summaryrefslogtreecommitdiff
path: root/target/linux/generic-2.6/patches-2.6.30/270-sched_bfs.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/generic-2.6/patches-2.6.30/270-sched_bfs.patch')
-rw-r--r--target/linux/generic-2.6/patches-2.6.30/270-sched_bfs.patch6411
1 files changed, 0 insertions, 6411 deletions
diff --git a/target/linux/generic-2.6/patches-2.6.30/270-sched_bfs.patch b/target/linux/generic-2.6/patches-2.6.30/270-sched_bfs.patch
deleted file mode 100644
index f521b32..0000000
--- a/target/linux/generic-2.6/patches-2.6.30/270-sched_bfs.patch
+++ /dev/null
@@ -1,6411 +0,0 @@
-This patch adds support for bfs v230, modified for diff size reduction
-
---- a/Documentation/sysctl/kernel.txt
-+++ b/Documentation/sysctl/kernel.txt
-@@ -27,6 +27,7 @@ show up in /proc/sys/kernel:
- - domainname
- - hostname
- - hotplug
-+- iso_cpu
- - java-appletviewer [ binfmt_java, obsolete ]
- - java-interpreter [ binfmt_java, obsolete ]
- - kstack_depth_to_print [ X86 only ]
-@@ -48,6 +49,7 @@ show up in /proc/sys/kernel:
- - randomize_va_space
- - real-root-dev ==> Documentation/initrd.txt
- - reboot-cmd [ SPARC only ]
-+- rr_interval
- - rtsig-max
- - rtsig-nr
- - sem
-@@ -170,6 +172,16 @@ Default value is "/sbin/hotplug".
-
- ==============================================================
-
-+iso_cpu: (BFS only)
-+
-+This sets the percentage cpu that the unprivileged SCHED_ISO tasks can
-+run effectively at realtime priority, averaged over a rolling five
-+seconds over the -whole- system, meaning all cpus.
-+
-+Set to 70 (percent) by default.
-+
-+==============================================================
-+
- l2cr: (PPC only)
-
- This flag controls the L2 cache of G3 processor boards. If
-@@ -322,6 +334,19 @@ rebooting. ???
-
- ==============================================================
-
-+rr_interval: (BFS only)
-+
-+This is the smallest duration that any cpu process scheduling unit
-+will run for. Increasing this value can increase throughput of cpu
-+bound tasks substantially but at the expense of increased latencies
-+overall. This value is in milliseconds and the default value chosen
-+depends on the number of cpus available at scheduler initialisation
-+with a minimum of 6.
-+
-+Valid values are from 1-5000.
-+
-+==============================================================
-+
- rtsig-max & rtsig-nr:
-
- The file rtsig-max can be used to tune the maximum number
---- a/include/linux/init_task.h
-+++ b/include/linux/init_task.h
-@@ -119,9 +119,10 @@ extern struct cred init_cred;
- .usage = ATOMIC_INIT(2), \
- .flags = PF_KTHREAD, \
- .lock_depth = -1, \
-- .prio = MAX_PRIO-20, \
-+ .prio = NORMAL_PRIO, \
- .static_prio = MAX_PRIO-20, \
-- .normal_prio = MAX_PRIO-20, \
-+ .normal_prio = NORMAL_PRIO, \
-+ .deadline = 0, \
- .policy = SCHED_NORMAL, \
- .cpus_allowed = CPU_MASK_ALL, \
- .mm = NULL, \
---- a/include/linux/sched.h
-+++ b/include/linux/sched.h
-@@ -36,9 +36,12 @@
- #define SCHED_FIFO 1
- #define SCHED_RR 2
- #define SCHED_BATCH 3
--/* SCHED_ISO: reserved but not implemented yet */
-+#define SCHED_ISO 4
- #define SCHED_IDLE 5
-
-+#define SCHED_MAX (SCHED_IDLE)
-+#define SCHED_RANGE(policy) ((policy) <= SCHED_MAX)
-+
- #ifdef __KERNEL__
-
- struct sched_param {
-@@ -1042,10 +1045,13 @@ struct sched_entity {
- struct load_weight load; /* for load-balancing */
- struct rb_node run_node;
- struct list_head group_node;
-+#ifdef CONFIG_SCHED_CFS
- unsigned int on_rq;
-
- u64 exec_start;
-+#endif
- u64 sum_exec_runtime;
-+#ifdef CONFIG_SCHED_CFS
- u64 vruntime;
- u64 prev_sum_exec_runtime;
-
-@@ -1096,6 +1102,7 @@ struct sched_entity {
- /* rq "owned" by this entity/group: */
- struct cfs_rq *my_q;
- #endif
-+#endif
- };
-
- struct sched_rt_entity {
-@@ -1123,17 +1130,19 @@ struct task_struct {
-
- int lock_depth; /* BKL lock depth */
-
--#ifdef CONFIG_SMP
--#ifdef __ARCH_WANT_UNLOCKED_CTXSW
- int oncpu;
--#endif
--#endif
--
- int prio, static_prio, normal_prio;
- unsigned int rt_priority;
- const struct sched_class *sched_class;
- struct sched_entity se;
- struct sched_rt_entity rt;
-+ unsigned long deadline;
-+#ifdef CONFIG_SCHED_BFS
-+ int load_weight; /* for niceness load balancing purposes */
-+ int first_time_slice;
-+ unsigned long long timestamp, last_ran;
-+ unsigned long utime_pc, stime_pc;
-+#endif
-
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- /* list of struct preempt_notifier: */
-@@ -1156,6 +1165,9 @@ struct task_struct {
-
- unsigned int policy;
- cpumask_t cpus_allowed;
-+#ifdef CONFIG_HOTPLUG_CPU
-+ cpumask_t unplugged_mask;
-+#endif
-
- #ifdef CONFIG_PREEMPT_RCU
- int rcu_read_lock_nesting;
-@@ -1446,11 +1458,19 @@ struct task_struct {
- * priority to a value higher than any user task. Note:
- * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
- */
--
-+#define PRIO_RANGE (40)
- #define MAX_USER_RT_PRIO 100
- #define MAX_RT_PRIO MAX_USER_RT_PRIO
--
-+#ifdef CONFIG_SCHED_BFS
-+#define MAX_PRIO (MAX_RT_PRIO + PRIO_RANGE)
-+#define ISO_PRIO (MAX_RT_PRIO)
-+#define NORMAL_PRIO (MAX_RT_PRIO + 1)
-+#define IDLE_PRIO (MAX_RT_PRIO + 2)
-+#define PRIO_LIMIT ((IDLE_PRIO) + 1)
-+#else
- #define MAX_PRIO (MAX_RT_PRIO + 40)
-+#define NORMAL_PRIO (MAX_RT_PRIO - 20)
-+#endif
- #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
-
- static inline int rt_prio(int prio)
-@@ -1734,7 +1754,7 @@ task_sched_runtime(struct task_struct *t
- extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
-
- /* sched_exec is called by processes performing an exec */
--#ifdef CONFIG_SMP
-+#if defined(CONFIG_SMP) && defined(CONFIG_SCHED_CFS)
- extern void sched_exec(void);
- #else
- #define sched_exec() {}
---- a/init/Kconfig
-+++ b/init/Kconfig
-@@ -435,9 +435,22 @@ config LOG_BUF_SHIFT
- config HAVE_UNSTABLE_SCHED_CLOCK
- bool
-
-+choice
-+ prompt "Scheduler"
-+ default SCHED_CFS
-+
-+ config SCHED_CFS
-+ bool "CFS"
-+
-+ config SCHED_BFS
-+ bool "BFS"
-+
-+endchoice
-+
- config GROUP_SCHED
- bool "Group CPU scheduler"
- depends on EXPERIMENTAL
-+ depends on SCHED_CFS
- default n
- help
- This feature lets CPU scheduler recognize task groups and control CPU
-@@ -488,6 +501,7 @@ endchoice
-
- menuconfig CGROUPS
- boolean "Control Group support"
-+ depends on SCHED_CFS
- help
- This option adds support for grouping sets of processes together, for
- use with process control subsystems such as Cpusets, CFS, memory
---- a/kernel/Makefile
-+++ b/kernel/Makefile
-@@ -2,7 +2,7 @@
- # Makefile for the linux kernel.
- #
-
--obj-y = sched.o fork.o exec_domain.o panic.o printk.o \
-+obj-y = $(if $(CONFIG_SCHED_CFS),sched.o,sched_bfs.o) fork.o exec_domain.o panic.o printk.o \
- cpu.o exit.o itimer.o time.o softirq.o resource.o \
- sysctl.o capability.o ptrace.o timer.o user.o \
- signal.o sys.o kmod.o workqueue.o pid.o \
-@@ -103,6 +103,7 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER
- # I turn this off for IA-64 only. Andreas Schwab says it's also needed on m68k
- # to get a correct value for the wait-channel (WCHAN in ps). --davidm
- CFLAGS_sched.o := $(PROFILING) -fno-omit-frame-pointer
-+CFLAGS_sched_bfs.o := $(PROFILING) -fno-omit-frame-pointer
- endif
-
- $(obj)/configs.o: $(obj)/config_data.h
---- a/kernel/kthread.c
-+++ b/kernel/kthread.c
-@@ -15,7 +15,11 @@
- #include <linux/mutex.h>
- #include <trace/sched.h>
-
-+#ifdef CONFIG_SCHED_BFS
-+#define KTHREAD_NICE_LEVEL (0)
-+#else
- #define KTHREAD_NICE_LEVEL (-5)
-+#endif
-
- static DEFINE_SPINLOCK(kthread_create_lock);
- static LIST_HEAD(kthread_create_list);
---- /dev/null
-+++ b/kernel/sched_bfs.c
-@@ -0,0 +1,6059 @@
-+/*
-+ * kernel/sched_bfs.c, was sched.c
-+ *
-+ * Kernel scheduler and related syscalls
-+ *
-+ * Copyright (C) 1991-2002 Linus Torvalds
-+ *
-+ * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
-+ * make semaphores SMP safe
-+ * 1998-11-19 Implemented schedule_timeout() and related stuff
-+ * by Andrea Arcangeli
-+ * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
-+ * hybrid priority-list and round-robin design with
-+ * an array-switch method of distributing timeslices
-+ * and per-CPU runqueues. Cleanups and useful suggestions
-+ * by Davide Libenzi, preemptible kernel bits by Robert Love.
-+ * 2003-09-03 Interactivity tuning by Con Kolivas.
-+ * 2004-04-02 Scheduler domains code by Nick Piggin
-+ * 2007-04-15 Work begun on replacing all interactivity tuning with a
-+ * fair scheduling design by Con Kolivas.
-+ * 2007-05-05 Load balancing (smp-nice) and other improvements
-+ * by Peter Williams
-+ * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
-+ * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
-+ * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
-+ * Thomas Gleixner, Mike Kravetz
-+ * now Brainfuck deadline scheduling policy by Con Kolivas deletes
-+ * a whole lot of those previous things.
-+ */
-+
-+#include <linux/mm.h>
-+#include <linux/module.h>
-+#include <linux/nmi.h>
-+#include <linux/init.h>
-+#include <asm/uaccess.h>
-+#include <linux/highmem.h>
-+#include <linux/smp_lock.h>
-+#include <asm/mmu_context.h>
-+#include <linux/interrupt.h>
-+#include <linux/capability.h>
-+#include <linux/completion.h>
-+#include <linux/kernel_stat.h>
-+#include <linux/debug_locks.h>
-+#include <linux/perf_counter.h>
-+#include <linux/security.h>
-+#include <linux/notifier.h>
-+#include <linux/profile.h>
-+#include <linux/freezer.h>
-+#include <linux/vmalloc.h>
-+#include <linux/blkdev.h>
-+#include <linux/delay.h>
-+#include <linux/smp.h>
-+#include <linux/threads.h>
-+#include <linux/timer.h>
-+#include <linux/rcupdate.h>
-+#include <linux/cpu.h>
-+#include <linux/cpuset.h>
-+#include <linux/cpumask.h>
-+#include <linux/percpu.h>
-+#include <linux/kthread.h>
-+#include <linux/proc_fs.h>
-+#include <linux/seq_file.h>
-+#include <linux/syscalls.h>
-+#include <linux/times.h>
-+#include <linux/tsacct_kern.h>
-+#include <linux/kprobes.h>
-+#include <linux/delayacct.h>
-+#include <linux/reciprocal_div.h>
-+#include <linux/log2.h>
-+#include <linux/bootmem.h>
-+#include <linux/ftrace.h>
-+
-+#include <asm/tlb.h>
-+#include <asm/unistd.h>
-+
-+#define CREATE_TRACE_POINTS
-+#include <trace/events/sched.h>
-+
-+#define rt_prio(prio) unlikely((prio) < MAX_RT_PRIO)
-+#define rt_task(p) rt_prio((p)->prio)
-+#define rt_queue(rq) rt_prio((rq)->rq_prio)
-+#define batch_task(p) (unlikely((p)->policy == SCHED_BATCH))
-+#define is_rt_policy(policy) ((policy) == SCHED_FIFO || \
-+ (policy) == SCHED_RR)
-+#define has_rt_policy(p) unlikely(is_rt_policy((p)->policy))
-+#define idleprio_task(p) unlikely((p)->policy == SCHED_IDLE)
-+#define iso_task(p) unlikely((p)->policy == SCHED_ISO)
-+#define iso_queue(rq) unlikely((rq)->rq_policy == SCHED_ISO)
-+#define ISO_PERIOD ((5 * HZ * num_online_cpus()) + 1)
-+
-+/*
-+ * Convert user-nice values [ -20 ... 0 ... 19 ]
-+ * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
-+ * and back.
-+ */
-+#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
-+#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
-+#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
-+
-+/*
-+ * 'User priority' is the nice value converted to something we
-+ * can work with better when scaling various scheduler parameters,
-+ * it's a [ 0 ... 39 ] range.
-+ */
-+#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
-+#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
-+#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
-+#define SCHED_PRIO(p) ((p)+MAX_RT_PRIO)
-+
-+/* Some helpers for converting to/from various scales.*/
-+#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
-+#define MS_TO_NS(TIME) ((TIME) * 1000000)
-+#define MS_TO_US(TIME) ((TIME) * 1000)
-+
-+#ifdef CONFIG_SMP
-+/*
-+ * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
-+ * Since cpu_power is a 'constant', we can use a reciprocal divide.
-+ */
-+static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
-+{
-+ return reciprocal_divide(load, sg->reciprocal_cpu_power);
-+}
-+
-+/*
-+ * Each time a sched group cpu_power is changed,
-+ * we must compute its reciprocal value
-+ */
-+static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
-+{
-+ sg->__cpu_power += val;
-+ sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
-+}
-+#endif
-+
-+/*
-+ * This is the time all tasks within the same priority round robin.
-+ * Value is in ms and set to a minimum of 6ms. Scales with number of cpus.
-+ * Tunable via /proc interface.
-+ */
-+int rr_interval __read_mostly = 6;
-+
-+/*
-+ * sched_iso_cpu - sysctl which determines the cpu percentage SCHED_ISO tasks
-+ * are allowed to run five seconds as real time tasks. This is the total over
-+ * all online cpus.
-+ */
-+int sched_iso_cpu __read_mostly = 70;
-+
-+int prio_ratios[PRIO_RANGE] __read_mostly;
-+
-+static inline unsigned long timeslice(void)
-+{
-+ return MS_TO_US(rr_interval);
-+}
-+
-+struct global_rq {
-+ spinlock_t lock;
-+ unsigned long nr_running;
-+ unsigned long nr_uninterruptible;
-+ unsigned long long nr_switches;
-+ struct list_head queue[PRIO_LIMIT];
-+ DECLARE_BITMAP(prio_bitmap, PRIO_LIMIT + 1);
-+ unsigned long iso_ticks;
-+ unsigned short iso_refractory;
-+#ifdef CONFIG_SMP
-+ unsigned long qnr; /* queued not running */
-+ cpumask_t cpu_idle_map;
-+#endif
-+};
-+
-+static struct global_rq grq;
-+
-+/*
-+ * This is the main, per-CPU runqueue data structure.
-+ * All this is protected by the global_rq lock.
-+ */
-+struct rq {
-+#ifdef CONFIG_SMP
-+#ifdef CONFIG_NO_HZ
-+ unsigned char in_nohz_recently;
-+#endif
-+#endif
-+
-+ struct task_struct *curr, *idle;
-+ struct mm_struct *prev_mm;
-+ struct list_head queue; /* Place to store currently running task */
-+
-+ /* Stored data about rq->curr to work outside grq lock */
-+ unsigned long rq_deadline;
-+ unsigned int rq_policy;
-+ int rq_time_slice;
-+ int rq_prio;
-+
-+ /* Accurate timekeeping data */
-+ u64 timekeep_clock;
-+ unsigned long user_pc, nice_pc, irq_pc, softirq_pc, system_pc,
-+ iowait_pc, idle_pc;
-+ atomic_t nr_iowait;
-+
-+ int cpu; /* cpu of this runqueue */
-+ int online;
-+
-+#ifdef CONFIG_SMP
-+ struct root_domain *rd;
-+ struct sched_domain *sd;
-+
-+ struct list_head migration_queue;
-+#endif
-+
-+ u64 clock;
-+#ifdef CONFIG_SCHEDSTATS
-+
-+ /* latency stats */
-+ struct sched_info rq_sched_info;
-+ unsigned long long rq_cpu_time;
-+ /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
-+
-+ /* sys_sched_yield() stats */
-+ unsigned int yld_count;
-+
-+ /* schedule() stats */
-+ unsigned int sched_switch;
-+ unsigned int sched_count;
-+ unsigned int sched_goidle;
-+
-+ /* try_to_wake_up() stats */
-+ unsigned int ttwu_count;
-+ unsigned int ttwu_local;
-+
-+ /* BKL stats */
-+ unsigned int bkl_count;
-+#endif
-+};
-+
-+static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
-+static DEFINE_MUTEX(sched_hotcpu_mutex);
-+
-+#ifdef CONFIG_SMP
-+
-+/*
-+ * We add the notion of a root-domain which will be used to define per-domain
-+ * variables. Each exclusive cpuset essentially defines an island domain by
-+ * fully partitioning the member cpus from any other cpuset. Whenever a new
-+ * exclusive cpuset is created, we also create and attach a new root-domain
-+ * object.
-+ *
-+ */
-+struct root_domain {
-+ atomic_t refcount;
-+ cpumask_var_t span;
-+ cpumask_var_t online;
-+
-+ /*
-+ * The "RT overload" flag: it gets set if a CPU has more than
-+ * one runnable RT task.
-+ */
-+ cpumask_var_t rto_mask;
-+ atomic_t rto_count;
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+ /*
-+ * Preferred wake up cpu nominated by sched_mc balance that will be
-+ * used when most cpus are idle in the system indicating overall very
-+ * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
-+ */
-+ unsigned int sched_mc_preferred_wakeup_cpu;
-+#endif
-+};
-+
-+/*
-+ * By default the system creates a single root-domain with all cpus as
-+ * members (mimicking the global state we have today).
-+ */
-+static struct root_domain def_root_domain;
-+
-+#endif
-+
-+static inline int cpu_of(struct rq *rq)
-+{
-+#ifdef CONFIG_SMP
-+ return rq->cpu;
-+#else
-+ return 0;
-+#endif
-+}
-+
-+/*
-+ * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
-+ * See detach_destroy_domains: synchronize_sched for details.
-+ *
-+ * The domain tree of any CPU may only be accessed from within
-+ * preempt-disabled sections.
-+ */
-+#define for_each_domain(cpu, __sd) \
-+ for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
-+
-+#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
-+#define this_rq() (&__get_cpu_var(runqueues))
-+#define task_rq(p) cpu_rq(task_cpu(p))
-+#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
-+
-+#include "sched_stats.h"
-+
-+#ifndef prepare_arch_switch
-+# define prepare_arch_switch(next) do { } while (0)
-+#endif
-+#ifndef finish_arch_switch
-+# define finish_arch_switch(prev) do { } while (0)
-+#endif
-+
-+inline void update_rq_clock(struct rq *rq)
-+{
-+ rq->clock = sched_clock_cpu(cpu_of(rq));
-+}
-+
-+static inline int task_running(struct task_struct *p)
-+{
-+ return (!!p->oncpu);
-+}
-+
-+static inline void grq_lock(void)
-+ __acquires(grq.lock)
-+{
-+ smp_mb();
-+ spin_lock(&grq.lock);
-+}
-+
-+static inline void grq_unlock(void)
-+ __releases(grq.lock)
-+{
-+ spin_unlock(&grq.lock);
-+}
-+
-+static inline void grq_lock_irq(void)
-+ __acquires(grq.lock)
-+{
-+ smp_mb();
-+ spin_lock_irq(&grq.lock);
-+}
-+
-+static inline void time_lock_grq(struct rq *rq)
-+ __acquires(grq.lock)
-+{
-+ grq_lock();
-+ update_rq_clock(rq);
-+}
-+
-+static inline void grq_unlock_irq(void)
-+ __releases(grq.lock)
-+{
-+ spin_unlock_irq(&grq.lock);
-+}
-+
-+static inline void grq_lock_irqsave(unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ smp_mb();
-+ spin_lock_irqsave(&grq.lock, *flags);
-+}
-+
-+static inline void grq_unlock_irqrestore(unsigned long *flags)
-+ __releases(grq.lock)
-+{
-+ spin_unlock_irqrestore(&grq.lock, *flags);
-+}
-+
-+static inline struct rq
-+*task_grq_lock(struct task_struct *p, unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ grq_lock_irqsave(flags);
-+ return task_rq(p);
-+}
-+
-+static inline struct rq
-+*time_task_grq_lock(struct task_struct *p, unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ struct rq *rq = task_grq_lock(p, flags);
-+ update_rq_clock(rq);
-+ return rq;
-+}
-+
-+static inline void task_grq_unlock(unsigned long *flags)
-+ __releases(grq.lock)
-+{
-+ grq_unlock_irqrestore(flags);
-+}
-+
-+/**
-+ * runqueue_is_locked
-+ *
-+ * Returns true if the global runqueue is locked.
-+ * This interface allows printk to be called with the runqueue lock
-+ * held and know whether or not it is OK to wake up the klogd.
-+ */
-+int runqueue_is_locked(void)
-+{
-+ return spin_is_locked(&grq.lock);
-+}
-+
-+void task_rq_unlock_wait(struct task_struct *p)
-+ __releases(grq.lock)
-+{
-+ smp_mb(); /* spin-unlock-wait is not a full memory barrier */
-+ spin_unlock_wait(&grq.lock);
-+}
-+
-+static inline void time_grq_lock(struct rq *rq, unsigned long *flags)
-+ __acquires(grq.lock)
-+{
-+ spin_lock_irqsave(&grq.lock, *flags);
-+ update_rq_clock(rq);
-+}
-+
-+static inline struct rq *__task_grq_lock(struct task_struct *p)
-+ __acquires(grq.lock)
-+{
-+ grq_lock();
-+ return task_rq(p);
-+}
-+
-+static inline void __task_grq_unlock(void)
-+ __releases(grq.lock)
-+{
-+ grq_unlock();
-+}
-+
-+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-+{
-+}
-+
-+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-+{
-+#ifdef CONFIG_DEBUG_SPINLOCK
-+ /* this is a valid case when another task releases the spinlock */
-+ grq.lock.owner = current;
-+#endif
-+ /*
-+ * If we are tracking spinlock dependencies then we have to
-+ * fix up the runqueue lock - which gets 'carried over' from
-+ * prev into current:
-+ */
-+ spin_acquire(&grq.lock.dep_map, 0, 0, _THIS_IP_);
-+
-+ grq_unlock_irq();
-+}
-+
-+#else /* __ARCH_WANT_UNLOCKED_CTXSW */
-+
-+static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
-+{
-+#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+ grq_unlock_irq();
-+#else
-+ grq_unlock();
-+#endif
-+}
-+
-+static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
-+{
-+ smp_wmb();
-+#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
-+ local_irq_enable();
-+#endif
-+}
-+#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
-+
-+/*
-+ * A task that is queued will be on the grq run list.
-+ * A task that is not running or queued will not be on the grq run list.
-+ * A task that is currently running will have ->oncpu set and be queued
-+ * temporarily in its own rq queue.
-+ * A task that is running and no longer queued will be seen only on
-+ * context switch exit.
-+ */
-+
-+static inline int task_queued(struct task_struct *p)
-+{
-+ return (!list_empty(&p->rt.run_list));
-+}
-+
-+static inline int task_queued_only(struct task_struct *p)
-+{
-+ return (!list_empty(&p->rt.run_list) && !task_running(p));
-+}
-+
-+/*
-+ * Removing from the global runqueue. Enter with grq locked.
