summaryrefslogtreecommitdiff
path: root/target/linux/mediatek/patches-4.4/0065-mtd-mediatek-driver-for-MTK-Smart-Device-Gen1-NAND.patch
diff options
context:
space:
mode:
Diffstat (limited to 'target/linux/mediatek/patches-4.4/0065-mtd-mediatek-driver-for-MTK-Smart-Device-Gen1-NAND.patch')
-rw-r--r--target/linux/mediatek/patches-4.4/0065-mtd-mediatek-driver-for-MTK-Smart-Device-Gen1-NAND.patch1798
1 files changed, 1798 insertions, 0 deletions
diff --git a/target/linux/mediatek/patches-4.4/0065-mtd-mediatek-driver-for-MTK-Smart-Device-Gen1-NAND.patch b/target/linux/mediatek/patches-4.4/0065-mtd-mediatek-driver-for-MTK-Smart-Device-Gen1-NAND.patch
new file mode 100644
index 0000000..c21ca1d
--- /dev/null
+++ b/target/linux/mediatek/patches-4.4/0065-mtd-mediatek-driver-for-MTK-Smart-Device-Gen1-NAND.patch
@@ -0,0 +1,1798 @@
+From 7a9d3c8c4084fd37fa14c0e8db2830623f5da8cc Mon Sep 17 00:00:00 2001
+From: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
+Date: Wed, 2 Mar 2016 12:00:12 -0500
+Subject: [PATCH 65/66] mtd: mediatek: driver for MTK Smart Device Gen1 NAND
+
+This patch adds support for mediatek's SDG1 NFC nand controller
+embedded in SoC 2701.
+
+UBIFS support has been successfully tested.
+
+Signed-off-by: Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
+---
+ drivers/mtd/nand/Kconfig | 6 +
+ drivers/mtd/nand/Makefile | 1 +
+ drivers/mtd/nand/mtksdg1_nand.c | 1535 +++++++++++++++++++++++++++++++++++
+ drivers/mtd/nand/mtksdg1_nand_ecc.h | 75 ++
+ drivers/mtd/nand/mtksdg1_nand_nfi.h | 119 +++
+ 5 files changed, 1736 insertions(+)
+ create mode 100644 drivers/mtd/nand/mtksdg1_nand.c
+ create mode 100644 drivers/mtd/nand/mtksdg1_nand_ecc.h
+ create mode 100644 drivers/mtd/nand/mtksdg1_nand_nfi.h
+
+diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
+index 2896640..5ec072a 100644
+--- a/drivers/mtd/nand/Kconfig
++++ b/drivers/mtd/nand/Kconfig
+@@ -546,4 +546,10 @@ config MTD_NAND_HISI504
+ help
+ Enables support for NAND controller on Hisilicon SoC Hip04.
+
++config MTD_NAND_MTKSDG1
++ tristate "Support for NAND controller on MTK Smart Device SoCs"
++ depends on HAS_DMA
++ help
++ Enables support for NAND controller on MTK Smart Device SoCs.
++
+ endif # MTD_NAND
+diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
+index 2c7f014..2a2620c 100644
+--- a/drivers/mtd/nand/Makefile
++++ b/drivers/mtd/nand/Makefile
+@@ -55,5 +55,6 @@ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
+ obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
+ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
+ obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
++obj-$(CONFIG_MTD_NAND_MTKSDG1) += mtksdg1_nand.o
+
+ nand-objs := nand_base.o nand_bbt.o nand_timings.o
+diff --git a/drivers/mtd/nand/mtksdg1_nand.c b/drivers/mtd/nand/mtksdg1_nand.c
+new file mode 100644
+index 0000000..55dd17d
+--- /dev/null
++++ b/drivers/mtd/nand/mtksdg1_nand.c
+@@ -0,0 +1,1535 @@
++/*
++ * MTK smart device NAND Flash controller driver.
++ * Copyright (C) 2015-2016 MediaTek Inc.
++ * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
++ * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#include <linux/platform_device.h>
++#include <linux/dma-mapping.h>
++#include <linux/interrupt.h>
++#include <linux/of_mtd.h>
++#include <linux/delay.h>
++#include <linux/clk.h>
++#include <linux/mtd/partitions.h>
++#include <linux/mtd/nand.h>
++#include <linux/mtd/mtd.h>
++#include <linux/module.h>
++
++#include "mtksdg1_nand_nfi.h"
++#include "mtksdg1_nand_ecc.h"
++
++#define MTK_IRQ_ECC "mtksdg1-nand-ecc"
++#define MTK_IRQ_NFI "mtksdg1-nand-nfi"
++#define MTK_NAME "mtksdg1-nand"
++
++#define KB(x) ((x) * 1024UL)
++#define MB(x) (KB(x) * 1024UL)
++
++#define SECTOR_SHIFT (10)
++#define SECTOR_SIZE (1UL << SECTOR_SHIFT)
++#define BYTES_TO_SECTORS(x) ((x) >> SECTOR_SHIFT)
++#define SECTORS_TO_BYTES(x) ((x) << SECTOR_SHIFT)
++
++#define MTK_TIMEOUT (500)
++#define MTK_RESET_TIMEOUT (1 * HZ)
++
++#define MTK_ECC_PARITY_BITS (14)
++#define MTK_NAND_MAX_CHIP (2)
++
++#define MTK_OOB_ON (1)
++#define MTK_OOB_OFF (0)
++
++/* raw accesses do not use ECC (ecc = !raw) */
++#define MTK_ECC_OFF (1)
++#define MTK_ECC_ON (0)
++
++struct mtk_nfc_clk {
++ struct clk *nfiecc_clk;
++ struct clk *nfi_clk;
++ struct clk *pad_clk;
++};
++
++struct mtk_nfc_saved_reg {
++ struct {
++ u32 enccnfg;
++ u32 deccnfg;
++ } ecc;
++ struct {
++ u32 emp_thresh;
++ u16 pagefmt;
++ u32 acccon;
++ u16 cnrnb;
++ u16 csel;
++ } nfi;
++};
++
++struct mtk_nfc_host {
++ struct mtk_nfc_clk clk;
++ struct nand_chip chip;
++ struct device *dev;
++
++ struct {
++ struct completion complete;
++ void __iomem *base;
++ } nfi;
++
++ struct {
++ struct completion complete;
++ void __iomem *base;
++ u32 dec_sec;
++ } ecc;
++
++ u32 fdm_reg[MTKSDG1_NFI_FDM_REG_SIZE / sizeof(u32)];
++ bool switch_oob;
++ u32 row_nob;
++ u8 *buffer;
++
++#ifdef CONFIG_PM_SLEEP
++ struct mtk_nfc_saved_reg saved_reg;
++#endif
++};
++
++static struct nand_ecclayout nand_2k_64 = {
++ .oobfree = { {0, 16} },
++};
++
++static struct nand_ecclayout nand_4k_128 = {
++ .oobfree = { {0, 32} },
++};
++
++/* NFI register access */
++static inline void mtk_nfi_writel(struct mtk_nfc_host *host, u32 val, u32 reg)
++{
++ writel(val, host->nfi.base + reg);
++}
++static inline void mtk_nfi_writew(struct mtk_nfc_host *host, u16 val, u32 reg)
++{
++ writew(val, host->nfi.base + reg);
++}
++static inline u32 mtk_nfi_readl(struct mtk_nfc_host *host, u32 reg)
++{
++ return readl_relaxed(host->nfi.base + reg);
++}
++static inline u16 mtk_nfi_readw(struct mtk_nfc_host *host, u32 reg)
++{
++ return readw_relaxed(host->nfi.base + reg);
++}
++static inline u8 mtk_nfi_readb(struct mtk_nfc_host *host, u32 reg)
++{
++ return readb_relaxed(host->nfi.base + reg);
++}
++
++/* ECC register access */
++static inline void mtk_ecc_writel(struct mtk_nfc_host *host, u32 val, u32 reg)
++{
++ writel(val, host->ecc.base + reg);
++}
++static inline void mtk_ecc_writew(struct mtk_nfc_host *host, u16 val, u32 reg)
++{
++ writew(val, host->ecc.base + reg);
++}
++static inline u32 mtk_ecc_readl(struct mtk_nfc_host *host, u32 reg)
++{
++ return readl_relaxed(host->ecc.base + reg);
++}
++static inline u16 mtk_ecc_readw(struct mtk_nfc_host *host, u32 reg)
++{
++ return readw_relaxed(host->ecc.base + reg);
++}
++
++static void mtk_nfc_hw_reset(struct mtk_nfc_host *host)
++{
++ unsigned long timeout = MTK_RESET_TIMEOUT;
++ struct device *dev = host->dev;
++ u32 val;
++
++ /* reset the state machine, data fifo and fdm data */
++ mtk_nfi_writel(host, CON_FIFO_FLUSH | CON_NFI_RST, MTKSDG1_NFI_CON);
