr.o
++dwc_otg-objs += otg_cil.o otg_cil_intr.o
++dwc_otg-objs += otg_pcd.o otg_pcd_intr.o
++dwc_otg-objs += otg_hcd.o otg_hcd_intr.o otg_hcd_queue.o
+--- /dev/null
++++ b/drivers/usb/dwc/otg_attr.c
+@@ -0,0 +1,886 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
++ * $Revision: #31 $
++ * $Date: 2008/07/15 $
++ * $Change: 1064918 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing. The Linux driver attributes
++ * feature will be used to provide the Linux Diagnostic
++ * Interface. These attributes are accessed through sysfs.
++ */
++
++/** @page "Linux Module Attributes"
++ *
++ * The Linux module attributes feature is used to provide the Linux
++ * Diagnostic Interface. These attributes are accessed through sysfs.
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing.
++
++
++ The following table shows the attributes.
++ <table>
++ <tr>
++ <td><b> Name</b></td>
++ <td><b> Description</b></td>
++ <td><b> Access</b></td>
++ </tr>
++
++ <tr>
++ <td> mode </td>
++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hnpcapable </td>
++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srpcapable </td>
++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> hnp </td>
++ <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srp </td>
++ <td> Initiates the Session Request Protocol. Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> buspower </td>
++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> bussuspend </td>
++ <td> Suspends the USB bus.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> busconnected </td>
++ <td> Gets the connection status of the bus</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> gotgctl </td>
++ <td> Gets or sets the Core Control Status Register.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gusbcfg </td>
++ <td> Gets or sets the Core USB Configuration Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> grxfsiz </td>
++ <td> Gets or sets the Receive FIFO Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gnptxfsiz </td>
++ <td> Gets or sets the non-periodic Transmit Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gpvndctl </td>
++ <td> Gets or sets the PHY Vendor Control Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> ggpio </td>
++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
++ or sets the upper 16 bits.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> guid </td>
++ <td> Gets or sets the value of the User ID Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gsnpsid </td>
++ <td> Gets the value of the Synopsys ID Regester</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> devspeed </td>
++ <td> Gets or sets the device speed setting in the DCFG register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> enumspeed </td>
++ <td> Gets the device enumeration Speed.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hptxfsiz </td>
++ <td> Gets the value of the Host Periodic Transmit FIFO</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hprt0 </td>
++ <td> Gets or sets the value in the Host Port Control and Status Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regoffset </td>
++ <td> Sets the register offset for the next Register Access</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regvalue </td>
++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> remote_wakeup </td>
++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
++ Wakeup signalling bit in the Device Control Register is set for 1
++ milli-second.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regdump </td>
++ <td> Dumps the contents of core registers.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> spramdump </td>
++ <td> Dumps the contents of core registers.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcddump </td>
++ <td> Dumps the current HCD state.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcd_frrem </td>
++ <td> Shows the average value of the Frame Remaining
++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
++ occurs. This can be used to determine the average interrupt latency. Also
++ shows the average Frame Remaining value for start_transfer and the "a" and
++ "b" sample points. The "a" and "b" sample points may be used during debugging
++ bto determine how long it takes to execute a section of the HCD code.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> rd_reg_test </td>
++ <td> Displays the time required to read the GNPTXFSIZ register many times
++ (the output shows the number of times the register is read).
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> wr_reg_test </td>
++ <td> Displays the time required to write the GNPTXFSIZ register many times
++ (the output shows the number of times the register is written).
++ <td> Read</td>
++ </tr>
++
++ </table>
++
++ Example usage:
++ To get the current mode:
++ cat /sys/devices/lm0/mode
++
++ To power down the USB:
++ echo 0 > /sys/devices/lm0/buspower
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/platform_device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h> /* permission constants */
++#include <linux/version.h>
++
++#include <asm/sizes.h>
++#include <asm/io.h>
++#include <asm/sizes.h>
++
++#include "otg_plat.h"
++#include "otg_attr.h"
++#include "otg_driver.h"
++#include "otg_pcd.h"
++#include "otg_hcd.h"
++
++/*
++ * MACROs for defining sysfs attribute
++ */
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t val; \
++ val = dwc_read_reg32 (_addr_); \
++ val = (val & (_mask_)) >> _shift_; \
++ return sprintf (buf, "%s = 0x%x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t set = simple_strtoul(buf, NULL, 16); \
++ uint32_t clear = set; \
++ clear = ((~clear) << _shift_) & _mask_; \
++ set = (set << _shift_) & _mask_; \
++ dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
++ dwc_modify_reg32(_addr_, clear, set); \
++ return count; \
++}
++
++/*
++ * MACROs for defining sysfs attribute for 32-bit registers
++ */
++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
++static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
++{ \
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t val; \
++ val = dwc_read_reg32 (_addr_); \
++ return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
++}
++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
++static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
++ const char *buf, size_t count) \
++{ \
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t val = simple_strtoul(buf, NULL, 16); \
++ dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
++ dwc_write_reg32(_addr_, val); \
++ return count; \
++}
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
++DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
++DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
++
++
++/** @name Functions for Show/Store of Attributes */
++/**@{*/
++
++/**
++ * Show the register offset of the Register Access.
++ */
++static ssize_t regoffset_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
++}
++
++/**
++ * Set the register offset for the next Register Access Read/Write
++ */
++static ssize_t regoffset_store( struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf,
++ size_t count )
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t offset = simple_strtoul(buf, NULL, 16);
++ //dev_dbg(_dev, "Offset=0x%08x\n", offset);
++ if (offset < SZ_256K ) {
++ otg_dev->reg_offset = offset;
++ }
++ else {
++ dev_err( _dev, "invalid offset\n" );
++ }
++
++ return count;
++}
++DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store);
++
++
++/**
++ * Show the value of the register at the offset in the reg_offset
++ * attribute.
++ */
++static ssize_t regvalue_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t val;
++ volatile uint32_t *addr;
++
++ if (otg_dev->reg_offset != 0xFFFFFFFF &&
++ 0 != otg_dev->base) {
++ /* Calculate the address */
++ addr = (uint32_t*)(otg_dev->reg_offset +
++ (uint8_t*)otg_dev->base);
++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
++ val = dwc_read_reg32( addr );
++ return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
++ "Reg@0x%06x = 0x%08x\n",
++ otg_dev->reg_offset, val);
++ }
++ else {
++ dev_err(_dev, "Invalid offset (0x%0x)\n",
++ otg_dev->reg_offset);
++ return sprintf(buf, "invalid offset\n" );
++ }
++}
++
++/**
++ * Store the value in the register at the offset in the reg_offset
++ * attribute.
++ *
++ */
++static ssize_t regvalue_store( struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf,
++ size_t count )
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ volatile uint32_t * addr;
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++ //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
++ if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
++ /* Calculate the address */
++ addr = (uint32_t*)(otg_dev->reg_offset +
++ (uint8_t*)otg_dev->base);
++ //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
++ dwc_write_reg32( addr, val );
++ }
++ else {
++ dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
++ otg_dev->reg_offset);
++ }
++ return count;
++}
++DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
++
++/*
++ * Attributes
++ */
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
++
++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
++//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
++
++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
++DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
++
++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
++
++
++/**
++ * @todo Add code to initiate the HNP.
++ */
++/**
++ * Show the HNP status bit
++ */
++static ssize_t hnp_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ gotgctl_data_t val;
++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
++ return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
++}
++
++/**
++ * Set the HNP Request bit
++ */
++static ssize_t hnp_store( struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf,
++ size_t count )
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
++ gotgctl_data_t mem;
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.hnpreq = in;
++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++ return count;
++}
++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
++
++/**
++ * @todo Add code to initiate the SRP.
++ */
++/**
++ * Show the SRP status bit
++ */
++static ssize_t srp_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ gotgctl_data_t val;
++ val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
++ return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++
++
++/**
++ * Set the SRP Request bit
++ */
++static ssize_t srp_store( struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf,
++ size_t count )
++{
++#ifndef DWC_HOST_ONLY
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ dwc_otg_pcd_initiate_srp(otg_dev->pcd);
++#endif
++ return count;
++}
++DEVICE_ATTR(srp, 0644, srp_show, srp_store);
++
++/**
++ * @todo Need to do more for power on/off?
++ */
++/**
++ * Show the Bus Power status
++ */
++static ssize_t buspower_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ hprt0_data_t val;
++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
++ return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
++}
++
++
++/**
++ * Set the Bus Power status
++ */
++static ssize_t buspower_store( struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf,
++ size_t count )
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t on = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
++ hprt0_data_t mem;
++
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.prtpwr = on;
++
++ //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++
++ return count;
++}
++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
++
++/**
++ * @todo Need to do more for suspend?
++ */
++/**
++ * Show the Bus Suspend status
++ */
++static ssize_t bussuspend_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ hprt0_data_t val;
++ val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
++ return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
++}
++
++/**
++ * Set the Bus Suspend status
++ */
++static ssize_t bussuspend_store( struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf,
++ size_t count )
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t in = simple_strtoul(buf, NULL, 16);
++ uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
++ hprt0_data_t mem;
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.prtsusp = in;
++ dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
++ dwc_write_reg32(addr, mem.d32);
++ return count;
++}
++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
++
++/**
++ * Show the status of Remote Wakeup.
++ */
++static ssize_t remote_wakeup_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++#ifndef DWC_HOST_ONLY
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ dctl_data_t val;
++ val.d32 =
++ dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
++ return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
++ val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
++#else
++ return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++/**
++ * Initiate a remote wakeup of the host. The Device control register
++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
++ * flag is set.
++ *
++ */
++static ssize_t remote_wakeup_store( struct device *_dev,
++ struct device_attribute *attr,
++ const char *buf,
++ size_t count )
++{
++#ifndef DWC_HOST_ONLY
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t val = simple_strtoul(buf, NULL, 16);
++ if (val&1) {
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
++ }
++ else {
++ dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
++ }
++#endif
++ return count;
++}
++DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
++ remote_wakeup_store);
++
++/**
++ * Dump global registers and either host or device registers (depending on the
++ * current mode of the core).
++ */
++static ssize_t regdump_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ dwc_otg_dump_global_registers( otg_dev->core_if);
++ if (dwc_otg_is_host_mode(otg_dev->core_if)) {
++ dwc_otg_dump_host_registers( otg_dev->core_if);
++ } else {
++ dwc_otg_dump_dev_registers( otg_dev->core_if);
++
++ }
++ return sprintf( buf, "Register Dump\n" );
++}
++
++DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
++
++/**
++ * Dump global registers and either host or device registers (depending on the
++ * current mode of the core).
++ */
++static ssize_t spramdump_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ dwc_otg_dump_spram( otg_dev->core_if);
++
++ return sprintf( buf, "SPRAM Dump\n" );
++}
++
++DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0);
++
++/**
++ * Dump the current hcd state.
++ */
++static ssize_t hcddump_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ dwc_otg_hcd_dump_state(otg_dev->hcd);
++#endif
++ return sprintf( buf, "HCD Dump\n" );
++}
++
++DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
++
++/**
++ * Dump the average frame remaining at SOF. This can be used to
++ * determine average interrupt latency. Frame remaining is also shown for
++ * start transfer and two additional sample points.
++ */
++static ssize_t hcd_frrem_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ dwc_otg_hcd_dump_frrem(otg_dev->hcd);
++#endif
++ return sprintf( buf, "HCD Dump Frame Remaining\n" );
++}
++
++DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
++
++/**
++ * Displays the time required to read the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is read).
++ */
++#define RW_REG_COUNT 10000000
++#define MSEC_PER_JIFFIE 1000/HZ
++static ssize_t rd_reg_test_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ int i;
++ int time;
++ int start_jiffies;
++
++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++) {
++ dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++ }
++ time = jiffies - start_jiffies;
++ return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
++}
++
++DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
++
++/**
++ * Displays the time required to write the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is written).
++ */
++static ssize_t wr_reg_test_show( struct device *_dev,
++ struct device_attribute *attr,
++ char *buf)
++{
++ struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
++ uint32_t reg_val;
++ int i;
++ int time;
++ int start_jiffies;
++
++ printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++ HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++ reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++ start_jiffies = jiffies;
++ for (i = 0; i < RW_REG_COUNT; i++) {
++ dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
++ }
++ time = jiffies - start_jiffies;
++ return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++ RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
++/**@}*/
++
++/**
++ * Create the device files
++ */
++void dwc_otg_attr_create (struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ int error;
++
++ error = device_create_file(dev, &dev_attr_regoffset);
++ error = device_create_file(dev, &dev_attr_regvalue);
++ error = device_create_file(dev, &dev_attr_mode);
++ error = device_create_file(dev, &dev_attr_hnpcapable);
++ error = device_create_file(dev, &dev_attr_srpcapable);
++ error = device_create_file(dev, &dev_attr_hnp);
++ error = device_create_file(dev, &dev_attr_srp);
++ error = device_create_file(dev, &dev_attr_buspower);
++ error = device_create_file(dev, &dev_attr_bussuspend);
++ error = device_create_file(dev, &dev_attr_busconnected);
++ error = device_create_file(dev, &dev_attr_gotgctl);
++ error = device_create_file(dev, &dev_attr_gusbcfg);
++ error = device_create_file(dev, &dev_attr_grxfsiz);
++ error = device_create_file(dev, &dev_attr_gnptxfsiz);
++ error = device_create_file(dev, &dev_attr_gpvndctl);
++ error = device_create_file(dev, &dev_attr_ggpio);
++ error = device_create_file(dev, &dev_attr_guid);
++ error = device_create_file(dev, &dev_attr_gsnpsid);
++ error = device_create_file(dev, &dev_attr_devspeed);
++ error = device_create_file(dev, &dev_attr_enumspeed);
++ error = device_create_file(dev, &dev_attr_hptxfsiz);
++ error = device_create_file(dev, &dev_attr_hprt0);
++ error = device_create_file(dev, &dev_attr_remote_wakeup);
++ error = device_create_file(dev, &dev_attr_regdump);
++ error = device_create_file(dev, &dev_attr_spramdump);
++ error = device_create_file(dev, &dev_attr_hcddump);
++ error = device_create_file(dev, &dev_attr_hcd_frrem);
++ error = device_create_file(dev, &dev_attr_rd_reg_test);
++ error = device_create_file(dev, &dev_attr_wr_reg_test);
++}
++
++/**
++ * Remove the device files
++ */
++void dwc_otg_attr_remove (struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++
++ device_remove_file(dev, &dev_attr_regoffset);
++ device_remove_file(dev, &dev_attr_regvalue);
++ device_remove_file(dev, &dev_attr_mode);
++ device_remove_file(dev, &dev_attr_hnpcapable);
++ device_remove_file(dev, &dev_attr_srpcapable);
++ device_remove_file(dev, &dev_attr_hnp);
++ device_remove_file(dev, &dev_attr_srp);
++ device_remove_file(dev, &dev_attr_buspower);
++ device_remove_file(dev, &dev_attr_bussuspend);
++ device_remove_file(dev, &dev_attr_busconnected);
++ device_remove_file(dev, &dev_attr_gotgctl);
++ device_remove_file(dev, &dev_attr_gusbcfg);
++ device_remove_file(dev, &dev_attr_grxfsiz);
++ device_remove_file(dev, &dev_attr_gnptxfsiz);
++ device_remove_file(dev, &dev_attr_gpvndctl);
++ device_remove_file(dev, &dev_attr_ggpio);
++ device_remove_file(dev, &dev_attr_guid);
++ device_remove_file(dev, &dev_attr_gsnpsid);
++ device_remove_file(dev, &dev_attr_devspeed);
++ device_remove_file(dev, &dev_attr_enumspeed);
++ device_remove_file(dev, &dev_attr_hptxfsiz);
++ device_remove_file(dev, &dev_attr_hprt0);
++ device_remove_file(dev, &dev_attr_remote_wakeup);
++ device_remove_file(dev, &dev_attr_regdump);
++ device_remove_file(dev, &dev_attr_spramdump);
++ device_remove_file(dev, &dev_attr_hcddump);
++ device_remove_file(dev, &dev_attr_hcd_frrem);
++ device_remove_file(dev, &dev_attr_rd_reg_test);
++ device_remove_file(dev, &dev_attr_wr_reg_test);
++}
+--- /dev/null
++++ b/drivers/usb/dwc/otg_attr.h
+@@ -0,0 +1,67 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
++ * $Revision: #7 $
++ * $Date: 2005/03/28 $
++ * $Change: 477051 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_ATTR_H__)
++#define __DWC_OTG_ATTR_H__
++
++/** @file
++ * This file contains the interface to the Linux device attributes.
++ */
++extern struct device_attribute dev_attr_regoffset;
++extern struct device_attribute dev_attr_regvalue;
++
++extern struct device_attribute dev_attr_mode;
++extern struct device_attribute dev_attr_hnpcapable;
++extern struct device_attribute dev_attr_srpcapable;
++extern struct device_attribute dev_attr_hnp;
++extern struct device_attribute dev_attr_srp;
++extern struct device_attribute dev_attr_buspower;
++extern struct device_attribute dev_attr_bussuspend;
++extern struct device_attribute dev_attr_busconnected;
++extern struct device_attribute dev_attr_gotgctl;
++extern struct device_attribute dev_attr_gusbcfg;
++extern struct device_attribute dev_attr_grxfsiz;
++extern struct device_attribute dev_attr_gnptxfsiz;
++extern struct device_attribute dev_attr_gpvndctl;
++extern struct device_attribute dev_attr_ggpio;
++extern struct device_attribute dev_attr_guid;
++extern struct device_attribute dev_attr_gsnpsid;
++extern struct device_attribute dev_attr_devspeed;
++extern struct device_attribute dev_attr_enumspeed;
++extern struct device_attribute dev_attr_hptxfsiz;
++extern struct device_attribute dev_attr_hprt0;
++
++void dwc_otg_attr_create (struct platform_device *pdev);
++void dwc_otg_attr_remove (struct platform_device *pdev);
++
++#endif
+--- /dev/null
++++ b/drivers/usb/dwc/otg_cil.c
+@@ -0,0 +1,3831 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
++ * $Revision: #147 $
++ * $Date: 2008/10/16 $
++ * $Change: 1117667 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * The CIL manages the memory map for the core so that the HCD and PCD
++ * don't have to do this separately. It also handles basic tasks like
++ * reading/writing the registers and data FIFOs in the controller.
++ * Some of the data access functions provide encapsulation of several
++ * operations required to perform a task, such as writing multiple
++ * registers to start a transfer. Finally, the CIL performs basic
++ * services that are not specific to either the host or device modes
++ * of operation. These services include management of the OTG Host
++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
++ * Diagnostic API is also provided to allow testing of the controller
++ * hardware.
++ *
++ * The Core Interface Layer has the following requirements:
++ * - Provides basic controller operations.
++ * - Minimal use of OS services.
++ * - The OS services used will be abstracted by using inline functions
++ * or macros.
++ *
++ */
++#include <asm/unaligned.h>
++#include <linux/dma-mapping.h>
++#ifdef DEBUG
++#include <linux/jiffies.h>
++#endif
++
++#include "otg_plat.h"
++#include "otg_regs.h"
++#include "otg_cil.h"
++#include "otg_pcd.h"
++
++
++/**
++ * This function is called to initialize the DWC_otg CSR data
++ * structures. The register addresses in the device and host
++ * structures are initialized from the base address supplied by the
++ * caller. The calling function must make the OS calls to get the
++ * base address of the DWC_otg controller registers. The core_params
++ * argument holds the parameters that specify how the core should be
++ * configured.
++ *
++ * @param[in] reg_base_addr Base address of DWC_otg core registers
++ * @param[in] core_params Pointer to the core configuration parameters
++ *
++ */
++dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr,
++ dwc_otg_core_params_t *core_params)
++{
++ dwc_otg_core_if_t *core_if = 0;
++ dwc_otg_dev_if_t *dev_if = 0;
++ dwc_otg_host_if_t *host_if = 0;
++ uint8_t *reg_base = (uint8_t *)reg_base_addr;
++ int i = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params);
++
++ core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
++
++ if (core_if == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
++ return 0;
++ }
++
++ memset(core_if, 0, sizeof(dwc_otg_core_if_t));
++
++ core_if->core_params = core_params;
++ core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
++
++ /*
++ * Allocate the Device Mode structures.
++ */
++ dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
++
++ if (dev_if == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
++ kfree(core_if);
++ return 0;
++ }
++
++ dev_if->dev_global_regs =
++ (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
++
++ for (i=0; i<MAX_EPS_CHANNELS; i++)
++ {
++ dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
++ (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++
++ dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
++ (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
++ (i * DWC_EP_REG_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
++ i, &dev_if->in_ep_regs[i]->diepctl);
++ DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
++ i, &dev_if->out_ep_regs[i]->doepctl);
++ }
++
++ dev_if->speed = 0; // unknown
++
++ core_if->dev_if = dev_if;
++
++ /*
++ * Allocate the Host Mode structures.
++ */
++ host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
++
++ if (host_if == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
++ kfree(dev_if);
++ kfree(core_if);
++ return 0;
++ }
++
++ host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
++ (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
++
++ host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
++
++ for (i=0; i<MAX_EPS_CHANNELS; i++)
++ {
++ host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
++ (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
++ (i * DWC_OTG_CHAN_REGS_OFFSET));
++ DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
++ i, &host_if->hc_regs[i]->hcchar);
++ }
++
++ host_if->num_host_channels = MAX_EPS_CHANNELS;
++ core_if->host_if = host_if;
++
++ for (i=0; i<MAX_EPS_CHANNELS; i++)
++ {
++ core_if->data_fifo[i] =
++ (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
++ (i * DWC_OTG_DATA_FIFO_SIZE));
++ DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
++ i, (unsigned)core_if->data_fifo[i]);
++ }
++
++ core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
++
++ /*
++ * Store the contents of the hardware configuration registers here for
++ * easy access later.
++ */
++ core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
++ core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
++ core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
++ core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
++
++ DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
++ DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
++ DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
++ DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
++
++ core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
++ core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
++
++ DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32);
++ DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32);
++
++ DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
++ DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
++ DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
++ DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
++ DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
++ DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
++
++ DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
++ DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
++
++ /*
++ * Set the SRP sucess bit for FS-I2c
++ */
++ core_if->srp_success = 0;
++ core_if->srp_timer_started = 0;
++
++
++ /*
++ * Create new workqueue and init works
++ */
++ core_if->wq_otg = create_singlethread_workqueue("dwc_otg");
++ if(core_if->wq_otg == 0) {
++ DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n");
++ kfree(host_if);
++ kfree(dev_if);
++ kfree(core_if);
++ return 0 * HZ;
++ }
++ INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change);
++ INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected);
++
++ return core_if;
++}
++
++/**
++ * This function frees the structures allocated by dwc_otg_cil_init().
++ *
++ * @param[in] core_if The core interface pointer returned from
++ * dwc_otg_cil_init().
++ *
++ */
++void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if)
++{
++ /* Disable all interrupts */
++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
++ dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
++
++ if (core_if->wq_otg) {
++ destroy_workqueue(core_if->wq_otg);
++ }
++ if (core_if->dev_if) {
++ kfree(core_if->dev_if);
++ }
++ if (core_if->host_if) {
++ kfree(core_if->host_if);
++ }
++ kfree(core_if);
++}
++
++/**
++ * This function enables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @param[in] core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if)
++{
++ gahbcfg_data_t ahbcfg = { .d32 = 0};
++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
++}
++
++/**
++ * This function disables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @param[in] core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if)
++{
++ gahbcfg_data_t ahbcfg = { .d32 = 0};
++ ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
++ dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
++}
++
++/**
++ * This function initializes the commmon interrupts, used in both
++ * device and host modes.
++ *
++ * @param[in] core_if Programming view of the DWC_otg controller
++ *
++ */
++static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++
++ /* Clear any pending OTG Interrupts */
++ dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
++
++ /* Clear any pending interrupts */
++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /*
++ * Enable the interrupts in the GINTMSK.
++ */
++ intr_mask.b.modemismatch = 1;
++ intr_mask.b.otgintr = 1;
++
++ if (!core_if->dma_enable) {
++ intr_mask.b.rxstsqlvl = 1;
++ }
++
++ intr_mask.b.conidstschng = 1;
++ intr_mask.b.wkupintr = 1;
++ intr_mask.b.disconnect = 1;
++ intr_mask.b.usbsuspend = 1;
++ intr_mask.b.sessreqintr = 1;
++ dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
++}
++
++/**
++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
++ * type.
++ */
++static void init_fslspclksel(dwc_otg_core_if_t *core_if)
++{
++ uint32_t val;
++ hcfg_data_t hcfg;
++
++ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) ||
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* Full speed PHY */
++ val = DWC_HCFG_48_MHZ;
++ }
++ else {
++ /* High speed PHY running at full speed or high speed */
++ val = DWC_HCFG_30_60_MHZ;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
++ hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
++ hcfg.b.fslspclksel = val;
++ dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++}
++
++/**
++ * Initializes the DevSpd field of the DCFG register depending on the PHY type
++ * and the enumeration speed of the device.
++ */
++static void init_devspd(dwc_otg_core_if_t *core_if)
++{
++ uint32_t val;
++ dcfg_data_t dcfg;
++
++ if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) ||
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* Full speed PHY */
++ val = 0x3;
++ }
++ else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++ /* High speed PHY running at full speed */
++ val = 0x1;
++ }
++ else {
++ /* High speed PHY running at high speed */
++ val = 0x0;
++ }
++
++ DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
++
++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
++ dcfg.b.devspd = val;
++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
++}
++
++/**
++ * This function calculates the number of IN EPS
++ * using GHWCFG1 and GHWCFG2 registers values
++ *
++ * @param core_if Programming view of the DWC_otg controller
++ */
++static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if)
++{
++ uint32_t num_in_eps = 0;
++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
++ uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
++ int i;
++
++
++ for(i = 0; i < num_eps; ++i)
++ {
++ if(!(hwcfg1 & 0x1))
++ num_in_eps++;
++
++ hwcfg1 >>= 2;
++ }
++
++ if(core_if->hwcfg4.b.ded_fifo_en) {
++ num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
++ }
++
++ return num_in_eps;
++}
++
++
++/**
++ * This function calculates the number of OUT EPS
++ * using GHWCFG1 and GHWCFG2 registers values
++ *
++ * @param core_if Programming view of the DWC_otg controller
++ */
++static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if)
++{
++ uint32_t num_out_eps = 0;
++ uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
++ uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
++ int i;
++
++ for(i = 0; i < num_eps; ++i)
++ {
++ if(!(hwcfg1 & 0x2))
++ num_out_eps++;
++
++ hwcfg1 >>= 2;
++ }
++ return num_out_eps;
++}
++/**
++ * This function initializes the DWC_otg controller registers and
++ * prepares the core for device mode or host mode operation.
++ *
++ * @param core_if Programming view of the DWC_otg controller
++ *
++ */
++void dwc_otg_core_init(dwc_otg_core_if_t *core_if)
++{
++ int i = 0;
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ gahbcfg_data_t ahbcfg = { .d32 = 0 };
++ gusbcfg_data_t usbcfg = { .d32 = 0 };
++ gi2cctl_data_t i2cctl = { .d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
++
++ /* Common Initialization */
++
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++
++// usbcfg.b.tx_end_delay = 1;
++ /* Program the ULPI External VBUS bit if needed */
++ usbcfg.b.ulpi_ext_vbus_drv =
++ (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
++
++ /* Set external TS Dline pulsing */
++ usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0;
++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
++
++
++ /* Reset the Controller */
++ dwc_otg_core_reset(core_if);
++
++ /* Initialize parameters from Hardware configuration registers. */
++ dev_if->num_in_eps = calc_num_in_eps(core_if);
++ dev_if->num_out_eps = calc_num_out_eps(core_if);
++
++
++ DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep);
++
++ for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
++ {
++ dev_if->perio_tx_fifo_size[i] =
++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
++ DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
++ i, dev_if->perio_tx_fifo_size[i]);
++ }
++
++ for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++)
++ {
++ dev_if->tx_fifo_size[i] =
++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
++ DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
++ i, dev_if->perio_tx_fifo_size[i]);
++ }
++
++ core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
++ core_if->rx_fifo_size =
++ dwc_read_reg32(&global_regs->grxfsiz);
++ core_if->nperio_tx_fifo_size =
++ dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
++
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size);
++
++ /* This programming sequence needs to happen in FS mode before any other
++ * programming occurs */
++ if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
++ (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++ /* If FS mode with FS PHY */
++
++ /* core_init() is now called on every switch so only call the
++ * following for the first time through. */
++ if (!core_if->phy_init_done) {
++ core_if->phy_init_done = 1;
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.physel = 1;
++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset after a PHY select */
++ dwc_otg_core_reset(core_if);
++ }
++
++ /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
++ * do this on HNP Dev/Host mode switches (done in dev_init and
++ * host_init). */
++ if (dwc_otg_is_host_mode(core_if)) {
++ init_fslspclksel(core_if);
++ }
++ else {
++ init_devspd(core_if);
++ }
++
++ if (core_if->core_params->i2c_enable) {
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
++ /* Program GUSBCFG.OtgUtmifsSel to I2C */
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.otgutmifssel = 1;
++ dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Program GI2CCTL.I2CEn */
++ i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
++ i2cctl.b.i2cdevaddr = 1;
++ i2cctl.b.i2cen = 0;
++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
++ i2cctl.b.i2cen = 1;
++ dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
++ }
++
++ } /* endif speed == DWC_SPEED_PARAM_FULL */
++
++ else {
++ /* High speed PHY. */
++ if (!core_if->phy_init_done) {
++ core_if->phy_init_done = 1;
++ /* HS PHY parameters. These parameters are preserved
++ * during soft reset so only program the first time. Do
++ * a soft reset immediately after setting phyif. */
++ usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
++ if (usbcfg.b.ulpi_utmi_sel == 1) {
++ /* ULPI interface */
++ usbcfg.b.phyif = 0;
++ usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
++ }
++ else {
++ /* UTMI+ interface */
++ if (core_if->core_params->phy_utmi_width == 16) {
++ usbcfg.b.phyif = 1;
++ }
++ else {
++ usbcfg.b.phyif = 0;
++ }
++ }
++
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Reset after setting the PHY parameters */
++ dwc_otg_core_reset(core_if);
++ }
++ }
++
++ if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1) &&
++ (core_if->core_params->ulpi_fs_ls)) {
++ DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 1;
++ usbcfg.b.ulpi_clk_sus_m = 1;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ }
++ else {
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ usbcfg.b.ulpi_fsls = 0;
++ usbcfg.b.ulpi_clk_sus_m = 0;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ }
++
++ /* Program the GAHBCFG Register.*/
++ switch (core_if->hwcfg2.b.architecture) {
++
++ case DWC_SLAVE_ONLY_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
++ ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++ core_if->dma_enable = 0;
++ core_if->dma_desc_enable = 0;
++ break;
++
++ case DWC_EXT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
++ ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
++ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
++ break;
++
++ case DWC_INT_DMA_ARCH:
++ DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
++ ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
++ core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++ core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
++ break;
++
++ }
++ ahbcfg.b.dmaenable = core_if->dma_enable;
++ dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
++
++ core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
++
++ core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
++ core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
++ DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled"));
++ DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled"));
++
++ /*
++ * Program the GUSBCFG register.
++ */
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++
++ switch (core_if->hwcfg2.b.op_mode) {
++ case DWC_MODE_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
++ DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_SRP_ONLY_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_HNP_SRP_CAPABLE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++
++ case DWC_MODE_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++ break;
++
++ case DWC_MODE_NO_SRP_CAPABLE_HOST:
++ usbcfg.b.hnpcap = 0;
++ usbcfg.b.srpcap = 0;
++ break;
++ }
++
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++ /* Enable common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /* Do device or host intialization based on mode during PCD
++ * and HCD initialization */
++ if (dwc_otg_is_host_mode(core_if)) {
++ DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
++ core_if->op_state = A_HOST;
++ }
++ else {
++ DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
++ core_if->op_state = B_PERIPHERAL;
++#ifdef DWC_DEVICE_ONLY
++ dwc_otg_core_dev_init(core_if);
++#endif
++ }
++}
++
++
++/**
++ * This function enables the Device mode interrupts.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if)
++{
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++ /* Disable all interrupts. */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts */
++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /* Enable interrupts */
++ intr_mask.b.usbreset = 1;
++ intr_mask.b.enumdone = 1;
++
++ if(!core_if->multiproc_int_enable) {
++ intr_mask.b.inepintr = 1;
++ intr_mask.b.outepintr = 1;
++ }
++
++ intr_mask.b.erlysuspend = 1;
++
++ if(core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.epmismatch = 1;
++ }
++
++
++#ifdef DWC_EN_ISOC
++ if(core_if->dma_enable) {
++ if(core_if->dma_desc_enable == 0) {
++ if(core_if->pti_enh_enable) {
++ dctl_data_t dctl = { .d32 = 0 };
++ dctl.b.ifrmnum = 1;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ } else {
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++ }
++ }
++ } else {
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++ }
++#endif // DWC_EN_ISOC
++
++/** @todo NGS: Should this be a module parameter? */
++#ifdef USE_PERIODIC_EP
++ intr_mask.b.isooutdrop = 1;
++ intr_mask.b.eopframe = 1;
++ intr_mask.b.incomplisoin = 1;
++ intr_mask.b.incomplisoout = 1;
++#endif
++
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
++ dwc_read_reg32(&global_regs->gintmsk));
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * device mode.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if)
++{
++ int i,size;
++ u_int32_t *default_value_array;
++
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_core_params_t *params = core_if->core_params;
++ dcfg_data_t dcfg = { .d32 = 0};
++ grstctl_t resetctl = { .d32 = 0 };
++ uint32_t rx_fifo_size;
++ fifosize_data_t nptxfifosize;
++ fifosize_data_t txfifosize;
++ dthrctl_data_t dthrctl;
++
++ /* Restart the Phy Clock */
++ dwc_write_reg32(core_if->pcgcctl, 0);
++
++ /* Device configuration register */
++ init_devspd(core_if);
++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
++ dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
++
++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ /* Configure data FIFO sizes */
++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++ DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++
++ rx_fifo_size = params->dev_rx_fifo_size;
++ dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
++
++ DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->grxfsiz));
++
++ /** Set Periodic Tx FIFO Mask all bits 0 */
++ core_if->p_tx_msk = 0;
++
++ /** Set Tx FIFO Mask all bits 0 */
++ core_if->tx_msk = 0;
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++
++ nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
++
++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++ dwc_read_reg32(&global_regs->gnptxfsiz));
++
++ txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ if(core_if->en_multiple_tx_fifo == 0) {
++ //core_if->hwcfg4.b.ded_fifo_en==0
++
++ /**@todo NGS: Fix Periodic FIFO Sizing! */
++ /*
++ * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_perio_tx_fifo_size array and the FIFO size registers in
++ * the dptxfsiz array run from 0 to 14.
++ */
++ /** @todo Finish debug of this */
++ size=core_if->hwcfg4.b.num_dev_perio_in_ep;
++ default_value_array=params->dev_perio_tx_fifo_size;
++
++ }
++ else {
++ //core_if->hwcfg4.b.ded_fifo_en==1
++ /*
++ * Tx FIFOs These FIFOs are numbered from 1 to 15.
++ * Indexes of the FIFO size module parameters in the
++ * dev_tx_fifo_size array and the FIFO size registers in
++ * the dptxfsiz_dieptxf array run from 0 to 14.
++ */
++
++ size=core_if->hwcfg4.b.num_in_eps;
++ default_value_array=params->dev_tx_fifo_size;
++
++ }
++ for (i=0; i < size; i++)
++ {
++
++ txfifosize.b.depth = default_value_array[i];
++ DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
++ dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],
++ txfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
++ dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
++ txfifosize.b.startaddr += txfifosize.b.depth;
++ }
++ }
++ /* Flush the FIFOs */
++ dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
++ dwc_otg_flush_rx_fifo(core_if);
++
++ /* Flush the Learning Queue. */
++ resetctl.b.intknqflsh = 1;
++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
++
++ /* Clear all pending Device Interrupts */
++
++ if(core_if->multiproc_int_enable) {
++ }
++
++ /** @todo - if the condition needed to be checked
++ * or in any case all pending interrutps should be cleared?
++ */
++ if(core_if->multiproc_int_enable) {
++ for(i = 0; i < core_if->dev_if->num_in_eps; ++i) {
++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0);
++ }
++
++ for(i = 0; i < core_if->dev_if->num_out_eps; ++i) {
++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0);
++ }
++
++ dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
++ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0);
++ } else {
++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
++ dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
++ }
++
++ for (i=0; i <= dev_if->num_in_eps; i++)
++ {
++ depctl_data_t depctl;
++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
++ if (depctl.b.epena) {
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ }
++ else {
++ depctl.d32 = 0;
++ }
++
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
++
++
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
++ }
++
++ for (i=0; i <= dev_if->num_out_eps; i++)
++ {
++ depctl_data_t depctl;
++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
++ if (depctl.b.epena) {
++ depctl.d32 = 0;
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++ }
++ else {
++ depctl.d32 = 0;
++ }
++
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
++
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
++ }
++
++ if(core_if->en_multiple_tx_fifo && core_if->dma_enable) {
++ dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
++ dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
++ dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
++
++ dev_if->rx_thr_length = params->rx_thr_length;
++ dev_if->tx_thr_length = params->tx_thr_length;
++
++ dev_if->setup_desc_index = 0;
++
++ dthrctl.d32 = 0;
++ dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
++ dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
++ dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
++ dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
++ dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
++
++ dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32);
++
++ DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
++ dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len);
++
++ }
++
++ dwc_otg_enable_device_interrupts(core_if);
++
++ {
++ diepmsk_data_t msk = { .d32 = 0 };
++ msk.b.txfifoundrn = 1;
++ if(core_if->multiproc_int_enable) {
++ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32);
++ } else {
++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32);
++ }
++ }
++
++
++ if(core_if->multiproc_int_enable) {
++ /* Set NAK on Babble */
++ dctl_data_t dctl = { .d32 = 0};
++ dctl.b.nakonbble = 1;
++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
++ }
++}
++
++/**
++ * This function enables the Host mode interrupts.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ gintmsk_data_t intr_mask = { .d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++ /* Disable all interrupts. */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* Clear any pending interrupts. */
++ dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++ /* Enable the common interrupts */
++ dwc_otg_enable_common_interrupts(core_if);
++
++ /*
++ * Enable host mode interrupts without disturbing common
++ * interrupts.
++ */
++ intr_mask.b.sofintr = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++}
++
++/**
++ * This function disables the Host Mode interrupts.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ */
++void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++ gintmsk_data_t intr_mask = { .d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
++
++ /*
++ * Disable host mode interrupts without disturbing common
++ * interrupts.
++ */
++ intr_mask.b.sofintr = 1;
++ intr_mask.b.portintr = 1;
++ intr_mask.b.hcintr = 1;
++ intr_mask.b.ptxfempty = 1;
++ intr_mask.b.nptxfempty = 1;
++
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * host mode.
++ *
++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
++ * request queues. Host channels are reset to ensure that they are ready for
++ * performing transfers.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ dwc_otg_host_if_t *host_if = core_if->host_if;
++ dwc_otg_core_params_t *params = core_if->core_params;
++ hprt0_data_t hprt0 = { .d32 = 0 };
++ fifosize_data_t nptxfifosize;
++ fifosize_data_t ptxfifosize;
++ int i;
++ hcchar_data_t hcchar;
++ hcfg_data_t hcfg;
++ dwc_otg_hc_regs_t *hc_regs;
++ int num_channels;
++ gotgctl_data_t gotgctl = { .d32 = 0 };
++
++ DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if);
++
++ /* Restart the Phy Clock */
++ dwc_write_reg32(core_if->pcgcctl, 0);
++
++ /* Initialize Host Configuration Register */
++ init_fslspclksel(core_if);
++ if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
++ {
++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
++ hcfg.b.fslssupp = 1;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
++ }
++
++ /* Configure data FIFO sizes */
++ if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++ DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
++
++ /* Rx FIFO */
++ DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
++ dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
++ DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
++
++ /* Non-periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
++ nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
++ nptxfifosize.b.startaddr = params->host_rx_fifo_size;
++ dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
++
++ /* Periodic Tx FIFO */
++ DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
++ ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
++ ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++ dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
++ DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
++ }
++
++ /* Clear Host Set HNP Enable in the OTG Control Register */
++ gotgctl.b.hstsethnpen = 1;
++ dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
++
++ /* Make sure the FIFOs are flushed. */
++ dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */);
++ dwc_otg_flush_rx_fifo(core_if);
++
++ /* Flush out any leftover queued requests. */
++ num_channels = core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++)
++ {
++ hc_regs = core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ }
++
++ /* Halt all channels to put them into a known state. */
++ for (i = 0; i < num_channels; i++)
++ {
++ int count = 0;
++ hc_regs = core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
++ do {
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (++count > 1000)
++ {
++ DWC_ERROR("%s: Unable to clear halt on channel %d\n",
++ __func__, i);
++ break;
++ }
++ }
++ while (hcchar.b.chen);
++ }
++
++ /* Turn on the vbus power. */
++ DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
++ if (core_if->op_state == A_HOST) {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
++ if (hprt0.b.prtpwr == 0) {
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(host_if->hprt0, hprt0.d32);
++ }
++ }
++
++ dwc_otg_enable_host_interrupts(core_if);
++}
++
++/**
++ * Prepares a host channel for transferring packets to/from a specific
++ * endpoint. The HCCHARn register is set up with the characteristics specified
++ * in _hc. Host channel interrupts that may need to be serviced while this
++ * transfer is in progress are enabled.
++ *
++ * @param core_if Programming view of DWC_otg controller
++ * @param hc Information needed to initialize the host channel
++ */
++void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
++{
++ uint32_t intr_enable;
++ hcintmsk_data_t hc_intr_mask;
++ gintmsk_data_t gintmsk = { .d32 = 0 };
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++
++ uint8_t hc_num = hc->hc_num;
++ dwc_otg_host_if_t *host_if = core_if->host_if;
++ dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
++
++ /* Clear old interrupt conditions for this host channel. */
++ hc_intr_mask.d32 = 0xFFFFFFFF;
++ hc_intr_mask.b.reserved = 0;
++ dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
++
++ /* Enable channel interrupts required for this transfer. */
++ hc_intr_mask.d32 = 0;
++ hc_intr_mask.b.chhltd = 1;
++ if (core_if->dma_enable) {
++ hc_intr_mask.b.ahberr = 1;
++ if (hc->error_state && !hc->do_split &&
++ hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ hc_intr_mask.b.ack = 1;
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.datatglerr = 1;
++ if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
++ hc_intr_mask.b.nak = 1;
++ }
++ }
++ }
++ }
++ else {
++ switch (hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.bblerr = 1;
++ }
++ else {
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.nyet = 1;
++ if (hc->do_ping) {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++
++ if (hc->do_split) {
++ hc_intr_mask.b.nak = 1;
++ if (hc->complete_split) {
++ hc_intr_mask.b.nyet = 1;
++ }
++ else {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++
++ if (hc->error_state) {
++ hc_intr_mask.b.ack = 1;
++ }
++ break;
++ case DWC_OTG_EP_TYPE_INTR:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.nak = 1;
++ hc_intr_mask.b.stall = 1;
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.datatglerr = 1;
++ hc_intr_mask.b.frmovrun = 1;
++
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.bblerr = 1;
++ }
++ if (hc->error_state) {
++ hc_intr_mask.b.ack = 1;
++ }
++ if (hc->do_split) {
++ if (hc->complete_split) {
++ hc_intr_mask.b.nyet = 1;
++ }
++ else {
++ hc_intr_mask.b.ack = 1;
++ }
++ }
++ break;
++ case DWC_OTG_EP_TYPE_ISOC:
++ hc_intr_mask.b.xfercompl = 1;
++ hc_intr_mask.b.frmovrun = 1;
++ hc_intr_mask.b.ack = 1;
++
++ if (hc->ep_is_in) {
++ hc_intr_mask.b.xacterr = 1;
++ hc_intr_mask.b.bblerr = 1;
++ }
++ break;
++ }
++ }
++ dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
++
++// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in)
++// hc->max_packet = 512;
++ /* Enable the top level host channel interrupt. */
++ intr_enable = (1 << hc_num);
++ dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
++
++ /* Make sure host channel interrupts are enabled. */
++ gintmsk.b.hcintr = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
++
++ /*
++ * Program the HCCHARn register with the endpoint characteristics for
++ * the current transfer.
++ */
++ hcchar.d32 = 0;
++ hcchar.b.devaddr = hc->dev_addr;
++ hcchar.b.epnum = hc->ep_num;
++ hcchar.b.epdir = hc->ep_is_in;
++ hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
++ hcchar.b.eptype = hc->ep_type;
++ hcchar.b.mps = hc->max_packet;
++
++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
++ DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
++ DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
++ DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
++ DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
++ DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
++
++ /*
++ * Program the HCSPLIT register for SPLITs
++ */
++ hcsplt.d32 = 0;
++ if (hc->do_split) {
++ DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num,
++ hc->complete_split ? "CSPLIT" : "SSPLIT");
++ hcsplt.b.compsplt = hc->complete_split;
++ hcsplt.b.xactpos = hc->xact_pos;
++ hcsplt.b.hubaddr = hc->hub_addr;
++ hcsplt.b.prtaddr = hc->port_addr;
++ DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split);
++ DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
++ DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
++ DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
++ DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
++ DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
++ DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
++ }
++ dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
++
++}
++
++/**
++ * Attempts to halt a host channel. This function should only be called in
++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
++ * normal circumstances in DMA mode, the controller halts the channel when the
++ * transfer is complete or a condition occurs that requires application
++ * intervention.
++ *
++ * In slave mode, checks for a free request queue entry, then sets the Channel
++ * Enable and Channel Disable bits of the Host Channel Characteristics
++ * register of the specified channel to intiate the halt. If there is no free
++ * request queue entry, sets only the Channel Disable bit of the HCCHARn
++ * register to flush requests for this channel. In the latter case, sets a
++ * flag to indicate that the host channel needs to be halted when a request
++ * queue slot is open.
++ *
++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
++ * HCCHARn register. The controller ensures there is space in the request
++ * queue before submitting the halt request.
++ *
++ * Some time may elapse before the core flushes any posted requests for this
++ * host channel and halts. The Channel Halted interrupt handler completes the
++ * deactivation of the host channel.
++ *
++ * @param core_if Controller register interface.
++ * @param hc Host channel to halt.
++ * @param halt_status Reason for halting the channel.
++ */
++void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if,
++ dwc_hc_t *hc,
++ dwc_otg_halt_status_e halt_status)
++{
++ gnptxsts_data_t nptxsts;
++ hptxsts_data_t hptxsts;
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs;
++ dwc_otg_core_global_regs_t *global_regs;
++ dwc_otg_host_global_regs_t *host_global_regs;
++
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ global_regs = core_if->core_global_regs;
++ host_global_regs = core_if->host_if->host_global_regs;
++
++ WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
++
++ if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ /*
++ * Disable all channel interrupts except Ch Halted. The QTD
++ * and QH state associated with this transfer has been cleared
++ * (in the case of URB_DEQUEUE), so the channel needs to be
++ * shut down carefully to prevent crashes.
++ */
++ hcintmsk_data_t hcintmsk;
++ hcintmsk.d32 = 0;
++ hcintmsk.b.chhltd = 1;
++ dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
++
++ /*
++ * Make sure no other interrupts besides halt are currently
++ * pending. Handling another interrupt could cause a crash due
++ * to the QTD and QH state.
++ */
++ dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
++
++ /*
++ * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
++ * even if the channel was already halted for some other
++ * reason.
++ */
++ hc->halt_status = halt_status;
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen == 0) {
++ /*
++ * The channel is either already halted or it hasn't
++ * started yet. In DMA mode, the transfer may halt if
++ * it finishes normally or a condition occurs that
++ * requires driver intervention. Don't want to halt
++ * the channel again. In either Slave or DMA mode,
++ * it's possible that the transfer has been assigned
++ * to a channel, but not started yet when an URB is
++ * dequeued. Don't want to halt a channel that hasn't
++ * started yet.
++ */
++ return;
++ }
++ }
++
++ if (hc->halt_pending) {
++ /*
++ * A halt has already been issued for this channel. This might
++ * happen when a transfer is aborted by a higher level in
++ * the stack.
++ */
++#ifdef DEBUG
++ DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
++ __func__, hc->hc_num);
++
++/* dwc_otg_dump_global_registers(core_if); */
++/* dwc_otg_dump_host_registers(core_if); */
++#endif
++ return;
++ }
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 1;
++
++ if (!core_if->dma_enable) {
++ /* Check for space in the request queue to issue the halt. */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ if (nptxsts.b.nptxqspcavail == 0) {
++ hcchar.b.chen = 0;
++ }
++ }
++ else {
++ hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
++ if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) {
++ hcchar.b.chen = 0;
++ }
++ }
++ }
++
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ hc->halt_status = halt_status;
++
++ if (hcchar.b.chen) {
++ hc->halt_pending = 1;
++ hc->halt_on_queue = 0;
++ }
++ else {
++ hc->halt_on_queue = 1;
++ }
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
++ DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
++ DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
++ DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
++
++ return;
++}
++
++/**
++ * Clears the transfer state for a host channel. This function is normally
++ * called after a transfer is done and the host channel is being released.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param hc Identifies the host channel to clean up.
++ */
++void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
++{
++ dwc_otg_hc_regs_t *hc_regs;
++
++ hc->xfer_started = 0;
++
++ /*
++ * Clear channel interrupt enables and any unhandled channel interrupt
++ * conditions.
++ */
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ dwc_write_reg32(&hc_regs->hcintmsk, 0);
++ dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
++
++#ifdef DEBUG
++ del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
++ {
++ hcchar_data_t hcchar;
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, hc->hc_num, hcchar.d32);
++ }
++ }
++#endif
++}
++
++/**
++ * Sets the channel property that indicates in which frame a periodic transfer
++ * should occur. This is always set to the _next_ frame. This function has no
++ * effect on non-periodic transfers.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param hc Identifies the host channel to set up and its properties.
++ * @param hcchar Current value of the HCCHAR register for the specified host
++ * channel.
++ */
++static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if,
++ dwc_hc_t *hc,
++ hcchar_data_t *hcchar)
++{
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ hfnum_data_t hfnum;
++ hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
++
++ /* 1 if _next_ frame is odd, 0 if it's even */
++ hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
++#ifdef DEBUG
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) {
++ switch (hfnum.b.frnum & 0x7) {
++ case 7:
++ core_if->hfnum_7_samples++;
++ core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
++ break;
++ case 0:
++ core_if->hfnum_0_samples++;
++ core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
++ break;
++ default:
++ core_if->hfnum_other_samples++;
++ core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
++ break;
++ }
++ }
++#endif
++ }
++}
++
++#ifdef DEBUG
++static void hc_xfer_timeout(unsigned long ptr)
++{
++ hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr;
++ int hc_num = xfer_info->hc->hc_num;
++ DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
++ DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
++}
++#endif
++
++/*
++ * This function does the setup for a data transfer for a host channel and
++ * starts the transfer. May be called in either Slave mode or DMA mode. In
++ * Slave mode, the caller must ensure that there is sufficient space in the
++ * request queue and Tx Data FIFO.
++ *
++ * For an OUT transfer in Slave mode, it loads a data packet into the
++ * appropriate FIFO. If necessary, additional data packets will be loaded in
++ * the Host ISR.
++ *
++ * For an IN transfer in Slave mode, a data packet is requested. The data
++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
++ * additional data packets are requested in the Host ISR.
++ *
++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
++ * register along with a packet count of 1 and the channel is enabled. This
++ * causes a single PING transaction to occur. Other fields in HCTSIZ are
++ * simply set to 0 since no data transfer occurs in this case.
++ *
++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
++ * all the information required to perform the subsequent data transfer. In
++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
++ * controller performs the entire PING protocol, then starts the data
++ * transfer.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param hc Information needed to initialize the host channel. The xfer_len
++ * value may be reduced to accommodate the max widths of the XferSize and
++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
++ * to reflect the final xfer_len value.
++ */
++void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ uint16_t num_packets;
++ uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
++ uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++ hctsiz.d32 = 0;
++
++ if (hc->do_ping) {
++ if (!core_if->dma_enable) {
++ dwc_otg_hc_do_ping(core_if, hc);
++ hc->xfer_started = 1;
++ return;
++ }
++ else {
++ hctsiz.b.dopng = 1;
++ }
++ }
++
++ if (hc->do_split) {
++ num_packets = 1;
++
++ if (hc->complete_split && !hc->ep_is_in) {
++ /* For CSPLIT OUT Transfer, set the size to 0 so the
++ * core doesn't expect any data written to the FIFO */
++ hc->xfer_len = 0;
++ }
++ else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
++ hc->xfer_len = hc->max_packet;
++ }
++ else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
++ hc->xfer_len = 188;
++ }
++
++ hctsiz.b.xfersize = hc->xfer_len;
++ }
++ else {
++ /*
++ * Ensure that the transfer length and packet count will fit
++ * in the widths allocated for them in the HCTSIZn register.
++ */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure the transfer size is no larger than one
++ * (micro)frame's worth of data. (A check was done
++ * when the periodic transfer was accepted to ensure
++ * that a (micro)frame's worth of data can be
++ * programmed into a channel.)
++ */
++ uint32_t max_periodic_len = hc->multi_count * hc->max_packet;
++ if (hc->xfer_len > max_periodic_len) {
++ hc->xfer_len = max_periodic_len;
++ }
++ else {
++ }
++ }
++ else if (hc->xfer_len > max_hc_xfer_size) {
++ /* Make sure that xfer_len is a multiple of max packet size. */
++ hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
++ }
++
++ if (hc->xfer_len > 0) {
++ num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
++ if (num_packets > max_hc_pkt_count) {
++ num_packets = max_hc_pkt_count;
++ hc->xfer_len = num_packets * hc->max_packet;
++ }
++ }
++ else {
++ /* Need 1 packet for transfer length of 0. */
++ num_packets = 1;
++ }
++
++#if 0
++//host testusb item 10, would do series of Control transfer
++//with URB_SHORT_NOT_OK set in transfer_flags ,
++//changing the xfer_len would cause the test fail
++ if (hc->ep_is_in) {
++ /* Always program an integral # of max packets for IN transfers. */
++ hc->xfer_len = num_packets * hc->max_packet;
++ }
++#endif
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * Make sure that the multi_count field matches the
++ * actual transfer length.
++ */
++ hc->multi_count = num_packets;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /* Set up the initial PID for the transfer. */
++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
++ if (hc->ep_is_in) {
++ if (hc->multi_count == 1) {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ }
++ else if (hc->multi_count == 2) {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++ }
++ else {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
++ }
++ }
++ else {
++ if (hc->multi_count == 1) {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ }
++ else {
++ hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
++ }
++ }
++ }
++ else {
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++ }
++ }
++
++ hctsiz.b.xfersize = hc->xfer_len;
++ }
++
++ hc->start_pkt_count = num_packets;
++ hctsiz.b.pktcnt = num_packets;
++ hctsiz.b.pid = hc->data_pid_start;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
++
++ if (core_if->dma_enable) {
++ dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff);
++ }
++
++ /* Start the split */
++ if (hc->do_split) {
++ hcsplt_data_t hcsplt;
++ hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
++ hcsplt.b.spltena = 1;
++ dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
++ }
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.multicnt = hc->multi_count;
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++#ifdef DEBUG
++ core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++ __func__, hc->hc_num, hcchar.d32);
++ }
++#endif
++
++ /* Set host channel enable after all other setup is complete. */
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ hc->xfer_started = 1;
++ hc->requests++;
++
++ if (!core_if->dma_enable &&
++ !hc->ep_is_in && hc->xfer_len > 0) {
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(core_if, hc);
++ }
++
++#ifdef DEBUG
++ /* Start a timer for this transfer. */
++ core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
++ core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
++ core_if->hc_xfer_info[hc->hc_num].hc = hc;
++ core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
++ core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10);
++ add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
++#endif
++}
++
++/**
++ * This function continues a data transfer that was started by previous call
++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
++ * sufficient space in the request queue and Tx Data FIFO. This function
++ * should only be called in Slave mode. In DMA mode, the controller acts
++ * autonomously to complete transfers programmed to a host channel.
++ *
++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
++ * if there is any data remaining to be queued. For an IN transfer, another
++ * data packet is always requested. For the SETUP phase of a control transfer,
++ * this function does nothing.
++ *
++ * @return 1 if a new request is queued, 0 if no more requests are required
++ * for this transfer.
++ */
++int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++ if (hc->do_split) {
++ /* SPLITs always queue just once per channel */
++ return 0;
++ }
++ else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ /* SETUPs are queued only once since they can't be NAKed. */
++ return 0;
++ }
++ else if (hc->ep_is_in) {
++ /*
++ * Always queue another request for other IN transfers. If
++ * back-to-back INs are issued and NAKs are received for both,
++ * the driver may still be processing the first NAK when the
++ * second NAK is received. When the interrupt handler clears
++ * the NAK interrupt for the first NAK, the second NAK will
++ * not be seen. So we can't depend on the NAK interrupt
++ * handler to requeue a NAKed request. Instead, IN requests
++ * are issued each time this function is called. When the
++ * transfer completes, the extra requests for the channel will
++ * be flushed.
++ */
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ hc->requests++;
++ return 1;
++ }
++ else {
++ /* OUT transfers. */
++ if (hc->xfer_count < hc->xfer_len) {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ hcchar_data_t hcchar;
++ dwc_otg_hc_regs_t *hc_regs;
++ hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hc_set_even_odd_frame(core_if, hc, &hcchar);
++ }
++
++ /* Load OUT packet into the appropriate Tx FIFO. */
++ dwc_otg_hc_write_packet(core_if, hc);
++ hc->requests++;
++ return 1;
++ }
++ else {
++ return 0;
++ }
++ }
++}
++
++/**
++ * Starts a PING transfer. This function should only be called in Slave mode.
++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
++ */
++void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++ DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++ hctsiz.d32 = 0;
++ hctsiz.b.dopng = 1;
++ hctsiz.b.pktcnt = 1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.chen = 1;
++ hcchar.b.chdis = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++}
++
++/*
++ * This function writes a packet into the Tx FIFO associated with the Host
++ * Channel. For a channel associated with a non-periodic EP, the non-periodic
++ * Tx FIFO is written. For a channel associated with a periodic EP, the
++ * periodic Tx FIFO is written. This function should only be called in Slave
++ * mode.
++ *
++ * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
++ * then number of bytes written to the Tx FIFO.
++ */
++void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
++{
++ uint32_t i;
++ uint32_t remaining_count;
++ uint32_t byte_count;
++ uint32_t dword_count;
++
++ uint32_t *data_buff = (uint32_t *)(hc->xfer_buff);
++ uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
++
++ remaining_count = hc->xfer_len - hc->xfer_count;
++ if (remaining_count > hc->max_packet) {
++ byte_count = hc->max_packet;
++ }
++ else {
++ byte_count = remaining_count;
++ }
++
++ dword_count = (byte_count + 3) / 4;
++
++ if ((((unsigned long)data_buff) & 0x3) == 0) {
++ /* xfer_buff is DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++)
++ {
++ dwc_write_reg32(data_fifo, *data_buff);
++ }
++ }
++ else {
++ /* xfer_buff is not DWORD aligned. */
++ for (i = 0; i < dword_count; i++, data_buff++)
++ {
++ dwc_write_reg32(data_fifo, get_unaligned(data_buff));
++ }
++ }
++
++ hc->xfer_count += byte_count;
++ hc->xfer_buff += byte_count;
++}
++
++/**
++ * Gets the current USB frame number. This is the frame number from the last
++ * SOF packet.
++ */
++uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if)
++{
++ dsts_data_t dsts;
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++
++ /* read current frame/microframe number from DSTS register */
++ return dsts.b.soffn;
++}
++
++/**
++ * This function reads a setup packet from the Rx FIFO into the destination
++ * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
++ * Interrupt routine when a SETUP packet has been received in Slave mode.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dest Destination buffer for packet data.
++ */
++void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest)
++{
++ /* Get the 8 bytes of a setup transaction data */
++
++ /* Pop 2 DWORDS off the receive data FIFO into memory */
++ dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
++ dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
++}
++
++
++/**
++ * This function enables EP0 OUT to receive SETUP packets and configures EP0
++ * IN for transmitting packets. It is normally called when the
++ * "Enumeration Done" interrupt occurs.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP0 data.
++ */
++void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dsts_data_t dsts;
++ depctl_data_t diepctl;
++ depctl_data_t doepctl;
++ dctl_data_t dctl = { .d32 = 0 };
++
++ /* Read the Device Status and Endpoint 0 Control registers */
++ dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
++ diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
++ doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
++
++ /* Set the MPS of the IN EP based on the enumeration speed */
++ switch (dsts.b.enumspd) {
++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_64;
++ break;
++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
++ diepctl.b.mps = DWC_DEP0CTL_MPS_8;
++ break;
++ }
++
++ dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
++
++ /* Enable OUT EP for receive */
++ doepctl.b.epena = 1;
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
++#endif
++ dctl.b.cgnpinnak = 1;
++
++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++ DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
++ dwc_read_reg32(&dev_if->dev_global_regs->dctl));
++}
++
++/**
++ * This function activates an EP. The Device EP control register for
++ * the EP is configured as defined in the ep structure. Note: This
++ * function is not used for EP0.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to activate.
++ */
++void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ depctl_data_t depctl;
++ volatile uint32_t *addr;
++ daint_data_t daintmsk = { .d32 = 0 };
++
++ DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
++ (ep->is_in?"IN":"OUT"));
++
++ /* Read DEPCTLn register */
++ if (ep->is_in == 1) {
++ addr = &dev_if->in_ep_regs[ep->num]->diepctl;
++ daintmsk.ep.in = 1<<ep->num;
++ }
++ else {
++ addr = &dev_if->out_ep_regs[ep->num]->doepctl;
++ daintmsk.ep.out = 1<<ep->num;
++ }
++
++ /* If the EP is already active don't change the EP Control
++ * register. */
++ depctl.d32 = dwc_read_reg32(addr);
++ if (!depctl.b.usbactep) {
++ depctl.b.mps = ep->maxpacket;
++ depctl.b.eptype = ep->type;
++ depctl.b.txfnum = ep->tx_fifo_num;
++
++ if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ depctl.b.setd0pid = 1; // ???
++ }
++ else {
++ depctl.b.setd0pid = 1;
++ }
++ depctl.b.usbactep = 1;
++
++ dwc_write_reg32(addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr));
++ }
++
++ /* Enable the Interrupt for this EP */
++ if(core_if->multiproc_int_enable) {
++ if (ep->is_in == 1) {
++ diepmsk_data_t diepmsk = { .d32 = 0};
++ diepmsk.b.xfercompl = 1;
++ diepmsk.b.timeout = 1;
++ diepmsk.b.epdisabled = 1;
++ diepmsk.b.ahberr = 1;
++ diepmsk.b.intknepmis = 1;
++ diepmsk.b.txfifoundrn = 1; //?????
++
++
++ if(core_if->dma_desc_enable) {
++ diepmsk.b.bna = 1;
++ }
++/*
++ if(core_if->dma_enable) {
++ doepmsk.b.nak = 1;
++ }
++*/
++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32);
++
++ } else {
++ doepmsk_data_t doepmsk = { .d32 = 0};
++ doepmsk.b.xfercompl = 1;
++ doepmsk.b.ahberr = 1;
++ doepmsk.b.epdisabled = 1;
++
++
++ if(core_if->dma_desc_enable) {
++ doepmsk.b.bna = 1;
++ }
++/*
++ doepmsk.b.babble = 1;
++ doepmsk.b.nyet = 1;
++ doepmsk.b.nak = 1;
++*/
++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32);
++ }
++ dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk,
++ 0, daintmsk.d32);
++ } else {
++ dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
++ 0, daintmsk.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
++ dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
++
++ ep->stall_clear_flag = 0;
++ return;
++}
++
++/**
++ * This function deactivates an EP. This is done by clearing the USB Active
++ * EP bit in the Device EP control register. Note: This function is not used
++ * for EP0. EP0 cannot be deactivated.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to deactivate.