-+ */
-+static void dequeue_task(struct task_struct *p)
-+{
-+ list_del_init(&p->rt.run_list);
-+ if (list_empty(grq.queue + p->prio))
-+ __clear_bit(p->prio, grq.prio_bitmap);
-+}
-+
-+static inline void reset_first_time_slice(struct task_struct *p)
-+{
-+ if (unlikely(p->first_time_slice))
-+ p->first_time_slice = 0;
-+}
-+
-+static int idleprio_suitable(struct task_struct *p)
-+{
-+ return (!freezing(p) && !signal_pending(p) &&
-+ !(task_contributes_to_load(p)) && !(p->flags & (PF_EXITING)));
-+}
-+
-+static int isoprio_suitable(void)
-+{
-+ return !grq.iso_refractory;
-+}
-+
-+/*
-+ * Adding to the global runqueue. Enter with grq locked.
-+ */
-+static void enqueue_task(struct task_struct *p)
-+{
-+ if (!rt_task(p)) {
-+ /* Check it hasn't gotten rt from PI */
-+ if ((idleprio_task(p) && idleprio_suitable(p)) ||
-+ (iso_task(p) && isoprio_suitable()))
-+ p->prio = p->normal_prio;
-+ else
-+ p->prio = NORMAL_PRIO;
-+ }
-+ __set_bit(p->prio, grq.prio_bitmap);
-+ list_add_tail(&p->rt.run_list, grq.queue + p->prio);
-+ sched_info_queued(p);
-+}
-+
-+/* Only idle task does this as a real time task*/
-+static inline void enqueue_task_head(struct task_struct *p)
-+{
-+ __set_bit(p->prio, grq.prio_bitmap);
-+ list_add(&p->rt.run_list, grq.queue + p->prio);
-+ sched_info_queued(p);
-+}
-+
-+static inline void requeue_task(struct task_struct *p)
-+{
-+ sched_info_queued(p);
-+}
-+
-+static inline int pratio(struct task_struct *p)
-+{
-+ return prio_ratios[TASK_USER_PRIO(p)];
-+}
-+
-+/*
-+ * task_timeslice - all tasks of all priorities get the exact same timeslice
-+ * length. CPU distribution is handled by giving different deadlines to
-+ * tasks of different priorities.
-+ */
-+static inline int task_timeslice(struct task_struct *p)
-+{
-+ return (rr_interval * pratio(p) / 100);
-+}
-+
-+#ifdef CONFIG_SMP
-+static inline void inc_qnr(void)
-+{
-+ grq.qnr++;
-+}
-+
-+static inline void dec_qnr(void)
-+{
-+ grq.qnr--;
-+}
-+
-+static inline int queued_notrunning(void)
-+{
-+ return grq.qnr;
-+}
-+#else
-+static inline void inc_qnr(void)
-+{
-+}
-+
-+static inline void dec_qnr(void)
-+{
-+}
-+
-+static inline int queued_notrunning(void)
-+{
-+ return grq.nr_running;
-+}
-+#endif
-+
-+/*
-+ * activate_idle_task - move idle task to the _front_ of runqueue.
-+ */
-+static inline void activate_idle_task(struct task_struct *p)
-+{
-+ enqueue_task_head(p);
-+ grq.nr_running++;
-+ inc_qnr();
-+}
-+
-+static inline int normal_prio(struct task_struct *p)
-+{
-+ if (has_rt_policy(p))
-+ return MAX_RT_PRIO - 1 - p->rt_priority;
-+ if (idleprio_task(p))
-+ return IDLE_PRIO;
-+ if (iso_task(p))
-+ return ISO_PRIO;
-+ return NORMAL_PRIO;
-+}
-+
-+/*
-+ * Calculate the current priority, i.e. the priority
-+ * taken into account by the scheduler. This value might
-+ * be boosted by RT tasks as it will be RT if the task got
-+ * RT-boosted. If not then it returns p->normal_prio.
-+ */
-+static int effective_prio(struct task_struct *p)
-+{
-+ p->normal_prio = normal_prio(p);
-+ /*
-+ * If we are RT tasks or we were boosted to RT priority,
-+ * keep the priority unchanged. Otherwise, update priority
-+ * to the normal priority:
-+ */
-+ if (!rt_prio(p->prio))
-+ return p->normal_prio;
-+ return p->prio;
-+}
-+
-+/*
-+ * activate_task - move a task to the runqueue. Enter with grq locked. The rq
-+ * doesn't really matter but gives us the local clock.
-+ */
-+static void activate_task(struct task_struct *p, struct rq *rq)
-+{
-+ u64 now = rq->clock;
-+
-+ /*
-+ * Sleep time is in units of nanosecs, so shift by 20 to get a
-+ * milliseconds-range estimation of the amount of time that the task
-+ * spent sleeping:
-+ */
-+ if (unlikely(prof_on == SLEEP_PROFILING)) {
-+ if (p->state == TASK_UNINTERRUPTIBLE)
-+ profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
-+ (now - p->timestamp) >> 20);
-+ }
-+
-+ p->prio = effective_prio(p);
-+ p->timestamp = now;
-+ if (task_contributes_to_load(p))
-+ grq.nr_uninterruptible--;
-+ enqueue_task(p);
-+ grq.nr_running++;
-+ inc_qnr();
-+}
-+
-+/*
-+ * deactivate_task - If it's running, it's not on the grq and we can just
-+ * decrement the nr_running.
-+ */
-+static inline void deactivate_task(struct task_struct *p)
-+{
-+ if (task_contributes_to_load(p))
-+ grq.nr_uninterruptible++;
-+ grq.nr_running--;
-+}
-+
-+#ifdef CONFIG_SMP
-+void set_task_cpu(struct task_struct *p, unsigned int cpu)
-+{
-+ trace_sched_migrate_task(p, cpu);
-+ /*
-+ * After ->cpu is set up to a new value, task_grq_lock(p, ...) can be
-+ * successfuly executed on another CPU. We must ensure that updates of
-+ * per-task data have been completed by this moment.
-+ */
-+ smp_wmb();
-+ task_thread_info(p)->cpu = cpu;
-+}
-+#endif
-+
-+/*
-+ * Move a task off the global queue and take it to a cpu for it will
-+ * become the running task.
-+ */
-+static inline void take_task(struct rq *rq, struct task_struct *p)
-+{
-+ set_task_cpu(p, rq->cpu);
-+ dequeue_task(p);
-+ list_add(&p->rt.run_list, &rq->queue);
-+ dec_qnr();
-+}
-+
-+/*
-+ * Returns a descheduling task to the grq runqueue unless it is being
-+ * deactivated.
-+ */
-+static inline void return_task(struct task_struct *p, int deactivate)
-+{
-+ list_del_init(&p->rt.run_list);
-+ if (deactivate)
-+ deactivate_task(p);
-+ else {
-+ inc_qnr();
-+ enqueue_task(p);
-+ }
-+}
-+
-+/*
-+ * resched_task - mark a task 'to be rescheduled now'.
-+ *
-+ * On UP this means the setting of the need_resched flag, on SMP it
-+ * might also involve a cross-CPU call to trigger the scheduler on
-+ * the target CPU.
-+ */
-+#ifdef CONFIG_SMP
-+
-+#ifndef tsk_is_polling
-+#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
-+#endif
-+
-+static void resched_task(struct task_struct *p)
-+{
-+ int cpu;
-+
-+ assert_spin_locked(&grq.lock);
-+
-+ if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
-+ return;
-+
-+ set_tsk_thread_flag(p, TIF_NEED_RESCHED);
-+
-+ cpu = task_cpu(p);
-+ if (cpu == smp_processor_id())
-+ return;
-+
-+ /* NEED_RESCHED must be visible before we test polling */
-+ smp_mb();
-+ if (!tsk_is_polling(p))
-+ smp_send_reschedule(cpu);
-+}
-+
-+#else
-+static inline void resched_task(struct task_struct *p)
-+{
-+ assert_spin_locked(&grq.lock);
-+ set_tsk_need_resched(p);
-+}
-+#endif
-+
-+/**
-+ * task_curr - is this task currently executing on a CPU?
-+ * @p: the task in question.
-+ */
-+inline int task_curr(const struct task_struct *p)
-+{
-+ return cpu_curr(task_cpu(p)) == p;
-+}
-+
-+#ifdef CONFIG_SMP
-+struct migration_req {
-+ struct list_head list;
-+
-+ struct task_struct *task;
-+ int dest_cpu;
-+
-+ struct completion done;
-+};
-+
-+/*
-+ * wait_task_context_switch - wait for a thread to complete at least one
-+ * context switch.
-+ *
-+ * @p must not be current.
-+ */
-+void wait_task_context_switch(struct task_struct *p)
-+{
-+ unsigned long nvcsw, nivcsw, flags;
-+ int running;
-+ struct rq *rq;
-+
-+ nvcsw = p->nvcsw;
-+ nivcsw = p->nivcsw;
-+ for (;;) {
-+ /*
-+ * The runqueue is assigned before the actual context
-+ * switch. We need to take the runqueue lock.
-+ *
-+ * We could check initially without the lock but it is
-+ * very likely that we need to take the lock in every
-+ * iteration.
-+ */
-+ rq = task_grq_lock(p, &flags);
-+ running = task_running(p);
-+ task_grq_unlock(&flags);
-+
-+ if (likely(!running))
-+ break;
-+ /*
-+ * The switch count is incremented before the actual
-+ * context switch. We thus wait for two switches to be
-+ * sure at least one completed.
-+ */
-+ if ((p->nvcsw - nvcsw) > 1)
-+ break;
-+ if ((p->nivcsw - nivcsw) > 1)
-+ break;
-+
-+ cpu_relax();
-+ }
-+}
-+
-+/*
-+ * wait_task_inactive - wait for a thread to unschedule.
-+ *
-+ * If @match_state is nonzero, it's the @p->state value just checked and
-+ * not expected to change. If it changes, i.e. @p might have woken up,
-+ * then return zero. When we succeed in waiting for @p to be off its CPU,
-+ * we return a positive number (its total switch count). If a second call
-+ * a short while later returns the same number, the caller can be sure that
-+ * @p has remained unscheduled the whole time.
-+ *
-+ * The caller must ensure that the task *will* unschedule sometime soon,
-+ * else this function might spin for a *long* time. This function can't
-+ * be called with interrupts off, or it may introduce deadlock with
-+ * smp_call_function() if an IPI is sent by the same process we are
-+ * waiting to become inactive.
-+ */
-+unsigned long wait_task_inactive(struct task_struct *p, long match_state)
-+{
-+ unsigned long flags;
-+ int running, on_rq;
-+ unsigned long ncsw;
-+ struct rq *rq;
-+
-+ for (;;) {
-+ /*
-+ * We do the initial early heuristics without holding
-+ * any task-queue locks at all. We'll only try to get
-+ * the runqueue lock when things look like they will
-+ * work out!
-+ */
-+ rq = task_rq(p);
-+
-+ /*
-+ * If the task is actively running on another CPU
-+ * still, just relax and busy-wait without holding
-+ * any locks.
-+ *
-+ * NOTE! Since we don't hold any locks, it's not
-+ * even sure that "rq" stays as the right runqueue!
-+ * But we don't care, since this will
-+ * return false if the runqueue has changed and p
-+ * is actually now running somewhere else!
-+ */
-+ while (task_running(p) && p == rq->curr) {
-+ if (match_state && unlikely(p->state != match_state))
-+ return 0;
-+ cpu_relax();
-+ }
-+
-+ /*
-+ * Ok, time to look more closely! We need the grq
-+ * lock now, to be *sure*. If we're wrong, we'll
-+ * just go back and repeat.
-+ */
-+ rq = task_grq_lock(p, &flags);
-+ trace_sched_wait_task(rq, p);
-+ running = task_running(p);
-+ on_rq = task_queued(p);
-+ ncsw = 0;
-+ if (!match_state || p->state == match_state)
-+ ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
-+ task_grq_unlock(&flags);
-+
-+ /*
-+ * If it changed from the expected state, bail out now.
-+ */
-+ if (unlikely(!ncsw))
-+ break;
-+
-+ /*
-+ * Was it really running after all now that we
-+ * checked with the proper locks actually held?
-+ *
-+ * Oops. Go back and try again..
-+ */
-+ if (unlikely(running)) {
-+ cpu_relax();
-+ continue;
-+ }
-+
-+ /*
-+ * It's not enough that it's not actively running,
-+ * it must be off the runqueue _entirely_, and not
-+ * preempted!
-+ *
-+ * So if it was still runnable (but just not actively
-+ * running right now), it's preempted, and we should
-+ * yield - it could be a while.
-+ */
-+ if (unlikely(on_rq)) {
-+ schedule_timeout_uninterruptible(1);
-+ continue;
-+ }
-+
-+ /*
-+ * Ahh, all good. It wasn't running, and it wasn't
-+ * runnable, which means that it will never become
-+ * running in the future either. We're all done!
-+ */
-+ break;
-+ }
-+
-+ return ncsw;
-+}
-+
-+/***
-+ * kick_process - kick a running thread to enter/exit the kernel
-+ * @p: the to-be-kicked thread
-+ *
-+ * Cause a process which is running on another CPU to enter
-+ * kernel-mode, without any delay. (to get signals handled.)
-+ *
-+ * NOTE: this function doesnt have to take the runqueue lock,
-+ * because all it wants to ensure is that the remote task enters
-+ * the kernel. If the IPI races and the task has been migrated
-+ * to another CPU then no harm is done and the purpose has been
-+ * achieved as well.
-+ */
-+void kick_process(struct task_struct *p)
-+{
-+ int cpu;
-+
-+ preempt_disable();
-+ cpu = task_cpu(p);
-+ if ((cpu != smp_processor_id()) && task_curr(p))
-+ smp_send_reschedule(cpu);
-+ preempt_enable();
-+}
-+EXPORT_SYMBOL_GPL(kick_process);
-+#endif
-+
-+#define rq_idle(rq) ((rq)->rq_prio == PRIO_LIMIT)
-+
-+/*
-+ * RT tasks preempt purely on priority. SCHED_NORMAL tasks preempt on the
-+ * basis of earlier deadlines. SCHED_BATCH and SCHED_IDLE don't preempt,
-+ * they cooperatively multitask.
-+ */
-+static inline int task_preempts_curr(struct task_struct *p, struct rq *rq)
-+{
-+ int preempts = 0;
-+
-+ if (p->prio < rq->rq_prio)
-+ preempts = 1;
-+ else if (p->policy == SCHED_NORMAL && (p->prio == rq->rq_prio &&
-+ time_before(p->deadline, rq->rq_deadline)))
-+ preempts = 1;
-+ return preempts;
-+}
-+
-+/*
-+ * Wake up *any* suitable cpu to schedule this task.
-+ */
-+static void try_preempt(struct task_struct *p)
-+{
-+ struct rq *highest_prio_rq, *this_rq;
-+ unsigned long latest_deadline, cpu;
-+ int highest_prio;
-+ cpumask_t tmp;
-+
-+ /* Try the task's previous rq first and as a fallback */
-+ this_rq = task_rq(p);
-+
-+ if (cpu_isset(this_rq->cpu, p->cpus_allowed)) {
-+ highest_prio_rq = this_rq;
-+ /* If this_rq is idle, use that. */
-+ if (rq_idle(this_rq))
-+ goto found_rq;
-+ } else
-+ highest_prio_rq = cpu_rq(any_online_cpu(p->cpus_allowed));
-+ latest_deadline = this_rq->rq_deadline;
-+ highest_prio = this_rq->rq_prio;
-+
-+ cpus_and(tmp, cpu_online_map, p->cpus_allowed);
-+
-+ for_each_cpu_mask(cpu, tmp) {
-+ struct rq *rq;
-+ int rq_prio;
-+
-+ rq = cpu_rq(cpu);
-+
-+ if (rq_idle(rq)) {
-+ /* found an idle rq, use that one */
-+ highest_prio_rq = rq;
-+ goto found_rq;
-+ }
-+
-+ rq_prio = rq->rq_prio;
-+ if (rq_prio > highest_prio ||
-+ (rq_prio == highest_prio &&
-+ time_after(rq->rq_deadline, latest_deadline))) {
-+ highest_prio = rq_prio;
-+ latest_deadline = rq->rq_deadline;
-+ highest_prio_rq = rq;
-+ }
-+ }
-+
-+ if (!task_preempts_curr(p, highest_prio_rq))
-+ return;
-+found_rq:
-+ resched_task(highest_prio_rq->curr);
-+ return;
-+}
-+
-+/**
-+ * task_oncpu_function_call - call a function on the cpu on which a task runs
-+ * @p: the task to evaluate
-+ * @func: the function to be called
-+ * @info: the function call argument
-+ *
-+ * Calls the function @func when the task is currently running. This might
-+ * be on the current CPU, which just calls the function directly
-+ */
-+void task_oncpu_function_call(struct task_struct *p,
-+ void (*func) (void *info), void *info)
-+{
-+ int cpu;
-+
-+ preempt_disable();
-+ cpu = task_cpu(p);
-+ if (task_curr(p))
-+ smp_call_function_single(cpu, func, info, 1);
-+ preempt_enable();
-+}
-+
-+#ifdef CONFIG_SMP
-+static int suitable_idle_cpus(struct task_struct *p)
-+{
-+ return (cpus_intersects(p->cpus_allowed, grq.cpu_idle_map));
-+}
-+#else
-+static int suitable_idle_cpus(struct task_struct *p)
-+{
-+ return 0;
-+}
-+#endif
-+
-+/***
-+ * try_to_wake_up - wake up a thread
-+ * @p: the to-be-woken-up thread
-+ * @state: the mask of task states that can be woken
-+ * @sync: do a synchronous wakeup?
-+ *
-+ * Put it on the run-queue if it's not already there. The "current"
-+ * thread is always on the run-queue (except when the actual
-+ * re-schedule is in progress), and as such you're allowed to do
-+ * the simpler "current->state = TASK_RUNNING" to mark yourself
-+ * runnable without the overhead of this.
-+ *
-+ * returns failure only if the task is already active.
-+ */
-+static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
-+{
-+ unsigned long flags;
-+ int success = 0;
-+ long old_state;
-+ struct rq *rq;
-+
-+ rq = time_task_grq_lock(p, &flags);
-+ old_state = p->state;
-+ if (!(old_state & state))
-+ goto out_unlock;
-+
-+ /*
-+ * Note this catches tasks that are running and queued, but returns
-+ * false during the context switch when they're running and no
-+ * longer queued.
-+ */
-+ if (task_queued(p))
-+ goto out_running;
-+
-+ activate_task(p, rq);
-+ /*
-+ * Sync wakeups (i.e. those types of wakeups where the waker
-+ * has indicated that it will leave the CPU in short order)
-+ * don't trigger a preemption if there are no idle cpus,
-+ * instead waiting for current to deschedule.
-+ */
-+ if (!sync || (sync && suitable_idle_cpus(p)))
-+ try_preempt(p);
-+ success = 1;
-+
-+out_running:
-+ trace_sched_wakeup(rq, p, success);
-+ p->state = TASK_RUNNING;
-+out_unlock:
-+ task_grq_unlock(&flags);
-+ return success;
-+}
-+
-+/**
-+ * wake_up_process - Wake up a specific process
-+ * @p: The process to be woken up.
-+ *
-+ * Attempt to wake up the nominated process and move it to the set of runnable
-+ * processes. Returns 1 if the process was woken up, 0 if it was already
-+ * running.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+int wake_up_process(struct task_struct *p)
-+{
-+ return try_to_wake_up(p, TASK_ALL, 0);
-+}
-+EXPORT_SYMBOL(wake_up_process);
-+
-+int wake_up_state(struct task_struct *p, unsigned int state)
-+{
-+ return try_to_wake_up(p, state, 0);
-+}
-+
-+/*
-+ * Perform scheduler related setup for a newly forked process p.
-+ * p is forked by current.
-+ */
-+void sched_fork(struct task_struct *p, int clone_flags)
-+{
-+ int cpu = get_cpu();
-+ struct rq *rq;
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+ INIT_HLIST_HEAD(&p->preempt_notifiers);
-+#endif
-+ /*
-+ * We mark the process as running here, but have not actually
-+ * inserted it onto the runqueue yet. This guarantees that
-+ * nobody will actually run it, and a signal or other external
-+ * event cannot wake it up and insert it on the runqueue either.
-+ */
-+ p->state = TASK_RUNNING;
-+ set_task_cpu(p, cpu);
-+
-+ /* Should be reset in fork.c but done here for ease of bfs patching */
-+ p->se.sum_exec_runtime = p->stime_pc = p->utime_pc = 0;
-+
-+ /*
-+ * Make sure we do not leak PI boosting priority to the child:
-+ */
-+ p->prio = current->normal_prio;
-+
-+ INIT_LIST_HEAD(&p->rt.run_list);
-+#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
-+ if (unlikely(sched_info_on()))
-+ memset(&p->sched_info, 0, sizeof(p->sched_info));
-+#endif
-+
-+ p->oncpu = 0;
-+
-+#ifdef CONFIG_PREEMPT
-+ /* Want to start with kernel preemption disabled. */
-+ task_thread_info(p)->preempt_count = 1;
-+#endif
-+ if (unlikely(p->policy == SCHED_FIFO))
-+ goto out;
-+ /*
-+ * Share the timeslice between parent and child, thus the
-+ * total amount of pending timeslices in the system doesn't change,
-+ * resulting in more scheduling fairness. If it's negative, it won't
-+ * matter since that's the same as being 0. current's time_slice is
-+ * actually in rq_time_slice when it's running.
-+ */
-+ local_irq_disable();
-+ rq = task_rq(current);
-+ if (likely(rq->rq_time_slice > 0)) {
-+ rq->rq_time_slice /= 2;
-+ /*
-+ * The remainder of the first timeslice might be recovered by
-+ * the parent if the child exits early enough.
-+ */
-+ p->first_time_slice = 1;
-+ }
-+ p->rt.time_slice = rq->rq_time_slice;
-+ local_irq_enable();
-+out:
-+ put_cpu();
-+}
-+
-+/*
-+ * wake_up_new_task - wake up a newly created task for the first time.
-+ *
-+ * This function will do some initial scheduler statistics housekeeping
-+ * that must be done for every newly created context, then puts the task
-+ * on the runqueue and wakes it.
-+ */
-+void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
-+{
-+ struct task_struct *parent;
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ rq = time_task_grq_lock(p, &flags); ;
-+ parent = p->parent;
-+ BUG_ON(p->state != TASK_RUNNING);
-+ set_task_cpu(p, task_cpu(parent));
-+
-+ activate_task(p, rq);
-+ trace_sched_wakeup_new(rq, p, 1);
-+ if (!(clone_flags & CLONE_VM) && rq->curr == parent &&
-+ !suitable_idle_cpus(p)) {
-+ /*
-+ * The VM isn't cloned, so we're in a good position to
-+ * do child-runs-first in anticipation of an exec. This
-+ * usually avoids a lot of COW overhead.
-+ */
-+ resched_task(parent);
-+ } else
-+ try_preempt(p);
-+ task_grq_unlock(&flags);
-+}
-+
-+/*
-+ * Potentially available exiting-child timeslices are
-+ * retrieved here - this way the parent does not get
-+ * penalized for creating too many threads.
-+ *
-+ * (this cannot be used to 'generate' timeslices
-+ * artificially, because any timeslice recovered here
-+ * was given away by the parent in the first place.)
-+ */
-+void sched_exit(struct task_struct *p)
-+{
-+ struct task_struct *parent;
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ if (p->first_time_slice) {
-+ parent = p->parent;
-+ rq = task_grq_lock(parent, &flags);
-+ parent->rt.time_slice += p->rt.time_slice;
-+ if (unlikely(parent->rt.time_slice > timeslice()))
-+ parent->rt.time_slice = timeslice();
-+ task_grq_unlock(&flags);
-+ }
-+}
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+
-+/**
-+ * preempt_notifier_register - tell me when current is being preempted & rescheduled
-+ * @notifier: notifier struct to register
-+ */
-+void preempt_notifier_register(struct preempt_notifier *notifier)
-+{
-+ hlist_add_head(&notifier->link, &current->preempt_notifiers);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_register);
-+
-+/**
-+ * preempt_notifier_unregister - no longer interested in preemption notifications
-+ * @notifier: notifier struct to unregister
-+ *
-+ * This is safe to call from within a preemption notifier.
-+ */
-+void preempt_notifier_unregister(struct preempt_notifier *notifier)
-+{
-+ hlist_del(&notifier->link);
-+}
-+EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
-+
-+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+ struct preempt_notifier *notifier;
-+ struct hlist_node *node;
-+
-+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-+ notifier->ops->sched_in(notifier, raw_smp_processor_id());
-+}
-+
-+static void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+ struct task_struct *next)
-+{
-+ struct preempt_notifier *notifier;
-+ struct hlist_node *node;
-+
-+ hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
-+ notifier->ops->sched_out(notifier, next);
-+}
-+
-+#else /* !CONFIG_PREEMPT_NOTIFIERS */
-+
-+static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
-+{
-+}
-+
-+static void
-+fire_sched_out_preempt_notifiers(struct task_struct *curr,
-+ struct task_struct *next)
-+{
-+}
-+
-+#endif /* CONFIG_PREEMPT_NOTIFIERS */
-+
-+/**
-+ * prepare_task_switch - prepare to switch tasks
-+ * @rq: the runqueue preparing to switch
-+ * @next: the task we are going to switch to.