++ timeout += jiffies;
++ do {
++ val = mtk_nfi_readl(host, MTKSDG1_NFI_MASTER_STA);
++ val &= MASTER_STA_MASK;
++ if (!val)
++ return;
++ usleep_range(50, 100);
++
++ } while (time_before(jiffies, timeout));
++
++ dev_warn(dev, "nfi master active after in reset [0x%x] = 0x%x\n",
++ MTKSDG1_NFI_MASTER_STA, val);
++};
++
++static int mtk_nfc_set_command(struct mtk_nfc_host *host, u8 command)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ struct device *dev = host->dev;
++ u32 val;
++
++ mtk_nfi_writel(host, command, MTKSDG1_NFI_CMD);
++
++ /* wait for the NFI core to enter command mode */
++ timeout += jiffies;
++ do {
++ val = mtk_nfi_readl(host, MTKSDG1_NFI_STA);
++ val &= STA_CMD;
++ if (!val)
++ return 0;
++ cpu_relax();
++
++ } while (time_before(jiffies, timeout));
++ dev_warn(dev, "nfi core timed out entering command mode\n");
++
++ return -EIO;
++}
++
++static int mtk_nfc_set_address(struct mtk_nfc_host *host, u32 column, u32 row,
++ u8 colnob, u8 row_nob)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ struct device *dev = host->dev;
++ u32 addr_nob, val;
++
++ addr_nob = colnob | (row_nob << ADDR_ROW_NOB_SHIFT);
++ mtk_nfi_writel(host, column, MTKSDG1_NFI_COLADDR);
++ mtk_nfi_writel(host, row, MTKSDG1_NFI_ROWADDR);
++ mtk_nfi_writel(host, addr_nob, MTKSDG1_NFI_ADDRNOB);
++
++ /* wait for the NFI core to enter address mode */
++ timeout += jiffies;
++ do {
++ val = mtk_nfi_readl(host, MTKSDG1_NFI_STA);
++ val &= STA_ADDR;
++ if (!val)
++ return 0;
++ cpu_relax();
++
++ } while (time_before(jiffies, timeout));
++
++ dev_warn(dev, "nfi core timed out entering address mode\n");
++
++ return -EIO;
++}
++
++static inline void mtk_ecc_encoder_idle(struct mtk_nfc_host *host)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ struct device *dev = host->dev;
++ u32 val;
++
++ timeout += jiffies;
++ do {
++ val = mtk_ecc_readl(host, MTKSDG1_ECC_ENCIDLE);
++ val &= ENC_IDLE;
++ if (val)
++ return;
++ cpu_relax();
++
++ } while (time_before(jiffies, timeout));
++
++ dev_warn(dev, "hw init ecc encoder not idle\n");
++}
++
++static inline void mtk_ecc_decoder_idle(struct mtk_nfc_host *host)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ struct device *dev = host->dev;
++ u32 val;
++
++ timeout += jiffies;
++ do {
++ val = mtk_ecc_readw(host, MTKSDG1_ECC_DECIDLE);
++ val &= DEC_IDLE;
++ if (val)
++ return;
++ cpu_relax();
++
++ } while (time_before(jiffies, timeout));
++
++ dev_warn(dev, "hw init ecc decoder not idle\n");
++}
++
++static int mtk_nfc_transfer_done(struct mtk_nfc_host *host, u32 sectors)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ u32 cnt;
++
++ /* wait for the sector count */
++ timeout += jiffies;
++ do {
++ cnt = mtk_nfi_readl(host, MTKSDG1_NFI_ADDRCNTR);
++ cnt &= CNTR_MASK;
++ if (cnt >= sectors)
++ return 0;
++ cpu_relax();
++
++ } while (time_before(jiffies, timeout));
++
++ return -EIO;
++}
++
++static int mtk_nfc_subpage_done(struct mtk_nfc_host *host, int sectors)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ u32 val;
++
++ timeout += jiffies;
++ do {
++ val = mtk_nfi_readl(host, MTKSDG1_NFI_BYTELEN);
++ val &= CNTR_MASK;
++ if (val >= sectors)
++ return 0;
++ cpu_relax();
++
++ } while (time_before(jiffies, timeout));
++
++ return -EIO;
++}
++
++static inline int mtk_nfc_data_ready(struct mtk_nfc_host *host)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ u8 val;
++
++ timeout += jiffies;
++ do {
++ val = mtk_nfi_readw(host, MTKSDG1_NFI_PIO_DIRDY);
++ val &= PIO_DI_RDY;
++ if (val)
++ return 0;
++ cpu_relax();
++
++ } while (time_before(jiffies, timeout));
++
++ /* data _MUST_ not be accessed */
++ return -EIO;
++}
++
++static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
++{
++ struct nand_chip *chip = mtd_to_nand(mtd);
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ struct device *dev = host->dev;
++ u32 dec_size, enc_size;
++ u32 ecc_bit, ecc_level;
++ u32 spare, fmt;
++ u32 reg;
++
++ host->row_nob = 1;
++ if (chip->chipsize > MB(32))
++ host->row_nob = chip->chipsize > MB(128) ? 3 : 2;
++
++ spare = mtd->oobsize / BYTES_TO_SECTORS(mtd->writesize);
++ switch (spare) {
++ case 16:
++ ecc_bit = ECC_CNFG_4BIT;
++ ecc_level = 4;
++ break;
++ case 32:
++ ecc_bit = ECC_CNFG_12BIT;
++ ecc_level = 12;
++ break;
++ default:
++ dev_err(dev, "invalid spare size per sector: %d\n", spare);
++ return -EINVAL;
++ }
++
++ chip->ecc.strength = ecc_level;
++ chip->ecc.size = SECTOR_SIZE;
++
++ switch (mtd->writesize) {
++ case KB(2):
++ fmt = PAGEFMT_512_2K;
++ chip->ecc.layout = &nand_2k_64;
++ break;
++ case KB(4):
++ fmt = PAGEFMT_2K_4K;
++ chip->ecc.layout = &nand_4k_128;
++ break;
++ case KB(8):
++ fmt = PAGEFMT_4K_8K;
++ break;
++ default:
++ dev_err(dev, "invalid page size: %d\n", mtd->writesize);
++ return -EINVAL;
++ }
++
++ /* configure PAGE FMT */
++ reg = fmt;
++ reg |= PAGEFMT_SPARE_16 << PAGEFMT_SPARE_SHIFT;
++ reg |= MTKSDG1_NFI_FDM_REG_SIZE << PAGEFMT_FDM_SHIFT;
++ reg |= MTKSDG1_NFI_FDM_REG_SIZE << PAGEFMT_FDM_ECC_SHIFT;
++ mtk_nfi_writew(host, reg, MTKSDG1_NFI_PAGEFMT);
++
++ /* configure ECC encoder (in bits) */
++ enc_size = (SECTOR_SIZE + MTKSDG1_NFI_FDM_REG_SIZE) << 3;
++ reg = ecc_bit | ECC_NFI_MODE | (enc_size << ECC_MS_SHIFT);
++ mtk_ecc_writel(host, reg, MTKSDG1_ECC_ENCCNFG);
++
++ /* configure ECC decoder (inbits) */
++ dec_size = enc_size + ecc_level * MTK_ECC_PARITY_BITS;
++ reg = ecc_bit | ECC_NFI_MODE | (dec_size << ECC_MS_SHIFT);
++ reg |= (DEC_CNFG_CORRECT | DEC_EMPTY_EN);
++ mtk_ecc_writel(host, reg, MTKSDG1_ECC_DECCNFG);
++
++ return 0;
++}
++
++static void mtk_nfc_device_reset(struct mtk_nfc_host *host)
++{
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ struct device *dev = host->dev;
++ u16 chip;
++ int rc;
++
++ mtk_nfc_hw_reset(host);
++
++ /* enable reset done interrupt */
++ mtk_nfi_writew(host, INTR_RST_DONE_EN, MTKSDG1_NFI_INTR_EN);
++
++ /* configure FSM for reset operation */
++ mtk_nfi_writew(host, CNFG_OP_RESET, MTKSDG1_NFI_CNFG);
++
++ init_completion(&host->nfi.complete);
++
++ mtk_nfc_set_command(host, NAND_CMD_RESET);
++ rc = wait_for_completion_timeout(&host->nfi.complete, timeout);
++ if (!rc) {
++ chip = mtk_nfi_readw(host, MTKSDG1_NFI_CSEL);
++ dev_err(dev, "device(%d) reset timeout\n", chip);
++ }
++}
++
++static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
++{
++ struct nand_chip *nand = mtd_to_nand(mtd);
++ struct mtk_nfc_host *host = nand_get_controller_data(nand);
++
++ if (chip < 0)
++ return;
++
++ mtk_nfi_writel(host, chip, MTKSDG1_NFI_CSEL);
++}
++
++static inline bool mtk_nfc_cmd_supported(unsigned command)
++{