++ */
++void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl = { .d32 = 0 };
++ volatile uint32_t *addr;
++ daint_data_t daintmsk = { .d32 = 0};
++
++ /* Read DEPCTLn register */
++ if (ep->is_in == 1) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ daintmsk.ep.in = 1<<ep->num;
++ }
++ else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ daintmsk.ep.out = 1<<ep->num;
++ }
++
++ //disabled ep only when ep is enabled
++ //or got halt in the loop in test in cv9
++ depctl.d32=dwc_read_reg32(addr);
++ if(depctl.b.epena){
++ if (ep->is_in == 1) {
++ diepint_data_t diepint;
++ dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num];
++
++ //Set ep nak
++ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
++ depctl.b.snak=1;
++ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
++
++ //wait for diepint.b.inepnakeff
++ diepint.d32=dwc_read_reg32(&in_reg->diepint);
++ while(!diepint.b.inepnakeff){
++ udelay(1);
++ diepint.d32=dwc_read_reg32(&in_reg->diepint);
++ }
++ diepint.d32=0;
++ diepint.b.inepnakeff=1;
++ dwc_write_reg32(&in_reg->diepint,diepint.d32);
++
++ //set ep disable and snak
++ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
++ depctl.b.snak=1;
++ depctl.b.epdis=1;
++ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
++
++ //wait for diepint.b.epdisabled
++ diepint.d32=dwc_read_reg32(&in_reg->diepint);
++ while(!diepint.b.epdisabled){
++ udelay(1);
++ diepint.d32=dwc_read_reg32(&in_reg->diepint);
++ }
++ diepint.d32=0;
++ diepint.b.epdisabled=1;
++ dwc_write_reg32(&in_reg->diepint,diepint.d32);
++
++ //clear ep enable and disable bit
++ depctl.d32=dwc_read_reg32(&in_reg->diepctl);
++ depctl.b.epena=0;
++ depctl.b.epdis=0;
++ dwc_write_reg32(&in_reg->diepctl,depctl.d32);
++
++ }
++#if 0
++//following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint,
++//but this doesn't work, the old code do.
++ else {
++ doepint_data_t doepint;
++ dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num];
++ dctl_data_t dctl;
++ gintsts_data_t gintsts;
++
++ //set dctl global out nak
++ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
++ dctl.b.sgoutnak=1;
++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32);
++
++ //wait for gintsts.goutnakeff
++ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
++ while(!gintsts.b.goutnakeff){
++ udelay(1);
++ gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
++ }
++ gintsts.d32=0;
++ gintsts.b.goutnakeff=1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ //set ep disable and snak
++ depctl.d32=dwc_read_reg32(&out_reg->doepctl);
++ depctl.b.snak=1;
++ depctl.b.epdis=1;
++ dwc_write_reg32(&out_reg->doepctl,depctl.d32);
++
++ //wait for diepint.b.epdisabled
++ doepint.d32=dwc_read_reg32(&out_reg->doepint);
++ while(!doepint.b.epdisabled){
++ udelay(1);
++ doepint.d32=dwc_read_reg32(&out_reg->doepint);
++ }
++ doepint.d32=0;
++ doepint.b.epdisabled=1;
++ dwc_write_reg32(&out_reg->doepint,doepint.d32);
++
++ //clear ep enable and disable bit
++ depctl.d32=dwc_read_reg32(&out_reg->doepctl);
++ depctl.b.epena=0;
++ depctl.b.epdis=0;
++ dwc_write_reg32(&out_reg->doepctl,depctl.d32);
++ }
++#endif
++
++ depctl.d32=0;
++ depctl.b.usbactep = 0;
++
++ if (ep->is_in == 0) {
++ if(core_if->dma_enable||core_if->dma_desc_enable)
++ depctl.b.epdis = 1;
++ }
++
++ dwc_write_reg32(addr, depctl.d32);
++ }
++
++ /* Disable the Interrupt for this EP */
++ if(core_if->multiproc_int_enable) {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk,
++ daintmsk.d32, 0);
++
++ if (ep->is_in == 1) {
++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0);
++ } else {
++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0);
++ }
++ } else {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
++ daintmsk.d32, 0);
++ }
++
++ if (ep->is_in == 1) {
++ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
++ (u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl,
++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl),
++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz),
++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint),
++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma),
++ dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts));
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
++ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
++ }
++ else {
++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
++ (u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl,
++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl),
++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz),
++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint),
++ dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma));
++
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
++ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
++ }
++
++}
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ dwc_otg_dma_desc_t* dma_desc;
++ uint32_t offset;
++ uint32_t xfer_est;
++ int i;
++
++ ep->desc_cnt = ( ep->total_len / ep->maxxfer) +
++ ((ep->total_len % ep->maxxfer) ? 1 : 0);
++ if(!ep->desc_cnt)
++ ep->desc_cnt = 1;
++
++ dma_desc = ep->desc_addr;
++ xfer_est = ep->total_len;
++ offset = 0;
++ for( i = 0; i < ep->desc_cnt; ++i) {
++ /** DMA Descriptor Setup */
++ if(xfer_est > ep->maxxfer) {
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 0;
++ dma_desc->status.b.ioc = 0;
++ dma_desc->status.b.sp = 0;
++ dma_desc->status.b.bytes = ep->maxxfer;
++ dma_desc->buf = ep->dma_addr + offset;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ xfer_est -= ep->maxxfer;
++ offset += ep->maxxfer;
++ } else {
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ if(ep->is_in) {
++ dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ?
++ 1 : ((ep->sent_zlp) ? 1 : 0);
++ dma_desc->status.b.bytes = xfer_est;
++ } else {
++ dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ;
++ }
++
++ dma_desc->buf = ep->dma_addr + offset;
++ dma_desc->status.b.bs = BS_HOST_READY;
++ }
++ dma_desc ++;
++ }
++}
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++
++void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl;
++ deptsiz_data_t deptsiz;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p\n",
++ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[ep->num];
++
++ gnptxsts_data_t gtxstatus;
++
++ gtxstatus.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++
++ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++ DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
++#endif
++ return;
++ }
++
++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
++
++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
++ ep->maxxfer : (ep->total_len - ep->xfer_len);
++
++ /* Zero Length Packet? */
++ if ((ep->xfer_len - ep->xfer_count) == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ }
++ else {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) /
++ ep->maxpacket;
++ }
++
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
++ }
++ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr);
++
++ if (core_if->dma_desc_enable == 0) {
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(in_regs->diepdma),
++ (uint32_t)ep->dma_addr);
++ }
++ else {
++ init_dma_desc_chain(core_if, ep);
++ /** DIEPDMAn Register write */
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
++ dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr);
++ }
++ }
++ else
++ {
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ if(ep->type != DWC_OTG_EP_TYPE_ISOC) {
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt,
++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
++ * the data will be written into the fifo by the ISR.
++ */
++ if(core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++ else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if(ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk = 1 << ep->num;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++
++ }
++ }
++ }
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
++ depctl.b.nextep = ep->num;
++ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
++
++ DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
++ (u32)&in_regs->diepctl,
++ dwc_read_reg32(&in_regs->diepctl),
++ dwc_read_reg32(&in_regs->dieptsiz),
++ dwc_read_reg32(&in_regs->diepint),
++ dwc_read_reg32(&in_regs->diepdma),
++ dwc_read_reg32(&in_regs->dtxfsts));
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
++ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
++
++ }
++ else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[ep->num];
++
++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
++
++ ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
++ ep->maxxfer : (ep->total_len - ep->xfer_len);
++
++ /* Program the transfer size and packet count as follows:
++ *
++ * pktcnt = N
++ * xfersize = N * maxpacket
++ */
++ if ((ep->xfer_len - ep->xfer_count) == 0) {
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++ }
++ else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) /
++ ep->maxpacket;
++ ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
++ deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
++ ep->num,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if (core_if->dma_enable) {
++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
++ }
++ DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n",
++ ep->num,
++ ep->dma_addr);
++ if (!core_if->dma_desc_enable) {
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(out_regs->doepdma),
++ (uint32_t)ep->dma_addr);
++ }
++ else {
++ init_dma_desc_chain(core_if, ep);
++
++ /** DOEPDMAn Register write */
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
++ dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr);
++ }
++ }
++ else {
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++
++ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++
++ DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
++ (u32)&out_regs->doepctl,
++ dwc_read_reg32(&out_regs->doepctl),
++ dwc_read_reg32(&out_regs->doeptsiz),
++ dwc_read_reg32(&out_regs->doepint),
++ dwc_read_reg32(&out_regs->doepdma));
++
++ DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
++ dwc_read_reg32(&core_if->core_global_regs->gintmsk));
++ }
++}
++
++/**
++ * This function setup a zero length transfer in Buffer DMA and
++ * Slave modes for usb requests with zero field set
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++
++ depctl_data_t depctl;
++ deptsiz_data_t deptsiz;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[ep->num];
++
++ depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
++ deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
++
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
++ }
++ if (core_if->dma_desc_enable == 0) {
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(in_regs->diepdma),
++ (uint32_t)ep->dma_addr);
++ }
++ }
++ else {
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt,
++ * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
++ * the data will be written into the fifo by the ISR.
++ */
++ if(core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++ else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if(ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk = 1 << ep->num;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++ }
++ }
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
++ depctl.b.nextep = ep->num;
++ dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
++
++ }
++ else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[ep->num];
++
++ depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
++ deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
++
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++
++ if (core_if->dma_enable) {
++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
++ }
++ if (!core_if->dma_desc_enable) {
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(out_regs->doepdma),
++ (uint32_t)ep->dma_addr);
++ }
++ }
++ else {
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++
++ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++
++ }
++}
++
++/**
++ * This function does the setup for a data transfer for EP0 and starts
++ * the transfer. For an IN transfer, the packets will be loaded into
++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
++ * unloaded from the Rx FIFO in the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP0 data.
++ */
++void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl;
++ deptsiz0_data_t deptsiz;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ dwc_otg_dma_desc_t* dma_desc;
++
++ DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++ "xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n",
++ ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
++ ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr);
++
++ ep->total_len = ep->xfer_len;
++
++ /* IN endpoint */
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[0];
++
++ gnptxsts_data_t gtxstatus;
++
++ gtxstatus.d32 =
++ dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++
++ if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++ DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
++ dwc_read_reg32(&in_regs->diepctl));
++ DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
++ deptsiz.d32,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
++ gtxstatus.d32);
++#endif
++ return;
++ }
++
++
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++ /* Zero Length Packet? */
++ if (ep->xfer_len == 0) {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 1;
++ }
++ else {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ if (ep->xfer_len > ep->maxpacket) {
++ ep->xfer_len = ep->maxpacket;
++ deptsiz.b.xfersize = ep->maxpacket;
++ }
++ else {
++ deptsiz.b.xfersize = ep->xfer_len;
++ }
++ deptsiz.b.pktcnt = 1;
++
++ }
++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
++ }
++ if(core_if->dma_desc_enable == 0) {
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(in_regs->diepdma),
++ (uint32_t)ep->dma_addr);
++ }
++ else {
++ dma_desc = core_if->dev_if->in_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
++ dma_desc->status.b.bytes = ep->xfer_len;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DIEPDMA0 Register write */
++
++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
++ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
++ }
++ }
++ else {
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!core_if->dma_enable) {
++ if(core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++ }
++ else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if(ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk |= 1 << ep->num;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++ }
++ }
++ }
++ }
++ else {
++ /* OUT endpoint */
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[0];
++
++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
++
++ /* Program the transfer size and packet count as follows:
++ * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
++ * pktcnt = N */
++ /* Zero Length Packet */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++
++ DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
++ ep->xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if (core_if->dma_enable) {
++ if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
++ ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
++ }
++ if(!core_if->dma_desc_enable) {
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(out_regs->doepdma),
++ (uint32_t)ep->dma_addr);
++ }
++ else {
++ dma_desc = core_if->dev_if->out_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.bytes = ep->maxpacket;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DOEPDMA0 Register write */
++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
++ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
++ }
++ }
++ else {
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ }
++
++ /* EP enable */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
++ }
++}
++
++/**
++ * This function continues control IN transfers started by
++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
++ * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
++ * bit for the packet count.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP0 data.
++ */
++void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl;
++ deptsiz0_data_t deptsiz;
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ dwc_otg_dma_desc_t* dma_desc;
++
++ if (ep->is_in == 1) {
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[0];
++ gnptxsts_data_t tx_status = { .d32 = 0 };
++
++ tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++ /** @todo Should there be check for room in the Tx
++ * Status Queue. If not remove the code above this comment. */
++
++ depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++ deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++
++
++ if(core_if->dma_desc_enable == 0) {
++ deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
++ (ep->total_len - ep->xfer_count);
++ deptsiz.b.pktcnt = 1;
++ if(core_if->dma_enable == 0) {
++ ep->xfer_len += deptsiz.b.xfersize;
++ } else {
++ ep->xfer_len = deptsiz.b.xfersize;
++ }
++ dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++ }
++ else {
++ ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
++ (ep->total_len - ep->xfer_count);
++
++ dma_desc = core_if->dev_if->in_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
++ dma_desc->status.b.bytes = ep->xfer_len;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++
++ /** DIEPDMA0 Register write */
++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
++ dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
++ }
++
++
++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
++ if(core_if->dma_desc_enable == 0){
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr);
++ }
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++ /**
++ * Enable the Non-Periodic Tx FIFO empty interrupt, the
++ * data will be written into the fifo by the ISR.
++ */
++ if (!core_if->dma_enable) {
++ if(core_if->en_multiple_tx_fifo == 0) {
++ /* First clear it from GINTSTS */
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ intr_mask.d32, intr_mask.d32);
++
++ }
++ else {
++ /* Enable the Tx FIFO Empty Interrupt for this EP */
++ if(ep->xfer_len > 0) {
++ uint32_t fifoemptymsk = 0;
++ fifoemptymsk |= 1 << ep->num;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ 0, fifoemptymsk);
++ }
++ }
++ }
++ }
++ else {
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[0];
++
++
++ depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++ deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
++
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = ep->maxpacket;
++ deptsiz.b.pktcnt = 1;
++
++
++ if(core_if->dma_desc_enable == 0) {
++ dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++ }
++ else {
++ dma_desc = core_if->dev_if->out_desc_addr;
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.bytes = ep->maxpacket;
++ dma_desc->buf = ep->dma_addr;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DOEPDMA0 Register write */
++ VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
++ dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
++ }
++
++
++ DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
++ ep->xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
++ if(core_if->dma_desc_enable == 0){
++
++ VERIFY_PCD_DMA_ADDR(ep->dma_addr);
++ dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr);
++ }
++ }
++
++ /* EP enable, IN data in FIFO */
++ depctl.b.cnak = 1;
++ depctl.b.epena = 1;
++ dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++
++ }
++}
++
++#ifdef DEBUG
++void dump_msg(const u8 *buf, unsigned int length)
++{
++ unsigned int start, num, i;
++ char line[52], *p;
++
++ if (length >= 512)
++ return;
++ start = 0;
++ while (length > 0) {
++ num = min(length, 16u);
++ p = line;
++ for (i = 0; i < num; ++i)
++ {
++ if (i == 8)
++ *p++ = ' ';
++ sprintf(p, " %02x", buf[i]);
++ p += 3;
++ }
++ *p = 0;
++ DWC_PRINT("%6x: %s\n", start, line);
++ buf += num;
++ start += num;
++ length -= num;
++ }
++}
++#else
++static inline void dump_msg(const u8 *buf, unsigned int length)
++{
++}
++#endif
++
++/**
++ * This function writes a packet into the Tx FIFO associated with the
++ * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
++ * periodic EPs the periodic Tx FIFO associated with the EP is written
++ * with all packets for the next micro-frame.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to write packet for.
++ * @param dma Indicates if DMA is being used.
++ */
++void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma)
++{
++ /**
++ * The buffer is padded to DWORD on a per packet basis in
++ * slave/dma mode if the MPS is not DWORD aligned. The last
++ * packet, if short, is also padded to a multiple of DWORD.
++ *
++ * ep->xfer_buff always starts DWORD aligned in memory and is a
++ * multiple of DWORD in length
++ *
++ * ep->xfer_len can be any number of bytes
++ *
++ * ep->xfer_count is a multiple of ep->maxpacket until the last
++ * packet
++ *
++ * FIFO access is DWORD */
++
++ uint32_t i;
++ uint32_t byte_count;
++ uint32_t dword_count;
++ uint32_t *fifo;
++ uint32_t *data_buff = (uint32_t *)ep->xfer_buff;
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep);
++ if (ep->xfer_count >= ep->xfer_len) {
++ DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
++ return;
++ }
++
++ /* Find the byte length of the packet either short packet or MPS */
++ if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
++ byte_count = ep->xfer_len - ep->xfer_count;
++ }
++ else {
++ byte_count = ep->maxpacket;
++ }
++
++ /* Find the DWORD length, padded by extra bytes as neccessary if MPS
++ * is not a multiple of DWORD */
++ dword_count = (byte_count + 3) / 4;
++
++#ifdef VERBOSE
++ dump_msg(ep->xfer_buff, byte_count);
++#endif
++
++ /**@todo NGS Where are the Periodic Tx FIFO addresses
++ * intialized? What should this be? */
++
++ fifo = core_if->data_fifo[ep->num];
++
++
++ DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count);
++
++ if (!dma) {
++ for (i=0; i<dword_count; i++, data_buff++) {
++ dwc_write_reg32(fifo, *data_buff);
++ }
++ }
++
++ ep->xfer_count += byte_count;
++ ep->xfer_buff += byte_count;
++ ep->dma_addr += byte_count;
++}
++
++/**
++ * Set the EP STALL.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to set the stall on.
++ */
++void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl;
++ volatile uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num,
++ (ep->is_in?"IN":"OUT"));
++
++ DWC_PRINT("%s ep%d-%s\n", __func__, ep->num,
++ (ep->is_in?"in":"out"));
++
++ if (ep->is_in == 1) {
++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* set the disable and stall bits */
++#if 0
++//epdis is set here but not cleared at latter dwc_otg_ep_clear_stall,
++//which cause the testusb item 13 failed(Host:pc, device: otg device)
++ if (depctl.b.epena) {
++ depctl.b.epdis = 1;
++ }
++#endif
++ depctl.b.stall = 1;
++ dwc_write_reg32(depctl_addr, depctl.d32);
++ }
++ else {
++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* set the stall bit */
++ depctl.b.stall = 1;
++ dwc_write_reg32(depctl_addr, depctl.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr));
++
++ return;
++}
++
++/**
++ * Clear the EP STALL.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to clear stall from.
++ */
++void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl;
++ volatile uint32_t *depctl_addr;
++
++ DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
++ (ep->is_in?"IN":"OUT"));
++
++ if (ep->is_in == 1) {
++ depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++ }
++ else {
++ depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++ }
++
++ depctl.d32 = dwc_read_reg32(depctl_addr);
++
++ /* clear the stall bits */
++ depctl.b.stall = 0;
++
++ /*
++ * USB Spec 9.4.5: For endpoints using data toggle, regardless
++ * of whether an endpoint has the Halt feature set, a
++ * ClearFeature(ENDPOINT_HALT) request always results in the
++ * data toggle being reinitialized to DATA0.
++ */
++ if (ep->type == DWC_OTG_EP_TYPE_INTR ||
++ ep->type == DWC_OTG_EP_TYPE_BULK) {
++ depctl.b.setd0pid = 1; /* DATA0 */
++ }
++
++ dwc_write_reg32(depctl_addr, depctl.d32);
++ DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
++ return;
++}
++
++/**
++ * This function reads a packet from the Rx FIFO into the destination
++ * buffer. To read SETUP data use dwc_otg_read_setup_packet.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dest Destination buffer for the packet.
++ * @param bytes Number of bytes to copy to the destination.
++ */
++void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
++ uint8_t *dest,
++ uint16_t bytes)
++{
++ int i;
++ int word_count = (bytes + 3) / 4;
++
++ volatile uint32_t *fifo = core_if->data_fifo[0];
++ uint32_t *data_buff = (uint32_t *)dest;
++
++ /**
++ * @todo Account for the case where _dest is not dword aligned. This
++ * requires reading data from the FIFO into a uint32_t temp buffer,
++ * then moving it into the data buffer.
++ */
++
++ DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
++ core_if, dest, bytes);
++
++ for (i=0; i<word_count; i++, data_buff++)
++ {
++ *data_buff = dwc_read_reg32(fifo);
++ }
++
++ return;
++}
++
++
++
++/**
++ * This functions reads the device registers and prints them
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if)
++{
++ int i;
++ volatile uint32_t *addr;
++
++ DWC_PRINT("Device Global Registers\n");
++ addr=&core_if->dev_if->dev_global_regs->dcfg;
++ DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->dctl;
++ DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->dsts;
++ DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->diepmsk;
++ DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->doepmsk;
++ DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->daint;
++ DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->daintmsk;
++ DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->dtknqr1;
++ DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
++ addr=&core_if->dev_if->dev_global_regs->dtknqr2;
++ DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
++ (uint32_t)addr,dwc_read_reg32(addr));
++ }
++
++ addr=&core_if->dev_if->dev_global_regs->dvbusdis;
++ DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ addr=&core_if->dev_if->dev_global_regs->dvbuspulse;
++ DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
++ (uint32_t)addr,dwc_read_reg32(addr));
++
++ if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
++ addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
++ DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n",
++ (uint32_t)addr, dwc_read_reg32(addr));
++ }
++/*
++ if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
++ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
++ DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n",
++ (uint32_t)addr, dwc_read_reg32(addr));
++ }
++*/
++ addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
++ DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr));
++
++ addr=&core_if->dev_if->dev_global_regs->deachint;
++ DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->dev_global_regs->deachintmsk;
++ DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
++ addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i];
++ DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
++ }
++
++
++ for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
++ addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i];
++ DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
++ }
++
++ for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
++ DWC_PRINT("Device IN EP %d Registers\n", i);
++ addr=&core_if->dev_if->in_ep_regs[i]->diepctl;
++ DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->in_ep_regs[i]->diepint;
++ DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz;
++ DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->in_ep_regs[i]->diepdma;
++ DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts;
++ DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ //reading depdmab in non desc dma mode would halt the ahb bus...
++ if(core_if->dma_desc_enable){
++ addr=&core_if->dev_if->in_ep_regs[i]->diepdmab;
++ DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ }
++ }
++
++
++ for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
++ DWC_PRINT("Device OUT EP %d Registers\n", i);
++ addr=&core_if->dev_if->out_ep_regs[i]->doepctl;
++ DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->out_ep_regs[i]->doepfn;
++ DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->out_ep_regs[i]->doepint;
++ DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz;
++ DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->dev_if->out_ep_regs[i]->doepdma;
++ DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ //reading depdmab in non desc dma mode would halt the ahb bus...
++ if(core_if->dma_desc_enable){
++ addr=&core_if->dev_if->out_ep_regs[i]->doepdmab;
++ DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ }
++
++ }
++
++
++
++ return;
++}
++
++/**
++ * This functions reads the SPRAM and prints its content
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if)
++{
++ volatile uint8_t *addr, *start_addr, *end_addr;
++
++ DWC_PRINT("SPRAM Data:\n");
++ start_addr = (void*)core_if->core_global_regs;
++ DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr);
++ start_addr += 0x00028000;
++ end_addr=(void*)core_if->core_global_regs;
++ end_addr += 0x000280e0;
++
++ for(addr = start_addr; addr < end_addr; addr+=16)
++ {
++ DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr,
++ addr[0],
++ addr[1],
++ addr[2],
++ addr[3],
++ addr[4],
++ addr[5],
++ addr[6],
++ addr[7],
++ addr[8],
++ addr[9],
++ addr[10],
++ addr[11],
++ addr[12],
++ addr[13],
++ addr[14],
++ addr[15]
++ );
++ }
++
++ return;
++}
++/**
++ * This function reads the host registers and prints them
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if)
++{
++ int i;
++ volatile uint32_t *addr;
++
++ DWC_PRINT("Host Global Registers\n");
++ addr=&core_if->host_if->host_global_regs->hcfg;
++ DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->host_global_regs->hfir;
++ DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->host_global_regs->hfnum;
++ DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->host_global_regs->hptxsts;
++ DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->host_global_regs->haint;
++ DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->host_global_regs->haintmsk;
++ DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=core_if->host_if->hprt0;
++ DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ for (i=0; i<core_if->core_params->host_channels; i++)
++ {
++ DWC_PRINT("Host Channel %d Specific Registers\n", i);
++ addr=&core_if->host_if->hc_regs[i]->hcchar;
++ DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->hc_regs[i]->hcsplt;
++ DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->hc_regs[i]->hcint;
++ DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->hc_regs[i]->hcintmsk;
++ DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->hc_regs[i]->hctsiz;
++ DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->host_if->hc_regs[i]->hcdma;
++ DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ }
++ return;
++}
++
++/**
++ * This function reads the core global registers and prints them
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if)
++{
++ int i,size;
++ char* str;
++ volatile uint32_t *addr;
++
++ DWC_PRINT("Core Global Registers\n");
++ addr=&core_if->core_global_regs->gotgctl;
++ DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gotgint;
++ DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gahbcfg;
++ DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gusbcfg;
++ DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->grstctl;
++ DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gintsts;
++ DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gintmsk;
++ DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->grxstsr;
++ DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ //addr=&core_if->core_global_regs->grxstsp;
++ //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->grxfsiz;
++ DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gnptxfsiz;
++ DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gnptxsts;
++ DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gi2cctl;
++ DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gpvndctl;
++ DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->ggpio;
++ DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->guid;
++ DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->gsnpsid;
++ DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->ghwcfg1;
++ DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->ghwcfg2;
++ DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->ghwcfg3;
++ DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->ghwcfg4;
++ DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++ addr=&core_if->core_global_regs->hptxfsiz;
++ DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
++
++ size=(core_if->hwcfg4.b.ded_fifo_en)?
++ core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep;
++ str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ";
++ for (i=0; i<size; i++)
++ {
++ addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i];
++ DWC_PRINT("%s[%d] @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr));
++ }
++}
++
++/**
++ * Flush a Tx FIFO.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param num Tx FIFO to flush.
++ */
++void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if,
++ const int num)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ volatile grstctl_t greset = { .d32 = 0};
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num);
++
++ greset.b.txfflsh = 1;
++ greset.b.txfnum = num;
++ dwc_write_reg32(&global_regs->grstctl, greset.d32);
++
++ do {
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
++ __func__, greset.d32,
++ dwc_read_reg32(&global_regs->gnptxsts));
++ break;
++ }
++ }
++ while (greset.b.txfflsh == 1);
++
++ /* Wait for 3 PHY Clocks*/
++ UDELAY(1);
++}
++
++/**
++ * Flush Rx FIFO.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ volatile grstctl_t greset = { .d32 = 0};
++ int count = 0;
++
++ DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
++ /*
++ *
++ */
++ greset.b.rxfflsh = 1;
++ dwc_write_reg32(&global_regs->grstctl, greset.d32);
++
++ do {
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ break;
++ }
++ }
++ while (greset.b.rxfflsh == 1);
++
++ /* Wait for 3 PHY Clocks*/
++ UDELAY(1);
++}
++
++/**
++ * Do core a soft reset of the core. Be careful with this because it
++ * resets all the internal state machines of the core.
++ */
++void dwc_otg_core_reset(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ volatile grstctl_t greset = { .d32 = 0};
++ int count = 0;
++
++ DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
++ /* Wait for AHB master IDLE state. */
++ do {
++ UDELAY(10);
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 100000) {
++ DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ return;
++ }
++ }
++ while (greset.b.ahbidle == 0);
++
++ /* Core Soft Reset */
++ count = 0;
++ greset.b.csftrst = 1;
++ dwc_write_reg32(&global_regs->grstctl, greset.d32);
++ do {
++ greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++ if (++count > 10000) {
++ DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
++ greset.d32);
++ break;
++ }
++ }
++ while (greset.b.csftrst == 1);
++
++ /* Wait for 3 PHY Clocks*/
++ MDELAY(100);
++
++ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
++ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
++ DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
++
++}
++
++
++
++/**
++ * Register HCD callbacks. The callbacks are used to start and stop
++ * the HCD for interrupt processing.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param cb the HCD callback structure.
++ * @param p pointer to be passed to callback function (usb_hcd*).
++ */
++void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if,
++ dwc_otg_cil_callbacks_t *cb,
++ void *p)
++{
++ core_if->hcd_cb = cb;
++ cb->p = p;
++}
++
++/**
++ * Register PCD callbacks. The callbacks are used to start and stop
++ * the PCD for interrupt processing.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param cb the PCD callback structure.
++ * @param p pointer to be passed to callback function (pcd*).
++ */
++void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if,
++ dwc_otg_cil_callbacks_t *cb,
++ void *p)
++{
++ core_if->pcd_cb = cb;
++ cb->p = p;
++}
++
++#ifdef DWC_EN_ISOC
++
++/**
++ * This function writes isoc data per 1 (micro)frame into tx fifo
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ dwc_otg_dev_in_ep_regs_t *ep_regs;
++ dtxfsts_data_t txstatus = {.d32 = 0};
++ uint32_t len = 0;
++ uint32_t dwords;
++
++ ep->xfer_len = ep->data_per_frame;
++ ep->xfer_count = 0;
++
++ ep_regs = core_if->dev_if->in_ep_regs[ep->num];
++
++ len = ep->xfer_len - ep->xfer_count;
++
++ if (len > ep->maxpacket) {
++ len = ep->maxpacket;
++ }
++
++ dwords = (len + 3)/4;
++
++ /* While there is space in the queue and space in the FIFO and
++ * More data to tranfer, Write packets to the Tx FIFO */
++ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32);
++
++ while (txstatus.b.txfspcavail > dwords &&
++ ep->xfer_count < ep->xfer_len &&
++ ep->xfer_len != 0) {
++ /* Write the FIFO */
++ dwc_otg_ep_write_packet(core_if, ep, 0);
++
++ len = ep->xfer_len - ep->xfer_count;
++ if (len > ep->maxpacket) {
++ len = ep->maxpacket;
++ }
++
++ dwords = (len + 3)/4;
++ txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
++ }
++}
++
++
++/**
++ * This function initializes a descriptor chain for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ deptsiz_data_t deptsiz = { .d32 = 0 };
++ depctl_data_t depctl = { .d32 = 0 };
++ dsts_data_t dsts = { .d32 = 0 };
++ volatile uint32_t *addr;
++
++ if(ep->is_in) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ } else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ }
++
++ ep->xfer_len = ep->data_per_frame;
++ ep->xfer_count = 0;
++ ep->xfer_buff = ep->cur_pkt_addr;
++ ep->dma_addr = ep->cur_pkt_dma_addr;
++
++ if(ep->is_in) {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.xfersize = ep->xfer_len;
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - 1 + ep->maxpacket) /
++ ep->maxpacket;
++ deptsiz.b.mc = deptsiz.b.pktcnt;
++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
++
++ /* Write the DMA register */
++ if (core_if->dma_enable) {
++ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
++ }
++ } else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len + (ep->maxpacket - 1)) /
++ ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++
++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
++
++ if (core_if->dma_enable) {
++ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma),
++ (uint32_t)ep->dma_addr);
++ }
++ }
++
++
++ /** Enable endpoint, clear nak */
++
++ depctl.d32 = 0;
++ if(ep->bInterval == 1) {
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++ ep->next_frame = dsts.b.soffn + ep->bInterval;
++
++ if(ep->next_frame & 0x1) {
++ depctl.b.setd1pid = 1;
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ } else {
++ ep->next_frame += ep->bInterval;
++
++ if(ep->next_frame & 0x1) {
++ depctl.b.setd1pid = 1;
++ } else {
++ depctl.b.setd0pid = 1;
++ }
++ }
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++
++ dwc_modify_reg32(addr, 0, depctl.d32);
++ depctl.d32 = dwc_read_reg32(addr);
++
++ if(ep->is_in && core_if->dma_enable == 0) {
++ write_isoc_frame_data(core_if, ep);
++ }
++
++}
++
++#endif //DWC_EN_ISOC
+--- /dev/null
++++ b/drivers/usb/dwc/otg_cil.h
+@@ -0,0 +1,1106 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
++ * $Revision: #91 $
++ * $Date: 2008/09/19 $
++ * $Change: 1099526 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_CIL_H__)
++#define __DWC_CIL_H__
++
++#include <linux/workqueue.h>
++#include <linux/version.h>
++#include <asm/param.h>
++//#include <asm/arch/regs-irq.h>
++
++#include "otg_plat.h"
++#include "otg_regs.h"
++#ifdef DEBUG
++#include "linux/timer.h"
++#endif
++
++/**
++ * @file
++ * This file contains the interface to the Core Interface Layer.
++ */
++
++
++/** Macros defined for DWC OTG HW Release verison */
++#define OTG_CORE_REV_2_00 0x4F542000
++#define OTG_CORE_REV_2_60a 0x4F54260A
++#define OTG_CORE_REV_2_71a 0x4F54271A
++#define OTG_CORE_REV_2_72a 0x4F54272A
++
++/**
++*/
++typedef struct iso_pkt_info
++{
++ uint32_t offset;
++ uint32_t length;
++ int32_t status;
++} iso_pkt_info_t;
++/**
++ * The <code>dwc_ep</code> structure represents the state of a single
++ * endpoint when acting in device mode. It contains the data items
++ * needed for an endpoint to be activated and transfer packets.
++ */
++typedef struct dwc_ep
++{
++ /** EP number used for register address lookup */
++ uint8_t num;
++ /** EP direction 0 = OUT */
++ unsigned is_in : 1;
++ /** EP active. */
++ unsigned active : 1;
++
++ /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
++ If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
++ unsigned tx_fifo_num : 4;
++ /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
++ unsigned type : 2;
++#define DWC_OTG_EP_TYPE_CONTROL 0
++#define DWC_OTG_EP_TYPE_ISOC 1
++#define DWC_OTG_EP_TYPE_BULK 2
++#define DWC_OTG_EP_TYPE_INTR 3
++
++ /** DATA start PID for INTR and BULK EP */
++ unsigned data_pid_start : 1;
++ /** Frame (even/odd) for ISOC EP */
++ unsigned even_odd_frame : 1;
++ /** Max Packet bytes */
++ unsigned maxpacket : 11;
++
++ /** Max Transfer size */
++ unsigned maxxfer : 16;
++
++ /** @name Transfer state */
++ /** @{ */
++
++ /**
++ * Pointer to the beginning of the transfer buffer -- do not modify
++ * during transfer.
++ */
++
++ uint32_t dma_addr;
++
++ uint32_t dma_desc_addr;
++ dwc_otg_dma_desc_t* desc_addr;
++
++
++ uint8_t *start_xfer_buff;
++ /** pointer to the transfer buffer */
++ uint8_t *xfer_buff;
++ /** Number of bytes to transfer */
++ unsigned xfer_len : 19;
++ /** Number of bytes transferred. */
++ unsigned xfer_count : 19;
++ /** Sent ZLP */
++ unsigned sent_zlp : 1;
++ /** Total len for control transfer */
++ unsigned total_len : 19;
++
++ /** stall clear flag */
++ unsigned stall_clear_flag : 1;
++
++ /** Allocated DMA Desc count */
++ uint32_t desc_cnt;
++
++ uint32_t aligned_dma_addr;
++ uint32_t aligned_buf_size;
++ uint8_t *aligned_buf;
++
++
++#ifdef DWC_EN_ISOC
++ /**
++ * Variables specific for ISOC EPs
++ *
++ */
++ /** DMA addresses of ISOC buffers */
++ uint32_t dma_addr0;
++ uint32_t dma_addr1;
++
++ uint32_t iso_dma_desc_addr;
++ dwc_otg_dma_desc_t* iso_desc_addr;
++
++ /** pointer to the transfer buffers */
++ uint8_t *xfer_buff0;
++ uint8_t *xfer_buff1;
++
++ /** number of ISOC Buffer is processing */
++ uint32_t proc_buf_num;
++ /** Interval of ISOC Buffer processing */
++ uint32_t buf_proc_intrvl;
++ /** Data size for regular frame */
++ uint32_t data_per_frame;
++
++ /* todo - pattern data support is to be implemented in the future */
++ /** Data size for pattern frame */
++ uint32_t data_pattern_frame;
++ /** Frame number of pattern data */
++ uint32_t sync_frame;
++
++ /** bInterval */
++ uint32_t bInterval;
++ /** ISO Packet number per frame */
++ uint32_t pkt_per_frm;
++ /** Next frame num for which will be setup DMA Desc */
++ uint32_t next_frame;
++ /** Number of packets per buffer processing */
++ uint32_t pkt_cnt;
++ /** Info for all isoc packets */
++ iso_pkt_info_t *pkt_info;
++ /** current pkt number */
++ uint32_t cur_pkt;
++ /** current pkt number */
++ uint8_t *cur_pkt_addr;
++ /** current pkt number */
++ uint32_t cur_pkt_dma_addr;
++#endif //DWC_EN_ISOC
++/** @} */
++} dwc_ep_t;
++
++/*
++ * Reasons for halting a host channel.
++ */
++typedef enum dwc_otg_halt_status
++{
++ DWC_OTG_HC_XFER_NO_HALT_STATUS,
++ DWC_OTG_HC_XFER_COMPLETE,
++ DWC_OTG_HC_XFER_URB_COMPLETE,
++ DWC_OTG_HC_XFER_ACK,
++ DWC_OTG_HC_XFER_NAK,
++ DWC_OTG_HC_XFER_NYET,
++ DWC_OTG_HC_XFER_STALL,
++ DWC_OTG_HC_XFER_XACT_ERR,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN,
++ DWC_OTG_HC_XFER_BABBLE_ERR,
++ DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
++ DWC_OTG_HC_XFER_AHB_ERR,
++ DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
++ DWC_OTG_HC_XFER_URB_DEQUEUE
++} dwc_otg_halt_status_e;
++
++/**
++ * Host channel descriptor. This structure represents the state of a single
++ * host channel when acting in host mode. It contains the data items needed to
++ * transfer packets to an endpoint via a host channel.
++ */
++typedef struct dwc_hc
++{
++ /** Host channel number used for register address lookup */
++ uint8_t hc_num;
++
++ /** Device to access */
++ unsigned dev_addr : 7;
++
++ /** EP to access */
++ unsigned ep_num : 4;
++
++ /** EP direction. 0: OUT, 1: IN */
++ unsigned ep_is_in : 1;
++
++ /**
++ * EP speed.
++ * One of the following values:
++ * - DWC_OTG_EP_SPEED_LOW
++ * - DWC_OTG_EP_SPEED_FULL
++ * - DWC_OTG_EP_SPEED_HIGH
++ */
++ unsigned speed : 2;
++#define DWC_OTG_EP_SPEED_LOW 0
++#define DWC_OTG_EP_SPEED_FULL 1
++#define DWC_OTG_EP_SPEED_HIGH 2
++
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - DWC_OTG_EP_TYPE_CONTROL: 0
++ * - DWC_OTG_EP_TYPE_ISOC: 1
++ * - DWC_OTG_EP_TYPE_BULK: 2
++ * - DWC_OTG_EP_TYPE_INTR: 3
++ */
++ unsigned ep_type : 2;
++
++ /** Max packet size in bytes */
++ unsigned max_packet : 11;
++
++ /**
++ * PID for initial transaction.
++ * 0: DATA0,<br>
++ * 1: DATA2,<br>
++ * 2: DATA1,<br>
++ * 3: MDATA (non-Control EP),
++ * SETUP (Control EP)
++ */
++ unsigned data_pid_start : 2;
++#define DWC_OTG_HC_PID_DATA0 0
++#define DWC_OTG_HC_PID_DATA2 1
++#define DWC_OTG_HC_PID_DATA1 2
++#define DWC_OTG_HC_PID_MDATA 3
++#define DWC_OTG_HC_PID_SETUP 3
++
++ /** Number of periodic transactions per (micro)frame */
++ unsigned multi_count: 2;
++
++ /** @name Transfer State */
++ /** @{ */
++
++ /** Pointer to the current transfer buffer position. */
++ uint8_t *xfer_buff;
++ /** Total number of bytes to transfer. */
++ uint32_t xfer_len;
++ /** Number of bytes transferred so far. */
++ uint32_t xfer_count;
++ /** Packet count at start of transfer.*/
++ uint16_t start_pkt_count;
++
++ /**
++ * Flag to indicate whether the transfer has been started. Set to 1 if
++ * it has been started, 0 otherwise.
++ */
++ uint8_t xfer_started;
++
++ /**
++ * Set to 1 to indicate that a PING request should be issued on this
++ * channel. If 0, process normally.
++ */
++ uint8_t do_ping;
++
++ /**
++ * Set to 1 to indicate that the error count for this transaction is
++ * non-zero. Set to 0 if the error count is 0.
++ */
++ uint8_t error_state;
++
++ /**
++ * Set to 1 to indicate that this channel should be halted the next
++ * time a request is queued for the channel. This is necessary in
++ * slave mode if no request queue space is available when an attempt
++ * is made to halt the channel.
++ */
++ uint8_t halt_on_queue;
++
++ /**
++ * Set to 1 if the host channel has been halted, but the core is not
++ * finished flushing queued requests. Otherwise 0.
++ */
++ uint8_t halt_pending;
++
++ /**
++ * Reason for halting the host channel.
++ */
++ dwc_otg_halt_status_e halt_status;
++
++ /*
++ * Split settings for the host channel
++ */
++ uint8_t do_split; /**< Enable split for the channel */
++ uint8_t complete_split; /**< Enable complete split */
++ uint8_t hub_addr; /**< Address of high speed hub */
++
++ uint8_t port_addr; /**< Port of the low/full speed device */
++ /** Split transaction position
++ * One of the following values:
++ * - DWC_HCSPLIT_XACTPOS_MID
++ * - DWC_HCSPLIT_XACTPOS_BEGIN
++ * - DWC_HCSPLIT_XACTPOS_END
++ * - DWC_HCSPLIT_XACTPOS_ALL */
++ uint8_t xact_pos;
++
++ /** Set when the host channel does a short read. */
++ uint8_t short_read;
++
++ /**
++ * Number of requests issued for this channel since it was assigned to
++ * the current transfer (not counting PINGs).
++ */
++ uint8_t requests;
++
++ /**
++ * Queue Head for the transfer being processed by this channel.
++ */
++ struct dwc_otg_qh *qh;
++
++ /** @} */
++
++ /** Entry in list of host channels. */
++ struct list_head hc_list_entry;
++} dwc_hc_t;
++
++/**
++ * The following parameters may be specified when starting the module. These
++ * parameters define how the DWC_otg controller should be configured.
++ * Parameter values are passed to the CIL initialization function
++ * dwc_otg_cil_init.
++ */
++typedef struct dwc_otg_core_params
++{
++ int32_t opt;
++#define dwc_param_opt_default 1
++
++ /**
++ * Specifies the OTG capabilities. The driver will automatically
++ * detect the value for this parameter if none is specified.
++ * 0 - HNP and SRP capable (default)
++ * 1 - SRP Only capable
++ * 2 - No HNP/SRP capable
++ */
++ int32_t otg_cap;
++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
++//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
++
++ /**
++ * Specifies whether to use slave or DMA mode for accessing the data
++ * FIFOs. The driver will automatically detect the value for this
++ * parameter if none is specified.
++ * 0 - Slave
++ * 1 - DMA (default, if available)
++ */
++ int32_t dma_enable;
++#define dwc_param_dma_enable_default 1
++
++ /**
++ * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data
++ * FIFOs in device mode. The driver will automatically detect the value for this
++ * parameter if none is specified.
++ * 0 - address DMA
++ * 1 - DMA Descriptor(default, if available)
++ */
++ int32_t dma_desc_enable;
++#define dwc_param_dma_desc_enable_default 0
++ /** The DMA Burst size (applicable only for External DMA
++ * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ */
++ int32_t dma_burst_size; /* Translate this to GAHBCFG values */
++//#define dwc_param_dma_burst_size_default 32
++#define dwc_param_dma_burst_size_default 1
++
++ /**
++ * Specifies the maximum speed of operation in host and device mode.
++ * The actual speed depends on the speed of the attached device and
++ * the value of phy_type. The actual speed depends on the speed of the
++ * attached device.
++ * 0 - High Speed (default)
++ * 1 - Full Speed
++ */
++ int32_t speed;
++#define dwc_param_speed_default 0
++#define DWC_SPEED_PARAM_HIGH 0
++#define DWC_SPEED_PARAM_FULL 1
++
++ /** Specifies whether low power mode is supported when attached
++ * to a Full Speed or Low Speed device in host mode.
++ * 0 - Don't support low power mode (default)
++ * 1 - Support low power mode
++ */
++ int32_t host_support_fs_ls_low_power;
++#define dwc_param_host_support_fs_ls_low_power_default 0
++
++ /** Specifies the PHY clock rate in low power mode when connected to a
++ * Low Speed device in host mode. This parameter is applicable only if
++ * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
++ * then defaults to 6 MHZ otherwise 48 MHZ.
++ *
++ * 0 - 48 MHz
++ * 1 - 6 MHz
++ */
++ int32_t host_ls_low_power_phy_clk;
++#define dwc_param_host_ls_low_power_phy_clk_default 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
++
++ /**
++ * 0 - Use cC FIFO size parameters
++ * 1 - Allow dynamic FIFO sizing (default)
++ */
++ int32_t enable_dynamic_fifo;
++#define dwc_param_enable_dynamic_fifo_default 1
++
++ /** Total number of 4-byte words in the data FIFO memory. This
++ * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
++ * Tx FIFOs.
++ * 32 to 32768 (default 8192)
++ * Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ */
++ int32_t data_fifo_size;
++#define dwc_param_data_fifo_size_default 8192
++
++ /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1064)
++ */
++ int32_t dev_rx_fifo_size;
++//#define dwc_param_dev_rx_fifo_size_default 1064
++#define dwc_param_dev_rx_fifo_size_default 0x100
++
++ /**
++ * Specifies whether dedicated transmit FIFOs are
++ * enabled for non periodic IN endpoints in device mode
++ * 0 - No
++ * 1 - Yes
++ */
++ int32_t en_multiple_tx_fifo;
++#define dwc_param_en_multiple_tx_fifo_default 1
++
++ /** Number of 4-byte words in each of the Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++ uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
++//#define dwc_param_dev_tx_fifo_size_default 256
++#define dwc_param_dev_tx_fifo_size_default 0x80
++
++ /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
++ * when dynamic FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t dev_nperio_tx_fifo_size;
++//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
++#define dwc_param_dev_nperio_tx_fifo_size_default 0x80
++
++ /** Number of 4-byte words in each of the periodic Tx FIFOs in device
++ * mode when dynamic FIFO sizing is enabled.
++ * 4 to 768 (default 256)
++ */
++ uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
++//#define dwc_param_dev_perio_tx_fifo_size_default 256
++#define dwc_param_dev_perio_tx_fifo_size_default 0x80
++
++ /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_rx_fifo_size;
++//#define dwc_param_host_rx_fifo_size_default 1024
++#define dwc_param_host_rx_fifo_size_default 0x292
++
++ /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
++ * when Dynamic FIFO sizing is enabled in the core.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_nperio_tx_fifo_size;
++//#define dwc_param_host_nperio_tx_fifo_size_default 1024
++//#define dwc_param_host_nperio_tx_fifo_size_default 0x292
++#define dwc_param_host_nperio_tx_fifo_size_default 0x80
++
++ /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
++ * FIFO sizing is enabled.
++ * 16 to 32768 (default 1024)
++ */
++ int32_t host_perio_tx_fifo_size;
++//#define dwc_param_host_perio_tx_fifo_size_default 1024
++#define dwc_param_host_perio_tx_fifo_size_default 0x292
++
++ /** The maximum transfer size supported in bytes.
++ * 2047 to 65,535 (default 65,535)
++ */
++ int32_t max_transfer_size;
++#define dwc_param_max_transfer_size_default 65535
++
++ /** The maximum number of packets in a transfer.
++ * 15 to 511 (default 511)
++ */
++ int32_t max_packet_count;
++#define dwc_param_max_packet_count_default 511
++
++ /** The number of host channel registers to use.
++ * 1 to 16 (default 12)
++ * Note: The FPGA configuration supports a maximum of 12 host channels.
++ */
++ int32_t host_channels;
++//#define dwc_param_host_channels_default 12
++#define dwc_param_host_channels_default 16
++
++ /** The number of endpoints in addition to EP0 available for device
++ * mode operations.
++ * 1 to 15 (default 6 IN and OUT)
++ * Note: The FPGA configuration supports a maximum of 6 IN and OUT
++ * endpoints in addition to EP0.
++ */
++ int32_t dev_endpoints;
++//#define dwc_param_dev_endpoints_default 6
++#define dwc_param_dev_endpoints_default 8
++
++ /**
++ * Specifies the type of PHY interface to use. By default, the driver
++ * will automatically detect the phy_type.
++ *
++ * 0 - Full Speed PHY
++ * 1 - UTMI+ (default)
++ * 2 - ULPI
++ */
++ int32_t phy_type;
++#define DWC_PHY_TYPE_PARAM_FS 0
++#define DWC_PHY_TYPE_PARAM_UTMI 1
++#define DWC_PHY_TYPE_PARAM_ULPI 2
++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
++
++ /**
++ * Specifies the UTMI+ Data Width. This parameter is
++ * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
++ * PHY_TYPE, this parameter indicates the data width between
++ * the MAC and the ULPI Wrapper.) Also, this parameter is
++ * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
++ * to "8 and 16 bits", meaning that the core has been
++ * configured to work at either data path width.
++ *
++ * 8 or 16 bits (default 16)
++ */
++ int32_t phy_utmi_width;
++#define dwc_param_phy_utmi_width_default 16
++
++ /**
++ * Specifies whether the ULPI operates at double or single
++ * data rate. This parameter is only applicable if PHY_TYPE is
++ * ULPI.
++ *
++ * 0 - single data rate ULPI interface with 8 bit wide data
++ * bus (default)
++ * 1 - double data rate ULPI interface with 4 bit wide data
++ * bus
++ */
++ int32_t phy_ulpi_ddr;
++#define dwc_param_phy_ulpi_ddr_default 0
++
++ /**
++ * Specifies whether to use the internal or external supply to
++ * drive the vbus with a ULPI phy.
++ */
++ int32_t phy_ulpi_ext_vbus;
++#define DWC_PHY_ULPI_INTERNAL_VBUS 0
++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
++
++ /**
++ * Specifies whether to use the I2Cinterface for full speed PHY. This
++ * parameter is only applicable if PHY_TYPE is FS.
++ * 0 - No (default)
++ * 1 - Yes
++ */
++ int32_t i2c_enable;
++#define dwc_param_i2c_enable_default 0
++
++ int32_t ulpi_fs_ls;
++#define dwc_param_ulpi_fs_ls_default 0
++
++ int32_t ts_dline;
++#define dwc_param_ts_dline_default 0
++
++ /** Thresholding enable flag-
++ * bit 0 - enable non-ISO Tx thresholding
++ * bit 1 - enable ISO Tx thresholding
++ * bit 2 - enable Rx thresholding
++ */
++ uint32_t thr_ctl;
++#define dwc_param_thr_ctl_default 0
++
++ /** Thresholding length for Tx
++ * FIFOs in 32 bit DWORDs
++ */
++ uint32_t tx_thr_length;
++#define dwc_param_tx_thr_length_default 64
++
++ /** Thresholding length for Rx
++ * FIFOs in 32 bit DWORDs
++ */
++ uint32_t rx_thr_length;
++#define dwc_param_rx_thr_length_default 64
++
++ /** Per Transfer Interrupt
++ * mode enable flag
++ * 1 - Enabled
++ * 0 - Disabled
++ */
++ uint32_t pti_enable;
++#define dwc_param_pti_enable_default 0
++
++ /** Molti Processor Interrupt
++ * mode enable flag
++ * 1 - Enabled
++ * 0 - Disabled
++ */
++ uint32_t mpi_enable;
++#define dwc_param_mpi_enable_default 0
++
++} dwc_otg_core_params_t;
++
++#ifdef DEBUG
++struct dwc_otg_core_if;
++typedef struct hc_xfer_info
++{
++ struct dwc_otg_core_if *core_if;
++ dwc_hc_t *hc;
++} hc_xfer_info_t;
++#endif
++
++/**
++ * The <code>dwc_otg_core_if</code> structure contains information needed to manage
++ * the DWC_otg controller acting in either host or device mode. It
++ * represents the programming view of the controller as a whole.
++ */
++typedef struct dwc_otg_core_if
++{
++ /** Parameters that define how the core should be configured.*/
++ dwc_otg_core_params_t *core_params;
++
++ /** Core Global registers starting at offset 000h. */
++ dwc_otg_core_global_regs_t *core_global_regs;
++
++ /** Device-specific information */
++ dwc_otg_dev_if_t *dev_if;
++ /** Host-specific information */
++ dwc_otg_host_if_t *host_if;
++
++ /** Value from SNPSID register */
++ uint32_t snpsid;
++
++ /*
++ * Set to 1 if the core PHY interface bits in USBCFG have been
++ * initialized.
++ */
++ uint8_t phy_init_done;
++
++ /*
++ * SRP Success flag, set by srp success interrupt in FS I2C mode
++ */
++ uint8_t srp_success;
++ uint8_t srp_timer_started;
++
++ /* Common configuration information */
++ /** Power and Clock Gating Control Register */
++ volatile uint32_t *pcgcctl;
++#define DWC_OTG_PCGCCTL_OFFSET 0xE00
++
++ /** Push/pop addresses for endpoints or host channels.*/
++ uint32_t *data_fifo[MAX_EPS_CHANNELS];
++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
++#define DWC_OTG_DATA_FIFO_SIZE 0x1000
++
++ /** Total RAM for FIFOs (Bytes) */
++ uint16_t total_fifo_size;
++ /** Size of Rx FIFO (Bytes) */
++ uint16_t rx_fifo_size;
++ /** Size of Non-periodic Tx FIFO (Bytes) */
++ uint16_t nperio_tx_fifo_size;
++
++
++ /** 1 if DMA is enabled, 0 otherwise. */
++ uint8_t dma_enable;
++
++ /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
++ uint8_t dma_desc_enable;
++
++ /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
++ uint8_t pti_enh_enable;
++
++ /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
++ uint8_t multiproc_int_enable;
++
++ /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
++ uint8_t en_multiple_tx_fifo;
++
++ /** Set to 1 if multiple packets of a high-bandwidth transfer is in
++ * process of being queued */
++ uint8_t queuing_high_bandwidth;
++
++ /** Hardware Configuration -- stored here for convenience.*/
++ hwcfg1_data_t hwcfg1;
++ hwcfg2_data_t hwcfg2;
++ hwcfg3_data_t hwcfg3;
++ hwcfg4_data_t hwcfg4;
++
++ /** Host and Device Configuration -- stored here for convenience.*/
++ hcfg_data_t hcfg;
++ dcfg_data_t dcfg;
++
++ /** The operational State, during transations
++ * (a_host>>a_peripherial and b_device=>b_host) this may not
++ * match the core but allows the software to determine
++ * transitions.
++ */
++ uint8_t op_state;
++
++ /**
++ * Set to 1 if the HCD needs to be restarted on a session request
++ * interrupt. This is required if no connector ID status change has
++ * occurred since the HCD was last disconnected.
++ */
++ uint8_t restart_hcd_on_session_req;
++
++ /** HCD callbacks */
++ /** A-Device is a_host */
++#define A_HOST (1)
++ /** A-Device is a_suspend */
++#define A_SUSPEND (2)
++ /** A-Device is a_peripherial */
++#define A_PERIPHERAL (3)
++ /** B-Device is operating as a Peripheral. */
++#define B_PERIPHERAL (4)
++ /** B-Device is operating as a Host. */
++#define B_HOST (5)
++
++ /** HCD callbacks */
++ struct dwc_otg_cil_callbacks *hcd_cb;
++ /** PCD callbacks */
++ struct dwc_otg_cil_callbacks *pcd_cb;
++
++ /** Device mode Periodic Tx FIFO Mask */
++ uint32_t p_tx_msk;
++ /** Device mode Periodic Tx FIFO Mask */
++ uint32_t tx_msk;
++
++ /** Workqueue object used for handling several interrupts */
++ struct workqueue_struct *wq_otg;
++
++ /** Work object used for handling "Connector ID Status Change" Interrupt */
++ struct work_struct w_conn_id;
++
++ /** Work object used for handling "Wakeup Detected" Interrupt */
++ struct delayed_work w_wkp;
++
++#ifdef DEBUG
++ uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
++
++ hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
++ struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
++
++ uint32_t hfnum_7_samples;
++ uint64_t hfnum_7_frrem_accum;
++ uint32_t hfnum_0_samples;
++ uint64_t hfnum_0_frrem_accum;
++ uint32_t hfnum_other_samples;
++ uint64_t hfnum_other_frrem_accum;
++#endif
++
++
++} dwc_otg_core_if_t;
++
++/*We must clear S3C24XX_EINTPEND external interrupt register
++ * because after clearing in this register trigerred IRQ from
++ * H/W core in kernel interrupt can be occured again before OTG
++ * handlers clear all IRQ sources of Core registers because of
++ * timing latencies and Low Level IRQ Type.
++ */
++
++#ifdef CONFIG_MACH_IPMATE
++#define S3C2410X_CLEAR_EINTPEND() \
++do { \
++ if (!dwc_otg_read_core_intr(core_if)) { \
++ __raw_writel(1UL << 11,S3C24XX_EINTPEND); \
++ } \
++} while (0)
++#else
++#define S3C2410X_CLEAR_EINTPEND() do { } while (0)
++#endif
++
++/*
++ * The following functions are functions for works
++ * using during handling some interrupts
++ */
++extern void w_conn_id_status_change(struct work_struct *p);
++extern void w_wakeup_detected(struct work_struct *p);
++
++
++/*
++ * The following functions support initialization of the CIL driver component
++ * and the DWC_otg controller.
++ */
++extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
++ dwc_otg_core_params_t *_core_params);
++extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
++extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
++
++/** @name Device CIL Functions
++ * The following functions support managing the DWC_otg controller in device
++ * mode.
++ */
++/**@{*/
++extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
++extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
++extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
++extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if);
++#ifdef DWC_EN_ISOC
++extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
++extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
++#endif //DWC_EN_ISOC
++/**@}*/
++
++/** @name Host CIL Functions
++ * The following functions support managing the DWC_otg controller in host
++ * mode.
++ */
++/**@{*/
++extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
++ dwc_hc_t *_hc,
++ dwc_otg_halt_status_e _halt_status);
++extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
++extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
++extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
++
++/**
++ * This function Reads HPRT0 in preparation to modify. It keeps the
++ * WC bits 0 so that if they are read as 1, they won't clear when you
++ * write it back
++ */
++static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
++{
++ hprt0_data_t hprt0;
++ hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
++ hprt0.b.prtena = 0;
++ hprt0.b.prtconndet = 0;
++ hprt0.b.prtenchng = 0;
++ hprt0.b.prtovrcurrchng = 0;
++ return hprt0.d32;
++}
++
++extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
++/**@}*/
++
++/** @name Common CIL Functions
++ * The following functions support managing the DWC_otg controller in either
++ * device or host mode.
++ */
++/**@{*/
++
++extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
++ uint8_t *dest,
++ uint16_t bytes);
++
++extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
++
++extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
++ const int _num );
++extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
++extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
++
++extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count);
++extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count);
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
++ dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
++}
++
++/**
++ * This function returns the OTG Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the IN endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if)
++{
++ uint32_t v;
++
++ if(core_if->multiproc_int_enable) {
++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
++ } else {
++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
++ }
++ return (v & 0xffff);
++
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the OUT endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if)
++{
++ uint32_t v;
++
++ if(core_if->multiproc_int_enable) {
++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
++ } else {
++ v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
++ }
++
++ return ((v & 0xffff0000) >> 16);
++}
++
++/**
++ * This function returns the Device IN EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if,
++ dwc_ep_t *ep)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ uint32_t v, msk, emp;
++
++ if(core_if->multiproc_int_enable) {
++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]);
++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
++ msk |= ((emp >> ep->num) & 0x1) << 7;
++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
++ } else {
++ msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
++ emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
++ msk |= ((emp >> ep->num) & 0x1) << 7;
++ v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
++ }
++
++
++ return v;
++}
++/**
++ * This function returns the Device OUT EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
++ dwc_ep_t *_ep)
++{
++ dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
++ uint32_t v;
++ doepmsk_data_t msk = { .d32 = 0 };
++
++ if(_core_if->multiproc_int_enable) {
++ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]);
++ if(_core_if->pti_enh_enable) {
++ msk.b.pktdrpsts = 1;
++ }
++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
++ } else {
++ msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
++ if(_core_if->pti_enh_enable) {
++ msk.b.pktdrpsts = 1;
++ }
++ v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
++ }
++ return v;
++}
++
++/**
++ * This function returns the Host All Channel Interrupt register
++ */
++static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
++}
++
++static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
++{
++ return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
++}
++
++
++/**
++ * This function returns the mode of the operation, host or device.
++ *
++ * @return 0 - Device Mode, 1 - Host Mode
++ */
++static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
++}
++
++static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
++}
++static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
++{
++ return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
++}
++
++extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
++
++
++/**@}*/
++
++/**
++ * DWC_otg CIL callback structure. This structure allows the HCD and
++ * PCD to register functions used for starting and stopping the PCD
++ * and HCD for role change on for a DRD.
++ */
++typedef struct dwc_otg_cil_callbacks
++{
++ /** Start function for role change */
++ int (*start) (void *_p);
++ /** Stop Function for role change */
++ int (*stop) (void *_p);
++ /** Disconnect Function for role change */
++ int (*disconnect) (void *_p);
++ /** Resume/Remote wakeup Function */
++ int (*resume_wakeup) (void *_p);
++ /** Suspend function */
++ int (*suspend) (void *_p);
++ /** Session Start (SRP) */
++ int (*session_start) (void *_p);
++ /** Pointer passed to start() and stop() */
++ void *p;
++} dwc_otg_cil_callbacks_t;
++
++extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
++ dwc_otg_cil_callbacks_t *_cb,
++ void *_p);
++extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
++ dwc_otg_cil_callbacks_t *_cb,
++ void *_p);
++#ifndef warn
++#define warn printk
++#endif
++
++#endif
++
+--- /dev/null
++++ b/drivers/usb/dwc/otg_cil_intr.c
+@@ -0,0 +1,852 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
++ * $Revision: #10 $
++ * $Date: 2008/07/16 $
++ * $Change: 1065567 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * This file contains the Common Interrupt handlers.
++ */
++#include "otg_plat.h"
++#include "otg_regs.h"
++#include "otg_cil.h"
++#include "otg_pcd.h"
++
++#ifdef DEBUG
++inline const char *op_state_str(dwc_otg_core_if_t *core_if)
++{
++ return (core_if->op_state==A_HOST?"a_host":
++ (core_if->op_state==A_SUSPEND?"a_suspend":
++ (core_if->op_state==A_PERIPHERAL?"a_peripheral":
++ (core_if->op_state==B_PERIPHERAL?"b_peripheral":
++ (core_if->op_state==B_HOST?"b_host":
++ "unknown")))));
++}
++#endif
++
++/** This function will log a debug message
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if)
++{
++ gintsts_data_t gintsts;
++ DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
++ dwc_otg_mode(core_if) ? "Host" : "Device");
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.modemismatch = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++
++/** Start the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_start(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->start) {
++ core_if->hcd_cb->start(core_if->hcd_cb->p);
++ }
++}
++/** Stop the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_stop(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->stop) {
++ core_if->hcd_cb->stop(core_if->hcd_cb->p);
++ }
++}
++/** Disconnect the HCD. Helper function for using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_disconnect(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
++ core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
++ }
++}
++/** Inform the HCD the a New Session has begun. Helper function for
++ * using the HCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void hcd_session_start(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
++ core_if->hcd_cb->session_start(core_if->hcd_cb->p);
++ }
++}
++
++/** Start the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_start(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->start) {
++ core_if->pcd_cb->start(core_if->pcd_cb->p);
++ }
++}
++/** Stop the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_stop(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->stop) {
++ core_if->pcd_cb->stop(core_if->pcd_cb->p);
++ }
++}
++/** Suspend the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_suspend(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
++ core_if->pcd_cb->suspend(core_if->pcd_cb->p);
++ }
++}
++/** Resume the PCD. Helper function for using the PCD callbacks.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static inline void pcd_resume(dwc_otg_core_if_t *core_if)
++{
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ }
++}
++
++/**
++ * This function handles the OTG Interrupts. It reads the OTG
++ * Interrupt Register (GOTGINT) to determine what interrupt has
++ * occurred.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++ gotgint_data_t gotgint;
++ gotgctl_data_t gotgctl;
++ gintmsk_data_t gintmsk;
++ gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
++ op_state_str(core_if));
++ //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32);
++
++ if (gotgint.b.sesenddet) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session End Detected++ (%s)\n",
++ op_state_str(core_if));
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++
++ if (core_if->op_state == B_HOST) {
++
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_start(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ core_if->op_state = B_PERIPHERAL;
++ } else {
++ dwc_otg_pcd_t *pcd;
++
++ /* If not B_HOST and Device HNP still set. HNP
++ * Did not succeed!*/
++ if (gotgctl.b.devhnpen) {
++ DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
++ DWC_ERROR("Device Not Connected/Responding!\n");
++ }
++
++ /* If Session End Detected the B-Cable has
++ * been disconnected. */
++ /* Reset PCD and Gadget driver to a
++ * clean state. */
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_stop(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ }
++ gotgctl.d32 = 0;
++ gotgctl.b.devhnpen = 1;
++ dwc_modify_reg32(&global_regs->gotgctl,
++ gotgctl.d32, 0);
++ }
++ if (gotgint.b.sesreqsucstschng) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Session Reqeust Success Status Change++\n");
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++ if (gotgctl.b.sesreqscs) {
++ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
++ (core_if->core_params->i2c_enable)) {
++ core_if->srp_success = 1;
++ }
++ else {
++ dwc_otg_pcd_t *pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_resume(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ /* Clear Session Request */
++ gotgctl.d32 = 0;
++ gotgctl.b.sesreq = 1;
++ dwc_modify_reg32(&global_regs->gotgctl,
++ gotgctl.d32, 0);
++ }
++ }
++ }
++ if (gotgint.b.hstnegsucstschng) {
++ /* Print statements during the HNP interrupt handling
++ * can cause it to fail.*/
++ gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++ if (gotgctl.b.hstnegscs) {
++ if (dwc_otg_is_host_mode(core_if)) {
++ dwc_otg_pcd_t *pcd;
++
++ core_if->op_state = B_HOST;
++ /*
++ * Need to disable SOF interrupt immediately.