-+ *
-+ * This is called with the rq lock held and interrupts off. It must
-+ * be paired with a subsequent finish_task_switch after the context
-+ * switch.
-+ *
-+ * prepare_task_switch sets up locking and calls architecture specific
-+ * hooks.
-+ */
-+static inline void
-+prepare_task_switch(struct rq *rq, struct task_struct *prev,
-+ struct task_struct *next)
-+{
-+ fire_sched_out_preempt_notifiers(prev, next);
-+ prepare_lock_switch(rq, next);
-+ prepare_arch_switch(next);
-+}
-+
-+/**
-+ * finish_task_switch - clean up after a task-switch
-+ * @rq: runqueue associated with task-switch
-+ * @prev: the thread we just switched away from.
-+ *
-+ * finish_task_switch must be called after the context switch, paired
-+ * with a prepare_task_switch call before the context switch.
-+ * finish_task_switch will reconcile locking set up by prepare_task_switch,
-+ * and do any other architecture-specific cleanup actions.
-+ *
-+ * Note that we may have delayed dropping an mm in context_switch(). If
-+ * so, we finish that here outside of the runqueue lock. (Doing it
-+ * with the lock held can cause deadlocks; see schedule() for
-+ * details.)
-+ */
-+static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
-+ __releases(grq.lock)
-+{
-+ struct mm_struct *mm = rq->prev_mm;
-+ long prev_state;
-+
-+ rq->prev_mm = NULL;
-+
-+ /*
-+ * A task struct has one reference for the use as "current".
-+ * If a task dies, then it sets TASK_DEAD in tsk->state and calls
-+ * schedule one last time. The schedule call will never return, and
-+ * the scheduled task must drop that reference.
-+ * The test for TASK_DEAD must occur while the runqueue locks are
-+ * still held, otherwise prev could be scheduled on another cpu, die
-+ * there before we look at prev->state, and then the reference would
-+ * be dropped twice.
-+ * Manfred Spraul <manfred@colorfullife.com>
-+ */
-+ prev_state = prev->state;
-+ finish_arch_switch(prev);
-+ perf_counter_task_sched_in(current, cpu_of(rq));
-+ finish_lock_switch(rq, prev);
-+
-+ fire_sched_in_preempt_notifiers(current);
-+ if (mm)
-+ mmdrop(mm);
-+ if (unlikely(prev_state == TASK_DEAD)) {
-+ /*
-+ * Remove function-return probe instances associated with this
-+ * task and put them back on the free list.
-+ */
-+ kprobe_flush_task(prev);
-+ put_task_struct(prev);
-+ }
-+}
-+
-+/**
-+ * schedule_tail - first thing a freshly forked thread must call.
-+ * @prev: the thread we just switched away from.
-+ */
-+asmlinkage void schedule_tail(struct task_struct *prev)
-+ __releases(grq.lock)
-+{
-+ struct rq *rq = this_rq();
-+
-+ finish_task_switch(rq, prev);
-+#ifdef __ARCH_WANT_UNLOCKED_CTXSW
-+ /* In this case, finish_task_switch does not reenable preemption */
-+ preempt_enable();
-+#endif
-+ if (current->set_child_tid)
-+ put_user(current->pid, current->set_child_tid);
-+}
-+
-+/*
-+ * context_switch - switch to the new MM and the new
-+ * thread's register state.
-+ */
-+static inline void
-+context_switch(struct rq *rq, struct task_struct *prev,
-+ struct task_struct *next)
-+{
-+ struct mm_struct *mm, *oldmm;
-+
-+ prepare_task_switch(rq, prev, next);
-+ trace_sched_switch(rq, prev, next);
-+ mm = next->mm;
-+ oldmm = prev->active_mm;
-+ /*
-+ * For paravirt, this is coupled with an exit in switch_to to
-+ * combine the page table reload and the switch backend into
-+ * one hypercall.
-+ */
-+ arch_enter_lazy_cpu_mode();
-+
-+ if (unlikely(!mm)) {
-+ next->active_mm = oldmm;
-+ atomic_inc(&oldmm->mm_count);
-+ enter_lazy_tlb(oldmm, next);
-+ } else
-+ switch_mm(oldmm, mm, next);
-+
-+ if (unlikely(!prev->mm)) {
-+ prev->active_mm = NULL;
-+ rq->prev_mm = oldmm;
-+ }
-+ /*
-+ * Since the runqueue lock will be released by the next
-+ * task (which is an invalid locking op but in the case
-+ * of the scheduler it's an obvious special-case), so we
-+ * do an early lockdep release here:
-+ */
-+#ifndef __ARCH_WANT_UNLOCKED_CTXSW
-+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
-+#endif
-+
-+ /* Here we just switch the register state and the stack. */
-+ switch_to(prev, next, prev);
-+
-+ barrier();
-+ /*
-+ * this_rq must be evaluated again because prev may have moved
-+ * CPUs since it called schedule(), thus the 'rq' on its stack
-+ * frame will be invalid.
-+ */
-+ finish_task_switch(this_rq(), prev);
-+}
-+
-+/*
-+ * nr_running, nr_uninterruptible and nr_context_switches:
-+ *
-+ * externally visible scheduler statistics: current number of runnable
-+ * threads, current number of uninterruptible-sleeping threads, total
-+ * number of context switches performed since bootup. All are measured
-+ * without grabbing the grq lock but the occasional inaccurate result
-+ * doesn't matter so long as it's positive.
-+ */
-+unsigned long nr_running(void)
-+{
-+ long nr = grq.nr_running;
-+
-+ if (unlikely(nr < 0))
-+ nr = 0;
-+ return (unsigned long)nr;
-+}
-+
-+unsigned long nr_uninterruptible(void)
-+{
-+ unsigned long nu = grq.nr_uninterruptible;
-+
-+ if (unlikely(nu < 0))
-+ nu = 0;
-+ return nu;
-+}
-+
-+unsigned long long nr_context_switches(void)
-+{
-+ long long ns = grq.nr_switches;
-+
-+ /* This is of course impossible */
-+ if (unlikely(ns < 0))
-+ ns = 1;
-+ return (long long)ns;
-+}
-+
-+unsigned long nr_iowait(void)
-+{
-+ unsigned long i, sum = 0;
-+
-+ for_each_possible_cpu(i)
-+ sum += atomic_read(&cpu_rq(i)->nr_iowait);
-+
-+ return sum;
-+}
-+
-+unsigned long nr_active(void)
-+{
-+ return nr_running() + nr_uninterruptible();
-+}
-+
-+DEFINE_PER_CPU(struct kernel_stat, kstat);
-+
-+EXPORT_PER_CPU_SYMBOL(kstat);
-+
-+/*
-+ * On each tick, see what percentage of that tick was attributed to each
-+ * component and add the percentage to the _pc values. Once a _pc value has
-+ * accumulated one tick's worth, account for that. This means the total
-+ * percentage of load components will always be 100 per tick.
-+ */
-+static void pc_idle_time(struct rq *rq, unsigned long pc)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime64_t tmp = cputime_to_cputime64(jiffies_to_cputime(1));
-+
-+ if (atomic_read(&rq->nr_iowait) > 0) {
-+ rq->iowait_pc += pc;
-+ if (rq->iowait_pc >= 100) {
-+ rq->iowait_pc %= 100;
-+ cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
-+ }
-+ } else {
-+ rq->idle_pc += pc;
-+ if (rq->idle_pc >= 100) {
-+ rq->idle_pc %= 100;
-+ cpustat->idle = cputime64_add(cpustat->idle, tmp);
-+ }
-+ }
-+}
-+
-+static void
-+pc_system_time(struct rq *rq, struct task_struct *p, int hardirq_offset,
-+ unsigned long pc, unsigned long ns)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime_t one_jiffy = jiffies_to_cputime(1);
-+ cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
-+ cputime64_t tmp = cputime_to_cputime64(one_jiffy);
-+
-+ p->stime_pc += pc;
-+ if (p->stime_pc >= 100) {
-+ p->stime_pc -= 100;
-+ p->stime = cputime_add(p->stime, one_jiffy);
-+ p->stimescaled = cputime_add(p->stimescaled, one_jiffy_scaled);
-+ account_group_system_time(p, one_jiffy);
-+ acct_update_integrals(p);
-+ }
-+ p->se.sum_exec_runtime += ns;
-+
-+ if (hardirq_count() - hardirq_offset)
-+ rq->irq_pc += pc;
-+ else if (softirq_count()) {
-+ rq->softirq_pc += pc;
-+ if (rq->softirq_pc >= 100) {
-+ rq->softirq_pc %= 100;
-+ cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
-+ }
-+ } else {
-+ rq->system_pc += pc;
-+ if (rq->system_pc >= 100) {
-+ rq->system_pc %= 100;
-+ cpustat->system = cputime64_add(cpustat->system, tmp);
-+ }
-+ }
-+}
-+
-+static void pc_user_time(struct rq *rq, struct task_struct *p,
-+ unsigned long pc, unsigned long ns)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime_t one_jiffy = jiffies_to_cputime(1);
-+ cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
-+ cputime64_t tmp = cputime_to_cputime64(one_jiffy);
-+
-+ p->utime_pc += pc;
-+ if (p->utime_pc >= 100) {
-+ p->utime_pc -= 100;
-+ p->utime = cputime_add(p->utime, one_jiffy);
-+ p->utimescaled = cputime_add(p->utimescaled, one_jiffy_scaled);
-+ account_group_user_time(p, one_jiffy);
-+ acct_update_integrals(p);
-+ }
-+ p->se.sum_exec_runtime += ns;
-+
-+ if (TASK_NICE(p) > 0 || idleprio_task(p)) {
-+ rq->nice_pc += pc;
-+ if (rq->nice_pc >= 100) {
-+ rq->nice_pc %= 100;
-+ cpustat->nice = cputime64_add(cpustat->nice, tmp);
-+ }
-+ } else {
-+ rq->user_pc += pc;
-+ if (rq->user_pc >= 100) {
-+ rq->user_pc %= 100;
-+ cpustat->user = cputime64_add(cpustat->user, tmp);
-+ }
-+ }
-+}
-+
-+/* Convert nanoseconds to percentage of one tick. */
-+#define NS_TO_PC(NS) (NS * 100 / JIFFIES_TO_NS(1))
-+
-+/*
-+ * This is called on clock ticks and on context switches.
-+ * Bank in p->se.sum_exec_runtime the ns elapsed since the last tick or switch.
-+ * CPU scheduler quota accounting is also performed here in microseconds.
-+ * The value returned from sched_clock() occasionally gives bogus values so
-+ * some sanity checking is required. Time is supposed to be banked all the
-+ * time so default to half a tick to make up for when sched_clock reverts
-+ * to just returning jiffies, and for hardware that can't do tsc.
-+ */
-+static void
-+update_cpu_clock(struct rq *rq, struct task_struct *p, int tick)
-+{
-+ long time_diff = rq->clock - p->last_ran;
-+ long account_ns = rq->clock - rq->timekeep_clock;
-+ struct task_struct *idle = rq->idle;
-+ unsigned long account_pc;
-+
-+ /*
-+ * There should be less than or equal to one jiffy worth, and not
-+ * negative/overflow. time_diff is only used for internal scheduler
-+ * time_slice accounting.
-+ */
-+ if (time_diff <= 0)
-+ time_diff = JIFFIES_TO_NS(1) / 2;
-+ else if (time_diff > JIFFIES_TO_NS(1))
-+ time_diff = JIFFIES_TO_NS(1);
-+
-+ if (unlikely(account_ns < 0))
-+ account_ns = 0;
-+
-+ account_pc = NS_TO_PC(account_ns);
-+
-+ if (tick) {
-+ int user_tick = user_mode(get_irq_regs());
-+
-+ /* Accurate tick timekeeping */
-+ if (user_tick)
-+ pc_user_time(rq, p, account_pc, account_ns);
-+ else if (p != idle || (irq_count() != HARDIRQ_OFFSET))
-+ pc_system_time(rq, p, HARDIRQ_OFFSET,
-+ account_pc, account_ns);
-+ else
-+ pc_idle_time(rq, account_pc);
-+ } else {
-+ /* Accurate subtick timekeeping */
-+ if (p == idle)
-+ pc_idle_time(rq, account_pc);
-+ else
-+ pc_user_time(rq, p, account_pc, account_ns);
-+ }
-+
-+ /* time_slice accounting is done in usecs to avoid overflow on 32bit */
-+ if (rq->rq_policy != SCHED_FIFO && p != idle)
-+ rq->rq_time_slice -= time_diff / 1000;
-+ p->last_ran = rq->timekeep_clock = rq->clock;
-+}
-+
-+/*
-+ * Return any ns on the sched_clock that have not yet been accounted in
-+ * @p in case that task is currently running.
-+ *
-+ * Called with task_grq_lock() held on @rq.
-+ */
-+static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
-+{
-+ u64 ns = 0;
-+
-+ if (p == rq->curr) {
-+ update_rq_clock(rq);
-+ ns = rq->clock - p->last_ran;
-+ if ((s64)ns < 0)
-+ ns = 0;
-+ }
-+
-+ return ns;
-+}
-+
-+unsigned long long task_delta_exec(struct task_struct *p)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+ u64 ns = 0;
-+
-+ rq = task_grq_lock(p, &flags);
-+ ns = do_task_delta_exec(p, rq);
-+ task_grq_unlock(&flags);
-+
-+ return ns;
-+}
-+
-+/*
-+ * Return accounted runtime for the task.
-+ * In case the task is currently running, return the runtime plus current's
-+ * pending runtime that have not been accounted yet.
-+ */
-+unsigned long long task_sched_runtime(struct task_struct *p)
-+{
-+ unsigned long flags;
-+ struct rq *rq;
-+ u64 ns = 0;
-+
-+ rq = task_grq_lock(p, &flags);
-+ ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
-+ task_grq_unlock(&flags);
-+
-+ return ns;
-+}
-+
-+/*
-+ * Return sum_exec_runtime for the thread group.
-+ * In case the task is currently running, return the sum plus current's
-+ * pending runtime that have not been accounted yet.
-+ *
-+ * Note that the thread group might have other running tasks as well,
-+ * so the return value not includes other pending runtime that other
-+ * running tasks might have.
-+ */
-+unsigned long long thread_group_sched_runtime(struct task_struct *p)
-+{
-+ struct task_cputime totals;
-+ unsigned long flags;
-+ struct rq *rq;
-+ u64 ns;
-+
-+ rq = task_grq_lock(p, &flags);
-+ thread_group_cputime(p, &totals);
-+ ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
-+ task_grq_unlock(&flags);
-+
-+ return ns;
-+}
-+
-+/* Compatibility crap for removal */
-+void account_user_time(struct task_struct *p, cputime_t cputime,
-+ cputime_t cputime_scaled)
-+{
-+}
-+
-+void account_idle_time(cputime_t cputime)
-+{
-+}
-+
-+/*
-+ * Account guest cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @cputime: the cpu time spent in virtual machine since the last update
-+ * @cputime_scaled: cputime scaled by cpu frequency
-+ */
-+static void account_guest_time(struct task_struct *p, cputime_t cputime,
-+ cputime_t cputime_scaled)
-+{
-+ cputime64_t tmp;
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+
-+ tmp = cputime_to_cputime64(cputime);
-+
-+ /* Add guest time to process. */
-+ p->utime = cputime_add(p->utime, cputime);
-+ p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
-+ account_group_user_time(p, cputime);
-+ p->gtime = cputime_add(p->gtime, cputime);
-+
-+ /* Add guest time to cpustat. */
-+ cpustat->user = cputime64_add(cpustat->user, tmp);
-+ cpustat->guest = cputime64_add(cpustat->guest, tmp);
-+}
-+
-+/*
-+ * Account system cpu time to a process.
-+ * @p: the process that the cpu time gets accounted to
-+ * @hardirq_offset: the offset to subtract from hardirq_count()
-+ * @cputime: the cpu time spent in kernel space since the last update
-+ * @cputime_scaled: cputime scaled by cpu frequency
-+ * This is for guest only now.
-+ */
-+void account_system_time(struct task_struct *p, int hardirq_offset,
-+ cputime_t cputime, cputime_t cputime_scaled)
-+{
-+
-+ if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
-+ account_guest_time(p, cputime, cputime_scaled);
-+}
-+
-+/*
-+ * Account for involuntary wait time.
-+ * @steal: the cpu time spent in involuntary wait
-+ */
-+void account_steal_time(cputime_t cputime)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime64_t cputime64 = cputime_to_cputime64(cputime);
-+
-+ cpustat->steal = cputime64_add(cpustat->steal, cputime64);
-+}
-+
-+/*
-+ * Account for idle time.
-+ * @cputime: the cpu time spent in idle wait
-+ */
-+static void account_idle_times(cputime_t cputime)
-+{
-+ struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
-+ cputime64_t cputime64 = cputime_to_cputime64(cputime);
-+ struct rq *rq = this_rq();
-+
-+ if (atomic_read(&rq->nr_iowait) > 0)
-+ cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
-+ else
-+ cpustat->idle = cputime64_add(cpustat->idle, cputime64);
-+}
-+
-+#ifndef CONFIG_VIRT_CPU_ACCOUNTING
-+
-+void account_process_tick(struct task_struct *p, int user_tick)
-+{
-+}
-+
-+/*
-+ * Account multiple ticks of steal time.
-+ * @p: the process from which the cpu time has been stolen
-+ * @ticks: number of stolen ticks
-+ */
-+void account_steal_ticks(unsigned long ticks)
-+{
-+ account_steal_time(jiffies_to_cputime(ticks));
-+}
-+
-+/*
-+ * Account multiple ticks of idle time.
-+ * @ticks: number of stolen ticks
-+ */
-+void account_idle_ticks(unsigned long ticks)
-+{
-+ account_idle_times(jiffies_to_cputime(ticks));
-+}
-+#endif
-+
-+/*
-+ * Functions to test for when SCHED_ISO tasks have used their allocated
-+ * quota as real time scheduling and convert them back to SCHED_NORMAL.
-+ * Where possible, the data is tested lockless, to avoid grabbing grq_lock
-+ * because the occasional inaccurate result won't matter. However the
-+ * data is only ever modified under lock.
-+ */
-+static void set_iso_refractory(void)
-+{
-+ grq_lock();
-+ grq.iso_refractory = 1;
-+ grq_unlock();
-+}
-+
-+static void clear_iso_refractory(void)
-+{
-+ grq_lock();
-+ grq.iso_refractory = 0;
-+ grq_unlock();
-+}
-+
-+/*
-+ * Test if SCHED_ISO tasks have run longer than their alloted period as RT
-+ * tasks and set the refractory flag if necessary. There is 10% hysteresis
-+ * for unsetting the flag.
-+ */
-+static unsigned int test_ret_isorefractory(struct rq *rq)
-+{
-+ if (likely(!grq.iso_refractory)) {
-+ if (grq.iso_ticks / ISO_PERIOD > sched_iso_cpu)
-+ set_iso_refractory();
-+ } else {
-+ if (grq.iso_ticks / ISO_PERIOD < (sched_iso_cpu * 90 / 100))
-+ clear_iso_refractory();
-+ }
-+ return grq.iso_refractory;
-+}
-+
-+static void iso_tick(void)
-+{
-+ grq_lock();
-+ grq.iso_ticks += 100;
-+ grq_unlock();
-+}
-+
-+/* No SCHED_ISO task was running so decrease rq->iso_ticks */
-+static inline void no_iso_tick(void)
-+{
-+ if (grq.iso_ticks) {
-+ grq_lock();
-+ grq.iso_ticks = grq.iso_ticks * (ISO_PERIOD - 1) / ISO_PERIOD;
-+ grq_unlock();
-+ }
-+}
-+
-+static int rq_running_iso(struct rq *rq)
-+{
-+ return rq->rq_prio == ISO_PRIO;
-+}
-+
-+/* This manages tasks that have run out of timeslice during a scheduler_tick */
-+static void task_running_tick(struct rq *rq)
-+{
-+ struct task_struct *p;
-+
-+ /*
-+ * If a SCHED_ISO task is running we increment the iso_ticks. In
-+ * order to prevent SCHED_ISO tasks from causing starvation in the
-+ * presence of true RT tasks we account those as iso_ticks as well.
-+ */
-+ if ((rt_queue(rq) || (iso_queue(rq) && !grq.iso_refractory))) {
-+ if (grq.iso_ticks <= (ISO_PERIOD * 100) - 100)
-+ iso_tick();
-+ } else
-+ no_iso_tick();
-+
-+ if (iso_queue(rq)) {
-+ if (unlikely(test_ret_isorefractory(rq))) {
-+ if (rq_running_iso(rq)) {
-+ /*
-+ * SCHED_ISO task is running as RT and limit
-+ * has been hit. Force it to reschedule as
-+ * SCHED_NORMAL by zeroing its time_slice
-+ */
-+ rq->rq_time_slice = 0;
-+ }
-+ }
-+ }
-+
-+ /* SCHED_FIFO tasks never run out of timeslice. */
-+ if (rq_idle(rq) || rq->rq_time_slice > 0 || rq->rq_policy == SCHED_FIFO)
-+ return;
-+
-+ /* p->rt.time_slice <= 0. We only modify task_struct under grq lock */
-+ grq_lock();
-+ p = rq->curr;
-+ if (likely(task_running(p))) {
-+ requeue_task(p);
-+ set_tsk_need_resched(p);
-+ }
-+ grq_unlock();
-+}
-+
-+void wake_up_idle_cpu(int cpu);
-+
-+/*
-+ * This function gets called by the timer code, with HZ frequency.
-+ * We call it with interrupts disabled. The data modified is all
-+ * local to struct rq so we don't need to grab grq lock.
-+ */
-+void scheduler_tick(void)
-+{
-+ int cpu = smp_processor_id();
-+ struct rq *rq = cpu_rq(cpu);
-+
-+ sched_clock_tick();
-+ update_rq_clock(rq);
-+ update_cpu_clock(rq, rq->curr, 1);
-+ if (!rq_idle(rq))
-+ task_running_tick(rq);
-+ else {
-+ no_iso_tick();
-+ if (unlikely(queued_notrunning()))
-+ set_tsk_need_resched(rq->idle);
-+ }
-+}
-+
-+notrace unsigned long get_parent_ip(unsigned long addr)
-+{
-+ if (in_lock_functions(addr)) {
-+ addr = CALLER_ADDR2;
-+ if (in_lock_functions(addr))
-+ addr = CALLER_ADDR3;
-+ }
-+ return addr;
-+}
-+
-+#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
-+ defined(CONFIG_PREEMPT_TRACER))
-+void __kprobes add_preempt_count(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Underflow?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
-+ return;
-+#endif
-+ preempt_count() += val;
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Spinlock count overflowing soon?
-+ */
-+ DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
-+ PREEMPT_MASK - 10);
-+#endif
-+ if (preempt_count() == val)
-+ trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-+}
-+EXPORT_SYMBOL(add_preempt_count);
-+
-+void __kprobes sub_preempt_count(int val)
-+{
-+#ifdef CONFIG_DEBUG_PREEMPT
-+ /*
-+ * Underflow?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
-+ return;
-+ /*
-+ * Is the spinlock portion underflowing?
-+ */
-+ if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
-+ !(preempt_count() & PREEMPT_MASK)))
-+ return;
-+#endif
-+
-+ if (preempt_count() == val)
-+ trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
-+ preempt_count() -= val;
-+}
-+EXPORT_SYMBOL(sub_preempt_count);
-+#endif
-+
-+/*
-+ * Deadline is "now" in jiffies + (offset by priority). Setting the deadline
-+ * is the key to everything. It distributes cpu fairly amongst tasks of the
-+ * same nice value, it proportions cpu according to nice level, it means the
-+ * task that last woke up the longest ago has the earliest deadline, thus
-+ * ensuring that interactive tasks get low latency on wake up.
-+ */
-+static inline int prio_deadline_diff(struct task_struct *p)
-+{
-+ return (pratio(p) * rr_interval * HZ / 1000 / 100) ? : 1;
-+}
-+
-+static inline int longest_deadline(void)
-+{
-+ return (prio_ratios[39] * rr_interval * HZ / 1000 / 100);
-+}
-+
-+/*
-+ * SCHED_IDLE tasks still have a deadline set, but offset by to nice +19.
-+ * This allows nice levels to work between IDLEPRIO tasks and gives a
-+ * deadline longer than nice +19 for when they're scheduled as SCHED_NORMAL
-+ * tasks.