++ switch (command) {
++ case NAND_CMD_RESET:
++ case NAND_CMD_READID:
++ case NAND_CMD_STATUS:
++ case NAND_CMD_READOOB:
++ case NAND_CMD_ERASE1:
++ case NAND_CMD_ERASE2:
++ case NAND_CMD_SEQIN:
++ case NAND_CMD_PAGEPROG:
++ case NAND_CMD_CACHEDPROG:
++ case NAND_CMD_READ0:
++ return true;
++ default:
++ return false;
++ }
++}
++
++static void mtk_nfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column,
++ int page_addr)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(mtd_to_nand(mtd));
++ unsigned long const cmd_timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ struct completion *p = &host->nfi.complete;
++ u32 val;
++ int rc;
++
++ if (mtk_nfc_cmd_supported(command))
++ mtk_nfc_hw_reset(host);
++
++ switch (command) {
++ case NAND_CMD_RESET:
++ mtk_nfc_device_reset(host);
++ break;
++ case NAND_CMD_READID:
++ val = CNFG_READ_EN | CNFG_BYTE_RW | CNFG_OP_SRD;
++ mtk_nfi_writew(host, val, MTKSDG1_NFI_CNFG);
++ mtk_nfc_set_command(host, NAND_CMD_READID);
++ mtk_nfc_set_address(host, column, 0, 1, 0);
++ mtk_nfi_writel(host, CON_SRD, MTKSDG1_NFI_CON);
++ break;
++ case NAND_CMD_STATUS:
++ val = CNFG_READ_EN | CNFG_BYTE_RW | CNFG_OP_SRD;
++ mtk_nfi_writew(host, val, MTKSDG1_NFI_CNFG);
++ mtk_nfc_set_command(host, NAND_CMD_STATUS);
++ mtk_nfi_writel(host, CON_SRD, MTKSDG1_NFI_CON);
++ break;
++ case NAND_CMD_READOOB:
++ val = CNFG_READ_EN | CNFG_BYTE_RW | CNFG_OP_READ;
++ mtk_nfi_writew(host, val, MTKSDG1_NFI_CNFG);
++ mtk_nfc_set_command(host, NAND_CMD_READ0);
++ column += mtd->writesize;
++ mtk_nfc_set_address(host, column, page_addr, 2, host->row_nob);
++ val = CON_BRD | (1 << CON_SEC_SHIFT);
++ mtk_nfi_writel(host, val, MTKSDG1_NFI_CON);
++ break;
++ case NAND_CMD_ERASE1:
++ mtk_nfi_writew(host, INTR_ERS_DONE_EN, MTKSDG1_NFI_INTR_EN);
++ mtk_nfi_writew(host, CNFG_OP_ERASE, MTKSDG1_NFI_CNFG);
++ mtk_nfc_set_command(host, NAND_CMD_ERASE1);
++ mtk_nfc_set_address(host, 0, page_addr, 0, host->row_nob);
++ break;
++ case NAND_CMD_ERASE2:
++ init_completion(p);
++ mtk_nfc_set_command(host, NAND_CMD_ERASE2);
++ rc = wait_for_completion_timeout(p, cmd_timeout);
++ if (!rc)
++ dev_err(host->dev, "erase command timeout\n");
++ break;
++ case NAND_CMD_SEQIN:
++ mtk_nfi_writew(host, CNFG_OP_PRGM, MTKSDG1_NFI_CNFG);
++ mtk_nfc_set_command(host, NAND_CMD_SEQIN);
++ mtk_nfc_set_address(host, column, page_addr, 2, host->row_nob);
++ break;
++ case NAND_CMD_PAGEPROG:
++ case NAND_CMD_CACHEDPROG:
++ mtk_nfi_writew(host, INTR_BUSY_RT_EN, MTKSDG1_NFI_INTR_EN);
++ init_completion(p);
++ mtk_nfc_set_command(host, command);
++ rc = wait_for_completion_timeout(p, cmd_timeout);
++ if (!rc)
++ dev_err(host->dev, "pageprogr command timeout\n");
++ break;
++ case NAND_CMD_READ0:
++ val = CNFG_OP_READ | CNFG_READ_EN;
++ mtk_nfi_writew(host, val, MTKSDG1_NFI_CNFG);
++ mtk_nfc_set_command(host, NAND_CMD_READ0);
++ break;
++ default:
++ dev_warn(host->dev, "command 0x%x not supported\n", command);
++ break;
++ }
++}
++
++static uint8_t mtk_nfc_read_byte(struct mtd_info *mtd)
++{
++ struct nand_chip *chip = mtd_to_nand(mtd);
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ int rc;
++
++ rc = mtk_nfc_data_ready(host);
++ if (rc < 0) {
++ dev_err(host->dev, "data not ready\n");
++ return NAND_STATUS_FAIL;
++ }
++
++ return mtk_nfi_readb(host, MTKSDG1_NFI_DATAR);
++}
++
++static void mtk_nfc_write_fdm(struct nand_chip *chip, u32 sectors)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ u8 *src, *dst;
++ int i, j, reg;
++
++ for (i = 0; i < sectors ; i++) {
++ /* read FDM from OOB into private area */
++ src = chip->oob_poi + i * MTKSDG1_NFI_FDM_REG_SIZE;
++ dst = (u8 *)host->fdm_reg;
++ memcpy(dst, src, MTKSDG1_NFI_FDM_REG_SIZE);
++
++ /* write FDM to registers */
++ for (j = 0; j < ARRAY_SIZE(host->fdm_reg); j++) {
++ reg = MTKSDG1_NFI_FDM0L + i * MTKSDG1_NFI_FDM_REG_SIZE;
++ reg += j * sizeof(host->fdm_reg[0]);
++ mtk_nfi_writel(host, host->fdm_reg[j], reg);
++ }
++ }
++}
++
++static int mtk_nfc_write_page(struct mtd_info *mtd,
++ struct nand_chip *chip, const uint8_t *buf,
++ int oob_on, int page, int raw)
++{
++
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ struct completion *nfi = &host->nfi.complete;
++ struct device *dev = host->dev;
++ const bool use_ecc = !raw;
++ void *q = (void *) buf;
++ dma_addr_t dma_addr;
++ size_t dmasize;
++ u32 reg;
++ int ret;
++
++ dmasize = mtd->writesize + (raw ? mtd->oobsize : 0);
++
++ dma_addr = dma_map_single(dev, q, dmasize, DMA_TO_DEVICE);
++ if (dma_mapping_error(host->dev, dma_addr)) {
++ dev_err(host->dev, "dma mapping error\n");
++ return -EINVAL;
++ }
++
++ reg = mtk_nfi_readw(host, MTKSDG1_NFI_CNFG);
++ reg |= CNFG_AHB | CNFG_DMA_BURST_EN;
++ if (use_ecc) {
++ /**
++ * OOB will be generated
++ * - FDM: from register
++ * - ECC: from HW
++ */
++ reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
++ mtk_nfi_writew(host, reg, MTKSDG1_NFI_CNFG);
++
++ mtk_ecc_encoder_idle(host);
++ mtk_ecc_writew(host, ENC_EN, MTKSDG1_ECC_ENCCON);
++
++ /* write OOB into the FDM registers (OOB area in MTK NAND) */
++ if (oob_on)
++ mtk_nfc_write_fdm(chip, chip->ecc.steps);
++ } else {
++ /* OOB is part of the DMA transfer */
++ mtk_nfi_writew(host, reg, MTKSDG1_NFI_CNFG);
++ }
++
++ mtk_nfi_writel(host, chip->ecc.steps << CON_SEC_SHIFT, MTKSDG1_NFI_CON);
++ mtk_nfi_writel(host, lower_32_bits(dma_addr), MTKSDG1_NFI_STRADDR);
++ mtk_nfi_writew(host, INTR_AHB_DONE_EN, MTKSDG1_NFI_INTR_EN);
++
++ init_completion(nfi);
++
++ /* start DMA */
++ reg = mtk_nfi_readl(host, MTKSDG1_NFI_CON) | CON_BWR;
++ mtk_nfi_writel(host, reg, MTKSDG1_NFI_CON);
++
++ ret = wait_for_completion_timeout(nfi, msecs_to_jiffies(MTK_TIMEOUT));
++ if (!ret) {
++ dev_err(dev, "program ahb done timeout\n");
++ mtk_nfi_writew(host, 0, MTKSDG1_NFI_INTR_EN);
++ ret = -ETIMEDOUT;
++ goto timeout;
++ }
++
++ ret = mtk_nfc_transfer_done(host, chip->ecc.steps);
++ if (ret < 0)
++ dev_err(dev, "hwecc write timeout\n");
++timeout:
++ dma_unmap_single(host->dev, dma_addr, dmasize, DMA_TO_DEVICE);
++
++ if (use_ecc) {
++ mtk_ecc_encoder_idle(host);
++ mtk_ecc_writew(host, ENC_DE, MTKSDG1_ECC_ENCCON);
++ }
++
++ mtk_nfi_writel(host, 0, MTKSDG1_NFI_CON);
++
++ return ret;
++}
++
++static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
++ struct nand_chip *chip, const uint8_t *buf,
++ int oob_on, int page)
++{
++ return mtk_nfc_write_page(mtd, chip, buf, oob_on, page, MTK_ECC_ON);
++}
++
++static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ const uint8_t *buf, int oob_on, int pg)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ uint8_t *src, *dst;