++ * When switching from device to host, the PCD
++ * interrupt handler won't handle the
++ * interrupt if host mode is already set. The
++ * HCD interrupt handler won't get called if
++ * the HCD state is HALT. This means that the
++ * interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&global_regs->gintmsk,
++ gintmsk.d32, 0);
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_stop(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ /*
++ * Initialize the Core for Host mode.
++ */
++ hcd_start(core_if);
++ core_if->op_state = B_HOST;
++ }
++ } else {
++ gotgctl.d32 = 0;
++ gotgctl.b.hnpreq = 1;
++ gotgctl.b.devhnpen = 1;
++ dwc_modify_reg32(&global_regs->gotgctl,
++ gotgctl.d32, 0);
++ DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
++ DWC_ERROR("Device Not Connected/Responding\n");
++ }
++ }
++ if (gotgint.b.hstnegdet) {
++ /* The disconnect interrupt is set at the same time as
++ * Host Negotiation Detected. During the mode
++ * switch all interrupts are cleared so the disconnect
++ * interrupt handler will not get executed.
++ */
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Host Negotiation Detected++ (%s)\n",
++ (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
++ if (dwc_otg_is_device_mode(core_if)){
++ dwc_otg_pcd_t *pcd;
++
++ DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state);
++ hcd_disconnect(core_if);
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_start(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ core_if->op_state = A_PERIPHERAL;
++ } else {
++ dwc_otg_pcd_t *pcd;
++
++ /*
++ * Need to disable SOF interrupt immediately. When
++ * switching from device to host, the PCD interrupt
++ * handler won't handle the interrupt if host mode is
++ * already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that
++ * the interrupt does not get handled and Linux
++ * complains loudly.
++ */
++ gintmsk.d32 = 0;
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&global_regs->gintmsk,
++ gintmsk.d32, 0);
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_stop(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ hcd_start(core_if);
++ core_if->op_state = A_HOST;
++ }
++ }
++ if (gotgint.b.adevtoutchng) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "A-Device Timeout Change++\n");
++ }
++ if (gotgint.b.debdone) {
++ DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++ "Debounce Done++\n");
++ }
++
++ /* Clear GOTGINT */
++ dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32);
++
++ return 1;
++}
++
++
++void w_conn_id_status_change(struct work_struct *p)
++{
++ dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id);
++
++ uint32_t count = 0;
++ gotgctl_data_t gotgctl = { .d32 = 0 };
++
++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
++ DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
++
++ /* B-Device connector (Device Mode) */
++ if (gotgctl.b.conidsts) {
++ dwc_otg_pcd_t *pcd;
++
++ /* Wait for switch to device mode. */
++ while (!dwc_otg_is_device_mode(core_if)){
++ DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
++ MDELAY(100);
++ if (++count > 10000) *(uint32_t*)NULL=0;
++ }
++ core_if->op_state = B_PERIPHERAL;
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_start(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ } else {
++ /* A-Device connector (Host Mode) */
++ while (!dwc_otg_is_host_mode(core_if)) {
++ DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
++ (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
++ MDELAY(100);
++ if (++count > 10000) *(uint32_t*)NULL=0;
++ }
++ core_if->op_state = A_HOST;
++ /*
++ * Initialize the Core for Host mode.
++ */
++ dwc_otg_core_init(core_if);
++ dwc_otg_enable_global_interrupts(core_if);
++ hcd_start(core_if);
++ }
++}
++
++
++/**
++ * This function handles the Connector ID Status Change Interrupt. It
++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
++ * is a Device to Host Mode transition or a Host Mode to Device
++ * Transition.
++ *
++ * This only occurs when the cable is connected/removed from the PHY
++ * connector.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if)
++{
++
++ /*
++ * Need to disable SOF interrupt immediately. If switching from device
++ * to host, the PCD interrupt handler won't handle the interrupt if
++ * host mode is already set. The HCD interrupt handler won't get
++ * called if the HCD state is HALT. This means that the interrupt does
++ * not get handled and Linux complains loudly.
++ */
++ gintmsk_data_t gintmsk = { .d32 = 0 };
++ gintsts_data_t gintsts = { .d32 = 0 };
++
++ gintmsk.b.sofintr = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
++
++ DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
++ (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
++
++ /*
++ * Need to schedule a work, as there are possible DELAY function calls
++ */
++ queue_work(core_if->wq_otg, &core_if->w_conn_id);
++
++ /* Set flag and clear interrupt */
++ gintsts.b.conidstschng = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device is initiating the Session
++ * Request Protocol to request the host to turn on bus power so a new
++ * session can begin. The handler responds by turning on bus power. If
++ * the DWC_otg controller is in low power mode, the handler brings the
++ * controller out of low power mode before turning on bus power.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if)
++{
++ hprt0_data_t hprt0;
++ gintsts_data_t gintsts;
++
++#ifndef DWC_HOST_ONLY
++ DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ DWC_PRINT("SRP: Device mode\n");
++ } else {
++ DWC_PRINT("SRP: Host mode\n");
++
++ /* Turn on the port power bit. */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Start the Connection timer. So a message can be displayed
++ * if connect does not occur within 10 seconds. */
++ hcd_session_start(core_if);
++ }
++#endif
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.sessreqintr = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++
++void w_wakeup_detected(struct work_struct *p)
++{
++ struct delayed_work *dw = container_of(p, struct delayed_work, work);
++ dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp);
++
++ /*
++ * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
++ * so that OPT tests pass with all PHYs).
++ */
++ hprt0_data_t hprt0 = {.d32=0};
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
++// MDELAY(70);
++ hprt0.b.prtres = 0; /* Resume */
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0));
++}
++/**
++ * This interrupt indicates that the DWC_otg controller has detected a
++ * resume or remote wakeup sequence. If the DWC_otg controller is in
++ * low power mode, the handler must brings the controller out of low
++ * power mode. The controller automatically begins resume
++ * signaling. The handler schedules a time to stop resume signaling.
++ */
++int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if)
++{
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ dctl_data_t dctl = {.d32=0};
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
++ dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts));
++#ifdef PARTIAL_POWER_DOWN
++ if (core_if->hwcfg4.b.power_optimiz) {
++ pcgcctl_data_t power = {.d32=0};
++
++ power.d32 = dwc_read_reg32(core_if->pcgcctl);
++ DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
++
++ power.b.stoppclk = 0;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++ power.b.pwrclmp = 0;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 0;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++ }
++#endif
++ /* Clear the Remote Wakeup Signalling */
++ dctl.b.rmtwkupsig = 1;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
++ dctl.d32, 0);
++
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ }
++
++ } else {
++ pcgcctl_data_t pcgcctl = {.d32=0};
++
++ /* Restart the Phy Clock */
++ pcgcctl.b.stoppclk = 1;
++ dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
++
++ queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1));
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.wkupintr = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that a device has been disconnected from
++ * the root port.
++ */
++int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if)
++{
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
++ (dwc_otg_is_host_mode(core_if)?"Host":"Device"),
++ op_state_str(core_if));
++
++/** @todo Consolidate this if statement. */
++#ifndef DWC_HOST_ONLY
++ if (core_if->op_state == B_HOST) {
++ dwc_otg_pcd_t *pcd;
++
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ hcd_disconnect(core_if);
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_start(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ core_if->op_state = B_PERIPHERAL;
++ } else if (dwc_otg_is_device_mode(core_if)) {
++ gotgctl_data_t gotgctl = { .d32 = 0 };
++ gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
++ if (gotgctl.b.hstsethnpen==1) {
++ /* Do nothing, if HNP in process the OTG
++ * interrupt "Host Negotiation Detected"
++ * interrupt will do the mode switch.
++ */
++ } else if (gotgctl.b.devhnpen == 0) {
++ dwc_otg_pcd_t *pcd;
++
++ /* If in device mode Disconnect and stop the HCD, then
++ * start the PCD. */
++ hcd_disconnect(core_if);
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_start(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++
++ core_if->op_state = B_PERIPHERAL;
++ } else {
++ DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
++ }
++ } else {
++ if (core_if->op_state == A_HOST) {
++ /* A-Cable still connected but device disconnected. */
++ hcd_disconnect(core_if);
++ }
++ }
++#endif
++
++ gintsts.d32 = 0;
++ gintsts.b.disconnect = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++ return 1;
++}
++/**
++ * This interrupt indicates that SUSPEND state has been detected on
++ * the USB.
++ *
++ * For HNP the USB Suspend interrupt signals the change from
++ * "a_peripheral" to "a_host".
++ *
++ * When power management is enabled the core will be put in low power
++ * mode.
++ */
++int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if)
++{
++ dsts_data_t dsts;
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ dwc_otg_pcd_t *pcd;
++
++ /* Check the Device status register to determine if the Suspend
++ * state is active. */
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++ DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
++ DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
++ "HWCFG4.power Optimize=%d\n",
++ dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
++
++
++#ifdef PARTIAL_POWER_DOWN
++/** @todo Add a module parameter for power management. */
++ if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
++ pcgcctl_data_t power = {.d32=0};
++ DWC_DEBUGPL(DBG_CIL, "suspend\n");
++
++ power.b.pwrclmp = 1;
++ dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++ power.b.rstpdwnmodule = 1;
++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
++
++ power.b.stoppclk = 1;
++ dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
++ } else {
++ DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
++ }
++#endif
++ /* PCD callback for suspend. */
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_suspend(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++ } else {
++ if (core_if->op_state == A_PERIPHERAL) {
++ dwc_otg_pcd_t *pcd;
++
++ DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
++ /* Clear the a_peripheral flag, back to a_host. */
++
++ pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
++ if(unlikely(!pcd)) {
++ DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
++ BUG();
++ }
++ SPIN_LOCK(&pcd->lock);
++
++ pcd_stop(core_if);
++
++ SPIN_UNLOCK(&pcd->lock);
++
++ hcd_start(core_if);
++ core_if->op_state = A_HOST;
++ }
++ }
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.usbsuspend = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if)
++{
++ gintsts_data_t gintsts;
++ gintmsk_data_t gintmsk;
++ gintmsk_data_t gintmsk_common = {.d32=0};
++ gintmsk_common.b.wkupintr = 1;
++ gintmsk_common.b.sessreqintr = 1;
++ gintmsk_common.b.conidstschng = 1;
++ gintmsk_common.b.otgintr = 1;
++ gintmsk_common.b.modemismatch = 1;
++ gintmsk_common.b.disconnect = 1;
++ gintmsk_common.b.usbsuspend = 1;
++ /** @todo: The port interrupt occurs while in device
++ * mode. Added code to CIL to clear the interrupt for now!
++ */
++ gintmsk_common.b.portintr = 1;
++
++ gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
++ gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
++#ifdef DEBUG
++ /* if any common interrupts set */
++ if (gintsts.d32 & gintmsk_common.d32) {
++ DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
++ gintsts.d32, gintmsk.d32);
++ }
++#endif
++
++ return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
++
++}
++
++/**
++ * Common interrupt handler.
++ *
++ * The common interrupts are those that occur in both Host and Device mode.
++ * This handler handles the following interrupts:
++ * - Mode Mismatch Interrupt
++ * - Disconnect Interrupt
++ * - OTG Interrupt
++ * - Connector ID Status Change Interrupt
++ * - Session Request Interrupt.
++ * - Resume / Remote Wakeup Detected Interrupt.
++ *
++ */
++int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if)
++{
++ int retval = 0;
++ gintsts_data_t gintsts;
++
++ gintsts.d32 = dwc_otg_read_common_intr(core_if);
++
++ if (gintsts.b.modemismatch) {
++ retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
++ }
++ if (gintsts.b.otgintr) {
++ retval |= dwc_otg_handle_otg_intr(core_if);
++ }
++ if (gintsts.b.conidstschng) {
++ retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
++ }
++ if (gintsts.b.disconnect) {
++ retval |= dwc_otg_handle_disconnect_intr(core_if);
++ }
++ if (gintsts.b.sessreqintr) {
++ retval |= dwc_otg_handle_session_req_intr(core_if);
++ }
++ if (gintsts.b.wkupintr) {
++ retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
++ }
++ if (gintsts.b.usbsuspend) {
++ retval |= dwc_otg_handle_usb_suspend_intr(core_if);
++ }
++ if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
++ /* The port interrupt occurs while in device mode with HPRT0
++ * Port Enable/Disable.
++ */
++ gintsts.d32 = 0;
++ gintsts.b.portintr = 1;
++ dwc_write_reg32(&core_if->core_global_regs->gintsts,
++ gintsts.d32);
++ retval |= 1;
++
++ }
++
++ S3C2410X_CLEAR_EINTPEND();
++
++ return retval;
++}
+--- /dev/null
++++ b/drivers/usb/dwc/otg_driver.c
+@@ -0,0 +1,960 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $
++ * $Revision: #63 $
++ * $Date: 2008/09/24 $
++ * $Change: 1101777 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/** @file
++ * The dwc_otg_driver module provides the initialization and cleanup entry
++ * points for the DWC_otg driver. This module will be dynamically installed
++ * after Linux is booted using the insmod command. When the module is
++ * installed, the dwc_otg_driver_init function is called. When the module is
++ * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
++ *
++ * This module also defines a data structure for the dwc_otg_driver, which is
++ * used in conjunction with the standard ARM lm_device structure. These
++ * structures allow the OTG driver to comply with the standard Linux driver
++ * model in which devices and drivers are registered with a bus driver. This
++ * has the benefit that Linux can expose attributes of the driver and device
++ * in its special sysfs file system. Users can then read or write files in
++ * this file system to perform diagnostics on the driver components or the
++ * device.
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h> /* permission constants */
++#include <linux/version.h>
++#include <linux/platform_device.h>
++#include <linux/io.h>
++#include <linux/irq.h>
++#include <asm/io.h>
++
++#include <asm/sizes.h>
++#include <mach/pm.h>
++
++#include "otg_plat.h"
++#include "otg_attr.h"
++#include "otg_driver.h"
++#include "otg_cil.h"
++#include "otg_pcd.h"
++#include "otg_hcd.h"
++
++#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008"
++#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
++
++static const char dwc_driver_name[] = "dwc_otg";
++
++/*-------------------------------------------------------------------------*/
++/* Encapsulate the module parameter settings */
++
++static dwc_otg_core_params_t dwc_otg_module_params = {
++ .opt = -1,
++ .otg_cap = -1,
++ .dma_enable = -1,
++ .dma_desc_enable = -1,
++ .dma_burst_size = -1,
++ .speed = -1,
++ .host_support_fs_ls_low_power = -1,
++ .host_ls_low_power_phy_clk = -1,
++ .enable_dynamic_fifo = -1,
++ .data_fifo_size = -1,
++ .dev_rx_fifo_size = -1,
++ .dev_nperio_tx_fifo_size = -1,
++ .dev_perio_tx_fifo_size = {
++ /* dev_perio_tx_fifo_size_1 */
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1
++ /* 15 */
++ },
++ .host_rx_fifo_size = -1,
++ .host_nperio_tx_fifo_size = -1,
++ .host_perio_tx_fifo_size = -1,
++ .max_transfer_size = -1,
++ .max_packet_count = -1,
++ .host_channels = -1,
++ .dev_endpoints = -1,
++ .phy_type = -1,
++ .phy_utmi_width = -1,
++ .phy_ulpi_ddr = -1,
++ .phy_ulpi_ext_vbus = -1,
++ .i2c_enable = -1,
++ .ulpi_fs_ls = -1,
++ .ts_dline = -1,
++ .en_multiple_tx_fifo = -1,
++ .dev_tx_fifo_size = {
++ /* dev_tx_fifo_size */
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1,
++ -1
++ /* 15 */
++ },
++ .thr_ctl = -1,
++ .tx_thr_length = -1,
++ .rx_thr_length = -1,
++ .pti_enable = -1,
++ .mpi_enable = -1,
++};
++
++/**
++ * Global Debug Level Mask.
++ */
++uint32_t g_dbg_lvl = 0; /* OFF */
++
++/**
++ * This function is called during module intialization to verify that
++ * the module parameters are in a valid state.
++ */
++static int check_parameters(dwc_otg_core_if_t *core_if)
++{
++ int i;
++ int retval = 0;
++
++/* Checks if the parameter is outside of its valid range of values */
++#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
++ ((dwc_otg_module_params._param_ < (_low_)) || \
++ (dwc_otg_module_params._param_ > (_high_)))
++
++/* If the parameter has been set by the user, check that the parameter value is
++ * within the value range of values. If not, report a module error. */
++#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
++ do { \
++ if (dwc_otg_module_params._param_ != -1) { \
++ if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
++ DWC_ERROR("`%d' invalid for parameter `%s'\n", \
++ dwc_otg_module_params._param_, _string_); \
++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++ retval++; \
++ } \
++ } \
++ } while (0)
++
++ DWC_OTG_PARAM_ERR(opt,0,1,"opt");
++ DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
++ DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
++ DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable");
++ DWC_OTG_PARAM_ERR(speed,0,1,"speed");
++ DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
++ DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
++ DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
++ DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
++ DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
++ DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
++ DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
++ DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
++ DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
++ DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
++ DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
++ DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
++ DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
++ DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
++ DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
++ DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
++
++ if (dwc_otg_module_params.dma_burst_size != -1) {
++ if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
++ DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) {
++ DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
++ dwc_otg_module_params.dma_burst_size);
++ dwc_otg_module_params.dma_burst_size = 32;
++ retval++;
++ }
++
++ {
++ uint8_t brst_sz = 0;
++ while(dwc_otg_module_params.dma_burst_size > 1) {
++ brst_sz ++;
++ dwc_otg_module_params.dma_burst_size >>= 1;
++ }
++ dwc_otg_module_params.dma_burst_size = brst_sz;
++ }
++ }
++
++ if (dwc_otg_module_params.phy_utmi_width != -1) {
++ if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
++ DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
++ DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
++ dwc_otg_module_params.phy_utmi_width);
++ dwc_otg_module_params.phy_utmi_width = 16;
++ retval++;
++ }
++ }
++
++ for (i = 0; i < 15; i++) {
++ /** @todo should be like above */
++ //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size");
++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
++ if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) {
++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
++ retval++;
++ }
++ }
++ }
++
++ DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
++
++ for (i = 0; i < 15; i++) {
++ /** @todo should be like above */
++ //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size");
++ if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
++ if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
++ DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
++ dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i);
++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
++ retval++;
++ }
++ }
++ }
++
++ DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
++ DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
++ DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
++
++ DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable");
++ DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable");
++
++ /* At this point, all module parameters that have been set by the user
++ * are valid, and those that have not are left unset. Now set their
++ * default values and/or check the parameters against the hardware
++ * configurations of the OTG core. */
++
++/* This sets the parameter to the default value if it has not been set by the
++ * user */
++#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
++ ({ \
++ int changed = 1; \
++ if (dwc_otg_module_params._param_ == -1) { \
++ changed = 0; \
++ dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++ } \
++ changed; \
++ })
++
++/* This checks the macro agains the hardware configuration to see if it is
++ * valid. It is possible that the default value could be invalid. In this
++ * case, it will report a module error if the user touched the parameter.
++ * Otherwise it will adjust the value without any error. */
++#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
++ ({ \
++ int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
++ int error = 0; \
++ if (!(_is_valid_)) { \
++ if (changed) { \
++ DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
++ error = 1; \
++ } \
++ dwc_otg_module_params._param_ = (_set_valid_); \
++ } \
++ error; \
++ })
++
++ /* OTG Cap */
++ retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
++ ({
++ int valid;
++ valid = 1;
++ switch (dwc_otg_module_params.otg_cap) {
++ case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
++ if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++ valid = 0;
++ break;
++ case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
++ if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
++ (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
++ valid = 0;
++ }
++ break;
++ case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
++ /* always valid */
++ break;
++ }
++ valid;
++ }),
++ (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
++ (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
++ DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
++ DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
++ ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
++ 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable",
++ ((dwc_otg_module_params.dma_desc_enable == 1) &&
++ ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1,
++ 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
++
++ DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
++ "host_support_fs_ls_low_power",
++ 1, 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
++ "enable_dynamic_fifo",
++ ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
++ (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
++ "data_fifo_size",
++ (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
++ core_if->hwcfg3.b.dfifo_depth);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
++ "dev_rx_fifo_size",
++ (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
++ "dev_nperio_tx_fifo_size",
++ (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
++ "host_rx_fifo_size",
++ (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
++ dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
++ "host_nperio_tx_fifo_size",
++ (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
++ (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
++ "host_perio_tx_fifo_size",
++ (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
++ ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
++ "max_transfer_size",
++ (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
++ ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
++ "max_packet_count",
++ (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
++ ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
++ "host_channels",
++ (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
++ (core_if->hwcfg2.b.num_host_chan + 1));
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
++ "dev_endpoints",
++ (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
++ core_if->hwcfg2.b.num_dev_ep);
++
++/*
++ * Define the following to disable the FS PHY Hardware checking. This is for
++ * internal testing only.
++ *
++ * #define NO_FS_PHY_HW_CHECKS
++ */
++
++#ifdef NO_FS_PHY_HW_CHECKS
++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
++ "phy_type", 1, 0);
++#else
++ retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
++ "phy_type",
++ ({
++ int valid = 0;
++ if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
++ ((core_if->hwcfg2.b.hs_phy_type == 1) ||
++ (core_if->hwcfg2.b.hs_phy_type == 3))) {
++ valid = 1;
++ }
++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
++ ((core_if->hwcfg2.b.hs_phy_type == 2) ||
++ (core_if->hwcfg2.b.hs_phy_type == 3))) {
++ valid = 1;
++ }
++ else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
++ (core_if->hwcfg2.b.fs_phy_type == 1)) {
++ valid = 1;
++ }
++ valid;
++ }),
++ ({
++ int set = DWC_PHY_TYPE_PARAM_FS;
++ if (core_if->hwcfg2.b.hs_phy_type) {
++ if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
++ (core_if->hwcfg2.b.hs_phy_type == 1)) {
++ set = DWC_PHY_TYPE_PARAM_UTMI;
++ }
++ else {
++ set = DWC_PHY_TYPE_PARAM_ULPI;
++ }
++ }
++ set;
++ }));
++#endif
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
++ (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
++ dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
++ "host_ls_low_power_phy_clk",
++ ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
++ ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
++
++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
++ DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
++ DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
++ DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
++ DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
++
++#ifdef NO_FS_PHY_HW_CHECKS
++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
++#else
++ retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
++ "i2c_enable",
++ (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
++ 0);
++#endif
++
++ for (i = 0; i < 15; i++) {
++ int changed = 1;
++ int error = 0;
++
++ if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
++ changed = 0;
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
++ }
++ if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
++ if (changed) {
++ DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i);
++ error = 1;
++ }
++ dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
++ }
++ retval += error;
++ }
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo",
++ ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1,
++ 0);
++
++ for (i = 0; i < 15; i++) {
++ int changed = 1;
++ int error = 0;
++
++ if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
++ changed = 0;
++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
++ }
++ if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
++ if (changed) {
++ DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i);
++ error = 1;
++ }
++ dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
++ }
++ retval += error;
++ }
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl",
++ ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1,
++ 0);
++
++ DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
++ DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable",
++ ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0,
++ 0);
++
++ retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable",
++ ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0,
++ 0);
++ return retval;
++}
++
++/**
++ * This function is the top level interrupt handler for the Common
++ * (Device and host modes) interrupts.
++ */
++static irqreturn_t dwc_otg_common_irq(int irq, void *dev)
++{
++ dwc_otg_device_t *otg_dev = dev;
++ int32_t retval = IRQ_NONE;
++
++ retval = dwc_otg_handle_common_intr(otg_dev->core_if);
++ return IRQ_RETVAL(retval);
++}
++
++/**
++ * This function is called when a lm_device is unregistered with the
++ * dwc_otg_driver. This happens, for example, when the rmmod command is
++ * executed. The device may or may not be electrically present. If it is
++ * present, the driver stops device processing. Any resources used on behalf
++ * of this device are freed.
++ *
++ * @param[in] lmdev
++ */
++static int __devexit dwc_otg_driver_remove(struct platform_device *pdev)
++{
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
++ DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev);
++
++ if (!otg_dev) {
++ /* Memory allocation for the dwc_otg_device failed. */
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
++ return 0;
++ }
++
++ /*
++ * Free the IRQ
++ */
++ if (otg_dev->common_irq_installed) {
++ free_irq(otg_dev->irq, otg_dev);
++ }
++
++#ifndef DWC_DEVICE_ONLY
++ if (otg_dev->hcd) {
++ dwc_otg_hcd_remove(pdev);
++ } else {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
++ return 0;
++ }
++#endif
++
++#ifndef DWC_HOST_ONLY
++ if (otg_dev->pcd) {
++ dwc_otg_pcd_remove(pdev);
++ }
++#endif
++ if (otg_dev->core_if) {
++ dwc_otg_cil_remove(otg_dev->core_if);
++ }
++
++ /*
++ * Remove the device attributes
++ */
++ dwc_otg_attr_remove(pdev);
++
++ /*
++ * Return the memory.
++ */
++ if (otg_dev->base) {
++ iounmap(otg_dev->base);
++ }
++ kfree(otg_dev);
++
++ /*
++ * Clear the drvdata pointer.
++ */
++ platform_set_drvdata(pdev, 0);
++
++ return 0;
++}
++
++/**
++ * This function is called when an lm_device is bound to a
++ * dwc_otg_driver. It creates the driver components required to
++ * control the device (CIL, HCD, and PCD) and it initializes the
++ * device. The driver components are stored in a dwc_otg_device
++ * structure. A reference to the dwc_otg_device is saved in the
++ * lm_device. This allows the driver to access the dwc_otg_device
++ * structure on subsequent calls to driver methods for this device.
++ *
++ * @param[in] lmdev lm_device definition
++ */
++static int __devinit dwc_otg_driver_probe(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ int retval = 0;
++ uint32_t snpsid;
++ dwc_otg_device_t *dwc_otg_device;
++ struct resource *res;
++
++ dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", pdev);
++
++ dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
++
++ if (!dwc_otg_device) {
++ dev_err(dev, "kmalloc of dwc_otg_device failed\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++
++ memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
++ dwc_otg_device->reg_offset = 0xFFFFFFFF;
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ if (!res) {
++ dev_err(dev, "Found OTG with no register addr.\n");
++ retval = -ENODEV;
++ goto fail;
++ }
++ dwc_otg_device->rsrc_start = res->start;
++ dwc_otg_device->rsrc_len = res->end - res->start + 1;
++
++ dwc_otg_device->base = ioremap(dwc_otg_device->rsrc_start, dwc_otg_device->rsrc_len);
++
++ if (!dwc_otg_device->base) {
++ dev_err(dev, "ioremap() failed\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++ dev_dbg(dev, "base=0x%08x\n", (unsigned)dwc_otg_device->base);
++
++ /*
++ * Attempt to ensure this device is really a DWC_otg Controller.
++ * Read and verify the SNPSID register contents. The value should be
++ * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
++ */
++ snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
++
++ if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) {
++ dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
++ retval = -EINVAL;
++ goto fail;
++ }
++
++ DWC_PRINT("Core Release: %x.%x%x%x\n",
++ (snpsid >> 12 & 0xF),
++ (snpsid >> 8 & 0xF),
++ (snpsid >> 4 & 0xF),
++ (snpsid & 0xF));
++
++ /*
++ * Initialize driver data to point to the global DWC_otg
++ * Device structure.
++ */
++ platform_set_drvdata(pdev, dwc_otg_device);
++
++ dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
++
++ dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
++ &dwc_otg_module_params);
++
++ dwc_otg_device->core_if->snpsid = snpsid;
++
++ if (!dwc_otg_device->core_if) {
++ dev_err(dev, "CIL initialization failed!\n");
++ retval = -ENOMEM;
++ goto fail;
++ }
++
++ /*
++ * Validate parameter values.
++ */
++ if (check_parameters(dwc_otg_device->core_if)) {
++ retval = -EINVAL;
++ goto fail;
++ }
++
++ /*
++ * Create Device Attributes in sysfs
++ */
++ dwc_otg_attr_create(pdev);
++
++ /*
++ * Disable the global interrupt until all the interrupt
++ * handlers are installed.
++ */
++ dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
++
++ /*
++ * Install the interrupt handler for the common interrupts before
++ * enabling common interrupts in core_init below.
++ */
++ res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
++ if (!res) {
++ dev_err(dev, "Fount OTG with to IRQ.\n");
++ retval = -ENODEV;
++ goto fail;
++ }
++ dwc_otg_device->irq = res->start;
++
++ retval = request_irq(res->start, dwc_otg_common_irq,
++ IRQF_SHARED, "dwc_otg", dwc_otg_device);
++ if (retval) {
++ DWC_ERROR("request of irq%d failed\n", res->start);
++ retval = -EBUSY;
++ goto fail;
++ } else {
++ dwc_otg_device->common_irq_installed = 1;
++ }
++
++ /*
++ * Initialize the DWC_otg core.
++ */
++ dwc_otg_core_init(dwc_otg_device->core_if);
++
++#ifndef DWC_HOST_ONLY
++ /*
++ * Initialize the PCD
++ */
++ retval = dwc_otg_pcd_init(pdev);
++ if (retval != 0) {
++ DWC_ERROR("dwc_otg_pcd_init failed\n");
++ dwc_otg_device->pcd = NULL;
++ goto fail;
++ }
++#endif
++#ifndef DWC_DEVICE_ONLY
++ /*
++ * Initialize the HCD
++ */
++ retval = dwc_otg_hcd_init(pdev);
++ if (retval != 0) {
++ DWC_ERROR("dwc_otg_hcd_init failed\n");
++ dwc_otg_device->hcd = NULL;
++ goto fail;
++ }
++#endif
++
++ /*
++ * Enable the global interrupt after all the interrupt
++ * handlers are installed.
++ */
++ dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
++
++ return 0;
++
++ fail:
++ dwc_otg_driver_remove(pdev);
++ return retval;
++}
++
++static struct platform_driver dwc_otg_platform_driver = {
++ .driver.name = "dwc_otg",
++ .probe = dwc_otg_driver_probe,
++ .remove = dwc_otg_driver_remove,
++};
++
++static int __init dwc_otg_init_module(void)
++{
++ return platform_driver_register(&dwc_otg_platform_driver);
++}
++
++static void __exit dwc_otg_cleanup_module(void)
++{
++ platform_driver_unregister(&dwc_otg_platform_driver);
++}
++
++module_init(dwc_otg_init_module);
++module_exit(dwc_otg_cleanup_module);
++
++/**
++ * This function is called when the driver is removed from the kernel
++ * with the rmmod command. The driver unregisters itself with its bus
++ * driver.
++ *
++ */
++
++MODULE_DESCRIPTION(DWC_DRIVER_DESC);
++MODULE_AUTHOR("Synopsys Inc.");
++MODULE_LICENSE("GPL");
++
++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
++module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
++MODULE_PARM_DESC(opt, "OPT Mode");
++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
++
++module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444);
++MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
++
++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
++MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
++module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
++module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
++MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
++module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
++MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
++module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
++MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
++/** @todo Set the max to 512K, modify checks */
++MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
++MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
++module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
++MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
++MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
++module_param_named(debug, g_dbg_lvl, int, 0444);
++MODULE_PARM_DESC(debug, "");
++
++module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
++MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
++module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
++module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
++
++module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
++MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
++module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
++MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
++module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
++MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
++
++module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
++MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled");
++
++module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
++MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled");
+--- /dev/null
++++ b/drivers/usb/dwc/otg_driver.h
+@@ -0,0 +1,62 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
++ * $Revision: #12 $
++ * $Date: 2008/07/15 $
++ * $Change: 1064918 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_DRIVER_H__
++#define __DWC_OTG_DRIVER_H__
++
++/** @file
++ * This file contains the interface to the Linux driver.
++ */
++#include "otg_cil.h"
++
++/* Type declarations */
++struct dwc_otg_pcd;
++struct dwc_otg_hcd;
++
++/**
++ * This structure is a wrapper that encapsulates the driver components used to
++ * manage a single DWC_otg controller.
++ */
++typedef struct dwc_otg_device {
++ void *base;
++ dwc_otg_core_if_t *core_if;
++ uint32_t reg_offset;
++ struct dwc_otg_pcd *pcd;
++ struct dwc_otg_hcd *hcd;
++ uint8_t common_irq_installed;
++ int irq;
++ uint32_t rsrc_start;
++ uint32_t rsrc_len;
++} dwc_otg_device_t;
++
++#endif
+--- /dev/null
++++ b/drivers/usb/dwc/otg_hcd.c
+@@ -0,0 +1,2735 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
++ * $Revision: #75 $
++ * $Date: 2008/07/15 $
++ * $Change: 1064940 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ * @file
++ *
++ * This file contains the implementation of the HCD. In Linux, the HCD
++ * implements the hc_driver API.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/platform_device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++#include <linux/dma-mapping.h>
++#include <linux/version.h>
++
++#include <mach/irqs.h>
++
++#include "otg_driver.h"
++#include "otg_hcd.h"
++#include "otg_regs.h"
++
++static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
++
++static const struct hc_driver dwc_otg_hc_driver = {
++
++ .description = dwc_otg_hcd_name,
++ .product_desc = "DWC OTG Controller",
++ .hcd_priv_size = sizeof(dwc_otg_hcd_t),
++ .irq = dwc_otg_hcd_irq,
++ .flags = HCD_MEMORY | HCD_USB2,
++ .start = dwc_otg_hcd_start,
++ .stop = dwc_otg_hcd_stop,
++ .urb_enqueue = dwc_otg_hcd_urb_enqueue,
++ .urb_dequeue = dwc_otg_hcd_urb_dequeue,
++ .endpoint_disable = dwc_otg_hcd_endpoint_disable,
++ .get_frame_number = dwc_otg_hcd_get_frame_number,
++ .hub_status_data = dwc_otg_hcd_hub_status_data,
++ .hub_control = dwc_otg_hcd_hub_control,
++};
++
++/**
++ * Work queue function for starting the HCD when A-Cable is connected.
++ * The dwc_otg_hcd_start() must be called in a process context.
++ */
++static void hcd_start_func(struct work_struct *_work)
++{
++ struct delayed_work *dw = container_of(_work, struct delayed_work, work);
++ struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
++ struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
++ DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
++ if (usb_hcd) {
++ dwc_otg_hcd_start(usb_hcd);
++ }
++}
++
++/**
++ * HCD Callback function for starting the HCD when A-Cable is
++ * connected.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_start_cb(void *p)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ hprt0_data_t hprt0;
++
++ if (core_if->op_state == B_HOST) {
++ /*
++ * Reset the port. During a HNP mode switch the reset
++ * needs to occur within 1ms and have a duration of at
++ * least 50ms.
++ */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ ((struct usb_hcd *)p)->self.is_b_host = 1;
++ } else {
++ ((struct usb_hcd *)p)->self.is_b_host = 0;
++ }
++
++ /* Need to start the HCD in a non-interrupt context. */
++// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
++ INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
++// schedule_work(&dwc_otg_hcd->start_work);
++ queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
++
++ return 1;
++}
++
++/**
++ * HCD Callback function for stopping the HCD.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_stop_cb(void *p)
++{
++ struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
++ dwc_otg_hcd_stop(usb_hcd);
++ return 1;
++}
++
++static void del_xfer_timers(dwc_otg_hcd_t *hcd)
++{
++#ifdef DEBUG
++ int i;
++ int num_channels = hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ del_timer(&hcd->core_if->hc_xfer_timer[i]);
++ }
++#endif
++}
++
++static void del_timers(dwc_otg_hcd_t *hcd)
++{
++ del_xfer_timers(hcd);
++ del_timer(&hcd->conn_timer);
++}
++
++/**
++ * Processes all the URBs in a single list of QHs. Completes them with
++ * -ETIMEDOUT and frees the QTD.
++ */
++static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
++{
++ struct list_head *qh_item;
++ dwc_otg_qh_t *qh;
++ struct list_head *qtd_item;
++ dwc_otg_qtd_t *qtd;
++
++ list_for_each(qh_item, qh_list) {
++ qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
++ for (qtd_item = qh->qtd_list.next;
++ qtd_item != &qh->qtd_list;
++ qtd_item = qh->qtd_list.next) {
++ qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
++ if (qtd->urb != NULL) {
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb,
++ -ETIMEDOUT);
++ }
++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
++ }
++ }
++}
++
++/**
++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
++ * and periodic schedules. The QTD associated with each URB is removed from
++ * the schedule and freed. This function may be called when a disconnect is
++ * detected or when the HCD is being stopped.
++ */
++static void kill_all_urbs(dwc_otg_hcd_t *hcd)
++{
++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
++ kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
++ kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_disconnect_cb(void *p)
++{
++ gintsts_data_t intr;
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
++
++ //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
++
++ /*
++ * Set status flags for the hub driver.
++ */
++ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ dwc_otg_hcd->flags.b.port_connect_status = 0;
++
++ /*
++ * Shutdown any transfers in process by clearing the Tx FIFO Empty
++ * interrupt mask and status bits and disabling subsequent host
++ * channel interrupts.
++ */
++ intr.d32 = 0;
++ intr.b.nptxfempty = 1;
++ intr.b.ptxfempty = 1;
++ intr.b.hcintr = 1;
++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
++
++ del_timers(dwc_otg_hcd);
++
++ /*
++ * Turn off the vbus power only if the core has transitioned to device
++ * mode. If still in host mode, need to keep power on to detect a
++ * reconnection.
++ */
++ if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
++ if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
++ hprt0_data_t hprt0 = { .d32=0 };
++ DWC_PRINT("Disconnect: PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
++ }
++
++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
++ }
++
++ /* Respond with an error status to all URBs in the schedule. */
++ kill_all_urbs(dwc_otg_hcd);
++
++ if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
++ /* Clean up any host channels that were in use. */
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++ dwc_otg_hc_regs_t *hc_regs;
++ hcchar_data_t hcchar;
++
++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++
++ if (!dwc_otg_hcd->core_if->dma_enable) {
++ /* Flush out any channel requests in slave mode. */
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (list_empty(&channel->hc_list_entry)) {
++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ hcchar.b.chen = 0;
++ hcchar.b.chdis = 1;
++ hcchar.b.epdir = 0;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ }
++ }
++ }
++ }
++
++ for (i = 0; i < num_channels; i++) {
++ channel = dwc_otg_hcd->hc_ptr_array[i];
++ if (list_empty(&channel->hc_list_entry)) {
++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ /* Halt the channel. */
++ hcchar.b.chdis = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ }
++
++ dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
++ list_add_tail(&channel->hc_list_entry,
++ &dwc_otg_hcd->free_hc_list);
++ }
++ }
++ }
++
++ /* A disconnect will end the session so the B-Device is no
++ * longer a B-host. */
++ ((struct usb_hcd *)p)->self.is_b_host = 0;
++ return 1;
++}
++
++/**
++ * Connection timeout function. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds.
++ */
++void dwc_otg_hcd_connect_timeout(unsigned long ptr)
++{
++ DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
++ DWC_PRINT("Connect Timeout\n");
++ DWC_ERROR("Device Not Connected/Responding\n");
++}
++
++/**
++ * Start the connection timer. An OTG host is required to display a
++ * message if the device does not connect within 10 seconds. The
++ * timer is deleted if a port connect interrupt occurs before the
++ * timer expires.
++ */
++static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
++{
++ init_timer(&hcd->conn_timer);
++ hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
++ hcd->conn_timer.data = 0;
++ hcd->conn_timer.expires = jiffies + (HZ * 10);
++ add_timer(&hcd->conn_timer);
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @param p void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_session_start_cb(void *p)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
++ dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
++ return 1;
++}
++
++/**
++ * HCD Callback structure for handling mode switching.
++ */
++static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
++ .start = dwc_otg_hcd_start_cb,
++ .stop = dwc_otg_hcd_stop_cb,
++ .disconnect = dwc_otg_hcd_disconnect_cb,
++ .session_start = dwc_otg_hcd_session_start_cb,
++ .p = 0,
++};
++
++/**
++ * Reset tasklet function
++ */
++static void reset_tasklet_func(unsigned long data)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ hprt0_data_t hprt0;
++
++ DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
++
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ mdelay(60);
++
++ hprt0.b.prtrst = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ dwc_otg_hcd->flags.b.port_reset_change = 1;
++}
++
++static struct tasklet_struct reset_tasklet = {
++ .next = NULL,
++ .state = 0,
++ .count = ATOMIC_INIT(0),
++ .func = reset_tasklet_func,
++ .data = 0,
++};
++
++/**
++ * Initializes the HCD. This function allocates memory for and initializes the
++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
++ * USB bus with the core and calls the hc_driver->start() function. It returns
++ * a negative error on failure.
++ */
++int dwc_otg_hcd_init(struct platform_device *pdev)
++{
++ struct usb_hcd *hcd = NULL;
++ dwc_otg_hcd_t *dwc_otg_hcd = NULL;
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
++
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++
++ int retval = 0;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
++
++ /* Set device flags indicating whether the HCD supports DMA. */
++ if (otg_dev->core_if->dma_enable) {
++ DWC_PRINT("Using DMA mode\n");
++
++ if (otg_dev->core_if->dma_desc_enable) {
++ DWC_PRINT("Device using Descriptor DMA mode\n");
++ } else {
++ DWC_PRINT("Device using Buffer DMA mode\n");
++ }
++ }
++ /*
++ * Allocate memory for the base HCD plus the DWC OTG HCD.
++ * Initialize the base HCD.
++ */
++
++ hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
++ if (!hcd) {
++ retval = -ENOMEM;
++ goto error1;
++ }
++
++ hcd->regs = otg_dev->base;
++ hcd->self.otg_port = 1;
++
++ /* Initialize the DWC OTG HCD. */
++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ dwc_otg_hcd->core_if = otg_dev->core_if;
++ otg_dev->hcd = dwc_otg_hcd;
++
++ /* */
++ spin_lock_init(&dwc_otg_hcd->lock);
++
++ /* Register the HCD CIL Callbacks */
++ dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
++ &hcd_cil_callbacks, hcd);
++
++ /* Initialize the non-periodic schedule. */
++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
++ INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
++
++ /* Initialize the periodic schedule. */
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
++ INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
++
++ /*
++ * Create a host channel descriptor for each host channel implemented
++ * in the controller. Initialize the channel descriptor array.
++ */
++ INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
++ num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++ memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
++ for (i = 0; i < num_channels; i++) {
++ channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
++ if (channel == NULL) {
++ retval = -ENOMEM;
++ DWC_ERROR("%s: host channel allocation failed\n", __func__);
++ goto error2;
++ }
++ memset(channel, 0, sizeof(dwc_hc_t));
++ channel->hc_num = i;
++ dwc_otg_hcd->hc_ptr_array[i] = channel;
++#ifdef DEBUG
++ init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
++#endif
++ DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
++ }
++
++ /* Initialize the Connection timeout timer. */
++ init_timer(&dwc_otg_hcd->conn_timer);
++
++ /* Initialize reset tasklet. */
++ reset_tasklet.data = (unsigned long) dwc_otg_hcd;
++ dwc_otg_hcd->reset_tasklet = &reset_tasklet;
++
++ /*
++ * Finish generic HCD initialization and start the HCD. This function
++ * allocates the DMA buffer pool, registers the USB bus, requests the
++ * IRQ line, and calls dwc_otg_hcd_start method.
++ */
++ retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
++ if (retval < 0) {
++ goto error2;
++ }
++
++ /*
++ * Allocate space for storing data on status transactions. Normally no
++ * data is sent, but this space acts as a bit bucket. This must be
++ * done after usb_add_hcd since that function allocates the DMA buffer
++ * pool.
++ */
++ if (otg_dev->core_if->dma_enable) {
++ dwc_otg_hcd->status_buf =
++ dma_alloc_coherent(&pdev->dev,
++ DWC_OTG_HCD_STATUS_BUF_SIZE,
++ &dwc_otg_hcd->status_buf_dma,
++ GFP_KERNEL | GFP_DMA);
++ } else {
++ dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
++ GFP_KERNEL);
++ }
++ if (!dwc_otg_hcd->status_buf) {
++ retval = -ENOMEM;
++ DWC_ERROR("%s: status_buf allocation failed\n", __func__);
++ goto error3;
++ }
++
++ dwc_otg_hcd->otg_dev = otg_dev;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
++ hcd->self.busnum);
++ return 0;
++
++ /* Error conditions */
++ error3:
++ usb_remove_hcd(hcd);
++ error2:
++ dwc_otg_hcd_free(hcd);
++ usb_put_hcd(hcd);
++ error1:
++ return retval;
++}
++
++/**
++ * Removes the HCD.
++ * Frees memory and resources associated with the HCD and deregisters the bus.
++ */
++void dwc_otg_hcd_remove(struct platform_device *pdev)
++{
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
++ dwc_otg_hcd_t *dwc_otg_hcd;
++ struct usb_hcd *hcd;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
++
++ if (!otg_dev) {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
++ return;
++ }
++
++ dwc_otg_hcd = otg_dev->hcd;
++
++ if (!dwc_otg_hcd) {
++ DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
++ return;
++ }
++
++ hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
++
++ if (!hcd) {
++ DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
++ return;
++ }
++
++ /* Turn off all interrupts */
++ dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
++ dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
++
++ usb_remove_hcd(hcd);
++ dwc_otg_hcd_free(hcd);
++ usb_put_hcd(hcd);
++}
++
++/* =========================================================================
++ * Linux HC Driver Functions
++ * ========================================================================= */
++
++/**
++ * Initializes dynamic portions of the DWC_otg HCD state.
++ */
++static void hcd_reinit(dwc_otg_hcd_t *hcd)
++{
++ struct list_head *item;
++ int num_channels;
++ int i;
++ dwc_hc_t *channel;
++
++ hcd->flags.d32 = 0;
++
++ hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
++ hcd->non_periodic_channels = 0;
++ hcd->periodic_channels = 0;
++
++ /*
++ * Put all channels in the free channel list and clean up channel
++ * states.
++ */
++ item = hcd->free_hc_list.next;
++ while (item != &hcd->free_hc_list) {
++ list_del(item);
++ item = hcd->free_hc_list.next;
++ }
++ num_channels = hcd->core_if->core_params->host_channels;
++ for (i = 0; i < num_channels; i++) {
++ channel = hcd->hc_ptr_array[i];
++ list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
++ dwc_otg_hc_cleanup(hcd->core_if, channel);
++ }
++
++ /* Initialize the DWC core for host mode operation. */
++ dwc_otg_core_host_init(hcd->core_if);
++}
++
++/** Initializes the DWC_otg controller and its root hub and prepares it for host
++ * mode operation. Activates the root port. Returns 0 on success and a negative
++ * error code on failure. */
++int dwc_otg_hcd_start(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ struct usb_bus *bus;
++
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
++
++ bus = hcd_to_bus(hcd);
++
++ /* Initialize the bus state. If the core is in Device Mode
++ * HALT the USB bus and return. */
++ if (dwc_otg_is_device_mode(core_if)) {
++ hcd->state = HC_STATE_RUNNING;
++ return 0;
++ }
++ hcd->state = HC_STATE_RUNNING;
++
++ /* Initialize and connect root hub if one is not already attached */
++ if (bus->root_hub) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
++ /* Inform the HUB driver to resume. */
++ usb_hcd_resume_root_hub(hcd);
++ }
++ else {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
++ }
++
++ hcd_reinit(dwc_otg_hcd);
++
++ return 0;
++}
++
++static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
++{
++ struct list_head *item;
++ dwc_otg_qh_t *qh;
++
++ if (!qh_list->next) {
++ /* The list hasn't been initialized yet. */
++ return;
++ }
++
++ /* Ensure there are no QTDs or URBs left. */
++ kill_urbs_in_qh_list(hcd, qh_list);
++
++ for (item = qh_list->next; item != qh_list; item = qh_list->next) {
++ qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
++ dwc_otg_hcd_qh_remove_and_free(hcd, qh);
++ }
++}
++
++/**
++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
++ * stopped.
++ */
++void dwc_otg_hcd_stop(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ hprt0_data_t hprt0 = { .d32=0 };
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
++
++ /* Turn off all host-specific interrupts. */
++ dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
++
++ /*
++ * The root hub should be disconnected before this function is called.
++ * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
++ * and the QH lists (via ..._hcd_endpoint_disable).
++ */
++
++ /* Turn off the vbus power */
++ DWC_PRINT("PortPower off\n");
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
++}
++
++/** Returns the current frame number. */
++int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ hfnum_data_t hfnum;
++
++ hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
++ host_if->host_global_regs->hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
++#endif
++ return hfnum.b.frnum;
++}
++
++/**
++ * Frees secondary storage associated with the dwc_otg_hcd structure contained
++ * in the struct usb_hcd field.
++ */
++void dwc_otg_hcd_free(struct usb_hcd *hcd)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ int i;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
++
++ del_timers(dwc_otg_hcd);
++
++ /* Free memory for QH/QTD lists */
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
++ qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
++
++ /* Free memory for the host channels. */
++ for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++ dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
++ if (hc != NULL) {
++ DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
++ kfree(hc);
++ }
++ }
++
++ if (dwc_otg_hcd->core_if->dma_enable) {
++ if (dwc_otg_hcd->status_buf_dma) {
++ dma_free_coherent(hcd->self.controller,
++ DWC_OTG_HCD_STATUS_BUF_SIZE,
++ dwc_otg_hcd->status_buf,
++ dwc_otg_hcd->status_buf_dma);
++ }
++ } else if (dwc_otg_hcd->status_buf != NULL) {
++ kfree(dwc_otg_hcd->status_buf);
++ }
++}
++
++#ifdef DEBUG
++static void dump_urb_info(struct urb *urb, char* fn_name)
++{
++ DWC_PRINT("%s, urb %p\n", fn_name, urb);
++ DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
++ DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++ DWC_PRINT(" Endpoint type: %s\n",
++ ({char *pipetype;
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL: pipetype = "CONTROL"; break;
++ case PIPE_BULK: pipetype = "BULK"; break;
++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
++ default: pipetype = "UNKNOWN"; break;
++ }; pipetype;}));
++ DWC_PRINT(" Speed: %s\n",
++ ({char *speed;
++ switch (urb->dev->speed) {
++ case USB_SPEED_HIGH: speed = "HIGH"; break;
++ case USB_SPEED_FULL: speed = "FULL"; break;
++ case USB_SPEED_LOW: speed = "LOW"; break;
++ default: speed = "UNKNOWN"; break;
++ }; speed;}));
++ DWC_PRINT(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++ DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
++ DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
++ urb->transfer_buffer, (void *)urb->transfer_dma);
++ DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
++ urb->setup_packet, (void *)urb->setup_dma);
++ DWC_PRINT(" Interval: %d\n", urb->interval);
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < urb->number_of_packets; i++) {
++ DWC_PRINT(" ISO Desc %d:\n", i);
++ DWC_PRINT(" offset: %d, length %d\n",
++ urb->iso_frame_desc[i].offset,
++ urb->iso_frame_desc[i].length);
++ }
++ }
++}
++
++static void dump_channel_info(dwc_otg_hcd_t *hcd,
++ dwc_otg_qh_t *qh)
++{
++ if (qh->channel != NULL) {
++ dwc_hc_t *hc = qh->channel;
++ struct list_head *item;
++ dwc_otg_qh_t *qh_item;
++ int num_channels = hcd->core_if->core_params->host_channels;
++ int i;
++
++ dwc_otg_hc_regs_t *hc_regs;
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++ hctsiz_data_t hctsiz;
++ uint32_t hcdma;
++
++ hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ hcdma = dwc_read_reg32(&hc_regs->hcdma);
++
++ DWC_PRINT(" Assigned to channel %p:\n", hc);
++ DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
++ DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINT(" qh: %p\n", hc->qh);
++ DWC_PRINT(" NP inactive sched:\n");
++ list_for_each(item, &hcd->non_periodic_sched_inactive) {
++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
++ DWC_PRINT(" %p\n", qh_item);
++ }
++ DWC_PRINT(" NP active sched:\n");
++ list_for_each(item, &hcd->non_periodic_sched_active) {
++ qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
++ DWC_PRINT(" %p\n", qh_item);
++ }
++ DWC_PRINT(" Channels: \n");
++ for (i = 0; i < num_channels; i++) {
++ dwc_hc_t *hc = hcd->hc_ptr_array[i];
++ DWC_PRINT(" %2d: %p\n", i, hc);
++ }
++ }
++}
++#endif
++
++
++//OTG host require the DMA addr is DWORD-aligned,
++//patch it if the buffer is not DWORD-aligned
++inline
++void hcd_check_and_patch_dma_addr(struct urb *urb){
++
++ if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
++ return;
++
++ if(((u32)urb->transfer_buffer)& 0x3){
++ /*
++ printk("%s: "
++ "urb(%.8x) "
++ "transfer_buffer=%.8x, "
++ "transfer_dma=%.8x, "
++ "transfer_buffer_length=%d, "
++ "actual_length=%d(%x), "
++ "\n",
++ ((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
++ urb,
++ urb->transfer_buffer,
++ urb->transfer_dma,
++ urb->transfer_buffer_length,
++ urb->actual_length,urb->actual_length
++ );
++ */
++ if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
++ urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
++ if(urb->aligned_transfer_buffer) {
++ kfree(urb->aligned_transfer_buffer);
++ }
++ urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
++ urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
++ if(!urb->aligned_transfer_buffer){
++ DWC_ERROR("Cannot alloc required buffer!!\n");
++ BUG();
++ }
++ //printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
++ }
++ urb->transfer_dma=urb->aligned_transfer_dma;
++ if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
++ memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
++ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
++ }
++ }
++}
++
++
++
++/** Starts processing a USB transfer request specified by a USB Request Block
++ * (URB). mem_flags indicates the type of memory allocation to use while
++ * processing this URB. */
++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
++// struct usb_host_endpoint *ep,
++ struct urb *urb,
++ gfp_t mem_flags
++ )
++{
++ int retval = 0;
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ dwc_otg_qtd_t *qtd;
++
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
++ }
++#endif
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /* No longer connected. */
++ return -ENODEV;
++ }
++
++ hcd_check_and_patch_dma_addr(urb);
++ qtd = dwc_otg_hcd_qtd_create(urb);
++ if (qtd == NULL) {
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
++ return -ENOMEM;
++ }
++
++ retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
++ if (retval < 0) {
++ DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
++ "Error status %d\n", retval);
++ dwc_otg_hcd_qtd_free(qtd);
++ }
++
++ return retval;
++}
++
++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
++ * success. */
++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
++ struct urb *urb, int status)
++{
++ unsigned long flags;
++ dwc_otg_hcd_t *dwc_otg_hcd;
++ dwc_otg_qtd_t *urb_qtd;
++ dwc_otg_qh_t *qh;
++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
++
++ dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
++
++ urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
++ qh = (dwc_otg_qh_t *)ep->hcpriv;
++
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
++ if (urb_qtd == qh->qtd_in_process) {
++ dump_channel_info(dwc_otg_hcd, qh);
++ }
++ }
++#endif
++
++ if (urb_qtd == qh->qtd_in_process) {
++ /* The QTD is in process (it has been assigned to a channel). */
++
++ if (dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * If still connected (i.e. in host mode), halt the
++ * channel so it can be used for other transfers. If
++ * no longer connected, the host registers can't be
++ * written to halt the channel since the core is in
++ * device mode.
++ */
++ dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
++ DWC_OTG_HC_XFER_URB_DEQUEUE);
++ }
++ }
++
++ /*
++ * Free the QTD and clean up the associated QH. Leave the QH in the
++ * schedule if it has any remaining QTDs.
++ */
++ dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
++ if (urb_qtd == qh->qtd_in_process) {
++ dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
++ qh->channel = NULL;
++ qh->qtd_in_process = NULL;
++ } else if (list_empty(&qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
++ }
++
++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
++
++ urb->hcpriv = NULL;
++
++ /* Higher layer software sets URB status. */
++ usb_hcd_giveback_urb(hcd, urb, status);
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINT("Called usb_hcd_giveback_urb()\n");
++ DWC_PRINT(" urb->status = %d\n", urb->status);
++ }
++
++ return 0;
++}
++
++/** Frees resources in the DWC_otg controller related to a given endpoint. Also
++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
++ * must already be dequeued. */
++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
++ struct usb_host_endpoint *ep)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ dwc_otg_qh_t *qh;
++
++ unsigned long flags;
++ int retry = 0;
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
++ "endpoint=%d\n", ep->desc.bEndpointAddress,
++ dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
++
++rescan:
++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
++ qh = (dwc_otg_qh_t *)(ep->hcpriv);
++ if (!qh)
++ goto done;
++
++ /** Check that the QTD list is really empty */
++ if (!list_empty(&qh->qtd_list)) {
++ if (retry++ < 250) {
++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
++ schedule_timeout_uninterruptible(1);
++ goto rescan;
++ }
++
++ DWC_WARN("DWC OTG HCD EP DISABLE:"
++ " QTD List for this endpoint is not empty\n");
++ }
++
++ dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
++ ep->hcpriv = NULL;
++done:
++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
++
++}
++
++/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
++ * interrupt.
++ *
++ * This function is called by the USB core when an interrupt occurs */
++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
++{
++ int retVal = 0;
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
++ if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
++ usb_hcd_poll_rh_status(hcd);
++ return IRQ_RETVAL(retVal);
++}
++
++/** Creates Status Change bitmap for the root hub and root port. The bitmap is
++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
++ * is the status change indicator for the single root port. Returns 1 if either
++ * change indicator is 1, otherwise returns 0. */
++int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
++{
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++ buf[0] = 0;
++ buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
++ dwc_otg_hcd->flags.b.port_reset_change ||
++ dwc_otg_hcd->flags.b.port_enable_change ||
++ dwc_otg_hcd->flags.b.port_suspend_change ||
++ dwc_otg_hcd->flags.b.port_over_current_change) << 1;
++
++#ifdef DEBUG
++ if (buf[0]) {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
++ " Root port status changed\n");
++ DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
++ dwc_otg_hcd->flags.b.port_connect_status_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
++ dwc_otg_hcd->flags.b.port_reset_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
++ dwc_otg_hcd->flags.b.port_enable_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
++ dwc_otg_hcd->flags.b.port_suspend_change);
++ DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
++ dwc_otg_hcd->flags.b.port_over_current_change);
++ }
++#endif
++ return (buf[0] != 0);
++}
++
++#ifdef DWC_HS_ELECT_TST
++/*
++ * Quick and dirty hack to implement the HS Electrical Test
++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
++ *
++ * This code was copied from our userspace app "hset". It sends a
++ * Get Device Descriptor control sequence in two parts, first the
++ * Setup packet by itself, followed some time later by the In and
++ * Ack packets. Rather than trying to figure out how to add this
++ * functionality to the normal driver code, we just hijack the
++ * hardware, using these two function to drive the hardware
++ * directly.
++ */
++
++dwc_otg_core_global_regs_t *global_regs;
++dwc_otg_host_global_regs_t *hc_global_regs;
++dwc_otg_hc_regs_t *hc_regs;
++uint32_t *data_fifo;
++
++static void do_setup(void)
++{
++ gintsts_data_t gintsts;
++ hctsiz_data_t hctsiz;
++ hcchar_data_t hcchar;
++ haint_data_t haint;
++ hcint_data_t hcint;
++
++ /* Enable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /*
++ * Send Setup packet (Get Device Descriptor)
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
++ hcchar.b.chdis = 1;
++// hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //if (hcchar.b.chen) {
++ // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
++ //}
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ /* Fill FIFO with Setup data for Get Device Descriptor */
++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
++ dwc_write_reg32(data_fifo++, 0x01000680);
++ dwc_write_reg32(data_fifo++, 0x00080000);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Disable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++}
++
++static void do_in_ack(void)
++{
++ gintsts_data_t gintsts;
++ hctsiz_data_t hctsiz;
++ hcchar_data_t hcchar;
++ haint_data_t haint;
++ hcint_data_t hcint;
++ host_grxsts_data_t grxsts;
++
++ /* Enable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++ /* Enable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /*
++ * Receive Control In packet
++ */
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //if (hcchar.b.chen) {
++ // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
++ //}
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 8;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 1;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++ //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Read RXSTS */
++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer */
++ if (grxsts.b.bcnt > 0) {
++ int i;
++ int word_count = (grxsts.b.bcnt + 3) / 4;
++
++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
++
++ for (i = 0; i < word_count; i++) {
++ (void)dwc_read_reg32(data_fifo++);
++ }
++ }
++
++ //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
++ break;
++
++ default:
++ //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
++ break;
++ }
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for receive status queue interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.rxstsqlvl == 0);
++
++ //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Read RXSTS */
++ grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++ //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
++
++ /* Clear RXSTSQLVL in GINTSTS */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ break;
++
++ default:
++ //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
++ break;
++ }
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++// usleep(100000);
++// mdelay(100);
++ mdelay(1);
++
++ /*
++ * Send handshake packet
++ */
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Make sure channel is disabled */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chen) {
++ //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
++ hcchar.b.chdis = 1;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++ //sleep(1);
++ mdelay(1000);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //if (hcchar.b.chen) {
++ // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
++ //}
++ }
++
++ /* Set HCTSIZ */
++ hctsiz.d32 = 0;
++ hctsiz.b.xfersize = 0;
++ hctsiz.b.pktcnt = 1;
++ hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++ dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++ /* Set HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++ hcchar.b.epdir = 0;
++ hcchar.b.epnum = 0;
++ hcchar.b.mps = 8;
++ hcchar.b.chen = 1;
++ dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Wait for host channel interrupt */
++ do {
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ } while (gintsts.b.hcintr == 0);
++
++ //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
++
++ /* Disable HCINTs */
++ dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++ /* Disable HAINTs */
++ dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++ /* Read HAINT */
++ haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++ //fprintf(stderr, "HAINT: %08x\n", haint.d32);
++
++ /* Read HCINT */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
++
++ /* Read HCCHAR */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
++
++ /* Clear HCINT */
++ dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++ /* Clear HAINT */
++ dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++ /* Clear GINTSTS */
++ dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++ /* Read GINTSTS */
++ gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++ //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
++}
++#endif /* DWC_HS_ELECT_TST */
++
++/** Handles hub class-specific requests. */
++int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
++ u16 typeReq,
++ u16 wValue,
++ u16 wIndex,
++ char *buf,
++ u16 wLength)
++{
++ int retval = 0;
++
++ dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++ dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
++ struct usb_hub_descriptor *desc;
++ hprt0_data_t hprt0 = {.d32 = 0};
++
++ uint32_t port_status;
++
++ switch (typeReq) {
++ case ClearHubFeature:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearHubFeature 0x%x\n", wValue);
++ switch (wValue) {
++ case C_HUB_LOCAL_POWER:
++ case C_HUB_OVER_CURRENT:
++ /* Nothing required here */
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR("DWC OTG HCD - "
++ "ClearHubFeature request %xh unknown\n", wValue);
++ }
++ break;
++ case ClearPortFeature:
++ if (!wIndex || wIndex > 1)
++ goto error;
++
++ switch (wValue) {
++ case USB_PORT_FEAT_ENABLE:
++ DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtena = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_SUSPEND:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtres = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ /* Clear Resume bit */
++ mdelay(100);
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_POWER:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_INDICATOR:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
++ /* Port inidicator not supported */
++ break;
++ case USB_PORT_FEAT_C_CONNECTION:
++ /* Clears drivers internal connect status change
++ * flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
++ dwc_otg_hcd->flags.b.port_connect_status_change = 0;
++ break;
++ case USB_PORT_FEAT_C_RESET:
++ /* Clears the driver's internal Port Reset Change
++ * flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
++ dwc_otg_hcd->flags.b.port_reset_change = 0;
++ break;
++ case USB_PORT_FEAT_C_ENABLE:
++ /* Clears the driver's internal Port
++ * Enable/Disable Change flag */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
++ dwc_otg_hcd->flags.b.port_enable_change = 0;
++ break;
++ case USB_PORT_FEAT_C_SUSPEND:
++ /* Clears the driver's internal Port Suspend
++ * Change flag, which is set when resume signaling on
++ * the host port is complete */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
++ dwc_otg_hcd->flags.b.port_suspend_change = 0;
++ break;
++ case USB_PORT_FEAT_C_OVER_CURRENT:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
++ dwc_otg_hcd->flags.b.port_over_current_change = 0;
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR("DWC OTG HCD - "
++ "ClearPortFeature request %xh "
++ "unknown or unsupported\n", wValue);
++ }
++ break;
++ case GetHubDescriptor:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubDescriptor\n");
++ desc = (struct usb_hub_descriptor *)buf;
++ desc->bDescLength = 9;
++ desc->bDescriptorType = 0x29;
++ desc->bNbrPorts = 1;
++ desc->wHubCharacteristics = 0x08;
++ desc->bPwrOn2PwrGood = 1;
++ desc->bHubContrCurrent = 0;
++ desc->u.hs.DeviceRemovable[0] = 0;
++ desc->u.hs.DeviceRemovable[1] = 0xff;
++ break;
++ case GetHubStatus:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetHubStatus\n");
++ memset(buf, 0, 4);
++ break;
++ case GetPortStatus:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "GetPortStatus\n");
++
++ if (!wIndex || wIndex > 1)
++ goto error;
++
++ port_status = 0;
++
++ if (dwc_otg_hcd->flags.b.port_connect_status_change)
++ port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
++
++ if (dwc_otg_hcd->flags.b.port_enable_change)
++ port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
++
++ if (dwc_otg_hcd->flags.b.port_suspend_change)
++ port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
++
++ if (dwc_otg_hcd->flags.b.port_reset_change)
++ port_status |= (1 << USB_PORT_FEAT_C_RESET);
++
++ if (dwc_otg_hcd->flags.b.port_over_current_change) {
++ DWC_ERROR("Device Not Supported\n");
++ port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
++ }
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return 0's for the remainder of the port status
++ * since the port register can't be read if the core
++ * is in device mode.
