summaryrefslogtreecommitdiff
path: root/target/linux/ramips/base-files/etc/diag.sh
Commit message (Collapse)AuthorAgeFilesLines
* ramips: Add support for Phicomm K2GChuanhong Guo2018-06-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | Specification: - SoC: MediaTek MT7620A - Flash: 8 MB - RAM: 64 MB - Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5) - Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped with external PA. - UART: 1 x UART on PCB - 57600 8N1 Flash instruction: The U-boot is based on Ralink SDK so we can flash the firmware using UART: 1. Configure PC with a static IP address and setup an TFTP server. 2. Put the firmware into the tftp directory. 3. Connect the UART line as described on the PCB. 4. Power up the device and press 2, follow the instruction to set device and tftp server IP address and input the firmware file name. U-boot will then load the firmware and write it into the flash. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
* ramips: Add support for Mikrotik RouterBOARD RBM33gTobias Schramm2018-06-211-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for the Mikrotik RouterBOARD RBM33g. =Hardware= The RBM33g is a mt7621 based device featuring three gigabit ports, 2 miniPCIe slots with sim card sockets, 1 M.2 slot, 1 USB 3.0 port and a male onboard RS-232 serial port. Additionally there are a lot of accessible GPIO ports and additional buses like i2c, mdio, spi and uart. ==Switch== The three Ethernet ports are all connected to the internal switch of the mt7621 SoC: port 0: Ethernet Port next to barrel jack with PoE printed on it port 1: Innermost Ethernet Port on opposite side of RS-232 port port 2: Outermost Ethernet Port on opposite side of RS-232 port port 6: CPU ==Flash== The device has two spi flash chips. The first flash chips is rather small (512 kB), connected to CS0 by default and contains only the RouterBOOT bootloader and some factory information (e.g. mac address). The second chip has a size of 16 MB, is by default connected to CS1 and contains the firmware image. ==PCIe== The board features three PCIe-enabled slots. Two of them are miniPCIe slots (PCIe0, PCIe1) and one is a M.2 (Key M) slot (PCIe2). Each of the miniPCIe slots is connected to a dedicated mini SIM socket on the back of the board. Power to all three PCIe-enabled slots is controlled via GPIOs on the mt7621 SoC: PCIe0: GPIO9 PCIe1: GPIO10 PCIe2: GPIO11 ==USB== The board has one external USB 3.0 port at the rear. Additionally PCIe port 0 has a permanently enabled USB interface. PCIe slot 1 shares its USB interface with the rear USB port. Thus only either the rear USB port or the USB interface of PCIe slot 1 can be active at the same time. The jumper next to the rear USB port controls which one is active: open: USB on PCIe 1 is active closed: USB on rear USB port is active ==Power== The board can accept both, passive PoE and external power via a 2.1 mm barrel jack. The input voltage range is 11-32 V. =Installation= ==Prerequisites== A USB -> RS-232 Adapter and a null modem cable are required for installation. To install an OpenWRT image to the device two components must be built: 1. A openwrt initramfs image 2. A openwrt sysupgrade image ===initramfs & sysupgrade image=== Select target devices "Mikrotik RBM33G" in openwrt menuconfig and build the images. This will create the images "openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" and "openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" in the output directory. ==Installing== **Make sure to back up your RouterOS license in case you do ever want to go back to RouterOS using "/system license output" and back up the created license file.** Serial settings: 115200 8N1 The installation is a two-step process. First the "openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" must be booted via tftp: 1. Set up a dhcp server that points the bootfile to tftp server serving the "openwrt-ramips-mt7621-mikrotik_rbm33g-initramfs-kernel.bin" initramfs image 2. Connect to WAN port (left side, next to sys-LED and power indicator) 3. Connect to serial port of board 4. Power on board and enter RouterBOOT setup menu 5. Set boot device to "boot over ethernet" 6. Set boot protocol to "dhcp protocol" (can be omitted if DHCP server allows dynamic bootp) 6. Save config 7. Wait for board to boot via Ethernet On the serial port you should now be presented with the OpenWRT boot log. The next steps will install OpenWRT persistently. 1. Copy "openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" to the device using scp. 2. Write openwrt to flash using "sysupgrade openwrt-ramips-mt7621-mikrotik_rbm33g-squashfs-sysupgrade.bin" Once the flashing completes reboot the router and let it boot from flash. It should boot straight to OpenWRT. Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