++ size_t len;
++ u32 i;
++
++ memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize);
++
++ /* MTK internal 4KB page data layout:
++ * ----------------------------------
++ * PAGE = 4KB, SECTOR = 1KB, OOB=128B
++ * page = sector_oob1 + sector_oob2 + sector_oob3 + sector_oob4
++ * sector_oob = data (1KB) + FDM (8B) + ECC parity (21B) + free (3B)
++ *
++ */
++ len = SECTOR_SIZE + mtd->oobsize / chip->ecc.steps;
++
++ for (i = 0; i < chip->ecc.steps; i++) {
++
++ if (buf) {
++ src = (uint8_t *) buf + i * SECTOR_SIZE;
++ dst = host->buffer + i * len;
++ memcpy(dst, src, SECTOR_SIZE);
++ }
++
++ if (oob_on) {
++ src = chip->oob_poi + i * MTKSDG1_NFI_FDM_REG_SIZE;
++ dst = host->buffer + i * len + SECTOR_SIZE;
++ memcpy(dst, src, MTKSDG1_NFI_FDM_REG_SIZE);
++ }
++ }
++
++ return mtk_nfc_write_page(mtd, chip, host->buffer, MTK_OOB_OFF, pg,
++ MTK_ECC_OFF);
++}
++
++static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ struct completion *ecc = &host->ecc.complete;
++ u32 reg, parity_bytes, i;
++ dma_addr_t dma_addr;
++ u32 *parity_region;
++ int rc, ret = 0;
++ size_t dmasize;
++
++ dmasize = SECTOR_SIZE + MTKSDG1_NFI_FDM_REG_SIZE;
++ dma_addr = dma_map_single(host->dev, data, dmasize, DMA_TO_DEVICE);
++ if (dma_mapping_error(host->dev, dma_addr)) {
++ dev_err(host->dev, "dma mapping error\n");
++ return -EINVAL;
++ }
++
++ /* enable the encoder in DMA mode to calculate the ECC bytes */
++ reg = mtk_ecc_readl(host, MTKSDG1_ECC_ENCCNFG);
++ reg &= (~ECC_ENC_MODE_MASK);
++ reg |= ECC_DMA_MODE;
++ mtk_ecc_writel(host, reg, MTKSDG1_ECC_ENCCNFG);
++
++ mtk_ecc_writel(host, ENC_IRQEN, MTKSDG1_ECC_ENCIRQ_EN);
++ mtk_ecc_writel(host, lower_32_bits(dma_addr), MTKSDG1_ECC_ENCDIADDR);
++
++ init_completion(ecc);
++ mtk_ecc_writew(host, ENC_EN, MTKSDG1_ECC_ENCCON);
++
++ rc = wait_for_completion_timeout(ecc, msecs_to_jiffies(MTK_TIMEOUT));
++ if (!rc) {
++ dev_err(host->dev, "ecc encode done timeout\n");
++ mtk_ecc_writel(host, 0, MTKSDG1_ECC_ENCIRQ_EN);
++ ret = -ETIMEDOUT;
++ goto timeout;
++ }
++
++ mtk_ecc_encoder_idle(host);
++
++ /**
++ * Program ECC bytes to OOB
++ * per sector oob = FDM + ECC + SPARE
++ */
++
++ parity_region = (u32 *) (data + SECTOR_SIZE + MTKSDG1_NFI_FDM_REG_SIZE);
++ parity_bytes = (chip->ecc.strength * MTK_ECC_PARITY_BITS + 7) >> 3;
++
++ /* write the parity bytes generated by the ECC back to the OOB region */
++ for (i = 0; i < parity_bytes; i += sizeof(u32))
++ *parity_region++ = mtk_ecc_readl(host, MTKSDG1_ECC_ENCPAR0 + i);
++
++timeout:
++
++ dma_unmap_single(host->dev, dma_addr, dmasize, DMA_TO_DEVICE);
++
++ mtk_ecc_writew(host, 0, MTKSDG1_ECC_ENCCON);
++ reg = mtk_ecc_readl(host, MTKSDG1_ECC_ENCCNFG);
++ reg &= (~ECC_ENC_MODE_MASK);
++ reg |= ECC_NFI_MODE;
++ mtk_ecc_writel(host, reg, MTKSDG1_ECC_ENCCNFG);
++
++ return ret;
++}
++
++static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
++ struct nand_chip *chip, uint32_t offset, uint32_t data_len,
++ const uint8_t *buf, int oob_on, int pg)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ uint8_t *src, *dst;
++ u32 start, end;
++ size_t len;
++ int i, ret;
++
++ start = BYTES_TO_SECTORS(offset);
++ end = BYTES_TO_SECTORS(offset + data_len + SECTOR_SIZE - 1);
++
++ len = SECTOR_SIZE + mtd->oobsize / chip->ecc.steps;
++
++ memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize);
++ for (i = 0; i < chip->ecc.steps; i++) {
++
++ /* write data */
++ src = (uint8_t *) buf + i * SECTOR_SIZE;
++ dst = host->buffer + i * len;
++ memcpy(dst, src, SECTOR_SIZE);
++
++ if (i < start)
++ continue;
++
++ if (i >= end)
++ continue;
++
++ /* write fdm */
++ if (oob_on) {
++ src = chip->oob_poi + i * MTKSDG1_NFI_FDM_REG_SIZE;
++ dst = host->buffer + i * len + SECTOR_SIZE;
++ memcpy(dst, src, MTKSDG1_NFI_FDM_REG_SIZE);
++ }
++
++ /* point to the start of data */
++ src = host->buffer + i * len;
++
++ /* program the CRC back to the OOB */
++ ret = mtk_nfc_sector_encode(chip, src);
++ if (ret < 0)
++ return ret;
++ }
++
++ /* use the data in the private buffer (now with FDM and CRC) to perform
++ * a raw write
++ */
++ src = host->buffer;
++ return mtk_nfc_write_page(mtd, chip, src, MTK_OOB_OFF, pg, MTK_ECC_OFF);
++}
++
++static int mtk_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ u8 *buf = chip->buffers->databuf;
++ int ret;
++
++ memset(buf, 0xff, mtd->writesize);
++ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
++ ret = mtk_nfc_write_page_hwecc(mtd, chip, buf, MTK_OOB_ON, page);
++ if (ret < 0)
++ return -EIO;
++
++ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
++ ret = chip->waitfunc(mtd, chip);
++
++ return ret & NAND_STATUS_FAIL ? -EIO : 0;
++}
++
++static int mtk_nfc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ int ret;
++
++ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
++ ret = mtk_nfc_write_page_raw(mtd, chip, NULL, MTK_OOB_ON, page);
++ if (ret < 0)
++ return -EIO;
++
++ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
++ ret = chip->waitfunc(mtd, chip);
++
++ return ret & NAND_STATUS_FAIL ? -EIO : 0;
++}
++
++static int mtk_nfc_ecc_check(struct mtd_info *mtd, struct nand_chip *chip,
++ u32 sectors)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ u32 offset, i, err, max_bitflip;
++
++ max_bitflip = 0;
++
++ for (i = 0; i < sectors; i++) {
++ offset = (i >> 2) << 2;
++ err = mtk_ecc_readl(host, MTKSDG1_ECC_DECENUM0 + offset);
++ err = err >> ((i % 4) * 8);
++ err &= ERR_MASK;
++ if (err == ERR_MASK) {
++ /* uncorrectable errors */
++ mtd->ecc_stats.failed++;
++ continue;
++ }
++
++ mtd->ecc_stats.corrected += err;
++ max_bitflip = max_t(u32, max_bitflip, err);
++ }
++
++ return max_bitflip;
++}
++
++static void mtk_nfc_read_fdm(struct nand_chip *chip, u32 sectors)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ int i, j, reg;
++ u8 *dst, *src;
++
++ for (i = 0; i < sectors; i++) {
++ /* read FDM register into host memory */
++ for (j = 0; j < ARRAY_SIZE(host->fdm_reg); j++) {
++ reg = MTKSDG1_NFI_FDM0L + i * MTKSDG1_NFI_FDM_REG_SIZE;
++ reg += j * sizeof(host->fdm_reg[0]);
++ host->fdm_reg[j] = mtk_nfi_readl(host, reg);
++ }
++
++ /* copy FDM register from host to OOB */
++ src = (u8 *)host->fdm_reg;
++ dst = chip->oob_poi + i * MTKSDG1_NFI_FDM_REG_SIZE;
++ memcpy(dst, src, MTKSDG1_NFI_FDM_REG_SIZE);
++ }
++}
++
++static int mtk_nfc_update_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ u8 *buf, u32 sectors)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ int i, bitflips = 0;
++
++ /* if the page is empty, no bitflips and clear data and oob */
++ if (mtk_nfi_readl(host, MTKSDG1_NFI_STA) & STA_EMP_PAGE) {