++ */
++ *((__le32 *) buf) = cpu_to_le32(port_status);
++ break;
++ }
++
++ hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
++ DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
++
++ if (hprt0.b.prtconnsts)
++ port_status |= (1 << USB_PORT_FEAT_CONNECTION);
++
++ if (hprt0.b.prtena)
++ port_status |= (1 << USB_PORT_FEAT_ENABLE);
++
++ if (hprt0.b.prtsusp)
++ port_status |= (1 << USB_PORT_FEAT_SUSPEND);
++
++ if (hprt0.b.prtovrcurract)
++ port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
++
++ if (hprt0.b.prtrst)
++ port_status |= (1 << USB_PORT_FEAT_RESET);
++
++ if (hprt0.b.prtpwr)
++ port_status |= (1 << USB_PORT_FEAT_POWER);
++
++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
++ port_status |= (USB_PORT_STAT_HIGH_SPEED);
++ else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
++ port_status |= (USB_PORT_STAT_LOW_SPEED);
++
++ if (hprt0.b.prttstctl)
++ port_status |= (1 << USB_PORT_FEAT_TEST);
++
++ /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
++
++ *((__le32 *) buf) = cpu_to_le32(port_status);
++
++ break;
++ case SetHubFeature:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetHubFeature\n");
++ /* No HUB features supported */
++ break;
++ case SetPortFeature:
++ if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
++ goto error;
++
++ if (!dwc_otg_hcd->flags.b.port_connect_status) {
++ /*
++ * The port is disconnected, which means the core is
++ * either in device mode or it soon will be. Just
++ * return without doing anything since the port
++ * register can't be written if the core is in device
++ * mode.
++ */
++ break;
++ }
++
++ switch (wValue) {
++ case USB_PORT_FEAT_SUSPEND:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
++ if (hcd->self.otg_port == wIndex &&
++ hcd->self.b_hnp_enable) {
++ gotgctl_data_t gotgctl = {.d32=0};
++ gotgctl.b.hstsethnpen = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
++ 0, gotgctl.d32);
++ core_if->op_state = A_SUSPEND;
++ }
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
++ /* Suspend the Phy Clock */
++ {
++ pcgcctl_data_t pcgcctl = {.d32=0};
++ pcgcctl.b.stoppclk = 1;
++ dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
++ }
++
++ /* For HNP the bus must be suspended for at least 200ms. */
++ if (hcd->self.b_hnp_enable) {
++ mdelay(200);
++ //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
++ }
++ break;
++ case USB_PORT_FEAT_POWER:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_POWER\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtpwr = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++ case USB_PORT_FEAT_RESET:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_RESET\n");
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ /* When B-Host the Port reset bit is set in
++ * the Start HCD Callback function, so that
++ * the reset is started within 1ms of the HNP
++ * success interrupt. */
++ if (!hcd->self.is_b_host) {
++ hprt0.b.prtrst = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ }
++ /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
++ MDELAY(60);
++ hprt0.b.prtrst = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ break;
++
++#ifdef DWC_HS_ELECT_TST
++ case USB_PORT_FEAT_TEST:
++ {
++ uint32_t t;
++ gintmsk_data_t gintmsk;
++
++ t = (wIndex >> 8); /* MSB wIndex USB */
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
++ warn("USB_PORT_FEAT_TEST %d\n", t);
++ if (t < 6) {
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prttstctl = t;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ } else {
++ /* Setup global vars with reg addresses (quick and
++ * dirty hack, should be cleaned up)
++ */
++ global_regs = core_if->core_global_regs;
++ hc_global_regs = core_if->host_if->host_global_regs;
++ hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
++ data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
++
++ if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
++ /* Save current interrupt mask */
++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Drive suspend on the root port */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 1;
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Drive resume on the root port */
++ hprt0.d32 = dwc_otg_read_hprt0(core_if);
++ hprt0.b.prtsusp = 0;
++ hprt0.b.prtres = 1;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++ mdelay(100);
++
++ /* Clear the resume bit */
++ hprt0.b.prtres = 0;
++ dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
++ } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
++ /* Save current interrupt mask */
++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* 15 second delay per the test spec */
++ mdelay(15000);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
++ } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
++ /* Save current interrupt mask */
++ gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
++
++ /* Disable all interrupts while we muck with
++ * the hardware directly
++ */
++ dwc_write_reg32(&global_regs->gintmsk, 0);
++
++ /* Send the Setup packet */
++ do_setup();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Send the In and Ack packets */
++ do_in_ack();
++
++ /* 15 second delay so nothing else happens for awhile */
++ mdelay(15000);
++
++ /* Restore interrupts */
++ dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
++ }
++ }
++ break;
++ }
++#endif /* DWC_HS_ELECT_TST */
++
++ case USB_PORT_FEAT_INDICATOR:
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++ "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
++ /* Not supported */
++ break;
++ default:
++ retval = -EINVAL;
++ DWC_ERROR("DWC OTG HCD - "
++ "SetPortFeature request %xh "
++ "unknown or unsupported\n", wValue);
++ break;
++ }
++ break;
++ default:
++ error:
++ retval = -EINVAL;
++ DWC_WARN("DWC OTG HCD - "
++ "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
++ typeReq, wIndex, wValue);
++ break;
++ }
++
++ return retval;
++}
++
++/**
++ * Assigns transactions from a QTD to a free host channel and initializes the
++ * host channel to perform the transactions. The host channel is removed from
++ * the free list.
++ *
++ * @param hcd The HCD state structure.
++ * @param qh Transactions from the first QTD for this QH are selected and
++ * assigned to a free host channel.
++ */
++static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ dwc_hc_t *hc;
++ dwc_otg_qtd_t *qtd;
++ struct urb *urb;
++
++ DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);
++
++ hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
++
++ /* Remove the host channel from the free list. */
++ list_del_init(&hc->hc_list_entry);
++
++ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
++ urb = qtd->urb;
++ qh->channel = hc;
++ qh->qtd_in_process = qtd;
++
++ /*
++ * Use usb_pipedevice to determine device address. This address is
++ * 0 before the SET_ADDRESS command and the correct address afterward.
++ */
++ hc->dev_addr = usb_pipedevice(urb->pipe);
++ hc->ep_num = usb_pipeendpoint(urb->pipe);
++
++ if (urb->dev->speed == USB_SPEED_LOW) {
++ hc->speed = DWC_OTG_EP_SPEED_LOW;
++ } else if (urb->dev->speed == USB_SPEED_FULL) {
++ hc->speed = DWC_OTG_EP_SPEED_FULL;
++ } else {
++ hc->speed = DWC_OTG_EP_SPEED_HIGH;
++ }
++
++ hc->max_packet = dwc_max_packet(qh->maxp);
++
++ hc->xfer_started = 0;
++ hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
++ hc->error_state = (qtd->error_count > 0);
++ hc->halt_on_queue = 0;
++ hc->halt_pending = 0;
++ hc->requests = 0;
++
++ /*
++ * The following values may be modified in the transfer type section
++ * below. The xfer_len value may be reduced when the transfer is
++ * started to accommodate the max widths of the XferSize and PktCnt
++ * fields in the HCTSIZn register.
++ */
++ hc->do_ping = qh->ping_state;
++ hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
++ hc->data_pid_start = qh->data_toggle;
++ hc->multi_count = 1;
++
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
++ } else {
++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
++ }
++ hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
++ hc->xfer_count = 0;
++
++ /*
++ * Set the split attributes
++ */
++ hc->do_split = 0;
++ if (qh->do_split) {
++ hc->do_split = 1;
++ hc->xact_pos = qtd->isoc_split_pos;
++ hc->complete_split = qtd->complete_split;
++ hc->hub_addr = urb->dev->tt->hub->devnum;
++ hc->port_addr = urb->dev->ttport;
++ }
++
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
++ switch (qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
++ hc->do_ping = 0;
++ hc->ep_is_in = 0;
++ hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)urb->setup_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *)urb->setup_packet;
++ }
++ hc->xfer_len = 8;
++ break;
++ case DWC_OTG_CONTROL_DATA:
++ DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
++ hc->data_pid_start = qtd->data_toggle;
++ break;
++ case DWC_OTG_CONTROL_STATUS:
++ /*
++ * Direction is opposite of data direction or IN if no
++ * data.
++ */
++ DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
++ if (urb->transfer_buffer_length == 0) {
++ hc->ep_is_in = 1;
++ } else {
++ hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
++ }
++ if (hc->ep_is_in) {
++ hc->do_ping = 0;
++ }
++ hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++ hc->xfer_len = 0;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *)hcd->status_buf;
++ }
++ break;
++ }
++ break;
++ case PIPE_BULK:
++ hc->ep_type = DWC_OTG_EP_TYPE_BULK;
++ break;
++ case PIPE_INTERRUPT:
++ hc->ep_type = DWC_OTG_EP_TYPE_INTR;
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ struct usb_iso_packet_descriptor *frame_desc;
++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
++ hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
++ if (hcd->core_if->dma_enable) {
++ hc->xfer_buff = (uint8_t *)urb->transfer_dma;
++ } else {
++ hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
++ }
++ hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
++ hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
++
++ if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++ if (hc->xfer_len <= 188) {
++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ }
++ else {
++ hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
++ }
++ }
++ }
++ break;
++ }
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This value may be modified when the transfer is started to
++ * reflect the actual transfer length.
++ */
++ hc->multi_count = dwc_hb_mult(qh->maxp);
++ }
++
++ dwc_otg_hc_init(hcd->core_if, hc);
++ hc->qh = qh;
++}
++
++/**
++ * This function selects transactions from the HCD transfer schedule and
++ * assigns them to available host channels. It is called from HCD interrupt
++ * handler functions.
++ *
++ * @param hcd The HCD state structure.
++ *
++ * @return The types of new transactions that were assigned to host channels.
++ */
++dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
++{
++ struct list_head *qh_ptr;
++ dwc_otg_qh_t *qh;
++ int num_channels;
++ dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
++#endif
++
++ /* Process entries in the periodic ready list. */
++ qh_ptr = hcd->periodic_sched_ready.next;
++ while (qh_ptr != &hcd->periodic_sched_ready &&
++ !list_empty(&hcd->free_hc_list)) {
++
++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ assign_and_init_hc(hcd, qh);
++
++ /*
++ * Move the QH from the periodic ready schedule to the
++ * periodic assigned schedule.
++ */
++ qh_ptr = qh_ptr->next;
++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
++
++ ret_val = DWC_OTG_TRANSACTION_PERIODIC;
++ }
++
++ /*
++ * Process entries in the inactive portion of the non-periodic
++ * schedule. Some free host channels may not be used if they are
++ * reserved for periodic transfers.
++ */
++ qh_ptr = hcd->non_periodic_sched_inactive.next;
++ num_channels = hcd->core_if->core_params->host_channels;
++ while (qh_ptr != &hcd->non_periodic_sched_inactive &&
++ (hcd->non_periodic_channels <
++ num_channels - hcd->periodic_channels) &&
++ !list_empty(&hcd->free_hc_list)) {
++
++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ assign_and_init_hc(hcd, qh);
++
++ /*
++ * Move the QH from the non-periodic inactive schedule to the
++ * non-periodic active schedule.
++ */
++ qh_ptr = qh_ptr->next;
++ list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
++
++ if (ret_val == DWC_OTG_TRANSACTION_NONE) {
++ ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
++ } else {
++ ret_val = DWC_OTG_TRANSACTION_ALL;
++ }
++
++ hcd->non_periodic_channels++;
++ }
++
++ return ret_val;
++}
++
++/**
++ * Attempts to queue a single transaction request for a host channel
++ * associated with either a periodic or non-periodic transfer. This function
++ * assumes that there is space available in the appropriate request queue. For
++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
++ * is available in the appropriate Tx FIFO.
++ *
++ * @param hcd The HCD state structure.
++ * @param hc Host channel descriptor associated with either a periodic or
++ * non-periodic transfer.
++ * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
++ * transfers.
++ *
++ * @return 1 if a request is queued and more requests may be needed to
++ * complete the transfer, 0 if no more requests are required for this
++ * transfer, -1 if there is insufficient space in the Tx FIFO.
++ */
++static int queue_transaction(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ uint16_t fifo_dwords_avail)
++{
++ int retval;
++
++ if (hcd->core_if->dma_enable) {
++ if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ hc->qh->ping_state = 0;
++ }
++ retval = 0;
++ } else if (hc->halt_pending) {
++ /* Don't queue a request if the channel has been halted. */
++ retval = 0;
++ } else if (hc->halt_on_queue) {
++ dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
++ retval = 0;
++ } else if (hc->do_ping) {
++ if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ }
++ retval = 0;
++ } else if (!hc->ep_is_in ||
++ hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++ if ((fifo_dwords_avail * 4) >= hc->max_packet) {
++ if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ retval = 1;
++ } else {
++ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
++ }
++ } else {
++ retval = -1;
++ }
++ } else {
++ if (!hc->xfer_started) {
++ dwc_otg_hc_start_transfer(hcd->core_if, hc);
++ retval = 1;
++ } else {
++ retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
++ }
++ }
++
++ return retval;
++}
++
++/**
++ * Processes active non-periodic channels and queues transactions for these
++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
++ * FIFO Empty interrupt is enabled if there are more transactions to queue as
++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
++ * FIFO Empty interrupt is disabled.
++ */
++static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
++{
++ gnptxsts_data_t tx_status;
++ struct list_head *orig_qh_ptr;
++ dwc_otg_qh_t *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++ int more_to_do = 0;
++
++ dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ /*
++ * Keep track of the starting point. Skip over the start-of-list
++ * entry.
++ */
++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++ }
++ orig_qh_ptr = hcd->non_periodic_qh_ptr;
++
++ /*
++ * Process once through the active list or until no more space is
++ * available in the request queue or the Tx FIFO.
++ */
++ do {
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
++ status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
++
++ if (status > 0) {
++ more_to_do = 1;
++ } else if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /* Advance to next QH, skipping start-of-list entry. */
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++ if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++ }
++
++ } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
++
++ if (!hcd->core_if->dma_enable) {
++ gintmsk_data_t intr_mask = {.d32 = 0};
++ intr_mask.b.nptxfempty = 1;
++
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.nptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.nptxfspcavail);
++#endif
++ if (more_to_do || no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the non-periodic
++ * Tx FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++ }
++ }
++}
++
++/**
++ * Processes periodic channels for the next frame and queues transactions for
++ * these channels to the DWC_otg controller. After queueing transactions, the
++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
++ * to queue as Periodic Tx FIFO or request queue space becomes available.
++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
++ */
++static void process_periodic_channels(dwc_otg_hcd_t *hcd)
++{
++ hptxsts_data_t tx_status;
++ struct list_head *qh_ptr;
++ dwc_otg_qh_t *qh;
++ int status;
++ int no_queue_space = 0;
++ int no_fifo_space = 0;
++
++ dwc_otg_host_global_regs_t *host_regs;
++ host_regs = hcd->core_if->host_if->host_global_regs;
++
++ DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++
++ qh_ptr = hcd->periodic_sched_assigned.next;
++ while (qh_ptr != &hcd->periodic_sched_assigned) {
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ if (tx_status.b.ptxqspcavail == 0) {
++ no_queue_space = 1;
++ break;
++ }
++
++ qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
++
++ /*
++ * Set a flag if we're queuing high-bandwidth in slave mode.
++ * The flag prevents any halts to get into the request queue in
++ * the middle of multiple high-bandwidth packets getting queued.
++ */
++ if (!hcd->core_if->dma_enable &&
++ qh->channel->multi_count > 1)
++ {
++ hcd->core_if->queuing_high_bandwidth = 1;
++ }
++
++ status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
++ if (status < 0) {
++ no_fifo_space = 1;
++ break;
++ }
++
++ /*
++ * In Slave mode, stay on the current transfer until there is
++ * nothing more to do or the high-bandwidth request count is
++ * reached. In DMA mode, only need to queue one request. The
++ * controller automatically handles multiple packets for
++ * high-bandwidth transfers.
++ */
++ if (hcd->core_if->dma_enable || status == 0 ||
++ qh->channel->requests == qh->channel->multi_count) {
++ qh_ptr = qh_ptr->next;
++ /*
++ * Move the QH from the periodic assigned schedule to
++ * the periodic queued schedule.
++ */
++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
++
++ /* done queuing high bandwidth */
++ hcd->core_if->queuing_high_bandwidth = 0;
++ }
++ }
++
++ if (!hcd->core_if->dma_enable) {
++ dwc_otg_core_global_regs_t *global_regs;
++ gintmsk_data_t intr_mask = {.d32 = 0};
++
++ global_regs = hcd->core_if->core_global_regs;
++ intr_mask.b.ptxfempty = 1;
++#ifdef DEBUG
++ tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
++ tx_status.b.ptxqspcavail);
++ DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
++ tx_status.b.ptxfspcavail);
++#endif
++ if (!list_empty(&hcd->periodic_sched_assigned) ||
++ no_queue_space || no_fifo_space) {
++ /*
++ * May need to queue more transactions as the request
++ * queue or Tx FIFO empties. Enable the periodic Tx
++ * FIFO empty interrupt. (Always use the half-empty
++ * level to ensure that new requests are loaded as
++ * soon as possible.)
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
++ } else {
++ /*
++ * Disable the Tx FIFO empty interrupt since there are
++ * no more transactions that need to be queued right
++ * now. This function is called from interrupt
++ * handlers to queue more transactions as transfer
++ * states change.
++ */
++ dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++ }
++ }
++}
++
++/**
++ * This function processes the currently active host channels and queues
++ * transactions for these channels to the DWC_otg controller. It is called
++ * from HCD interrupt handler functions.
++ *
++ * @param hcd The HCD state structure.
++ * @param tr_type The type(s) of transactions to queue (non-periodic,
++ * periodic, or both).
++ */
++void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
++ dwc_otg_transaction_type_e tr_type)
++{
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
++#endif
++ /* Process host channels associated with periodic transfers. */
++ if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
++ tr_type == DWC_OTG_TRANSACTION_ALL) &&
++ !list_empty(&hcd->periodic_sched_assigned)) {
++
++ process_periodic_channels(hcd);
++ }
++
++ /* Process host channels associated with non-periodic transfers. */
++ if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
++ tr_type == DWC_OTG_TRANSACTION_ALL) {
++ if (!list_empty(&hcd->non_periodic_sched_active)) {
++ process_non_periodic_channels(hcd);
++ } else {
++ /*
++ * Ensure NP Tx FIFO empty interrupt is disabled when
++ * there are no non-periodic transfers to process.
++ */
++ gintmsk_data_t gintmsk = {.d32 = 0};
++ gintmsk.b.nptxfempty = 1;
++ dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
++ gintmsk.d32, 0);
++ }
++ }
++}
++
++/**
++ * Sets the final status of an URB and returns it to the device driver. Any
++ * required cleanup of the URB is performed.
++ */
++void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
++{
++#ifdef DEBUG
++ if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++ DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
++ __func__, urb, usb_pipedevice(urb->pipe),
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "IN" : "OUT", status);
++ if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++ int i;
++ for (i = 0; i < urb->number_of_packets; i++) {
++ DWC_PRINT(" ISO Desc %d status: %d\n",
++ i, urb->iso_frame_desc[i].status);
++ }
++ }
++ }
++#endif
++
++ //if we use the aligned buffer instead of the original unaligned buffer,
++ //for IN data, we have to move the data to the original buffer
++ if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
++ dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
++ memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
++ }
++
++
++ urb->status = status;
++ urb->hcpriv = NULL;
++ usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
++}
++
++/*
++ * Returns the Queue Head for an URB.
++ */
++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
++{
++ struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
++ return (dwc_otg_qh_t *)ep->hcpriv;
++}
++
++#ifdef DEBUG
++void dwc_print_setup_data(uint8_t *setup)
++{
++ int i;
++ if (CHK_DEBUG_LEVEL(DBG_HCD)){
++ DWC_PRINT("Setup Data = MSB ");
++ for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
++ DWC_PRINT("\n");
++ DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
++ DWC_PRINT(" bmRequestType Type = ");
++ switch ((setup[0] & 0x60) >> 5) {
++ case 0: DWC_PRINT("Standard\n"); break;
++ case 1: DWC_PRINT("Class\n"); break;
++ case 2: DWC_PRINT("Vendor\n"); break;
++ case 3: DWC_PRINT("Reserved\n"); break;
++ }
++ DWC_PRINT(" bmRequestType Recipient = ");
++ switch (setup[0] & 0x1f) {
++ case 0: DWC_PRINT("Device\n"); break;
++ case 1: DWC_PRINT("Interface\n"); break;
++ case 2: DWC_PRINT("Endpoint\n"); break;
++ case 3: DWC_PRINT("Other\n"); break;
++ default: DWC_PRINT("Reserved\n"); break;
++ }
++ DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
++ DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
++ DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
++ DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
++ }
++}
++#endif
++
++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
++}
++
++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
++{
++#ifdef DEBUG
++ int num_channels;
++ int i;
++ gnptxsts_data_t np_tx_status;
++ hptxsts_data_t p_tx_status;
++
++ num_channels = hcd->core_if->core_params->host_channels;
++ DWC_PRINT("\n");
++ DWC_PRINT("************************************************************\n");
++ DWC_PRINT("HCD State:\n");
++ DWC_PRINT(" Num channels: %d\n", num_channels);
++ for (i = 0; i < num_channels; i++) {
++ dwc_hc_t *hc = hcd->hc_ptr_array[i];
++ DWC_PRINT(" Channel %d:\n", i);
++ DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++ hc->dev_addr, hc->ep_num, hc->ep_is_in);
++ DWC_PRINT(" speed: %d\n", hc->speed);
++ DWC_PRINT(" ep_type: %d\n", hc->ep_type);
++ DWC_PRINT(" max_packet: %d\n", hc->max_packet);
++ DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
++ DWC_PRINT(" multi_count: %d\n", hc->multi_count);
++ DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
++ DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
++ DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
++ DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
++ DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
++ DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
++ DWC_PRINT(" halt_status: %d\n", hc->halt_status);
++ DWC_PRINT(" do_split: %d\n", hc->do_split);
++ DWC_PRINT(" complete_split: %d\n", hc->complete_split);
++ DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
++ DWC_PRINT(" port_addr: %d\n", hc->port_addr);
++ DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
++ DWC_PRINT(" requests: %d\n", hc->requests);
++ DWC_PRINT(" qh: %p\n", hc->qh);
++ if (hc->xfer_started) {
++ hfnum_data_t hfnum;
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
++ hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
++ hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
++ hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
++ DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
++ DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
++ DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
++ DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
++ DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
++ }
++ if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
++ dwc_otg_qtd_t *qtd;
++ struct urb *urb;
++ qtd = hc->qh->qtd_in_process;
++ urb = qtd->urb;
++ DWC_PRINT(" URB Info:\n");
++ DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
++ if (urb) {
++ DWC_PRINT(" Dev: %d, EP: %d %s\n",
++ usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) ? "IN" : "OUT");
++ DWC_PRINT(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++ DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
++ DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
++ DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
++ DWC_PRINT(" actual_length: %d\n", urb->actual_length);
++ }
++ }
++ }
++ DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
++ DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
++ DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
++ np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
++ DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
++ DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
++ p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
++ DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
++ DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
++ dwc_otg_hcd_dump_frrem(hcd);
++ dwc_otg_dump_global_registers(hcd->core_if);
++ dwc_otg_dump_host_registers(hcd->core_if);
++ DWC_PRINT("************************************************************\n");
++ DWC_PRINT("\n");
++#endif
++}
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc/otg_hcd.h
+@@ -0,0 +1,647 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
++ * $Revision: #45 $
++ * $Date: 2008/07/15 $
++ * $Change: 1064918 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++#ifndef __DWC_HCD_H__
++#define __DWC_HCD_H__
++
++#include <linux/list.h>
++#include <linux/usb.h>
++#include <linux/usb/hcd.h>
++
++struct dwc_otg_device;
++
++#include "otg_cil.h"
++
++/**
++ * @file
++ *
++ * This file contains the structures, constants, and interfaces for
++ * the Host Contoller Driver (HCD).
++ *
++ * The Host Controller Driver (HCD) is responsible for translating requests
++ * from the USB Driver into the appropriate actions on the DWC_otg controller.
++ * It isolates the USBD from the specifics of the controller by providing an
++ * API to the USBD.
++ */
++
++/**
++ * Phases for control transfers.
++ */
++typedef enum dwc_otg_control_phase {
++ DWC_OTG_CONTROL_SETUP,
++ DWC_OTG_CONTROL_DATA,
++ DWC_OTG_CONTROL_STATUS
++} dwc_otg_control_phase_e;
++
++/** Transaction types. */
++typedef enum dwc_otg_transaction_type {
++ DWC_OTG_TRANSACTION_NONE,
++ DWC_OTG_TRANSACTION_PERIODIC,
++ DWC_OTG_TRANSACTION_NON_PERIODIC,
++ DWC_OTG_TRANSACTION_ALL
++} dwc_otg_transaction_type_e;
++
++/**
++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
++ * interrupt, or isochronous transfer. A single QTD is created for each URB
++ * (of one of these types) submitted to the HCD. The transfer associated with
++ * a QTD may require one or multiple transactions.
++ *
++ * A QTD is linked to a Queue Head, which is entered in either the
++ * non-periodic or periodic schedule for execution. When a QTD is chosen for
++ * execution, some or all of its transactions may be executed. After
++ * execution, the state of the QTD is updated. The QTD may be retired if all
++ * its transactions are complete or if an error occurred. Otherwise, it
++ * remains in the schedule so more transactions can be executed later.
++ */
++typedef struct dwc_otg_qtd {
++ /**
++ * Determines the PID of the next data packet for the data phase of
++ * control transfers. Ignored for other transfer types.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Current phase for control transfers (Setup, Data, or Status). */
++ dwc_otg_control_phase_e control_phase;
++
++ /** Keep track of the current split type
++ * for FS/LS endpoints on a HS Hub */
++ uint8_t complete_split;
++
++ /** How many bytes transferred during SSPLIT OUT */
++ uint32_t ssplit_out_xfer_count;
++
++ /**
++ * Holds the number of bus errors that have occurred for a transaction
++ * within this transfer.
++ */
++ uint8_t error_count;
++
++ /**
++ * Index of the next frame descriptor for an isochronous transfer. A
++ * frame descriptor describes the buffer position and length of the
++ * data to be transferred in the next scheduled (micro)frame of an
++ * isochronous transfer. It also holds status for that transaction.
++ * The frame index starts at 0.
++ */
++ int isoc_frame_index;
++
++ /** Position of the ISOC split on full/low speed */
++ uint8_t isoc_split_pos;
++
++ /** Position of the ISOC split in the buffer for the current frame */
++ uint16_t isoc_split_offset;
++
++ /** URB for this transfer */
++ struct urb *urb;
++
++ /** This list of QTDs */
++ struct list_head qtd_list_entry;
++
++} dwc_otg_qtd_t;
++
++/**
++ * A Queue Head (QH) holds the static characteristics of an endpoint and
++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
++ * be entered in either the non-periodic or periodic schedule.
++ */
++typedef struct dwc_otg_qh {
++ /**
++ * Endpoint type.
++ * One of the following values:
++ * - USB_ENDPOINT_XFER_CONTROL
++ * - USB_ENDPOINT_XFER_ISOC
++ * - USB_ENDPOINT_XFER_BULK
++ * - USB_ENDPOINT_XFER_INT
++ */
++ uint8_t ep_type;
++ uint8_t ep_is_in;
++
++ /** wMaxPacketSize Field of Endpoint Descriptor. */
++ uint16_t maxp;
++
++ /**
++ * Determines the PID of the next data packet for non-control
++ * transfers. Ignored for control transfers.<br>
++ * One of the following values:
++ * - DWC_OTG_HC_PID_DATA0
++ * - DWC_OTG_HC_PID_DATA1
++ */
++ uint8_t data_toggle;
++
++ /** Ping state if 1. */
++ uint8_t ping_state;
++
++ /**
++ * List of QTDs for this QH.
++ */
++ struct list_head qtd_list;
++
++ /** Host channel currently processing transfers for this QH. */
++ dwc_hc_t *channel;
++
++ /** QTD currently assigned to a host channel for this QH. */
++ dwc_otg_qtd_t *qtd_in_process;
++
++ /** Full/low speed endpoint on high-speed hub requires split. */
++ uint8_t do_split;
++
++ /** @name Periodic schedule information */
++ /** @{ */
++
++ /** Bandwidth in microseconds per (micro)frame. */
++ uint8_t usecs;
++
++ /** Interval between transfers in (micro)frames. */
++ uint16_t interval;
++
++ /**
++ * (micro)frame to initialize a periodic transfer. The transfer
++ * executes in the following (micro)frame.
++ */
++ uint16_t sched_frame;
++
++ /** (micro)frame at which last start split was initialized. */
++ uint16_t start_split_frame;
++
++ /** @} */
++
++ /** Entry for QH in either the periodic or non-periodic schedule. */
++ struct list_head qh_list_entry;
++} dwc_otg_qh_t;
++
++/**
++ * This structure holds the state of the HCD, including the non-periodic and
++ * periodic schedules.
++ */
++typedef struct dwc_otg_hcd {
++ /** The DWC otg device pointer */
++ struct dwc_otg_device *otg_dev;
++
++ /** DWC OTG Core Interface Layer */
++ dwc_otg_core_if_t *core_if;
++
++ /** Internal DWC HCD Flags */
++ volatile union dwc_otg_hcd_internal_flags {
++ uint32_t d32;
++ struct {
++ unsigned port_connect_status_change : 1;
++ unsigned port_connect_status : 1;
++ unsigned port_reset_change : 1;
++ unsigned port_enable_change : 1;
++ unsigned port_suspend_change : 1;
++ unsigned port_over_current_change : 1;
++ unsigned reserved : 27;
++ } b;
++ } flags;
++
++ /**
++ * Inactive items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are not
++ * currently assigned to a host channel.
++ */
++ struct list_head non_periodic_sched_inactive;
++
++ /**
++ * Active items in the non-periodic schedule. This is a list of
++ * Queue Heads. Transfers associated with these Queue Heads are
++ * currently assigned to a host channel.
++ */
++ struct list_head non_periodic_sched_active;
++
++ /**
++ * Pointer to the next Queue Head to process in the active
++ * non-periodic schedule.
++ */
++ struct list_head *non_periodic_qh_ptr;
++
++ /**
++ * Inactive items in the periodic schedule. This is a list of QHs for
++ * periodic transfers that are _not_ scheduled for the next frame.
++ * Each QH in the list has an interval counter that determines when it
++ * needs to be scheduled for execution. This scheduling mechanism
++ * allows only a simple calculation for periodic bandwidth used (i.e.
++ * must assume that all periodic transfers may need to execute in the
++ * same frame). However, it greatly simplifies scheduling and should
++ * be sufficient for the vast majority of OTG hosts, which need to
++ * connect to a small number of peripherals at one time.
++ *
++ * Items move from this list to periodic_sched_ready when the QH
++ * interval counter is 0 at SOF.
++ */
++ struct list_head periodic_sched_inactive;
++
++ /**
++ * List of periodic QHs that are ready for execution in the next
++ * frame, but have not yet been assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_assigned as host
++ * channels become available during the current frame.
++ */
++ struct list_head periodic_sched_ready;
++
++ /**
++ * List of periodic QHs to be executed in the next frame that are
++ * assigned to host channels.
++ *
++ * Items move from this list to periodic_sched_queued as the
++ * transactions for the QH are queued to the DWC_otg controller.
++ */
++ struct list_head periodic_sched_assigned;
++
++ /**
++ * List of periodic QHs that have been queued for execution.
++ *
++ * Items move from this list to either periodic_sched_inactive or
++ * periodic_sched_ready when the channel associated with the transfer
++ * is released. If the interval for the QH is 1, the item moves to
++ * periodic_sched_ready because it must be rescheduled for the next
++ * frame. Otherwise, the item moves to periodic_sched_inactive.
++ */
++ struct list_head periodic_sched_queued;
++
++ /**
++ * Total bandwidth claimed so far for periodic transfers. This value
++ * is in microseconds per (micro)frame. The assumption is that all
++ * periodic transfers may occur in the same (micro)frame.
++ */
++ uint16_t periodic_usecs;
++
++ /**
++ * Frame number read from the core at SOF. The value ranges from 0 to
++ * DWC_HFNUM_MAX_FRNUM.
++ */
++ uint16_t frame_number;
++
++ /**
++ * Free host channels in the controller. This is a list of
++ * dwc_hc_t items.
++ */
++ struct list_head free_hc_list;
++
++ /**
++ * Number of host channels assigned to periodic transfers. Currently
++ * assuming that there is a dedicated host channel for each periodic
++ * transaction and at least one host channel available for
++ * non-periodic transactions.
++ */
++ int periodic_channels;
++
++ /**
++ * Number of host channels assigned to non-periodic transfers.
++ */
++ int non_periodic_channels;
++
++ /**
++ * Array of pointers to the host channel descriptors. Allows accessing
++ * a host channel descriptor given the host channel number. This is
++ * useful in interrupt handlers.
++ */
++ dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
++
++ /**
++ * Buffer to use for any data received during the status phase of a
++ * control transfer. Normally no data is transferred during the status
++ * phase. This buffer is used as a bit bucket.
++ */
++ uint8_t *status_buf;
++
++ /**
++ * DMA address for status_buf.
++ */
++ dma_addr_t status_buf_dma;
++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
++
++ /**
++ * Structure to allow starting the HCD in a non-interrupt context
++ * during an OTG role change.
++ */
++ struct delayed_work start_work;
++
++ /**
++ * Connection timer. An OTG host must display a message if the device
++ * does not connect. Started when the VBus power is turned on via
++ * sysfs attribute "buspower".
++ */
++ struct timer_list conn_timer;
++
++ /* Tasket to do a reset */
++ struct tasklet_struct *reset_tasklet;
++
++ /* */
++ spinlock_t lock;
++
++#ifdef DEBUG
++ uint32_t frrem_samples;
++ uint64_t frrem_accum;
++
++ uint32_t hfnum_7_samples_a;
++ uint64_t hfnum_7_frrem_accum_a;
++ uint32_t hfnum_0_samples_a;
++ uint64_t hfnum_0_frrem_accum_a;
++ uint32_t hfnum_other_samples_a;
++ uint64_t hfnum_other_frrem_accum_a;
++
++ uint32_t hfnum_7_samples_b;
++ uint64_t hfnum_7_frrem_accum_b;
++ uint32_t hfnum_0_samples_b;
++ uint64_t hfnum_0_frrem_accum_b;
++ uint32_t hfnum_other_samples_b;
++ uint64_t hfnum_other_frrem_accum_b;
++#endif
++} dwc_otg_hcd_t;
++
++/** Gets the dwc_otg_hcd from a struct usb_hcd */
++static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
++{
++ return (dwc_otg_hcd_t *)(hcd->hcd_priv);
++}
++
++/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
++}
++
++/** @name HCD Create/Destroy Functions */
++/** @{ */
++extern int dwc_otg_hcd_init(struct platform_device *pdev);
++extern void dwc_otg_hcd_remove(struct platform_device *pdev);
++/** @} */
++
++/** @name Linux HC Driver API Functions */
++/** @{ */
++
++extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
++ // struct usb_host_endpoint *ep,
++ struct urb *urb,
++ gfp_t mem_flags
++ );
++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
++ struct urb *urb, int status);
++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
++ struct usb_host_endpoint *ep);
++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
++ char *buf);
++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
++ u16 typeReq,
++ u16 wValue,
++ u16 wIndex,
++ char *buf,
++ u16 wLength);
++
++/** @} */
++
++/** @name Transaction Execution Functions */
++/** @{ */
++extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
++extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
++ dwc_otg_transaction_type_e tr_type);
++extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
++ int status);
++/** @} */
++
++/** @name Interrupt Handler Functions */
++/** @{ */
++extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
++extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
++/** @} */
++
++
++/** @name Schedule Queue Functions */
++/** @{ */
++
++/* Implemented in dwc_otg_hcd_queue.c */
++extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
++extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
++extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
++extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
++extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
++extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
++
++/** Remove and free a QH */
++static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
++ dwc_otg_qh_t *qh)
++{
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ dwc_otg_hcd_qh_free(hcd, qh);
++}
++
++/** Allocates memory for a QH structure.
++ * @return Returns the memory allocate or NULL on error. */
++static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
++{
++ return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
++}
++
++extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
++extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
++extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
++
++/** Allocates memory for a QTD structure.
++ * @return Returns the memory allocate or NULL on error. */
++static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
++{
++ return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
++}
++
++/** Frees the memory for a QTD structure. QTD should already be removed from
++ * list.
++ * @param[in] qtd QTD to free.*/
++static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
++{
++ kfree(qtd);
++}
++
++/** Removes a QTD from list.
++ * @param[in] hcd HCD instance.
++ * @param[in] qtd QTD to remove from list. */
++static inline void dwc_otg_hcd_qtd_remove(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
++{
++ unsigned long flags;
++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
++ list_del(&qtd->qtd_list_entry);
++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
++}
++
++/** Remove and free a QTD */
++static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
++{
++ dwc_otg_hcd_qtd_remove(hcd, qtd);
++ dwc_otg_hcd_qtd_free(qtd);
++}
++
++/** @} */
++
++
++/** @name Internal Functions */
++/** @{ */
++dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
++void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
++void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
++/** @} */
++
++/** Gets the usb_host_endpoint associated with an URB. */
++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
++{
++ struct usb_device *dev = urb->dev;
++ int ep_num = usb_pipeendpoint(urb->pipe);
++
++ if (usb_pipein(urb->pipe))
++ return dev->ep_in[ep_num];
++ else
++ return dev->ep_out[ep_num];
++}
++
++/**
++ * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
++ * qualified with its direction (possible 32 endpoints per device).
++ */
++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
++ ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
++
++/** Gets the QH that contains the list_head */
++#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
++
++/** Gets the QTD that contains the list_head */
++#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
++
++/** Check if QH is non-periodic */
++#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
++ (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
++
++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
++
++/** Packet size for any kind of endpoint descriptor */
++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
++
++/**
++ * Returns true if _frame1 is less than or equal to _frame2. The comparison is
++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
++ * frame number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
++{
++ return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
++ (DWC_HFNUM_MAX_FRNUM >> 1);
++}
++
++/**
++ * Returns true if _frame1 is greater than _frame2. The comparison is done
++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
++ * number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
++{
++ return (frame1 != frame2) &&
++ (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
++ (DWC_HFNUM_MAX_FRNUM >> 1));
++}
++
++/**
++ * Increments _frame by the amount specified by _inc. The addition is done
++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
++ */
++static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
++{
++ return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
++}
++
++static inline uint16_t dwc_full_frame_num(uint16_t frame)
++{
++ return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
++}
++
++static inline uint16_t dwc_micro_frame_num(uint16_t frame)
++{
++ return frame & 0x7;
++}
++
++#ifdef DEBUG
++/**
++ * Macro to sample the remaining PHY clocks left in the current frame. This
++ * may be used during debugging to determine the average time it takes to
++ * execute sections of code. There are two possible sample points, "a" and
++ * "b", so the _letter argument must be one of these values.
++ *
++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
++ * example, "cat /sys/devices/lm0/hcd_frrem".
++ */
++#define dwc_sample_frrem(_hcd, _qh, _letter) \
++{ \
++ hfnum_data_t hfnum; \
++ dwc_otg_qtd_t *qtd; \
++ qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
++ if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
++ hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
++ switch (hfnum.b.frnum & 0x7) { \
++ case 7: \
++ _hcd->hfnum_7_samples_##_letter++; \
++ _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ case 0: \
++ _hcd->hfnum_0_samples_##_letter++; \
++ _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ default: \
++ _hcd->hfnum_other_samples_##_letter++; \
++ _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
++ break; \
++ } \
++ } \
++}
++#else
++#define dwc_sample_frrem(_hcd, _qh, _letter)
++#endif
++#endif
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc/otg_hcd_intr.c
+@@ -0,0 +1,1826 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
++ * $Revision: #70 $
++ * $Date: 2008/10/16 $
++ * $Change: 1117667 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++#include <linux/version.h>
++
++#include "otg_driver.h"
++#include "otg_hcd.h"
++#include "otg_regs.h"
++
++/** @file
++ * This file contains the implementation of the HCD Interrupt handlers.
++ */
++
++/** This function handles interrupts for the HCD. */
++int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ int retval = 0;
++
++ dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
++ gintsts_data_t gintsts;
++#ifdef DEBUG
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++#endif
++
++ /* Check if HOST Mode */
++ if (dwc_otg_is_host_mode(core_if)) {
++ gintsts.d32 = dwc_otg_read_core_intr(core_if);
++ if (!gintsts.d32) {
++ return 0;
++ }
++
++#ifdef DEBUG
++ /* Don't print debug message in the interrupt handler on SOF */
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL(DBG_HCD, "\n");
++#endif
++
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
++#endif
++ if (gintsts.b.usbreset) {
++ DWC_PRINT("Usb Reset In Host Mode\n");
++ }
++ if (gintsts.b.sofintr) {
++ retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
++ }
++ if (gintsts.b.rxstsqlvl) {
++ retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
++ }
++ if (gintsts.b.nptxfempty) {
++ retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
++ }
++ if (gintsts.b.i2cintr) {
++ /** @todo Implement i2cintr handler. */
++ }
++ if (gintsts.b.portintr) {
++ retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
++ }
++ if (gintsts.b.hcintr) {
++ retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
++ }
++ if (gintsts.b.ptxfempty) {
++ retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
++ }
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ {
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
++ dwc_read_reg32(&global_regs->gintsts));
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
++ dwc_read_reg32(&global_regs->gintmsk));
++ }
++#endif
++
++#ifdef DEBUG
++# ifndef DEBUG_SOF
++ if (gintsts.d32 != DWC_SOF_INTR_MASK)
++# endif
++ DWC_DEBUGPL(DBG_HCD, "\n");
++#endif
++
++ }
++ S3C2410X_CLEAR_EINTPEND();
++
++ return retval;
++}
++
++#ifdef DWC_TRACK_MISSED_SOFS
++#warning Compiling code to track missed SOFs
++#define FRAME_NUM_ARRAY_SIZE 1000
++/**
++ * This function is for debug only.
++ */
++static inline void track_missed_sofs(uint16_t curr_frame_number)
++{
++ static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
++ static int frame_num_idx = 0;
++ static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
++ static int dumped_frame_num_array = 0;
++
++ if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
++ if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
++ frame_num_array[frame_num_idx] = curr_frame_number;
++ last_frame_num_array[frame_num_idx++] = last_frame_num;
++ }
++ } else if (!dumped_frame_num_array) {
++ int i;
++ printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
++ printk(KERN_EMERG USB_DWC "----- ----------\n");
++ for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
++ printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
++ frame_num_array[i], last_frame_num_array[i]);
++ }
++ dumped_frame_num_array = 1;
++ }
++ last_frame_num = curr_frame_number;
++}
++#endif
++
++/**
++ * Handles the start-of-frame interrupt in host mode. Non-periodic
++ * transactions may be queued to the DWC_otg controller for the current
++ * (micro)frame. Periodic transactions may be queued to the controller for the
++ * next (micro)frame.
++ */
++int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
++{
++ hfnum_data_t hfnum;
++ struct list_head *qh_entry;
++ dwc_otg_qh_t *qh;
++ dwc_otg_transaction_type_e tr_type;
++ gintsts_data_t gintsts = {.d32 = 0};
++
++ hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
++
++#ifdef DEBUG_SOF
++ DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
++#endif
++ hcd->frame_number = hfnum.b.frnum;
++
++#ifdef DEBUG
++ hcd->frrem_accum += hfnum.b.frrem;
++ hcd->frrem_samples++;
++#endif
++
++#ifdef DWC_TRACK_MISSED_SOFS
++ track_missed_sofs(hcd->frame_number);
++#endif
++
++ /* Determine whether any periodic QHs should be executed. */
++ qh_entry = hcd->periodic_sched_inactive.next;
++ while (qh_entry != &hcd->periodic_sched_inactive) {
++ qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
++ qh_entry = qh_entry->next;
++ if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
++ /*
++ * Move QH to the ready list to be executed next
++ * (micro)frame.
++ */
++ list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
++ }
++ }
++
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++ }
++
++ /* Clear interrupt */
++ gintsts.b.sofintr = 1;
++ dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
++ * least one packet in the Rx FIFO. The packets are moved from the FIFO to
++ * memory if the DWC_otg controller is operating in Slave mode. */
++int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ host_grxsts_data_t grxsts;
++ dwc_hc_t *hc = NULL;
++
++ DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
++
++ grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
++
++ hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
++
++ /* Packet Status */
++ DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
++ DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
++ DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
++ DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
++
++ switch (grxsts.b.pktsts) {
++ case DWC_GRXSTS_PKTSTS_IN:
++ /* Read the data into the host buffer. */
++ if (grxsts.b.bcnt > 0) {
++ dwc_otg_read_packet(dwc_otg_hcd->core_if,
++ hc->xfer_buff,
++ grxsts.b.bcnt);
++
++ /* Update the HC fields for the next packet received. */
++ hc->xfer_count += grxsts.b.bcnt;
++ hc->xfer_buff += grxsts.b.bcnt;
++ }
++
++ case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++ case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
++ case DWC_GRXSTS_PKTSTS_CH_HALTED:
++ /* Handled in interrupt, just ignore data */
++ break;
++ default:
++ DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
++ break;
++ }
++
++ return 1;
++}
++
++/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
++ * data packets may be written to the FIFO for OUT transfers. More requests
++ * may be written to the non-periodic request queue for IN transfers. This
++ * interrupt is enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_NON_PERIODIC);
++ return 1;
++}
++
++/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
++ * packets may be written to the FIFO for OUT transfers. More requests may be
++ * written to the periodic request queue for IN transfers. This interrupt is
++ * enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
++ dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++ DWC_OTG_TRANSACTION_PERIODIC);
++ return 1;
++}
++
++/** There are multiple conditions that can cause a port interrupt. This function
++ * determines which interrupt conditions have occurred and handles them
++ * appropriately. */
++int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ int retval = 0;
++ hprt0_data_t hprt0;
++ hprt0_data_t hprt0_modify;
++
++ hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
++ hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
++
++ /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
++ * GINTSTS */
++
++ hprt0_modify.b.prtena = 0;
++ hprt0_modify.b.prtconndet = 0;
++ hprt0_modify.b.prtenchng = 0;
++ hprt0_modify.b.prtovrcurrchng = 0;
++
++ /* Port Connect Detected
++ * Set flag and clear if detected */
++ if (hprt0.b.prtconndet) {
++ DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
++ "Port Connect Detected--\n", hprt0.d32);
++ dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++ dwc_otg_hcd->flags.b.port_connect_status = 1;
++ hprt0_modify.b.prtconndet = 1;
++
++ /* B-Device has connected, Delete the connection timer. */
++ del_timer( &dwc_otg_hcd->conn_timer );
++
++ /* The Hub driver asserts a reset when it sees port connect
++ * status change flag */
++ retval |= 1;
++ }
++
++ /* Port Enable Changed
++ * Clear if detected - Set internal flag if disabled */
++ if (hprt0.b.prtenchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Enable Changed--\n", hprt0.d32);
++ hprt0_modify.b.prtenchng = 1;
++ if (hprt0.b.prtena == 1) {
++ int do_reset = 0;
++ dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
++ dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
++ dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
++
++ /* Check if we need to adjust the PHY clock speed for
++ * low power and adjust it */
++ if (params->host_support_fs_ls_low_power) {
++ gusbcfg_data_t usbcfg;
++
++ usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++
++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
++ hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
++ /*
++ * Low power
++ */
++ hcfg_data_t hcfg;
++ if (usbcfg.b.phylpwrclksel == 0) {
++ /* Set PHY low power clock select for FS/LS devices */
++ usbcfg.b.phylpwrclksel = 1;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ do_reset = 1;
++ }
++
++ hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
++
++ if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
++ params->host_ls_low_power_phy_clk ==
++ DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
++ /* 6 MHZ */
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
++ if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
++ hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ } else {
++ /* 48 MHZ */
++ DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
++ if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
++ hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
++ dwc_write_reg32(&host_if->host_global_regs->hcfg,
++ hcfg.d32);
++ do_reset = 1;
++ }
++ }
++ } else {
++ /*
++ * Not low power
++ */
++ if (usbcfg.b.phylpwrclksel == 1) {
++ usbcfg.b.phylpwrclksel = 0;
++ dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++ do_reset = 1;
++ }
++ }
++
++ if (do_reset) {
++ tasklet_schedule(dwc_otg_hcd->reset_tasklet);
++ }
++ }
++
++ if (!do_reset) {
++ /* Port has been enabled set the reset change flag */
++ dwc_otg_hcd->flags.b.port_reset_change = 1;
++ }
++ } else {
++ dwc_otg_hcd->flags.b.port_enable_change = 1;
++ }
++ retval |= 1;
++ }
++
++ /** Overcurrent Change Interrupt */
++ if (hprt0.b.prtovrcurrchng) {
++ DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
++ "Port Overcurrent Changed--\n", hprt0.d32);
++ dwc_otg_hcd->flags.b.port_over_current_change = 1;
++ hprt0_modify.b.prtovrcurrchng = 1;
++ retval |= 1;
++ }
++
++ /* Clear Port Interrupts */
++ dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
++
++ return retval;
++}
++
++/** This interrupt indicates that one or more host channels has a pending
++ * interrupt. There are multiple conditions that can cause each host channel
++ * interrupt. This function determines which conditions have occurred for each
++ * host channel interrupt and handles them appropriately. */
++int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ int i;
++ int retval = 0;
++ haint_data_t haint;
++
++ /* Clear appropriate bits in HCINTn to clear the interrupt bit in
++ * GINTSTS */
++
++ haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
++
++ for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
++ if (haint.b2.chint & (1 << i)) {
++ retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
++ }
++ }
++
++ return retval;
++}
++
++/* Macro used to clear one channel interrupt */
++#define clear_hc_int(_hc_regs_, _intr_) \
++do { \
++ hcint_data_t hcint_clear = {.d32 = 0}; \
++ hcint_clear.b._intr_ = 1; \
++ dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
++} while (0)
++
++/*
++ * Macro used to disable one channel interrupt. Channel interrupts are
++ * disabled when the channel is halted or released by the interrupt handler.
++ * There is no need to handle further interrupts of that type until the
++ * channel is re-assigned. In fact, subsequent handling may cause crashes
++ * because the channel structures are cleaned up when the channel is released.
++ */
++#define disable_hc_int(_hc_regs_, _intr_) \
++do { \
++ hcintmsk_data_t hcintmsk = {.d32 = 0}; \
++ hcintmsk.b._intr_ = 1; \
++ dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
++} while (0)
++
++/**
++ * Gets the actual length of a transfer after the transfer halts. _halt_status
++ * holds the reason for the halt.
++ *
++ * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
++ * *short_read is set to 1 upon return if less than the requested
++ * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
++ * return. short_read may also be NULL on entry, in which case it remains
++ * unchanged.
++ */
++static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd,
++ dwc_otg_halt_status_e halt_status,
++ int *short_read)
++{
++ hctsiz_data_t hctsiz;
++ uint32_t length;
++
++ if (short_read != NULL) {
++ *short_read = 0;
++ }
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++
++ if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
++ if (hc->ep_is_in) {
++ length = hc->xfer_len - hctsiz.b.xfersize;
++ if (short_read != NULL) {
++ *short_read = (hctsiz.b.xfersize != 0);
++ }
++ } else if (hc->qh->do_split) {
++ length = qtd->ssplit_out_xfer_count;
++ } else {
++ length = hc->xfer_len;
++ }
++ } else {
++ /*
++ * Must use the hctsiz.pktcnt field to determine how much data
++ * has been transferred. This field reflects the number of
++ * packets that have been transferred via the USB. This is
++ * always an integral number of packets if the transfer was
++ * halted before its normal completion. (Can't use the
++ * hctsiz.xfersize field because that reflects the number of
++ * bytes transferred via the AHB, not the USB).
++ */
++ length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
++ }
++
++ return length;
++}
++
++/**
++ * Updates the state of the URB after a Transfer Complete interrupt on the
++ * host channel. Updates the actual_length field of the URB based on the
++ * number of bytes transferred via the host channel. Sets the URB status
++ * if the data transfer is finished.
++ *
++ * @return 1 if the data transfer specified by the URB is completely finished,
++ * 0 otherwise.
++ */
++static int update_urb_state_xfer_comp(dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ struct urb *urb,
++ dwc_otg_qtd_t *qtd)
++{
++ int xfer_done = 0;
++ int short_read = 0;
++
++ urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_COMPLETE,
++ &short_read);
++
++ if (short_read || urb->actual_length == urb->transfer_buffer_length) {
++ xfer_done = 1;
++ if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
++ urb->status = -EREMOTEIO;
++ } else {
++ urb->status = 0;
++ }
++ }
++
++#ifdef DEBUG
++ {
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
++ urb->transfer_buffer_length);
++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
++ short_read, xfer_done);
++ }
++#endif
++
++ return xfer_done;
++}
++
++/*
++ * Save the starting data toggle for the next transfer. The data toggle is
++ * saved in the QH for non-control transfers and it's saved in the QTD for
++ * control transfers.
++ */
++static void save_data_toggle(dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++
++ if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
++ dwc_otg_qh_t *qh = hc->qh;
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ } else {
++ qh->data_toggle = DWC_OTG_HC_PID_DATA1;
++ }
++ } else {
++ if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
++ } else {
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ }
++ }
++}
++
++/**
++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
++ * still linked to the QH, the QH is added to the end of the inactive
++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
++ * schedule if no more QTDs are linked to the QH.
++ */
++static void deactivate_qh(dwc_otg_hcd_t *hcd,
++ dwc_otg_qh_t *qh,
++ int free_qtd)
++{
++ int continue_split = 0;
++ dwc_otg_qtd_t *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
++
++ qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
++
++ if (qtd->complete_split) {
++ continue_split = 1;
++ } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
++ qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
++ continue_split = 1;
++ }
++
++ if (free_qtd) {
++ dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
++ continue_split = 0;
++ }
++
++ qh->channel = NULL;
++ qh->qtd_in_process = NULL;
++ dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
++}
++
++/**
++ * Updates the state of an Isochronous URB when the transfer is stopped for
++ * any reason. The fields of the current entry in the frame descriptor array
++ * are set based on the transfer state and the input _halt_status. Completes
++ * the Isochronous URB if all the URB frames have been completed.
++ *
++ * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
++ */
++static dwc_otg_halt_status_e
++update_isoc_urb_state(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ struct urb *urb = qtd->urb;
++ dwc_otg_halt_status_e ret_val = halt_status;
++ struct usb_iso_packet_descriptor *frame_desc;
++
++ frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
++ switch (halt_status) {
++ case DWC_OTG_HC_XFER_COMPLETE:
++ frame_desc->status = 0;
++ frame_desc->actual_length =
++ get_actual_xfer_length(hc, hc_regs, qtd,
++ halt_status, NULL);
++ break;
++ case DWC_OTG_HC_XFER_FRAME_OVERRUN:
++ urb->error_count++;
++ if (hc->ep_is_in) {
++ frame_desc->status = -ENOSR;
++ } else {
++ frame_desc->status = -ECOMM;
++ }
++ frame_desc->actual_length = 0;
++ break;
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ urb->error_count++;
++ frame_desc->status = -EOVERFLOW;
++ /* Don't need to update actual_length in this case. */
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ urb->error_count++;
++ frame_desc->status = -EPROTO;
++ frame_desc->actual_length =
++ get_actual_xfer_length(hc, hc_regs, qtd,
++ halt_status, NULL);
++ default:
++ DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
++ halt_status);
++ BUG();
++ break;
++ }
++
++ if (++qtd->isoc_frame_index == urb->number_of_packets) {
++ /*
++ * urb->status is not used for isoc transfers.
++ * The individual frame_desc statuses are used instead.
++ */
++ dwc_otg_hcd_complete_urb(hcd, urb, 0);
++ ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ ret_val = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ return ret_val;
++}
++
++/**
++ * Releases a host channel for use by other transfers. Attempts to select and
++ * queue more transactions since at least one host channel is available.
++ *
++ * @param hcd The HCD state structure.
++ * @param hc The host channel to release.
++ * @param qtd The QTD associated with the host channel. This QTD may be freed
++ * if the transfer is complete or an error has occurred.
++ * @param halt_status Reason the channel is being released. This status
++ * determines the actions taken by this function.
++ */
++static void release_channel(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_qtd_t *qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ dwc_otg_transaction_type_e tr_type;
++ int free_qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
++ __func__, hc->hc_num, halt_status);
++
++ switch (halt_status) {
++ case DWC_OTG_HC_XFER_URB_COMPLETE:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_AHB_ERR:
++ case DWC_OTG_HC_XFER_STALL:
++ case DWC_OTG_HC_XFER_BABBLE_ERR:
++ free_qtd = 1;
++ break;
++ case DWC_OTG_HC_XFER_XACT_ERR:
++ if (qtd->error_count >= 3) {
++ DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
++ free_qtd = 1;
++ qtd->urb->status = -EPROTO;
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
++ } else {
++ free_qtd = 0;
++ }
++ break;
++ case DWC_OTG_HC_XFER_URB_DEQUEUE:
++ /*
++ * The QTD has already been removed and the QH has been
++ * deactivated. Don't want to do anything except release the
++ * host channel and try to queue more transfers.
++ */
++ goto cleanup;
++ case DWC_OTG_HC_XFER_NO_HALT_STATUS:
++ DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
++ free_qtd = 0;
++ break;
++ default:
++ free_qtd = 0;
++ break;
++ }
++
++ deactivate_qh(hcd, hc->qh, free_qtd);
++
++ cleanup:
++ /*
++ * Release the host channel for use by other transfers. The cleanup
++ * function clears the channel interrupt enables and conditions, so
++ * there's no need to clear the Channel Halted interrupt separately.
++ */
++ dwc_otg_hc_cleanup(hcd->core_if, hc);
++ list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
++
++ switch (hc->ep_type) {
++ case DWC_OTG_EP_TYPE_CONTROL:
++ case DWC_OTG_EP_TYPE_BULK:
++ hcd->non_periodic_channels--;
++ break;
++
++ default:
++ /*
++ * Don't release reservations for periodic channels here.
++ * That's done when a periodic transfer is descheduled (i.e.
++ * when the QH is removed from the periodic schedule).
++ */
++ break;
++ }
++
++ /* Try to queue more transfers now that there's a free channel. */
++ tr_type = dwc_otg_hcd_select_transactions(hcd);
++ if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++ dwc_otg_hcd_queue_transactions(hcd, tr_type);
++ }
++}
++
++/**
++ * Halts a host channel. If the channel cannot be halted immediately because
++ * the request queue is full, this function ensures that the FIFO empty
++ * interrupt for the appropriate queue is enabled so that the halt request can
++ * be queued when there is space in the request queue.
++ *
++ * This function may also be called in DMA mode. In that case, the channel is
++ * simply released since the core always halts the channel automatically in
++ * DMA mode.
++ */
++static void halt_channel(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_qtd_t *qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ if (hcd->core_if->dma_enable) {
++ release_channel(hcd, hc, qtd, halt_status);
++ return;
++ }
++
++ /* Slave mode processing... */
++ dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
++
++ if (hc->halt_on_queue) {
++ gintmsk_data_t gintmsk = {.d32 = 0};
++ dwc_otg_core_global_regs_t *global_regs;
++ global_regs = hcd->core_if->core_global_regs;
++
++ if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++ /*
++ * Make sure the Non-periodic Tx FIFO empty interrupt
++ * is enabled so that the non-periodic schedule will
++ * be processed.
++ */
++ gintmsk.b.nptxfempty = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++ } else {
++ /*
++ * Move the QH from the periodic queued schedule to
++ * the periodic assigned schedule. This allows the
++ * halt to be queued when the periodic schedule is
++ * processed.
++ */
++ list_move(&hc->qh->qh_list_entry,
++ &hcd->periodic_sched_assigned);
++
++ /*
++ * Make sure the Periodic Tx FIFO Empty interrupt is
++ * enabled so that the periodic schedule will be
++ * processed.
++ */
++ gintmsk.b.ptxfempty = 1;
++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++ }
++ }
++}
++
++/**
++ * Performs common cleanup for non-periodic transfers after a Transfer
++ * Complete interrupt. This function should be called after any endpoint type
++ * specific handling is finished to release the host channel.
++ */
++static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ hcint_data_t hcint;
++
++ qtd->error_count = 0;
++
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ if (hcint.b.nyet) {
++ /*
++ * Got a NYET on the last transaction of the transfer. This
++ * means that the endpoint should be in the PING state at the
++ * beginning of the next transfer.
++ */
++ hc->qh->ping_state = 1;
++ clear_hc_int(hc_regs, nyet);
++ }
++
++ /*
++ * Always halt and release the host channel to make it available for
++ * more transfers. There may still be more phases for a control
++ * transfer or more data packets for a bulk transfer at this point,
++ * but the host channel is still halted. A channel will be reassigned
++ * to the transfer when the non-periodic schedule is processed after
++ * the channel is released. This allows transactions to be queued
++ * properly via dwc_otg_hcd_queue_transactions, which also enables the
++ * Tx FIFO Empty interrupt if necessary.
++ */
++ if (hc->ep_is_in) {
++ /*
++ * IN transfers in Slave mode require an explicit disable to
++ * halt the channel. (In DMA mode, this call simply releases
++ * the channel.)
++ */
++ halt_channel(hcd, hc, qtd, halt_status);
++ } else {
++ /*
++ * The channel is automatically disabled by the core for OUT
++ * transfers in Slave mode.
++ */
++ release_channel(hcd, hc, qtd, halt_status);
++ }
++}
++
++/**
++ * Performs common cleanup for periodic transfers after a Transfer Complete
++ * interrupt. This function should be called after any endpoint type specific
++ * handling is finished to release the host channel.
++ */
++static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ hctsiz_data_t hctsiz;
++ qtd->error_count = 0;
++
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
++ /* Core halts channel in these cases. */
++ release_channel(hcd, hc, qtd, halt_status);
++ } else {
++ /* Flush any outstanding requests from the Tx queue. */
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++}
++
++/**
++ * Handles a host channel Transfer Complete interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ int urb_xfer_done;
++ dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ struct urb *urb = qtd->urb;
++ int pipe_type = usb_pipetype(urb->pipe);
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Transfer Complete--\n", hc->hc_num);
++
++ /*
++ * Handle xfer complete on CSPLIT.
++ */
++ if (hc->qh->do_split) {
++ qtd->complete_split = 0;
++ }
++
++ /* Update the QTD and URB states. */
++ switch (pipe_type) {
++ case PIPE_CONTROL:
++ switch (qtd->control_phase) {
++ case DWC_OTG_CONTROL_SETUP:
++ if (urb->transfer_buffer_length > 0) {
++ qtd->control_phase = DWC_OTG_CONTROL_DATA;
++ } else {
++ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ }
++ DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ case DWC_OTG_CONTROL_DATA: {
++ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++ if (urb_xfer_done) {
++ qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++ DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
++ } else {
++ save_data_toggle(hc, hc_regs, qtd);
++ }
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ break;
++ }
++ case DWC_OTG_CONTROL_STATUS:
++ DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
++ if (urb->status == -EINPROGRESS) {
++ urb->status = 0;
++ }
++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ break;
++ }
++
++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ case PIPE_BULK:
++ DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
++ urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++ if (urb_xfer_done) {
++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++ halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++ } else {
++ halt_status = DWC_OTG_HC_XFER_COMPLETE;
++ }
++
++ save_data_toggle(hc, hc_regs, qtd);
++ complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ case PIPE_INTERRUPT:
++ DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
++ update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++
++ /*
++ * Interrupt URB is done on the first transfer complete
++ * interrupt.