-+ */
-+static inline void time_slice_expired(struct task_struct *p)
-+{
-+ reset_first_time_slice(p);
-+ p->rt.time_slice = timeslice();
-+ p->deadline = jiffies + prio_deadline_diff(p);
-+ if (idleprio_task(p))
-+ p->deadline += longest_deadline();
-+}
-+
-+static inline void check_deadline(struct task_struct *p)
-+{
-+ if (p->rt.time_slice <= 0)
-+ time_slice_expired(p);
-+}
-+
-+/*
-+ * O(n) lookup of all tasks in the global runqueue. The real brainfuck
-+ * of lock contention and O(n). It's not really O(n) as only the queued,
-+ * but not running tasks are scanned, and is O(n) queued in the worst case
-+ * scenario only because the right task can be found before scanning all of
-+ * them.
-+ * Tasks are selected in this order:
-+ * Real time tasks are selected purely by their static priority and in the
-+ * order they were queued, so the lowest value idx, and the first queued task
-+ * of that priority value is chosen.
-+ * If no real time tasks are found, the SCHED_ISO priority is checked, and
-+ * all SCHED_ISO tasks have the same priority value, so they're selected by
-+ * the earliest deadline value.
-+ * If no SCHED_ISO tasks are found, SCHED_NORMAL tasks are selected by the
-+ * earliest deadline.
-+ * Finally if no SCHED_NORMAL tasks are found, SCHED_IDLEPRIO tasks are
-+ * selected by the earliest deadline.
-+ */
-+static inline struct
-+task_struct *earliest_deadline_task(struct rq *rq, struct task_struct *idle)
-+{
-+ unsigned long dl, earliest_deadline = 0; /* Initialise to silence compiler */
-+ struct task_struct *p, *edt;
-+ unsigned int cpu = rq->cpu;
-+ struct list_head *queue;
-+ int idx = 0;
-+
-+ edt = idle;
-+retry:
-+ idx = find_next_bit(grq.prio_bitmap, PRIO_LIMIT, idx);
-+ if (idx >= PRIO_LIMIT)
-+ goto out;
-+ queue = &grq.queue[idx];
-+ list_for_each_entry(p, queue, rt.run_list) {
-+ /* Make sure cpu affinity is ok */
-+ if (!cpu_isset(cpu, p->cpus_allowed))
-+ continue;
-+ if (idx < MAX_RT_PRIO) {
-+ /* We found an rt task */
-+ edt = p;
-+ goto out_take;
-+ }
-+
-+ /*
-+ * No rt task, select the earliest deadline task now.
-+ * On the 1st run the 2nd condition is never used, so
-+ * there is no need to initialise earliest_deadline
-+ * before. Normalise all old deadlines to now.
-+ */
-+ if (time_before(p->deadline, jiffies))
-+ dl = jiffies;
-+ else
-+ dl = p->deadline;
-+
-+ if (edt == idle ||
-+ time_before(dl, earliest_deadline)) {
-+ earliest_deadline = dl;
-+ edt = p;
-+ }
-+ }
-+ if (edt == idle) {
-+ if (++idx < PRIO_LIMIT)
-+ goto retry;
-+ goto out;
-+ }
-+out_take:
-+ take_task(rq, edt);
-+out:
-+ return edt;
-+}
-+
-+#ifdef CONFIG_SMP
-+static inline void set_cpuidle_map(unsigned long cpu)
-+{
-+ cpu_set(cpu, grq.cpu_idle_map);
-+}
-+
-+static inline void clear_cpuidle_map(unsigned long cpu)
-+{
-+ cpu_clear(cpu, grq.cpu_idle_map);
-+}
-+
-+#else /* CONFIG_SMP */
-+static inline void set_cpuidle_map(unsigned long cpu)
-+{
-+}
-+
-+static inline void clear_cpuidle_map(unsigned long cpu)
-+{
-+}
-+#endif /* !CONFIG_SMP */
-+
-+/*
-+ * Print scheduling while atomic bug:
-+ */
-+static noinline void __schedule_bug(struct task_struct *prev)
-+{
-+ struct pt_regs *regs = get_irq_regs();
-+
-+ printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
-+ prev->comm, prev->pid, preempt_count());
-+
-+ debug_show_held_locks(prev);
-+ print_modules();
-+ if (irqs_disabled())
-+ print_irqtrace_events(prev);
-+
-+ if (regs)
-+ show_regs(regs);
-+ else
-+ dump_stack();
-+}
-+
-+/*
-+ * Various schedule()-time debugging checks and statistics:
-+ */
-+static inline void schedule_debug(struct task_struct *prev)
-+{
-+ /*
-+ * Test if we are atomic. Since do_exit() needs to call into
-+ * schedule() atomically, we ignore that path for now.
-+ * Otherwise, whine if we are scheduling when we should not be.
-+ */
-+ if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
-+ __schedule_bug(prev);
-+
-+ profile_hit(SCHED_PROFILING, __builtin_return_address(0));
-+
-+ schedstat_inc(this_rq(), sched_count);
-+#ifdef CONFIG_SCHEDSTATS
-+ if (unlikely(prev->lock_depth >= 0)) {
-+ schedstat_inc(this_rq(), bkl_count);
-+ schedstat_inc(prev, sched_info.bkl_count);
-+ }
-+#endif
-+}
-+
-+/*
-+ * schedule() is the main scheduler function.
-+ */
-+asmlinkage void __sched __schedule(void)
-+{
-+ struct task_struct *prev, *next, *idle;
-+ int deactivate = 0, cpu;
-+ long *switch_count;
-+ struct rq *rq;
-+ u64 now;
-+
-+ cpu = smp_processor_id();
-+ rq = this_rq();
-+ rcu_qsctr_inc(cpu);
-+ prev = rq->curr;
-+ switch_count = &prev->nivcsw;
-+
-+ release_kernel_lock(prev);
-+need_resched_nonpreemptible:
-+
-+ schedule_debug(prev);
-+ idle = rq->idle;
-+ /*
-+ * The idle thread is not allowed to schedule!
-+ * Remove this check after it has been exercised a bit.
-+ */
-+ if (unlikely(prev == idle) && prev->state != TASK_RUNNING) {
-+ printk(KERN_ERR "bad: scheduling from the idle thread!\n");
-+ dump_stack();
-+ }
-+
-+ grq_lock_irq();
-+ update_rq_clock(rq);
-+ now = rq->clock;
-+ update_cpu_clock(rq, prev, 0);
-+
-+ clear_tsk_need_resched(prev);
-+
-+ if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
-+ if (unlikely(signal_pending_state(prev->state, prev)))
-+ prev->state = TASK_RUNNING;
-+ else
-+ deactivate = 1;
-+ switch_count = &prev->nvcsw;
-+ }
-+
-+ if (prev != idle) {
-+ /* Update all the information stored on struct rq */
-+ prev->rt.time_slice = rq->rq_time_slice;
-+ prev->deadline = rq->rq_deadline;
-+ check_deadline(prev);
-+ return_task(prev, deactivate);
-+ }
-+
-+ if (likely(queued_notrunning())) {
-+ next = earliest_deadline_task(rq, idle);
-+ } else {
-+ next = idle;
-+ schedstat_inc(rq, sched_goidle);
-+ }
-+
-+ if (next == rq->idle)
-+ set_cpuidle_map(cpu);
-+ else
-+ clear_cpuidle_map(cpu);
-+
-+ prefetch(next);
-+ prefetch_stack(next);
-+
-+ prev->timestamp = prev->last_ran = now;
-+
-+ if (likely(prev != next)) {
-+ rq->rq_time_slice = next->rt.time_slice;
-+ rq->rq_deadline = next->deadline;
-+ rq->rq_prio = next->prio;
-+
-+ sched_info_switch(prev, next);
-+ grq.nr_switches++;
-+ next->oncpu = 1;
-+ prev->oncpu = 0;
-+ rq->curr = next;
-+ ++*switch_count;
-+
-+ context_switch(rq, prev, next); /* unlocks the rq */
-+ /*
-+ * the context switch might have flipped the stack from under
-+ * us, hence refresh the local variables.
-+ */
-+ cpu = smp_processor_id();
-+ rq = cpu_rq(cpu);
-+ } else
-+ grq_unlock_irq();
-+
-+ if (unlikely(reacquire_kernel_lock(current) < 0))
-+ goto need_resched_nonpreemptible;
-+}
-+
-+asmlinkage void __sched schedule(void)
-+{
-+need_resched:
-+ preempt_disable();
-+ __schedule();
-+ preempt_enable_no_resched();
-+ if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
-+ goto need_resched;
-+}
-+EXPORT_SYMBOL(schedule);
-+
-+#ifdef CONFIG_SMP
-+int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
-+{
-+ return 0;
-+}
-+#endif
-+
-+#ifdef CONFIG_PREEMPT
-+/*
-+ * this is the entry point to schedule() from in-kernel preemption
-+ * off of preempt_enable. Kernel preemptions off return from interrupt
-+ * occur there and call schedule directly.
-+ */
-+asmlinkage void __sched preempt_schedule(void)
-+{
-+ struct thread_info *ti = current_thread_info();
-+
-+ /*
-+ * If there is a non-zero preempt_count or interrupts are disabled,
-+ * we do not want to preempt the current task. Just return..
-+ */
-+ if (likely(ti->preempt_count || irqs_disabled()))
-+ return;
-+
-+ do {
-+ add_preempt_count(PREEMPT_ACTIVE);
-+ schedule();
-+ sub_preempt_count(PREEMPT_ACTIVE);
-+
-+ /*
-+ * Check again in case we missed a preemption opportunity
-+ * between schedule and now.
-+ */
-+ barrier();
-+ } while (need_resched());
-+}
-+EXPORT_SYMBOL(preempt_schedule);
-+
-+/*
-+ * this is the entry point to schedule() from kernel preemption
-+ * off of irq context.
-+ * Note, that this is called and return with irqs disabled. This will
-+ * protect us against recursive calling from irq.
-+ */
-+asmlinkage void __sched preempt_schedule_irq(void)
-+{
-+ struct thread_info *ti = current_thread_info();
-+
-+ /* Catch callers which need to be fixed */
-+ BUG_ON(ti->preempt_count || !irqs_disabled());
-+
-+ do {
-+ add_preempt_count(PREEMPT_ACTIVE);
-+ local_irq_enable();
-+ schedule();
-+ local_irq_disable();
-+ sub_preempt_count(PREEMPT_ACTIVE);
-+
-+ /*
-+ * Check again in case we missed a preemption opportunity
-+ * between schedule and now.
-+ */
-+ barrier();
-+ } while (need_resched());
-+}
-+
-+#endif /* CONFIG_PREEMPT */
-+
-+int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
-+ void *key)
-+{
-+ return try_to_wake_up(curr->private, mode, sync);
-+}
-+EXPORT_SYMBOL(default_wake_function);
-+
-+/*
-+ * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
-+ * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
-+ * number) then we wake all the non-exclusive tasks and one exclusive task.
-+ *
-+ * There are circumstances in which we can try to wake a task which has already
-+ * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
-+ * zero in this (rare) case, and we handle it by continuing to scan the queue.
-+ */
-+void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
-+ int nr_exclusive, int sync, void *key)
-+{
-+ struct list_head *tmp, *next;
-+
-+ list_for_each_safe(tmp, next, &q->task_list) {
-+ wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
-+ unsigned flags = curr->flags;
-+
-+ if (curr->func(curr, mode, sync, key) &&
-+ (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
-+ break;
-+ }
-+}
-+
-+/**
-+ * __wake_up - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ * @key: is directly passed to the wakeup function
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void __wake_up(wait_queue_head_t *q, unsigned int mode,
-+ int nr_exclusive, void *key)
-+{
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __wake_up_common(q, mode, nr_exclusive, 0, key);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL(__wake_up);
-+
-+/*
-+ * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
-+ */
-+void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
-+{
-+ __wake_up_common(q, mode, 1, 0, NULL);
-+}
-+
-+void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
-+{
-+ __wake_up_common(q, mode, 1, 0, key);
-+}
-+
-+/**
-+ * __wake_up_sync_key - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ * @key: opaque value to be passed to wakeup targets
-+ *
-+ * The sync wakeup differs that the waker knows that it will schedule
-+ * away soon, so while the target thread will be woken up, it will not
-+ * be migrated to another CPU - ie. the two threads are 'synchronized'
-+ * with each other. This can prevent needless bouncing between CPUs.
-+ *
-+ * On UP it can prevent extra preemption.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
-+ int nr_exclusive, void *key)
-+{
-+ unsigned long flags;
-+ int sync = 1;
-+
-+ if (unlikely(!q))
-+ return;
-+
-+ if (unlikely(!nr_exclusive))
-+ sync = 0;
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __wake_up_common(q, mode, nr_exclusive, sync, key);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL_GPL(__wake_up_sync_key);
-+
-+/**
-+ * __wake_up_sync - wake up threads blocked on a waitqueue.
-+ * @q: the waitqueue
-+ * @mode: which threads
-+ * @nr_exclusive: how many wake-one or wake-many threads to wake up
-+ *
-+ * The sync wakeup differs that the waker knows that it will schedule
-+ * away soon, so while the target thread will be woken up, it will not
-+ * be migrated to another CPU - ie. the two threads are 'synchronized'
-+ * with each other. This can prevent needless bouncing between CPUs.
-+ *
-+ * On UP it can prevent extra preemption.
-+ */
-+void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
-+{
-+ unsigned long flags;
-+ int sync = 1;
-+
-+ if (unlikely(!q))
-+ return;
-+
-+ if (unlikely(!nr_exclusive))
-+ sync = 0;
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __wake_up_common(q, mode, nr_exclusive, sync, NULL);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+}
-+EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
-+
-+/**
-+ * complete: - signals a single thread waiting on this completion
-+ * @x: holds the state of this particular completion
-+ *
-+ * This will wake up a single thread waiting on this completion. Threads will be
-+ * awakened in the same order in which they were queued.
-+ *
-+ * See also complete_all(), wait_for_completion() and related routines.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void complete(struct completion *x)
-+{
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&x->wait.lock, flags);
-+ x->done++;
-+ __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
-+ spin_unlock_irqrestore(&x->wait.lock, flags);
-+}
-+EXPORT_SYMBOL(complete);
-+
-+/**
-+ * complete_all: - signals all threads waiting on this completion
-+ * @x: holds the state of this particular completion
-+ *
-+ * This will wake up all threads waiting on this particular completion event.
-+ *
-+ * It may be assumed that this function implies a write memory barrier before
-+ * changing the task state if and only if any tasks are woken up.
-+ */
-+void complete_all(struct completion *x)
-+{
-+ unsigned long flags;
-+
-+ spin_lock_irqsave(&x->wait.lock, flags);
-+ x->done += UINT_MAX/2;
-+ __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
-+ spin_unlock_irqrestore(&x->wait.lock, flags);
-+}
-+EXPORT_SYMBOL(complete_all);
-+
-+static inline long __sched
-+do_wait_for_common(struct completion *x, long timeout, int state)
-+{
-+ if (!x->done) {
-+ DECLARE_WAITQUEUE(wait, current);
-+
-+ wait.flags |= WQ_FLAG_EXCLUSIVE;
-+ __add_wait_queue_tail(&x->wait, &wait);
-+ do {
-+ if (signal_pending_state(state, current)) {
-+ timeout = -ERESTARTSYS;
-+ break;
-+ }
-+ __set_current_state(state);
-+ spin_unlock_irq(&x->wait.lock);
-+ timeout = schedule_timeout(timeout);
-+ spin_lock_irq(&x->wait.lock);
-+ } while (!x->done && timeout);
-+ __remove_wait_queue(&x->wait, &wait);
-+ if (!x->done)
-+ return timeout;
-+ }
-+ x->done--;
-+ return timeout ?: 1;
-+}
-+
-+static long __sched
-+wait_for_common(struct completion *x, long timeout, int state)
-+{
-+ might_sleep();
-+
-+ spin_lock_irq(&x->wait.lock);
-+ timeout = do_wait_for_common(x, timeout, state);
-+ spin_unlock_irq(&x->wait.lock);
-+ return timeout;
-+}
-+
-+/**
-+ * wait_for_completion: - waits for completion of a task
-+ * @x: holds the state of this particular completion
-+ *
-+ * This waits to be signaled for completion of a specific task. It is NOT
-+ * interruptible and there is no timeout.
-+ *
-+ * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
-+ * and interrupt capability. Also see complete().
-+ */
-+void __sched wait_for_completion(struct completion *x)
-+{
-+ wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion);
-+
-+/**
-+ * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
-+ * @x: holds the state of this particular completion
-+ * @timeout: timeout value in jiffies
-+ *
-+ * This waits for either a completion of a specific task to be signaled or for a
-+ * specified timeout to expire. The timeout is in jiffies. It is not
-+ * interruptible.
-+ */
-+unsigned long __sched
-+wait_for_completion_timeout(struct completion *x, unsigned long timeout)
-+{
-+ return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion_timeout);
-+
-+/**
-+ * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
-+ * @x: holds the state of this particular completion
-+ *
-+ * This waits for completion of a specific task to be signaled. It is
-+ * interruptible.
-+ */
-+int __sched wait_for_completion_interruptible(struct completion *x)
-+{
-+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
-+ if (t == -ERESTARTSYS)
-+ return t;
-+ return 0;
-+}
-+EXPORT_SYMBOL(wait_for_completion_interruptible);
-+
-+/**
-+ * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
-+ * @x: holds the state of this particular completion
-+ * @timeout: timeout value in jiffies
-+ *
-+ * This waits for either a completion of a specific task to be signaled or for a
-+ * specified timeout to expire. It is interruptible. The timeout is in jiffies.
-+ */
-+unsigned long __sched
-+wait_for_completion_interruptible_timeout(struct completion *x,
-+ unsigned long timeout)
-+{
-+ return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
-+}
-+EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
-+
-+/**
-+ * wait_for_completion_killable: - waits for completion of a task (killable)
-+ * @x: holds the state of this particular completion
-+ *
-+ * This waits to be signaled for completion of a specific task. It can be
-+ * interrupted by a kill signal.
-+ */
-+int __sched wait_for_completion_killable(struct completion *x)
-+{
-+ long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
-+ if (t == -ERESTARTSYS)
-+ return t;
-+ return 0;
-+}
-+EXPORT_SYMBOL(wait_for_completion_killable);
-+
-+/**
-+ * try_wait_for_completion - try to decrement a completion without blocking
-+ * @x: completion structure
-+ *
-+ * Returns: 0 if a decrement cannot be done without blocking
-+ * 1 if a decrement succeeded.
-+ *
-+ * If a completion is being used as a counting completion,
-+ * attempt to decrement the counter without blocking. This
-+ * enables us to avoid waiting if the resource the completion
-+ * is protecting is not available.
-+ */
-+bool try_wait_for_completion(struct completion *x)
-+{
-+ int ret = 1;
-+
-+ spin_lock_irq(&x->wait.lock);
-+ if (!x->done)
-+ ret = 0;
-+ else
-+ x->done--;
-+ spin_unlock_irq(&x->wait.lock);
-+ return ret;
-+}
-+EXPORT_SYMBOL(try_wait_for_completion);
-+
-+/**
-+ * completion_done - Test to see if a completion has any waiters
-+ * @x: completion structure
-+ *
-+ * Returns: 0 if there are waiters (wait_for_completion() in progress)
-+ * 1 if there are no waiters.
-+ *
-+ */
-+bool completion_done(struct completion *x)
-+{
-+ int ret = 1;
-+
-+ spin_lock_irq(&x->wait.lock);
-+ if (!x->done)
-+ ret = 0;
-+ spin_unlock_irq(&x->wait.lock);
-+ return ret;
-+}
-+EXPORT_SYMBOL(completion_done);
-+
-+static long __sched
-+sleep_on_common(wait_queue_head_t *q, int state, long timeout)
-+{
-+ unsigned long flags;
-+ wait_queue_t wait;
-+
-+ init_waitqueue_entry(&wait, current);
-+
-+ __set_current_state(state);
-+
-+ spin_lock_irqsave(&q->lock, flags);
-+ __add_wait_queue(q, &wait);
-+ spin_unlock(&q->lock);
-+ timeout = schedule_timeout(timeout);
-+ spin_lock_irq(&q->lock);
-+ __remove_wait_queue(q, &wait);
-+ spin_unlock_irqrestore(&q->lock, flags);
-+
-+ return timeout;
-+}
-+
-+void __sched interruptible_sleep_on(wait_queue_head_t *q)
-+{
-+ sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-+}
-+EXPORT_SYMBOL(interruptible_sleep_on);
-+
-+long __sched
-+interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
-+{
-+ return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
-+}
-+EXPORT_SYMBOL(interruptible_sleep_on_timeout);
-+
-+void __sched sleep_on(wait_queue_head_t *q)
-+{
-+ sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
-+}
-+EXPORT_SYMBOL(sleep_on);
-+
-+long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
-+{
-+ return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
-+}
-+EXPORT_SYMBOL(sleep_on_timeout);
-+
-+#ifdef CONFIG_RT_MUTEXES
-+
-+/*
-+ * rt_mutex_setprio - set the current priority of a task
-+ * @p: task
-+ * @prio: prio value (kernel-internal form)
-+ *
-+ * This function changes the 'effective' priority of a task. It does
-+ * not touch ->normal_prio like __setscheduler().
-+ *
-+ * Used by the rt_mutex code to implement priority inheritance logic.
-+ */
-+void rt_mutex_setprio(struct task_struct *p, int prio)
-+{
-+ unsigned long flags;
-+ int queued, oldprio;
-+ struct rq *rq;
-+
-+ BUG_ON(prio < 0 || prio > MAX_PRIO);
-+
-+ rq = time_task_grq_lock(p, &flags);
-+
-+ oldprio = p->prio;
-+ queued = task_queued_only(p);
-+ if (queued)
-+ dequeue_task(p);
-+ p->prio = prio;
-+ if (task_running(p) && prio > oldprio)
-+ resched_task(p);
-+ if (queued) {
-+ enqueue_task(p);
-+ try_preempt(p);
-+ }
-+
-+ task_grq_unlock(&flags);
-+}
-+
-+#endif
-+
-+/*
-+ * Adjust the deadline for when the priority is to change, before it's
-+ * changed.
-+ */
-+static void adjust_deadline(struct task_struct *p, int new_prio)
-+{
-+ p->deadline += (prio_ratios[USER_PRIO(new_prio)] - pratio(p)) *
-+ rr_interval * HZ / 1000 / 100;
-+}
-+
-+void set_user_nice(struct task_struct *p, long nice)
-+{
-+ int queued, new_static;
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
-+ return;
-+ new_static = NICE_TO_PRIO(nice);
-+ /*
-+ * We have to be careful, if called from sys_setpriority(),
-+ * the task might be in the middle of scheduling on another CPU.
-+ */
-+ rq = time_task_grq_lock(p, &flags);
-+ /*
-+ * The RT priorities are set via sched_setscheduler(), but we still
-+ * allow the 'normal' nice value to be set - but as expected
-+ * it wont have any effect on scheduling until the task is
-+ * not SCHED_NORMAL/SCHED_BATCH:
-+ */
-+ if (has_rt_policy(p)) {
-+ p->static_prio = new_static;
-+ goto out_unlock;
-+ }
-+ queued = task_queued_only(p);
-+ /*
-+ * If p is actually running, we don't need to do anything when
-+ * changing the priority because the grq is unaffected.
-+ */
-+ if (queued)
-+ dequeue_task(p);
-+
-+ adjust_deadline(p, new_static);
-+ p->static_prio = new_static;
-+ p->prio = effective_prio(p);
-+
-+ if (queued) {
-+ enqueue_task(p);
-+ try_preempt(p);
-+ }
-+
-+ /* Just resched the task, schedule() will know what to do. */
-+ if (task_running(p))
-+ resched_task(p);
-+out_unlock:
-+ task_grq_unlock(&flags);
-+}
-+EXPORT_SYMBOL(set_user_nice);
-+
-+/*
-+ * can_nice - check if a task can reduce its nice value
-+ * @p: task
-+ * @nice: nice value
-+ */
-+int can_nice(const struct task_struct *p, const int nice)
-+{
-+ /* convert nice value [19,-20] to rlimit style value [1,40] */
-+ int nice_rlim = 20 - nice;
-+
-+ return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
-+ capable(CAP_SYS_NICE));
-+}
-+
-+#ifdef __ARCH_WANT_SYS_NICE
-+
-+/*
-+ * sys_nice - change the priority of the current process.
-+ * @increment: priority increment
-+ *
-+ * sys_setpriority is a more generic, but much slower function that
-+ * does similar things.
-+ */
-+SYSCALL_DEFINE1(nice, int, increment)
-+{
-+ long nice, retval;
-+
-+ /*
-+ * Setpriority might change our priority at the same moment.
-+ * We don't have to worry. Conceptually one call occurs first
-+ * and we have a single winner.