++ memset(buf, 0xff, SECTORS_TO_BYTES(sectors));
++
++ /* empty page: update OOB with 0xFF */
++ for (i = 0; i < sectors; i++) {
++ memset(chip->oob_poi + i * MTKSDG1_NFI_FDM_REG_SIZE,
++ 0xff, MTKSDG1_NFI_FDM_REG_SIZE);
++ }
++ } else {
++ /* update OOB with HW info */
++ mtk_nfc_read_fdm(chip, sectors);
++
++ /* return the bitflips */
++ bitflips = mtk_nfc_ecc_check(mtd, chip, sectors);
++ }
++
++ return bitflips;
++}
++
++static int mtk_nfc_block_markbad(struct mtd_info *mtd, loff_t ofs)
++{
++ struct nand_chip *chip = mtd_to_nand(mtd);
++ u8 *buf = chip->buffers->databuf;
++ int rc, i, pg;
++
++ /* block_markbad writes 0x00 at data and OOB */
++ memset(buf, 0x00, mtd->writesize + mtd->oobsize);
++
++ /* Write to first/last page(s) if necessary */
++ if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
++ ofs += mtd->erasesize - mtd->writesize;
++
++ i = 0;
++ do {
++ pg = (int)(ofs >> chip->page_shift);
++
++ /**
++ * write 0x00 to DATA & OOB in flash
++ * No need to reorganize the page since it is all 0x00
++ */
++ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, pg);
++ rc = mtk_nfc_write_page(mtd, chip, buf, MTK_OOB_OFF, pg,
++ MTK_ECC_OFF);
++ if (rc < 0)
++ return rc;
++
++ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
++ rc = chip->waitfunc(mtd, chip);
++ rc = rc & NAND_STATUS_FAIL ? -EIO : 0;
++ if (rc < 0)
++ return rc;
++
++ ofs += mtd->writesize;
++ i++;
++
++ } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
++
++ return 0;
++}
++
++static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
++ uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
++ int page, int raw)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ unsigned long timeout = msecs_to_jiffies(MTK_TIMEOUT);
++ u32 reg, column, spare, sectors, start, end;
++ struct completion *nfi, *ecc;
++ const bool use_ecc = !raw;
++ int bitflips = -EIO;
++ dma_addr_t dma_addr;
++ size_t len;
++ u8 *buf;
++ int rc;
++
++ nfi = &host->nfi.complete;
++ ecc = &host->ecc.complete;
++
++ start = BYTES_TO_SECTORS(data_offs);
++ end = BYTES_TO_SECTORS(data_offs + readlen + SECTOR_SIZE - 1);
++ sectors = end - start;
++
++ spare = mtd->oobsize / chip->ecc.steps;
++ column = start * (SECTOR_SIZE + spare);
++
++ len = SECTORS_TO_BYTES(sectors) + (raw ? sectors * spare : 0);
++ buf = bufpoi + SECTORS_TO_BYTES(start);
++
++ /* map the device memory */
++ dma_addr = dma_map_single(host->dev, buf, len, DMA_FROM_DEVICE);
++ if (dma_mapping_error(host->dev, dma_addr)) {
++ dev_err(host->dev, "dma mapping error\n");
++ return -EINVAL;
++ }
++
++ /* configure the transfer */
++ reg = mtk_nfi_readw(host, MTKSDG1_NFI_CNFG);
++ reg |= CNFG_DMA_BURST_EN | CNFG_AHB;
++ if (use_ecc) {
++ reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
++ mtk_nfi_writew(host, reg, MTKSDG1_NFI_CNFG);
++
++ /* enable encoder */
++ mtk_ecc_decoder_idle(host);
++ mtk_ecc_writel(host, DEC_EN, MTKSDG1_ECC_DECCON);
++ } else
++ mtk_nfi_writew(host, reg, MTKSDG1_NFI_CNFG);
++
++ mtk_nfi_writel(host, sectors << CON_SEC_SHIFT, MTKSDG1_NFI_CON);
++ mtk_nfi_writew(host, INTR_BUSY_RT_EN, MTKSDG1_NFI_INTR_EN);
++
++ init_completion(nfi);
++
++ mtk_nfc_set_address(host, column, page, 2, host->row_nob);
++ mtk_nfc_set_command(host, NAND_CMD_READSTART);
++ rc = wait_for_completion_timeout(nfi, timeout);
++ if (!rc) {
++ dev_err(host->dev, "read busy return timeout\n");
++ goto error;
++ }
++
++ mtk_nfi_writew(host, INTR_AHB_DONE_EN, MTKSDG1_NFI_INTR_EN);
++ mtk_nfi_writel(host, lower_32_bits(dma_addr), MTKSDG1_NFI_STRADDR);
++
++ if (use_ecc) {
++ /* program ECC with sector count */
++ host->ecc.dec_sec = sectors;
++ init_completion(ecc);
++ mtk_ecc_writew(host, DEC_IRQEN, MTKSDG1_ECC_DECIRQ_EN);
++ }
++
++ init_completion(nfi);
++
++ /* start DMA */
++ reg = mtk_nfi_readl(host, MTKSDG1_NFI_CON) | CON_BRD;
++ mtk_nfi_writel(host, reg, MTKSDG1_NFI_CON);
++
++ rc = wait_for_completion_timeout(nfi, timeout);
++ if (!rc)
++ dev_warn(host->dev, "read ahb/dma done timeout\n");
++
++ /* DMA interrupt didn't trigger, check page done just in case */
++ rc = mtk_nfc_subpage_done(host, sectors);
++ if (rc < 0) {
++ dev_err(host->dev, "subpage done timeout\n");
++ goto error;
++ }
++
++ /* raw transfer successful */
++ bitflips = 0;
++
++ if (use_ecc) {
++ rc = wait_for_completion_timeout(ecc, timeout);
++ if (!rc) {
++ dev_err(host->dev, "ecc decode timeout\n");
++ host->ecc.dec_sec = 0;
++ bitflips = -ETIMEDOUT;
++ goto error;
++ }
++ bitflips = mtk_nfc_update_oob(mtd, chip, buf, sectors);
++ }
++
++error:
++ dma_unmap_single(host->dev, dma_addr, len, DMA_FROM_DEVICE);
++
++ if (use_ecc) {
++ /* make sure the ECC dec irq is disabled */
++ mtk_ecc_writew(host, 0, MTKSDG1_ECC_DECIRQ_EN);
++ mtk_ecc_decoder_idle(host);
++
++ /* disable ECC dec */
++ mtk_ecc_writew(host, 0, MTKSDG1_ECC_DECCON);
++ }
++
++ mtk_nfi_writel(host, 0, MTKSDG1_NFI_CON);
++
++ return bitflips;
++}
++
++static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
++ struct nand_chip *chip, uint32_t data_offs,
++ uint32_t readlen, uint8_t *bufpoi, int page)
++{
++ return mtk_nfc_read_subpage(mtd, chip, data_offs, readlen,
++ bufpoi, page, MTK_ECC_ON);
++}
++
++static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf, int oob_on, int page)
++{
++ return mtk_nfc_read_subpage_hwecc(mtd, chip, 0, mtd->writesize,
++ buf, page);
++}
++
++static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf, int oob_on, int page)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ uint8_t *src, *dst;
++ int i, ret;
++ size_t len;
++
++ dst = host->buffer;
++ memset(dst, 0xff, mtd->writesize + mtd->oobsize);
++ ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, dst, page, 1);
++ if (ret < 0)
++ return ret;
++
++ len = SECTOR_SIZE + mtd->oobsize / chip->ecc.steps;
++
++ /* copy to the output buffer */
++ for (i = 0; i < chip->ecc.steps; i++) {
++
++ /* copy sector data */
++ if (buf) {
++ src = host->buffer + i * len;
++ dst = buf + i * SECTOR_SIZE;
++ memcpy(dst, src, SECTOR_SIZE);
++ }
++
++ /* copy FDM data to OOB */
++ if (oob_on) {
++ src = host->buffer + i * len + SECTOR_SIZE;
++ dst = chip->oob_poi + i * MTKSDG1_NFI_FDM_REG_SIZE;
++ memcpy(dst, src, MTKSDG1_NFI_FDM_REG_SIZE);
++ }
++ }
++
++ return ret;
++}
++
++static void mtk_nfc_switch_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ uint8_t *buf)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ size_t spare;
++ u32 sectors;
++ u8 *bufpoi;
++ int len;
++
++ spare = mtd->oobsize / chip->ecc.steps;
++ sectors = mtd->writesize / (SECTOR_SIZE + spare);
++
++ /**
++ * MTK: DATA+oob1, DATA+oob2, DATA+oob3 ...