++ */
++ dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++ save_data_toggle(hc, hc_regs, qtd);
++ complete_periodic_xfer(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_URB_COMPLETE);
++ break;
++ case PIPE_ISOCHRONOUS:
++ DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
++ if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_COMPLETE);
++ }
++ complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++ break;
++ }
++
++ disable_hc_int(hc_regs, xfercompl);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel STALL interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ struct urb *urb = qtd->urb;
++ int pipe_type = usb_pipetype(urb->pipe);
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "STALL Received--\n", hc->hc_num);
++
++ if (pipe_type == PIPE_CONTROL) {
++ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
++ }
++
++ if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
++ dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
++ /*
++ * USB protocol requires resetting the data toggle for bulk
++ * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
++ * setup command is issued to the endpoint. Anticipate the
++ * CLEAR_FEATURE command since a STALL has occurred and reset
++ * the data toggle now.
++ */
++ hc->qh->data_toggle = 0;
++ }
++
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
++
++ disable_hc_int(hc_regs, stall);
++
++ return 1;
++}
++
++/*
++ * Updates the state of the URB when a transfer has been stopped due to an
++ * abnormal condition before the transfer completes. Modifies the
++ * actual_length field of the URB to reflect the number of bytes that have
++ * actually been transferred via the host channel.
++ */
++static void update_urb_state_xfer_intr(dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ struct urb *urb,
++ dwc_otg_qtd_t *qtd,
++ dwc_otg_halt_status_e halt_status)
++{
++ uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
++ halt_status, NULL);
++ urb->actual_length += bytes_transferred;
++
++#ifdef DEBUG
++ {
++ hctsiz_data_t hctsiz;
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++ __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
++ DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count);
++ DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
++ DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
++ DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
++ DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
++ DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
++ urb->transfer_buffer_length);
++ }
++#endif
++}
++
++/**
++ * Handles a host channel NAK interrupt. This handler may be called in either
++ * DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "NAK Received--\n", hc->hc_num);
++
++ /*
++ * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
++ * interrupt. Re-start the SSPLIT transfer.
++ */
++ if (hc->do_split) {
++ if (hc->complete_split) {
++ qtd->error_count = 0;
++ }
++ qtd->complete_split = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ goto handle_nak_done;
++ }
++
++ switch (usb_pipetype(qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ if (hcd->core_if->dma_enable && hc->ep_is_in) {
++ /*
++ * NAK interrupts are enabled on bulk/control IN
++ * transfers in DMA mode for the sole purpose of
++ * resetting the error count after a transaction error
++ * occurs. The core will continue transferring data.
++ */
++ qtd->error_count = 0;
++ goto handle_nak_done;
++ }
++
++ /*
++ * NAK interrupts normally occur during OUT transfers in DMA
++ * or Slave mode. For IN transfers, more requests will be
++ * queued as request queue space is available.
++ */
++ qtd->error_count = 0;
++
++ if (!hc->qh->ping_state) {
++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
++ qtd, DWC_OTG_HC_XFER_NAK);
++ save_data_toggle(hc, hc_regs, qtd);
++ if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
++ hc->qh->ping_state = 1;
++ }
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will
++ * start/continue.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ break;
++ case PIPE_INTERRUPT:
++ qtd->error_count = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++ break;
++ case PIPE_ISOCHRONOUS:
++ /* Should never get called for isochronous transfers. */
++ BUG();
++ break;
++ }
++
++ handle_nak_done:
++ disable_hc_int(hc_regs, nak);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel ACK interrupt. This interrupt is enabled when
++ * performing the PING protocol in Slave mode, when errors occur during
++ * either Slave mode or DMA mode, and during Start Split transactions.
++ */
++static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "ACK Received--\n", hc->hc_num);
++
++ if (hc->do_split) {
++ /*
++ * Handle ACK on SSPLIT.
++ * ACK should not occur in CSPLIT.
++ */
++ if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
++ qtd->ssplit_out_xfer_count = hc->xfer_len;
++ }
++ if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
++ /* Don't need complete for isochronous out transfers. */
++ qtd->complete_split = 1;
++ }
++
++ /* ISOC OUT */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
++ switch (hc->xact_pos) {
++ case DWC_HCSPLIT_XACTPOS_ALL:
++ break;
++ case DWC_HCSPLIT_XACTPOS_END:
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ qtd->isoc_split_offset = 0;
++ break;
++ case DWC_HCSPLIT_XACTPOS_BEGIN:
++ case DWC_HCSPLIT_XACTPOS_MID:
++ /*
++ * For BEGIN or MID, calculate the length for
++ * the next microframe to determine the correct
++ * SSPLIT token, either MID or END.
++ */
++ {
++ struct usb_iso_packet_descriptor *frame_desc;
++
++ frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
++ qtd->isoc_split_offset += 188;
++
++ if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
++ } else {
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
++ }
++
++ }
++ break;
++ }
++ } else {
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++ }
++ } else {
++ qtd->error_count = 0;
++
++ if (hc->qh->ping_state) {
++ hc->qh->ping_state = 0;
++ /*
++ * Halt the channel so the transfer can be re-started
++ * from the appropriate point. This only happens in
++ * Slave mode. In DMA mode, the ping_state is cleared
++ * when the transfer is started because the core
++ * automatically executes the PING, then the transfer.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++ }
++ }
++
++ /*
++ * If the ACK occurred when _not_ in the PING state, let the channel
++ * continue transferring data after clearing the error count.
++ */
++
++ disable_hc_int(hc_regs, ack);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel NYET interrupt. This interrupt should only occur on
++ * Bulk and Control OUT endpoints and for complete split transactions. If a
++ * NYET occurs at the same time as a Transfer Complete interrupt, it is
++ * handled in the xfercomp interrupt handler, not here. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "NYET Received--\n", hc->hc_num);
++
++ /*
++ * NYET on CSPLIT
++ * re-do the CSPLIT immediately on non-periodic
++ */
++ if (hc->do_split && hc->complete_split) {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
++
++ if (dwc_full_frame_num(frnum) !=
++ dwc_full_frame_num(hc->qh->sched_frame)) {
++ /*
++ * No longer in the same full speed frame.
++ * Treat this as a transaction error.
++ */
++#if 0
++ /** @todo Fix system performance so this can
++ * be treated as an error. Right now complete
++ * splits cannot be scheduled precisely enough
++ * due to other system activity, so this error
++ * occurs regularly in Slave mode.
++ */
++ qtd->error_count++;
++#endif
++ qtd->complete_split = 0;
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ /** @todo add support for isoc release */
++ goto handle_nyet_done;
++ }
++ }
++
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++ goto handle_nyet_done;
++ }
++
++ hc->qh->ping_state = 1;
++ qtd->error_count = 0;
++
++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
++ DWC_OTG_HC_XFER_NYET);
++ save_data_toggle(hc, hc_regs, qtd);
++
++ /*
++ * Halt the channel and re-start the transfer so the PING
++ * protocol will start.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++
++handle_nyet_done:
++ disable_hc_int(hc_regs, nyet);
++ return 1;
++}
++
++/**
++ * Handles a host channel babble interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Babble Error--\n", hc->hc_num);
++ if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++ dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
++ } else {
++ dwc_otg_halt_status_e halt_status;
++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_BABBLE_ERR);
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++ disable_hc_int(hc_regs, bblerr);
++ return 1;
++}
++
++/**
++ * Handles a host channel AHB error interrupt. This handler is only called in
++ * DMA mode.
++ */
++static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ hcchar_data_t hcchar;
++ hcsplt_data_t hcsplt;
++ hctsiz_data_t hctsiz;
++ uint32_t hcdma;
++ struct urb *urb = qtd->urb;
++
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "AHB Error--\n", hc->hc_num);
++
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ hcdma = dwc_read_reg32(&hc_regs->hcdma);
++
++ DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
++ DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
++ DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
++ DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
++ DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++ (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++ DWC_ERROR(" Endpoint type: %s\n",
++ ({char *pipetype;
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL: pipetype = "CONTROL"; break;
++ case PIPE_BULK: pipetype = "BULK"; break;
++ case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
++ case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
++ default: pipetype = "UNKNOWN"; break;
++ }; pipetype;}));
++ DWC_ERROR(" Speed: %s\n",
++ ({char *speed;
++ switch (urb->dev->speed) {
++ case USB_SPEED_HIGH: speed = "HIGH"; break;
++ case USB_SPEED_FULL: speed = "FULL"; break;
++ case USB_SPEED_LOW: speed = "LOW"; break;
++ default: speed = "UNKNOWN"; break;
++ }; speed;}));
++ DWC_ERROR(" Max packet size: %d\n",
++ usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++ DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
++ DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
++ urb->transfer_buffer, (void *)urb->transfer_dma);
++ DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
++ urb->setup_packet, (void *)urb->setup_dma);
++ DWC_ERROR(" Interval: %d\n", urb->interval);
++
++ dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
++
++ /*
++ * Force a channel halt. Don't call halt_channel because that won't
++ * write to the HCCHARn register in DMA mode to force the halt.
++ */
++ dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
++
++ disable_hc_int(hc_regs, ahberr);
++ return 1;
++}
++
++/**
++ * Handles a host channel transaction error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Transaction Error--\n", hc->hc_num);
++
++ switch (usb_pipetype(qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ qtd->error_count++;
++ if (!hc->qh->ping_state) {
++ update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
++ qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ save_data_toggle(hc, hc_regs, qtd);
++ if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
++ hc->qh->ping_state = 1;
++ }
++ }
++
++ /*
++ * Halt the channel so the transfer can be re-started from
++ * the appropriate point or the PING protocol will start.
++ */
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ break;
++ case PIPE_INTERRUPT:
++ qtd->error_count++;
++ if (hc->do_split && hc->complete_split) {
++ qtd->complete_split = 0;
++ }
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ dwc_otg_halt_status_e halt_status;
++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_XACT_ERR);
++
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++ break;
++ }
++
++ disable_hc_int(hc_regs, xacterr);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel frame overrun interrupt. This handler may be called
++ * in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Frame Overrun--\n", hc->hc_num);
++
++ switch (usb_pipetype(qtd->urb->pipe)) {
++ case PIPE_CONTROL:
++ case PIPE_BULK:
++ break;
++ case PIPE_INTERRUPT:
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
++ break;
++ case PIPE_ISOCHRONOUS:
++ {
++ dwc_otg_halt_status_e halt_status;
++ halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++ DWC_OTG_HC_XFER_FRAME_OVERRUN);
++
++ halt_channel(hcd, hc, qtd, halt_status);
++ }
++ break;
++ }
++
++ disable_hc_int(hc_regs, frmovrun);
++
++ return 1;
++}
++
++/**
++ * Handles a host channel data toggle error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Data Toggle Error--\n", hc->hc_num);
++
++ if (hc->ep_is_in) {
++ qtd->error_count = 0;
++ } else {
++ DWC_ERROR("Data Toggle Error on OUT transfer,"
++ "channel %d\n", hc->hc_num);
++ }
++
++ disable_hc_int(hc_regs, datatglerr);
++
++ return 1;
++}
++
++#ifdef DEBUG
++/**
++ * This function is for debug only. It checks that a valid halt status is set
++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
++ * taken and a warning is issued.
++ * @return 1 if halt status is ok, 0 otherwise.
++ */
++static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ hcchar_data_t hcchar;
++ hctsiz_data_t hctsiz;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ hcsplt_data_t hcsplt;
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
++ /*
++ * This code is here only as a check. This condition should
++ * never happen. Ignore the halt if it does occur.
++ */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++ hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++ DWC_WARN("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
++ "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
++ "hcint 0x%08x, hcintmsk 0x%08x, "
++ "hcsplt 0x%08x, qtd->complete_split %d\n",
++ __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
++ hcint.d32, hcintmsk.d32,
++ hcsplt.d32, qtd->complete_split);
++
++ DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
++ __func__, hc->hc_num);
++ DWC_WARN("\n");
++ clear_hc_int(hc_regs, chhltd);
++ return 0;
++ }
++
++ /*
++ * This code is here only as a check. hcchar.chdis should
++ * never be set when the halt interrupt occurs. Halt the
++ * channel again if it does occur.
++ */
++ hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++ if (hcchar.b.chdis) {
++ DWC_WARN("%s: hcchar.chdis set unexpectedly, "
++ "hcchar 0x%08x, trying to halt again\n",
++ __func__, hcchar.d32);
++ clear_hc_int(hc_regs, chhltd);
++ hc->halt_pending = 0;
++ halt_channel(hcd, hc, qtd, hc->halt_status);
++ return 0;
++ }
++
++ return 1;
++}
++#endif
++
++/**
++ * Handles a host Channel Halted interrupt in DMA mode. This handler
++ * determines the reason the channel halted and proceeds accordingly.
++ */
++static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ int out_nak_enh = 0;
++
++ /* For core with OUT NAK enhancement, the flow for high-
++ * speed CONTROL/BULK OUT is handled a little differently.
++ */
++ if (hcd->core_if->snpsid >= 0x4F54271A) {
++ if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
++ (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++ hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
++ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement enabled\n");
++ out_nak_enh = 1;
++ } else {
++ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
++ }
++ } else {
++ DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, no core support\n");
++ }
++
++ if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++ hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++ /*
++ * Just release the channel. A dequeue can happen on a
++ * transfer timeout. In the case of an AHB Error, the channel
++ * was forced to halt because there's no way to gracefully
++ * recover.
++ */
++ release_channel(hcd, hc, qtd, hc->halt_status);
++ return;
++ }
++
++ /* Read the HCINTn register to determine the cause for the halt. */
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++
++ if (hcint.b.xfercomp) {
++ /** @todo This is here because of a possible hardware bug. Spec
++ * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
++ * interrupt w/ACK bit set should occur, but I only see the
++ * XFERCOMP bit, even with it masked out. This is a workaround
++ * for that behavior. Should fix this when hardware is fixed.
++ */
++ if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++ }
++ handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.stall) {
++ handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.xacterr) {
++ if (out_nak_enh) {
++ if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
++ printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
++ qtd->error_count = 0;
++ } else {
++ printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
++ }
++ }
++
++ /*
++ * Must handle xacterr before nak or ack. Could get a xacterr
++ * at the same time as either of these on a BULK/CONTROL OUT
++ * that started with a PING. The xacterr takes precedence.
++ */
++ handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
++ } else if (!out_nak_enh) {
++ if (hcint.b.nyet) {
++ /*
++ * Must handle nyet before nak or ack. Could get a nyet at the
++ * same time as either of those on a BULK/CONTROL OUT that
++ * started with a PING. The nyet takes precedence.
++ */
++ handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.bblerr) {
++ handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.frmovrun) {
++ handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.nak && !hcintmsk.b.nak) {
++ /*
++ * If nak is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the nak is handled by
++ * the nak interrupt handler, not here. Handle nak here for
++ * BULK/CONTROL OUT transfers, which halt on a NAK to allow
++ * rewinding the buffer pointer.
++ */
++ handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
++ } else if (hcint.b.ack && !hcintmsk.b.ack) {
++ /*
++ * If ack is not masked, it's because a non-split IN transfer
++ * is in an error state. In that case, the ack is handled by
++ * the ack interrupt handler, not here. Handle ack here for
++ * split transfers. Start splits halt on ACK.
++ */
++ handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++ } else {
++ if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++ hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * A periodic transfer halted with no other channel
++ * interrupts set. Assume it was halted by the core
++ * because it could not be completed in its scheduled
++ * (micro)frame.
++ */
++#ifdef DEBUG
++ DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
++ __func__, hc->hc_num);
++#endif
++ halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
++ } else {
++ DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
++ "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
++ __func__, hc->hc_num, hcint.d32,
++ dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
++ }
++ }
++ } else {
++ printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
++ }
++}
++
++/**
++ * Handles a host channel Channel Halted interrupt.
++ *
++ * In slave mode, this handler is called only when the driver specifically
++ * requests a halt. This occurs during handling other host channel interrupts
++ * (e.g. nak, xacterr, stall, nyet, etc.).
++ *
++ * In DMA mode, this is the interrupt that occurs when the core has finished
++ * processing a transfer on a channel. Other host channel interrupts (except
++ * ahberr) are disabled in DMA mode.
++ */
++static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
++ dwc_hc_t *hc,
++ dwc_otg_hc_regs_t *hc_regs,
++ dwc_otg_qtd_t *qtd)
++{
++ DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++ "Channel Halted--\n", hc->hc_num);
++
++ if (hcd->core_if->dma_enable) {
++ handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
++ } else {
++#ifdef DEBUG
++ if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
++ return 1;
++ }
++#endif
++ release_channel(hcd, hc, qtd, hc->halt_status);
++ }
++
++ return 1;
++}
++
++/** Handles interrupt for a specific Host Channel */
++int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
++{
++ int retval = 0;
++ hcint_data_t hcint;
++ hcintmsk_data_t hcintmsk;
++ dwc_hc_t *hc;
++ dwc_otg_hc_regs_t *hc_regs;
++ dwc_otg_qtd_t *qtd;
++
++ DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
++
++ hc = dwc_otg_hcd->hc_ptr_array[num];
++ hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
++ qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
++
++ hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++ hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++ DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
++ hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
++ hcint.d32 = hcint.d32 & hcintmsk.d32;
++
++ if (!dwc_otg_hcd->core_if->dma_enable) {
++ if (hcint.b.chhltd && hcint.d32 != 0x2) {
++ hcint.b.chhltd = 0;
++ }
++ }
++
++ if (hcint.b.xfercomp) {
++ retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ /*
++ * If NYET occurred at same time as Xfer Complete, the NYET is
++ * handled by the Xfer Complete interrupt handler. Don't want
++ * to call the NYET interrupt handler in this case.
++ */
++ hcint.b.nyet = 0;
++ }
++ if (hcint.b.chhltd) {
++ retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.ahberr) {
++ retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.stall) {
++ retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.nak) {
++ retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.ack) {
++ retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.nyet) {
++ retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.xacterr) {
++ retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.bblerr) {
++ retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.frmovrun) {
++ retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++ if (hcint.b.datatglerr) {
++ retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++ }
++
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc/otg_hcd_queue.c
+@@ -0,0 +1,713 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
++ * $Revision: #33 $
++ * $Date: 2008/07/15 $
++ * $Change: 1064918 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ * @file
++ *
++ * This file contains the functions to manage Queue Heads and Queue
++ * Transfer Descriptors.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++#include <linux/version.h>
++
++#include <mach/irqs.h>
++
++#include "otg_driver.h"
++#include "otg_hcd.h"
++#include "otg_regs.h"
++
++/**
++ * This function allocates and initializes a QH.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param[in] urb Holds the information about the device/endpoint that we need
++ * to initialize the QH.
++ *
++ * @return Returns pointer to the newly allocated QH, or NULL on error. */
++dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
++{
++ dwc_otg_qh_t *qh;
++
++ /* Allocate memory */
++ /** @todo add memflags argument */
++ qh = dwc_otg_hcd_qh_alloc ();
++ if (qh == NULL) {
++ return NULL;
++ }
++
++ dwc_otg_hcd_qh_init (hcd, qh, urb);
++ return qh;
++}
++
++/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
++ * removed from a list. QTD list should already be empty if called from URB
++ * Dequeue.
++ *
++ * @param[in] hcd HCD instance.
++ * @param[in] qh The QH to free.
++ */
++void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ dwc_otg_qtd_t *qtd;
++ struct list_head *pos;
++ //unsigned long flags;
++
++ /* Free each QTD in the QTD list */
++
++#ifdef CONFIG_SMP
++ //the spinlock is locked before this function get called,
++ //but in case the lock is needed, the check function is preserved
++
++ //but in non-SMP mode, all spinlock is lockable.
++ //don't do the test in non-SMP mode
++
++ if(spin_trylock(&hcd->lock)) {
++ printk("%s: It is not supposed to be lockable!!\n",__func__);
++ BUG();
++ }
++#endif
++// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
++ for (pos = qh->qtd_list.next;
++ pos != &qh->qtd_list;
++ pos = qh->qtd_list.next)
++ {
++ list_del (pos);
++ qtd = dwc_list_to_qtd (pos);
++ dwc_otg_hcd_qtd_free (qtd);
++ }
++// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
++
++ kfree (qh);
++ return;
++}
++
++/** Initializes a QH structure.
++ *
++ * @param[in] hcd The HCD state structure for the DWC OTG controller.
++ * @param[in] qh The QH to init.
++ * @param[in] urb Holds the information about the device/endpoint that we need
++ * to initialize the QH. */
++#define SCHEDULE_SLOP 10
++void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
++{
++ char *speed, *type;
++ memset (qh, 0, sizeof (dwc_otg_qh_t));
++
++ /* Initialize QH */
++ switch (usb_pipetype(urb->pipe)) {
++ case PIPE_CONTROL:
++ qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
++ break;
++ case PIPE_BULK:
++ qh->ep_type = USB_ENDPOINT_XFER_BULK;
++ break;
++ case PIPE_ISOCHRONOUS:
++ qh->ep_type = USB_ENDPOINT_XFER_ISOC;
++ break;
++ case PIPE_INTERRUPT:
++ qh->ep_type = USB_ENDPOINT_XFER_INT;
++ break;
++ }
++
++ qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
++
++ qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++ qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
++ INIT_LIST_HEAD(&qh->qtd_list);
++ INIT_LIST_HEAD(&qh->qh_list_entry);
++ qh->channel = NULL;
++
++ /* FS/LS Enpoint on HS Hub
++ * NOT virtual root hub */
++ qh->do_split = 0;
++ if (((urb->dev->speed == USB_SPEED_LOW) ||
++ (urb->dev->speed == USB_SPEED_FULL)) &&
++ (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
++ {
++ DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
++ usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
++ urb->dev->ttport);
++ qh->do_split = 1;
++ }
++
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
++ qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
++ /* Compute scheduling parameters once and save them. */
++ hprt0_data_t hprt;
++
++ /** @todo Account for split transfers in the bus time. */
++ int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
++ qh->usecs = usb_calc_bus_time(urb->dev->speed,
++ usb_pipein(urb->pipe),
++ (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
++ bytecount);
++
++ /* Start in a slightly future (micro)frame. */
++ qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
++ SCHEDULE_SLOP);
++ qh->interval = urb->interval;
++#if 0
++ /* Increase interrupt polling rate for debugging. */
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ qh->interval = 8;
++ }
++#endif
++ hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
++ if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
++ ((urb->dev->speed == USB_SPEED_LOW) ||
++ (urb->dev->speed == USB_SPEED_FULL))) {
++ qh->interval *= 8;
++ qh->sched_frame |= 0x7;
++ qh->start_split_frame = qh->sched_frame;
++ }
++
++ }
++
++ DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
++ urb->dev->devnum);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
++ usb_pipeendpoint(urb->pipe),
++ usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
++
++ switch(urb->dev->speed) {
++ case USB_SPEED_LOW:
++ speed = "low";
++ break;
++ case USB_SPEED_FULL:
++ speed = "full";
++ break;
++ case USB_SPEED_HIGH:
++ speed = "high";
++ break;
++ default:
++ speed = "?";
++ break;
++ }
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
++
++ switch (qh->ep_type) {
++ case USB_ENDPOINT_XFER_ISOC:
++ type = "isochronous";
++ break;
++ case USB_ENDPOINT_XFER_INT:
++ type = "interrupt";
++ break;
++ case USB_ENDPOINT_XFER_CONTROL:
++ type = "control";
++ break;
++ case USB_ENDPOINT_XFER_BULK:
++ type = "bulk";
++ break;
++ default:
++ type = "?";
++ break;
++ }
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type);
++
++#ifdef DEBUG
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
++ qh->usecs);
++ DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
++ qh->interval);
++ }
++#endif
++
++ return;
++}
++
++/**
++ * Checks that a channel is available for a periodic transfer.
++ *
++ * @return 0 if successful, negative error code otherise.
++ */
++static int periodic_channel_available(dwc_otg_hcd_t *hcd)
++{
++ /*
++ * Currently assuming that there is a dedicated host channnel for each
++ * periodic transaction plus at least one host channel for
++ * non-periodic transactions.
++ */
++ int status;
++ int num_channels;
++
++ num_channels = hcd->core_if->core_params->host_channels;
++ if ((hcd->periodic_channels + hcd->non_periodic_channels < num_channels) &&
++ (hcd->periodic_channels < num_channels - 1)) {
++ status = 0;
++ }
++ else {
++ DWC_NOTICE("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
++ __func__, num_channels, hcd->periodic_channels,
++ hcd->non_periodic_channels);
++ status = -ENOSPC;
++ }
++
++ return status;
++}
++
++/**
++ * Checks that there is sufficient bandwidth for the specified QH in the
++ * periodic schedule. For simplicity, this calculation assumes that all the
++ * transfers in the periodic schedule may occur in the same (micro)frame.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH containing periodic bandwidth required.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int check_periodic_bandwidth(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ int status;
++ uint16_t max_claimed_usecs;
++
++ status = 0;
++
++ if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) {
++ /*
++ * High speed mode.
++ * Max periodic usecs is 80% x 125 usec = 100 usec.
++ */
++ max_claimed_usecs = 100 - qh->usecs;
++ } else {
++ /*
++ * Full speed mode.
++ * Max periodic usecs is 90% x 1000 usec = 900 usec.
++ */
++ max_claimed_usecs = 900 - qh->usecs;
++ }
++
++ if (hcd->periodic_usecs > max_claimed_usecs) {
++ DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n",
++ __func__, hcd->periodic_usecs, qh->usecs);
++ status = -ENOSPC;
++ }
++
++ return status;
++}
++
++/**
++ * Checks that the max transfer size allowed in a host channel is large enough
++ * to handle the maximum data transfer in a single (micro)frame for a periodic
++ * transfer.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH for a periodic endpoint.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ int status;
++ uint32_t max_xfer_size;
++ uint32_t max_channel_xfer_size;
++
++ status = 0;
++
++ max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
++ max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
++
++ if (max_xfer_size > max_channel_xfer_size) {
++ DWC_NOTICE("%s: Periodic xfer length %d > "
++ "max xfer length for channel %d\n",
++ __func__, max_xfer_size, max_channel_xfer_size);
++ status = -ENOSPC;
++ }
++
++ return status;
++}
++
++/**
++ * Schedules an interrupt or isochronous transfer in the periodic schedule.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH for the periodic transfer. The QH should already contain the
++ * scheduling information.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ int status = 0;
++
++ status = periodic_channel_available(hcd);
++ if (status) {
++ DWC_NOTICE("%s: No host channel available for periodic "
++ "transfer.\n", __func__);
++ return status;
++ }
++
++ status = check_periodic_bandwidth(hcd, qh);
++ if (status) {
++ DWC_NOTICE("%s: Insufficient periodic bandwidth for "
++ "periodic transfer.\n", __func__);
++ return status;
++ }
++
++ status = check_max_xfer_size(hcd, qh);
++ if (status) {
++ DWC_NOTICE("%s: Channel max transfer size too small "
++ "for periodic transfer.\n", __func__);
++ return status;
++ }
++
++ /* Always start in the inactive schedule. */
++ list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
++
++ /* Reserve the periodic channel. */
++ hcd->periodic_channels++;
++
++ /* Update claimed usecs per (micro)frame. */
++ hcd->periodic_usecs += qh->usecs;
++
++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated += qh->usecs / qh->interval;
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++;
++ DWC_DEBUGPL(DBG_HCD, "Scheduled intr: qh %p, usecs %d, period %d\n",
++ qh, qh->usecs, qh->interval);
++ } else {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++;
++ DWC_DEBUGPL(DBG_HCD, "Scheduled isoc: qh %p, usecs %d, period %d\n",
++ qh, qh->usecs, qh->interval);
++ }
++
++ return status;
++}
++
++/**
++ * This function adds a QH to either the non periodic or periodic schedule if
++ * it is not already in the schedule. If the QH is already in the schedule, no
++ * action is taken.
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ //unsigned long flags;
++ int status = 0;
++
++#ifdef CONFIG_SMP
++ //the spinlock is locked before this function get called,
++ //but in case the lock is needed, the check function is preserved
++ //but in non-SMP mode, all spinlock is lockable.
++ //don't do the test in non-SMP mode
++
++ if(spin_trylock(&hcd->lock)) {
++ printk("%s: It is not supposed to be lockable!!\n",__func__);
++ BUG();
++ }
++#endif
++// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
++
++ if (!list_empty(&qh->qh_list_entry)) {
++ /* QH already in a schedule. */
++ goto done;
++ }
++
++ /* Add the new QH to the appropriate schedule */
++ if (dwc_qh_is_non_per(qh)) {
++ /* Always start in the inactive schedule. */
++ list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
++ } else {
++ status = schedule_periodic(hcd, qh);
++ }
++
++ done:
++// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
++
++ return status;
++}
++
++/**
++ * Removes an interrupt or isochronous transfer from the periodic schedule.
++ *
++ * @param hcd The HCD state structure for the DWC OTG controller.
++ * @param qh QH for the periodic transfer.
++ */
++static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ list_del_init(&qh->qh_list_entry);
++
++ /* Release the periodic channel reservation. */
++ hcd->periodic_channels--;
++
++ /* Update claimed usecs per (micro)frame. */
++ hcd->periodic_usecs -= qh->usecs;
++
++ /* Update average periodic bandwidth claimed and # periodic reqs for usbfs. */
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -= qh->usecs / qh->interval;
++
++ if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--;
++ DWC_DEBUGPL(DBG_HCD, "Descheduled intr: qh %p, usecs %d, period %d\n",
++ qh, qh->usecs, qh->interval);
++ } else {
++ hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--;
++ DWC_DEBUGPL(DBG_HCD, "Descheduled isoc: qh %p, usecs %d, period %d\n",
++ qh, qh->usecs, qh->interval);
++ }
++}
++
++/**
++ * Removes a QH from either the non-periodic or periodic schedule. Memory is
++ * not freed.
++ *
++ * @param[in] hcd The HCD state structure.
++ * @param[in] qh QH to remove from schedule. */
++void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
++{
++ //unsigned long flags;
++
++#ifdef CONFIG_SMP
++ //the spinlock is locked before this function get called,
++ //but in case the lock is needed, the check function is preserved
++ //but in non-SMP mode, all spinlock is lockable.
++ //don't do the test in non-SMP mode
++
++ if(spin_trylock(&hcd->lock)) {
++ printk("%s: It is not supposed to be lockable!!\n",__func__);
++ BUG();
++ }
++#endif
++// SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
++
++ if (list_empty(&qh->qh_list_entry)) {
++ /* QH is not in a schedule. */
++ goto done;
++ }
++
++ if (dwc_qh_is_non_per(qh)) {
++ if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
++ hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++ }
++ list_del_init(&qh->qh_list_entry);
++ } else {
++ deschedule_periodic(hcd, qh);
++ }
++
++ done:
++// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
++ return;
++}
++
++/**
++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
++ * non-periodic schedule. The QH is added to the inactive non-periodic
++ * schedule if any QTDs are still attached to the QH.
++ *
++ * For periodic QHs, the QH is removed from the periodic queued schedule. If
++ * there are any QTDs still attached to the QH, the QH is added to either the
++ * periodic inactive schedule or the periodic ready schedule and its next
++ * scheduled frame is calculated. The QH is placed in the ready schedule if
++ * the scheduled frame has been reached already. Otherwise it's placed in the
++ * inactive schedule. If there are no QTDs attached to the QH, the QH is
++ * completely removed from the periodic schedule.
++ */
++void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
++{
++ unsigned long flags;
++ SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
++
++ if (dwc_qh_is_non_per(qh)) {
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ if (!list_empty(&qh->qtd_list)) {
++ /* Add back to inactive non-periodic schedule. */
++ dwc_otg_hcd_qh_add(hcd, qh);
++ }
++ } else {
++ uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
++
++ if (qh->do_split) {
++ /* Schedule the next continuing periodic split transfer */
++ if (sched_next_periodic_split) {
++
++ qh->sched_frame = frame_number;
++ if (dwc_frame_num_le(frame_number,
++ dwc_frame_num_inc(qh->start_split_frame, 1))) {
++ /*
++ * Allow one frame to elapse after start
++ * split microframe before scheduling
++ * complete split, but DONT if we are
++ * doing the next start split in the
++ * same frame for an ISOC out.
++ */
++ if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
++ }
++ }
++ } else {
++ qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
++ qh->interval);
++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
++ qh->sched_frame = frame_number;
++ }
++ qh->sched_frame |= 0x7;
++ qh->start_split_frame = qh->sched_frame;
++ }
++ } else {
++ qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
++ if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
++ qh->sched_frame = frame_number;
++ }
++ }
++
++ if (list_empty(&qh->qtd_list)) {
++ dwc_otg_hcd_qh_remove(hcd, qh);
++ } else {
++ /*
++ * Remove from periodic_sched_queued and move to
++ * appropriate queue.
++ */
++ if (qh->sched_frame == frame_number) {
++ list_move(&qh->qh_list_entry,
++ &hcd->periodic_sched_ready);
++ } else {
++ list_move(&qh->qh_list_entry,
++ &hcd->periodic_sched_inactive);
++ }
++ }
++ }
++
++ SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
++}
++
++/**
++ * This function allocates and initializes a QTD.
++ *
++ * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up
++ * pointing to each other so each pair should have a unique correlation.
++ *
++ * @return Returns pointer to the newly allocated QTD, or NULL on error. */
++dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
++{
++ dwc_otg_qtd_t *qtd;
++
++ qtd = dwc_otg_hcd_qtd_alloc ();
++ if (qtd == NULL) {
++ return NULL;
++ }
++
++ dwc_otg_hcd_qtd_init (qtd, urb);
++ return qtd;
++}
++
++/**
++ * Initializes a QTD structure.
++ *
++ * @param[in] qtd The QTD to initialize.
++ * @param[in] urb The URB to use for initialization. */
++void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
++{
++ memset (qtd, 0, sizeof (dwc_otg_qtd_t));
++ qtd->urb = urb;
++ if (usb_pipecontrol(urb->pipe)) {
++ /*
++ * The only time the QTD data toggle is used is on the data
++ * phase of control transfers. This phase always starts with
++ * DATA1.
++ */
++ qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++ qtd->control_phase = DWC_OTG_CONTROL_SETUP;
++ }
++
++ /* start split */
++ qtd->complete_split = 0;
++ qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++ qtd->isoc_split_offset = 0;
++
++ /* Store the qtd ptr in the urb to reference what QTD. */
++ urb->hcpriv = qtd;
++ return;
++}
++
++/**
++ * This function adds a QTD to the QTD-list of a QH. It will find the correct
++ * QH to place the QTD into. If it does not find a QH, then it will create a
++ * new QH. If the QH to which the QTD is added is not currently scheduled, it
++ * is placed into the proper schedule based on its EP type.
++ *
++ * @param[in] qtd The QTD to add
++ * @param[in] dwc_otg_hcd The DWC HCD structure
++ *
++ * @return 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
++ dwc_otg_hcd_t *dwc_otg_hcd)
++{
++ struct usb_host_endpoint *ep;
++ dwc_otg_qh_t *qh;
++ unsigned long flags;
++ int retval = 0;
++
++ struct urb *urb = qtd->urb;
++
++ SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
++
++ /*
++ * Get the QH which holds the QTD-list to insert to. Create QH if it
++ * doesn't exist.
++ */
++ ep = dwc_urb_to_endpoint(urb);
++ qh = (dwc_otg_qh_t *)ep->hcpriv;
++ if (qh == NULL) {
++ qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
++ if (qh == NULL) {
++ goto done;
++ }
++ ep->hcpriv = qh;
++ }
++
++ retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
++ if (retval == 0) {
++ list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
++ }
++
++ done:
++ SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
++
++ return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc/otg_pcd.c
+@@ -0,0 +1,2502 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
++ * $Revision: #70 $
++ * $Date: 2008/10/14 $
++ * $Change: 1115682 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++
++/** @file
++ * This file implements the Peripheral Controller Driver.
++ *
++ * The Peripheral Controller Driver (PCD) is responsible for
++ * translating requests from the Function Driver into the appropriate
++ * actions on the DWC_otg controller. It isolates the Function Driver
++ * from the specifics of the controller by providing an API to the
++ * Function Driver.
++ *
++ * The Peripheral Controller Driver for Linux will implement the
++ * Gadget API, so that the existing Gadget drivers can be used.
++ * (Gadget Driver is the Linux terminology for a Function Driver.)
++ *
++ * The Linux Gadget API is defined in the header file
++ * <code><linux/usb_gadget.h></code>. The USB EP operations API is
++ * defined in the structure <code>usb_ep_ops</code> and the USB
++ * Controller API is defined in the structure
++ * <code>usb_gadget_ops</code>.
++ *
++ * An important function of the PCD is managing interrupts generated
++ * by the DWC_otg controller. The implementation of the DWC_otg device
++ * mode interrupt service routines is in dwc_otg_pcd_intr.c.
++ *
++ * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
++ * @todo Does it work when the request size is greater than DEPTSIZ
++ * transfer size
++ *
++ */
++
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/platform_device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++#include <linux/dma-mapping.h>
++#include <linux/version.h>
++
++#include <mach/irqs.h>
++#include <linux/usb/ch9.h>
++
++//#include <linux/usb_gadget.h>
++
++#include "otg_driver.h"
++#include "otg_pcd.h"
++
++
++
++/**
++ * Static PCD pointer for use in usb_gadget_register_driver and
++ * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init.
++ */
++static dwc_otg_pcd_t *s_pcd = 0;
++
++
++/* Display the contents of the buffer */
++extern void dump_msg(const u8 *buf, unsigned int length);
++
++
++/**
++ * This function completes a request. It call's the request call back.
++ */
++void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req,
++ int status)
++{
++ unsigned stopped = ep->stopped;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep);
++ list_del_init(&req->queue);
++
++ if (req->req.status == -EINPROGRESS) {
++ req->req.status = status;
++ } else {
++ status = req->req.status;
++ }
++
++ /* don't modify queue heads during completion callback */
++ ep->stopped = 1;
++ SPIN_UNLOCK(&ep->pcd->lock);
++ req->req.complete(&ep->ep, &req->req);
++ SPIN_LOCK(&ep->pcd->lock);
++
++ if (ep->pcd->request_pending > 0) {
++ --ep->pcd->request_pending;
++ }
++
++ ep->stopped = stopped;
++}
++
++/**
++ * This function terminates all the requsts in the EP request queue.
++ */
++void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep)
++{
++ dwc_otg_pcd_request_t *req;
++
++ ep->stopped = 1;
++
++ /* called with irqs blocked?? */
++ while (!list_empty(&ep->queue)) {
++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
++ queue);
++ dwc_otg_request_done(ep, req, -ESHUTDOWN);
++ }
++}
++
++/* USB Endpoint Operations */
++/*
++ * The following sections briefly describe the behavior of the Gadget
++ * API endpoint operations implemented in the DWC_otg driver
++ * software. Detailed descriptions of the generic behavior of each of
++ * these functions can be found in the Linux header file
++ * include/linux/usb_gadget.h.
++ *
++ * The Gadget API provides wrapper functions for each of the function
++ * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
++ * function, which then calls the underlying PCD function. The
++ * following sections are named according to the wrapper
++ * functions. Within each section, the corresponding DWC_otg PCD
++ * function name is specified.
++ *
++ */
++
++/**
++ * This function assigns periodic Tx FIFO to an periodic EP
++ * in shared Tx FIFO mode
++ */
++static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if)
++{
++ uint32_t PerTxMsk = 1;
++ int i;
++ for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i)
++ {
++ if((PerTxMsk & core_if->p_tx_msk) == 0) {
++ core_if->p_tx_msk |= PerTxMsk;
++ return i + 1;
++ }
++ PerTxMsk <<= 1;
++ }
++ return 0;
++}
++/**
++ * This function releases periodic Tx FIFO
++ * in shared Tx FIFO mode
++ */
++static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
++{
++ core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
++}
++/**
++ * This function assigns periodic Tx FIFO to an periodic EP
++ * in shared Tx FIFO mode
++ */
++static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if)
++{
++ uint32_t TxMsk = 1;
++ int i;
++
++ for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i)
++ {
++ if((TxMsk & core_if->tx_msk) == 0) {
++ core_if->tx_msk |= TxMsk;
++ return i + 1;
++ }
++ TxMsk <<= 1;
++ }
++ return 0;
++}
++/**
++ * This function releases periodic Tx FIFO
++ * in shared Tx FIFO mode
++ */
++static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
++{
++ core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
++}
++
++/**
++ * This function is called by the Gadget Driver for each EP to be
++ * configured for the current configuration (SET_CONFIGURATION).
++ *
++ * This function initializes the dwc_otg_ep_t data structure, and then
++ * calls dwc_otg_ep_activate.
++ */
++static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep,
++ const struct usb_endpoint_descriptor *ep_desc)
++{
++ dwc_otg_pcd_ep_t *ep = 0;
++ dwc_otg_pcd_t *pcd = 0;
++ unsigned long flags;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc);
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++ if (!usb_ep || !ep_desc || ep->desc ||
++ ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
++ DWC_WARN("%s, bad ep or descriptor\n", __func__);
++ return -EINVAL;
++ }
++ if (ep == &ep->pcd->ep0) {
++ DWC_WARN("%s, bad ep(0)\n", __func__);
++ return -EINVAL;
++ }
++
++ /* Check FIFO size? */
++ if (!ep_desc->wMaxPacketSize) {
++ DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
++ return -ERANGE;
++ }
++
++ pcd = ep->pcd;
++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_WARN("%s, bogus device state\n", __func__);
++ return -ESHUTDOWN;
++ }
++
++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
++
++ ep->desc = ep_desc;
++ ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize);
++
++ /*
++ * Activate the EP
++ */
++ ep->stopped = 0;
++
++ ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0;
++ ep->dwc_ep.maxpacket = ep->ep.maxpacket;
++
++ ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
++
++ if(ep->dwc_ep.is_in) {
++ if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
++ ep->dwc_ep.tx_fifo_num = 0;
++
++ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) {
++ /*
++ * if ISOC EP then assign a Periodic Tx FIFO.
++ */
++ ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
++ }
++ } else {
++ /*
++ * if Dedicated FIFOs mode is on then assign a Tx FIFO.
++ */
++ ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
++
++ }
++ }
++ /* Set initial data PID. */
++ if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) {
++ ep->dwc_ep.data_pid_start = 0;
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
++ ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"),
++ ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
++
++ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) {
++ ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
++ }
++
++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++
++ return 0;
++}
++
++/**
++ * This function is called when an EP is disabled due to disconnect or
++ * change in configuration. Any pending requests will terminate with a
++ * status of -ESHUTDOWN.
++ *
++ * This function modifies the dwc_otg_ep_t data structure for this EP,
++ * and then calls dwc_otg_ep_deactivate.
++ */
++static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_t *pcd = 0;
++ unsigned long flags;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep);
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++ if (!usb_ep || !ep->desc) {
++ DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
++ usb_ep ? ep->ep.name : NULL);
++ return -EINVAL;
++ }
++
++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
++
++ dwc_otg_request_nuke(ep);
++
++ dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
++ ep->desc = 0;
++ ep->stopped = 1;
++
++ if(ep->dwc_ep.is_in) {
++ dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
++ release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
++ release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
++ }
++
++ /* Free DMA Descriptors */
++ pcd = ep->pcd;
++
++ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
++
++ if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) {
++ dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
++ }
++
++ DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name);
++ return 0;
++}
++
++
++/**
++ * This function allocates a request object to use with the specified
++ * endpoint.
++ *
++ * @param ep The endpoint to be used with with the request
++ * @param gfp_flags the GFP_* flags to use.
++ */
++static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
++ gfp_t gfp_flags)
++{
++ dwc_otg_pcd_request_t *req;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags);
++ if (0 == ep) {
++ DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
++ return 0;
++ }
++ req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags);
++ if (0 == req) {
++ DWC_WARN("%s() %s\n", __func__,
++ "request allocation failed!\n");
++ return 0;
++ }
++ memset(req, 0, sizeof(dwc_otg_pcd_request_t));
++ req->req.dma = DMA_ADDR_INVALID;
++ INIT_LIST_HEAD(&req->queue);
++ return &req->req;
++}
++
++/**
++ * This function frees a request object.
++ *
++ * @param ep The endpoint associated with the request
++ * @param req The request being freed
++ */
++static void dwc_otg_pcd_free_request(struct usb_ep *ep,
++ struct usb_request *req)
++{
++ dwc_otg_pcd_request_t *request;
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req);
++
++ if (0 == ep || 0 == req) {
++ DWC_WARN("%s() %s\n", __func__,
++ "Invalid ep or req argument!\n");
++ return;
++ }
++
++ request = container_of(req, dwc_otg_pcd_request_t, req);
++ kfree(request);
++}
++
++#if 0
++/**
++ * This function allocates an I/O buffer to be used for a transfer
++ * to/from the specified endpoint.
++ *
++ * @param usb_ep The endpoint to be used with with the request
++ * @param bytes The desired number of bytes for the buffer
++ * @param dma Pointer to the buffer's DMA address; must be valid
++ * @param gfp_flags the GFP_* flags to use.
++ * @return address of a new buffer or null is buffer could not be allocated.
++ */
++static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
++ dma_addr_t *dma,
++ gfp_t gfp_flags)
++{
++ void *buf;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_t *pcd = 0;
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++ pcd = ep->pcd;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
++ dma, gfp_flags);
++
++ /* Check dword alignment */
++ if ((bytes & 0x3UL) != 0) {
++ DWC_WARN("%s() Buffer size is not a multiple of"
++ "DWORD size (%d)",__func__, bytes);
++ }
++
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags);
++ }
++ else {
++ buf = kmalloc(bytes, gfp_flags);
++ }
++
++ /* Check dword alignment */
++ if (((int)buf & 0x3UL) != 0) {
++ DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
++ __func__, buf);
++ }
++
++ return buf;
++}
++
++/**
++ * This function frees an I/O buffer that was allocated by alloc_buffer.
++ *
++ * @param usb_ep the endpoint associated with the buffer
++ * @param buf address of the buffer
++ * @param dma The buffer's DMA address
++ * @param bytes The number of bytes of the buffer
++ */
++static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
++ dma_addr_t dma, unsigned bytes)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_t *pcd = 0;
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++ pcd = ep->pcd;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes);
++
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ dma_free_coherent (NULL, bytes, buf, dma);
++ }
++ else {
++ kfree(buf);
++ }
++}
++#endif
++
++/**
++ * This function is used to submit an I/O Request to an EP.
++ *
++ * - When the request completes the request's completion callback
++ * is called to return the request to the driver.
++ * - An EP, except control EPs, may have multiple requests
++ * pending.
++ * - Once submitted the request cannot be examined or modified.
++ * - Each request is turned into one or more packets.
++ * - A BULK EP can queue any amount of data; the transfer is
++ * packetized.
++ * - Zero length Packets are specified with the request 'zero'
++ * flag.
++ */
++static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep,
++ struct usb_request *usb_req,
++ gfp_t gfp_flags)
++{
++ int prevented = 0;
++ dwc_otg_pcd_request_t *req;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_t *pcd;
++ unsigned long flags = 0;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n",
++ __func__, usb_ep, usb_req, gfp_flags);
++
++ req = container_of(usb_req, dwc_otg_pcd_request_t, req);
++ if (!usb_req || !usb_req->complete || !usb_req->buf ||
++ !list_empty(&req->queue)) {
++ DWC_WARN("%s, bad params\n", __func__);
++ return -EINVAL;
++ }
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++ if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) {
++ DWC_WARN("%s, bad ep\n", __func__);
++ return -EINVAL;
++ }
++
++ pcd = ep->pcd;
++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
++ DWC_WARN("%s, bogus device state\n", __func__);
++ return -ESHUTDOWN;
++ }
++
++
++ DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
++ usb_ep->name, usb_req, usb_req->length, usb_req->buf);
++
++ if (!GET_CORE_IF(pcd)->core_params->opt) {
++ if (ep->dwc_ep.num != 0) {
++ DWC_ERROR("%s queue req %p, len %d buf %p\n",
++ usb_ep->name, usb_req, usb_req->length, usb_req->buf);
++ }
++ }
++
++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
++
++#if defined(DEBUG) & defined(VERBOSE)
++ dump_msg(usb_req->buf, usb_req->length);
++#endif
++
++ usb_req->status = -EINPROGRESS;
++ usb_req->actual = 0;
++
++ /*
++ * For EP0 IN without premature status, zlp is required?
++ */
++ if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
++ DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name);
++ //_req->zero = 1;
++ }
++
++ /* Start the transfer */
++ if (list_empty(&ep->queue) && !ep->stopped) {
++ /* EP0 Transfer? */
++ if (ep->dwc_ep.num == 0) {
++ switch (pcd->ep0state) {
++ case EP0_IN_DATA_PHASE:
++ DWC_DEBUGPL(DBG_PCD,
++ "%s ep0: EP0_IN_DATA_PHASE\n",
++ __func__);
++ break;
++
++ case EP0_OUT_DATA_PHASE:
++ DWC_DEBUGPL(DBG_PCD,
++ "%s ep0: EP0_OUT_DATA_PHASE\n",
++ __func__);
++ if (pcd->request_config) {
++ /* Complete STATUS PHASE */
++ ep->dwc_ep.is_in = 1;
++ pcd->ep0state = EP0_IN_STATUS_PHASE;
++ }
++ break;
++
++ case EP0_IN_STATUS_PHASE:
++ DWC_DEBUGPL(DBG_PCD,
++ "%s ep0: EP0_IN_STATUS_PHASE\n",
++ __func__);
++ break;
++
++ default:
++ DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
++ pcd->ep0state);
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++ return -EL2HLT;
++ }
++ ep->dwc_ep.dma_addr = usb_req->dma;
++ ep->dwc_ep.start_xfer_buff = usb_req->buf;
++ ep->dwc_ep.xfer_buff = usb_req->buf;
++ ep->dwc_ep.xfer_len = usb_req->length;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
++
++ if(usb_req->zero) {
++ if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0)
++ && (ep->dwc_ep.xfer_len != 0)) {
++ ep->dwc_ep.sent_zlp = 1;
++ }
++
++ }
++
++ ep_check_and_patch_dma_addr(ep);
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
++ }
++ else {
++
++ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
++
++ /* Setup and start the Transfer */
++ ep->dwc_ep.dma_addr = usb_req->dma;
++ ep->dwc_ep.start_xfer_buff = usb_req->buf;
++ ep->dwc_ep.xfer_buff = usb_req->buf;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = usb_req->length;
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++
++ if(max_transfer > MAX_TRANSFER_SIZE) {
++ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
++ } else {
++ ep->dwc_ep.maxxfer = max_transfer;
++ }
++
++ if(usb_req->zero) {
++ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
++ && (ep->dwc_ep.total_len != 0)) {
++ ep->dwc_ep.sent_zlp = 1;
++ }
++
++ }
++
++ ep_check_and_patch_dma_addr(ep);
++ dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
++ }
++ }
++
++ if ((req != 0) || prevented) {
++ ++pcd->request_pending;
++ list_add_tail(&req->queue, &ep->queue);
++ if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) {
++ /** @todo NGS Create a function for this. */
++ diepmsk_data_t diepmsk = { .d32 = 0};
++ diepmsk.b.intktxfemp = 1;
++ if(&GET_CORE_IF(pcd)->multiproc_int_enable) {
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num],
++ 0, diepmsk.d32);
++ } else {
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
++ }
++ }
++ }
++
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++ return 0;
++}
++
++/**
++ * This function cancels an I/O request from an EP.
++ */
++static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep,
++ struct usb_request *usb_req)
++{
++ dwc_otg_pcd_request_t *req;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_t *pcd;
++ unsigned long flags;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req);
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++ if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) {
++ DWC_WARN("%s, bad argument\n", __func__);
++ return -EINVAL;
++ }
++ pcd = ep->pcd;
++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_WARN("%s, bogus device state\n", __func__);
++ return -ESHUTDOWN;
++ }
++
++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
++ DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name,
++ ep->dwc_ep.is_in ? "IN" : "OUT",
++ usb_req);
++
++ /* make sure it's actually queued on this endpoint */
++ list_for_each_entry(req, &ep->queue, queue)
++ {
++ if (&req->req == usb_req) {
++ break;
++ }
++ }
++
++ if (&req->req != usb_req) {
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++ return -EINVAL;
++ }
++
++ if (!list_empty(&req->queue)) {
++ dwc_otg_request_done(ep, req, -ECONNRESET);
++ }
++ else {
++ req = 0;
++ }
++
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++
++ return req ? 0 : -EOPNOTSUPP;
++}
++
++/**
++ * usb_ep_set_halt stalls an endpoint.
++ *
++ * usb_ep_clear_halt clears an endpoint halt and resets its data
++ * toggle.
++ *
++ * Both of these functions are implemented with the same underlying
++ * function. The behavior depends on the value argument.
++ *
++ * @param[in] usb_ep the Endpoint to halt or clear halt.
++ * @param[in] value
++ * - 0 means clear_halt.
++ * - 1 means set_halt,
++ * - 2 means clear stall lock flag.
++ * - 3 means set stall lock flag.
++ */
++static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value)
++{
++ int retval = 0;
++ unsigned long flags;
++ dwc_otg_pcd_ep_t *ep = 0;
++
++
++ DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value);
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++
++ if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) ||
++ ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
++ DWC_WARN("%s, bad ep\n", __func__);
++ return -EINVAL;
++ }
++
++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
++ if (!list_empty(&ep->queue)) {
++ DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name);
++ retval = -EAGAIN;
++ }
++ else if (value == 0) {
++ dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,
++ &ep->dwc_ep);
++ }
++ else if(value == 1) {
++ if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) {
++ dtxfsts_data_t txstatus;
++ fifosize_data_t txfifosize;
++
++ txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]);
++ txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts);
++
++ if(txstatus.b.txfspcavail < txfifosize.b.depth) {
++ DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name);
++ retval = -EAGAIN;
++ }
++ else {
++ if (ep->dwc_ep.num == 0) {
++ ep->pcd->ep0state = EP0_STALL;
++ }
++
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
++ &ep->dwc_ep);
++ }
++ }
++ else {
++ if (ep->dwc_ep.num == 0) {
++ ep->pcd->ep0state = EP0_STALL;
++ }
++
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
++ &ep->dwc_ep);
++ }
++ }
++ else if (value == 2) {
++ ep->dwc_ep.stall_clear_flag = 0;
++ }
++ else if (value == 3) {
++ ep->dwc_ep.stall_clear_flag = 1;
++ }
++
++ SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
++ return retval;
++}
++
++/**
++ * This function allocates a DMA Descriptor chain for the Endpoint
++ * buffer to be used for a transfer to/from the specified endpoint.
++ */
++dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count)
++{
++
++ return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL);
++}
++
++LIST_HEAD(tofree_list);
++DEFINE_SPINLOCK(tofree_list_lock);
++
++struct free_param {
++ struct list_head list;
++
++ void* addr;
++ dma_addr_t dma_addr;
++ uint32_t size;
++};
++void free_list_agent_fn(void *data){
++ struct list_head free_list;
++ struct free_param *cur,*next;
++
++ spin_lock(&tofree_list_lock);
++ list_add(&free_list,&tofree_list);
++ list_del_init(&tofree_list);
++ spin_unlock(&tofree_list_lock);
++
++ list_for_each_entry_safe(cur,next,&free_list,list){
++ if(cur==&free_list) break;
++ dma_free_coherent(NULL,cur->size,cur->addr,cur->dma_addr);
++ list_del(&cur->list);
++ kfree(cur);
++ }
++}
++DECLARE_WORK(free_list_agent,free_list_agent_fn);
++/**
++ * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
++ */
++void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count)
++{
++ if(irqs_disabled()){
++ struct free_param* fp=kmalloc(sizeof(struct free_param),GFP_KERNEL);
++ fp->addr=desc_addr;
++ fp->dma_addr=dma_desc_addr;
++ fp->size=count*sizeof(dwc_otg_dma_desc_t);
++
++ spin_lock(&tofree_list_lock);
++ list_add(&fp->list,&tofree_list);
++ spin_unlock(&tofree_list_lock);
++
++ schedule_work(&free_list_agent);
++ return ;
++ }
++ dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr);
++}
++
++#ifdef DWC_EN_ISOC
++
++/**
++ * This function initializes a descriptor chain for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP to start the transfer on.
++ *
++ */
++void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
++{
++
++ dsts_data_t dsts = { .d32 = 0};
++ depctl_data_t depctl = { .d32 = 0 };
++ volatile uint32_t *addr;
++ int i, j;
++
++ if(dwc_ep->is_in)
++ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
++ else
++ dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
++
++
++ /** Allocate descriptors for double buffering */
++ dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2);
++ if(dwc_ep->desc_addr) {
++ DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
++ return;
++ }
++
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++
++ /** ISO OUT EP */
++ if(dwc_ep->is_in == 0) {
++ desc_sts_data_t sts = { .d32 =0 };
++ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
++ dma_addr_t dma_ad;
++ uint32_t data_per_desc;
++ dwc_otg_dev_out_ep_regs_t *out_regs =
++ core_if->dev_if->out_ep_regs[dwc_ep->num];
++ int offset;
++
++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
++ dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma));
++
++ /** Buffer 0 descriptors setup */
++ dma_ad = dwc_ep->dma_addr0;
++
++ sts.b_iso_out.bs = BS_HOST_READY;
++ sts.b_iso_out.rxsts = 0;
++ sts.b_iso_out.l = 0;
++ sts.b_iso_out.sp = 0;
++ sts.b_iso_out.ioc = 0;
++ sts.b_iso_out.pid = 0;
++ sts.b_iso_out.framenum = 0;
++
++ offset = 0;
++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
++ {
++
++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
++ {
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ offset += data_per_desc;
++ dma_desc ++;
++ //(uint32_t)dma_ad += data_per_desc;
++ dma_ad = (uint32_t)dma_ad + data_per_desc;
++ }
++ }
++
++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
++ {
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ offset += data_per_desc;
++ dma_desc ++;
++ //(uint32_t)dma_ad += data_per_desc;
++ dma_ad = (uint32_t)dma_ad + data_per_desc;
++ }
++
++ sts.b_iso_out.ioc = 1;
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++ dma_desc ++;
++
++ /** Buffer 1 descriptors setup */
++ sts.b_iso_out.ioc = 0;
++ dma_ad = dwc_ep->dma_addr1;
++
++ offset = 0;
++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
++ {
++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
++ {
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ offset += data_per_desc;
++ dma_desc ++;
++ //(uint32_t)dma_ad += data_per_desc;
++ dma_ad = (uint32_t)dma_ad + data_per_desc;
++ }
++ }
++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
++ {
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ offset += data_per_desc;
++ dma_desc ++;
++ //(uint32_t)dma_ad += data_per_desc;
++ dma_ad = (uint32_t)dma_ad + data_per_desc;
++ }
++
++ sts.b_iso_out.ioc = 1;
++ sts.b_iso_out.l = 1;
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ dwc_ep->next_frame = 0;
++
++ /** Write dma_ad into DOEPDMA register */
++ dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
++
++ }
++ /** ISO IN EP */
++ else {
++ desc_sts_data_t sts = { .d32 =0 };
++ dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
++ dma_addr_t dma_ad;
++ dwc_otg_dev_in_ep_regs_t *in_regs =
++ core_if->dev_if->in_ep_regs[dwc_ep->num];
++ unsigned int frmnumber;
++ fifosize_data_t txfifosize,rxfifosize;
++
++ txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts);
++ rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz);
++
++
++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
++
++ dma_ad = dwc_ep->dma_addr0;
++
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++
++ sts.b_iso_in.bs = BS_HOST_READY;
++ sts.b_iso_in.txsts = 0;
++ sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0;
++ sts.b_iso_in.ioc = 0;
++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
++
++
++ frmnumber = dwc_ep->next_frame;
++
++ sts.b_iso_in.framenum = frmnumber;
++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
++ sts.b_iso_in.l = 0;
++
++ /** Buffer 0 descriptors setup */
++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
++ {
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++ dma_desc ++;
++
++ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
++ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
++ sts.b_iso_in.framenum += dwc_ep->bInterval;
++ }
++
++ sts.b_iso_in.ioc = 1;
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++ ++dma_desc;
++
++ /** Buffer 1 descriptors setup */
++ sts.b_iso_in.ioc = 0;
++ dma_ad = dwc_ep->dma_addr1;
++
++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
++ {
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++ dma_desc ++;
++
++ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
++ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
++ sts.b_iso_in.framenum += dwc_ep->bInterval;
++
++ sts.b_iso_in.ioc = 0;
++ }
++ sts.b_iso_in.ioc = 1;
++ sts.b_iso_in.l = 1;
++
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
++
++ /** Write dma_ad into diepdma register */
++ dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
++ }
++ /** Enable endpoint, clear nak */
++ depctl.d32 = 0;
++ depctl.b.epena = 1;
++ depctl.b.usbactep = 1;
++ depctl.b.cnak = 1;
++
++ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
++ depctl.d32 = dwc_read_reg32(addr);
++}
++
++/**
++ * This function initializes a descriptor chain for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++
++void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl = { .d32 = 0 };
++ volatile uint32_t *addr;
++
++
++ if(ep->is_in) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ } else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ }
++
++
++ if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) {
++ return;
++ } else {
++ deptsiz_data_t deptsiz = { .d32 = 0 };
++
++ ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
++ ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) /
++ ep->maxpacket;
++ ep->xfer_count = 0;
++ ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
++ ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
++
++ if(ep->is_in) {
++ /* Program the transfer size and packet count
++ * as follows: xfersize = N * maxpacket +
++ * short_packet pktcnt = N + (short_packet
++ * exist ? 1 : 0)
++ */
++ deptsiz.b.mc = ep->pkt_per_frm;
++ deptsiz.b.xfersize = ep->xfer_len;
++ deptsiz.b.pktcnt =
++ (ep->xfer_len - 1 + ep->maxpacket) /
++ ep->maxpacket;
++ dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
++
++ /* Write the DMA register */
++ dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
++
++ } else {
++ deptsiz.b.pktcnt =
++ (ep->xfer_len + (ep->maxpacket - 1)) /
++ ep->maxpacket;
++ deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++
++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
++
++ /* Write the DMA register */
++ dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr);
++
++ }
++ /** Enable endpoint, clear nak */
++ depctl.d32 = 0;
++ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
++
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++
++ dwc_modify_reg32(addr, depctl.d32,depctl.d32);
++ }
++}
++
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++
++void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ if(core_if->dma_enable) {
++ if(core_if->dma_desc_enable) {
++ if(ep->is_in) {
++ ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
++ } else {
++ ep->desc_cnt = ep->pkt_cnt;
++ }
++ dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
++ } else {
++ if(core_if->pti_enh_enable) {
++ dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
++ } else {
++ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
++ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
++ }
++ }
++ } else {
++ ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
++ ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
++ dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
++ }
++}
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer. For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ */
++
++void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ depctl_data_t depctl = { .d32 = 0 };
++ volatile uint32_t *addr;
++
++ if(ep->is_in == 1) {
++ addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++ }
++ else {
++ addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++ }
++
++ /* disable the ep */
++ depctl.d32 = dwc_read_reg32(addr);
++
++ depctl.b.epdis = 1;
++ depctl.b.snak = 1;
++
++ dwc_write_reg32(addr, depctl.d32);
++
++ if(core_if->dma_desc_enable &&
++ ep->iso_desc_addr && ep->iso_dma_desc_addr) {
++ dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2);
++ }
++
++ /* reset varibales */
++ ep->dma_addr0 = 0;
++ ep->dma_addr1 = 0;
++ ep->xfer_buff0 = 0;
++ ep->xfer_buff1 = 0;
++ ep->data_per_frame = 0;
++ ep->data_pattern_frame = 0;
++ ep->sync_frame = 0;
++ ep->buf_proc_intrvl = 0;
++ ep->bInterval = 0;
++ ep->proc_buf_num = 0;
++ ep->pkt_per_frm = 0;
++ ep->pkt_per_frm = 0;
++ ep->desc_cnt = 0;
++ ep->iso_desc_addr = 0;
++ ep->iso_dma_desc_addr = 0;
++}
++
++
++/**
++ * This function is used to submit an ISOC Transfer Request to an EP.
++ *
++ * - Every time a sync period completes the request's completion callback
++ * is called to provide data to the gadget driver.
++ * - Once submitted the request cannot be modified.
++ * - Each request is turned into periodic data packets untill ISO
++ * Transfer is stopped..