* ramips: add support for ELECOM WRC-1167GHBK2-SINAGAKI Hiroshi2018-06-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ELECOM WRC-1167GHBK2-S is a 2.4/5 GHz band 11ac router, based on MediaTek MT7621A. Specification: - MT7621A (2-Cores, 4-Threads) - 128 MB of RAM (DDR3) - 16 MB of Flash (SPI) - 2T2R 2.4/5 GHz - MediaTek MT7615D - 5x 10/100/1000 Mbps Ethernet - 6x LEDs, 2x keys - UART header on PCB - Vcc, GND, TX, RX from ethernet port side - baudrate: 57600 bps Flash instruction using factory image: 1. Rename the factory image to "wrc-1167ghbk2-s_v0.00.bin" 2. Connect the computer to the LAN port of WRC-1167GHBK2-S 3. Connect power cable to WRC-1167GHBK2-S and turn on it 4. Access to "http://192.168.2.1/details.html" and open firmware update page ("手動更新(アップデート)") 5. Select the factory image and click apply ("適用") button 6. Wait ~150 seconds to complete flashing Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ramips: add support for I-O DATA WN-GX300GRINAGAKI Hiroshi2018-06-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I-O DATA WN-GX300GR is a 2.4 GHz band 11n router, based on MediaTek MT7621S. Specification: - MT7621S (1-Core, 2-Threads) - 64 MB of RAM - 8 MB of Flash (SPI) - 2T2R 2.4 GHz - 5x 10/100/1000 Mbps Ethernet - 2x LEDs, 4x keys (2x buttons, 1x slide switch) - UART header on PCB - Vcc, GND, TX, RX from ethernet port side - baudrate: 115200 bps (U-Boot, OpenWrt) Flash instruction using initramfs image: 1. Connect serial cable to UART header 2. Rename OpenWrt initramfs image for WN-GX300GR to "uImageWN-GX300GR" and place it in the TFTP directory 3. Set the IP address of the computer to 192.168.99.8, connect to the LAN port of WN-GX300GR, and start the TFTP server on the computer 4. Connect power cable to WN-GX300GR and turn on the router 5. Press "1" key on the serial console to interrupt boot process on U-Boot, press Enter key 3 times and start firmware download via TFTP 6. WN-GX300GR downloads initramfs image and boot with it 7. On the initramfs image, execute "mtd erase firmware" to erase stock firmware and execute sysupgrade with sysupgrade image for WN-GX300GR 8. Wait ~150 seconds to complete flasing Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
* ramips: add support for TP-Link TL-WR842N v5Maxim Anisimov2018-06-161-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link TL-WR842N v5 are simple N300 router with 5-port FE switch and non-detachable antennas. Its very similar to TP-Link TL-MR3420 V5. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - USB 2.0 Port - UART (J1) header on PCB (115200 8n1) - 7x LED, 2x button, power input switch Flash instruction: The only way to flash OpenWrt image in wr842nv5 is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.225/24 and tftp server. 2. Rename "lede-ramips-mt7628-tplink_tl-wr842n-v5-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
* ramips: Use generic board detect for GnuBee devicesRosen Penev2018-05-301-1/+1
| | | | | | | | | | | | This is a port of an old commit from mkresin's tree: 09260cdf3e9332978c2a474a58e93a6f2b55f4a8 This has the potential to break sysupgrade but it should be fine as there is no stable release of LEDE or OpenWrt that support these devices. Signed-off-by: Rosen Penev <rosenp@gmail.com> (cherry picked from commit 9685f3978795727ac99d5d20a4af16c808b1e24b)
* ramips: add support for mqmaker witi 512mb versionDavide Ammirata2018-05-071-1/+2
| | | | | | | | | | | | Splitted out the dts file and create the new dts for the 256 MByte RAM and the 512 MB RAM version. Migrate both versions to the common board detection. The install the 512 MByte Version on a board running the 256 MByte image, a forceful sysupgrade with the -F flag is required. Signed-off-by: Davide Ammirata <list@davidea.it>
* ramips: add support for Zorlik ZL5900V2Vianney le Clément de Saint-Marcq2018-04-081-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | The Zorlik ZL5900V2 is an unbranded clone of HAME MPR-A1/2. It is marketed as "3G Wi-Fi Router". Only the PCB has the model name "ZL5900V2" printed on it. Specifications: - Ralink RT5350F (360 MHz) - 32 MB RAM - 8 MB Flash - 802.11bgn 1T1R - 1x 10/100 Mbps Ethernet - 1x USB 2.0 (Type-A) - 5200 mAh battery The ramdisk image (not the squashfs sysupgrade image) can be flashed through the web interface (named "GoAhead") of the factory firmware. However, as the factory firmware does not cleanly unmount the rootfs before flashing, the device may hang instead of rebooting after successful write. Power cycling the device gets you in OpenWrt where the squashfs image may be flashed through normal sysupgrade procedure. Signed-off-by: Vianney le Clément de Saint-Marcq <code@quartic.eu>