++ * LNX: DATA+OOB
++ */
++ /* point to the last oob_i from the NAND device*/
++ bufpoi = buf + mtd->writesize - (sectors * spare);
++ len = sizeof(host->fdm_reg);
++
++ /* copy NAND oob to private area */
++ memcpy(host->fdm_reg, bufpoi, len);
++
++ /* copy oob_poi to NAND */
++ memcpy(bufpoi, chip->oob_poi, len);
++
++ /* copy NAND oob to oob_poi */
++ memcpy(chip->oob_poi, host->fdm_reg, sizeof(host->fdm_reg));
++ memset(host->fdm_reg, 0x00, len);
++}
++
++static int mtk_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ struct mtk_nfc_host *host = nand_get_controller_data(chip);
++ u8 *buf = chip->buffers->databuf;
++ struct mtd_ecc_stats stats;
++ int ret;
++
++ stats = mtd->ecc_stats;
++
++ memset(buf, 0xff, mtd->writesize);
++ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
++
++ ret = mtk_nfc_read_page_hwecc(mtd, chip, buf, 1, page);
++
++ if (host->switch_oob)
++ mtk_nfc_switch_oob(mtd, chip, buf);
++
++ if (ret < mtd->bitflip_threshold)
++ mtd->ecc_stats.corrected = stats.corrected;
++
++ return ret;
++}
++
++static int mtk_nfc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip,
++ int page)
++{
++ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
++
++ return mtk_nfc_read_page_raw(mtd, chip, NULL, MTK_OOB_ON, page);
++}
++
++static inline void mtk_nfc_hw_init(struct mtk_nfc_host *host)
++{
++ mtk_nfi_writel(host, 0x10804211, MTKSDG1_NFI_ACCCON);
++ mtk_nfi_writew(host, 0xf1, MTKSDG1_NFI_CNRNB);
++ mtk_nfc_hw_reset(host);
++
++ /* clear interrupt */
++ mtk_nfi_readl(host, MTKSDG1_NFI_INTR_STA);
++ mtk_nfi_writel(host, 0, MTKSDG1_NFI_INTR_EN);
++
++ /* ECC encoder init */
++ mtk_ecc_encoder_idle(host);
++ mtk_ecc_writew(host, ENC_DE, MTKSDG1_ECC_ENCCON);
++
++ /* ECC decoder init */
++ mtk_ecc_decoder_idle(host);
++ mtk_ecc_writel(host, DEC_DE, MTKSDG1_ECC_DECCON);
++}
++
++static irqreturn_t mtk_nfi_irq(int irq, void *devid)
++{
++ struct mtk_nfc_host *host = devid;
++ u16 sta, ien;
++
++ sta = mtk_nfi_readw(host, MTKSDG1_NFI_INTR_STA);
++ ien = mtk_nfi_readw(host, MTKSDG1_NFI_INTR_EN);
++
++ if (!(sta & ien))
++ return IRQ_NONE;
++
++ mtk_nfi_writew(host, ~sta & ien, MTKSDG1_NFI_INTR_EN);
++ complete(&host->nfi.complete);
++
++ return IRQ_HANDLED;
++}
++
++static irqreturn_t mtk_ecc_irq(int irq, void *devid)
++{
++ struct mtk_nfc_host *host = devid;
++ u32 reg_val, mask;
++
++ reg_val = mtk_ecc_readw(host, MTKSDG1_ECC_DECIRQ_STA);
++ if (reg_val & DEC_IRQEN) {
++ if (host->ecc.dec_sec) {
++ mask = 1 << (host->ecc.dec_sec - 1);
++ reg_val = mtk_ecc_readw(host, MTKSDG1_ECC_DECDONE);
++ if (mask & reg_val) {
++ host->ecc.dec_sec = 0;
++ complete(&host->ecc.complete);
++ mtk_ecc_writew(host, 0, MTKSDG1_ECC_DECIRQ_EN);
++ }
++ } else
++ dev_warn(host->dev, "spurious DEC_IRQ\n");
++
++ return IRQ_HANDLED;
++ }
++
++ reg_val = mtk_ecc_readl(host, MTKSDG1_ECC_ENCIRQ_STA);
++ if (reg_val & ENC_IRQEN) {
++ complete(&host->ecc.complete);
++ mtk_ecc_writel(host, 0, MTKSDG1_ECC_ENCIRQ_EN);
++
++ return IRQ_HANDLED;
++ }
++
++ return IRQ_NONE;
++}
++
++static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
++{
++ int ret;
++
++ ret = clk_prepare_enable(clk->nfi_clk);
++ if (ret) {
++ dev_err(dev, "failed to enable nfi clk\n");
++ return ret;
++ }
++
++ ret = clk_prepare_enable(clk->nfiecc_clk);
++ if (ret) {
++ dev_err(dev, "failed to enable nfiecc clk\n");
++ goto out_nfiecc_clk_disable;
++ }
++
++ ret = clk_prepare_enable(clk->pad_clk);
++ if (ret) {
++ dev_err(dev, "failed to enable pad clk\n");
++ goto out_pad_clk_disable;
++ }
++
++ return 0;
++
++out_pad_clk_disable:
++ clk_disable_unprepare(clk->nfiecc_clk);
++
++out_nfiecc_clk_disable:
++ clk_disable_unprepare(clk->nfi_clk);
++
++ return ret;
++}
++
++static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
++{
++ clk_disable_unprepare(clk->nfi_clk);
++ clk_disable_unprepare(clk->nfiecc_clk);
++ clk_disable_unprepare(clk->pad_clk);
++}
++
++static int mtk_nfc_probe(struct platform_device *pdev)
++{
++ struct device *dev = &pdev->dev;
++ struct device_node *np = dev->of_node;
++ struct mtk_nfc_host *host;
++ struct nand_chip *chip;
++ struct mtd_info *mtd;
++ struct resource *res;
++ int ret, irq;
++ size_t len;
++
++ host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
++ if (!host)
++ return -ENOMEM;
++
++ chip = &host->chip;
++ mtd = nand_to_mtd(chip);
++ host->dev = dev;
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++ host->nfi.base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(host->nfi.base)) {
++ ret = PTR_ERR(host->nfi.base);
++ dev_err(dev, "no nfi base\n");
++ return ret;
++ }
++
++ res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
++ host->ecc.base = devm_ioremap_resource(dev, res);
++ if (IS_ERR(host->ecc.base)) {
++ ret = PTR_ERR(host->ecc.base);
++ dev_err(dev, "no ecc base\n");
++ return ret;
++ }
++
++ host->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
++ if (IS_ERR(host->clk.nfi_clk)) {
++ dev_err(dev, "no clk\n");
++ ret = PTR_ERR(host->clk.nfi_clk);
++ return ret;
++ }
++
++ host->clk.nfiecc_clk = devm_clk_get(dev, "nfiecc_clk");
++ if (IS_ERR(host->clk.nfiecc_clk)) {
++ dev_err(dev, "no ecc clk\n");
++ ret = PTR_ERR(host->clk.nfiecc_clk);
++ return ret;
++ }
++
++ host->clk.pad_clk = devm_clk_get(dev, "pad_clk");
++ if (IS_ERR(host->clk.pad_clk)) {
++ dev_err(dev, "no pad clk\n");
++ ret = PTR_ERR(host->clk.pad_clk);
++ return ret;
++ }
++
++ ret = mtk_nfc_enable_clk(dev, &host->clk);
++ if (ret)
++ return ret;
++
++ irq = platform_get_irq(pdev, 0);
++ if (irq < 0) {