++ */
++static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
++ gfp_t gfp_flags)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_t *pcd;
++ dwc_ep_t *dwc_ep;
++ unsigned long flags = 0;
++ int32_t frm_data;
++ dwc_otg_core_if_t *core_if;
++ dcfg_data_t dcfg;
++ dsts_data_t dsts;
++
++
++ if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
++ DWC_WARN("%s, bad params\n", __func__);
++ return -EINVAL;
++ }
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++
++ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
++ DWC_WARN("%s, bad ep\n", __func__);
++ return -EINVAL;
++ }
++
++ pcd = ep->pcd;
++ core_if = GET_CORE_IF(pcd);
++
++ dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
++
++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
++ DWC_WARN("%s, bogus device state\n", __func__);
++ return -ESHUTDOWN;
++ }
++
++ SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
++
++ dwc_ep = &ep->dwc_ep;
++
++ if(ep->iso_req) {
++ DWC_WARN("%s, iso request in progress\n", __func__);
++ }
++ req->status = -EINPROGRESS;
++
++ dwc_ep->dma_addr0 = req->dma0;
++ dwc_ep->dma_addr1 = req->dma1;
++
++ dwc_ep->xfer_buff0 = req->buf0;
++ dwc_ep->xfer_buff1 = req->buf1;
++
++ ep->iso_req = req;
++
++ dwc_ep->data_per_frame = req->data_per_frame;
++
++ /** @todo - pattern data support is to be implemented in the future */
++ dwc_ep->data_pattern_frame = req->data_pattern_frame;
++ dwc_ep->sync_frame = req->sync_frame;
++
++ dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl;
++
++ dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
++
++ dwc_ep->proc_buf_num = 0;
++
++ dwc_ep->pkt_per_frm = 0;
++ frm_data = ep->dwc_ep.data_per_frame;
++ while(frm_data > 0) {
++ dwc_ep->pkt_per_frm++;
++ frm_data -= ep->dwc_ep.maxpacket;
++ }
++
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++
++ if(req->flags & USB_REQ_ISO_ASAP) {
++ dwc_ep->next_frame = dsts.b.soffn + 1;
++ if(dwc_ep->bInterval != 1){
++ dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval);
++ }
++ } else {
++ dwc_ep->next_frame = req->start_frame;
++ }
++
++
++ if(!core_if->pti_enh_enable) {
++ dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
++ } else {
++ dwc_ep->pkt_cnt =
++ (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
++ - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
++ }
++
++ if(core_if->dma_desc_enable) {
++ dwc_ep->desc_cnt =
++ dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
++ }
++
++ dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL);
++ if(!dwc_ep->pkt_info) {
++ return -ENOMEM;
++ }
++ if(core_if->pti_enh_enable) {
++ memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
++ }
++
++ dwc_ep->cur_pkt = 0;
++
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++
++ dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
++
++ return 0;
++}
++
++/**
++ * This function stops ISO EP Periodic Data Transfer.
++ */
++static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
++{
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_t *pcd;
++ dwc_ep_t *dwc_ep;
++ unsigned long flags;
++
++ ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
++
++ if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
++ DWC_WARN("%s, bad ep\n", __func__);
++ return -EINVAL;
++ }
++
++ pcd = ep->pcd;
++
++ if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
++ DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
++ DWC_WARN("%s, bogus device state\n", __func__);
++ return -ESHUTDOWN;
++ }
++
++ dwc_ep = &ep->dwc_ep;
++
++ dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
++
++ kfree(dwc_ep->pkt_info);
++
++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
++
++ if(ep->iso_req != req) {
++ return -EINVAL;
++ }
++
++ req->status = -ECONNRESET;
++
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++
++
++ ep->iso_req = 0;
++
++ return 0;
++}
++
++/**
++ * This function is used for perodical data exchnage between PCD and gadget drivers.
++ * for Isochronous EPs
++ *
++ * - Every time a sync period completes this function is called to
++ * perform data exchange between PCD and gadget
++ */
++void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req)
++{
++ int i;
++ struct usb_gadget_iso_packet_descriptor *iso_packet;
++ dwc_ep_t *dwc_ep;
++
++ dwc_ep = &ep->dwc_ep;
++
++ if(ep->iso_req->status == -ECONNRESET) {
++ DWC_PRINT("Device has already disconnected\n");
++ /*Device has been disconnected*/
++ return;
++ }
++
++ if(dwc_ep->proc_buf_num != 0) {
++ iso_packet = ep->iso_req->iso_packet_desc0;
++ }
++
++ else {
++ iso_packet = ep->iso_req->iso_packet_desc1;
++ }
++
++ /* Fill in ISOC packets descriptors & pass to gadget driver*/
++
++ for(i = 0; i < dwc_ep->pkt_cnt; ++i) {
++ iso_packet[i].status = dwc_ep->pkt_info[i].status;
++ iso_packet[i].offset = dwc_ep->pkt_info[i].offset;
++ iso_packet[i].actual_length = dwc_ep->pkt_info[i].length;
++ dwc_ep->pkt_info[i].status = 0;
++ dwc_ep->pkt_info[i].offset = 0;
++ dwc_ep->pkt_info[i].length = 0;
++ }
++
++ /* Call callback function to process data buffer */
++ ep->iso_req->status = 0;/* success */
++
++ SPIN_UNLOCK(&ep->pcd->lock);
++ ep->iso_req->process_buffer(&ep->ep, ep->iso_req);
++ SPIN_LOCK(&ep->pcd->lock);
++}
++
++
++static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets,
++ gfp_t gfp_flags)
++{
++ struct usb_iso_request *pReq = NULL;
++ uint32_t req_size;
++
++
++ req_size = sizeof(struct usb_iso_request);
++ req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
++
++
++ pReq = kmalloc(req_size, gfp_flags);
++ if (!pReq) {
++ DWC_WARN("%s, can't allocate Iso Request\n", __func__);
++ return 0;
++ }
++ pReq->iso_packet_desc0 = (void*) (pReq + 1);
++
++ pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
++
++ return pReq;
++}
++
++static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
++{
++ kfree(req);
++}
++
++static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops =
++{
++ .ep_ops =
++ {
++ .enable = dwc_otg_pcd_ep_enable,
++ .disable = dwc_otg_pcd_ep_disable,
++
++ .alloc_request = dwc_otg_pcd_alloc_request,
++ .free_request = dwc_otg_pcd_free_request,
++
++ //.alloc_buffer = dwc_otg_pcd_alloc_buffer,
++ //.free_buffer = dwc_otg_pcd_free_buffer,
++
++ .queue = dwc_otg_pcd_ep_queue,
++ .dequeue = dwc_otg_pcd_ep_dequeue,
++
++ .set_halt = dwc_otg_pcd_ep_set_halt,
++ .fifo_status = 0,
++ .fifo_flush = 0,
++ },
++ .iso_ep_start = dwc_otg_pcd_iso_ep_start,
++ .iso_ep_stop = dwc_otg_pcd_iso_ep_stop,
++ .alloc_iso_request = dwc_otg_pcd_alloc_iso_request,
++ .free_iso_request = dwc_otg_pcd_free_iso_request,
++};
++
++#else
++
++
++static struct usb_ep_ops dwc_otg_pcd_ep_ops =
++{
++ .enable = dwc_otg_pcd_ep_enable,
++ .disable = dwc_otg_pcd_ep_disable,
++
++ .alloc_request = dwc_otg_pcd_alloc_request,
++ .free_request = dwc_otg_pcd_free_request,
++
++// .alloc_buffer = dwc_otg_pcd_alloc_buffer,
++// .free_buffer = dwc_otg_pcd_free_buffer,
++
++ .queue = dwc_otg_pcd_ep_queue,
++ .dequeue = dwc_otg_pcd_ep_dequeue,
++
++ .set_halt = dwc_otg_pcd_ep_set_halt,
++ .fifo_status = 0,
++ .fifo_flush = 0,
++
++
++};
++
++#endif /* DWC_EN_ISOC */
++/* Gadget Operations */
++/**
++ * The following gadget operations will be implemented in the DWC_otg
++ * PCD. Functions in the API that are not described below are not
++ * implemented.
++ *
++ * The Gadget API provides wrapper functions for each of the function
++ * pointers defined in usb_gadget_ops. The Gadget Driver calls the
++ * wrapper function, which then calls the underlying PCD function. The
++ * following sections are named according to the wrapper functions
++ * (except for ioctl, which doesn't have a wrapper function). Within
++ * each section, the corresponding DWC_otg PCD function name is
++ * specified.
++ *
++ */
++
++/**
++ *Gets the USB Frame number of the last SOF.
++ */
++static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget)
++{
++ dwc_otg_pcd_t *pcd;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
++
++ if (gadget == 0) {
++ return -ENODEV;
++ }
++ else {
++ pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
++ dwc_otg_get_frame_number(GET_CORE_IF(pcd));
++ }
++
++ return 0;
++}
++
++void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd)
++{
++ uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl);
++ gotgctl_data_t mem;
++ gotgctl_data_t val;
++
++ val.d32 = dwc_read_reg32(addr);
++ if (val.b.sesreq) {
++ DWC_ERROR("Session Request Already active!\n");
++ return;
++ }
++
++ DWC_NOTICE("Session Request Initated\n");
++ mem.d32 = dwc_read_reg32(addr);
++ mem.b.sesreq = 1;
++ dwc_write_reg32(addr, mem.d32);
++
++ /* Start the SRP timer */
++ dwc_otg_pcd_start_srp_timer(pcd);
++ return;
++}
++
++void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set)
++{
++ dctl_data_t dctl = {.d32=0};
++ volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl);
++
++ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
++ if (pcd->remote_wakeup_enable) {
++ if (set) {
++ dctl.b.rmtwkupsig = 1;
++ dwc_modify_reg32(addr, 0, dctl.d32);
++ DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
++ mdelay(1);
++ dwc_modify_reg32(addr, dctl.d32, 0);
++ DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
++ }
++ else {
++ }
++ }
++ else {
++ DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
++ }
++ }
++ return;
++}
++
++/**
++ * Initiates Session Request Protocol (SRP) to wakeup the host if no
++ * session is in progress. If a session is already in progress, but
++ * the device is suspended, remote wakeup signaling is started.
++ *
++ */
++static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget)
++{
++ unsigned long flags;
++ dwc_otg_pcd_t *pcd;
++ dsts_data_t dsts;
++ gotgctl_data_t gotgctl;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
++
++ if (gadget == 0) {
++ return -ENODEV;
++ }
++ else {
++ pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
++ }
++ SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
++
++ /*
++ * This function starts the Protocol if no session is in progress. If
++ * a session is already in progress, but the device is suspended,
++ * remote wakeup signaling is started.
++ */
++
++ /* Check if valid session */
++ gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
++ if (gotgctl.b.bsesvld) {
++ /* Check if suspend state */
++ dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
++ if (dsts.b.suspsts) {
++ dwc_otg_pcd_remote_wakeup(pcd, 1);
++ }
++ }
++ else {
++ dwc_otg_pcd_initiate_srp(pcd);
++ }
++
++ SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
++ return 0;
++}
++
++static const struct usb_gadget_ops dwc_otg_pcd_ops =
++{
++ .get_frame = dwc_otg_pcd_get_frame,
++ .wakeup = dwc_otg_pcd_wakeup,
++ // current versions must always be self-powered
++};
++
++/**
++ * This function updates the otg values in the gadget structure.
++ */
++void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset)
++{
++
++ if (!pcd->gadget.is_otg)
++ return;
++
++ if (reset) {
++ pcd->b_hnp_enable = 0;
++ pcd->a_hnp_support = 0;
++ pcd->a_alt_hnp_support = 0;
++ }
++
++ pcd->gadget.b_hnp_enable = pcd->b_hnp_enable;
++ pcd->gadget.a_hnp_support = pcd->a_hnp_support;
++ pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support;
++}
++
++/**
++ * This function is the top level PCD interrupt handler.
++ */
++static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev)
++{
++ dwc_otg_pcd_t *pcd = dev;
++ int32_t retval = IRQ_NONE;
++
++ retval = dwc_otg_pcd_handle_intr(pcd);
++ return IRQ_RETVAL(retval);
++}
++
++/**
++ * PCD Callback function for initializing the PCD when switching to
++ * device mode.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_start_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
++
++ /*
++ * Initialized the Core for Device mode.
++ */
++ if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
++ dwc_otg_core_dev_init(GET_CORE_IF(pcd));
++ }
++ return 1;
++}
++
++/**
++ * PCD Callback function for stopping the PCD when switching to Host
++ * mode.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_stop_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
++ extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd);
++
++ dwc_otg_pcd_stop(pcd);
++ return 1;
++}
++
++
++/**
++ * PCD Callback function for notifying the PCD when resuming from
++ * suspend.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_suspend_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
++
++ if (pcd->driver && pcd->driver->resume) {
++ SPIN_UNLOCK(&pcd->lock);
++ pcd->driver->suspend(&pcd->gadget);
++ SPIN_LOCK(&pcd->lock);
++ }
++
++ return 1;
++}
++
++
++/**
++ * PCD Callback function for notifying the PCD when resuming from
++ * suspend.
++ *
++ * @param p void pointer to the <code>dwc_otg_pcd_t</code>
++ */
++static int32_t dwc_otg_pcd_resume_cb(void *p)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
++
++ if (pcd->driver && pcd->driver->resume) {
++ SPIN_UNLOCK(&pcd->lock);
++ pcd->driver->resume(&pcd->gadget);
++ SPIN_LOCK(&pcd->lock);
++ }
++
++ /* Stop the SRP timeout timer. */
++ if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) ||
++ (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
++ if (GET_CORE_IF(pcd)->srp_timer_started) {
++ GET_CORE_IF(pcd)->srp_timer_started = 0;
++ del_timer(&pcd->srp_timer);
++ }
++ }
++ return 1;
++}
++
++
++/**
++ * PCD Callback structure for handling mode switching.
++ */
++static dwc_otg_cil_callbacks_t pcd_callbacks =
++{
++ .start = dwc_otg_pcd_start_cb,
++ .stop = dwc_otg_pcd_stop_cb,
++ .suspend = dwc_otg_pcd_suspend_cb,
++ .resume_wakeup = dwc_otg_pcd_resume_cb,
++ .p = 0, /* Set at registration */
++};
++
++/**
++ * This function is called when the SRP timer expires. The SRP should
++ * complete within 6 seconds.
++ */
++static void srp_timeout(unsigned long ptr)
++{
++ gotgctl_data_t gotgctl;
++ dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr;
++ volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
++
++ gotgctl.d32 = dwc_read_reg32(addr);
++
++ core_if->srp_timer_started = 0;
++
++ if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
++ (core_if->core_params->i2c_enable)) {
++ DWC_PRINT("SRP Timeout\n");
++
++ if ((core_if->srp_success) &&
++ (gotgctl.b.bsesvld)) {
++ if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
++ core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++ }
++
++ /* Clear Session Request */
++ gotgctl.d32 = 0;
++ gotgctl.b.sesreq = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
++ gotgctl.d32, 0);
++
++ core_if->srp_success = 0;
++ }
++ else {
++ DWC_ERROR("Device not connected/responding\n");
++ gotgctl.b.sesreq = 0;
++ dwc_write_reg32(addr, gotgctl.d32);
++ }
++ }
++ else if (gotgctl.b.sesreq) {
++ DWC_PRINT("SRP Timeout\n");
++
++ DWC_ERROR("Device not connected/responding\n");
++ gotgctl.b.sesreq = 0;
++ dwc_write_reg32(addr, gotgctl.d32);
++ }
++ else {
++ DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
++ }
++}
++
++/**
++ * Start the SRP timer to detect when the SRP does not complete within
++ * 6 seconds.
++ *
++ * @param pcd the pcd structure.
++ */
++void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd)
++{
++ struct timer_list *srp_timer = &pcd->srp_timer;
++ GET_CORE_IF(pcd)->srp_timer_started = 1;
++ init_timer(srp_timer);
++ srp_timer->function = srp_timeout;
++ srp_timer->data = (unsigned long)GET_CORE_IF(pcd);
++ srp_timer->expires = jiffies + (HZ*6);
++ add_timer(srp_timer);
++}
++
++/**
++ * Tasklet
++ *
++ */
++extern void start_next_request(dwc_otg_pcd_ep_t *ep);
++
++static void start_xfer_tasklet_func (unsigned long data)
++{
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data;
++ dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if;
++
++ int i;
++ depctl_data_t diepctl;
++
++ DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
++
++ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
++
++ if (pcd->ep0.queue_sof) {
++ pcd->ep0.queue_sof = 0;
++ start_next_request (&pcd->ep0);
++ // break;
++ }
++
++ for (i=0; i<core_if->dev_if->num_in_eps; i++)
++ {
++ depctl_data_t diepctl;
++ diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
++
++ if (pcd->in_ep[i].queue_sof) {
++ pcd->in_ep[i].queue_sof = 0;
++ start_next_request (&pcd->in_ep[i]);
++ // break;
++ }
++ }
++
++ return;
++}
++
++
++
++
++
++
++
++static struct tasklet_struct start_xfer_tasklet = {
++ .next = NULL,
++ .state = 0,
++ .count = ATOMIC_INIT(0),
++ .func = start_xfer_tasklet_func,
++ .data = 0,
++};
++/**
++ * This function initialized the pcd Dp structures to there default
++ * state.
++ *
++ * @param pcd the pcd structure.
++ */
++void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd)
++{
++ static const char * names[] =
++ {
++
++ "ep0",
++ "ep1in",
++ "ep2in",
++ "ep3in",
++ "ep4in",
++ "ep5in",
++ "ep6in",
++ "ep7in",
++ "ep8in",
++ "ep9in",
++ "ep10in",
++ "ep11in",
++ "ep12in",
++ "ep13in",
++ "ep14in",
++ "ep15in",
++ "ep1out",
++ "ep2out",
++ "ep3out",
++ "ep4out",
++ "ep5out",
++ "ep6out",
++ "ep7out",
++ "ep8out",
++ "ep9out",
++ "ep10out",
++ "ep11out",
++ "ep12out",
++ "ep13out",
++ "ep14out",
++ "ep15out"
++
++ };
++
++ int i;
++ int in_ep_cntr, out_ep_cntr;
++ uint32_t hwcfg1;
++ uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
++ uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
++ dwc_otg_pcd_ep_t *ep;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
++
++ INIT_LIST_HEAD (&pcd->gadget.ep_list);
++ pcd->gadget.ep0 = &pcd->ep0.ep;
++ pcd->gadget.speed = USB_SPEED_UNKNOWN;
++
++ INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list);
++
++ /**
++ * Initialize the EP0 structure.
++ */
++ ep = &pcd->ep0;
++
++ /* Init EP structure */
++ ep->desc = 0;
++ ep->pcd = pcd;
++ ep->stopped = 1;
++
++ /* Init DWC ep structure */
++ ep->dwc_ep.num = 0;
++ ep->dwc_ep.active = 0;
++ ep->dwc_ep.tx_fifo_num = 0;
++ /* Control until ep is actvated */
++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
++ ep->dwc_ep.dma_addr = 0;
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = 0;
++ ep->queue_sof = 0;
++ ep->dwc_ep.desc_addr = 0;
++ ep->dwc_ep.dma_desc_addr = 0;
++
++ ep->dwc_ep.aligned_buf=NULL;
++ ep->dwc_ep.aligned_buf_size=0;
++ ep->dwc_ep.aligned_dma_addr=0;
++
++
++ /* Init the usb_ep structure. */
++ ep->ep.name = names[0];
++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
++
++ /**
++ * @todo NGS: What should the max packet size be set to
++ * here? Before EP type is set?
++ */
++ ep->ep.maxpacket = MAX_PACKET_SIZE;
++
++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
++
++ INIT_LIST_HEAD (&ep->queue);
++ /**
++ * Initialize the EP structures.
++ */
++ in_ep_cntr = 0;
++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
++
++ for (i = 1; in_ep_cntr < num_in_eps; i++)
++ {
++ if((hwcfg1 & 0x1) == 0) {
++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
++ in_ep_cntr ++;
++
++ /* Init EP structure */
++ ep->desc = 0;
++ ep->pcd = pcd;
++ ep->stopped = 1;
++
++ /* Init DWC ep structure */
++ ep->dwc_ep.is_in = 1;
++ ep->dwc_ep.num = i;
++ ep->dwc_ep.active = 0;
++ ep->dwc_ep.tx_fifo_num = 0;
++
++ /* Control until ep is actvated */
++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
++ ep->dwc_ep.dma_addr = 0;
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = 0;
++ ep->queue_sof = 0;
++ ep->dwc_ep.desc_addr = 0;
++ ep->dwc_ep.dma_desc_addr = 0;
++
++ /* Init the usb_ep structure. */
++ ep->ep.name = names[i];
++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
++
++ /**
++ * @todo NGS: What should the max packet size be set to
++ * here? Before EP type is set?
++ */
++ ep->ep.maxpacket = MAX_PACKET_SIZE;
++
++ //add only even number ep as in
++ if((i%2)==1)
++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
++
++ INIT_LIST_HEAD (&ep->queue);
++ }
++ hwcfg1 >>= 2;
++ }
++
++ out_ep_cntr = 0;
++ hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
++
++ for (i = 1; out_ep_cntr < num_out_eps; i++)
++ {
++ if((hwcfg1 & 0x1) == 0) {
++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
++ out_ep_cntr++;
++
++ /* Init EP structure */
++ ep->desc = 0;
++ ep->pcd = pcd;
++ ep->stopped = 1;
++
++ /* Init DWC ep structure */
++ ep->dwc_ep.is_in = 0;
++ ep->dwc_ep.num = i;
++ ep->dwc_ep.active = 0;
++ ep->dwc_ep.tx_fifo_num = 0;
++ /* Control until ep is actvated */
++ ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
++ ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
++ ep->dwc_ep.dma_addr = 0;
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = 0;
++ ep->queue_sof = 0;
++
++ /* Init the usb_ep structure. */
++ ep->ep.name = names[15 + i];
++ ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
++ /**
++ * @todo NGS: What should the max packet size be set to
++ * here? Before EP type is set?
++ */
++ ep->ep.maxpacket = MAX_PACKET_SIZE;
++
++ //add only odd number ep as out
++ if((i%2)==0)
++ list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
++
++ INIT_LIST_HEAD (&ep->queue);
++ }
++ hwcfg1 >>= 2;
++ }
++
++ /* remove ep0 from the list. There is a ep0 pointer.*/
++ list_del_init (&pcd->ep0.ep.ep_list);
++
++ pcd->ep0state = EP0_DISCONNECT;
++ pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
++ pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
++ pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
++}
++
++/**
++ * This function releases the Gadget device.
++ * required by device_unregister().
++ *
++ * @todo Should this do something? Should it free the PCD?
++ */
++static void dwc_otg_pcd_gadget_release(struct device *dev)
++{
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev);
++}
++
++
++
++/**
++ * This function initialized the PCD portion of the driver.
++ *
++ */
++u8 dev_id[]="gadget";
++int dwc_otg_pcd_init(struct platform_device *pdev)
++{
++ static char pcd_name[] = "dwc_otg_pcd";
++ dwc_otg_pcd_t *pcd;
++ dwc_otg_core_if_t* core_if;
++ dwc_otg_dev_if_t* dev_if;
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
++ int retval = 0;
++
++
++ DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, pdev);
++ /*
++ * Allocate PCD structure
++ */
++ pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
++
++ if (pcd == 0) {
++ return -ENOMEM;
++ }
++
++ memset(pcd, 0, sizeof(dwc_otg_pcd_t));
++ spin_lock_init(&pcd->lock);
++
++ otg_dev->pcd = pcd;
++ s_pcd = pcd;
++ pcd->gadget.name = pcd_name;
++
++ pcd->gadget.dev.init_name = dev_id;
++ pcd->otg_dev = platform_get_drvdata(pdev);
++
++ pcd->gadget.dev.parent = &pdev->dev;
++ pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
++ pcd->gadget.ops = &dwc_otg_pcd_ops;
++
++ core_if = GET_CORE_IF(pcd);
++ dev_if = core_if->dev_if;
++
++ if(core_if->hwcfg4.b.ded_fifo_en) {
++ DWC_PRINT("Dedicated Tx FIFOs mode\n");
++ }
++ else {
++ DWC_PRINT("Shared Tx FIFO mode\n");
++ }
++
++ /* If the module is set to FS or if the PHY_TYPE is FS then the gadget
++ * should not report as dual-speed capable. replace the following line
++ * with the block of code below it once the software is debugged for
++ * this. If is_dualspeed = 0 then the gadget driver should not report
++ * a device qualifier descriptor when queried. */
++ if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) ||
++ ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) &&
++ (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) &&
++ (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
++ pcd->gadget.is_dualspeed = 0;
++ }
++ else {
++ pcd->gadget.is_dualspeed = 1;
++ }
++
++ if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) ||
++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) ||
++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
++ (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
++ pcd->gadget.is_otg = 0;
++ }
++ else {
++ pcd->gadget.is_otg = 1;
++ }
++
++
++ pcd->driver = 0;
++ /* Register the gadget device */
++printk("%s: 1\n",__func__);
++ retval = device_register(&pcd->gadget.dev);
++ if (retval != 0) {
++ kfree (pcd);
++printk("%s: 2\n",__func__);
++ return retval;
++ }
++
++
++ /*
++ * Initialized the Core for Device mode.
++ */
++ if (dwc_otg_is_device_mode(core_if)) {
++ dwc_otg_core_dev_init(core_if);
++ }
++
++ /*
++ * Initialize EP structures
++ */
++ dwc_otg_pcd_reinit(pcd);
++
++ /*
++ * Register the PCD Callbacks.
++ */
++ dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,
++ pcd);
++ /*
++ * Setup interupt handler
++ */
++ DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq);
++ retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq,
++ IRQF_SHARED, pcd->gadget.name, pcd);
++ if (retval != 0) {
++ DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
++ device_unregister(&pcd->gadget.dev);
++ kfree (pcd);
++ return -EBUSY;
++ }
++
++ /*
++ * Initialize the DMA buffer for SETUP packets
++ */
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0);
++ if (pcd->setup_pkt == 0) {
++ free_irq(otg_dev->irq, pcd);
++ device_unregister(&pcd->gadget.dev);
++ kfree (pcd);
++ return -ENOMEM;
++ }
++
++ pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0);
++ if (pcd->status_buf == 0) {
++ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
++ free_irq(otg_dev->irq, pcd);
++ device_unregister(&pcd->gadget.dev);
++ kfree (pcd);
++ return -ENOMEM;
++ }
++
++ if (GET_CORE_IF(pcd)->dma_desc_enable) {
++ dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1);
++ dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1);
++ dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1);
++ dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1);
++
++ if(dev_if->setup_desc_addr[0] == 0
++ || dev_if->setup_desc_addr[1] == 0
++ || dev_if->in_desc_addr == 0
++ || dev_if->out_desc_addr == 0 ) {
++
++ if(dev_if->out_desc_addr)
++ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
++ if(dev_if->in_desc_addr)
++ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
++ if(dev_if->setup_desc_addr[1])
++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
++ if(dev_if->setup_desc_addr[0])
++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
++
++
++ dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle);
++ dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
++
++ free_irq(otg_dev->irq, pcd);
++ device_unregister(&pcd->gadget.dev);
++ kfree (pcd);
++
++ return -ENOMEM;
++ }
++ }
++ }
++ else {
++ pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL);
++ if (pcd->setup_pkt == 0) {
++ free_irq(otg_dev->irq, pcd);
++ device_unregister(&pcd->gadget.dev);
++ kfree (pcd);
++ return -ENOMEM;
++ }
++
++ pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL);
++ if (pcd->status_buf == 0) {
++ kfree(pcd->setup_pkt);
++ free_irq(otg_dev->irq, pcd);
++ device_unregister(&pcd->gadget.dev);
++ kfree (pcd);
++ return -ENOMEM;
++ }
++ }
++
++
++ /* Initialize tasklet */
++ start_xfer_tasklet.data = (unsigned long)pcd;
++ pcd->start_xfer_tasklet = &start_xfer_tasklet;
++
++ return 0;
++}
++
++/**
++ * Cleanup the PCD.
++ */
++void dwc_otg_pcd_remove(struct platform_device *pdev)
++{
++ dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
++ dwc_otg_pcd_t *pcd = otg_dev->pcd;
++ dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pdev);
++
++ /*
++ * Free the IRQ
++ */
++ free_irq(otg_dev->irq, pcd);
++
++ /* start with the driver above us */
++ if (pcd->driver) {
++ /* should have been done already by driver model core */
++ DWC_WARN("driver '%s' is still registered\n",
++ pcd->driver->driver.name);
++ usb_gadget_unregister_driver(pcd->driver);
++ }
++ device_unregister(&pcd->gadget.dev);
++
++ if (GET_CORE_IF(pcd)->dma_enable) {
++ dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle);
++ dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle);
++ if (GET_CORE_IF(pcd)->dma_desc_enable) {
++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
++ dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
++ dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
++ dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
++ }
++ }
++ else {
++ kfree (pcd->setup_pkt);
++ kfree (pcd->status_buf);
++ }
++
++ kfree(pcd);
++ otg_dev->pcd = 0;
++}
++
++/**
++ * This function registers a gadget driver with the PCD.
++ *
++ * When a driver is successfully registered, it will receive control
++ * requests including set_configuration(), which enables non-control
++ * requests. then usb traffic follows until a disconnect is reported.
++ * then a host may connect again, or the driver might get unbound.
++ *
++ * @param driver The driver being registered
++ */
++int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
++ int (*bind)(struct usb_gadget *))
++{
++ int retval;
++
++ DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name);
++
++ if (!driver || driver->speed == USB_SPEED_UNKNOWN ||
++ !bind ||
++ !driver->unbind ||
++ !driver->disconnect ||
++ !driver->setup) {
++ DWC_DEBUGPL(DBG_PCDV,"EINVAL\n");
++ return -EINVAL;
++ }
++ if (s_pcd == 0) {
++ DWC_DEBUGPL(DBG_PCDV,"ENODEV\n");
++ return -ENODEV;
++ }
++ if (s_pcd->driver != 0) {
++ DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver);
++ return -EBUSY;
++ }
++
++ /* hook up the driver */
++ s_pcd->driver = driver;
++ s_pcd->gadget.dev.driver = &driver->driver;
++
++ DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
++ retval = bind(&s_pcd->gadget);
++ if (retval) {
++ DWC_ERROR("bind to driver %s --> error %d\n",
++ driver->driver.name, retval);
++ s_pcd->driver = 0;
++ s_pcd->gadget.dev.driver = 0;
++ return retval;
++ }
++ DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
++ driver->driver.name);
++ return 0;
++}
++
++EXPORT_SYMBOL(usb_gadget_probe_driver);
++
++/**
++ * This function unregisters a gadget driver
++ *
++ * @param driver The driver being unregistered
++ */
++int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
++{
++ //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
++
++ if (s_pcd == 0) {
++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
++ -ENODEV);
++ return -ENODEV;
++ }
++ if (driver == 0 || driver != s_pcd->driver) {
++ DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
++ -EINVAL);
++ return -EINVAL;
++ }
++
++ driver->unbind(&s_pcd->gadget);
++ s_pcd->driver = 0;
++
++ DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
++ driver->driver.name);
++ return 0;
++}
++EXPORT_SYMBOL(usb_gadget_unregister_driver);
++
++#endif /* DWC_HOST_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc/otg_pcd.h
+@@ -0,0 +1,292 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
++ * $Revision: #36 $
++ * $Date: 2008/09/26 $
++ * $Change: 1103515 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++#if !defined(__DWC_PCD_H__)
++#define __DWC_PCD_H__
++
++#include <linux/types.h>
++#include <linux/list.h>
++#include <linux/errno.h>
++#include <linux/device.h>
++#include <linux/platform_device.h>
++
++#include <linux/usb/ch9.h>
++#include <linux/usb/gadget.h>
++
++#include <linux/interrupt.h>
++#include <linux/dma-mapping.h>
++
++struct dwc_otg_device;
++
++#include "otg_cil.h"
++
++/**
++ * @file
++ *
++ * This file contains the structures, constants, and interfaces for
++ * the Perpherial Contoller Driver (PCD).
++ *
++ * The Peripheral Controller Driver (PCD) for Linux will implement the
++ * Gadget API, so that the existing Gadget drivers can be used. For
++ * the Mass Storage Function driver the File-backed USB Storage Gadget
++ * (FBS) driver will be used. The FBS driver supports the
++ * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
++ * transports.
++ *
++ */
++
++/** Invalid DMA Address */
++#define DMA_ADDR_INVALID (~(dma_addr_t)0)
++/** Maxpacket size for EP0 */
++#define MAX_EP0_SIZE 64
++/** Maxpacket size for any EP */
++#define MAX_PACKET_SIZE 1024
++
++/** Max Transfer size for any EP */
++#define MAX_TRANSFER_SIZE 65535
++
++/** Max DMA Descriptor count for any EP */
++#define MAX_DMA_DESC_CNT 64
++
++/**
++ * Get the pointer to the core_if from the pcd pointer.
++ */
++#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if)
++
++/**
++ * States of EP0.
++ */
++typedef enum ep0_state
++{
++ EP0_DISCONNECT, /* no host */
++ EP0_IDLE,
++ EP0_IN_DATA_PHASE,
++ EP0_OUT_DATA_PHASE,
++ EP0_IN_STATUS_PHASE,
++ EP0_OUT_STATUS_PHASE,
++ EP0_STALL,
++} ep0state_e;
++
++/** Fordward declaration.*/
++struct dwc_otg_pcd;
++
++/** DWC_otg iso request structure.
++ *
++ */
++typedef struct usb_iso_request dwc_otg_pcd_iso_request_t;
++
++/** PCD EP structure.
++ * This structure describes an EP, there is an array of EPs in the PCD
++ * structure.
++ */
++typedef struct dwc_otg_pcd_ep
++{
++ /** USB EP data */
++ struct usb_ep ep;
++ /** USB EP Descriptor */
++ const struct usb_endpoint_descriptor *desc;
++
++ /** queue of dwc_otg_pcd_requests. */
++ struct list_head queue;
++ unsigned stopped : 1;
++ unsigned disabling : 1;
++ unsigned dma : 1;
++ unsigned queue_sof : 1;
++
++#ifdef DWC_EN_ISOC
++ /** DWC_otg Isochronous Transfer */
++ struct usb_iso_request* iso_req;
++#endif //DWC_EN_ISOC
++
++ /** DWC_otg ep data. */
++ dwc_ep_t dwc_ep;
++
++ /** Pointer to PCD */
++ struct dwc_otg_pcd *pcd;
++}dwc_otg_pcd_ep_t;
++
++
++
++/** DWC_otg PCD Structure.
++ * This structure encapsulates the data for the dwc_otg PCD.
++ */
++typedef struct dwc_otg_pcd
++{
++ /** USB gadget */
++ struct usb_gadget gadget;
++ /** USB gadget driver pointer*/
++ struct usb_gadget_driver *driver;
++ /** The DWC otg device pointer. */
++ struct dwc_otg_device *otg_dev;
++
++ /** State of EP0 */
++ ep0state_e ep0state;
++ /** EP0 Request is pending */
++ unsigned ep0_pending : 1;
++ /** Indicates when SET CONFIGURATION Request is in process */
++ unsigned request_config : 1;
++ /** The state of the Remote Wakeup Enable. */
++ unsigned remote_wakeup_enable : 1;
++ /** The state of the B-Device HNP Enable. */
++ unsigned b_hnp_enable : 1;
++ /** The state of A-Device HNP Support. */
++ unsigned a_hnp_support : 1;
++ /** The state of the A-Device Alt HNP support. */
++ unsigned a_alt_hnp_support : 1;
++ /** Count of pending Requests */
++ unsigned request_pending;
++
++ /** SETUP packet for EP0
++ * This structure is allocated as a DMA buffer on PCD initialization
++ * with enough space for up to 3 setup packets.
++ */
++ union
++ {
++ struct usb_ctrlrequest req;
++ uint32_t d32[2];
++ } *setup_pkt;
++
++ dma_addr_t setup_pkt_dma_handle;
++
++ /** 2-byte dma buffer used to return status from GET_STATUS */
++ uint16_t *status_buf;
++ dma_addr_t status_buf_dma_handle;
++
++ /** EP0 */
++ dwc_otg_pcd_ep_t ep0;
++
++ /** Array of IN EPs. */
++ dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1];
++ /** Array of OUT EPs. */
++ dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1];
++ /** number of valid EPs in the above array. */
++// unsigned num_eps : 4;
++ spinlock_t lock;
++ /** Timer for SRP. If it expires before SRP is successful
++ * clear the SRP. */
++ struct timer_list srp_timer;
++
++ /** Tasklet to defer starting of TEST mode transmissions until
++ * Status Phase has been completed.
++ */
++ struct tasklet_struct test_mode_tasklet;
++
++ /** Tasklet to delay starting of xfer in DMA mode */
++ struct tasklet_struct *start_xfer_tasklet;
++
++ /** The test mode to enter when the tasklet is executed. */
++ unsigned test_mode;
++
++} dwc_otg_pcd_t;
++
++
++/** DWC_otg request structure.
++ * This structure is a list of requests.
++ */
++typedef struct
++{
++ struct usb_request req; /**< USB Request. */
++ struct list_head queue; /**< queue of these requests. */
++} dwc_otg_pcd_request_t;
++
++
++extern int dwc_otg_pcd_init(struct platform_device *pdev);
++
++//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev );
++extern void dwc_otg_pcd_remove( struct platform_device *pdev );
++extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd );
++extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd );
++
++extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd);
++extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set);
++
++extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req);
++extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req,
++ int status);
++extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep);
++extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd,
++ const unsigned reset);
++#ifndef VERBOSE
++#define VERIFY_PCD_DMA_ADDR(_addr_) BUG_ON(((_addr_)==DMA_ADDR_INVALID)||\
++ ((_addr_)==0)||\
++ ((_addr_)&0x3))
++#else
++#define VERIFY_PCD_DMA_ADDR(_addr_) {\
++ if(((_addr_)==DMA_ADDR_INVALID)||\
++ ((_addr_)==0)||\
++ ((_addr_)&0x3)) {\
++ printk("%s: Invalid DMA address "#_addr_"(%.8x)\n",__func__,_addr_);\
++ BUG();\
++ }\
++ }
++#endif
++
++
++static inline void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
++//void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
++ dwc_ep_t *dwc_ep=&ep->dwc_ep;
++
++DWC_DEBUGPL(DBG_PCDV,"%s: dwc_ep xfer_buf=%.8x, total_len=%d, dma_addr=%.8x\n",__func__,(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->dma_addr);
++ if (/*(core_if->dma_enable)&&*/(dwc_ep->dma_addr==DMA_ADDR_INVALID)) {
++ if((((u32)dwc_ep->xfer_buff)&0x3)==0){
++ dwc_ep->dma_addr=dma_map_single(NULL,(void *)(dwc_ep->start_xfer_buff),(dwc_ep->total_len), DMA_TO_DEVICE);
++DWC_DEBUGPL(DBG_PCDV," got dma_addr=%.8x\n",dwc_ep->dma_addr);
++ }else{
++DWC_DEBUGPL(DBG_PCDV," buf not aligned, use aligned_buf instead. xfer_buf=%.8x, total_len=%d, aligned_buf_size=%d\n",(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->aligned_buf_size);
++ if(dwc_ep->aligned_buf_size<dwc_ep->total_len){
++ if(dwc_ep->aligned_buf){
++//printk(" free buff dwc_ep aligned_buf_size=%d, aligned_buf(%.8x), aligned_dma_addr(%.8x));\n",dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
++ //dma_free_coherent(NULL,dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
++ kfree(dwc_ep->aligned_buf);
++ }
++ dwc_ep->aligned_buf_size=((1<<20)>(dwc_ep->total_len<<1))?(dwc_ep->total_len<<1):(1<<20);
++ //dwc_ep->aligned_buf = dma_alloc_coherent (NULL, dwc_ep->aligned_buf_size, &dwc_ep->aligned_dma_addr, GFP_KERNEL|GFP_DMA);
++ dwc_ep->aligned_buf=kmalloc(dwc_ep->aligned_buf_size,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
++ dwc_ep->aligned_dma_addr=dma_map_single(NULL,(void *)(dwc_ep->aligned_buf),(dwc_ep->aligned_buf_size),DMA_FROM_DEVICE);
++ if(!dwc_ep->aligned_buf){
++ DWC_ERROR("Cannot alloc required buffer!!\n");
++ BUG();
++ }
++DWC_DEBUGPL(DBG_PCDV," dwc_ep allocated aligned buf=%.8x, dma_addr=%.8x, size=%d(0x%x)\n", (u32)dwc_ep->aligned_buf, dwc_ep->aligned_dma_addr, dwc_ep->aligned_buf_size, dwc_ep->aligned_buf_size);
++ }
++ dwc_ep->dma_addr=dwc_ep->aligned_dma_addr;
++ if(dwc_ep->is_in) {
++ memcpy(dwc_ep->aligned_buf,dwc_ep->xfer_buff,dwc_ep->total_len);
++ dma_sync_single_for_device(NULL,dwc_ep->dma_addr,dwc_ep->total_len,DMA_TO_DEVICE);
++ }
++ }
++ }
++}
++
++#endif
++#endif /* DWC_HOST_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc/otg_pcd_intr.c
+@@ -0,0 +1,3682 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
++ * $Revision: #83 $
++ * $Date: 2008/10/14 $
++ * $Change: 1115682 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_HOST_ONLY
++#include <linux/interrupt.h>
++#include <linux/dma-mapping.h>
++#include <linux/version.h>
++#include <linux/pci.h>
++
++#include "otg_driver.h"
++#include "otg_pcd.h"
++
++
++#define DEBUG_EP0
++
++
++/* request functions defined in "dwc_otg_pcd.c" */
++
++/** @file
++ * This file contains the implementation of the PCD Interrupt handlers.
++ *
++ * The PCD handles the device interrupts. Many conditions can cause a
++ * device interrupt. When an interrupt occurs, the device interrupt
++ * service routine determines the cause of the interrupt and
++ * dispatches handling to the appropriate function. These interrupt
++ * handling functions are described below.
++ * All interrupt registers are processed from LSB to MSB.
++ */
++
++
++/**
++ * This function prints the ep0 state for debug purposes.
++ */
++static inline void print_ep0_state(dwc_otg_pcd_t *pcd)
++{
++#ifdef DEBUG
++ char str[40];
++
++ switch (pcd->ep0state) {
++ case EP0_DISCONNECT:
++ strcpy(str, "EP0_DISCONNECT");
++ break;
++ case EP0_IDLE:
++ strcpy(str, "EP0_IDLE");
++ break;
++ case EP0_IN_DATA_PHASE:
++ strcpy(str, "EP0_IN_DATA_PHASE");
++ break;
++ case EP0_OUT_DATA_PHASE:
++ strcpy(str, "EP0_OUT_DATA_PHASE");
++ break;
++ case EP0_IN_STATUS_PHASE:
++ strcpy(str,"EP0_IN_STATUS_PHASE");
++ break;
++ case EP0_OUT_STATUS_PHASE:
++ strcpy(str,"EP0_OUT_STATUS_PHASE");
++ break;
++ case EP0_STALL:
++ strcpy(str,"EP0_STALL");
++ break;
++ default:
++ strcpy(str,"EP0_INVALID");
++ }
++
++ DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
++#endif
++}
++
++/**
++ * This function returns pointer to in ep struct with number ep_num
++ */
++static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
++{
++ int i;
++ int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
++ if(ep_num == 0) {
++ return &pcd->ep0;
++ }
++ else {
++ for(i = 0; i < num_in_eps; ++i)
++ {
++ if(pcd->in_ep[i].dwc_ep.num == ep_num)
++ return &pcd->in_ep[i];
++ }
++ return 0;
++ }
++}
++/**
++ * This function returns pointer to out ep struct with number ep_num
++ */
++static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
++{
++ int i;
++ int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
++ if(ep_num == 0) {
++ return &pcd->ep0;
++ }
++ else {
++ for(i = 0; i < num_out_eps; ++i)
++ {
++ if(pcd->out_ep[i].dwc_ep.num == ep_num)
++ return &pcd->out_ep[i];
++ }
++ return 0;
++ }
++}
++/**
++ * This functions gets a pointer to an EP from the wIndex address
++ * value of the control request.
++ */
++static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex)
++{
++ dwc_otg_pcd_ep_t *ep;
++
++ if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
++ return &pcd->ep0;
++ list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list)
++ {
++ u8 bEndpointAddress;
++
++ if (!ep->desc)
++ continue;
++
++ bEndpointAddress = ep->desc->bEndpointAddress;
++ if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))
++ == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)))
++ return ep;
++ }
++ return NULL;
++}
++
++/**
++ * This function checks the EP request queue, if the queue is not
++ * empty the next request is started.
++ */
++void start_next_request(dwc_otg_pcd_ep_t *ep)
++{
++ dwc_otg_pcd_request_t *req = 0;
++ uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
++ if (!list_empty(&ep->queue)) {
++ req = list_entry(ep->queue.next,
++ dwc_otg_pcd_request_t, queue);
++
++ /* Setup and start the Transfer */
++ ep->dwc_ep.dma_addr = req->req.dma;
++ ep->dwc_ep.start_xfer_buff = req->req.buf;
++ ep->dwc_ep.xfer_buff = req->req.buf;
++ ep->dwc_ep.sent_zlp = 0;
++ ep->dwc_ep.total_len = req->req.length;
++ ep->dwc_ep.xfer_len = 0;
++ ep->dwc_ep.xfer_count = 0;
++
++ if(max_transfer > MAX_TRANSFER_SIZE) {
++ ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
++ } else {
++ ep->dwc_ep.maxxfer = max_transfer;
++ }
++
++ if(req->req.zero) {
++ if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
++ && (ep->dwc_ep.total_len != 0)) {
++ ep->dwc_ep.sent_zlp = 1;
++ }
++
++ }
++ ep_check_and_patch_dma_addr(ep);
++ dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
++ }
++}
++
++/**
++ * This function handles the SOF Interrupts. At this time the SOF
++ * Interrupt is disabled.
++ */
++int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++
++ gintsts_data_t gintsts;
++
++ DWC_DEBUGPL(DBG_PCD, "SOF\n");
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.sofintr = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++
++/**
++ * This function handles the Rx Status Queue Level Interrupt, which
++ * indicates that there is a least one packet in the Rx FIFO. The
++ * packets are moved from the FIFO to memory, where they will be
++ * processed when the Endpoint Interrupt Register indicates Transfer
++ * Complete or SETUP Phase Done.
++ *
++ * Repeat the following until the Rx Status Queue is empty:
++ * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
++ * info
++ * -# If Receive FIFO is empty then skip to step Clear the interrupt
++ * and exit
++ * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
++ * SETUP data to the buffer
++ * -# If OUT Data Packet call dwc_otg_read_packet to copy the data
++ * to the destination buffer
++ */
++int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
++ gintmsk_data_t gintmask = {.d32=0};
++ device_grxsts_data_t status;
++ dwc_otg_pcd_ep_t *ep;
++ gintsts_data_t gintsts;
++#ifdef DEBUG
++ static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" };
++#endif
++
++ //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
++ /* Disable the Rx Status Queue Level interrupt */
++ gintmask.b.rxstsqlvl= 1;
++ dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0);
++
++ /* Get the Status from the top of the FIFO */
++ status.d32 = dwc_read_reg32(&global_regs->grxstsp);
++
++ DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
++ "pktsts:%x Frame:%d(0x%0x)\n",
++ status.b.epnum, status.b.bcnt,
++ dpid_str[status.b.dpid],
++ status.b.pktsts, status.b.fn, status.b.fn);
++ /* Get pointer to EP structure */
++ ep = get_out_ep(pcd, status.b.epnum);
++
++ switch (status.b.pktsts) {
++ case DWC_DSTS_GOUT_NAK:
++ DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
++ break;
++ case DWC_STS_DATA_UPDT:
++ DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
++ if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
++ /** @todo NGS Check for buffer overflow? */
++ dwc_otg_read_packet(core_if,
++ ep->dwc_ep.xfer_buff,
++ status.b.bcnt);
++ ep->dwc_ep.xfer_count += status.b.bcnt;
++ ep->dwc_ep.xfer_buff += status.b.bcnt;
++ }
++ break;
++ case DWC_STS_XFER_COMP:
++ DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
++ break;
++ case DWC_DSTS_SETUP_COMP:
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
++#endif
++ break;
++case DWC_DSTS_SETUP_UPDT:
++ dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD,
++ "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
++ pcd->setup_pkt->req.bRequestType,
++ pcd->setup_pkt->req.bRequest,
++ pcd->setup_pkt->req.wValue,
++ pcd->setup_pkt->req.wIndex,
++ pcd->setup_pkt->req.wLength);
++#endif
++ ep->dwc_ep.xfer_count += status.b.bcnt;
++ break;
++ default:
++ DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
++ status.b.pktsts);
++ break;
++ }
++
++ /* Enable the Rx Status Queue Level interrupt */
++ dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32);
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.rxstsqlvl = 1;
++ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
++
++ //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
++ return 1;
++}
++/**
++ * This function examines the Device IN Token Learning Queue to
++ * determine the EP number of the last IN token received. This
++ * implementation is for the Mass Storage device where there are only
++ * 2 IN EPs (Control-IN and BULK-IN).
++ *
++ * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
++ * are 8 EP Numbers in each of the other possible DTKNQ Registers.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ *
++ */
++static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if)
++{
++ dwc_otg_device_global_regs_t *dev_global_regs =
++ core_if->dev_if->dev_global_regs;
++ const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
++ /* Number of Token Queue Registers */
++ const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
++ dtknq1_data_t dtknqr1;
++ uint32_t in_tkn_epnums[4];
++ int ndx = 0;
++ int i = 0;
++ volatile uint32_t *addr = &dev_global_regs->dtknqr1;
++ int epnum = 0;
++
++ //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
++
++ /* Read the DTKNQ Registers */
++ for (i = 0; i < DTKNQ_REG_CNT; i++)
++ {
++ in_tkn_epnums[ i ] = dwc_read_reg32(addr);
++ DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1,
++ in_tkn_epnums[i]);
++ if (addr == &dev_global_regs->dvbusdis) {
++ addr = &dev_global_regs->dtknqr3_dthrctl;
++ }
++ else {
++ ++addr;
++ }
++ }
++
++ /* Copy the DTKNQR1 data to the bit field. */
++ dtknqr1.d32 = in_tkn_epnums[0];
++ /* Get the EP numbers */
++ in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
++ ndx = dtknqr1.b.intknwptr - 1;
++
++ //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
++ if (ndx == -1) {
++ /** @todo Find a simpler way to calculate the max
++ * queue position.*/
++ int cnt = TOKEN_Q_DEPTH;
++ if (TOKEN_Q_DEPTH <= 6) {
++ cnt = TOKEN_Q_DEPTH - 1;
++ }
++ else if (TOKEN_Q_DEPTH <= 14) {
++ cnt = TOKEN_Q_DEPTH - 7;
++ }
++ else if (TOKEN_Q_DEPTH <= 22) {
++ cnt = TOKEN_Q_DEPTH - 15;
++ }
++ else {
++ cnt = TOKEN_Q_DEPTH - 23;
++ }
++ epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF;
++ }
++ else {
++ if (ndx <= 5) {
++ epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
++ }
++ else if (ndx <= 13) {
++ ndx -= 6;
++ epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
++ }
++ else if (ndx <= 21) {
++ ndx -= 14;
++ epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
++ }
++ else if (ndx <= 29) {
++ ndx -= 22;
++ epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
++ }
++ }
++ //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
++ return epnum;
++}
++
++/**
++ * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
++ * The active request is checked for the next packet to be loaded into
++ * the non-periodic Tx FIFO.
++ */
++int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++ dwc_otg_dev_in_ep_regs_t *ep_regs;
++ gnptxsts_data_t txstatus = {.d32 = 0};
++ gintsts_data_t gintsts;
++
++ int epnum = 0;
++ dwc_otg_pcd_ep_t *ep = 0;
++ uint32_t len = 0;
++ int dwords;
++
++ /* Get the epnum from the IN Token Learning Queue. */
++ epnum = get_ep_of_last_in_token(core_if);
++ ep = get_in_ep(pcd, epnum);
++
++ DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
++ ep_regs = core_if->dev_if->in_ep_regs[epnum];
++
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++ dwords = (len + 3)/4;
++
++ /* While there is space in the queue and space in the FIFO and
++ * More data to tranfer, Write packets to the Tx FIFO */
++ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32);
++
++ while (txstatus.b.nptxqspcavail > 0 &&
++ txstatus.b.nptxfspcavail > dwords &&
++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
++ /* Write the FIFO */
++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++
++ dwords = (len + 3)/4;
++ txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++ DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
++ dwc_read_reg32(&global_regs->gnptxsts));
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.nptxfempty = 1;
++ dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This function is called when dedicated Tx FIFO Empty interrupt occurs.
++ * The active request is checked for the next packet to be loaded into
++ * apropriate Tx FIFO.
++ */
++static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t* dev_if = core_if->dev_if;
++ dwc_otg_dev_in_ep_regs_t *ep_regs;
++ dtxfsts_data_t txstatus = {.d32 = 0};
++ dwc_otg_pcd_ep_t *ep = 0;
++ uint32_t len = 0;
++ int dwords;
++
++ ep = get_in_ep(pcd, epnum);
++
++ DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
++
++ ep_regs = core_if->dev_if->in_ep_regs[epnum];
++
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++
++ dwords = (len + 3)/4;
++
++ /* While there is space in the queue and space in the FIFO and
++ * More data to tranfer, Write packets to the Tx FIFO */
++ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32);
++
++ while (txstatus.b.txfspcavail > dwords &&
++ ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
++ ep->dwc_ep.xfer_len != 0) {
++ /* Write the FIFO */
++ dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
++
++ len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++ if (len > ep->dwc_ep.maxpacket) {
++ len = ep->dwc_ep.maxpacket;
++ }
++
++ dwords = (len + 3)/4;
++ txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
++ DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
++ }
++
++ DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts));
++
++ return 1;
++}
++
++/**
++ * This function is called when the Device is disconnected. It stops
++ * any active requests and informs the Gadget driver of the
++ * disconnect.
++ */
++void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd)
++{
++ int i, num_in_eps, num_out_eps;
++ dwc_otg_pcd_ep_t *ep;
++
++ gintmsk_data_t intr_mask = {.d32 = 0};
++
++ num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
++ num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
++ /* don't disconnect drivers more than once */
++ if (pcd->ep0state == EP0_DISCONNECT) {
++ DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
++ return;
++ }
++ pcd->ep0state = EP0_DISCONNECT;
++
++ /* Reset the OTG state. */
++ dwc_otg_pcd_update_otg(pcd, 1);
++
++ /* Disable the NP Tx Fifo Empty Interrupt. */
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Flush the FIFOs */
++ /**@todo NGS Flush Periodic FIFOs */
++ dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
++ dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
++
++ /* prevent new request submissions, kill any outstanding requests */
++ ep = &pcd->ep0;
++ dwc_otg_request_nuke(ep);
++ /* prevent new request submissions, kill any outstanding requests */
++ for (i = 0; i < num_in_eps; i++)
++ {
++ dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
++ dwc_otg_request_nuke(ep);
++ }
++ /* prevent new request submissions, kill any outstanding requests */
++ for (i = 0; i < num_out_eps; i++)
++ {
++ dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
++ dwc_otg_request_nuke(ep);
++ }
++
++ /* report disconnect; the driver is already quiesced */
++ if (pcd->driver && pcd->driver->disconnect) {
++ SPIN_UNLOCK(&pcd->lock);
++ pcd->driver->disconnect(&pcd->gadget);
++ SPIN_LOCK(&pcd->lock);
++ }
++}
++
++/**
++ * This interrupt indicates that ...
++ */
++int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd)
++{
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ gintsts_data_t gintsts;
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr");
++ intr_mask.b.i2cintr = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.i2cintr = 1;
++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++ return 1;
++}
++
++
++/**
++ * This interrupt indicates that ...
++ */
++int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd)
++{
++ gintsts_data_t gintsts;
++#if defined(VERBOSE)
++ DWC_PRINT("Early Suspend Detected\n");
++#endif
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.erlysuspend = 1;
++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++ return 1;
++}
++
++/**
++ * This function configures EPO to receive SETUP packets.
++ *
++ * @todo NGS: Update the comments from the HW FS.
++ *
++ * -# Program the following fields in the endpoint specific registers
++ * for Control OUT EP 0, in order to receive a setup packet
++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
++ * setup packets)
++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
++ * to back setup packets)
++ * - In DMA mode, DOEPDMA0 Register with a memory address to
++ * store any setup packets received
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param pcd Programming view of the PCD.
++ */
++static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ deptsiz0_data_t doeptsize0 = { .d32 = 0};
++ dwc_otg_dma_desc_t* dma_desc;
++ depctl_data_t doepctl = { .d32 = 0 };
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__,
++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
++#endif
++
++ doeptsize0.b.supcnt = 3;
++ doeptsize0.b.pktcnt = 1;
++ doeptsize0.b.xfersize = 8*3;
++
++ if (core_if->dma_enable) {
++ if (!core_if->dma_desc_enable) {
++ /** put here as for Hermes mode deptisz register should not be written */
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
++ doeptsize0.d32);
++
++ /** @todo dma needs to handle multiple setup packets (up to 3) */
++ VERIFY_PCD_DMA_ADDR(pcd->setup_pkt_dma_handle);
++
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma,
++ pcd->setup_pkt_dma_handle);
++ } else {
++ dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1;
++ dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index];
++
++ /** DMA Descriptor Setup */
++ dma_desc->status.b.bs = BS_HOST_BUSY;
++ dma_desc->status.b.l = 1;
++ dma_desc->status.b.ioc = 1;
++ dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
++ dma_desc->buf = pcd->setup_pkt_dma_handle;
++ dma_desc->status.b.bs = BS_HOST_READY;
++
++ /** DOEPDMA0 Register write */
++ VERIFY_PCD_DMA_ADDR(dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
++ }
++
++ } else {
++ /** put here as for Hermes mode deptisz register should not be written */
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
++ doeptsize0.d32);
++ }
++
++ /** DOEPCTL0 Register write */
++ doepctl.b.epena = 1;
++ doepctl.b.cnak = 1;
++ dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
++ DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
++ dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
++#endif
++}
++
++/**
++ * This interrupt occurs when a USB Reset is detected. When the USB
++ * Reset Interrupt occurs the device state is set to DEFAULT and the
++ * EP0 state is set to IDLE.
++ * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
++ * -# Unmask the following interrupt bits
++ * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
++ * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
++ * - DOEPMSK.SETUP = 1
++ * - DOEPMSK.XferCompl = 1
++ * - DIEPMSK.XferCompl = 1
++ * - DIEPMSK.TimeOut = 1
++ * -# Program the following fields in the endpoint specific registers
++ * for Control OUT EP 0, in order to receive a setup packet
++ * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
++ * setup packets)
++ * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
++ * to back setup packets)
++ * - In DMA mode, DOEPDMA0 Register with a memory address to
++ * store any setup packets received
++ * At this point, all the required initialization, except for enabling
++ * the control 0 OUT endpoint is done, for receiving SETUP packets.
++ */
++int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ depctl_data_t doepctl = { .d32 = 0};
++
++ daint_data_t daintmsk = { .d32 = 0};
++ doepmsk_data_t doepmsk = { .d32 = 0};
++ diepmsk_data_t diepmsk = { .d32 = 0};
++
++ dcfg_data_t dcfg = { .d32=0 };
++ grstctl_t resetctl = { .d32=0 };
++ dctl_data_t dctl = {.d32=0};
++ int i = 0;
++ gintsts_data_t gintsts;
++
++ DWC_PRINT("USB RESET\n");
++#ifdef DWC_EN_ISOC
++ for(i = 1;i < 16; ++i)
++ {
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++ ep = get_in_ep(pcd,i);
++ if(ep != 0){
++ dwc_ep = &ep->dwc_ep;
++ dwc_ep->next_frame = 0xffffffff;
++ }
++ }
++#endif /* DWC_EN_ISOC */
++
++ /* reset the HNP settings */
++ dwc_otg_pcd_update_otg(pcd, 1);
++
++ /* Clear the Remote Wakeup Signalling */
++ dctl.b.rmtwkupsig = 1;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
++ dctl.d32, 0);
++
++ /* Set NAK for all OUT EPs */
++ doepctl.b.snak = 1;
++ for (i=0; i <= dev_if->num_out_eps; i++)
++ {
++ dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl,
++ doepctl.d32);
++ }
++
++ /* Flush the NP Tx FIFO */
++ dwc_otg_flush_tx_fifo(core_if, 0x10);
++ /* Flush the Learning Queue */
++ resetctl.b.intknqflsh = 1;
++ dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
++
++ if(core_if->multiproc_int_enable) {
++ daintmsk.b.inep0 = 1;
++ daintmsk.b.outep0 = 1;
++ dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32);
++
++ doepmsk.b.setup = 1;
++ doepmsk.b.xfercompl = 1;
++ doepmsk.b.ahberr = 1;
++ doepmsk.b.epdisabled = 1;
++
++ if(core_if->dma_desc_enable) {
++ doepmsk.b.stsphsercvd = 1;
++ doepmsk.b.bna = 1;
++ }
++/*
++ doepmsk.b.babble = 1;
++ doepmsk.b.nyet = 1;
++
++ if(core_if->dma_enable) {
++ doepmsk.b.nak = 1;
++ }
++*/
++ dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32);
++
++ diepmsk.b.xfercompl = 1;
++ diepmsk.b.timeout = 1;
++ diepmsk.b.epdisabled = 1;
++ diepmsk.b.ahberr = 1;
++ diepmsk.b.intknepmis = 1;
++
++ if(core_if->dma_desc_enable) {
++ diepmsk.b.bna = 1;
++ }
++/*
++ if(core_if->dma_enable) {
++ diepmsk.b.nak = 1;
++ }
++*/
++ dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32);
++ } else{
++ daintmsk.b.inep0 = 1;
++ daintmsk.b.outep0 = 1;
++ dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32);
++
++ doepmsk.b.setup = 1;
++ doepmsk.b.xfercompl = 1;
++ doepmsk.b.ahberr = 1;
++ doepmsk.b.epdisabled = 1;
++
++ if(core_if->dma_desc_enable) {
++ doepmsk.b.stsphsercvd = 1;
++ doepmsk.b.bna = 1;
++ }
++/*
++ doepmsk.b.babble = 1;
++ doepmsk.b.nyet = 1;
++ doepmsk.b.nak = 1;
++*/
++ dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
++
++ diepmsk.b.xfercompl = 1;
++ diepmsk.b.timeout = 1;
++ diepmsk.b.epdisabled = 1;
++ diepmsk.b.ahberr = 1;
++ diepmsk.b.intknepmis = 1;
++
++ if(core_if->dma_desc_enable) {
++ diepmsk.b.bna = 1;
++ }
++
++// diepmsk.b.nak = 1;
++
++ dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
++ }
++
++ /* Reset Device Address */
++ dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
++ dcfg.b.devaddr = 0;
++ dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++ /* setup EP0 to receive SETUP packets */
++ ep0_out_start(core_if, pcd);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.usbreset = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * Get the device speed from the device status register and convert it
++ * to USB speed constant.
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ */
++static int get_device_speed(dwc_otg_core_if_t *core_if)
++{
++ dsts_data_t dsts;
++ enum usb_device_speed speed = USB_SPEED_UNKNOWN;
++ dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++
++ switch (dsts.b.enumspd) {
++ case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
++ speed = USB_SPEED_HIGH;
++ break;
++ case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
++ case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
++ speed = USB_SPEED_FULL;
++ break;
++
++ case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
++ speed = USB_SPEED_LOW;
++ break;
++ }
++
++ return speed;
++}
++
++/**
++ * Read the device status register and set the device speed in the
++ * data structure.
++ * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
++ */
++int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ gintsts_data_t gintsts;
++ gusbcfg_data_t gusbcfg;
++ dwc_otg_core_global_regs_t *global_regs =
++ GET_CORE_IF(pcd)->core_global_regs;
++ uint8_t utmi16b, utmi8b;
++// DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
++ DWC_PRINT("SPEED ENUM\n");
++
++ if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) {
++ utmi16b = 6;
++ utmi8b = 9;
++ } else {
++ utmi16b = 4;
++ utmi8b = 8;
++ }
++ dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
++
++#ifdef DEBUG_EP0
++ print_ep0_state(pcd);
++#endif
++
++ if (pcd->ep0state == EP0_DISCONNECT) {
++ pcd->ep0state = EP0_IDLE;
++ }
++ else if (pcd->ep0state == EP0_STALL) {
++ pcd->ep0state = EP0_IDLE;
++ }
++
++ pcd->ep0state = EP0_IDLE;
++
++ ep0->stopped = 0;
++
++ pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd));
++
++ /* Set USB turnaround time based on device speed and PHY interface. */
++ gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++ if (pcd->gadget.speed == USB_SPEED_HIGH) {
++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
++ /* ULPI interface */
++ gusbcfg.b.usbtrdtim = 9;
++ }
++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
++ /* UTMI+ interface */
++ if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
++ gusbcfg.b.usbtrdtim = utmi8b;
++ }
++ else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) {
++ gusbcfg.b.usbtrdtim = utmi16b;
++ }
++ else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) {
++ gusbcfg.b.usbtrdtim = utmi8b;
++ }
++ else {
++ gusbcfg.b.usbtrdtim = utmi16b;
++ }
++ }
++ if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
++ /* UTMI+ OR ULPI interface */
++ if (gusbcfg.b.ulpi_utmi_sel == 1) {
++ /* ULPI interface */
++ gusbcfg.b.usbtrdtim = 9;
++ }
++ else {
++ /* UTMI+ interface */
++ if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) {
++ gusbcfg.b.usbtrdtim = utmi16b;
++ }
++ else {
++ gusbcfg.b.usbtrdtim = utmi8b;
++ }
++ }
++ }
++ }
++ else {
++ /* Full or low speed */
++ gusbcfg.b.usbtrdtim = 9;
++ }
++ dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.enumdone = 1;
++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++ return 1;
++}
++
++/**
++ * This interrupt indicates that the ISO OUT Packet was dropped due to
++ * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs
++ * read all the data from the Rx FIFO.
++ */
++int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd)
++{
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ gintsts_data_t gintsts;
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
++ "ISOC Out Dropped");
++
++ intr_mask.b.isooutdrop = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++
++ gintsts.d32 = 0;
++ gintsts.b.isooutdrop = 1;
++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates the end of the portion of the micro-frame
++ * for periodic transactions. If there is a periodic transaction for
++ * the next frame, load the packets into the EP periodic Tx FIFO.
++ */
++int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd)
++{
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ gintsts_data_t gintsts;
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP");
++
++ intr_mask.b.eopframe = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.eopframe = 1;
++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that EP of the packet on the top of the
++ * non-periodic Tx FIFO does not match EP of the IN Token received.
++ *
++ * The "Device IN Token Queue" Registers are read to determine the
++ * order the IN Tokens have been received. The non-periodic Tx FIFO
++ * is flushed, so it can be reloaded in the order seen in the IN Token
++ * Queue.
++ */
++int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if)
++{
++ gintsts_data_t gintsts;
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.epmismatch = 1;
++ dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This funcion stalls EP0.
++ */
++static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req;
++ DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
++ ctrl->bRequestType, ctrl->bRequest, err_val);
++
++ ep0->dwc_ep.is_in = 1;
++ dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep);
++ pcd->ep0.stopped = 1;
++ pcd->ep0state = EP0_IDLE;
++ ep0_out_start(GET_CORE_IF(pcd), pcd);
++}
++
++/**
++ * This functions delegates the setup command to the gadget driver.
++ */
++static inline void do_gadget_setup(dwc_otg_pcd_t *pcd,
++ struct usb_ctrlrequest * ctrl)
++{
++ int ret = 0;
++ if (pcd->driver && pcd->driver->setup) {
++ SPIN_UNLOCK(&pcd->lock);
++ ret = pcd->driver->setup(&pcd->gadget, ctrl);
++ SPIN_LOCK(&pcd->lock);
++ if (ret < 0) {
++ ep0_do_stall(pcd, ret);
++ }
++
++ /** @todo This is a g_file_storage gadget driver specific
++ * workaround: a DELAYED_STATUS result from the fsg_setup
++ * routine will result in the gadget queueing a EP0 IN status
++ * phase for a two-stage control transfer. Exactly the same as
++ * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
++ * specific request. Need a generic way to know when the gadget
++ * driver will queue the status phase. Can we assume when we
++ * call the gadget driver setup() function that it will always
++ * queue and require the following flag? Need to look into
++ * this.
++ */
++
++ if (ret == 256 + 999) {
++ pcd->request_config = 1;
++ }
++ }
++}
++
++/**
++ * This function starts the Zero-Length Packet for the IN status phase
++ * of a 2 stage control transfer.
++ */
++static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ if (pcd->ep0state == EP0_STALL) {
++ return;
++ }
++
++ pcd->ep0state = EP0_IN_STATUS_PHASE;
++
++ /* Prepare for more SETUP Packets */
++ DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
++ ep0->dwc_ep.xfer_len = 0;
++ ep0->dwc_ep.xfer_count = 0;
++ ep0->dwc_ep.is_in = 1;
++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
++
++ /* Prepare for more SETUP Packets */
++// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd);
++}
++
++/**
++ * This function starts the Zero-Length Packet for the OUT status phase
++ * of a 2 stage control transfer.
++ */
++static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ if (pcd->ep0state == EP0_STALL) {
++ DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
++ return;
++ }
++ pcd->ep0state = EP0_OUT_STATUS_PHASE;
++
++ DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
++ ep0->dwc_ep.xfer_len = 0;
++ ep0->dwc_ep.xfer_count = 0;
++ ep0->dwc_ep.is_in = 0;
++ ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
++
++ /* Prepare for more SETUP Packets */
++ if(GET_CORE_IF(pcd)->dma_enable == 0) {
++ ep0_out_start(GET_CORE_IF(pcd), pcd);
++ }
++}
++
++/**
++ * Clear the EP halt (STALL) and if pending requests start the
++ * transfer.
++ */
++static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep)
++{
++ if(ep->dwc_ep.stall_clear_flag == 0)
++ dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
++
++ /* Reactive the EP */
++ dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
++ if (ep->stopped) {
++ ep->stopped = 0;
++ /* If there is a request in the EP queue start it */
++
++ /** @todo FIXME: this causes an EP mismatch in DMA mode.
++ * epmismatch not yet implemented. */
++
++ /*
++ * Above fixme is solved by implmenting a tasklet to call the
++ * start_next_request(), outside of interrupt context at some
++ * time after the current time, after a clear-halt setup packet.
++ * Still need to implement ep mismatch in the future if a gadget
++ * ever uses more than one endpoint at once
++ */
++ ep->queue_sof = 1;
++ tasklet_schedule (pcd->start_xfer_tasklet);
++ }
++ /* Start Control Status Phase */
++ do_setup_in_status_phase(pcd);
++}
++
++/**
++ * This function is called when the SET_FEATURE TEST_MODE Setup packet
++ * is sent from the host. The Device Control register is written with
++ * the Test Mode bits set to the specified Test Mode. This is done as
++ * a tasklet so that the "Status" phase of the control transfer
++ * completes before transmitting the TEST packets.
++ *
++ * @todo This has not been tested since the tasklet struct was put
++ * into the PCD struct!
++ *
++ */
++static void do_test_mode(unsigned long data)
++{
++ dctl_data_t dctl;
++ dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data;
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ int test_mode = pcd->test_mode;
++
++
++// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
++
++ dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
++ switch (test_mode) {
++ case 1: // TEST_J
++ dctl.b.tstctl = 1;
++ break;
++
++ case 2: // TEST_K
++ dctl.b.tstctl = 2;
++ break;
++
++ case 3: // TEST_SE0_NAK
++ dctl.b.tstctl = 3;
++ break;
++
++ case 4: // TEST_PACKET
++ dctl.b.tstctl = 4;
++ break;
++
++ case 5: // TEST_FORCE_ENABLE
++ dctl.b.tstctl = 5;
++ break;
++ }
++ dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
++}
++
++/**
++ * This function process the GET_STATUS Setup Commands.
++ */
++static inline void do_get_status(dwc_otg_pcd_t *pcd)
++{
++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ uint16_t *status = pcd->status_buf;
++
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD,
++ "GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bRequestType, ctrl.bRequest,
++ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
++#endif
++
++ switch (ctrl.bRequestType & USB_RECIP_MASK) {
++ case USB_RECIP_DEVICE:
++ *status = 0x1; /* Self powered */
++ *status |= pcd->remote_wakeup_enable << 1;
++ break;
++
++ case USB_RECIP_INTERFACE:
++ *status = 0;
++ break;
++
++ case USB_RECIP_ENDPOINT:
++ ep = get_ep_by_addr(pcd, ctrl.wIndex);
++ if (ep == 0 || ctrl.wLength > 2) {
++ ep0_do_stall(pcd, -EOPNOTSUPP);
++ return;
++ }
++ /** @todo check for EP stall */
++ *status = ep->stopped;
++ break;
++ }
++ pcd->ep0_pending = 1;
++ ep0->dwc_ep.start_xfer_buff = (uint8_t *)status;
++ ep0->dwc_ep.xfer_buff = (uint8_t *)status;
++ ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
++ ep0->dwc_ep.xfer_len = 2;
++ ep0->dwc_ep.xfer_count = 0;
++ ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
++ dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
++}
++/**
++ * This function process the SET_FEATURE Setup Commands.
++ */
++static inline void do_set_feature(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep = 0;
++ int32_t otg_cap_param = core_if->core_params->otg_cap;
++ gotgctl_data_t gotgctl = { .d32 = 0 };
++
++ DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bRequestType, ctrl.bRequest,
++ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
++ DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param);
++
++
++ switch (ctrl.bRequestType & USB_RECIP_MASK) {
++ case USB_RECIP_DEVICE:
++ switch (ctrl.wValue) {
++ case USB_DEVICE_REMOTE_WAKEUP:
++ pcd->remote_wakeup_enable = 1;
++ break;
++
++ case USB_DEVICE_TEST_MODE:
++ /* Setup the Test Mode tasklet to do the Test
++ * Packet generation after the SETUP Status
++ * phase has completed. */
++
++ /** @todo This has not been tested since the
++ * tasklet struct was put into the PCD
++ * struct! */
++ pcd->test_mode_tasklet.next = 0;
++ pcd->test_mode_tasklet.state = 0;
++ atomic_set(&pcd->test_mode_tasklet.count, 0);
++ pcd->test_mode_tasklet.func = do_test_mode;
++ pcd->test_mode_tasklet.data = (unsigned long)pcd;
++ pcd->test_mode = ctrl.wIndex >> 8;
++ tasklet_schedule(&pcd->test_mode_tasklet);
++ break;
++
++ case USB_DEVICE_B_HNP_ENABLE:
++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
++
++ /* dev may initiate HNP */
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
++ pcd->b_hnp_enable = 1;
++ dwc_otg_pcd_update_otg(pcd, 0);
++ DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
++ /**@todo Is the gotgctl.devhnpen cleared
++ * by a USB Reset? */
++ gotgctl.b.devhnpen = 1;
++ gotgctl.b.hnpreq = 1;
++ dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32);
++ }
++ else {
++ ep0_do_stall(pcd, -EOPNOTSUPP);
++ }
++ break;
++
++ case USB_DEVICE_A_HNP_SUPPORT:
++ /* RH port supports HNP */
++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
++ pcd->a_hnp_support = 1;
++ dwc_otg_pcd_update_otg(pcd, 0);
++ }
++ else {
++ ep0_do_stall(pcd, -EOPNOTSUPP);
++ }
++ break;
++
++ case USB_DEVICE_A_ALT_HNP_SUPPORT:
++ /* other RH port does */
++ DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
++ if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
++ pcd->a_alt_hnp_support = 1;
++ dwc_otg_pcd_update_otg(pcd, 0);
++ }
++ else {
++ ep0_do_stall(pcd, -EOPNOTSUPP);
++ }
++ break;
++ }
++ do_setup_in_status_phase(pcd);
++ break;
++
++ case USB_RECIP_INTERFACE:
++ do_gadget_setup(pcd, &ctrl);
++ break;
++
++ case USB_RECIP_ENDPOINT:
++ if (ctrl.wValue == USB_ENDPOINT_HALT) {
++ ep = get_ep_by_addr(pcd, ctrl.wIndex);
++ if (ep == 0) {
++ ep0_do_stall(pcd, -EOPNOTSUPP);
++ return;
++ }
++ ep->stopped = 1;
++ dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
++ }
++ do_setup_in_status_phase(pcd);
++ break;
++ }
++}
++
++/**
++ * This function process the CLEAR_FEATURE Setup Commands.
++ */
++static inline void do_clear_feature(dwc_otg_pcd_t *pcd)
++{
++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep = 0;
++
++ DWC_DEBUGPL(DBG_PCD,
++ "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bRequestType, ctrl.bRequest,
++ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
++
++ switch (ctrl.bRequestType & USB_RECIP_MASK) {
++ case USB_RECIP_DEVICE:
++ switch (ctrl.wValue) {
++ case USB_DEVICE_REMOTE_WAKEUP:
++ pcd->remote_wakeup_enable = 0;
++ break;
++
++ case USB_DEVICE_TEST_MODE:
++ /** @todo Add CLEAR_FEATURE for TEST modes. */
++ break;
++ }
++ do_setup_in_status_phase(pcd);
++ break;
++
++ case USB_RECIP_ENDPOINT:
++ ep = get_ep_by_addr(pcd, ctrl.wIndex);
++ if (ep == 0) {
++ ep0_do_stall(pcd, -EOPNOTSUPP);
++ return;
++ }
++
++ pcd_clear_halt(pcd, ep);
++
++ break;
++ }
++}
++
++/**
++ * This function process the SET_ADDRESS Setup Commands.
++ */
++static inline void do_set_address(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
++
++ if (ctrl.bRequestType == USB_RECIP_DEVICE) {
++ dcfg_data_t dcfg = {.d32=0};
++
++#ifdef DEBUG_EP0
++// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
++#endif
++ dcfg.b.devaddr = ctrl.wValue;
++ dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
++ do_setup_in_status_phase(pcd);
++ }
++}
++
++/**
++ * This function processes SETUP commands. In Linux, the USB Command
++ * processing is done in two places - the first being the PCD and the
++ * second in the Gadget Driver (for example, the File-Backed Storage
++ * Gadget Driver).
++ *
++ * <table>
++ * <tr><td>Command </td><td>Driver </td><td>Description</td></tr>
++ *
++ * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
++ * defined in chapter 9 of the USB 2.0 Specification chapter 9
++ * </td></tr>
++ *
++ * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
++ * requests are the ENDPOINT_HALT feature is procesed, all others the
++ * interface requests are ignored.</td></tr>
++ *
++ * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
++ * requests are processed by the PCD. Interface requests are passed
++ * to the Gadget Driver.</td></tr>
++ *
++ * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
++ * with device address received </td></tr>
++ *
++ * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
++ * requested descriptor</td></tr>
++ *
++ * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
++ * not implemented by any of the existing Gadget Drivers.</td></tr>
++ *
++ * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
++ * all EPs and enable EPs for new configuration.</td></tr>
++ *
++ * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
++ * the current configuration</td></tr>
++ *
++ * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
++ * EPs and enable EPs for new configuration.</td></tr>
++ *
++ * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
++ * current interface.</td></tr>
++ *
++ * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
++ * message.</td></tr>
++ * </table>
++ *
++ * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
++ * processed by pcd_setup. Calling the Function Driver's setup function from
++ * pcd_setup processes the gadget SETUP commands.
++ */
++static inline void pcd_setup(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++
++ deptsiz0_data_t doeptsize0 = { .d32 = 0};
++
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
++ ctrl.bRequestType, ctrl.bRequest,
++ ctrl.wValue, ctrl.wIndex, ctrl.wLength);
++#endif
++
++ doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz);
++
++ /** @todo handle > 1 setup packet , assert error for now */
++
++ if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) {
++ DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n");
++ }
++
++ /* Clean up the request queue */
++ dwc_otg_request_nuke(ep0);
++ ep0->stopped = 0;
++
++ if (ctrl.bRequestType & USB_DIR_IN) {
++ ep0->dwc_ep.is_in = 1;
++ pcd->ep0state = EP0_IN_DATA_PHASE;
++ }
++ else {
++ ep0->dwc_ep.is_in = 0;
++ pcd->ep0state = EP0_OUT_DATA_PHASE;
++ }
++
++ if(ctrl.wLength == 0) {
++ ep0->dwc_ep.is_in = 1;
++ pcd->ep0state = EP0_IN_STATUS_PHASE;
++ }
++
++ if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) {
++ /* handle non-standard (class/vendor) requests in the gadget driver */
++ do_gadget_setup(pcd, &ctrl);
++ return;
++ }
++
++ /** @todo NGS: Handle bad setup packet? */
++
++///////////////////////////////////////////
++//// --- Standard Request handling --- ////
++
++ switch (ctrl.bRequest) {
++ case USB_REQ_GET_STATUS:
++ do_get_status(pcd);
++ break;
++
++ case USB_REQ_CLEAR_FEATURE:
++ do_clear_feature(pcd);
++ break;
++
++ case USB_REQ_SET_FEATURE:
++ do_set_feature(pcd);
++ break;
++
++ case USB_REQ_SET_ADDRESS:
++ do_set_address(pcd);
++ break;
++
++ case USB_REQ_SET_INTERFACE:
++ case USB_REQ_SET_CONFIGURATION:
++// _pcd->request_config = 1; /* Configuration changed */
++ do_gadget_setup(pcd, &ctrl);
++ break;
++
++ case USB_REQ_SYNCH_FRAME:
++ do_gadget_setup(pcd, &ctrl);
++ break;
++
++ default:
++ /* Call the Gadget Driver's setup functions */
++ do_gadget_setup(pcd, &ctrl);
++ break;
++ }
++}
++
++/**
++ * This function completes the ep0 control transfer.
++ */
++static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
++ dev_if->in_ep_regs[ep->dwc_ep.num];
++#ifdef DEBUG_EP0
++ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
++ dev_if->out_ep_regs[ep->dwc_ep.num];
++#endif
++ deptsiz0_data_t deptsiz;
++ desc_sts_data_t desc_sts;
++ dwc_otg_pcd_request_t *req;
++ int is_last = 0;
++ dwc_otg_pcd_t *pcd = ep->pcd;
++
++ //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name);
++
++ if (pcd->ep0_pending && list_empty(&ep->queue)) {
++ if (ep->dwc_ep.is_in) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
++#endif
++ do_setup_out_status_phase(pcd);
++ }
++ else {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
++#endif
++ do_setup_in_status_phase(pcd);
++ }
++ pcd->ep0_pending = 0;
++ return 1;
++ }
++
++ if (list_empty(&ep->queue)) {
++ return 0;
++ }
++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue);
++
++
++ if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) {
++ is_last = 1;
++ }
++ else if (ep->dwc_ep.is_in) {
++ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
++ if(core_if->dma_desc_enable != 0)
++ desc_sts.d32 = readl(dev_if->in_desc_addr);
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
++ ep->ep.name, ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++#endif
++
++ if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) ||
++ ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) {
++ req->req.actual = ep->dwc_ep.xfer_count;
++ /* Is a Zero Len Packet needed? */
++ if (req->req.zero) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
++#endif
++ req->req.zero = 0;
++ }
++ do_setup_out_status_phase(pcd);
++ }
++ }
++ else {
++ /* ep0-OUT */
++#ifdef DEBUG_EP0
++ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n",
++ ep->ep.name, ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize,
++ deptsiz.b.pktcnt);
++#endif
++ req->req.actual = ep->dwc_ep.xfer_count;
++ /* Is a Zero Len Packet needed? */
++ if (req->req.zero) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
++#endif
++ req->req.zero = 0;
++ }
++ if(core_if->dma_desc_enable == 0)
++ do_setup_in_status_phase(pcd);
++ }
++
++ /* Complete the request */
++ if (is_last) {
++ dwc_otg_request_done(ep, req, 0);
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++ return 1;
++ }
++ return 0;
++}
++
++inline void aligned_buf_patch_on_buf_dma_oep_completion(dwc_otg_pcd_ep_t *ep, uint32_t byte_count)
++{
++ dwc_ep_t *dwc_ep = &ep->dwc_ep;
++ if(byte_count && dwc_ep->aligned_buf &&
++ dwc_ep->dma_addr>=dwc_ep->aligned_dma_addr &&
++ dwc_ep->dma_addr<=(dwc_ep->aligned_dma_addr+dwc_ep->aligned_buf_size))\
++ {
++ //aligned buf used, apply complete patch
++ u32 offset=(dwc_ep->dma_addr-dwc_ep->aligned_dma_addr);
++ memcpy(dwc_ep->start_xfer_buff+offset, dwc_ep->aligned_buf+offset, byte_count);
++ }
++}
++
++/**
++ * This function completes the request for the EP. If there are
++ * additional requests for the EP in the queue they will be started.
++ */
++static void complete_ep(dwc_otg_pcd_ep_t *ep)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ dwc_otg_dev_in_ep_regs_t *in_ep_regs =
++ dev_if->in_ep_regs[ep->dwc_ep.num];
++ deptsiz_data_t deptsiz;
++ desc_sts_data_t desc_sts;
++ dwc_otg_pcd_request_t *req = 0;
++ dwc_otg_dma_desc_t* dma_desc;
++ uint32_t byte_count = 0;
++ int is_last = 0;
++ int i;
++
++ DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name,
++ (ep->dwc_ep.is_in?"IN":"OUT"));
++
++ /* Get any pending requests */
++ if (!list_empty(&ep->queue)) {
++ req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
++ queue);
++ if (!req) {
++ printk("complete_ep 0x%p, req = NULL!\n", ep);
++ return;
++ }
++ }
++ else {
++ printk("complete_ep 0x%p, ep->queue empty!\n", ep);
++ return;
++ }
++ DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
++
++ if (ep->dwc_ep.is_in) {
++ deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
++
++ if (core_if->dma_enable) {
++ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
++ if(core_if->dma_desc_enable == 0) {
++ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
++ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
++ byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
++DWC_DEBUGPL(DBG_PCDV,"byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x)\n", byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count );
++
++ ep->dwc_ep.xfer_buff += byte_count;
++ ep->dwc_ep.dma_addr += byte_count;
++ ep->dwc_ep.xfer_count += byte_count;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
++ ep->ep.name, ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
++ } else if(ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length trasfer in case if it is queued
++ * a trasfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Desriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 legth.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ } else {
++ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
++ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ }
++ } else {
++
++ dma_desc = ep->dwc_ep.desc_addr;
++ byte_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++
++ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
++ desc_sts.d32 = readl(dma_desc);
++ byte_count += desc_sts.b.bytes;
++ dma_desc++;
++ }
++
++ if(byte_count == 0) {
++ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len;
++ is_last = 1;
++ } else {
++ DWC_WARN("Incomplete transfer\n");
++ }
++ }
++ } else {
++ if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
++ /* Check if the whole transfer was completed,
++ * if no, setup transfer for next portion of data
++ */
++ DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
++ ep->ep.name, ep->dwc_ep.xfer_len,
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
++ } else if(ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length trasfer in case if it is queued
++ * a trasfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Desriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 legth.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ }
++ else {
++ DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
++ ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
++ deptsiz.b.xfersize, deptsiz.b.pktcnt);
++ }
++ }
++ } else {
++ dwc_otg_dev_out_ep_regs_t *out_ep_regs =
++ dev_if->out_ep_regs[ep->dwc_ep.num];
++ desc_sts.d32 = 0;
++ if(core_if->dma_enable) {
++ //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_FROM_DEVICE);
++ if(core_if->dma_desc_enable) {
++ DWC_WARN("\n\n%s: we need a cache invalidation here!!\n\n",__func__);
++ dma_desc = ep->dwc_ep.desc_addr;
++ byte_count = 0;
++ ep->dwc_ep.sent_zlp = 0;
++ for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
++ desc_sts.d32 = readl(dma_desc);
++ byte_count += desc_sts.b.bytes;
++ dma_desc++;
++ }
++
++ ep->dwc_ep.xfer_count = ep->dwc_ep.total_len
++ - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3);
++
++ //todo: invalidate cache & aligned buf patch on completion
++ //
++
++ is_last = 1;
++ } else {
++ deptsiz.d32 = 0;
++ deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
++
++ byte_count = (ep->dwc_ep.xfer_len -
++ ep->dwc_ep.xfer_count - deptsiz.b.xfersize);
++
++// dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
++
++DWC_DEBUGPL(DBG_PCDV,"ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
++ //todo: invalidate cache & aligned buf patch on completion
++ dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
++ aligned_buf_patch_on_buf_dma_oep_completion(ep,byte_count);
++
++ ep->dwc_ep.xfer_buff += byte_count;
++ ep->dwc_ep.dma_addr += byte_count;
++ ep->dwc_ep.xfer_count += byte_count;
++
++ /* Check if the whole transfer was completed,
++ * if no, setup transfer for next portion of data
++ */
++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
++ }
++ else if(ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length trasfer in case if it is queued
++ * a trasfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Desriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 legth.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ }
++ } else {
++ /* Check if the whole transfer was completed,
++ * if no, setup transfer for next portion of data
++ */
++ if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
++ //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
++printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
++ }
++ else if(ep->dwc_ep.sent_zlp) {
++ /*
++ * This fragment of code should initiate 0
++ * length trasfer in case if it is queued
++ * a trasfer with size divisible to EPs max
++ * packet size and with usb_request zero field
++ * is set, which means that after data is transfered,
++ * it is also should be transfered
++ * a 0 length packet at the end. For Slave and
++ * Buffer DMA modes in this case SW has
++ * to initiate 2 transfers one with transfer size,
++ * and the second with 0 size. For Desriptor
++ * DMA mode SW is able to initiate a transfer,
++ * which will handle all the packets including
++ * the last 0 legth.
++ */
++ ep->dwc_ep.sent_zlp = 0;
++ dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
++ } else {
++ is_last = 1;
++ }
++ }
++
++#ifdef DEBUG
++
++ DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n",
++ &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len,
++ ep->dwc_ep.xfer_count,
++ deptsiz.b.xfersize,
++ deptsiz.b.pktcnt);
++#endif
++ }
++
++ /* Complete the request */
++ if (is_last) {
++ req->req.actual = ep->dwc_ep.xfer_count;
++
++ dwc_otg_request_done(ep, req, 0);
++
++ ep->dwc_ep.start_xfer_buff = 0;
++ ep->dwc_ep.xfer_buff = 0;
++ ep->dwc_ep.xfer_len = 0;
++
++ /* If there is a request in the queue start it.*/
++ start_next_request(ep);
++ }
++}
++
++
++#ifdef DWC_EN_ISOC
++
++/**
++ * This function BNA interrupt for Isochronous EPs
++ *
++ */
++static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep)
++{
++ dwc_ep_t *dwc_ep = &ep->dwc_ep;
++ volatile uint32_t *addr;
++ depctl_data_t depctl = {.d32 = 0};
++ dwc_otg_pcd_t *pcd = ep->pcd;
++ dwc_otg_dma_desc_t *dma_desc;
++ int i;
++
++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
++
++ if(dwc_ep->is_in) {
++ desc_sts_data_t sts = {.d32 = 0};
++ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
++ {
++ sts.d32 = readl(&dma_desc->status);
++ sts.b_iso_in.bs = BS_HOST_READY;
++ writel(sts.d32,&dma_desc->status);
++ }
++ }
++ else {
++ desc_sts_data_t sts = {.d32 = 0};
++ for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
++ {
++ sts.d32 = readl(&dma_desc->status);
++ sts.b_iso_out.bs = BS_HOST_READY;
++ writel(sts.d32,&dma_desc->status);
++ }
++ }
++
++ if(dwc_ep->is_in == 0){
++ addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
++ }
++ else{
++ addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
++ }
++ depctl.b.epena = 1;
++ dwc_modify_reg32(addr,depctl.d32,depctl.d32);
++}
++
++/**
++ * This function sets latest iso packet information(non-PTI mode)
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ deptsiz_data_t deptsiz = { .d32 = 0 };
++ dma_addr_t dma_addr;
++ uint32_t offset;
++
++ if(ep->proc_buf_num)
++ dma_addr = ep->dma_addr1;
++ else
++ dma_addr = ep->dma_addr0;
++
++ if(ep->is_in) {
++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
++ offset = ep->data_per_frame;
++ } else {
++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
++ offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
++ }
++
++ if(!deptsiz.b.xfersize) {
++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
++ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
++ ep->pkt_info[ep->cur_pkt].status = 0;
++ } else {
++ ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
++ ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
++ ep->pkt_info[ep->cur_pkt].status = -ENODATA;
++ }
++ ep->cur_pkt_addr += offset;
++ ep->cur_pkt_dma_addr += offset;
++ ep->cur_pkt++;
++}
++
++/**
++ * This function sets latest iso packet information(DDMA mode)
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP to start the transfer on.
++ *
++ */
++static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
++{
++ dwc_otg_dma_desc_t* dma_desc;
++ desc_sts_data_t sts = {.d32 = 0};
++ iso_pkt_info_t *iso_packet;
++ uint32_t data_per_desc;
++ uint32_t offset;
++ int i, j;
++
++ iso_packet = dwc_ep->pkt_info;
++
++ /** Reinit closed DMA Descriptors*/
++ /** ISO OUT EP */
++ if(dwc_ep->is_in == 0) {
++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++ offset = 0;
++
++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
++ {
++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
++ {
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++
++ sts.d32 = readl(&dma_desc->status);
++
++ /* Write status in iso_packet_decsriptor */
++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
++ if(iso_packet->status) {
++ iso_packet->status = -ENODATA;
++ }
++
++ /* Received data length */
++ if(!sts.b_iso_out.rxbytes){
++ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes;
++ } else {
++ iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes +
++ (4 - dwc_ep->data_per_frame % 4);
++ }
++
++ iso_packet->offset = offset;
++
++ offset += data_per_desc;
++ dma_desc ++;
++ iso_packet ++;
++ }
++ }
++
++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
++ {
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++
++ sts.d32 = readl(&dma_desc->status);
++
++ /* Write status in iso_packet_decsriptor */
++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
++ if(iso_packet->status) {
++ iso_packet->status = -ENODATA;
++ }
++
++ /* Received data length */
++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
++
++ iso_packet->offset = offset;
++
++ offset += data_per_desc;
++ iso_packet++;
++ dma_desc++;
++ }
++
++ sts.d32 = readl(&dma_desc->status);
++
++ /* Write status in iso_packet_decsriptor */
++ iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
++ if(iso_packet->status) {
++ iso_packet->status = -ENODATA;
++ }
++ /* Received data length */
++ if(!sts.b_iso_out.rxbytes){
++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
++ } else {
++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
++ (4 - dwc_ep->data_per_frame % 4);
++ }
++
++ iso_packet->offset = offset;
++ }
++ else /** ISO IN EP */
++ {
++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++
++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
++ {
++ sts.d32 = readl(&dma_desc->status);
++
++ /* Write status in iso packet descriptor */
++ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
++ if(iso_packet->status != 0) {
++ iso_packet->status = -ENODATA;
++
++ }
++ /* Bytes has been transfered */
++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
++
++ dma_desc ++;
++ iso_packet++;
++ }
++
++ sts.d32 = readl(&dma_desc->status);
++ while(sts.b_iso_in.bs == BS_DMA_BUSY) {
++ sts.d32 = readl(&dma_desc->status);
++ }
++
++ /* Write status in iso packet descriptor ??? do be done with ERROR codes*/
++ iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
++ if(iso_packet->status != 0) {
++ iso_packet->status = -ENODATA;
++ }
++
++ /* Bytes has been transfered */
++ iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
++ }
++}
++
++/**
++ * This function reinitialize DMA Descriptors for Isochronous transfer
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP to start the transfer on.
++ *
++ */
++static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
++{
++ int i, j;
++ dwc_otg_dma_desc_t* dma_desc;
++ dma_addr_t dma_ad;
++ volatile uint32_t *addr;
++ desc_sts_data_t sts = { .d32 =0 };
++ uint32_t data_per_desc;
++
++ if(dwc_ep->is_in == 0) {
++ addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
++ }
++ else {
++ addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
++ }
++
++
++ if(dwc_ep->proc_buf_num == 0) {
++ /** Buffer 0 descriptors setup */
++ dma_ad = dwc_ep->dma_addr0;
++ }
++ else {
++ /** Buffer 1 descriptors setup */
++ dma_ad = dwc_ep->dma_addr1;
++ }
++
++ /** Reinit closed DMA Descriptors*/
++ /** ISO OUT EP */
++ if(dwc_ep->is_in == 0) {
++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++
++ sts.b_iso_out.bs = BS_HOST_READY;
++ sts.b_iso_out.rxsts = 0;
++ sts.b_iso_out.l = 0;
++ sts.b_iso_out.sp = 0;
++ sts.b_iso_out.ioc = 0;
++ sts.b_iso_out.pid = 0;
++ sts.b_iso_out.framenum = 0;
++
++ for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
++ {
++ for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
++ {
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ //(uint32_t)dma_ad += data_per_desc;
++ dma_ad = (uint32_t)dma_ad + data_per_desc;
++ dma_desc ++;
++ }
++ }
++
++ for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
++ {
++
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ dma_desc++;
++ //(uint32_t)dma_ad += data_per_desc;
++ dma_ad = (uint32_t)dma_ad + data_per_desc;
++ }
++
++ sts.b_iso_out.ioc = 1;
++ sts.b_iso_out.l = dwc_ep->proc_buf_num;
++
++ data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
++ dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
++ data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
++ sts.b_iso_out.rxbytes = data_per_desc;
++
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++ }
++ else /** ISO IN EP */
++ {
++ dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
++
++ sts.b_iso_in.bs = BS_HOST_READY;
++ sts.b_iso_in.txsts = 0;
++ sts.b_iso_in.sp = 0;
++ sts.b_iso_in.ioc = 0;
++ sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
++ sts.b_iso_in.framenum = dwc_ep->next_frame;
++ sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
++ sts.b_iso_in.l = 0;
++
++ for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
++ {
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ sts.b_iso_in.framenum += dwc_ep->bInterval;
++ //(uint32_t)dma_ad += dwc_ep->data_per_frame;
++ dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
++ dma_desc ++;
++ }
++
++ sts.b_iso_in.ioc = 1;
++ sts.b_iso_in.l = dwc_ep->proc_buf_num;
++
++ writel((uint32_t)dma_ad, &dma_desc->buf);
++ writel(sts.d32, &dma_desc->status);
++
++ dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
++ }
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++}
++
++
++/**
++ * This function is to handle Iso EP transfer complete interrupt
++ * in case Iso out packet was dropped
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param dwc_ep The EP for wihich transfer complete was asserted
++ *
++ */
++static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
++{
++ uint32_t dma_addr;
++ uint32_t drp_pkt;
++ uint32_t drp_pkt_cnt;
++ deptsiz_data_t deptsiz = { .d32 = 0 };
++ depctl_data_t depctl = { .d32 = 0 };
++ int i;
++
++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
++
++ drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
++ drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
++
++ /* Setting dropped packets status */
++ for(i = 0; i < drp_pkt_cnt; ++i) {
++ dwc_ep->pkt_info[drp_pkt].status = -ENODATA;
++ drp_pkt ++;
++ deptsiz.b.pktcnt--;
++ }
++
++
++ if(deptsiz.b.pktcnt > 0) {
++ deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket;
++ } else {
++ deptsiz.b.xfersize = 0;
++ deptsiz.b.pktcnt = 0;
++ }
++
++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32);
++
++ if(deptsiz.b.pktcnt > 0) {
++ if(dwc_ep->proc_buf_num) {
++ dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize;
++ } else {
++ dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;;
++ }
++
++ VERIFY_PCD_DMA_ADDR(dma_addr);
++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
++
++ /** Re-enable endpoint, clear nak */
++ depctl.d32 = 0;
++ depctl.b.epena = 1;
++ depctl.b.cnak = 1;
++
++ dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl,
++ depctl.d32,depctl.d32);
++ return 0;
++ } else {
++ return 1;
++ }
++}
++
++/**
++ * This function sets iso packets information(PTI mode)
++ *
++ * @param core_if Programming view of DWC_otg controller.
++ * @param ep The EP to start the transfer on.
++ *
++ */
++static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
++{
++ int i, j;
++ dma_addr_t dma_ad;
++ iso_pkt_info_t *packet_info = ep->pkt_info;
++ uint32_t offset;
++ uint32_t frame_data;
++ deptsiz_data_t deptsiz;
++
++ if(ep->proc_buf_num == 0) {
++ /** Buffer 0 descriptors setup */
++ dma_ad = ep->dma_addr0;
++ }
++ else {
++ /** Buffer 1 descriptors setup */
++ dma_ad = ep->dma_addr1;
++ }
++
++ if(ep->is_in) {
++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
++ } else {
++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
++ }
++
++ if(!deptsiz.b.xfersize) {
++ offset = 0;
++ for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm)
++ {
++ frame_data = ep->data_per_frame;
++ for(j = 0; j < ep->pkt_per_frm; ++j) {
++
++ /* Packet status - is not set as initially
++ * it is set to 0 and if packet was sent
++ successfully, status field will remain 0*/
++
++ /* Bytes has been transfered */
++ packet_info->length = (ep->maxpacket < frame_data) ?
++ ep->maxpacket : frame_data;
++
++ /* Received packet offset */
++ packet_info->offset = offset;
++ offset += packet_info->length;
++ frame_data -= packet_info->length;
++
++ packet_info ++;
++ }
++ }
++ return 1;
++ } else {
++ /* This is a workaround for in case of Transfer Complete with
++ * PktDrpSts interrupts merging - in this case Transfer complete
++ * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
++ * set and with DOEPTSIZ register non zero. Investigations showed,
++ * that this happens when Out packet is dropped, but because of
++ * interrupts merging during first interrupt handling PktDrpSts
++ * bit is cleared and for next merged interrupts it is not reset.
++ * In this case SW hadles the interrupt as if PktDrpSts bit is set.
++ */
++ if(ep->is_in) {
++ return 1;
++ } else {
++ return handle_iso_out_pkt_dropped(core_if, ep);
++ }
++ }
++}
++
++/**
++ * This function is to handle Iso EP transfer complete interrupt
++ *
++ * @param ep The EP for which transfer complete was asserted
++ *
++ */
++static void complete_iso_ep(dwc_otg_pcd_ep_t *ep)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
++ dwc_ep_t *dwc_ep = &ep->dwc_ep;
++ uint8_t is_last = 0;
++
++ if(core_if->dma_enable) {
++ if(core_if->dma_desc_enable) {
++ set_ddma_iso_pkts_info(core_if, dwc_ep);
++ reinit_ddma_iso_xfer(core_if, dwc_ep);
++ is_last = 1;
++ } else {
++ if(core_if->pti_enh_enable) {
++ if(set_iso_pkts_info(core_if, dwc_ep)) {
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++ dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep);
++ is_last = 1;
++ }
++ } else {
++ set_current_pkt_info(core_if, dwc_ep);
++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ is_last = 1;
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++ if(dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
++ }
++ }
++ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
++ }
++ }
++ } else {
++ set_current_pkt_info(core_if, dwc_ep);
++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ is_last = 1;
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++ if(dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
++ }
++ }
++ dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
++ }
++ if(is_last)
++ dwc_otg_iso_buffer_done(ep, ep->iso_req);
++}
++
++#endif //DWC_EN_ISOC
++
++
++/**
++ * This function handles EP0 Control transfers.
++ *
++ * The state of the control tranfers are tracked in
++ * <code>ep0state</code>.
++ */
++static void handle_ep0(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
++ desc_sts_data_t desc_sts;
++ deptsiz0_data_t deptsiz;
++ uint32_t byte_count;
++
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
++ print_ep0_state(pcd);
++#endif
++
++ switch (pcd->ep0state) {
++ case EP0_DISCONNECT:
++ break;
++
++ case EP0_IDLE:
++ pcd->request_config = 0;
++
++ pcd_setup(pcd);
++ break;
++
++ case EP0_IN_DATA_PHASE:
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
++#endif
++
++ if (core_if->dma_enable != 0) {
++ /*
++ * For EP0 we can only program 1 packet at a time so we
++ * need to do the make calculations after each complete.
++ * Call write_packet to make the calculations, as in
++ * slave mode, and use those values to determine if we
++ * can complete.
++ */
++ if(core_if->dma_desc_enable == 0) {
++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz);
++ byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
++ }
++ else {
++ desc_sts.d32 = readl(core_if->dev_if->in_desc_addr);
++ byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
++ }
++
++ ep0->dwc_ep.xfer_count += byte_count;
++ ep0->dwc_ep.xfer_buff += byte_count;
++ ep0->dwc_ep.dma_addr += byte_count;
++ }
++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
++ }
++ else if(ep0->dwc_ep.sent_zlp) {
++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
++ ep0->dwc_ep.sent_zlp = 0;
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
++ }
++ else {
++ ep0_complete_request(ep0);
++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
++ }
++ break;
++ case EP0_OUT_DATA_PHASE:
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
++ ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
++ ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
++#endif
++ if (core_if->dma_enable != 0) {
++ if(core_if->dma_desc_enable == 0) {
++ deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz);
++ byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
++
++ //todo: invalidate cache & aligned buf patch on completion
++ dma_sync_single_for_device(NULL,ep0->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
++ aligned_buf_patch_on_buf_dma_oep_completion(ep0,byte_count);
++ }
++ else {
++ desc_sts.d32 = readl(core_if->dev_if->out_desc_addr);
++ byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
++
++ //todo: invalidate cache & aligned buf patch on completion
++ //
++
++ }
++ ep0->dwc_ep.xfer_count += byte_count;
++ ep0->dwc_ep.xfer_buff += byte_count;
++ ep0->dwc_ep.dma_addr += byte_count;
++ }
++ if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
++ }
++ else if(ep0->dwc_ep.sent_zlp) {
++ dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
++ ep0->dwc_ep.sent_zlp = 0;
++ DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
++ }
++ else {
++ ep0_complete_request(ep0);
++ DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
++ }
++ break;
++
++ case EP0_IN_STATUS_PHASE:
++ case EP0_OUT_STATUS_PHASE:
++ DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
++ ep0_complete_request(ep0);
++ pcd->ep0state = EP0_IDLE;
++ ep0->stopped = 1;
++ ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */
++
++ /* Prepare for more SETUP Packets */
++ if(core_if->dma_enable) {
++ ep0_out_start(core_if, pcd);
++ }
++ break;
++
++ case EP0_STALL:
++ DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
++ break;
++ }
++#ifdef DEBUG_EP0
++ print_ep0_state(pcd);
++#endif
++}
++
++
++/**
++ * Restart transfer
++ */
++static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if;
++ dwc_otg_dev_if_t *dev_if;
++ deptsiz_data_t dieptsiz = {.d32=0};
++ dwc_otg_pcd_ep_t *ep;
++
++ ep = get_in_ep(pcd, epnum);
++
++#ifdef DWC_EN_ISOC
++ if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
++ return;
++ }
++#endif /* DWC_EN_ISOC */
++
++ core_if = GET_CORE_IF(pcd);
++ dev_if = core_if->dev_if;
++
++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
++
++ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x"
++ " stopped=%d\n", ep->dwc_ep.xfer_buff,
++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
++ ep->stopped);
++ /*
++ * If xfersize is 0 and pktcnt in not 0, resend the last packet.
++ */
++ if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
++ ep->dwc_ep.start_xfer_buff != 0) {
++ if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
++ ep->dwc_ep.xfer_count = 0;
++ ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
++ }
++ else {
++ ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
++ /* convert packet size to dwords. */
++ ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
++ ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
++ }
++ ep->stopped = 0;
++ DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x "
++ "xfer_len=%0x stopped=%d\n",
++ ep->dwc_ep.xfer_buff,
++ ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
++ ep->stopped
++ );
++ if (epnum == 0) {
++ dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
++ }
++ else {
++ dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
++ }
++ }
++}
++
++
++/**
++ * handle the IN EP disable interrupt.
++ */
++static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd,
++ const uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ deptsiz_data_t dieptsiz = {.d32=0};
++ dctl_data_t dctl = {.d32=0};
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++
++ ep = get_in_ep(pcd, epnum);
++ dwc_ep = &ep->dwc_ep;
++
++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
++ return;
++ }
++
++ DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum,
++ dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl));
++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
++
++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
++ dieptsiz.b.pktcnt,
++ dieptsiz.b.xfersize);
++
++ if (ep->stopped) {
++ /* Flush the Tx FIFO */
++ dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
++ /* Clear the Global IN NP NAK */
++ dctl.d32 = 0;
++ dctl.b.cgnpinnak = 1;
++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
++ dctl.d32, 0);
++ /* Restart the transaction */
++ if (dieptsiz.b.pktcnt != 0 ||
++ dieptsiz.b.xfersize != 0) {
++ restart_transfer(pcd, epnum);
++ }
++ }
++ else {
++ /* Restart the transaction */
++ if (dieptsiz.b.pktcnt != 0 ||
++ dieptsiz.b.xfersize != 0) {
++ restart_transfer(pcd, epnum);
++ }
++ DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
++ }
++}
++
++/**
++ * Handler for the IN EP timeout handshake interrupt.
++ */
++static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd,
++ const uint32_t epnum)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++
++#ifdef DEBUG
++ deptsiz_data_t dieptsiz = {.d32=0};
++ uint32_t num = 0;
++#endif
++ dctl_data_t dctl = {.d32=0};
++ dwc_otg_pcd_ep_t *ep;
++
++ gintmsk_data_t intr_mask = {.d32 = 0};
++
++ ep = get_in_ep(pcd, epnum);
++
++ /* Disable the NP Tx Fifo Empty Interrrupt */
++ if (!core_if->dma_enable) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
++ }
++ /** @todo NGS Check EP type.
++ * Implement for Periodic EPs */
++ /*
++ * Non-periodic EP
++ */
++ /* Enable the Global IN NAK Effective Interrupt */
++ intr_mask.b.ginnakeff = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++ 0, intr_mask.d32);
++
++ /* Set Global IN NAK */
++ dctl.b.sgnpinnak = 1;
++ dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
++ dctl.d32, dctl.d32);
++
++ ep->stopped = 1;
++
++#ifdef DEBUG
++ dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz);
++ DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
++ dieptsiz.b.pktcnt,
++ dieptsiz.b.xfersize);
++#endif
++
++#ifdef DISABLE_PERIODIC_EP
++ /*
++ * Set the NAK bit for this EP to
++ * start the disable process.
++ */
++ diepctl.d32 = 0;
++ diepctl.b.snak = 1;
++ dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32);
++ ep->disabling = 1;
++ ep->stopped = 1;
++#endif
++}
++
++/**
++ * Handler for the IN EP NAK interrupt.
++ */
++static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t* core_if;
++ diepmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.nak = 1;
++
++ if(core_if->multiproc_int_enable) {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum],
++ intr_mask.d32, 0);
++ } else {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * Handler for the OUT EP Babble interrupt.
++ */
++static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t* core_if;
++ doepmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.babble = 1;
++
++ if(core_if->multiproc_int_enable) {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
++ intr_mask.d32, 0);
++ } else {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * Handler for the OUT EP NAK interrupt.
++ */
++static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t* core_if;
++ doepmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.nak = 1;
++
++ if(core_if->multiproc_int_enable) {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
++ intr_mask.d32, 0);
++ } else {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * Handler for the OUT EP NYET interrupt.
++ */
++static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd,
++ const uint32_t epnum)
++{
++ /** @todo implement ISR */
++ dwc_otg_core_if_t* core_if;
++ doepmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
++ core_if = GET_CORE_IF(pcd);
++ intr_mask.b.nyet = 1;
++
++ if(core_if->multiproc_int_enable) {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
++ intr_mask.d32, 0);
++ } else {
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
++ intr_mask.d32, 0);
++ }
++
++ return 1;
++}
++
++/**
++ * This interrupt indicates that an IN EP has a pending Interrupt.
++ * The sequence for handling the IN EP interrupt is shown below:
++ * -# Read the Device All Endpoint Interrupt register
++ * -# Repeat the following for each IN EP interrupt bit set (from
++ * LSB to MSB).
++ * -# Read the Device Endpoint Interrupt (DIEPINTn) register
++ * -# If "Transfer Complete" call the request complete function
++ * -# If "Endpoint Disabled" complete the EP disable procedure.
++ * -# If "AHB Error Interrupt" log error
++ * -# If "Time-out Handshake" log error
++ * -# If "IN Token Received when TxFIFO Empty" write packet to Tx
++ * FIFO.
++ * -# If "IN Token EP Mismatch" (disable, this is handled by EP
++ * Mismatch Interrupt)
++ */
++static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd)
++{
++#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
++do { \
++ diepint_data_t diepint = {.d32=0}; \
++ diepint.b.__intr = 1; \
++ dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
++ diepint.d32); \
++} while (0)
++
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ diepint_data_t diepint = {.d32=0};
++ dctl_data_t dctl = {.d32=0};
++ depctl_data_t depctl = {.d32=0};
++ uint32_t ep_intr;
++ uint32_t epnum = 0;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++ gintmsk_data_t intr_mask = {.d32 = 0};
++
++ DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
++
++ /* Read in the device interrupt bits */
++ ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
++
++ /* Service the Device IN interrupts for each endpoint */
++ while(ep_intr) {
++ if (ep_intr&0x1) {
++ uint32_t empty_msk;
++ /* Get EP pointer */
++ ep = get_in_ep(pcd, epnum);
++ dwc_ep = &ep->dwc_ep;
++
++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
++ empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
++
++ DWC_DEBUGPL(DBG_PCDV,
++ "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n",
++ epnum,
++ empty_msk,
++ depctl.d32);
++
++ DWC_DEBUGPL(DBG_PCD,
++ "EP%d-%s: type=%d, mps=%d\n",
++ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
++ dwc_ep->type, dwc_ep->maxpacket);
++
++ diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
++
++ DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32);
++ /* Transfer complete */
++ if (diepint.b.xfercompl) {
++ /* Disable the NP Tx FIFO Empty
++ * Interrrupt */
++ if(core_if->en_multiple_tx_fifo == 0) {
++ intr_mask.b.nptxfempty = 1;
++ dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
++ }
++ else {
++ /* Disable the Tx FIFO Empty Interrupt for this EP */
++ uint32_t fifoemptymsk = 0x1 << dwc_ep->num;
++ dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
++ fifoemptymsk, 0);
++ }
++ /* Clear the bit in DIEPINTn for this interrupt */
++ CLEAR_IN_EP_INTR(core_if,epnum,xfercompl);
++
++ /* Complete the transfer */
++ if (epnum == 0) {
++ handle_ep0(pcd);
++ }
++#ifdef DWC_EN_ISOC
++ else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ if(!ep->stopped)
++ complete_iso_ep(ep);
++ }
++#endif //DWC_EN_ISOC
++ else {
++
++ complete_ep(ep);
++ }
++ }
++ /* Endpoint disable */
++ if (diepint.b.epdisabled) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum);
++ handle_in_ep_disable_intr(pcd, epnum);
++
++ /* Clear the bit in DIEPINTn for this interrupt */
++ CLEAR_IN_EP_INTR(core_if,epnum,epdisabled);
++ }
++ /* AHB Error */
++ if (diepint.b.ahberr) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum);
++ /* Clear the bit in DIEPINTn for this interrupt */
++ CLEAR_IN_EP_INTR(core_if,epnum,ahberr);
++ }
++ /* TimeOUT Handshake (non-ISOC IN EPs) */
++ if (diepint.b.timeout) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum);
++ handle_in_ep_timeout_intr(pcd, epnum);
++
++ CLEAR_IN_EP_INTR(core_if,epnum,timeout);
++ }
++ /** IN Token received with TxF Empty */
++ if (diepint.b.intktxfemp) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",
++ epnum);
++ if (!ep->stopped && epnum != 0) {
++
++ diepmsk_data_t diepmsk = { .d32 = 0};
++ diepmsk.b.intktxfemp = 1;
++
++ if(core_if->multiproc_int_enable) {
++ dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum],
++ diepmsk.d32, 0);
++ } else {
++ dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0);
++ }
++ start_next_request(ep);
++ }
++ else if(core_if->dma_desc_enable && epnum == 0 &&
++ pcd->ep0state == EP0_OUT_STATUS_PHASE) {
++ // EP0 IN set STALL
++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
++
++ /* set the disable and stall bits */
++ if (depctl.b.epena) {
++ depctl.b.epdis = 1;
++ }
++ depctl.b.stall = 1;
++ dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
++ }
++ CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp);
++ }
++ /** IN Token Received with EP mismatch */
++ if (diepint.b.intknepmis) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum);
++ CLEAR_IN_EP_INTR(core_if,epnum,intknepmis);
++ }
++ /** IN Endpoint NAK Effective */
++ if (diepint.b.inepnakeff) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum);
++ /* Periodic EP */
++ if (ep->disabling) {
++ depctl.d32 = 0;
++ depctl.b.snak = 1;
++ depctl.b.epdis = 1;
++ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
++ }
++ CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff);
++
++ }
++
++ /** IN EP Tx FIFO Empty Intr */
++ if (diepint.b.emptyintr) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum);
++ write_empty_tx_fifo(pcd, epnum);
++
++ CLEAR_IN_EP_INTR(core_if,epnum,emptyintr);
++ }
++
++ /** IN EP BNA Intr */
++ if (diepint.b.bna) {
++ CLEAR_IN_EP_INTR(core_if,epnum,bna);
++ if(core_if->dma_desc_enable) {
++#ifdef DWC_EN_ISOC
++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This checking is performed to prevent first "false" BNA
++ * handling occuring right after reconnect
++ */
++ if(dwc_ep->next_frame != 0xffffffff)
++ dwc_otg_pcd_handle_iso_bna(ep);
++ }
++ else
++#endif //DWC_EN_ISOC
++ {
++ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
++
++ /* If Global Continue on BNA is disabled - disable EP */
++ if(!dctl.b.gcontbna) {
++ depctl.d32 = 0;
++ depctl.b.snak = 1;
++ depctl.b.epdis = 1;
++ dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
++ } else {
++ start_next_request(ep);
++ }
++ }
++ }
++ }
++ /* NAK Interrutp */
++ if (diepint.b.nak) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum);
++ handle_in_ep_nak_intr(pcd, epnum);
++
++ CLEAR_IN_EP_INTR(core_if,epnum,nak);
++ }
++ }
++ epnum++;
++ ep_intr >>=1;
++ }
++
++ return 1;
++#undef CLEAR_IN_EP_INTR
++}
++
++/**
++ * This interrupt indicates that an OUT EP has a pending Interrupt.
++ * The sequence for handling the OUT EP interrupt is shown below:
++ * -# Read the Device All Endpoint Interrupt register
++ * -# Repeat the following for each OUT EP interrupt bit set (from
++ * LSB to MSB).
++ * -# Read the Device Endpoint Interrupt (DOEPINTn) register
++ * -# If "Transfer Complete" call the request complete function
++ * -# If "Endpoint Disabled" complete the EP disable procedure.
++ * -# If "AHB Error Interrupt" log error
++ * -# If "Setup Phase Done" process Setup Packet (See Standard USB
++ * Command Processing)
++ */
++static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd)
++{
++#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
++do { \
++ doepint_data_t doepint = {.d32=0}; \
++ doepint.b.__intr = 1; \
++ dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
++ doepint.d32); \
++} while (0)
++
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++ dwc_otg_dev_if_t *dev_if = core_if->dev_if;
++ uint32_t ep_intr;
++ doepint_data_t doepint = {.d32=0};
++ dctl_data_t dctl = {.d32=0};
++ depctl_data_t doepctl = {.d32=0};
++ uint32_t epnum = 0;
++ dwc_otg_pcd_ep_t *ep;
++ dwc_ep_t *dwc_ep;
++
++ DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
++
++ /* Read in the device interrupt bits */
++ ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
++
++ while(ep_intr) {
++ if (ep_intr&0x1) {
++ /* Get EP pointer */
++ ep = get_out_ep(pcd, epnum);
++ dwc_ep = &ep->dwc_ep;
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV,
++ "EP%d-%s: type=%d, mps=%d\n",
++ dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
++ dwc_ep->type, dwc_ep->maxpacket);
++#endif
++ doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
++
++ /* Transfer complete */
++ if (doepint.b.xfercompl) {
++ if (epnum == 0) {
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
++ if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE)
++ handle_ep0(pcd);
++#ifdef DWC_EN_ISOC
++ } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ if (doepint.b.pktdrpsts == 0) {
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
++ complete_iso_ep(ep);
++ } else {
++ doepint_data_t doepint = {.d32=0};
++ doepint.b.xfercompl = 1;
++ doepint.b.pktdrpsts = 1;
++ dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint,
++ doepint.d32);
++ if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) {
++ complete_iso_ep(ep);
++ }
++ }
++#endif //DWC_EN_ISOC
++ } else {
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
++ complete_ep(ep);
++ }
++
++ }
++
++ /* Endpoint disable */
++ if (doepint.b.epdisabled) {
++ /* Clear the bit in DOEPINTn for this interrupt */
++ CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled);
++ }
++ /* AHB Error */
++ if (doepint.b.ahberr) {
++ DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum);
++ DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma);
++ CLEAR_OUT_EP_INTR(core_if,epnum,ahberr);
++ }
++ /* Setup Phase Done (contorl EPs) */
++ if (doepint.b.setup) {
++#ifdef DEBUG_EP0
++ DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n",
++ epnum);
++#endif
++ CLEAR_OUT_EP_INTR(core_if,epnum,setup);
++ handle_ep0(pcd);
++ }
++
++ /** OUT EP BNA Intr */
++ if (doepint.b.bna) {
++ CLEAR_OUT_EP_INTR(core_if,epnum,bna);
++ if(core_if->dma_desc_enable) {
++#ifdef DWC_EN_ISOC
++ if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
++ /*
++ * This checking is performed to prevent first "false" BNA
++ * handling occuring right after reconnect
++ */
++ if(dwc_ep->next_frame != 0xffffffff)
++ dwc_otg_pcd_handle_iso_bna(ep);
++ }
++ else
++#endif //DWC_EN_ISOC
++ {
++ dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
++
++ /* If Global Continue on BNA is disabled - disable EP*/
++ if(!dctl.b.gcontbna) {
++ doepctl.d32 = 0;
++ doepctl.b.snak = 1;
++ doepctl.b.epdis = 1;
++ dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32);
++ } else {
++ start_next_request(ep);
++ }
++ }
++ }
++ }
++ if (doepint.b.stsphsercvd) {
++ CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd);
++ if(core_if->dma_desc_enable) {
++ do_setup_in_status_phase(pcd);
++ }
++ }
++ /* Babble Interrutp */
++ if (doepint.b.babble) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum);
++ handle_out_ep_babble_intr(pcd, epnum);
++
++ CLEAR_OUT_EP_INTR(core_if,epnum,babble);
++ }
++ /* NAK Interrutp */
++ if (doepint.b.nak) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum);
++ handle_out_ep_nak_intr(pcd, epnum);
++
++ CLEAR_OUT_EP_INTR(core_if,epnum,nak);
++ }
++ /* NYET Interrutp */
++ if (doepint.b.nyet) {
++ DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum);
++ handle_out_ep_nyet_intr(pcd, epnum);
++
++ CLEAR_OUT_EP_INTR(core_if,epnum,nyet);
++ }
++ }
++
++ epnum++;
++ ep_intr >>=1;
++ }
++
++ return 1;
++
++#undef CLEAR_OUT_EP_INTR
++}
++
++
++/**
++ * Incomplete ISO IN Transfer Interrupt.
++ * This interrupt indicates one of the following conditions occurred
++ * while transmitting an ISOC transaction.
++ * - Corrupted IN Token for ISOC EP.
++ * - Packet not complete in FIFO.
++ * The follow actions will be taken:
++ * -# Determine the EP
++ * -# Set incomplete flag in dwc_ep structure
++ * -# Disable EP; when "Endpoint Disabled" interrupt is received
++ * Flush FIFO
++ */
++int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd)
++{
++ gintsts_data_t gintsts;
++
++
++#ifdef DWC_EN_ISOC
++ dwc_otg_dev_if_t *dev_if;
++ deptsiz_data_t deptsiz = { .d32 = 0};
++ depctl_data_t depctl = { .d32 = 0};
++ dsts_data_t dsts = { .d32 = 0};
++ dwc_ep_t *dwc_ep;
++ int i;
++
++ dev_if = GET_CORE_IF(pcd)->dev_if;
++
++ for(i = 1; i <= dev_if->num_in_eps; ++i) {
++ dwc_ep = &pcd->in_ep[i].dwc_ep;
++ if(dwc_ep->active &&
++ dwc_ep->type == USB_ENDPOINT_XFER_ISOC)
++ {
++ deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz);
++ depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
++
++ if(depctl.b.epdis && deptsiz.d32) {
++ set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++
++ if(dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
++ }
++ }
++
++ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
++ dwc_ep->next_frame = dsts.b.soffn;
++
++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
++ }
++ }
++ }
++
++#else
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
++ "IN ISOC Incomplete");
++
++ intr_mask.b.incomplisoin = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++#endif //DWC_EN_ISOC
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.incomplisoin = 1;
++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * Incomplete ISO OUT Transfer Interrupt.
++ *
++ * This interrupt indicates that the core has dropped an ISO OUT
++ * packet. The following conditions can be the cause:
++ * - FIFO Full, the entire packet would not fit in the FIFO.
++ * - CRC Error
++ * - Corrupted Token
++ * The follow actions will be taken:
++ * -# Determine the EP
++ * -# Set incomplete flag in dwc_ep structure
++ * -# Read any data from the FIFO
++ * -# Disable EP. when "Endpoint Disabled" interrupt is received
++ * re-enable EP.
++ */
++int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd)
++{
++ /* @todo implement ISR */
++ gintsts_data_t gintsts;
++
++#ifdef DWC_EN_ISOC
++ dwc_otg_dev_if_t *dev_if;
++ deptsiz_data_t deptsiz = { .d32 = 0};
++ depctl_data_t depctl = { .d32 = 0};
++ dsts_data_t dsts = { .d32 = 0};
++ dwc_ep_t *dwc_ep;
++ int i;
++
++ dev_if = GET_CORE_IF(pcd)->dev_if;
++
++ for(i = 1; i <= dev_if->num_out_eps; ++i) {
++ dwc_ep = &pcd->in_ep[i].dwc_ep;
++ if(pcd->out_ep[i].dwc_ep.active &&
++ pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC)
++ {
++ deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz);
++ depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
++
++ if(depctl.b.epdis && deptsiz.d32) {
++ set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep);
++ if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
++ dwc_ep->cur_pkt = 0;
++ dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
++
++ if(dwc_ep->proc_buf_num) {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
++ } else {
++ dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
++ dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
++ }
++ }
++
++ dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
++ dwc_ep->next_frame = dsts.b.soffn;
++
++ dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
++ }
++ }
++ }
++#else
++ /** @todo implement ISR */
++ gintmsk_data_t intr_mask = { .d32 = 0};
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
++ "OUT ISOC Incomplete");
++
++ intr_mask.b.incomplisoout = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++#endif // DWC_EN_ISOC
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.incomplisoout = 1;
++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * This function handles the Global IN NAK Effective interrupt.
++ *
++ */
++int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
++ depctl_data_t diepctl = { .d32 = 0};
++ depctl_data_t diepctl_rd = { .d32 = 0};
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ gintsts_data_t gintsts;
++ int i;
++
++ DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
++
++ /* Disable all active IN EPs */
++ diepctl.b.epdis = 1;
++ diepctl.b.snak = 1;
++
++ for (i=0; i <= dev_if->num_in_eps; i++)
++ {
++ diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
++ if (diepctl_rd.b.epena) {
++ dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl,
++ diepctl.d32);
++ }
++ }
++ /* Disable the Global IN NAK Effective Interrupt */
++ intr_mask.b.ginnakeff = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.ginnakeff = 1;
++ dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++/**
++ * OUT NAK Effective.
++ *
++ */
++int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd)
++{
++ gintmsk_data_t intr_mask = { .d32 = 0};
++ gintsts_data_t gintsts;
++
++ DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
++ "Global IN NAK Effective\n");
++ /* Disable the Global IN NAK Effective Interrupt */
++ intr_mask.b.goutnakeff = 1;
++ dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
++ intr_mask.d32, 0);
++
++ /* Clear interrupt */
++ gintsts.d32 = 0;
++ gintsts.b.goutnakeff = 1;
++ dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
++ gintsts.d32);
++
++ return 1;
++}
++
++
++/**
++ * PCD interrupt handler.
++ *
++ * The PCD handles the device interrupts. Many conditions can cause a
++ * device interrupt. When an interrupt occurs, the device interrupt
++ * service routine determines the cause of the interrupt and
++ * dispatches handling to the appropriate function. These interrupt
++ * handling functions are described below.
++ *
++ * All interrupt registers are processed from LSB to MSB.