-+ */
-+ if (increment < -40)
-+ increment = -40;
-+ if (increment > 40)
-+ increment = 40;
-+
-+ nice = TASK_NICE(current) + increment;
-+ if (nice < -20)
-+ nice = -20;
-+ if (nice > 19)
-+ nice = 19;
-+
-+ if (increment < 0 && !can_nice(current, nice))
-+ return -EPERM;
-+
-+ retval = security_task_setnice(current, nice);
-+ if (retval)
-+ return retval;
-+
-+ set_user_nice(current, nice);
-+ return 0;
-+}
-+
-+#endif
-+
-+/**
-+ * task_prio - return the priority value of a given task.
-+ * @p: the task in question.
-+ *
-+ * This is the priority value as seen by users in /proc.
-+ * RT tasks are offset by -100. Normal tasks are centered
-+ * around 1, value goes from 0 (SCHED_ISO) up to 82 (nice +19
-+ * SCHED_IDLE).
-+ */
-+int task_prio(const struct task_struct *p)
-+{
-+ int delta, prio = p->prio - MAX_RT_PRIO;
-+
-+ /* rt tasks and iso tasks */
-+ if (prio <= 0)
-+ goto out;
-+
-+ delta = (p->deadline - jiffies) * 40 / longest_deadline();
-+ if (delta > 0 && delta <= 80)
-+ prio += delta;
-+out:
-+ return prio;
-+}
-+
-+/**
-+ * task_nice - return the nice value of a given task.
-+ * @p: the task in question.
-+ */
-+int task_nice(const struct task_struct *p)
-+{
-+ return TASK_NICE(p);
-+}
-+EXPORT_SYMBOL_GPL(task_nice);
-+
-+/**
-+ * idle_cpu - is a given cpu idle currently?
-+ * @cpu: the processor in question.
-+ */
-+int idle_cpu(int cpu)
-+{
-+ return cpu_curr(cpu) == cpu_rq(cpu)->idle;
-+}
-+
-+/**
-+ * idle_task - return the idle task for a given cpu.
-+ * @cpu: the processor in question.
-+ */
-+struct task_struct *idle_task(int cpu)
-+{
-+ return cpu_rq(cpu)->idle;
-+}
-+
-+/**
-+ * find_process_by_pid - find a process with a matching PID value.
-+ * @pid: the pid in question.
-+ */
-+static inline struct task_struct *find_process_by_pid(pid_t pid)
-+{
-+ return pid ? find_task_by_vpid(pid) : current;
-+}
-+
-+/* Actually do priority change: must hold grq lock. */
-+static void __setscheduler(struct task_struct *p, int policy, int prio)
-+{
-+ BUG_ON(task_queued_only(p));
-+
-+ p->policy = policy;
-+ p->rt_priority = prio;
-+ p->normal_prio = normal_prio(p);
-+ /* we are holding p->pi_lock already */
-+ p->prio = rt_mutex_getprio(p);
-+ /*
-+ * Reschedule if running. schedule() will know if it can continue
-+ * running or not.
-+ */
-+ if (task_running(p))
-+ resched_task(p);
-+}
-+
-+/*
-+ * check the target process has a UID that matches the current process's
-+ */
-+static bool check_same_owner(struct task_struct *p)
-+{
-+ const struct cred *cred = current_cred(), *pcred;
-+ bool match;
-+
-+ rcu_read_lock();
-+ pcred = __task_cred(p);
-+ match = (cred->euid == pcred->euid ||
-+ cred->euid == pcred->uid);
-+ rcu_read_unlock();
-+ return match;
-+}
-+
-+static int __sched_setscheduler(struct task_struct *p, int policy,
-+ struct sched_param *param, bool user)
-+{
-+ struct sched_param zero_param = { .sched_priority = 0 };
-+ int queued, retval, oldprio, oldpolicy = -1;
-+ unsigned long flags, rlim_rtprio = 0;
-+ struct rq *rq;
-+
-+ /* may grab non-irq protected spin_locks */
-+ BUG_ON(in_interrupt());
-+
-+ if (is_rt_policy(policy) && !capable(CAP_SYS_NICE)) {
-+ unsigned long lflags;
-+
-+ if (!lock_task_sighand(p, &lflags))
-+ return -ESRCH;
-+ rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
-+ unlock_task_sighand(p, &lflags);
-+ if (rlim_rtprio)
-+ goto recheck;
-+ /*
-+ * If the caller requested an RT policy without having the
-+ * necessary rights, we downgrade the policy to SCHED_ISO.
-+ * We also set the parameter to zero to pass the checks.
-+ */
-+ policy = SCHED_ISO;
-+ param = &zero_param;
-+ }
-+recheck:
-+ /* double check policy once rq lock held */
-+ if (policy < 0)
-+ policy = oldpolicy = p->policy;
-+ else if (!SCHED_RANGE(policy))
-+ return -EINVAL;
-+ /*
-+ * Valid priorities for SCHED_FIFO and SCHED_RR are
-+ * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
-+ * SCHED_BATCH is 0.
-+ */
-+ if (param->sched_priority < 0 ||
-+ (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
-+ (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
-+ return -EINVAL;
-+ if (is_rt_policy(policy) != (param->sched_priority != 0))
-+ return -EINVAL;
-+
-+ /*
-+ * Allow unprivileged RT tasks to decrease priority:
-+ */
-+ if (user && !capable(CAP_SYS_NICE)) {
-+ if (is_rt_policy(policy)) {
-+ /* can't set/change the rt policy */
-+ if (policy != p->policy && !rlim_rtprio)
-+ return -EPERM;
-+
-+ /* can't increase priority */
-+ if (param->sched_priority > p->rt_priority &&
-+ param->sched_priority > rlim_rtprio)
-+ return -EPERM;
-+ } else {
-+ switch (p->policy) {
-+ /*
-+ * Can only downgrade policies but not back to
-+ * SCHED_NORMAL
-+ */
-+ case SCHED_ISO:
-+ if (policy == SCHED_ISO)
-+ goto out;
-+ if (policy == SCHED_NORMAL)
-+ return -EPERM;
-+ break;
-+ case SCHED_BATCH:
-+ if (policy == SCHED_BATCH)
-+ goto out;
-+ if (policy != SCHED_IDLE)
-+ return -EPERM;
-+ break;
-+ case SCHED_IDLE:
-+ if (policy == SCHED_IDLE)
-+ goto out;
-+ return -EPERM;
-+ default:
-+ break;
-+ }
-+ }
-+
-+ /* can't change other user's priorities */
-+ if (!check_same_owner(p))
-+ return -EPERM;
-+ }
-+
-+ retval = security_task_setscheduler(p, policy, param);
-+ if (retval)
-+ return retval;
-+ /*
-+ * make sure no PI-waiters arrive (or leave) while we are
-+ * changing the priority of the task:
-+ */
-+ spin_lock_irqsave(&p->pi_lock, flags);
-+ /*
-+ * To be able to change p->policy safely, the apropriate
-+ * runqueue lock must be held.
-+ */
-+ rq = __task_grq_lock(p);
-+ /* recheck policy now with rq lock held */
-+ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
-+ __task_grq_unlock();
-+ spin_unlock_irqrestore(&p->pi_lock, flags);
-+ policy = oldpolicy = -1;
-+ goto recheck;
-+ }
-+ update_rq_clock(rq);
-+ queued = task_queued_only(p);
-+ if (queued)
-+ dequeue_task(p);
-+ oldprio = p->prio;
-+ __setscheduler(p, policy, param->sched_priority);
-+ if (queued) {
-+ enqueue_task(p);
-+ try_preempt(p);
-+ }
-+ __task_grq_unlock();
-+ spin_unlock_irqrestore(&p->pi_lock, flags);
-+
-+ rt_mutex_adjust_pi(p);
-+out:
-+ return 0;
-+}
-+
-+/**
-+ * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * NOTE that the task may be already dead.
-+ */
-+int sched_setscheduler(struct task_struct *p, int policy,
-+ struct sched_param *param)
-+{
-+ return __sched_setscheduler(p, policy, param, true);
-+}
-+
-+EXPORT_SYMBOL_GPL(sched_setscheduler);
-+
-+/**
-+ * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
-+ * @p: the task in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ *
-+ * Just like sched_setscheduler, only don't bother checking if the
-+ * current context has permission. For example, this is needed in
-+ * stop_machine(): we create temporary high priority worker threads,
-+ * but our caller might not have that capability.
-+ */
-+int sched_setscheduler_nocheck(struct task_struct *p, int policy,
-+ struct sched_param *param)
-+{
-+ return __sched_setscheduler(p, policy, param, false);
-+}
-+
-+static int
-+do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
-+{
-+ struct sched_param lparam;
-+ struct task_struct *p;
-+ int retval;
-+
-+ if (!param || pid < 0)
-+ return -EINVAL;
-+ if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
-+ return -EFAULT;
-+
-+ rcu_read_lock();
-+ retval = -ESRCH;
-+ p = find_process_by_pid(pid);
-+ if (p != NULL)
-+ retval = sched_setscheduler(p, policy, &lparam);
-+ rcu_read_unlock();
-+
-+ return retval;
-+}
-+
-+/**
-+ * sys_sched_setscheduler - set/change the scheduler policy and RT priority
-+ * @pid: the pid in question.
-+ * @policy: new policy.
-+ * @param: structure containing the new RT priority.
-+ */
-+asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
-+ struct sched_param __user *param)
-+{
-+ /* negative values for policy are not valid */
-+ if (policy < 0)
-+ return -EINVAL;
-+
-+ return do_sched_setscheduler(pid, policy, param);
-+}
-+
-+/**
-+ * sys_sched_setparam - set/change the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the new RT priority.
-+ */
-+SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+ return do_sched_setscheduler(pid, -1, param);
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the policy (scheduling class) of a thread
-+ * @pid: the pid in question.
-+ */
-+SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
-+{
-+ struct task_struct *p;
-+ int retval = -EINVAL;
-+
-+ if (pid < 0)
-+ goto out_nounlock;
-+
-+ retval = -ESRCH;
-+ read_lock(&tasklist_lock);
-+ p = find_process_by_pid(pid);
-+ if (p) {
-+ retval = security_task_getscheduler(p);
-+ if (!retval)
-+ retval = p->policy;
-+ }
-+ read_unlock(&tasklist_lock);
-+
-+out_nounlock:
-+ return retval;
-+}
-+
-+/**
-+ * sys_sched_getscheduler - get the RT priority of a thread
-+ * @pid: the pid in question.
-+ * @param: structure containing the RT priority.
-+ */
-+SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
-+{
-+ struct sched_param lp;
-+ struct task_struct *p;
-+ int retval = -EINVAL;
-+
-+ if (!param || pid < 0)
-+ goto out_nounlock;
-+
-+ read_lock(&tasklist_lock);
-+ p = find_process_by_pid(pid);
-+ retval = -ESRCH;
-+ if (!p)
-+ goto out_unlock;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ goto out_unlock;
-+
-+ lp.sched_priority = p->rt_priority;
-+ read_unlock(&tasklist_lock);
-+
-+ /*
-+ * This one might sleep, we cannot do it with a spinlock held ...
-+ */
-+ retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
-+
-+out_nounlock:
-+ return retval;
-+
-+out_unlock:
-+ read_unlock(&tasklist_lock);
-+ return retval;
-+}
-+
-+long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
-+{
-+ cpumask_var_t cpus_allowed, new_mask;
-+ struct task_struct *p;
-+ int retval;
-+
-+ get_online_cpus();
-+ read_lock(&tasklist_lock);
-+
-+ p = find_process_by_pid(pid);
-+ if (!p) {
-+ read_unlock(&tasklist_lock);
-+ put_online_cpus();
-+ return -ESRCH;
-+ }
-+
-+ /*
-+ * It is not safe to call set_cpus_allowed with the
-+ * tasklist_lock held. We will bump the task_struct's
-+ * usage count and then drop tasklist_lock.
-+ */
-+ get_task_struct(p);
-+ read_unlock(&tasklist_lock);
-+
-+ if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
-+ retval = -ENOMEM;
-+ goto out_put_task;
-+ }
-+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
-+ retval = -ENOMEM;
-+ goto out_free_cpus_allowed;
-+ }
-+ retval = -EPERM;
-+ if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
-+ goto out_unlock;
-+
-+ retval = security_task_setscheduler(p, 0, NULL);
-+ if (retval)
-+ goto out_unlock;
-+
-+ cpuset_cpus_allowed(p, cpus_allowed);
-+ cpumask_and(new_mask, in_mask, cpus_allowed);
-+again:
-+ retval = set_cpus_allowed_ptr(p, new_mask);
-+
-+ if (!retval) {
-+ cpuset_cpus_allowed(p, cpus_allowed);
-+ if (!cpumask_subset(new_mask, cpus_allowed)) {
-+ /*
-+ * We must have raced with a concurrent cpuset
-+ * update. Just reset the cpus_allowed to the
-+ * cpuset's cpus_allowed
-+ */
-+ cpumask_copy(new_mask, cpus_allowed);
-+ goto again;
-+ }
-+ }
-+out_unlock:
-+ free_cpumask_var(new_mask);
-+out_free_cpus_allowed:
-+ free_cpumask_var(cpus_allowed);
-+out_put_task:
-+ put_task_struct(p);
-+ put_online_cpus();
-+ return retval;
-+}
-+
-+static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
-+ cpumask_t *new_mask)
-+{
-+ if (len < sizeof(cpumask_t)) {
-+ memset(new_mask, 0, sizeof(cpumask_t));
-+ } else if (len > sizeof(cpumask_t)) {
-+ len = sizeof(cpumask_t);
-+ }
-+ return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
-+}
-+
-+
-+/**
-+ * sys_sched_setaffinity - set the cpu affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to the new cpu mask
-+ */
-+SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
-+ unsigned long __user *, user_mask_ptr)
-+{
-+ cpumask_var_t new_mask;
-+ int retval;
-+
-+ if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
-+ return -ENOMEM;
-+
-+ retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
-+ if (retval == 0)
-+ retval = sched_setaffinity(pid, new_mask);
-+ free_cpumask_var(new_mask);
-+ return retval;
-+}
-+
-+long sched_getaffinity(pid_t pid, cpumask_t *mask)
-+{
-+ struct task_struct *p;
-+ int retval;
-+
-+ mutex_lock(&sched_hotcpu_mutex);
-+ read_lock(&tasklist_lock);
-+
-+ retval = -ESRCH;
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ goto out_unlock;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ goto out_unlock;
-+
-+ cpus_and(*mask, p->cpus_allowed, cpu_online_map);
-+
-+out_unlock:
-+ read_unlock(&tasklist_lock);
-+ mutex_unlock(&sched_hotcpu_mutex);
-+ if (retval)
-+ return retval;
-+
-+ return 0;
-+}
-+
-+/**
-+ * sys_sched_getaffinity - get the cpu affinity of a process
-+ * @pid: pid of the process
-+ * @len: length in bytes of the bitmask pointed to by user_mask_ptr
-+ * @user_mask_ptr: user-space pointer to hold the current cpu mask
-+ */
-+SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
-+ unsigned long __user *, user_mask_ptr)
-+{
-+ int ret;
-+ cpumask_var_t mask;
-+
-+ if (len < cpumask_size())
-+ return -EINVAL;
-+
-+ if (!alloc_cpumask_var(&mask, GFP_KERNEL))
-+ return -ENOMEM;
-+
-+ ret = sched_getaffinity(pid, mask);
-+ if (ret == 0) {
-+ if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
-+ ret = -EFAULT;
-+ else
-+ ret = cpumask_size();
-+ }
-+ free_cpumask_var(mask);
-+
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_yield - yield the current processor to other threads.
-+ *
-+ * This function yields the current CPU to other tasks. It does this by
-+ * refilling the timeslice, resetting the deadline and scheduling away.
-+ */
-+SYSCALL_DEFINE0(sched_yield)
-+{
-+ struct task_struct *p;
-+
-+ grq_lock_irq();
-+ p = current;
-+ schedstat_inc(this_rq(), yld_count);
-+ update_rq_clock(task_rq(p));
-+ time_slice_expired(p);
-+ requeue_task(p);
-+
-+ /*
-+ * Since we are going to call schedule() anyway, there's
-+ * no need to preempt or enable interrupts:
-+ */
-+ __release(grq.lock);
-+ spin_release(&grq.lock.dep_map, 1, _THIS_IP_);
-+ _raw_spin_unlock(&grq.lock);
-+ preempt_enable_no_resched();
-+
-+ schedule();
-+
-+ return 0;
-+}
-+
-+static inline int should_resched(void)
-+{
-+ return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
-+}
-+
-+static void __cond_resched(void)
-+{
-+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-+ __might_sleep(__FILE__, __LINE__);
-+#endif
-+ /*
-+ * The BKS might be reacquired before we have dropped
-+ * PREEMPT_ACTIVE, which could trigger a second
-+ * cond_resched() call.
-+ */
-+ do {
-+ add_preempt_count(PREEMPT_ACTIVE);
-+ schedule();
-+ sub_preempt_count(PREEMPT_ACTIVE);
-+ } while (need_resched());
-+}
-+
-+int __sched _cond_resched(void)
-+{
-+ if (should_resched()) {
-+ __cond_resched();
-+ return 1;
-+ }
-+ return 0;
-+}
-+EXPORT_SYMBOL(_cond_resched);
-+
-+/*
-+ * cond_resched_lock() - if a reschedule is pending, drop the given lock,
-+ * call schedule, and on return reacquire the lock.
-+ *
-+ * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
-+ * operations here to prevent schedule() from being called twice (once via
-+ * spin_unlock(), once by hand).
-+ */
-+int cond_resched_lock(spinlock_t *lock)
-+{
-+ int resched = should_resched();
-+ int ret = 0;
-+
-+ if (spin_needbreak(lock) || resched) {
-+ spin_unlock(lock);
-+ if (resched)
-+ __cond_resched();
-+ else
-+ cpu_relax();
-+ ret = 1;
-+ spin_lock(lock);
-+ }
-+ return ret;
-+}
-+EXPORT_SYMBOL(cond_resched_lock);
-+
-+int __sched cond_resched_softirq(void)
-+{
-+ BUG_ON(!in_softirq());
-+
-+ if (should_resched()) {
-+ local_bh_enable();
-+ __cond_resched();
-+ local_bh_disable();
-+ return 1;
-+ }
-+ return 0;
-+}
-+EXPORT_SYMBOL(cond_resched_softirq);
-+
-+/**
-+ * yield - yield the current processor to other threads.
-+ *
-+ * This is a shortcut for kernel-space yielding - it marks the
-+ * thread runnable and calls sys_sched_yield().
-+ */
-+void __sched yield(void)
-+{
-+ set_current_state(TASK_RUNNING);
-+ sys_sched_yield();
-+}
-+EXPORT_SYMBOL(yield);
-+
-+/*
-+ * This task is about to go to sleep on IO. Increment rq->nr_iowait so
-+ * that process accounting knows that this is a task in IO wait state.
-+ *
-+ * But don't do that if it is a deliberate, throttling IO wait (this task
-+ * has set its backing_dev_info: the queue against which it should throttle)
-+ */
-+void __sched io_schedule(void)
-+{
-+ struct rq *rq = &__raw_get_cpu_var(runqueues);
-+
-+ delayacct_blkio_start();
-+ atomic_inc(&rq->nr_iowait);
-+ schedule();
-+ atomic_dec(&rq->nr_iowait);
-+ delayacct_blkio_end();
-+}
-+EXPORT_SYMBOL(io_schedule);
-+
-+long __sched io_schedule_timeout(long timeout)
-+{
-+ struct rq *rq = &__raw_get_cpu_var(runqueues);
-+ long ret;
-+
-+ delayacct_blkio_start();
-+ atomic_inc(&rq->nr_iowait);
-+ ret = schedule_timeout(timeout);
-+ atomic_dec(&rq->nr_iowait);
-+ delayacct_blkio_end();
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_get_priority_max - return maximum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * this syscall returns the maximum rt_priority that can be used
-+ * by a given scheduling class.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
-+{
-+ int ret = -EINVAL;
-+
-+ switch (policy) {
-+ case SCHED_FIFO:
-+ case SCHED_RR:
-+ ret = MAX_USER_RT_PRIO-1;
-+ break;
-+ case SCHED_NORMAL:
-+ case SCHED_BATCH:
-+ case SCHED_ISO:
-+ case SCHED_IDLE:
-+ ret = 0;
-+ break;
-+ }
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_get_priority_min - return minimum RT priority.
-+ * @policy: scheduling class.
-+ *
-+ * this syscall returns the minimum rt_priority that can be used
-+ * by a given scheduling class.
-+ */
-+SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
-+{
-+ int ret = -EINVAL;
-+
-+ switch (policy) {
-+ case SCHED_FIFO:
-+ case SCHED_RR:
-+ ret = 1;
-+ break;
-+ case SCHED_NORMAL:
-+ case SCHED_BATCH:
-+ case SCHED_ISO:
-+ case SCHED_IDLE:
-+ ret = 0;
-+ break;
-+ }
-+ return ret;
-+}
-+
-+/**
-+ * sys_sched_rr_get_interval - return the default timeslice of a process.
-+ * @pid: pid of the process.
-+ * @interval: userspace pointer to the timeslice value.
-+ *
-+ * this syscall writes the default timeslice value of a given process
-+ * into the user-space timespec buffer. A value of '0' means infinity.
-+ */
-+SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
-+ struct timespec __user *, interval)
-+{
-+ struct task_struct *p;
-+ int retval = -EINVAL;
-+ struct timespec t;
-+
-+ if (pid < 0)
-+ goto out_nounlock;
-+
-+ retval = -ESRCH;
-+ read_lock(&tasklist_lock);
-+ p = find_process_by_pid(pid);
-+ if (!p)
-+ goto out_unlock;
-+
-+ retval = security_task_getscheduler(p);
-+ if (retval)
-+ goto out_unlock;
-+
-+ t = ns_to_timespec(p->policy == SCHED_FIFO ? 0 :
-+ MS_TO_NS(task_timeslice(p)));
-+ read_unlock(&tasklist_lock);
-+ retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
-+out_nounlock:
-+ return retval;
-+out_unlock:
-+ read_unlock(&tasklist_lock);
-+ return retval;
-+}
-+
-+static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
-+
-+void sched_show_task(struct task_struct *p)
-+{
-+ unsigned long free = 0;
-+ unsigned state;
-+
-+ state = p->state ? __ffs(p->state) + 1 : 0;
-+ printk(KERN_INFO "%-13.13s %c", p->comm,
-+ state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
-+#if BITS_PER_LONG == 32
-+ if (state == TASK_RUNNING)
-+ printk(KERN_CONT " running ");
-+ else
-+ printk(KERN_CONT " %08lx ", thread_saved_pc(p));
-+#else
-+ if (state == TASK_RUNNING)
-+ printk(KERN_CONT " running task ");
-+ else
-+ printk(KERN_CONT " %016lx ", thread_saved_pc(p));
-+#endif
-+#ifdef CONFIG_DEBUG_STACK_USAGE
-+ free = stack_not_used(p);
-+#endif
-+ printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
-+ task_pid_nr(p), task_pid_nr(p->real_parent),
-+ (unsigned long)task_thread_info(p)->flags);
-+
-+ show_stack(p, NULL);
-+}
-+
-+void show_state_filter(unsigned long state_filter)
-+{
-+ struct task_struct *g, *p;
-+
-+#if BITS_PER_LONG == 32
-+ printk(KERN_INFO
-+ " task PC stack pid father\n");
-+#else
-+ printk(KERN_INFO
-+ " task PC stack pid father\n");
-+#endif
-+ read_lock(&tasklist_lock);
-+ do_each_thread(g, p) {
-+ /*
-+ * reset the NMI-timeout, listing all files on a slow
-+ * console might take alot of time:
-+ */
-+ touch_nmi_watchdog();
-+ if (!state_filter || (p->state & state_filter))
-+ sched_show_task(p);
-+ } while_each_thread(g, p);
-+
-+ touch_all_softlockup_watchdogs();
-+
-+ read_unlock(&tasklist_lock);
-+ /*
-+ * Only show locks if all tasks are dumped:
-+ */
-+ if (state_filter == -1)
-+ debug_show_all_locks();
-+}
-+
-+/**
-+ * init_idle - set up an idle thread for a given CPU
-+ * @idle: task in question
-+ * @cpu: cpu the idle task belongs to
-+ *
-+ * NOTE: this function does not set the idle thread's NEED_RESCHED
-+ * flag, to make booting more robust.