++ dev_err(dev, "no nfi irq resource\n");
++ ret = -EINVAL;
++ goto clk_disable;
++ }
++
++ ret = devm_request_irq(dev, irq, mtk_nfi_irq, 0x0, MTK_IRQ_NFI, host);
++ if (ret) {
++ dev_err(dev, "failed to request nfi irq\n");
++ goto clk_disable;
++ }
++
++ irq = platform_get_irq(pdev, 1);
++ if (irq < 0) {
++ dev_err(dev, "no ecc irq resource\n");
++ ret = -EINVAL;
++ goto clk_disable;
++ }
++
++ ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, MTK_IRQ_ECC, host);
++ if (ret) {
++ dev_err(dev, "failed to request ecc irq\n");
++ goto clk_disable;
++ }
++
++ ret = dma_set_mask(dev, DMA_BIT_MASK(32));
++ if (ret) {
++ dev_err(dev, "failed to set dma mask\n");
++ goto clk_disable;
++ }
++
++ platform_set_drvdata(pdev, host);
++
++ mtd_set_of_node(mtd, np);
++ mtd->owner = THIS_MODULE;
++ mtd->dev.parent = dev;
++ mtd->name = MTK_NAME;
++
++ nand_set_controller_data(chip, host);
++ chip->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
++ chip->block_markbad = mtk_nfc_block_markbad;
++ chip->select_chip = mtk_nfc_select_chip;
++ chip->read_byte = mtk_nfc_read_byte;
++ chip->cmdfunc = mtk_nfc_cmdfunc;
++ chip->ecc.mode = NAND_ECC_HW;
++ chip->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
++ chip->ecc.write_page_raw = mtk_nfc_write_page_raw;
++ chip->ecc.write_page = mtk_nfc_write_page_hwecc;
++ chip->ecc.write_oob_raw = mtk_nfc_write_oob_raw;
++ chip->ecc.write_oob = mtk_nfc_write_oob;
++ chip->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
++ chip->ecc.read_page_raw = mtk_nfc_read_page_raw;
++ chip->ecc.read_oob_raw = mtk_nfc_read_oob_raw;
++ chip->ecc.read_page = mtk_nfc_read_page_hwecc;
++ chip->ecc.read_oob = mtk_nfc_read_oob;
++
++ mtk_nfc_hw_init(host);
++
++ ret = nand_scan_ident(mtd, MTK_NAND_MAX_CHIP, NULL);
++ if (ret) {
++ ret = -ENODEV;
++ goto clk_disable;
++ }
++
++ ret = mtk_nfc_hw_runtime_config(mtd);
++ if (ret < 0) {
++ dev_err(dev, "nand device not supported\n");
++ goto clk_disable;
++ }
++
++ len = mtd->writesize + mtd->oobsize;
++ host->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
++ if (!host->buffer) {
++ ret = -ENOMEM;
++ goto clk_disable;
++ }
++
++ /* required to create bbt table if not present */
++ host->switch_oob = true;
++ ret = nand_scan_tail(mtd);
++ if (ret) {
++ ret = -ENODEV;
++ goto clk_disable;
++ }
++ host->switch_oob = false;
++
++ ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0);
++ if (ret) {
++ dev_err(dev, "mtd parse partition error\n");
++ goto nand_free;
++ }
++
++ return 0;
++
++nand_free:
++ nand_release(mtd);
++
++clk_disable:
++ mtk_nfc_disable_clk(&host->clk);
++
++ return ret;
++}
++
++static int mtk_nfc_remove(struct platform_device *pdev)
++{
++ struct mtk_nfc_host *host = platform_get_drvdata(pdev);
++ struct mtd_info *mtd = nand_to_mtd(&host->chip);
++
++ nand_release(mtd);
++ mtk_nfc_disable_clk(&host->clk);
++
++ return 0;
++}
++
++#ifdef CONFIG_PM_SLEEP
++static int mtk_nfc_suspend(struct device *dev)
++{
++ struct mtk_nfc_host *host = dev_get_drvdata(dev);
++ struct mtk_nfc_saved_reg *reg = &host->saved_reg;
++
++ reg->nfi.emp_thresh = mtk_nfi_readl(host, MTKSDG1_NFI_EMPTY_THRESH);
++ reg->ecc.enccnfg = mtk_ecc_readl(host, MTKSDG1_ECC_ENCCNFG);
++ reg->ecc.deccnfg = mtk_ecc_readl(host, MTKSDG1_ECC_DECCNFG);
++ reg->nfi.pagefmt = mtk_nfi_readw(host, MTKSDG1_NFI_PAGEFMT);
++ reg->nfi.acccon = mtk_nfi_readl(host, MTKSDG1_NFI_ACCCON);
++ reg->nfi.cnrnb = mtk_nfi_readw(host, MTKSDG1_NFI_CNRNB);
++ reg->nfi.csel = mtk_nfi_readw(host, MTKSDG1_NFI_CSEL);
++
++ mtk_nfc_disable_clk(&host->clk);
++
++ return 0;
++}
++
++static int mtk_nfc_resume(struct device *dev)
++{
++ struct mtk_nfc_host *host = dev_get_drvdata(dev);
++ struct mtk_nfc_saved_reg *reg = &host->saved_reg;
++ struct nand_chip *chip = &host->chip;
++ struct mtd_info *mtd = nand_to_mtd(chip);
++ int ret;
++ u32 i;
++
++ udelay(200);
++
++ ret = mtk_nfc_enable_clk(dev, &host->clk);
++ if (ret)
++ return ret;
++
++ for (i = 0; i < chip->numchips; i++) {
++ chip->select_chip(mtd, i);
++ chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
++ }
++
++ mtk_nfi_writel(host, reg->nfi.emp_thresh, MTKSDG1_NFI_EMPTY_THRESH);
++ mtk_nfi_writew(host, reg->nfi.pagefmt, MTKSDG1_NFI_PAGEFMT);
++ mtk_ecc_writel(host, reg->ecc.enccnfg, MTKSDG1_ECC_ENCCNFG);
++ mtk_ecc_writel(host, reg->ecc.deccnfg, MTKSDG1_ECC_DECCNFG);
++ mtk_nfi_writel(host, reg->nfi.acccon, MTKSDG1_NFI_ACCCON);
++ mtk_nfi_writew(host, reg->nfi.cnrnb, MTKSDG1_NFI_CNRNB);
++ mtk_nfi_writew(host, reg->nfi.csel, MTKSDG1_NFI_CSEL);
++
++ return 0;
++}
++
++static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
++#endif
++
++static const struct of_device_id mtk_nfc_id_table[] = {
++ { .compatible = "mediatek,mt2701-nfc" },
++ {}
++};
++MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
++
++static struct platform_driver mtk_nfc_driver = {
++ .probe = mtk_nfc_probe,
++ .remove = mtk_nfc_remove,
++ .driver = {
++ .name = MTK_NAME,
++ .of_match_table = mtk_nfc_id_table,
++#ifdef CONFIG_PM_SLEEP
++ .pm = &mtk_nfc_pm_ops,
++#endif
++ },
++};
++
++module_platform_driver(mtk_nfc_driver);
++
++MODULE_LICENSE("GPL");
++MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
++MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
++
+diff --git a/drivers/mtd/nand/mtksdg1_nand_ecc.h b/drivers/mtd/nand/mtksdg1_nand_ecc.h
+new file mode 100644
+index 0000000..d90b196
+--- /dev/null
++++ b/drivers/mtd/nand/mtksdg1_nand_ecc.h
+@@ -0,0 +1,75 @@
++/*
++ * MTK smart device ECC engine register.