++ *
++ */
++int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd)
++{
++ dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
++#ifdef VERBOSE
++ dwc_otg_core_global_regs_t *global_regs =
++ core_if->core_global_regs;
++#endif
++ gintsts_data_t gintr_status;
++ int32_t retval = 0;
++
++
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n",
++ __func__,
++ dwc_read_reg32(&global_regs->gintsts),
++ dwc_read_reg32(&global_regs->gintmsk));
++#endif
++
++ if (dwc_otg_is_device_mode(core_if)) {
++ SPIN_LOCK(&pcd->lock);
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n",
++ __func__,
++ dwc_read_reg32(&global_regs->gintsts),
++ dwc_read_reg32(&global_regs->gintmsk));
++#endif
++
++ gintr_status.d32 = dwc_otg_read_core_intr(core_if);
++/*
++ if (!gintr_status.d32) {
++ SPIN_UNLOCK(&pcd->lock);
++ return 0;
++ }
++*/
++ DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
++ __func__, gintr_status.d32);
++
++ if (gintr_status.b.sofintr) {
++ retval |= dwc_otg_pcd_handle_sof_intr(pcd);
++ }
++ if (gintr_status.b.rxstsqlvl) {
++ retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
++ }
++ if (gintr_status.b.nptxfempty) {
++ retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
++ }
++ if (gintr_status.b.ginnakeff) {
++ retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
++ }
++ if (gintr_status.b.goutnakeff) {
++ retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
++ }
++ if (gintr_status.b.i2cintr) {
++ retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
++ }
++ if (gintr_status.b.erlysuspend) {
++ retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
++ }
++ if (gintr_status.b.usbreset) {
++ retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
++ }
++ if (gintr_status.b.enumdone) {
++ retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
++ }
++ if (gintr_status.b.isooutdrop) {
++ retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd);
++ }
++ if (gintr_status.b.eopframe) {
++ retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
++ }
++ if (gintr_status.b.epmismatch) {
++ retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if);
++ }
++ if (gintr_status.b.inepint) {
++ if(!core_if->multiproc_int_enable) {
++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
++ }
++ }
++ if (gintr_status.b.outepintr) {
++ if(!core_if->multiproc_int_enable) {
++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
++ }
++ }
++ if (gintr_status.b.incomplisoin) {
++ retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
++ }
++ if (gintr_status.b.incomplisoout) {
++ retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
++ }
++
++ /* In MPI mode De vice Endpoints intterrupts are asserted
++ * without setting outepintr and inepint bits set, so these
++ * Interrupt handlers are called without checking these bit-fields
++ */
++ if(core_if->multiproc_int_enable) {
++ retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
++ retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
++ }
++#ifdef VERBOSE
++ DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
++ dwc_read_reg32(&global_regs->gintsts));
++#endif
++ SPIN_UNLOCK(&pcd->lock);
++ }
++ S3C2410X_CLEAR_EINTPEND();
++
++ return retval;
++}
++
++#endif /* DWC_HOST_ONLY */
+--- /dev/null
++++ b/drivers/usb/dwc/otg_plat.h
+@@ -0,0 +1,266 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $
++ * $Revision: #23 $
++ * $Date: 2008/07/15 $
++ * $Change: 1064915 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_PLAT_H__)
++#define __DWC_OTG_PLAT_H__
++
++#include <linux/types.h>
++#include <linux/slab.h>
++#include <linux/list.h>
++#include <linux/delay.h>
++#include <asm/io.h>
++
++/* Changed all readl and writel to __raw_readl, __raw_writel */
++
++/**
++ * @file
++ *
++ * This file contains the Platform Specific constants, interfaces
++ * (functions and macros) for Linux.
++ *
++ */
++//#if !defined(__LINUX_ARM_ARCH__)
++//#error "The contents of this file is Linux specific!!!"
++//#endif
++
++/**
++ * Reads the content of a register.
++ *
++ * @param reg address of register to read.
++ * @return contents of the register.
++ *
++
++ * Usage:<br>
++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
++ */
++static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg)
++{
++ return __raw_readl(reg);
++ // return readl(reg);
++};
++
++/**
++ * Writes a register with a 32 bit value.
++ *
++ * @param reg address of register to read.
++ * @param value to write to _reg.
++ *
++ * Usage:<br>
++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
++ */
++static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value)
++{
++ // writel( value, reg );
++ __raw_writel(value, reg);
++
++};
++
++/**
++ * This function modifies bit values in a register. Using the
++ * algorithm: (reg_contents & ~clear_mask) | set_mask.
++ *
++ * @param reg address of register to read.
++ * @param clear_mask bit mask to be cleared.
++ * @param set_mask bit mask to be set.
++ *
++ * Usage:<br>
++ * <code> // Clear the SOF Interrupt Mask bit and <br>
++ * // set the OTG Interrupt mask bit, leaving all others as they were.
++ * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
++ */
++static __inline__
++ void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask)
++{
++ // writel( (readl(reg) & ~clear_mask) | set_mask, reg );
++ __raw_writel( (__raw_readl(reg) & ~clear_mask) | set_mask, reg );
++};
++
++
++/**
++ * Wrapper for the OS micro-second delay function.
++ * @param[in] usecs Microseconds of delay
++ */
++static __inline__ void UDELAY( const uint32_t usecs )
++{
++ udelay( usecs );
++}
++
++/**
++ * Wrapper for the OS milli-second delay function.
++ * @param[in] msecs milliseconds of delay
++ */
++static __inline__ void MDELAY( const uint32_t msecs )
++{
++ mdelay( msecs );
++}
++
++/**
++ * Wrapper for the Linux spin_lock. On the ARM (Integrator)
++ * spin_lock() is a nop.
++ *
++ * @param lock Pointer to the spinlock.
++ */
++static __inline__ void SPIN_LOCK( spinlock_t *lock )
++{
++ spin_lock(lock);
++}
++
++/**
++ * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
++ * spin_lock() is a nop.
++ *
++ * @param lock Pointer to the spinlock.
++ */
++static __inline__ void SPIN_UNLOCK( spinlock_t *lock )
++{
++ spin_unlock(lock);
++}
++
++/**
++ * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
++ * (Integrator) spin_lock() is a nop.
++ *
++ * @param l Pointer to the spinlock.
++ * @param f unsigned long for irq flags storage.
++ */
++#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f);
++
++/**
++ * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
++ * (Integrator) spin_lock() is a nop.
++ *
++ * @param l Pointer to the spinlock.
++ * @param f unsigned long for irq flags storage.
++ */
++#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f);
++
++/*
++ * Debugging support vanishes in non-debug builds.
++ */
++
++
++/**
++ * The Debug Level bit-mask variable.
++ */
++extern uint32_t g_dbg_lvl;
++/**
++ * Set the Debug Level variable.
++ */
++static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new )
++{
++ uint32_t old = g_dbg_lvl;
++ g_dbg_lvl = new;
++ return old;
++}
++
++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
++#define DBG_CIL (0x2)
++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
++ * messages */
++#define DBG_CILV (0x20)
++/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
++ * messages */
++#define DBG_PCD (0x4)
++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
++ * messages */
++#define DBG_PCDV (0x40)
++/** When debug level has the DBG_HCD bit set, display Host debug messages */
++#define DBG_HCD (0x8)
++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
++ * messages */
++#define DBG_HCDV (0x80)
++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
++ * mode. */
++#define DBG_HCD_URB (0x800)
++
++/** When debug level has any bit set, display debug messages */
++#define DBG_ANY (0xFF)
++
++/** All debug messages off */
++#define DBG_OFF 0
++
++/** Prefix string for DWC_DEBUG print macros. */
++#define USB_DWC "DWC_otg: "
++
++/**
++ * Print a debug message when the Global debug level variable contains
++ * the bit defined in <code>lvl</code>.
++ *
++ * @param[in] lvl - Debug level, use one of the DBG_ constants above.
++ * @param[in] x - like printf
++ *
++ * Example:<p>
++ * <code>
++ * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
++ * </code>
++ * <br>
++ * results in:<br>
++ * <code>
++ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
++ * </code>
++ */
++#ifdef DEBUG
++
++# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
++# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
++
++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
++
++#else
++
++# define DWC_DEBUGPL(lvl, x...) do{}while(0)
++# define DWC_DEBUGP(x...)
++
++# define CHK_DEBUG_LEVEL(level) (0)
++
++#endif /*DEBUG*/
++
++/**
++ * Print an Error message.
++ */
++#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
++/**
++ * Print a Warning message.
++ */
++#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
++/**
++ * Print a notice (normal but significant message).
++ */
++#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
++/**
++ * Basic message printing.
++ */
++#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
++
++#endif
++
+--- /dev/null
++++ b/drivers/usb/dwc/otg_regs.h
+@@ -0,0 +1,2059 @@
++/* ==========================================================================
++ * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
++ * $Revision: #72 $
++ * $Date: 2008/09/19 $
++ * $Change: 1099526 $
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_REGS_H__
++#define __DWC_OTG_REGS_H__
++
++/**
++ * @file
++ *
++ * This file contains the data structures for accessing the DWC_otg core registers.
++ *
++ * The application interfaces with the HS OTG core by reading from and
++ * writing to the Control and Status Register (CSR) space through the
++ * AHB Slave interface. These registers are 32 bits wide, and the
++ * addresses are 32-bit-block aligned.
++ * CSRs are classified as follows:
++ * - Core Global Registers
++ * - Device Mode Registers
++ * - Device Global Registers
++ * - Device Endpoint Specific Registers
++ * - Host Mode Registers
++ * - Host Global Registers
++ * - Host Port CSRs
++ * - Host Channel Specific Registers
++ *
++ * Only the Core Global registers can be accessed in both Device and
++ * Host modes. When the HS OTG core is operating in one mode, either
++ * Device or Host, the application must not access registers from the
++ * other mode. When the core switches from one mode to another, the
++ * registers in the new mode of operation must be reprogrammed as they
++ * would be after a power-on reset.
++ */
++
++/** Maximum number of Periodic FIFOs */
++#define MAX_PERIO_FIFOS 15
++/** Maximum number of Transmit FIFOs */
++#define MAX_TX_FIFOS 15
++
++/** Maximum number of Endpoints/HostChannels */
++#define MAX_EPS_CHANNELS 16
++
++/****************************************************************************/
++/** DWC_otg Core registers .
++ * The dwc_otg_core_global_regs structure defines the size
++ * and relative field offsets for the Core Global registers.
++ */
++typedef struct dwc_otg_core_global_regs
++{
++ /** OTG Control and Status Register. <i>Offset: 000h</i> */
++ volatile uint32_t gotgctl;
++ /** OTG Interrupt Register. <i>Offset: 004h</i> */
++ volatile uint32_t gotgint;
++ /**Core AHB Configuration Register. <i>Offset: 008h</i> */
++ volatile uint32_t gahbcfg;
++
++#define DWC_GLBINTRMASK 0x0001
++#define DWC_DMAENABLE 0x0020
++#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
++#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
++#define DWC_PTXEMPTYLVL_EMPTY 0x0100
++#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
++
++ /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
++ volatile uint32_t gusbcfg;
++ /**Core Reset Register. <i>Offset: 010h</i> */
++ volatile uint32_t grstctl;
++ /**Core Interrupt Register. <i>Offset: 014h</i> */
++ volatile uint32_t gintsts;
++ /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
++ volatile uint32_t gintmsk;
++ /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
++ volatile uint32_t grxstsr;
++ /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
++ volatile uint32_t grxstsp;
++ /**Receive FIFO Size Register. <i>Offset: 024h</i> */
++ volatile uint32_t grxfsiz;
++ /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
++ volatile uint32_t gnptxfsiz;
++ /**Non Periodic Transmit FIFO/Queue Status Register (Read
++ * Only). <i>Offset: 02Ch</i> */
++ volatile uint32_t gnptxsts;
++ /**I2C Access Register. <i>Offset: 030h</i> */
++ volatile uint32_t gi2cctl;
++ /**PHY Vendor Control Register. <i>Offset: 034h</i> */
++ volatile uint32_t gpvndctl;
++ /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
++ volatile uint32_t ggpio;
++ /**User ID Register. <i>Offset: 03Ch</i> */
++ volatile uint32_t guid;
++ /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
++ volatile uint32_t gsnpsid;
++ /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
++ volatile uint32_t ghwcfg1;
++ /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
++ volatile uint32_t ghwcfg2;
++#define DWC_SLAVE_ONLY_ARCH 0
++#define DWC_EXT_DMA_ARCH 1
++#define DWC_INT_DMA_ARCH 2
++
++#define DWC_MODE_HNP_SRP_CAPABLE 0
++#define DWC_MODE_SRP_ONLY_CAPABLE 1
++#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
++#define DWC_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_MODE_SRP_CAPABLE_HOST 5
++#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
++
++ /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
++ volatile uint32_t ghwcfg3;
++ /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
++ volatile uint32_t ghwcfg4;
++ /** Reserved <i>Offset: 054h-0FFh</i> */
++ volatile uint32_t reserved[43];
++ /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
++ volatile uint32_t hptxfsiz;
++ /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
++ otherwise Device Transmit FIFO#n Register.
++ * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
++ volatile uint32_t dptxfsiz_dieptxf[15];
++} dwc_otg_core_global_regs_t;
++
++/**
++ * This union represents the bit fields of the Core OTG Control
++ * and Status Register (GOTGCTL). Set the bits using the bit
++ * fields then write the <i>d32</i> value to the register.
++ */
++typedef union gotgctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned sesreqscs : 1;
++ unsigned sesreq : 1;
++ unsigned reserved2_7 : 6;
++ unsigned hstnegscs : 1;
++ unsigned hnpreq : 1;
++ unsigned hstsethnpen : 1;
++ unsigned devhnpen : 1;
++ unsigned reserved12_15 : 4;
++ unsigned conidsts : 1;
++ unsigned reserved17 : 1;
++ unsigned asesvld : 1;
++ unsigned bsesvld : 1;
++ unsigned currmod : 1;
++ unsigned reserved21_31 : 11;
++ } b;
++} gotgctl_data_t;
++
++/**
++ * This union represents the bit fields of the Core OTG Interrupt Register
++ * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
++ * value to the register.
++ */
++typedef union gotgint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Current Mode */
++ unsigned reserved0_1 : 2;
++
++ /** Session End Detected */
++ unsigned sesenddet : 1;
++
++ unsigned reserved3_7 : 5;
++
++ /** Session Request Success Status Change */
++ unsigned sesreqsucstschng : 1;
++ /** Host Negotiation Success Status Change */
++ unsigned hstnegsucstschng : 1;
++
++ unsigned reserver10_16 : 7;
++
++ /** Host Negotiation Detected */
++ unsigned hstnegdet : 1;
++ /** A-Device Timeout Change */
++ unsigned adevtoutchng : 1;
++ /** Debounce Done */
++ unsigned debdone : 1;
++
++ unsigned reserved31_20 : 12;
++
++ } b;
++} gotgint_data_t;
++
++
++/**
++ * This union represents the bit fields of the Core AHB Configuration
++ * Register (GAHBCFG). Set/clear the bits using the bit fields then
++ * write the <i>d32</i> value to the register.
++ */
++typedef union gahbcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned glblintrmsk : 1;
++#define DWC_GAHBCFG_GLBINT_ENABLE 1
++
++ unsigned hburstlen : 4;
++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
++
++ unsigned dmaenable : 1;
++#define DWC_GAHBCFG_DMAENABLE 1
++ unsigned reserved : 1;
++ unsigned nptxfemplvl_txfemplvl : 1;
++ unsigned ptxfemplvl : 1;
++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
++ unsigned reserved9_31 : 23;
++ } b;
++} gahbcfg_data_t;
++
++/**
++ * This union represents the bit fields of the Core USB Configuration
++ * Register (GUSBCFG). Set the bits using the bit fields then write
++ * the <i>d32</i> value to the register.
++ */
++typedef union gusbcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned toutcal : 3;
++ unsigned phyif : 1;
++ unsigned ulpi_utmi_sel : 1;
++ unsigned fsintf : 1;
++ unsigned physel : 1;
++ unsigned ddrsel : 1;
++ unsigned srpcap : 1;
++ unsigned hnpcap : 1;
++ unsigned usbtrdtim : 4;
++ unsigned nptxfrwnden : 1;
++ unsigned phylpwrclksel : 1;
++ unsigned otgutmifssel : 1;
++ unsigned ulpi_fsls : 1;
++ unsigned ulpi_auto_res : 1;
++ unsigned ulpi_clk_sus_m : 1;
++ unsigned ulpi_ext_vbus_drv : 1;
++ unsigned ulpi_int_vbus_indicator : 1;
++ unsigned term_sel_dl_pulse : 1;
++ unsigned reserved23_27 : 5;
++ unsigned tx_end_delay : 1;
++ unsigned reserved29_31 : 3;
++ } b;
++} gusbcfg_data_t;
++
++/**
++ * This union represents the bit fields of the Core Reset Register
++ * (GRSTCTL). Set/clear the bits using the bit fields then write the
++ * <i>d32</i> value to the register.
++ */
++typedef union grstctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Core Soft Reset (CSftRst) (Device and Host)
++ *
++ * The application can flush the control logic in the
++ * entire core using this bit. This bit resets the
++ * pipelines in the AHB Clock domain as well as the
++ * PHY Clock domain.
++ *
++ * The state machines are reset to an IDLE state, the
++ * control bits in the CSRs are cleared, all the
++ * transmit FIFOs and the receive FIFO are flushed.
++ *
++ * The status mask bits that control the generation of
++ * the interrupt, are cleared, to clear the
++ * interrupt. The interrupt status bits are not
++ * cleared, so the application can get the status of
++ * any events that occurred in the core after it has
++ * set this bit.
++ *
++ * Any transactions on the AHB are terminated as soon
++ * as possible following the protocol. Any
++ * transactions on the USB are terminated immediately.
++ *
++ * The configuration settings in the CSRs are
++ * unchanged, so the software doesn't have to
++ * reprogram these registers (Device
++ * Configuration/Host Configuration/Core System
++ * Configuration/Core PHY Configuration).
++ *
++ * The application can write to this bit, any time it
++ * wants to reset the core. This is a self clearing
++ * bit and the core clears this bit after all the
++ * necessary logic is reset in the core, which may
++ * take several clocks, depending on the current state
++ * of the core.
++ */
++ unsigned csftrst : 1;
++ /** Hclk Soft Reset
++ *
++ * The application uses this bit to reset the control logic in
++ * the AHB clock domain. Only AHB clock domain pipelines are
++ * reset.
++ */
++ unsigned hsftrst : 1;
++ /** Host Frame Counter Reset (Host Only)<br>
++ *
++ * The application can reset the (micro)frame number
++ * counter inside the core, using this bit. When the
++ * (micro)frame counter is reset, the subsequent SOF
++ * sent out by the core, will have a (micro)frame
++ * number of 0.
++ */
++ unsigned hstfrm : 1;
++ /** In Token Sequence Learning Queue Flush
++ * (INTknQFlsh) (Device Only)
++ */
++ unsigned intknqflsh : 1;
++ /** RxFIFO Flush (RxFFlsh) (Device and Host)
++ *
++ * The application can flush the entire Receive FIFO
++ * using this bit. <p>The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. <p>The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is reading from the RxFIFO nor the MAC
++ * is writing the data in to the FIFO. <p>The
++ * application should wait until the bit is cleared
++ * before performing any other operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned rxfflsh : 1;
++ /** TxFIFO Flush (TxFFlsh) (Device and Host).
++ *
++ * This bit is used to selectively flush a single or
++ * all transmit FIFOs. The application must first
++ * ensure that the core is not in the middle of a
++ * transaction. <p>The application should write into
++ * this bit, only after making sure that neither the
++ * DMA engine is writing into the TxFIFO nor the MAC
++ * is reading the data out of the FIFO. <p>The
++ * application should wait until the core clears this
++ * bit, before performing any operations. This bit
++ * will takes 8 clocks (slowest of PHY or AHB clock)
++ * to clear.
++ */
++ unsigned txfflsh : 1;
++ /** TxFIFO Number (TxFNum) (Device and Host).
++ *
++ * This is the FIFO number which needs to be flushed,
++ * using the TxFIFO Flush bit. This field should not
++ * be changed until the TxFIFO Flush bit is cleared by
++ * the core.
++ * - 0x0 : Non Periodic TxFIFO Flush
++ * - 0x1 : Periodic TxFIFO #1 Flush in device mode
++ * or Periodic TxFIFO in host mode
++ * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
++ * - ...
++ * - 0xF : Periodic TxFIFO #15 Flush in device mode
++ * - 0x10: Flush all the Transmit NonPeriodic and
++ * Transmit Periodic FIFOs in the core
++ */
++ unsigned txfnum : 5;
++ /** Reserved */
++ unsigned reserved11_29 : 19;
++ /** DMA Request Signal. Indicated DMA request is in
++ * probress. Used for debug purpose. */
++ unsigned dmareq : 1;
++ /** AHB Master Idle. Indicates the AHB Master State
++ * Machine is in IDLE condition. */
++ unsigned ahbidle : 1;
++ } b;
++} grstctl_t;
++
++
++/**
++ * This union represents the bit fields of the Core Interrupt Mask
++ * Register (GINTMSK). Set/clear the bits using the bit fields then
++ * write the <i>d32</i> value to the register.
++ */
++typedef union gintmsk_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned reserved0 : 1;
++ unsigned modemismatch : 1;
++ unsigned otgintr : 1;
++ unsigned sofintr : 1;
++ unsigned rxstsqlvl : 1;
++ unsigned nptxfempty : 1;
++ unsigned ginnakeff : 1;
++ unsigned goutnakeff : 1;
++ unsigned reserved8 : 1;
++ unsigned i2cintr : 1;
++ unsigned erlysuspend : 1;
++ unsigned usbsuspend : 1;
++ unsigned usbreset : 1;
++ unsigned enumdone : 1;
++ unsigned isooutdrop : 1;
++ unsigned eopframe : 1;
++ unsigned reserved16 : 1;
++ unsigned epmismatch : 1;
++ unsigned inepintr : 1;
++ unsigned outepintr : 1;
++ unsigned incomplisoin : 1;
++ unsigned incomplisoout : 1;
++ unsigned reserved22_23 : 2;
++ unsigned portintr : 1;
++ unsigned hcintr : 1;
++ unsigned ptxfempty : 1;
++ unsigned reserved27 : 1;
++ unsigned conidstschng : 1;
++ unsigned disconnect : 1;
++ unsigned sessreqintr : 1;
++ unsigned wkupintr : 1;
++ } b;
++} gintmsk_data_t;
++/**
++ * This union represents the bit fields of the Core Interrupt Register
++ * (GINTSTS). Set/clear the bits using the bit fields then write the
++ * <i>d32</i> value to the register.
++ */
++typedef union gintsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++#define DWC_SOF_INTR_MASK 0x0008
++ /** register bits */
++ struct
++ {
++#define DWC_HOST_MODE 1
++ unsigned curmode : 1;
++ unsigned modemismatch : 1;
++ unsigned otgintr : 1;
++ unsigned sofintr : 1;
++ unsigned rxstsqlvl : 1;
++ unsigned nptxfempty : 1;
++ unsigned ginnakeff : 1;
++ unsigned goutnakeff : 1;
++ unsigned reserved8 : 1;
++ unsigned i2cintr : 1;
++ unsigned erlysuspend : 1;
++ unsigned usbsuspend : 1;
++ unsigned usbreset : 1;
++ unsigned enumdone : 1;
++ unsigned isooutdrop : 1;
++ unsigned eopframe : 1;
++ unsigned intokenrx : 1;
++ unsigned epmismatch : 1;
++ unsigned inepint: 1;
++ unsigned outepintr : 1;
++ unsigned incomplisoin : 1;
++ unsigned incomplisoout : 1;
++ unsigned reserved22_23 : 2;
++ unsigned portintr : 1;
++ unsigned hcintr : 1;
++ unsigned ptxfempty : 1;
++ unsigned reserved27 : 1;
++ unsigned conidstschng : 1;
++ unsigned disconnect : 1;
++ unsigned sessreqintr : 1;
++ unsigned wkupintr : 1;
++ } b;
++} gintsts_data_t;
++
++
++/**
++ * This union represents the bit fields in the Device Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
++ * element then read out the bits using the <i>b</i>it elements.
++ */
++typedef union device_grxsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned epnum : 4;
++ unsigned bcnt : 11;
++ unsigned dpid : 2;
++#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
++#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
++
++#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
++#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
++#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
++ unsigned pktsts : 4;
++ unsigned fn : 4;
++ unsigned reserved : 7;
++ } b;
++} device_grxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Host Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
++ * element then read out the bits using the <i>b</i>it elements.
++ */
++typedef union host_grxsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned chnum : 4;
++ unsigned bcnt : 11;
++ unsigned dpid : 2;
++ unsigned pktsts : 4;
++#define DWC_GRXSTS_PKTSTS_IN 0x2
++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
++#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
++ unsigned reserved : 11;
++ } b;
++} host_grxsts_data_t;
++
++/**
++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
++ * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then
++ * read out the bits using the <i>b</i>it elements.
++ */
++typedef union fifosize_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned startaddr : 16;
++ unsigned depth : 16;
++ } b;
++} fifosize_data_t;
++
++/**
++ * This union represents the bit fields in the Non-Periodic Transmit
++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
++ * <i>d32</i> element then read out the bits using the <i>b</i>it
++ * elements.
++ */
++typedef union gnptxsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned nptxfspcavail : 16;
++ unsigned nptxqspcavail : 8;
++ /** Top of the Non-Periodic Transmit Request Queue
++ * - bit 24 - Terminate (Last entry for the selected
++ * channel/EP)
++ * - bits 26:25 - Token Type
++ * - 2'b00 - IN/OUT
++ * - 2'b01 - Zero Length OUT
++ * - 2'b10 - PING/Complete Split
++ * - 2'b11 - Channel Halt
++ * - bits 30:27 - Channel/EP Number
++ */
++ unsigned nptxqtop_terminate : 1;
++ unsigned nptxqtop_token : 2;
++ unsigned nptxqtop_chnep : 4;
++ unsigned reserved : 1;
++ } b;
++} gnptxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Transmit
++ * FIFO Status Register (DTXFSTS). Read the register into the
++ * <i>d32</i> element then read out the bits using the <i>b</i>it
++ * elements.
++ */
++typedef union dtxfsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned txfspcavail : 16;
++ unsigned reserved : 16;
++ } b;
++} dtxfsts_data_t;
++
++/**
++ * This union represents the bit fields in the I2C Control Register
++ * (I2CCTL). Read the register into the <i>d32</i> element then read out the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union gi2cctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned rwdata : 8;
++ unsigned regaddr : 8;
++ unsigned addr : 7;
++ unsigned i2cen : 1;
++ unsigned ack : 1;
++ unsigned i2csuspctl : 1;
++ unsigned i2cdevaddr : 2;
++ unsigned reserved : 2;
++ unsigned rw : 1;
++ unsigned bsydne : 1;
++ } b;
++} gi2cctl_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config1
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg1_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned ep_dir0 : 2;
++ unsigned ep_dir1 : 2;
++ unsigned ep_dir2 : 2;
++ unsigned ep_dir3 : 2;
++ unsigned ep_dir4 : 2;
++ unsigned ep_dir5 : 2;
++ unsigned ep_dir6 : 2;
++ unsigned ep_dir7 : 2;
++ unsigned ep_dir8 : 2;
++ unsigned ep_dir9 : 2;
++ unsigned ep_dir10 : 2;
++ unsigned ep_dir11 : 2;
++ unsigned ep_dir12 : 2;
++ unsigned ep_dir13 : 2;
++ unsigned ep_dir14 : 2;
++ unsigned ep_dir15 : 2;
++ } b;
++} hwcfg1_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config2
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg2_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /* GHWCFG2 */
++ unsigned op_mode : 3;
++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
++
++ unsigned architecture : 2;
++ unsigned point2point : 1;
++ unsigned hs_phy_type : 2;
++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
++
++ unsigned fs_phy_type : 2;
++ unsigned num_dev_ep : 4;
++ unsigned num_host_chan : 4;
++ unsigned perio_ep_supported : 1;
++ unsigned dynamic_fifo : 1;
++ unsigned multi_proc_int : 1;
++ unsigned reserved21 : 1;
++ unsigned nonperio_tx_q_depth : 2;
++ unsigned host_perio_tx_q_depth : 2;
++ unsigned dev_token_q_depth : 5;
++ unsigned reserved31 : 1;
++ } b;
++} hwcfg2_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config3
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg3_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /* GHWCFG3 */
++ unsigned xfer_size_cntr_width : 4;
++ unsigned packet_size_cntr_width : 3;
++ unsigned otg_func : 1;
++ unsigned i2c : 1;
++ unsigned vendor_ctrl_if : 1;
++ unsigned optional_features : 1;
++ unsigned synch_reset_type : 1;
++ unsigned ahb_phy_clock_synch : 1;
++ unsigned reserved15_13 : 3;
++ unsigned dfifo_depth : 16;
++ } b;
++} hwcfg3_data_t;
++
++/**
++ * This union represents the bit fields in the User HW Config4
++ * Register. Read the register into the <i>d32</i> element then read
++ * out the bits using the <i>b</i>it elements.
++ */
++typedef union hwcfg4_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned num_dev_perio_in_ep : 4;
++ unsigned power_optimiz : 1;
++ unsigned min_ahb_freq : 9;
++ unsigned utmi_phy_data_width : 2;
++ unsigned num_dev_mode_ctrl_ep : 4;
++ unsigned iddig_filt_en : 1;
++ unsigned vbus_valid_filt_en : 1;
++ unsigned a_valid_filt_en : 1;
++ unsigned b_valid_filt_en : 1;
++ unsigned session_end_filt_en : 1;
++ unsigned ded_fifo_en : 1;
++ unsigned num_in_eps : 4;
++ unsigned desc_dma : 1;
++ unsigned desc_dma_dyn : 1;
++ } b;
++} hwcfg4_data_t;
++
++////////////////////////////////////////////
++// Device Registers
++/**
++ * Device Global Registers. <i>Offsets 800h-BFFh</i>
++ *
++ * The following structures define the size and relative field offsets
++ * for the Device Mode Registers.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_global_regs
++{
++ /** Device Configuration Register. <i>Offset 800h</i> */
++ volatile uint32_t dcfg;
++ /** Device Control Register. <i>Offset: 804h</i> */
++ volatile uint32_t dctl;
++ /** Device Status Register (Read Only). <i>Offset: 808h</i> */
++ volatile uint32_t dsts;
++ /** Reserved. <i>Offset: 80Ch</i> */
++ uint32_t unused;
++ /** Device IN Endpoint Common Interrupt Mask
++ * Register. <i>Offset: 810h</i> */
++ volatile uint32_t diepmsk;
++ /** Device OUT Endpoint Common Interrupt Mask
++ * Register. <i>Offset: 814h</i> */
++ volatile uint32_t doepmsk;
++ /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
++ volatile uint32_t daint;
++ /** Device All Endpoints Interrupt Mask Register. <i>Offset:
++ * 81Ch</i> */
++ volatile uint32_t daintmsk;
++ /** Device IN Token Queue Read Register-1 (Read Only).
++ * <i>Offset: 820h</i> */
++ volatile uint32_t dtknqr1;
++ /** Device IN Token Queue Read Register-2 (Read Only).
++ * <i>Offset: 824h</i> */
++ volatile uint32_t dtknqr2;
++ /** Device VBUS discharge Register. <i>Offset: 828h</i> */
++ volatile uint32_t dvbusdis;
++ /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
++ volatile uint32_t dvbuspulse;
++ /** Device IN Token Queue Read Register-3 (Read Only). /
++ * Device Thresholding control register (Read/Write)
++ * <i>Offset: 830h</i> */
++ volatile uint32_t dtknqr3_dthrctl;
++ /** Device IN Token Queue Read Register-4 (Read Only). /
++ * Device IN EPs empty Inr. Mask Register (Read/Write)
++ * <i>Offset: 834h</i> */
++ volatile uint32_t dtknqr4_fifoemptymsk;
++ /** Device Each Endpoint Interrupt Register (Read Only). /
++ * <i>Offset: 838h</i> */
++ volatile uint32_t deachint;
++ /** Device Each Endpoint Interrupt mask Register (Read/Write). /
++ * <i>Offset: 83Ch</i> */
++ volatile uint32_t deachintmsk;
++ /** Device Each In Endpoint Interrupt mask Register (Read/Write). /
++ * <i>Offset: 840h</i> */
++ volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
++ /** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
++ * <i>Offset: 880h</i> */
++ volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
++} dwc_otg_device_global_regs_t;
++
++/**
++ * This union represents the bit fields in the Device Configuration
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements. Write the
++ * <i>d32</i> member to the dcfg register.
++ */
++typedef union dcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Device Speed */
++ unsigned devspd : 2;
++ /** Non Zero Length Status OUT Handshake */
++ unsigned nzstsouthshk : 1;
++#define DWC_DCFG_SEND_STALL 1
++
++ unsigned reserved3 : 1;
++ /** Device Addresses */
++ unsigned devaddr : 7;
++ /** Periodic Frame Interval */
++ unsigned perfrint : 2;
++#define DWC_DCFG_FRAME_INTERVAL_80 0
++#define DWC_DCFG_FRAME_INTERVAL_85 1
++#define DWC_DCFG_FRAME_INTERVAL_90 2
++#define DWC_DCFG_FRAME_INTERVAL_95 3
++
++ unsigned reserved13_17 : 5;
++ /** In Endpoint Mis-match count */
++ unsigned epmscnt : 5;
++ /** Enable Descriptor DMA in Device mode */
++ unsigned descdma : 1;
++ } b;
++} dcfg_data_t;
++
++/**
++ * This union represents the bit fields in the Device Control
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union dctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Remote Wakeup */
++ unsigned rmtwkupsig : 1;
++ /** Soft Disconnect */
++ unsigned sftdiscon : 1;
++ /** Global Non-Periodic IN NAK Status */
++ unsigned gnpinnaksts : 1;
++ /** Global OUT NAK Status */
++ unsigned goutnaksts : 1;
++ /** Test Control */
++ unsigned tstctl : 3;
++ /** Set Global Non-Periodic IN NAK */
++ unsigned sgnpinnak : 1;
++ /** Clear Global Non-Periodic IN NAK */
++ unsigned cgnpinnak : 1;
++ /** Set Global OUT NAK */
++ unsigned sgoutnak : 1;
++ /** Clear Global OUT NAK */
++ unsigned cgoutnak : 1;
++
++ /** Power-On Programming Done */
++ unsigned pwronprgdone : 1;
++ /** Global Continue on BNA */
++ unsigned gcontbna : 1;
++ /** Global Multi Count */
++ unsigned gmc : 2;
++ /** Ignore Frame Number for ISOC EPs */
++ unsigned ifrmnum : 1;
++ /** NAK on Babble */
++ unsigned nakonbble : 1;
++
++ unsigned reserved16_31 : 16;
++ } b;
++} dctl_data_t;
++
++/**
++ * This union represents the bit fields in the Device Status
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union dsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Suspend Status */
++ unsigned suspsts : 1;
++ /** Enumerated Speed */
++ unsigned enumspd : 2;
++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
++ /** Erratic Error */
++ unsigned errticerr : 1;
++ unsigned reserved4_7: 4;
++ /** Frame or Microframe Number of the received SOF */
++ unsigned soffn : 14;
++ unsigned reserved22_31 : 10;
++ } b;
++} dsts_data_t;
++
++
++/**
++ * This union represents the bit fields in the Device IN EP Interrupt
++ * Register and the Device IN EP Common Mask Register.
++ *
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union diepint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Transfer complete mask */
++ unsigned xfercompl : 1;
++ /** Endpoint disable mask */
++ unsigned epdisabled : 1;
++ /** AHB Error mask */
++ unsigned ahberr : 1;
++ /** TimeOUT Handshake mask (non-ISOC EPs) */
++ unsigned timeout : 1;
++ /** IN Token received with TxF Empty mask */
++ unsigned intktxfemp : 1;
++ /** IN Token Received with EP mismatch mask */
++ unsigned intknepmis : 1;
++ /** IN Endpoint HAK Effective mask */
++ unsigned inepnakeff : 1;
++ /** IN Endpoint HAK Effective mask */
++ unsigned emptyintr : 1;
++ unsigned txfifoundrn : 1;
++
++ /** BNA Interrupt mask */
++ unsigned bna : 1;
++ unsigned reserved10_12 : 3;
++ /** BNA Interrupt mask */
++ unsigned nak : 1;
++ unsigned reserved14_31 : 18;
++ } b;
++} diepint_data_t;
++
++/**
++ * This union represents the bit fields in the Device IN EP
++ * Common/Dedicated Interrupt Mask Register.
++ */
++typedef union diepint_data diepmsk_data_t;
++
++/**
++ * This union represents the bit fields in the Device OUT EP Interrupt
++ * Registerand Device OUT EP Common Interrupt Mask Register.
++ *
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union doepint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Transfer complete */
++ unsigned xfercompl : 1;
++ /** Endpoint disable */
++ unsigned epdisabled : 1;
++ /** AHB Error */
++ unsigned ahberr : 1;
++ /** Setup Phase Done (contorl EPs) */
++ unsigned setup : 1;
++ /** OUT Token Received when Endpoint Disabled */
++ unsigned outtknepdis : 1;
++ unsigned stsphsercvd : 1;
++ /** Back-to-Back SETUP Packets Received */
++ unsigned back2backsetup : 1;
++ unsigned reserved7 : 1;
++ /** OUT packet Error */
++ unsigned outpkterr : 1;
++ /** BNA Interrupt */
++ unsigned bna : 1;
++ unsigned reserved10 : 1;
++ /** Packet Drop Status */
++ unsigned pktdrpsts : 1;
++ /** Babble Interrupt */
++ unsigned babble : 1;
++ /** NAK Interrupt */
++ unsigned nak : 1;
++ /** NYET Interrupt */
++ unsigned nyet : 1;
++
++ unsigned reserved15_31 : 17;
++ } b;
++} doepint_data_t;
++
++/**
++ * This union represents the bit fields in the Device OUT EP
++ * Common/Dedicated Interrupt Mask Register.
++ */
++typedef union doepint_data doepmsk_data_t;
++
++/**
++ * This union represents the bit fields in the Device All EP Interrupt
++ * and Mask Registers.
++ * - Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union daint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** IN Endpoint bits */
++ unsigned in : 16;
++ /** OUT Endpoint bits */
++ unsigned out : 16;
++ } ep;
++ struct
++ {
++ /** IN Endpoint bits */
++ unsigned inep0 : 1;
++ unsigned inep1 : 1;
++ unsigned inep2 : 1;
++ unsigned inep3 : 1;
++ unsigned inep4 : 1;
++ unsigned inep5 : 1;
++ unsigned inep6 : 1;
++ unsigned inep7 : 1;
++ unsigned inep8 : 1;
++ unsigned inep9 : 1;
++ unsigned inep10 : 1;
++ unsigned inep11 : 1;
++ unsigned inep12 : 1;
++ unsigned inep13 : 1;
++ unsigned inep14 : 1;
++ unsigned inep15 : 1;
++ /** OUT Endpoint bits */
++ unsigned outep0 : 1;
++ unsigned outep1 : 1;
++ unsigned outep2 : 1;
++ unsigned outep3 : 1;
++ unsigned outep4 : 1;
++ unsigned outep5 : 1;
++ unsigned outep6 : 1;
++ unsigned outep7 : 1;
++ unsigned outep8 : 1;
++ unsigned outep9 : 1;
++ unsigned outep10 : 1;
++ unsigned outep11 : 1;
++ unsigned outep12 : 1;
++ unsigned outep13 : 1;
++ unsigned outep14 : 1;
++ unsigned outep15 : 1;
++ } b;
++} daint_data_t;
++
++/**
++ * This union represents the bit fields in the Device IN Token Queue
++ * Read Registers.
++ * - Read the register into the <i>d32</i> member.
++ * - READ-ONLY Register
++ */
++typedef union dtknq1_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** In Token Queue Write Pointer */
++ unsigned intknwptr : 5;
++ /** Reserved */
++ unsigned reserved05_06 : 2;
++ /** write pointer has wrapped. */
++ unsigned wrap_bit : 1;
++ /** EP Numbers of IN Tokens 0 ... 4 */
++ unsigned epnums0_5 : 24;
++ }b;
++} dtknq1_data_t;
++
++/**
++ * This union represents Threshold control Register
++ * - Read and write the register into the <i>d32</i> member.
++ * - READ-WRITABLE Register
++ */
++typedef union dthrctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** non ISO Tx Thr. Enable */
++ unsigned non_iso_thr_en : 1;
++ /** ISO Tx Thr. Enable */
++ unsigned iso_thr_en : 1;
++ /** Tx Thr. Length */
++ unsigned tx_thr_len : 9;
++ /** Reserved */
++ unsigned reserved11_15 : 5;
++ /** Rx Thr. Enable */
++ unsigned rx_thr_en : 1;
++ /** Rx Thr. Length */
++ unsigned rx_thr_len : 9;
++ /** Reserved */
++ unsigned reserved26_31 : 6;
++ }b;
++} dthrctl_data_t;
++
++
++/**
++ * Device Logical IN Endpoint-Specific Registers. <i>Offsets
++ * 900h-AFCh</i>
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_in_ep_regs
++{
++ /** Device IN Endpoint Control Register. <i>Offset:900h +
++ * (ep_num * 20h) + 00h</i> */
++ volatile uint32_t diepctl;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
++ uint32_t reserved04;
++ /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
++ * (ep_num * 20h) + 08h</i> */
++ volatile uint32_t diepint;
++ /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
++ uint32_t reserved0C;
++ /** Device IN Endpoint Transfer Size
++ * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
++ volatile uint32_t dieptsiz;
++ /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
++ * (ep_num * 20h) + 14h</i> */
++ volatile uint32_t diepdma;
++ /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
++ * (ep_num * 20h) + 18h</i> */
++ volatile uint32_t dtxfsts;
++ /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
++ * (ep_num * 20h) + 1Ch</i> */
++ volatile uint32_t diepdmab;
++} dwc_otg_dev_in_ep_regs_t;
++
++/**
++ * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
++ * B00h-CFCh</i>
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * <i>These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.</i>
++ */
++typedef struct dwc_otg_dev_out_ep_regs
++{
++ /** Device OUT Endpoint Control Register. <i>Offset:B00h +
++ * (ep_num * 20h) + 00h</i> */
++ volatile uint32_t doepctl;
++ /** Device OUT Endpoint Frame number Register. <i>Offset:
++ * B00h + (ep_num * 20h) + 04h</i> */
++ volatile uint32_t doepfn;
++ /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
++ * (ep_num * 20h) + 08h</i> */
++ volatile uint32_t doepint;
++ /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
++ uint32_t reserved0C;
++ /** Device OUT Endpoint Transfer Size Register. <i>Offset:
++ * B00h + (ep_num * 20h) + 10h</i> */
++ volatile uint32_t doeptsiz;
++ /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
++ * + (ep_num * 20h) + 14h</i> */
++ volatile uint32_t doepdma;
++ /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */
++ uint32_t unused;
++ /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
++ * + (ep_num * 20h) + 1Ch</i> */
++ uint32_t doepdmab;
++} dwc_otg_dev_out_ep_regs_t;
++
++/**
++ * This union represents the bit fields in the Device EP Control
++ * Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union depctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Maximum Packet Size
++ * IN/OUT EPn
++ * IN/OUT EP0 - 2 bits
++ * 2'b00: 64 Bytes
++ * 2'b01: 32
++ * 2'b10: 16
++ * 2'b11: 8 */
++ unsigned mps : 11;
++#define DWC_DEP0CTL_MPS_64 0
++#define DWC_DEP0CTL_MPS_32 1
++#define DWC_DEP0CTL_MPS_16 2
++#define DWC_DEP0CTL_MPS_8 3
++
++ /** Next Endpoint
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved */
++ unsigned nextep : 4;
++
++ /** USB Active Endpoint */
++ unsigned usbactep : 1;
++
++ /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
++ * This field contains the PID of the packet going to
++ * be received or transmitted on this endpoint. The
++ * application should program the PID of the first
++ * packet going to be received or transmitted on this
++ * endpoint , after the endpoint is
++ * activated. Application use the SetD1PID and
++ * SetD0PID fields of this register to program either
++ * D0 or D1 PID.
++ *
++ * The encoding for this field is
++ * - 0: D0
++ * - 1: D1
++ */
++ unsigned dpid : 1;
++
++ /** NAK Status */
++ unsigned naksts : 1;
++
++ /** Endpoint Type
++ * 2'b00: Control
++ * 2'b01: Isochronous
++ * 2'b10: Bulk
++ * 2'b11: Interrupt */
++ unsigned eptype : 2;
++
++ /** Snoop Mode
++ * OUT EPn/OUT EP0
++ * IN EPn/IN EP0 - reserved */
++ unsigned snp : 1;
++
++ /** Stall Handshake */
++ unsigned stall : 1;
++
++ /** Tx Fifo Number
++ * IN EPn/IN EP0
++ * OUT EPn/OUT EP0 - reserved */
++ unsigned txfnum : 4;
++
++ /** Clear NAK */
++ unsigned cnak : 1;
++ /** Set NAK */
++ unsigned snak : 1;
++ /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA0. Set Even
++ * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to even (micro)
++ * frame.
++ */
++ unsigned setd0pid : 1;
++ /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
++ * Writing to this field sets the Endpoint DPID (DPID)
++ * field in this register to DATA1 Set Odd
++ * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
++ * Writing to this field sets the Even/Odd
++ * (micro)frame (EO_FrNum) field to odd (micro) frame.
++ */
++ unsigned setd1pid : 1;
++ /** Endpoint Disable */
++ unsigned epdis : 1;
++ /** Endpoint Enable */
++ unsigned epena : 1;
++ } b;
++} depctl_data_t;
++
++/**
++ * This union represents the bit fields in the Device EP Transfer
++ * Size Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union deptsiz_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Transfer size */
++ unsigned xfersize : 19;
++ /** Packet Count */
++ unsigned pktcnt : 10;
++ /** Multi Count - Periodic IN endpoints */
++ unsigned mc : 2;
++ unsigned reserved : 1;
++ } b;
++} deptsiz_data_t;
++
++/**
++ * This union represents the bit fields in the Device EP 0 Transfer
++ * Size Register. Read the register into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it elements.
++ */
++typedef union deptsiz0_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct {
++ /** Transfer size */
++ unsigned xfersize : 7;
++ /** Reserved */
++ unsigned reserved7_18 : 12;
++ /** Packet Count */
++ unsigned pktcnt : 1;
++ /** Reserved */
++ unsigned reserved20_28 : 9;
++ /**Setup Packet Count (DOEPTSIZ0 Only) */
++ unsigned supcnt : 2;
++ unsigned reserved31;
++ } b;
++} deptsiz0_data_t;
++
++
++/////////////////////////////////////////////////
++// DMA Descriptor Specific Structures
++//
++
++/** Buffer status definitions */
++
++#define BS_HOST_READY 0x0
++#define BS_DMA_BUSY 0x1
++#define BS_DMA_DONE 0x2
++#define BS_HOST_BUSY 0x3
++
++/** Receive/Transmit status definitions */
++
++#define RTS_SUCCESS 0x0
++#define RTS_BUFFLUSH 0x1
++#define RTS_RESERVED 0x2
++#define RTS_BUFERR 0x3
++
++
++/**
++ * This union represents the bit fields in the DMA Descriptor
++ * status quadlet. Read the quadlet into the <i>d32</i> member then
++ * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
++ * <i>b_iso_in</i> elements.
++ */
++typedef union desc_sts_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** quadlet bits */
++ struct {
++ /** Received number of bytes */
++ unsigned bytes : 16;
++
++ unsigned reserved16_22 : 7;
++ /** Multiple Transfer - only for OUT EPs */
++ unsigned mtrf : 1;
++ /** Setup Packet received - only for OUT EPs */
++ unsigned sr : 1;
++ /** Interrupt On Complete */
++ unsigned ioc : 1;
++ /** Short Packet */
++ unsigned sp : 1;
++ /** Last */
++ unsigned l : 1;
++ /** Receive Status */
++ unsigned sts : 2;
++ /** Buffer Status */
++ unsigned bs : 2;
++ } b;
++
++#ifdef DWC_EN_ISOC
++ /** iso out quadlet bits */
++ struct {
++ /** Received number of bytes */
++ unsigned rxbytes : 11;
++
++ unsigned reserved11 : 1;
++ /** Frame Number */
++ unsigned framenum : 11;
++ /** Received ISO Data PID */
++ unsigned pid : 2;
++ /** Interrupt On Complete */
++ unsigned ioc : 1;
++ /** Short Packet */
++ unsigned sp : 1;
++ /** Last */
++ unsigned l : 1;
++ /** Receive Status */
++ unsigned rxsts : 2;
++ /** Buffer Status */
++ unsigned bs : 2;
++ } b_iso_out;
++
++ /** iso in quadlet bits */
++ struct {
++ /** Transmited number of bytes */
++ unsigned txbytes : 12;
++ /** Frame Number */
++ unsigned framenum : 11;
++ /** Transmited ISO Data PID */
++ unsigned pid : 2;
++ /** Interrupt On Complete */
++ unsigned ioc : 1;
++ /** Short Packet */
++ unsigned sp : 1;
++ /** Last */
++ unsigned l : 1;
++ /** Transmit Status */
++ unsigned txsts : 2;
++ /** Buffer Status */
++ unsigned bs : 2;
++ } b_iso_in;
++#endif //DWC_EN_ISOC
++} desc_sts_data_t;
++
++/**
++ * DMA Descriptor structure
++ *
++ * DMA Descriptor structure contains two quadlets:
++ * Status quadlet and Data buffer pointer.
++ */
++typedef struct dwc_otg_dma_desc
++{
++ /** DMA Descriptor status quadlet */
++ desc_sts_data_t status;
++ /** DMA Descriptor data buffer pointer */
++ dma_addr_t buf;
++} dwc_otg_dma_desc_t;
++
++/**
++ * The dwc_otg_dev_if structure contains information needed to manage
++ * the DWC_otg controller acting in device mode. It represents the
++ * programming view of the device-specific aspects of the controller.
++ */
++typedef struct dwc_otg_dev_if
++{
++ /** Pointer to device Global registers.
++ * Device Global Registers starting at offset 800h
++ */
++ dwc_otg_device_global_regs_t *dev_global_regs;
++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
++
++ /**
++ * Device Logical IN Endpoint-Specific Registers 900h-AFCh
++ */
++ dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_IN_EP_REG_OFFSET 0x900
++#define DWC_EP_REG_OFFSET 0x20
++
++ /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
++ dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
++
++ /* Device configuration information*/
++ uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
++ uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
++ uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
++
++ /** Size of periodic FIFOs (Bytes) */
++ uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
++
++ /** Size of Tx FIFOs (Bytes) */
++ uint16_t tx_fifo_size[MAX_TX_FIFOS];
++
++ /** Thresholding enable flags and length varaiables **/
++ uint16_t rx_thr_en;
++ uint16_t iso_tx_thr_en;
++ uint16_t non_iso_tx_thr_en;
++
++ uint16_t rx_thr_length;
++ uint16_t tx_thr_length;
++
++ /**
++ * Pointers to the DMA Descriptors for EP0 Control
++ * transfers (virtual and physical)
++ */
++ /** 2 descriptors for SETUP packets */
++ uint32_t dma_setup_desc_addr[2];
++ dwc_otg_dma_desc_t* setup_desc_addr[2];
++
++ /** Pointer to Descriptor with latest SETUP packet */
++ dwc_otg_dma_desc_t* psetup;
++
++ /** Index of current SETUP handler descriptor */
++ uint32_t setup_desc_index;
++
++ /** Descriptor for Data In or Status In phases */
++ uint32_t dma_in_desc_addr;
++ dwc_otg_dma_desc_t* in_desc_addr;;
++
++ /** Descriptor for Data Out or Status Out phases */
++ uint32_t dma_out_desc_addr;
++ dwc_otg_dma_desc_t* out_desc_addr;
++} dwc_otg_dev_if_t;
++
++
++
++
++/////////////////////////////////////////////////
++// Host Mode Register Structures
++//
++/**
++ * The Host Global Registers structure defines the size and relative
++ * field offsets for the Host Mode Global Registers. Host Global
++ * Registers offsets 400h-7FFh.
++*/
++typedef struct dwc_otg_host_global_regs
++{
++ /** Host Configuration Register. <i>Offset: 400h</i> */
++ volatile uint32_t hcfg;
++ /** Host Frame Interval Register. <i>Offset: 404h</i> */
++ volatile uint32_t hfir;
++ /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
++ volatile uint32_t hfnum;
++ /** Reserved. <i>Offset: 40Ch</i> */
++ uint32_t reserved40C;
++ /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
++ volatile uint32_t hptxsts;
++ /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
++ volatile uint32_t haint;
++ /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
++ volatile uint32_t haintmsk;
++} dwc_otg_host_global_regs_t;
++
++/**
++ * This union represents the bit fields in the Host Configuration Register.
++ * Read the register into the <i>d32</i> member then set/clear the bits using
++ * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
++ */
++typedef union hcfg_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ /** FS/LS Phy Clock Select */
++ unsigned fslspclksel : 2;
++#define DWC_HCFG_30_60_MHZ 0
++#define DWC_HCFG_48_MHZ 1
++#define DWC_HCFG_6_MHZ 2
++
++ /** FS/LS Only Support */
++ unsigned fslssupp : 1;
++ } b;
++} hcfg_data_t;
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++typedef union hfir_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ unsigned frint : 16;
++ unsigned reserved : 16;
++ } b;
++} hfir_data_t;
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++typedef union hfnum_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ unsigned frnum : 16;
++#define DWC_HFNUM_MAX_FRNUM 0x3FFF
++ unsigned frrem : 16;
++ } b;
++} hfnum_data_t;
++
++typedef union hptxsts_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ unsigned ptxfspcavail : 16;
++ unsigned ptxqspcavail : 8;
++ /** Top of the Periodic Transmit Request Queue
++ * - bit 24 - Terminate (last entry for the selected channel)
++ * - bits 26:25 - Token Type
++ * - 2'b00 - Zero length
++ * - 2'b01 - Ping
++ * - 2'b10 - Disable
++ * - bits 30:27 - Channel Number
++ * - bit 31 - Odd/even microframe
++ */
++ unsigned ptxqtop_terminate : 1;
++ unsigned ptxqtop_token : 2;
++ unsigned ptxqtop_chnum : 4;
++ unsigned ptxqtop_odd : 1;
++ } b;
++} hptxsts_data_t;
++
++/**
++ * This union represents the bit fields in the Host Port Control and Status
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hprt0 register.
++ */
++typedef union hprt0_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned prtconnsts : 1;
++ unsigned prtconndet : 1;
++ unsigned prtena : 1;
++ unsigned prtenchng : 1;
++ unsigned prtovrcurract : 1;
++ unsigned prtovrcurrchng : 1;
++ unsigned prtres : 1;
++ unsigned prtsusp : 1;
++ unsigned prtrst : 1;
++ unsigned reserved9 : 1;
++ unsigned prtlnsts : 2;
++ unsigned prtpwr : 1;
++ unsigned prttstctl : 4;
++ unsigned prtspd : 2;
++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
++#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
++ unsigned reserved19_31 : 13;
++ } b;
++} hprt0_data_t;
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union haint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned ch0 : 1;
++ unsigned ch1 : 1;
++ unsigned ch2 : 1;
++ unsigned ch3 : 1;
++ unsigned ch4 : 1;
++ unsigned ch5 : 1;
++ unsigned ch6 : 1;
++ unsigned ch7 : 1;
++ unsigned ch8 : 1;
++ unsigned ch9 : 1;
++ unsigned ch10 : 1;
++ unsigned ch11 : 1;
++ unsigned ch12 : 1;
++ unsigned ch13 : 1;
++ unsigned ch14 : 1;
++ unsigned ch15 : 1;
++ unsigned reserved : 16;
++ } b;
++
++ struct
++ {
++ unsigned chint : 16;
++ unsigned reserved : 16;
++ } b2;
++} haint_data_t;
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union haintmsk_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ unsigned ch0 : 1;
++ unsigned ch1 : 1;
++ unsigned ch2 : 1;
++ unsigned ch3 : 1;
++ unsigned ch4 : 1;
++ unsigned ch5 : 1;
++ unsigned ch6 : 1;
++ unsigned ch7 : 1;
++ unsigned ch8 : 1;
++ unsigned ch9 : 1;
++ unsigned ch10 : 1;
++ unsigned ch11 : 1;
++ unsigned ch12 : 1;
++ unsigned ch13 : 1;
++ unsigned ch14 : 1;
++ unsigned ch15 : 1;
++ unsigned reserved : 16;
++ } b;
++
++ struct
++ {
++ unsigned chint : 16;
++ unsigned reserved : 16;
++ } b2;
++} haintmsk_data_t;
++
++/**
++ * Host Channel Specific Registers. <i>500h-5FCh</i>
++ */
++typedef struct dwc_otg_hc_regs
++{
++ /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
++ volatile uint32_t hcchar;
++ /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
++ volatile uint32_t hcsplt;
++ /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
++ volatile uint32_t hcint;
++ /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
++ volatile uint32_t hcintmsk;
++ /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
++ volatile uint32_t hctsiz;
++ /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
++ volatile uint32_t hcdma;
++ /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
++ uint32_t reserved[2];
++} dwc_otg_hc_regs_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Characteristics
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcchar register.
++ */
++typedef union hcchar_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ /** Maximum packet size in bytes */
++ unsigned mps : 11;
++
++ /** Endpoint number */
++ unsigned epnum : 4;
++
++ /** 0: OUT, 1: IN */
++ unsigned epdir : 1;
++
++ unsigned reserved : 1;
++
++ /** 0: Full/high speed device, 1: Low speed device */
++ unsigned lspddev : 1;
++
++ /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
++ unsigned eptype : 2;
++
++ /** Packets per frame for periodic transfers. 0 is reserved. */
++ unsigned multicnt : 2;
++
++ /** Device address */
++ unsigned devaddr : 7;
++
++ /**
++ * Frame to transmit periodic transaction.
++ * 0: even, 1: odd
++ */
++ unsigned oddfrm : 1;
++
++ /** Channel disable */
++ unsigned chdis : 1;
++
++ /** Channel enable */
++ unsigned chen : 1;
++ } b;
++} hcchar_data_t;
++
++typedef union hcsplt_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ /** Port Address */
++ unsigned prtaddr : 7;
++
++ /** Hub Address */
++ unsigned hubaddr : 7;
++
++ /** Transaction Position */
++ unsigned xactpos : 2;
++#define DWC_HCSPLIT_XACTPOS_MID 0
++#define DWC_HCSPLIT_XACTPOS_END 1
++#define DWC_HCSPLIT_XACTPOS_BEGIN 2
++#define DWC_HCSPLIT_XACTPOS_ALL 3
++
++ /** Do Complete Split */
++ unsigned compsplt : 1;
++
++ /** Reserved */
++ unsigned reserved : 14;
++
++ /** Split Enble */
++ unsigned spltena : 1;
++ } b;
++} hcsplt_data_t;
++
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++typedef union hcint_data
++{
++ /** raw register data */
++ uint32_t d32;
++ /** register bits */
++ struct
++ {
++ /** Transfer Complete */
++ unsigned xfercomp : 1;
++ /** Channel Halted */
++ unsigned chhltd : 1;
++ /** AHB Error */
++ unsigned ahberr : 1;
++ /** STALL Response Received */
++ unsigned stall : 1;
++ /** NAK Response Received */
++ unsigned nak : 1;
++ /** ACK Response Received */
++ unsigned ack : 1;
++ /** NYET Response Received */
++ unsigned nyet : 1;
++ /** Transaction Err */
++ unsigned xacterr : 1;
++ /** Babble Error */
++ unsigned bblerr : 1;
++ /** Frame Overrun */
++ unsigned frmovrun : 1;
++ /** Data Toggle Error */
++ unsigned datatglerr : 1;
++ /** Reserved */
++ unsigned reserved : 21;
++ } b;
++} hcint_data_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Transfer Size
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcchar register.
++ */
++typedef union hctsiz_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ /** Total transfer size in bytes */
++ unsigned xfersize : 19;
++
++ /** Data packets to transfer */
++ unsigned pktcnt : 10;
++
++ /**
++ * Packet ID for next data packet
++ * 0: DATA0
++ * 1: DATA2
++ * 2: DATA1
++ * 3: MDATA (non-Control), SETUP (Control)
++ */
++ unsigned pid : 2;
++#define DWC_HCTSIZ_DATA0 0
++#define DWC_HCTSIZ_DATA1 2
++#define DWC_HCTSIZ_DATA2 1
++#define DWC_HCTSIZ_MDATA 3
++#define DWC_HCTSIZ_SETUP 3
++
++ /** Do PING protocol when 1 */
++ unsigned dopng : 1;
++ } b;
++} hctsiz_data_t;
++
++/**
++ * This union represents the bit fields in the Host Channel Interrupt Mask
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
++ * hcintmsk register.
++ */
++typedef union hcintmsk_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ unsigned xfercompl : 1;
++ unsigned chhltd : 1;
++ unsigned ahberr : 1;
++ unsigned stall : 1;
++ unsigned nak : 1;
++ unsigned ack : 1;
++ unsigned nyet : 1;
++ unsigned xacterr : 1;
++ unsigned bblerr : 1;
++ unsigned frmovrun : 1;
++ unsigned datatglerr : 1;
++ unsigned reserved : 21;
++ } b;
++} hcintmsk_data_t;
++
++/** OTG Host Interface Structure.
++ *
++ * The OTG Host Interface Structure structure contains information
++ * needed to manage the DWC_otg controller acting in host mode. It
++ * represents the programming view of the host-specific aspects of the
++ * controller.
++ */
++typedef struct dwc_otg_host_if
++{
++ /** Host Global Registers starting at offset 400h.*/
++ dwc_otg_host_global_regs_t *host_global_regs;
++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
++
++ /** Host Port 0 Control and Status Register */
++ volatile uint32_t *hprt0;
++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
++
++ /** Host Channel Specific Registers at offsets 500h-5FCh. */
++ dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
++#define DWC_OTG_CHAN_REGS_OFFSET 0x20
++
++
++ /* Host configuration information */
++ /** Number of Host Channels (range: 1-16) */
++ uint8_t num_host_channels;
++ /** Periodic EPs supported (0: no, 1: yes) */
++ uint8_t perio_eps_supported;
++ /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
++ uint16_t perio_tx_fifo_size;
++} dwc_otg_host_if_t;
++
++
++/**
++ * This union represents the bit fields in the Power and Clock Gating Control
++ * Register. Read the register into the <i>d32</i> member then set/clear the
++ * bits using the <i>b</i>it elements.
++ */
++typedef union pcgcctl_data
++{
++ /** raw register data */
++ uint32_t d32;
++
++ /** register bits */
++ struct
++ {
++ /** Stop Pclk */
++ unsigned stoppclk : 1;
++ /** Gate Hclk */
++ unsigned gatehclk : 1;
++ /** Power Clamp */
++ unsigned pwrclmp : 1;
++ /** Reset Power Down Modules */
++ unsigned rstpdwnmodule : 1;
++ /** PHY Suspended */
++ unsigned physuspended : 1;
++ unsigned reserved : 27;
++ } b;
++} pcgcctl_data_t;
++
++
++#endif
+--- a/drivers/usb/core/urb.c
++++ b/drivers/usb/core/urb.c
+@@ -17,7 +17,11 @@ static void urb_destroy(struct kref *kre
+
+ if (urb->transfer_flags & URB_FREE_BUFFER)
+ kfree(urb->transfer_buffer);
+-
++ if (urb->aligned_transfer_buffer) {
++ kfree(urb->aligned_transfer_buffer);
++ urb->aligned_transfer_buffer = 0;
++ urb->aligned_transfer_dma = 0;
++ }
+ kfree(urb);
+ }
+
+--- a/include/linux/usb.h
++++ b/include/linux/usb.h
+@@ -1202,6 +1202,9 @@ struct urb {
+ unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
+ void *transfer_buffer; /* (in) associated data buffer */
+ dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
++ void *aligned_transfer_buffer; /* (in) associeated data buffer */
++ dma_addr_t aligned_transfer_dma;/* (in) dma addr for transfer_buffer */
++ u32 aligned_transfer_buffer_length; /* (in) data buffer length */
+ struct scatterlist *sg; /* (in) scatter gather buffer list */
+ int num_sgs; /* (in) number of entries in the sg list */
+ u32 transfer_buffer_length; /* (in) data buffer length */
+--- a/drivers/usb/gadget/Kconfig
++++ b/drivers/usb/gadget/Kconfig
+@@ -108,7 +108,7 @@ config USB_GADGET_VBUS_DRAW
+ #
+ choice
+ prompt "USB Peripheral Controller"
+- depends on USB_GADGET
++ depends on USB_GADGET && !USB_DWC_OTG
+ help
+ A USB device uses a controller to talk to its host.
+ Systems should have only one such upstream link.
+--- a/drivers/usb/gadget/Makefile
++++ b/drivers/usb/gadget/Makefile
+@@ -3,7 +3,7 @@
+ #
+ ccflags-$(CONFIG_USB_GADGET_DEBUG) := -DDEBUG
+
+-obj-$(CONFIG_USB_GADGET) += udc-core.o
++#obj-$(CONFIG_USB_GADGET) += udc-core.o
+ obj-$(CONFIG_USB_DUMMY_HCD) += dummy_hcd.o
+ obj-$(CONFIG_USB_NET2272) += net2272.o
+ obj-$(CONFIG_USB_NET2280) += net2280.o