-+ */
-+void __cpuinit init_idle(struct task_struct *idle, int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ unsigned long flags;
-+
-+ time_grq_lock(rq, &flags);
-+ idle->timestamp = idle->last_ran = rq->clock;
-+ idle->state = TASK_RUNNING;
-+ /* Setting prio to illegal value shouldn't matter when never queued */
-+ idle->prio = rq->rq_prio = PRIO_LIMIT;
-+ rq->rq_deadline = idle->deadline;
-+ rq->rq_policy = idle->policy;
-+ rq->rq_time_slice = idle->rt.time_slice;
-+ idle->cpus_allowed = cpumask_of_cpu(cpu);
-+ set_task_cpu(idle, cpu);
-+ rq->curr = rq->idle = idle;
-+ idle->oncpu = 1;
-+ set_cpuidle_map(cpu);
-+#ifdef CONFIG_HOTPLUG_CPU
-+ idle->unplugged_mask = CPU_MASK_NONE;
-+#endif
-+ grq_unlock_irqrestore(&flags);
-+
-+ /* Set the preempt count _outside_ the spinlocks! */
-+#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
-+ task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
-+#else
-+ task_thread_info(idle)->preempt_count = 0;
-+#endif
-+ ftrace_graph_init_task(idle);
-+}
-+
-+/*
-+ * In a system that switches off the HZ timer nohz_cpu_mask
-+ * indicates which cpus entered this state. This is used
-+ * in the rcu update to wait only for active cpus. For system
-+ * which do not switch off the HZ timer nohz_cpu_mask should
-+ * always be CPU_BITS_NONE.
-+ */
-+cpumask_var_t nohz_cpu_mask;
-+
-+#ifdef CONFIG_SMP
-+#ifdef CONFIG_NO_HZ
-+static struct {
-+ atomic_t load_balancer;
-+ cpumask_var_t cpu_mask;
-+ cpumask_var_t ilb_grp_nohz_mask;
-+} nohz ____cacheline_aligned = {
-+ .load_balancer = ATOMIC_INIT(-1),
-+};
-+
-+int get_nohz_load_balancer(void)
-+{
-+ return atomic_read(&nohz.load_balancer);
-+}
-+
-+/*
-+ * This routine will try to nominate the ilb (idle load balancing)
-+ * owner among the cpus whose ticks are stopped. ilb owner will do the idle
-+ * load balancing on behalf of all those cpus. If all the cpus in the system
-+ * go into this tickless mode, then there will be no ilb owner (as there is
-+ * no need for one) and all the cpus will sleep till the next wakeup event
-+ * arrives...
-+ *
-+ * For the ilb owner, tick is not stopped. And this tick will be used
-+ * for idle load balancing. ilb owner will still be part of
-+ * nohz.cpu_mask..
-+ *
-+ * While stopping the tick, this cpu will become the ilb owner if there
-+ * is no other owner. And will be the owner till that cpu becomes busy
-+ * or if all cpus in the system stop their ticks at which point
-+ * there is no need for ilb owner.
-+ *
-+ * When the ilb owner becomes busy, it nominates another owner, during the
-+ * next busy scheduler_tick()
-+ */
-+int select_nohz_load_balancer(int stop_tick)
-+{
-+ int cpu = smp_processor_id();
-+
-+ if (stop_tick) {
-+ cpu_rq(cpu)->in_nohz_recently = 1;
-+
-+ if (!cpu_active(cpu)) {
-+ if (atomic_read(&nohz.load_balancer) != cpu)
-+ return 0;
-+
-+ /*
-+ * If we are going offline and still the leader,
-+ * give up!
-+ */
-+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-+ BUG();
-+
-+ return 0;
-+ }
-+
-+ cpumask_set_cpu(cpu, nohz.cpu_mask);
-+
-+ /* time for ilb owner also to sleep */
-+ if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
-+ if (atomic_read(&nohz.load_balancer) == cpu)
-+ atomic_set(&nohz.load_balancer, -1);
-+ return 0;
-+ }
-+
-+ if (atomic_read(&nohz.load_balancer) == -1) {
-+ /* make me the ilb owner */
-+ if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
-+ return 1;
-+ } else if (atomic_read(&nohz.load_balancer) == cpu)
-+ return 1;
-+ } else {
-+ if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
-+ return 0;
-+
-+ cpumask_clear_cpu(cpu, nohz.cpu_mask);
-+
-+ if (atomic_read(&nohz.load_balancer) == cpu)
-+ if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
-+ BUG();
-+ }
-+ return 0;
-+}
-+
-+/*
-+ * When add_timer_on() enqueues a timer into the timer wheel of an
-+ * idle CPU then this timer might expire before the next timer event
-+ * which is scheduled to wake up that CPU. In case of a completely
-+ * idle system the next event might even be infinite time into the
-+ * future. wake_up_idle_cpu() ensures that the CPU is woken up and
-+ * leaves the inner idle loop so the newly added timer is taken into
-+ * account when the CPU goes back to idle and evaluates the timer
-+ * wheel for the next timer event.
-+ */
-+void wake_up_idle_cpu(int cpu)
-+{
-+ struct task_struct *idle;
-+ struct rq *rq;
-+
-+ if (cpu == smp_processor_id())
-+ return;
-+
-+ rq = cpu_rq(cpu);
-+ idle = rq->idle;
-+
-+ /*
-+ * This is safe, as this function is called with the timer
-+ * wheel base lock of (cpu) held. When the CPU is on the way
-+ * to idle and has not yet set rq->curr to idle then it will
-+ * be serialized on the timer wheel base lock and take the new
-+ * timer into account automatically.
-+ */
-+ if (unlikely(rq->curr != idle))
-+ return;
-+
-+ /*
-+ * We can set TIF_RESCHED on the idle task of the other CPU
-+ * lockless. The worst case is that the other CPU runs the
-+ * idle task through an additional NOOP schedule()
-+ */
-+ set_tsk_need_resched(idle);
-+
-+ /* NEED_RESCHED must be visible before we test polling */
-+ smp_mb();
-+ if (!tsk_is_polling(idle))
-+ smp_send_reschedule(cpu);
-+}
-+
-+#endif /* CONFIG_NO_HZ */
-+
-+/*
-+ * Change a given task's CPU affinity. Migrate the thread to a
-+ * proper CPU and schedule it away if the CPU it's executing on
-+ * is removed from the allowed bitmask.
-+ *
-+ * NOTE: the caller must have a valid reference to the task, the
-+ * task must not exit() & deallocate itself prematurely. The
-+ * call is not atomic; no spinlocks may be held.
-+ */
-+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
-+{
-+ unsigned long flags;
-+ int running = 0;
-+ int queued = 0;
-+ struct rq *rq;
-+ int ret = 0;
-+
-+ rq = task_grq_lock(p, &flags);
-+ if (!cpumask_intersects(new_mask, cpu_online_mask)) {
-+ ret = -EINVAL;
-+ goto out;
-+ }
-+
-+ if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
-+ !cpumask_equal(&p->cpus_allowed, new_mask))) {
-+ ret = -EINVAL;
-+ goto out;
-+ }
-+
-+ queued = task_queued_only(p);
-+
-+ cpumask_copy(&p->cpus_allowed, new_mask);
-+ p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
-+
-+ /* Can the task run on the task's current CPU? If so, we're done */
-+ if (cpumask_test_cpu(task_cpu(p), new_mask))
-+ goto out;
-+
-+ /* Reschedule the task, schedule() will know if it can keep running */
-+ if (task_running(p))
-+ running = 1;
-+ else
-+ set_task_cpu(p, cpumask_any_and(cpu_online_mask, new_mask));
-+
-+out:
-+ if (queued)
-+ try_preempt(p);
-+ task_grq_unlock(&flags);
-+
-+ /* This might be a flaky way of changing cpus! */
-+ if (running)
-+ schedule();
-+ return ret;
-+}
-+EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+/* Schedules idle task to be the next runnable task on current CPU.
-+ * It does so by boosting its priority to highest possible.
-+ * Used by CPU offline code.
-+ */
-+void sched_idle_next(void)
-+{
-+ int this_cpu = smp_processor_id();
-+ struct rq *rq = cpu_rq(this_cpu);
-+ struct task_struct *idle = rq->idle;
-+ unsigned long flags;
-+
-+ /* cpu has to be offline */
-+ BUG_ON(cpu_online(this_cpu));
-+
-+ /*
-+ * Strictly not necessary since rest of the CPUs are stopped by now
-+ * and interrupts disabled on the current cpu.
-+ */
-+ time_grq_lock(rq, &flags);
-+
-+ __setscheduler(idle, SCHED_FIFO, MAX_RT_PRIO - 1);
-+
-+ activate_idle_task(idle);
-+ set_tsk_need_resched(rq->curr);
-+
-+ grq_unlock_irqrestore(&flags);
-+}
-+
-+/*
-+ * Ensures that the idle task is using init_mm right before its cpu goes
-+ * offline.
-+ */
-+void idle_task_exit(void)
-+{
-+ struct mm_struct *mm = current->active_mm;
-+
-+ BUG_ON(cpu_online(smp_processor_id()));
-+
-+ if (mm != &init_mm)
-+ switch_mm(mm, &init_mm, current);
-+ mmdrop(mm);
-+}
-+
-+#endif /* CONFIG_HOTPLUG_CPU */
-+
-+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
-+
-+static struct ctl_table sd_ctl_dir[] = {
-+ {
-+ .procname = "sched_domain",
-+ .mode = 0555,
-+ },
-+ {0, },
-+};
-+
-+static struct ctl_table sd_ctl_root[] = {
-+ {
-+ .ctl_name = CTL_KERN,
-+ .procname = "kernel",
-+ .mode = 0555,
-+ .child = sd_ctl_dir,
-+ },
-+ {0, },
-+};
-+
-+static struct ctl_table *sd_alloc_ctl_entry(int n)
-+{
-+ struct ctl_table *entry =
-+ kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
-+
-+ return entry;
-+}
-+
-+static void sd_free_ctl_entry(struct ctl_table **tablep)
-+{
-+ struct ctl_table *entry;
-+
-+ /*
-+ * In the intermediate directories, both the child directory and
-+ * procname are dynamically allocated and could fail but the mode
-+ * will always be set. In the lowest directory the names are
-+ * static strings and all have proc handlers.
-+ */
-+ for (entry = *tablep; entry->mode; entry++) {
-+ if (entry->child)
-+ sd_free_ctl_entry(&entry->child);
-+ if (entry->proc_handler == NULL)
-+ kfree(entry->procname);
-+ }
-+
-+ kfree(*tablep);
-+ *tablep = NULL;
-+}
-+
-+static void
-+set_table_entry(struct ctl_table *entry,
-+ const char *procname, void *data, int maxlen,
-+ mode_t mode, proc_handler *proc_handler)
-+{
-+ entry->procname = procname;
-+ entry->data = data;
-+ entry->maxlen = maxlen;
-+ entry->mode = mode;
-+ entry->proc_handler = proc_handler;
-+}
-+
-+static struct ctl_table *
-+sd_alloc_ctl_domain_table(struct sched_domain *sd)
-+{
-+ struct ctl_table *table = sd_alloc_ctl_entry(13);
-+
-+ if (table == NULL)
-+ return NULL;
-+
-+ set_table_entry(&table[0], "min_interval", &sd->min_interval,
-+ sizeof(long), 0644, proc_doulongvec_minmax);
-+ set_table_entry(&table[1], "max_interval", &sd->max_interval,
-+ sizeof(long), 0644, proc_doulongvec_minmax);
-+ set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[9], "cache_nice_tries",
-+ &sd->cache_nice_tries,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[10], "flags", &sd->flags,
-+ sizeof(int), 0644, proc_dointvec_minmax);
-+ set_table_entry(&table[11], "name", sd->name,
-+ CORENAME_MAX_SIZE, 0444, proc_dostring);
-+ /* &table[12] is terminator */
-+
-+ return table;
-+}
-+
-+static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
-+{
-+ struct ctl_table *entry, *table;
-+ struct sched_domain *sd;
-+ int domain_num = 0, i;
-+ char buf[32];
-+
-+ for_each_domain(cpu, sd)
-+ domain_num++;
-+ entry = table = sd_alloc_ctl_entry(domain_num + 1);
-+ if (table == NULL)
-+ return NULL;
-+
-+ i = 0;
-+ for_each_domain(cpu, sd) {
-+ snprintf(buf, 32, "domain%d", i);
-+ entry->procname = kstrdup(buf, GFP_KERNEL);
-+ entry->mode = 0555;
-+ entry->child = sd_alloc_ctl_domain_table(sd);
-+ entry++;
-+ i++;
-+ }
-+ return table;
-+}
-+
-+static struct ctl_table_header *sd_sysctl_header;
-+static void register_sched_domain_sysctl(void)
-+{
-+ int i, cpu_num = num_online_cpus();
-+ struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
-+ char buf[32];
-+
-+ WARN_ON(sd_ctl_dir[0].child);
-+ sd_ctl_dir[0].child = entry;
-+
-+ if (entry == NULL)
-+ return;
-+
-+ for_each_online_cpu(i) {
-+ snprintf(buf, 32, "cpu%d", i);
-+ entry->procname = kstrdup(buf, GFP_KERNEL);
-+ entry->mode = 0555;
-+ entry->child = sd_alloc_ctl_cpu_table(i);
-+ entry++;
-+ }
-+
-+ WARN_ON(sd_sysctl_header);
-+ sd_sysctl_header = register_sysctl_table(sd_ctl_root);
-+}
-+
-+/* may be called multiple times per register */
-+static void unregister_sched_domain_sysctl(void)
-+{
-+ if (sd_sysctl_header)
-+ unregister_sysctl_table(sd_sysctl_header);
-+ sd_sysctl_header = NULL;
-+ if (sd_ctl_dir[0].child)
-+ sd_free_ctl_entry(&sd_ctl_dir[0].child);
-+}
-+#else
-+static void register_sched_domain_sysctl(void)
-+{
-+}
-+static void unregister_sched_domain_sysctl(void)
-+{
-+}
-+#endif
-+
-+static void set_rq_online(struct rq *rq)
-+{
-+ if (!rq->online) {
-+ cpumask_set_cpu(rq->cpu, rq->rd->online);
-+ rq->online = 1;
-+ }
-+}
-+
-+static void set_rq_offline(struct rq *rq)
-+{
-+ if (rq->online) {
-+ cpumask_clear_cpu(rq->cpu, rq->rd->online);
-+ rq->online = 0;
-+ }
-+}
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+/*
-+ * This cpu is going down, so walk over the tasklist and find tasks that can
-+ * only run on this cpu and remove their affinity. Store their value in
-+ * unplugged_mask so it can be restored once their correct cpu is online. No
-+ * need to do anything special since they'll just move on next reschedule if
-+ * they're running.
-+ */
-+static void remove_cpu(unsigned long cpu)
-+{
-+ struct task_struct *p, *t;
-+
-+ read_lock(&tasklist_lock);
-+
-+ do_each_thread(t, p) {
-+ cpumask_t cpus_remaining;
-+
-+ cpus_and(cpus_remaining, p->cpus_allowed, cpu_online_map);
-+ cpu_clear(cpu, cpus_remaining);
-+ if (cpus_empty(cpus_remaining)) {
-+ p->unplugged_mask = p->cpus_allowed;
-+ p->cpus_allowed = cpu_possible_map;
-+ }
-+ } while_each_thread(t, p);
-+
-+ read_unlock(&tasklist_lock);
-+}
-+
-+/*
-+ * This cpu is coming up so add it to the cpus_allowed.
-+ */
-+static void add_cpu(unsigned long cpu)
-+{
-+ struct task_struct *p, *t;
-+
-+ read_lock(&tasklist_lock);
-+
-+ do_each_thread(t, p) {
-+ /* Have we taken all the cpus from the unplugged_mask back */
-+ if (cpus_empty(p->unplugged_mask))
-+ continue;
-+
-+ /* Was this cpu in the unplugged_mask mask */
-+ if (cpu_isset(cpu, p->unplugged_mask)) {
-+ cpu_set(cpu, p->cpus_allowed);
-+ if (cpus_subset(p->unplugged_mask, p->cpus_allowed)) {
-+ /*
-+ * Have we set more than the unplugged_mask?
-+ * If so, that means we have remnants set from
-+ * the unplug/plug cycle and need to remove
-+ * them. Then clear the unplugged_mask as we've
-+ * set all the cpus back.
-+ */
-+ p->cpus_allowed = p->unplugged_mask;
-+ cpus_clear(p->unplugged_mask);
-+ }
-+ }
-+ } while_each_thread(t, p);
-+
-+ read_unlock(&tasklist_lock);
-+}
-+#else
-+static void add_cpu(unsigned long cpu)
-+{
-+}
-+#endif
-+
-+/*
-+ * migration_call - callback that gets triggered when a CPU is added.
-+ */
-+static int __cpuinit
-+migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
-+{
-+ int cpu = (long)hcpu;
-+ unsigned long flags;
-+ struct rq *rq;
-+
-+ switch (action) {
-+
-+ case CPU_UP_PREPARE:
-+ case CPU_UP_PREPARE_FROZEN:
-+ break;
-+
-+ case CPU_ONLINE:
-+ case CPU_ONLINE_FROZEN:
-+ /* Update our root-domain */
-+ rq = cpu_rq(cpu);
-+ grq_lock_irqsave(&flags);
-+ if (rq->rd) {
-+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-+
-+ set_rq_online(rq);
-+ }
-+ add_cpu(cpu);
-+ grq_unlock_irqrestore(&flags);
-+ break;
-+
-+#ifdef CONFIG_HOTPLUG_CPU
-+ case CPU_UP_CANCELED:
-+ case CPU_UP_CANCELED_FROZEN:
-+ break;
-+
-+ case CPU_DEAD:
-+ case CPU_DEAD_FROZEN:
-+ cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
-+ rq = cpu_rq(cpu);
-+ /* Idle task back to normal (off runqueue, low prio) */
-+ grq_lock_irq();
-+ remove_cpu(cpu);
-+ deactivate_task(rq->idle);
-+ rq->idle->static_prio = MAX_PRIO;
-+ __setscheduler(rq->idle, SCHED_NORMAL, 0);
-+ rq->idle->prio = PRIO_LIMIT;
-+ update_rq_clock(rq);
-+ grq_unlock_irq();
-+ cpuset_unlock();
-+ break;
-+
-+ case CPU_DYING:
-+ case CPU_DYING_FROZEN:
-+ rq = cpu_rq(cpu);
-+ grq_lock_irqsave(&flags);
-+ if (rq->rd) {
-+ BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
-+ set_rq_offline(rq);
-+ }
-+ grq_unlock_irqrestore(&flags);
-+ break;
-+#endif
-+ }
-+ return NOTIFY_OK;
-+}
-+
-+/*
-+ * Register at high priority so that task migration (migrate_all_tasks)
-+ * happens before everything else. This has to be lower priority than
-+ * the notifier in the perf_counter subsystem, though.
-+ */
-+static struct notifier_block __cpuinitdata migration_notifier = {
-+ .notifier_call = migration_call,
-+ .priority = 10
-+};
-+
-+int __init migration_init(void)
-+{
-+ void *cpu = (void *)(long)smp_processor_id();
-+ int err;
-+
-+ /* Start one for the boot CPU: */
-+ err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
-+ BUG_ON(err == NOTIFY_BAD);
-+ migration_call(&migration_notifier, CPU_ONLINE, cpu);
-+ register_cpu_notifier(&migration_notifier);
-+
-+ return 0;
-+}
-+early_initcall(migration_init);
-+#endif
-+
-+/*
-+ * sched_domains_mutex serializes calls to arch_init_sched_domains,
-+ * detach_destroy_domains and partition_sched_domains.
-+ */
-+static DEFINE_MUTEX(sched_domains_mutex);
-+
-+#ifdef CONFIG_SMP
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+
-+static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
-+ struct cpumask *groupmask)
-+{
-+ struct sched_group *group = sd->groups;
-+ char str[256];
-+
-+ cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
-+ cpumask_clear(groupmask);
-+
-+ printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
-+
-+ if (!(sd->flags & SD_LOAD_BALANCE)) {
-+ printk("does not load-balance\n");
-+ if (sd->parent)
-+ printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
-+ " has parent");
-+ return -1;
-+ }
-+
-+ printk(KERN_CONT "span %s level %s\n", str, sd->name);
-+
-+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
-+ printk(KERN_ERR "ERROR: domain->span does not contain "
-+ "CPU%d\n", cpu);
-+ }
-+ if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
-+ printk(KERN_ERR "ERROR: domain->groups does not contain"
-+ " CPU%d\n", cpu);
-+ }
-+
-+ printk(KERN_DEBUG "%*s groups:", level + 1, "");
-+ do {
-+ if (!group) {
-+ printk("\n");
-+ printk(KERN_ERR "ERROR: group is NULL\n");
-+ break;
-+ }
-+
-+ if (!group->__cpu_power) {
-+ printk(KERN_CONT "\n");
-+ printk(KERN_ERR "ERROR: domain->cpu_power not "
-+ "set\n");
-+ break;
-+ }
-+
-+ if (!cpumask_weight(sched_group_cpus(group))) {
-+ printk(KERN_CONT "\n");
-+ printk(KERN_ERR "ERROR: empty group\n");
-+ break;
-+ }
-+
-+ if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
-+ printk(KERN_CONT "\n");
-+ printk(KERN_ERR "ERROR: repeated CPUs\n");
-+ break;
-+ }
-+
-+ cpumask_or(groupmask, groupmask, sched_group_cpus(group));
-+
-+ cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
-+
-+ printk(KERN_CONT " %s", str);
-+ if (group->__cpu_power != SCHED_LOAD_SCALE) {
-+ printk(KERN_CONT " (__cpu_power = %d)",
-+ group->__cpu_power);
-+ }
-+
-+ group = group->next;
-+ } while (group != sd->groups);
-+ printk(KERN_CONT "\n");
-+
-+ if (!cpumask_equal(sched_domain_span(sd), groupmask))
-+ printk(KERN_ERR "ERROR: groups don't span domain->span\n");
-+
-+ if (sd->parent &&
-+ !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
-+ printk(KERN_ERR "ERROR: parent span is not a superset "
-+ "of domain->span\n");
-+ return 0;
-+}
-+
-+static void sched_domain_debug(struct sched_domain *sd, int cpu)
-+{
-+ cpumask_var_t groupmask;
-+ int level = 0;
-+
-+ if (!sd) {
-+ printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
-+ return;
-+ }
-+
-+ printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
-+
-+ if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
-+ printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
-+ return;
-+ }
-+
-+ for (;;) {
-+ if (sched_domain_debug_one(sd, cpu, level, groupmask))
-+ break;
-+ level++;
-+ sd = sd->parent;
-+ if (!sd)
-+ break;
-+ }
-+ free_cpumask_var(groupmask);
-+}
-+#else /* !CONFIG_SCHED_DEBUG */
-+# define sched_domain_debug(sd, cpu) do { } while (0)
-+#endif /* CONFIG_SCHED_DEBUG */
-+
-+static int sd_degenerate(struct sched_domain *sd)
-+{
-+ if (cpumask_weight(sched_domain_span(sd)) == 1)
-+ return 1;
-+
-+ /* Following flags need at least 2 groups */
-+ if (sd->flags & (SD_LOAD_BALANCE |
-+ SD_BALANCE_NEWIDLE |
-+ SD_BALANCE_FORK |
-+ SD_BALANCE_EXEC |
-+ SD_SHARE_CPUPOWER |
-+ SD_SHARE_PKG_RESOURCES)) {
-+ if (sd->groups != sd->groups->next)
-+ return 0;
-+ }
-+
-+ /* Following flags don't use groups */
-+ if (sd->flags & (SD_WAKE_IDLE |
-+ SD_WAKE_AFFINE |
-+ SD_WAKE_BALANCE))
-+ return 0;
-+
-+ return 1;
-+}
-+
-+static int
-+sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
-+{
-+ unsigned long cflags = sd->flags, pflags = parent->flags;
-+
-+ if (sd_degenerate(parent))
-+ return 1;
-+
-+ if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
-+ return 0;
-+
-+ /* Does parent contain flags not in child? */
-+ /* WAKE_BALANCE is a subset of WAKE_AFFINE */
-+ if (cflags & SD_WAKE_AFFINE)
-+ pflags &= ~SD_WAKE_BALANCE;
-+ /* Flags needing groups don't count if only 1 group in parent */
-+ if (parent->groups == parent->groups->next) {
-+ pflags &= ~(SD_LOAD_BALANCE |
-+ SD_BALANCE_NEWIDLE |
-+ SD_BALANCE_FORK |
-+ SD_BALANCE_EXEC |
-+ SD_SHARE_CPUPOWER |
-+ SD_SHARE_PKG_RESOURCES);
-+ if (nr_node_ids == 1)
-+ pflags &= ~SD_SERIALIZE;
-+ }
-+ if (~cflags & pflags)
-+ return 0;
-+
-+ return 1;
-+}
-+
-+static void free_rootdomain(struct root_domain *rd)
-+{
-+ free_cpumask_var(rd->rto_mask);
-+ free_cpumask_var(rd->online);
-+ free_cpumask_var(rd->span);
-+ kfree(rd);
-+}
-+
-+static void rq_attach_root(struct rq *rq, struct root_domain *rd)
-+{
-+ struct root_domain *old_rd = NULL;
-+ unsigned long flags;
-+
-+ grq_lock_irqsave(&flags);
-+
-+ if (rq->rd) {
-+ old_rd = rq->rd;
-+
-+ if (cpumask_test_cpu(rq->cpu, old_rd->online))
-+ set_rq_offline(rq);
-+
-+ cpumask_clear_cpu(rq->cpu, old_rd->span);
-+
-+ /*
-+ * If we dont want to free the old_rt yet then
-+ * set old_rd to NULL to skip the freeing later
-+ * in this function:
-+ */
-+ if (!atomic_dec_and_test(&old_rd->refcount))
-+ old_rd = NULL;
-+ }
-+
-+ atomic_inc(&rd->refcount);
-+ rq->rd = rd;
-+
-+ cpumask_set_cpu(rq->cpu, rd->span);
-+ if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
-+ set_rq_online(rq);
-+
-+ grq_unlock_irqrestore(&flags);
-+
-+ if (old_rd)
-+ free_rootdomain(old_rd);
-+}
-+
-+static int init_rootdomain(struct root_domain *rd, bool bootmem)
-+{
-+ gfp_t gfp = GFP_KERNEL;
-+
-+ memset(rd, 0, sizeof(*rd));
-+
-+ if (bootmem)
-+ gfp = GFP_NOWAIT;
-+
-+ if (!alloc_cpumask_var(&rd->span, gfp))
-+ goto out;
-+ if (!alloc_cpumask_var(&rd->online, gfp))
-+ goto free_span;
-+ if (!alloc_cpumask_var(&rd->rto_mask, gfp))
-+ goto free_online;
-+
-+ return 0;
-+
-+free_online:
-+ free_cpumask_var(rd->online);
-+free_span:
-+ free_cpumask_var(rd->span);
-+out:
-+ return -ENOMEM;
-+}
-+
-+static void init_defrootdomain(void)
-+{
-+ init_rootdomain(&def_root_domain, true);
-+
-+ atomic_set(&def_root_domain.refcount, 1);
-+}
-+
-+static struct root_domain *alloc_rootdomain(void)
-+{
-+ struct root_domain *rd;
-+
-+ rd = kmalloc(sizeof(*rd), GFP_KERNEL);
-+ if (!rd)
-+ return NULL;
-+
-+ if (init_rootdomain(rd, false) != 0) {
-+ kfree(rd);
-+ return NULL;
-+ }
-+
-+ return rd;
-+}
-+
-+/*
-+ * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
-+ * hold the hotplug lock.