++ * Copyright (C) 2015-2016 MediaTek Inc.
++ * Author: Xiaolei.Li <xiaolei.li@mediatek.com>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#ifndef MTKSDG1_NAND_ECC_H
++#define MTKSDG1_NAND_ECC_H
++
++/* ECC engine register definition */
++#define MTKSDG1_ECC_ENCCON (0x00)
++#define ENC_EN (1)
++#define ENC_DE (0)
++
++#define MTKSDG1_ECC_ENCCNFG (0x04)
++#define ECC_CNFG_4BIT (0)
++#define ECC_CNFG_12BIT (4)
++#define ECC_NFI_MODE BIT(5)
++#define ECC_DMA_MODE (0)
++#define ECC_ENC_MODE_MASK (0x3 << 5)
++#define ECC_MS_SHIFT (16)
++
++#define MTKSDG1_ECC_ENCDIADDR (0x08)
++
++#define MTKSDG1_ECC_ENCIDLE (0x0C)
++#define ENC_IDLE BIT(0)
++
++#define MTKSDG1_ECC_ENCPAR0 (0x10)
++#define MTKSDG1_ECC_ENCSTA (0x7C)
++
++#define MTKSDG1_ECC_ENCIRQ_EN (0x80)
++#define ENC_IRQEN BIT(0)
++
++#define MTKSDG1_ECC_ENCIRQ_STA (0x84)
++
++#define MTKSDG1_ECC_DECCON (0x100)
++#define DEC_EN (1)
++#define DEC_DE (0)
++
++#define MTKSDG1_ECC_DECCNFG (0x104)
++#define DEC_EMPTY_EN BIT(31)
++#define DEC_CNFG_FER (0x1 << 12)
++#define DEC_CNFG_EL (0x2 << 12)
++#define DEC_CNFG_CORRECT (0x3 << 12)
++
++#define MTKSDG1_ECC_DECIDLE (0x10C)
++#define DEC_IDLE BIT(0)
++
++#define MTKSDG1_ECC_DECFER (0x110)
++
++#define MTKSDG1_ECC_DECENUM0 (0x114)
++#define ERR_MASK (0x3f)
++
++#define MTKSDG1_ECC_DECDONE (0x124)
++
++#define MTKSDG1_ECC_DECEL0 (0x128)
++
++#define MTKSDG1_ECC_DECIRQ_EN (0x200)
++#define DEC_IRQEN BIT(0)
++
++#define MTKSDG1_ECC_DECIRQ_STA (0x204)
++
++#define MTKSDG1_ECC_DECFSM (0x208)
++#define DECFSM_MASK (0x7f0f0f0f)
++#define DECFSM_IDLE (0x01010101)
++#endif
+diff --git a/drivers/mtd/nand/mtksdg1_nand_nfi.h b/drivers/mtd/nand/mtksdg1_nand_nfi.h
+new file mode 100644
+index 0000000..a9aa6f6
+--- /dev/null
++++ b/drivers/mtd/nand/mtksdg1_nand_nfi.h
+@@ -0,0 +1,119 @@
++/*
++ * MTK smart device NAND Flash controller register.
++ * Copyright (C) 2015-2016 MediaTek Inc.
++ * Author: Xiaolei.Li <xiaolei.li@mediatek.com>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ *
++ * This program is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
++ * GNU General Public License for more details.
++ */
++
++#ifndef MTKSDG1_NAND_NFI_H
++#define MTKSDG1_NAND_NFI_H
++
++/* NAND controller register definition */
++#define MTKSDG1_NFI_CNFG (0x00)
++#define CNFG_AHB BIT(0)
++#define CNFG_READ_EN BIT(1)
++#define CNFG_DMA_BURST_EN BIT(2)
++#define CNFG_BYTE_RW BIT(6)
++#define CNFG_HW_ECC_EN BIT(8)
++#define CNFG_AUTO_FMT_EN BIT(9)
++#define CNFG_OP_IDLE (0 << 12)
++#define CNFG_OP_READ (1 << 12)
++#define CNFG_OP_SRD (2 << 12)
++#define CNFG_OP_PRGM (3 << 12)
++#define CNFG_OP_ERASE (4 << 12)
++#define CNFG_OP_RESET (5 << 12)
++#define CNFG_OP_CUST (6 << 12)
++
++#define MTKSDG1_NFI_PAGEFMT (0x04)
++#define PAGEFMT_FDM_ECC_SHIFT (12)
++#define PAGEFMT_FDM_SHIFT (8)
++#define PAGEFMT_SPARE_16 (0)
++#define PAGEFMT_SPARE_32 (4)
++#define PAGEFMT_SPARE_SHIFT (4)
++#define PAGEFMT_SEC_SEL_512 BIT(2)
++#define PAGEFMT_512_2K (0)
++#define PAGEFMT_2K_4K (1)
++#define PAGEFMT_4K_8K (2)
++
++/* NFI control */
++#define MTKSDG1_NFI_CON (0x08)
++#define CON_FIFO_FLUSH BIT(0)
++#define CON_NFI_RST BIT(1)
++#define CON_SRD BIT(4) /* single read */
++#define CON_BRD BIT(8) /* burst read */
++#define CON_BWR BIT(9) /* burst write */
++#define CON_SEC_SHIFT (12)
++
++/* Timming control register */
++#define MTKSDG1_NFI_ACCCON (0x0C)
++
++#define MTKSDG1_NFI_INTR_EN (0x10)
++#define INTR_RD_DONE_EN BIT(0)
++#define INTR_WR_DONE_EN BIT(1)
++#define INTR_RST_DONE_EN BIT(2)
++#define INTR_ERS_DONE_EN BIT(3)
++#define INTR_BUSY_RT_EN BIT(4)
++#define INTR_AHB_DONE_EN BIT(6)
++
++#define MTKSDG1_NFI_INTR_STA (0x14)
++
++#define MTKSDG1_NFI_CMD (0x20)
++
++#define MTKSDG1_NFI_ADDRNOB (0x30)
++#define ADDR_ROW_NOB_SHIFT (4)
++
++#define MTKSDG1_NFI_COLADDR (0x34)
++#define MTKSDG1_NFI_ROWADDR (0x38)
++#define MTKSDG1_NFI_STRDATA (0x40)
++#define MTKSDG1_NFI_CNRNB (0x44)
++#define MTKSDG1_NFI_DATAW (0x50)
++#define MTKSDG1_NFI_DATAR (0x54)
++#define MTKSDG1_NFI_PIO_DIRDY (0x58)
++#define PIO_DI_RDY (0x01)
++
++/* NFI state*/
++#define MTKSDG1_NFI_STA (0x60)
++#define STA_CMD BIT(0)
++#define STA_ADDR BIT(1)
++#define STA_DATAR BIT(2)
++#define STA_DATAW BIT(3)
++#define STA_EMP_PAGE BIT(12)
++
++#define MTKSDG1_NFI_FIFOSTA (0x64)
++
++#define MTKSDG1_NFI_ADDRCNTR (0x70)
++#define CNTR_MASK GENMASK(16, 12)
++
++#define MTKSDG1_NFI_STRADDR (0x80)
++#define MTKSDG1_NFI_BYTELEN (0x84)
++#define MTKSDG1_NFI_CSEL (0x90)
++#define MTKSDG1_NFI_IOCON (0x94)
++
++/* FDM data for sector: FDM0[L,H] - FDMF[L,H] */
++#define MTKSDG1_NFI_FDM_MAX_SEC (0x10)
++#define MTKSDG1_NFI_FDM_REG_SIZE (8)
++#define MTKSDG1_NFI_FDM0L (0xA0)
++#define MTKSDG1_NFI_FDM0M (0xA4)
++
++
++#define MTKSDG1_NFI_FIFODATA0 (0x190)
++#define MTKSDG1_NFI_DEBUG_CON1 (0x220)
++#define MTKSDG1_NFI_MASTER_STA (0x224)
++#define MASTER_STA_MASK (0x0FFF)
++
++#define MTKSDG1_NFI_RANDOM_CNFG (0x238)
++#define MTKSDG1_NFI_EMPTY_THRESH (0x23C)
++#define MTKSDG1_NFI_NAND_TYPE (0x240)
++#define MTKSDG1_NFI_ACCCON1 (0x244)
++#define MTKSDG1_NFI_DELAY_CTRL (0x248)
++
++#endif
++
+--
+1.7.10.4
+