-+ */
-+static void
-+cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
-+{
-+ struct rq *rq = cpu_rq(cpu);
-+ struct sched_domain *tmp;
-+
-+ /* Remove the sched domains which do not contribute to scheduling. */
-+ for (tmp = sd; tmp; ) {
-+ struct sched_domain *parent = tmp->parent;
-+ if (!parent)
-+ break;
-+
-+ if (sd_parent_degenerate(tmp, parent)) {
-+ tmp->parent = parent->parent;
-+ if (parent->parent)
-+ parent->parent->child = tmp;
-+ } else
-+ tmp = tmp->parent;
-+ }
-+
-+ if (sd && sd_degenerate(sd)) {
-+ sd = sd->parent;
-+ if (sd)
-+ sd->child = NULL;
-+ }
-+
-+ sched_domain_debug(sd, cpu);
-+
-+ rq_attach_root(rq, rd);
-+ rcu_assign_pointer(rq->sd, sd);
-+}
-+
-+/* cpus with isolated domains */
-+static cpumask_var_t cpu_isolated_map;
-+
-+/* Setup the mask of cpus configured for isolated domains */
-+static int __init isolated_cpu_setup(char *str)
-+{
-+ cpulist_parse(str, cpu_isolated_map);
-+ return 1;
-+}
-+
-+__setup("isolcpus=", isolated_cpu_setup);
-+
-+/*
-+ * init_sched_build_groups takes the cpumask we wish to span, and a pointer
-+ * to a function which identifies what group(along with sched group) a CPU
-+ * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
-+ * (due to the fact that we keep track of groups covered with a struct cpumask).
-+ *
-+ * init_sched_build_groups will build a circular linked list of the groups
-+ * covered by the given span, and will set each group's ->cpumask correctly,
-+ * and ->cpu_power to 0.
-+ */
-+static void
-+init_sched_build_groups(const struct cpumask *span,
-+ const struct cpumask *cpu_map,
-+ int (*group_fn)(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg,
-+ struct cpumask *tmpmask),
-+ struct cpumask *covered, struct cpumask *tmpmask)
-+{
-+ struct sched_group *first = NULL, *last = NULL;
-+ int i;
-+
-+ cpumask_clear(covered);
-+
-+ for_each_cpu(i, span) {
-+ struct sched_group *sg;
-+ int group = group_fn(i, cpu_map, &sg, tmpmask);
-+ int j;
-+
-+ if (cpumask_test_cpu(i, covered))
-+ continue;
-+
-+ cpumask_clear(sched_group_cpus(sg));
-+ sg->__cpu_power = 0;
-+
-+ for_each_cpu(j, span) {
-+ if (group_fn(j, cpu_map, NULL, tmpmask) != group)
-+ continue;
-+
-+ cpumask_set_cpu(j, covered);
-+ cpumask_set_cpu(j, sched_group_cpus(sg));
-+ }
-+ if (!first)
-+ first = sg;
-+ if (last)
-+ last->next = sg;
-+ last = sg;
-+ }
-+ last->next = first;
-+}
-+
-+#define SD_NODES_PER_DOMAIN 16
-+
-+#ifdef CONFIG_NUMA
-+
-+/**
-+ * find_next_best_node - find the next node to include in a sched_domain
-+ * @node: node whose sched_domain we're building
-+ * @used_nodes: nodes already in the sched_domain
-+ *
-+ * Find the next node to include in a given scheduling domain. Simply
-+ * finds the closest node not already in the @used_nodes map.
-+ *
-+ * Should use nodemask_t.
-+ */
-+static int find_next_best_node(int node, nodemask_t *used_nodes)
-+{
-+ int i, n, val, min_val, best_node = 0;
-+
-+ min_val = INT_MAX;
-+
-+ for (i = 0; i < nr_node_ids; i++) {
-+ /* Start at @node */
-+ n = (node + i) % nr_node_ids;
-+
-+ if (!nr_cpus_node(n))
-+ continue;
-+
-+ /* Skip already used nodes */
-+ if (node_isset(n, *used_nodes))
-+ continue;
-+
-+ /* Simple min distance search */
-+ val = node_distance(node, n);
-+
-+ if (val < min_val) {
-+ min_val = val;
-+ best_node = n;
-+ }
-+ }
-+
-+ node_set(best_node, *used_nodes);
-+ return best_node;
-+}
-+
-+/**
-+ * sched_domain_node_span - get a cpumask for a node's sched_domain
-+ * @node: node whose cpumask we're constructing
-+ * @span: resulting cpumask
-+ *
-+ * Given a node, construct a good cpumask for its sched_domain to span. It
-+ * should be one that prevents unnecessary balancing, but also spreads tasks
-+ * out optimally.
-+ */
-+static void sched_domain_node_span(int node, struct cpumask *span)
-+{
-+ nodemask_t used_nodes;
-+ int i;
-+
-+ cpumask_clear(span);
-+ nodes_clear(used_nodes);
-+
-+ cpumask_or(span, span, cpumask_of_node(node));
-+ node_set(node, used_nodes);
-+
-+ for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
-+ int next_node = find_next_best_node(node, &used_nodes);
-+
-+ cpumask_or(span, span, cpumask_of_node(next_node));
-+ }
-+}
-+#endif /* CONFIG_NUMA */
-+
-+int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
-+
-+/*
-+ * The cpus mask in sched_group and sched_domain hangs off the end.
-+ *
-+ * ( See the the comments in include/linux/sched.h:struct sched_group
-+ * and struct sched_domain. )
-+ */
-+struct static_sched_group {
-+ struct sched_group sg;
-+ DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
-+};
-+
-+struct static_sched_domain {
-+ struct sched_domain sd;
-+ DECLARE_BITMAP(span, CONFIG_NR_CPUS);
-+};
-+
-+/*
-+ * SMT sched-domains:
-+ */
-+#ifdef CONFIG_SCHED_SMT
-+static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
-+
-+static int
-+cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *unused)
-+{
-+ if (sg)
-+ *sg = &per_cpu(sched_group_cpus, cpu).sg;
-+ return cpu;
-+}
-+#endif /* CONFIG_SCHED_SMT */
-+
-+/*
-+ * multi-core sched-domains:
-+ */
-+#ifdef CONFIG_SCHED_MC
-+static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
-+#endif /* CONFIG_SCHED_MC */
-+
-+#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
-+static int
-+cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *mask)
-+{
-+ int group;
-+
-+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+ if (sg)
-+ *sg = &per_cpu(sched_group_core, group).sg;
-+ return group;
-+}
-+#elif defined(CONFIG_SCHED_MC)
-+static int
-+cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *unused)
-+{
-+ if (sg)
-+ *sg = &per_cpu(sched_group_core, cpu).sg;
-+ return cpu;
-+}
-+#endif
-+
-+static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
-+
-+static int
-+cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg, struct cpumask *mask)
-+{
-+ int group;
-+#ifdef CONFIG_SCHED_MC
-+ cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#elif defined(CONFIG_SCHED_SMT)
-+ cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
-+ group = cpumask_first(mask);
-+#else
-+ group = cpu;
-+#endif
-+ if (sg)
-+ *sg = &per_cpu(sched_group_phys, group).sg;
-+ return group;
-+}
-+
-+/**
-+ * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
-+ * @group: The group whose first cpu is to be returned.
-+ */
-+static inline unsigned int group_first_cpu(struct sched_group *group)
-+{
-+ return cpumask_first(sched_group_cpus(group));
-+}
-+
-+#ifdef CONFIG_NUMA
-+/*
-+ * The init_sched_build_groups can't handle what we want to do with node
-+ * groups, so roll our own. Now each node has its own list of groups which
-+ * gets dynamically allocated.
-+ */
-+static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
-+static struct sched_group ***sched_group_nodes_bycpu;
-+
-+static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
-+static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
-+
-+static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
-+ struct sched_group **sg,
-+ struct cpumask *nodemask)
-+{
-+ int group;
-+
-+ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
-+ group = cpumask_first(nodemask);
-+
-+ if (sg)
-+ *sg = &per_cpu(sched_group_allnodes, group).sg;
-+ return group;
-+}
-+
-+static void init_numa_sched_groups_power(struct sched_group *group_head)
-+{
-+ struct sched_group *sg = group_head;
-+ int j;
-+
-+ if (!sg)
-+ return;
-+ do {
-+ for_each_cpu(j, sched_group_cpus(sg)) {
-+ struct sched_domain *sd;
-+
-+ sd = &per_cpu(phys_domains, j).sd;
-+ if (j != group_first_cpu(sd->groups)) {
-+ /*
-+ * Only add "power" once for each
-+ * physical package.
-+ */
-+ continue;
-+ }
-+
-+ sg_inc_cpu_power(sg, sd->groups->__cpu_power);
-+ }
-+ sg = sg->next;
-+ } while (sg != group_head);
-+}
-+#endif /* CONFIG_NUMA */
-+
-+#ifdef CONFIG_NUMA
-+/* Free memory allocated for various sched_group structures */
-+static void free_sched_groups(const struct cpumask *cpu_map,
-+ struct cpumask *nodemask)
-+{
-+ int cpu, i;
-+
-+ for_each_cpu(cpu, cpu_map) {
-+ struct sched_group **sched_group_nodes
-+ = sched_group_nodes_bycpu[cpu];
-+
-+ if (!sched_group_nodes)
-+ continue;
-+
-+ for (i = 0; i < nr_node_ids; i++) {
-+ struct sched_group *oldsg, *sg = sched_group_nodes[i];
-+
-+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
-+ if (cpumask_empty(nodemask))
-+ continue;
-+
-+ if (sg == NULL)
-+ continue;
-+ sg = sg->next;
-+next_sg:
-+ oldsg = sg;
-+ sg = sg->next;
-+ kfree(oldsg);
-+ if (oldsg != sched_group_nodes[i])
-+ goto next_sg;
-+ }
-+ kfree(sched_group_nodes);
-+ sched_group_nodes_bycpu[cpu] = NULL;
-+ }
-+}
-+#else /* !CONFIG_NUMA */
-+static void free_sched_groups(const struct cpumask *cpu_map,
-+ struct cpumask *nodemask)
-+{
-+}
-+#endif /* CONFIG_NUMA */
-+
-+/*
-+ * Initialize sched groups cpu_power.
-+ *
-+ * cpu_power indicates the capacity of sched group, which is used while
-+ * distributing the load between different sched groups in a sched domain.
-+ * Typically cpu_power for all the groups in a sched domain will be same unless
-+ * there are asymmetries in the topology. If there are asymmetries, group
-+ * having more cpu_power will pickup more load compared to the group having
-+ * less cpu_power.
-+ *
-+ * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
-+ * the maximum number of tasks a group can handle in the presence of other idle
-+ * or lightly loaded groups in the same sched domain.
-+ */
-+static void init_sched_groups_power(int cpu, struct sched_domain *sd)
-+{
-+ struct sched_domain *child;
-+ struct sched_group *group;
-+
-+ WARN_ON(!sd || !sd->groups);
-+
-+ if (cpu != group_first_cpu(sd->groups))
-+ return;
-+
-+ child = sd->child;
-+
-+ sd->groups->__cpu_power = 0;
-+
-+ /*
-+ * For perf policy, if the groups in child domain share resources
-+ * (for example cores sharing some portions of the cache hierarchy
-+ * or SMT), then set this domain groups cpu_power such that each group
-+ * can handle only one task, when there are other idle groups in the
-+ * same sched domain.
-+ */
-+ if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
-+ (child->flags &
-+ (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
-+ sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
-+ return;
-+ }
-+
-+ /*
-+ * add cpu_power of each child group to this groups cpu_power
-+ */
-+ group = child->groups;
-+ do {
-+ sg_inc_cpu_power(sd->groups, group->__cpu_power);
-+ group = group->next;
-+ } while (group != child->groups);
-+}
-+
-+/*
-+ * Initializers for schedule domains
-+ * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
-+ */
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+# define SD_INIT_NAME(sd, type) sd->name = #type
-+#else
-+# define SD_INIT_NAME(sd, type) do { } while (0)
-+#endif
-+
-+#define SD_INIT(sd, type) sd_init_##type(sd)
-+
-+#define SD_INIT_FUNC(type) \
-+static noinline void sd_init_##type(struct sched_domain *sd) \
-+{ \
-+ memset(sd, 0, sizeof(*sd)); \
-+ *sd = SD_##type##_INIT; \
-+ sd->level = SD_LV_##type; \
-+ SD_INIT_NAME(sd, type); \
-+}
-+
-+SD_INIT_FUNC(CPU)
-+#ifdef CONFIG_NUMA
-+ SD_INIT_FUNC(ALLNODES)
-+ SD_INIT_FUNC(NODE)
-+#endif
-+#ifdef CONFIG_SCHED_SMT
-+ SD_INIT_FUNC(SIBLING)
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ SD_INIT_FUNC(MC)
-+#endif
-+
-+static int default_relax_domain_level = -1;
-+
-+static int __init setup_relax_domain_level(char *str)
-+{
-+ unsigned long val;
-+
-+ val = simple_strtoul(str, NULL, 0);
-+ if (val < SD_LV_MAX)
-+ default_relax_domain_level = val;
-+
-+ return 1;
-+}
-+__setup("relax_domain_level=", setup_relax_domain_level);
-+
-+static void set_domain_attribute(struct sched_domain *sd,
-+ struct sched_domain_attr *attr)
-+{
-+ int request;
-+
-+ if (!attr || attr->relax_domain_level < 0) {
-+ if (default_relax_domain_level < 0)
-+ return;
-+ else
-+ request = default_relax_domain_level;
-+ } else
-+ request = attr->relax_domain_level;
-+ if (request < sd->level) {
-+ /* turn off idle balance on this domain */
-+ sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
-+ } else {
-+ /* turn on idle balance on this domain */
-+ sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
-+ }
-+}
-+
-+/*
-+ * Build sched domains for a given set of cpus and attach the sched domains
-+ * to the individual cpus
-+ */
-+static int __build_sched_domains(const struct cpumask *cpu_map,
-+ struct sched_domain_attr *attr)
-+{
-+ int i, err = -ENOMEM;
-+ struct root_domain *rd;
-+ cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
-+ tmpmask;
-+#ifdef CONFIG_NUMA
-+ cpumask_var_t domainspan, covered, notcovered;
-+ struct sched_group **sched_group_nodes = NULL;
-+ int sd_allnodes = 0;
-+
-+ if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
-+ goto out;
-+ if (!alloc_cpumask_var(&covered, GFP_KERNEL))
-+ goto free_domainspan;
-+ if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
-+ goto free_covered;
-+#endif
-+
-+ if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
-+ goto free_notcovered;
-+ if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
-+ goto free_nodemask;
-+ if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
-+ goto free_this_sibling_map;
-+ if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
-+ goto free_this_core_map;
-+ if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
-+ goto free_send_covered;
-+
-+#ifdef CONFIG_NUMA
-+ /*
-+ * Allocate the per-node list of sched groups
-+ */
-+ sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
-+ GFP_KERNEL);
-+ if (!sched_group_nodes) {
-+ printk(KERN_WARNING "Can not alloc sched group node list\n");
-+ goto free_tmpmask;
-+ }
-+#endif
-+
-+ rd = alloc_rootdomain();
-+ if (!rd) {
-+ printk(KERN_WARNING "Cannot alloc root domain\n");
-+ goto free_sched_groups;
-+ }
-+
-+#ifdef CONFIG_NUMA
-+ sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
-+#endif
-+
-+ /*
-+ * Set up domains for cpus specified by the cpu_map.
-+ */
-+ for_each_cpu(i, cpu_map) {
-+ struct sched_domain *sd = NULL, *p;
-+
-+ cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
-+
-+#ifdef CONFIG_NUMA
-+ if (cpumask_weight(cpu_map) >
-+ SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
-+ sd = &per_cpu(allnodes_domains, i).sd;
-+ SD_INIT(sd, ALLNODES);
-+ set_domain_attribute(sd, attr);
-+ cpumask_copy(sched_domain_span(sd), cpu_map);
-+ cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
-+ p = sd;
-+ sd_allnodes = 1;
-+ } else
-+ p = NULL;
-+
-+ sd = &per_cpu(node_domains, i).sd;
-+ SD_INIT(sd, NODE);
-+ set_domain_attribute(sd, attr);
-+ sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
-+ sd->parent = p;
-+ if (p)
-+ p->child = sd;
-+ cpumask_and(sched_domain_span(sd),
-+ sched_domain_span(sd), cpu_map);
-+#endif
-+
-+ p = sd;
-+ sd = &per_cpu(phys_domains, i).sd;
-+ SD_INIT(sd, CPU);
-+ set_domain_attribute(sd, attr);
-+ cpumask_copy(sched_domain_span(sd), nodemask);
-+ sd->parent = p;
-+ if (p)
-+ p->child = sd;
-+ cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
-+
-+#ifdef CONFIG_SCHED_MC
-+ p = sd;
-+ sd = &per_cpu(core_domains, i).sd;
-+ SD_INIT(sd, MC);
-+ set_domain_attribute(sd, attr);
-+ cpumask_and(sched_domain_span(sd), cpu_map,
-+ cpu_coregroup_mask(i));
-+ sd->parent = p;
-+ p->child = sd;
-+ cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
-+#endif
-+
-+#ifdef CONFIG_SCHED_SMT
-+ p = sd;
-+ sd = &per_cpu(cpu_domains, i).sd;
-+ SD_INIT(sd, SIBLING);
-+ set_domain_attribute(sd, attr);
-+ cpumask_and(sched_domain_span(sd),
-+ topology_thread_cpumask(i), cpu_map);
-+ sd->parent = p;
-+ p->child = sd;
-+ cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
-+#endif
-+ }
-+
-+#ifdef CONFIG_SCHED_SMT
-+ /* Set up CPU (sibling) groups */
-+ for_each_cpu(i, cpu_map) {
-+ cpumask_and(this_sibling_map,
-+ topology_thread_cpumask(i), cpu_map);
-+ if (i != cpumask_first(this_sibling_map))
-+ continue;
-+
-+ init_sched_build_groups(this_sibling_map, cpu_map,
-+ &cpu_to_cpu_group,
-+ send_covered, tmpmask);
-+ }
-+#endif
-+
-+#ifdef CONFIG_SCHED_MC
-+ /* Set up multi-core groups */
-+ for_each_cpu(i, cpu_map) {
-+ cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
-+ if (i != cpumask_first(this_core_map))
-+ continue;
-+
-+ init_sched_build_groups(this_core_map, cpu_map,
-+ &cpu_to_core_group,
-+ send_covered, tmpmask);
-+ }
-+#endif
-+
-+ /* Set up physical groups */
-+ for (i = 0; i < nr_node_ids; i++) {
-+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
-+ if (cpumask_empty(nodemask))
-+ continue;
-+
-+ init_sched_build_groups(nodemask, cpu_map,
-+ &cpu_to_phys_group,
-+ send_covered, tmpmask);
-+ }
-+
-+#ifdef CONFIG_NUMA
-+ /* Set up node groups */
-+ if (sd_allnodes) {
-+ init_sched_build_groups(cpu_map, cpu_map,
-+ &cpu_to_allnodes_group,
-+ send_covered, tmpmask);
-+ }
-+
-+ for (i = 0; i < nr_node_ids; i++) {
-+ /* Set up node groups */
-+ struct sched_group *sg, *prev;
-+ int j;
-+
-+ cpumask_clear(covered);
-+ cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
-+ if (cpumask_empty(nodemask)) {
-+ sched_group_nodes[i] = NULL;
-+ continue;
-+ }
-+
-+ sched_domain_node_span(i, domainspan);
-+ cpumask_and(domainspan, domainspan, cpu_map);
-+
-+ sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
-+ GFP_KERNEL, i);
-+ if (!sg) {
-+ printk(KERN_WARNING "Can not alloc domain group for "
-+ "node %d\n", i);
-+ goto error;
-+ }
-+ sched_group_nodes[i] = sg;
-+ for_each_cpu(j, nodemask) {
-+ struct sched_domain *sd;
-+
-+ sd = &per_cpu(node_domains, j).sd;
-+ sd->groups = sg;
-+ }
-+ sg->__cpu_power = 0;
-+ cpumask_copy(sched_group_cpus(sg), nodemask);
-+ sg->next = sg;
-+ cpumask_or(covered, covered, nodemask);
-+ prev = sg;
-+
-+ for (j = 0; j < nr_node_ids; j++) {
-+ int n = (i + j) % nr_node_ids;
-+
-+ cpumask_complement(notcovered, covered);
-+ cpumask_and(tmpmask, notcovered, cpu_map);
-+ cpumask_and(tmpmask, tmpmask, domainspan);
-+ if (cpumask_empty(tmpmask))
-+ break;
-+
-+ cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
-+ if (cpumask_empty(tmpmask))
-+ continue;
-+
-+ sg = kmalloc_node(sizeof(struct sched_group) +
-+ cpumask_size(),
-+ GFP_KERNEL, i);
-+ if (!sg) {
-+ printk(KERN_WARNING
-+ "Can not alloc domain group for node %d\n", j);
-+ goto error;
-+ }
-+ sg->__cpu_power = 0;
-+ cpumask_copy(sched_group_cpus(sg), tmpmask);
-+ sg->next = prev->next;
-+ cpumask_or(covered, covered, tmpmask);
-+ prev->next = sg;
-+ prev = sg;
-+ }
-+ }
-+#endif
-+
-+ /* Calculate CPU power for physical packages and nodes */
-+#ifdef CONFIG_SCHED_SMT
-+ for_each_cpu(i, cpu_map) {
-+ struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
-+
-+ init_sched_groups_power(i, sd);
-+ }
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ for_each_cpu(i, cpu_map) {
-+ struct sched_domain *sd = &per_cpu(core_domains, i).sd;
-+
-+ init_sched_groups_power(i, sd);
-+ }
-+#endif
-+
-+ for_each_cpu(i, cpu_map) {
-+ struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
-+
-+ init_sched_groups_power(i, sd);
-+ }
-+
-+#ifdef CONFIG_NUMA
-+ for (i = 0; i < nr_node_ids; i++)
-+ init_numa_sched_groups_power(sched_group_nodes[i]);
-+
-+ if (sd_allnodes) {
-+ struct sched_group *sg;
-+
-+ cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
-+ tmpmask);
-+ init_numa_sched_groups_power(sg);
-+ }
-+#endif
-+
-+ /* Attach the domains */
-+ for_each_cpu(i, cpu_map) {
-+ struct sched_domain *sd;
-+#ifdef CONFIG_SCHED_SMT
-+ sd = &per_cpu(cpu_domains, i).sd;
-+#elif defined(CONFIG_SCHED_MC)
-+ sd = &per_cpu(core_domains, i).sd;
-+#else
-+ sd = &per_cpu(phys_domains, i).sd;
-+#endif
-+ cpu_attach_domain(sd, rd, i);
-+ }
-+
-+ err = 0;
-+
-+free_tmpmask:
-+ free_cpumask_var(tmpmask);
-+free_send_covered:
-+ free_cpumask_var(send_covered);
-+free_this_core_map:
-+ free_cpumask_var(this_core_map);
-+free_this_sibling_map:
-+ free_cpumask_var(this_sibling_map);
-+free_nodemask:
-+ free_cpumask_var(nodemask);
-+free_notcovered:
-+#ifdef CONFIG_NUMA
-+ free_cpumask_var(notcovered);
-+free_covered:
-+ free_cpumask_var(covered);
-+free_domainspan:
-+ free_cpumask_var(domainspan);
-+out:
-+#endif
-+ return err;
-+
-+free_sched_groups:
-+#ifdef CONFIG_NUMA
-+ kfree(sched_group_nodes);
-+#endif
-+ goto free_tmpmask;
-+
-+#ifdef CONFIG_NUMA
-+error:
-+ free_sched_groups(cpu_map, tmpmask);
-+ free_rootdomain(rd);
-+ goto free_tmpmask;
-+#endif
-+}
-+
-+static int build_sched_domains(const struct cpumask *cpu_map)
-+{
-+ return __build_sched_domains(cpu_map, NULL);
-+}
-+
-+static struct cpumask *doms_cur; /* current sched domains */
-+static int ndoms_cur; /* number of sched domains in 'doms_cur' */
-+static struct sched_domain_attr *dattr_cur;
-+ /* attribues of custom domains in 'doms_cur' */
-+
-+/*
-+ * Special case: If a kmalloc of a doms_cur partition (array of
-+ * cpumask) fails, then fallback to a single sched domain,
-+ * as determined by the single cpumask fallback_doms.
-+ */
-+static cpumask_var_t fallback_doms;
-+
-+/*
-+ * arch_update_cpu_topology lets virtualized architectures update the
-+ * cpu core maps. It is supposed to return 1 if the topology changed
-+ * or 0 if it stayed the same.
-+ */
-+int __attribute__((weak)) arch_update_cpu_topology(void)
-+{
-+ return 0;
-+}
-+
-+/*
-+ * Set up scheduler domains and groups. Callers must hold the hotplug lock.
-+ * For now this just excludes isolated cpus, but could be used to
-+ * exclude other special cases in the future.
-+ */
-+static int arch_init_sched_domains(const struct cpumask *cpu_map)
-+{
-+ int err;
-+
-+ arch_update_cpu_topology();
-+ ndoms_cur = 1;
-+ doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
-+ if (!doms_cur)
-+ doms_cur = fallback_doms;
-+ cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
-+ dattr_cur = NULL;
-+ err = build_sched_domains(doms_cur);
-+ register_sched_domain_sysctl();
-+
-+ return err;
-+}
-+
-+static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
-+ struct cpumask *tmpmask)
-+{
-+ free_sched_groups(cpu_map, tmpmask);
-+}
-+
-+/*
-+ * Detach sched domains from a group of cpus specified in cpu_map
-+ * These cpus will now be attached to the NULL domain
-+ */
-+static void detach_destroy_domains(const struct cpumask *cpu_map)
-+{
-+ /* Save because hotplug lock held. */
-+ static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
-+ int i;
-+
-+ for_each_cpu(i, cpu_map)
-+ cpu_attach_domain(NULL, &def_root_domain, i);
-+ synchronize_sched();
-+ arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
-+}
-+
-+/* handle null as "default" */
-+static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
-+ struct sched_domain_attr *new, int idx_new)
-+{
-+ struct sched_domain_attr tmp;
-+
-+ /* fast path */
-+ if (!new && !cur)
-+ return 1;
-+
-+ tmp = SD_ATTR_INIT;
-+ return !memcmp(cur ? (cur + idx_cur) : &tmp,
-+ new ? (new + idx_new) : &tmp,
-+ sizeof(struct sched_domain_attr));
-+}
-+
-+/*
-+ * Partition sched domains as specified by the 'ndoms_new'
-+ * cpumasks in the array doms_new[] of cpumasks. This compares
-+ * doms_new[] to the current sched domain partitioning, doms_cur[].
-+ * It destroys each deleted domain and builds each new domain.
-+ *
-+ * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
-+ * The masks don't intersect (don't overlap.) We should setup one
-+ * sched domain for each mask. CPUs not in any of the cpumasks will
-+ * not be load balanced. If the same cpumask appears both in the
-+ * current 'doms_cur' domains and in the new 'doms_new', we can leave
-+ * it as it is.
-+ *
-+ * The passed in 'doms_new' should be kmalloc'd. This routine takes
-+ * ownership of it and will kfree it when done with it. If the caller
-+ * failed the kmalloc call, then it can pass in doms_new == NULL &&
-+ * ndoms_new == 1, and partition_sched_domains() will fallback to
-+ * the single partition 'fallback_doms', it also forces the domains
-+ * to be rebuilt.
-+ *
-+ * If doms_new == NULL it will be replaced with cpu_online_mask.
-+ * ndoms_new == 0 is a special case for destroying existing domains,
-+ * and it will not create the default domain.
-+ *
-+ * Call with hotplug lock held
-+ */
-+/* FIXME: Change to struct cpumask *doms_new[] */
-+void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
-+ struct sched_domain_attr *dattr_new)
-+{
-+ int i, j, n;
-+ int new_topology;
-+
-+ mutex_lock(&sched_domains_mutex);
-+
-+ /* always unregister in case we don't destroy any domains */
-+ unregister_sched_domain_sysctl();
-+
-+ /* Let architecture update cpu core mappings. */
-+ new_topology = arch_update_cpu_topology();
-+
-+ n = doms_new ? ndoms_new : 0;
-+
-+ /* Destroy deleted domains */
-+ for (i = 0; i < ndoms_cur; i++) {
-+ for (j = 0; j < n && !new_topology; j++) {
-+ if (cpumask_equal(&doms_cur[i], &doms_new[j])
-+ && dattrs_equal(dattr_cur, i, dattr_new, j))
-+ goto match1;
-+ }
-+ /* no match - a current sched domain not in new doms_new[] */
-+ detach_destroy_domains(doms_cur + i);
-+match1:
-+ ;
-+ }
-+
-+ if (doms_new == NULL) {
-+ ndoms_cur = 0;
-+ doms_new = fallback_doms;
-+ cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
-+ WARN_ON_ONCE(dattr_new);
-+ }
-+
-+ /* Build new domains */
-+ for (i = 0; i < ndoms_new; i++) {
-+ for (j = 0; j < ndoms_cur && !new_topology; j++) {
-+ if (cpumask_equal(&doms_new[i], &doms_cur[j])
-+ && dattrs_equal(dattr_new, i, dattr_cur, j))
-+ goto match2;
-+ }
-+ /* no match - add a new doms_new */
-+ __build_sched_domains(doms_new + i,
-+ dattr_new ? dattr_new + i : NULL);
-+match2:
-+ ;
-+ }
-+
-+ /* Remember the new sched domains */
-+ if (doms_cur != fallback_doms)
-+ kfree(doms_cur);
-+ kfree(dattr_cur); /* kfree(NULL) is safe */
-+ doms_cur = doms_new;
-+ dattr_cur = dattr_new;
-+ ndoms_cur = ndoms_new;
-+
-+ register_sched_domain_sysctl();
-+
-+ mutex_unlock(&sched_domains_mutex);
-+}
-+
-+#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
-+static void arch_reinit_sched_domains(void)
-+{
-+ get_online_cpus();
-+
-+ /* Destroy domains first to force the rebuild */
-+ partition_sched_domains(0, NULL, NULL);
-+
-+ rebuild_sched_domains();
-+ put_online_cpus();
-+}
-+
-+static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
-+{
-+ unsigned int level = 0;
-+
-+ if (sscanf(buf, "%u", &level) != 1)
-+ return -EINVAL;
-+
-+ /*
-+ * level is always be positive so don't check for
-+ * level < POWERSAVINGS_BALANCE_NONE which is 0
-+ * What happens on 0 or 1 byte write,
-+ * need to check for count as well?
-+ */
-+
-+ if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
-+ return -EINVAL;
-+
-+ if (smt)
-+ sched_smt_power_savings = level;
-+ else
-+ sched_mc_power_savings = level;
-+
-+ arch_reinit_sched_domains();
-+
-+ return count;
-+}
-+
-+#ifdef CONFIG_SCHED_MC
-+static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
-+ char *page)
-+{
-+ return sprintf(page, "%u\n", sched_mc_power_savings);
-+}
-+static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
-+ const char *buf, size_t count)
-+{
-+ return sched_power_savings_store(buf, count, 0);
-+}
-+static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
-+ sched_mc_power_savings_show,
-+ sched_mc_power_savings_store);
-+#endif
-+
-+#ifdef CONFIG_SCHED_SMT
-+static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
-+ char *page)
-+{
-+ return sprintf(page, "%u\n", sched_smt_power_savings);
-+}
-+static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
-+ const char *buf, size_t count)
-+{
-+ return sched_power_savings_store(buf, count, 1);
-+}
-+static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
-+ sched_smt_power_savings_show,
-+ sched_smt_power_savings_store);
-+#endif
-+
-+int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
-+{
-+ int err = 0;
-+
-+#ifdef CONFIG_SCHED_SMT
-+ if (smt_capable())
-+ err = sysfs_create_file(&cls->kset.kobj,
-+ &attr_sched_smt_power_savings.attr);
-+#endif
-+#ifdef CONFIG_SCHED_MC
-+ if (!err && mc_capable())
-+ err = sysfs_create_file(&cls->kset.kobj,
-+ &attr_sched_mc_power_savings.attr);
-+#endif
-+ return err;
-+}
-+#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
-+
-+#ifndef CONFIG_CPUSETS
-+/*
-+ * Add online and remove offline CPUs from the scheduler domains.
-+ * When cpusets are enabled they take over this function.
-+ */
-+static int update_sched_domains(struct notifier_block *nfb,
-+ unsigned long action, void *hcpu)
-+{
-+ switch (action) {
-+ case CPU_ONLINE:
-+ case CPU_ONLINE_FROZEN:
-+ case CPU_DEAD:
-+ case CPU_DEAD_FROZEN:
-+ partition_sched_domains(1, NULL, NULL);
-+ return NOTIFY_OK;
-+
-+ default:
-+ return NOTIFY_DONE;
-+ }
-+}
-+#endif
-+
-+static int update_runtime(struct notifier_block *nfb,
-+ unsigned long action, void *hcpu)
-+{
-+ switch (action) {
-+ case CPU_DOWN_PREPARE:
-+ case CPU_DOWN_PREPARE_FROZEN:
-+ return NOTIFY_OK;
-+
-+ case CPU_DOWN_FAILED:
-+ case CPU_DOWN_FAILED_FROZEN:
-+ case CPU_ONLINE:
-+ case CPU_ONLINE_FROZEN:
-+ return NOTIFY_OK;
-+
-+ default:
-+ return NOTIFY_DONE;
-+ }
-+}
-+
-+void __init sched_init_smp(void)
-+{
-+ cpumask_var_t non_isolated_cpus;
-+
-+ alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
-+
-+#if defined(CONFIG_NUMA)
-+ sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
-+ GFP_KERNEL);
-+ BUG_ON(sched_group_nodes_bycpu == NULL);
-+#endif
-+ get_online_cpus();
-+ mutex_lock(&sched_domains_mutex);
-+ arch_init_sched_domains(cpu_online_mask);
-+ cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
-+ if (cpumask_empty(non_isolated_cpus))
-+ cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
-+ mutex_unlock(&sched_domains_mutex);
-+ put_online_cpus();
-+
-+#ifndef CONFIG_CPUSETS
-+ /* XXX: Theoretical race here - CPU may be hotplugged now */
-+ hotcpu_notifier(update_sched_domains, 0);
-+#endif
-+
-+ /* RT runtime code needs to handle some hotplug events */
-+ hotcpu_notifier(update_runtime, 0);
-+
-+ /* Move init over to a non-isolated CPU */
-+ if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
-+ BUG();
-+ free_cpumask_var(non_isolated_cpus);
-+
-+ alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
-+
-+ /*
-+ * Assume that every added cpu gives us slightly less overall latency
-+ * allowing us to increase the base rr_interval, but in a non linear
-+ * fashion.
-+ */
-+ rr_interval *= 1 + ilog2(num_online_cpus());
-+}
-+#else
-+void __init sched_init_smp(void)
-+{
-+}
-+#endif /* CONFIG_SMP */
-+
-+unsigned int sysctl_timer_migration = 1;
-+
-+int in_sched_functions(unsigned long addr)
-+{
-+ return in_lock_functions(addr) ||
-+ (addr >= (unsigned long)__sched_text_start
-+ && addr < (unsigned long)__sched_text_end);
-+}
-+
-+void __init sched_init(void)
-+{
-+ int i;
-+ int highest_cpu = 0;
-+
-+ prio_ratios[0] = 100;
-+ for (i = 1 ; i < PRIO_RANGE ; i++)
-+ prio_ratios[i] = prio_ratios[i - 1] * 11 / 10;
-+
-+#ifdef CONFIG_SMP
-+ init_defrootdomain();
-+ cpus_clear(grq.cpu_idle_map);
-+#endif
-+ spin_lock_init(&grq.lock);
-+ for_each_possible_cpu(i) {
-+ struct rq *rq;
-+
-+ rq = cpu_rq(i);
-+ INIT_LIST_HEAD(&rq->queue);
-+ rq->rq_deadline = 0;
-+ rq->rq_prio = 0;
-+ rq->cpu = i;
-+ rq->user_pc = rq->nice_pc = rq->softirq_pc = rq->system_pc =
-+ rq->iowait_pc = rq->idle_pc = 0;
-+#ifdef CONFIG_SMP
-+ rq->sd = NULL;
-+ rq->rd = NULL;
-+ rq->online = 0;
-+ INIT_LIST_HEAD(&rq->migration_queue);
-+ rq_attach_root(rq, &def_root_domain);
-+#endif
-+ atomic_set(&rq->nr_iowait, 0);
-+ highest_cpu = i;
-+ }
-+ grq.iso_ticks = grq.nr_running = grq.nr_uninterruptible = 0;
-+ for (i = 0; i < PRIO_LIMIT; i++)
-+ INIT_LIST_HEAD(grq.queue + i);
-+ bitmap_zero(grq.prio_bitmap, PRIO_LIMIT);
-+ /* delimiter for bitsearch */
-+ __set_bit(PRIO_LIMIT, grq.prio_bitmap);
-+
-+#ifdef CONFIG_SMP
-+ nr_cpu_ids = highest_cpu + 1;
-+#endif
-+
-+#ifdef CONFIG_PREEMPT_NOTIFIERS
-+ INIT_HLIST_HEAD(&init_task.preempt_notifiers);
-+#endif
-+
-+#ifdef CONFIG_RT_MUTEXES
-+ plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
-+#endif
-+
-+ /*
-+ * The boot idle thread does lazy MMU switching as well:
-+ */
-+ atomic_inc(&init_mm.mm_count);
-+ enter_lazy_tlb(&init_mm, current);
-+
-+ /*
-+ * Make us the idle thread. Technically, schedule() should not be
-+ * called from this thread, however somewhere below it might be,
-+ * but because we are the idle thread, we just pick up running again
-+ * when this runqueue becomes "idle".
-+ */
-+ init_idle(current, smp_processor_id());
-+
-+ /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
-+ alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
-+#ifdef CONFIG_SMP
-+#ifdef CONFIG_NO_HZ
-+ alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
-+ alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
-+#endif
-+ alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
-+#endif /* SMP */
-+ perf_counter_init();
-+}
-+
-+#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
-+void __might_sleep(char *file, int line)
-+{
-+#ifdef in_atomic
-+ static unsigned long prev_jiffy; /* ratelimiting */
-+
-+ if ((in_atomic() || irqs_disabled()) &&
-+ system_state == SYSTEM_RUNNING && !oops_in_progress) {
-+ if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
-+ return;
-+ prev_jiffy = jiffies;
-+ printk(KERN_ERR "BUG: sleeping function called from invalid"
-+ " context at %s:%d\n", file, line);
-+ printk("in_atomic():%d, irqs_disabled():%d\n",
-+ in_atomic(), irqs_disabled());
-+ debug_show_held_locks(current);
-+ if (irqs_disabled())
-+ print_irqtrace_events(current);
-+ dump_stack();
-+ }
-+#endif
-+}
-+EXPORT_SYMBOL(__might_sleep);
-+#endif
-+
-+#ifdef CONFIG_MAGIC_SYSRQ
-+void normalize_rt_tasks(void)
-+{
-+ struct task_struct *g, *p;
-+ unsigned long flags;
-+ struct rq *rq;
-+ int queued;
-+
-+ read_lock_irq(&tasklist_lock);
-+
-+ do_each_thread(g, p) {
-+ if (!rt_task(p) && !iso_task(p))
-+ continue;
-+
-+ spin_lock_irqsave(&p->pi_lock, flags);
-+ rq = __task_grq_lock(p);
-+ update_rq_clock(rq);
-+
-+ queued = task_queued_only(p);
-+ if (queued)
-+ dequeue_task(p);
-+ __setscheduler(p, SCHED_NORMAL, 0);
-+ if (task_running(p))
-+ resched_task(p);
-+ if (queued) {
-+ enqueue_task(p);
-+ try_preempt(p);
-+ }
-+
-+ __task_grq_unlock();
-+ spin_unlock_irqrestore(&p->pi_lock, flags);
-+ } while_each_thread(g, p);
-+
-+ read_unlock_irq(&tasklist_lock);
-+}
-+#endif /* CONFIG_MAGIC_SYSRQ */
-+
-+#ifdef CONFIG_IA64
-+/*
-+ * These functions are only useful for the IA64 MCA handling.
-+ *
-+ * They can only be called when the whole system has been
-+ * stopped - every CPU needs to be quiescent, and no scheduling
-+ * activity can take place. Using them for anything else would
-+ * be a serious bug, and as a result, they aren't even visible
-+ * under any other configuration.
-+ */
-+
-+/**
-+ * curr_task - return the current task for a given cpu.
-+ * @cpu: the processor in question.
-+ *
-+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
-+ */
-+struct task_struct *curr_task(int cpu)
-+{
-+ return cpu_curr(cpu);
-+}
-+
-+/**
-+ * set_curr_task - set the current task for a given cpu.
-+ * @cpu: the processor in question.
-+ * @p: the task pointer to set.
-+ *
-+ * Description: This function must only be used when non-maskable interrupts
-+ * are serviced on a separate stack. It allows the architecture to switch the
-+ * notion of the current task on a cpu in a non-blocking manner. This function
-+ * must be called with all CPU's synchronized, and interrupts disabled, the
-+ * and caller must save the original value of the current task (see
-+ * curr_task() above) and restore that value before reenabling interrupts and
-+ * re-starting the system.
-+ *
-+ * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
-+ */
-+void set_curr_task(int cpu, struct task_struct *p)
-+{
-+ cpu_curr(cpu) = p;
-+}
-+
-+#endif
-+
-+/*
-+ * Use precise platform statistics if available:
-+ */
-+#ifdef CONFIG_VIRT_CPU_ACCOUNTING
-+cputime_t task_utime(struct task_struct *p)
-+{
-+ return p->utime;
-+}
-+
-+cputime_t task_stime(struct task_struct *p)
-+{
-+ return p->stime;
-+}
-+#else
-+cputime_t task_utime(struct task_struct *p)
-+{
-+ clock_t utime = cputime_to_clock_t(p->utime),
-+ total = utime + cputime_to_clock_t(p->stime);
-+ u64 temp;
-+
-+ temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
-+
-+ if (total) {
-+ temp *= utime;
-+ do_div(temp, total);
-+ }
-+ utime = (clock_t)temp;
-+
-+ p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
-+ return p->prev_utime;
-+}
-+
-+cputime_t task_stime(struct task_struct *p)
-+{
-+ clock_t stime;
-+
-+ stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
-+ cputime_to_clock_t(task_utime(p));
-+
-+ if (stime >= 0)
-+ p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
-+
-+ return p->prev_stime;
-+}
-+#endif
-+
-+inline cputime_t task_gtime(struct task_struct *p)
-+{
-+ return p->gtime;
-+}
-+
-+void __cpuinit init_idle_bootup_task(struct task_struct *idle)
-+{}
-+
-+#ifdef CONFIG_SCHED_DEBUG
-+void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
-+{}
-+
-+void proc_sched_set_task(struct task_struct *p)
-+{}
-+#endif
---- a/kernel/sysctl.c
-+++ b/kernel/sysctl.c
-@@ -83,6 +83,8 @@ extern int percpu_pagelist_fraction;
- extern int compat_log;
- extern int latencytop_enabled;
- extern int sysctl_nr_open_min, sysctl_nr_open_max;
-+extern int rr_interval;
-+extern int sched_iso_cpu;
- #ifndef CONFIG_MMU
- extern int sysctl_nr_trim_pages;
- #endif
-@@ -100,7 +102,8 @@ static int zero;
- static int __maybe_unused one = 1;
- static int __maybe_unused two = 2;
- static unsigned long one_ul = 1;
--static int one_hundred = 100;
-+static int __read_mostly one_hundred = 100;
-+static int __maybe_unused __read_mostly five_thousand = 5000;
-
- /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
- static unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
-@@ -234,7 +237,7 @@ static struct ctl_table root_table[] = {
- { .ctl_name = 0 }
- };
-
--#ifdef CONFIG_SCHED_DEBUG
-+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS)
- static int min_sched_granularity_ns = 100000; /* 100 usecs */
- static int max_sched_granularity_ns = NSEC_PER_SEC; /* 1 second */
- static int min_wakeup_granularity_ns; /* 0 usecs */
-@@ -242,7 +245,7 @@ static int max_wakeup_granularity_ns = N
- #endif
-
- static struct ctl_table kern_table[] = {
--#ifdef CONFIG_SCHED_DEBUG
-+#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SCHED_CFS)
- {
- .ctl_name = CTL_UNNUMBERED,
- .procname = "sched_min_granularity_ns",
-@@ -327,6 +330,7 @@ static struct ctl_table kern_table[] = {
- .proc_handler = &proc_dointvec,
- },
- #endif
-+#ifdef CONFIG_SCHED_CFS
- {
- .ctl_name = CTL_UNNUMBERED,
- .procname = "sched_rt_period_us",
-@@ -351,6 +355,7 @@ static struct ctl_table kern_table[] = {
- .mode = 0644,
- .proc_handler = &proc_dointvec,
- },
-+#endif
- #ifdef CONFIG_PROVE_LOCKING
- {
- .ctl_name = CTL_UNNUMBERED,
-@@ -756,6 +761,30 @@ static struct ctl_table kern_table[] = {
- .proc_handler = &proc_dointvec,
- },
- #endif
-+#ifdef CONFIG_SCHED_BFS
-+ {
-+ .ctl_name = CTL_UNNUMBERED,
-+ .procname = "rr_interval",
-+ .data = &rr_interval,
-+ .maxlen = sizeof (int),
-+ .mode = 0644,
-+ .proc_handler = &proc_dointvec_minmax,
-+ .strategy = &sysctl_intvec,
-+ .extra1 = &one,
-+ .extra2 = &five_thousand,
-+ },
-+ {
-+ .ctl_name = CTL_UNNUMBERED,
-+ .procname = "iso_cpu",
-+ .data = &sched_iso_cpu,
-+ .maxlen = sizeof (int),
-+ .mode = 0644,
-+ .proc_handler = &proc_dointvec_minmax,
-+ .strategy = &sysctl_intvec,
-+ .extra1 = &zero,
-+ .extra2 = &one_hundred,
-+ },
-+#endif
- #if defined(CONFIG_S390) && defined(CONFIG_SMP)
- {
- .ctl_name = KERN_SPIN_RETRY,
---- a/kernel/workqueue.c
-+++ b/kernel/workqueue.c
-@@ -320,7 +320,9 @@ static int worker_thread(void *__cwq)
- if (cwq->wq->freezeable)
- set_freezable();
-
-+#ifdef CONFIG_SCHED_CFS
- set_user_nice(current, -5);
-+#endif
-
- for (;;) {
- prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
---- /dev/null
-+++ b/include/linux/perf_counter.h
-@@ -0,0 +1,2 @@
-+#define perf_counter_init() do {} while(0)
-+#define perf_counter_task_sched_in(...) do {} while(0)
---- /dev/null
-+++ b/include/trace/events/sched.h
-@@ -0,0 +1 @@
-+#include <trace/sched.h>