* ramips: add support for the YouHua WR1200JSZheng Qian2018-04-081-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | YouHua tech WR1200JS is an AC1200 router with 5 1Gb ports (4 Lan, 1 Wan) and 1 USB 2.0 port. Devices is base on MediaTek MT7621AT + MT7603E + MT7612E. Specification: - MT7612AT (880 MHz) - 128 MB of RAM - 16 MB of FLASH (SPI NOR) - 5x 10/100/1000 Mbps Ethernet - 2T2R 2.4 GHz (MT7603E) - 2T2R 5 GHz (MT7612E) - 1x USB 2.0 - 10x LED (Power 2G 5G WPS Internet LAN4-1 USB) - 3x button (reset wifi wps) - DC jack for main power input (12V) Installation: 1.) Press reset key 5 sec and restore the factory default 2.) Login webUI and change username to root and set a new password 3.) Visit http://192.168.2.254/adm/telnetd.shtml and turn on the telnet service 4.) Copy openwrt-ramips-mt7621-youhua_wr1200js-initramfs-kernel.bin to a usb pan 5.) Plug the usb pan to the router, telnet to the router and login by root 6.) cd /media/sda1 and check the initramfs file is there 7.) exec command: mtd_write write openwrt-ramips-mt7621-youhua_wr1200js-initramfs-kernel.bin Kernel 8.) reboot and visit 192.168.1.1 Signed-off-by: Zheng Qian <sotux82@gmail.com>
* ramips: add support for DLINK DWR-921-C1Giuseppe Lippolis2018-04-041-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The DWR-921-C1 Wireless Routers with LTE embedded modem is based on the MT7620N SoC. Specification: * MediaTek MT7620N (580 Mhz) * 64 MB of RAM * 16 MB of FLASH * 802.11bgn radio * 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN) * 2x external, detachable (LTE) antennas * UART header on PCB (57600 8n1) * 6x LED (GPIO-controlled) * 1x bi-color Signal Strength LED (GPIO-controlled) * 2x button * JBOOT bootloader The status led has been assigned to the dwr-921-c1:green:sigstrength (lte signal strength) led. At the end of the boot it is switched off and is available for lte operation. Work correctly also during sysupgrade operation. Installation: Apply factory image via d-link http web-gui. How to revert to OEM firmware: 1.) Push the reset button and turn on the power. Wait until LED start blinking (~10sec.) 2.) Upload original factory image via JBOOT http (IP: 192.168.123.254) 3.) If http doesn't work, it can be done with curl command: curl -F FN=@XXXXX.bin http://192.168.123.254/upg where XXXXX.bin is name of firmware file. Signed-off-by: Giuseppe Lippolis <giu.lippolis@gmail.com>
* ramips: add support for TP-Link TL-WR902AC v3Peter Lundkvist2018-03-181-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link TL-WR902AC v3 is a pocket-size dual-band (AC750) router based on MediaTek MT7628N + MT7650E. Specification: - MediaTek MT7628N/N (580 Mhz) - 64 MB of RAM - 8 MB of FLASH - 2T2R 2.4 GHz and 1T1R 5 GHz - 1x 10/100 Mbps Ethernet * MT7650 ac chip isn't not supported by LEDE/OpenWrt at the moment. Therefore 5Ghz won' work. Flash instruction: The only way to flash LEDE image in TL-WR902AC v3 is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "openwrt-ramips-mt76x8-tplink_tl-wr902ac-v3-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with the LAN port, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. Signed-off-by: Peter Lundkvist <peter.lundkvist@gmail.com> [drop p2led_an pinmux, this pin isn't used as gpio, fix whitespace issues] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for D-Link DWR-116-A1/2Pawel Dembicki2018-03-181-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | The DWR-116-A1/2 Wireless Router is based on the MT7620N SoC. Specification: MediaTek MT7620N (580 Mhz) 32 MB of RAM 8 MB of FLASH 802.11bgn radio 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN) 2x external, non-detachable antennas UART (J1 in A1, JP1 in A2) header on PCB (57600 8n1) 6x LED (GPIO-controlled), 2x button JBOOT bootloader Known issues: WAN LED is drived by uartl tx pin. I decide to use this pin as uartlite tx pin. Installation: Apply factory image via http web-gui. Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
* ramips: enable power LED and second uart on GL-MT300N-V2Benjamin Valentin2018-02-231-1/+1
| | | | | | | | | The device has a second uart accessible via pin headers, so enable it. There is also a green power led which was not enabled previously. Enable it too and use it as status LED. Signed-off-by: Benjamin Valentin <benjamin.valentin@volatiles.de>
* ramips: add support for ALFA Network AWUSFREE1Piotr Dymacz2018-02-221-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | ALFA Network AWUSFREE1 is an USB Wi-Fi N300 adapter based on MT7628. Specification: - MT7628AN (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH (SPI NOR) - 2T2R 2.4 GHz (MT7628) with external FEM (RFFM4203) - 2x detachable antennas (RP-SMA) - ASIX AX88772 USB to Ethernet bridge (connected with MT7628 PHY0) - 4x LED (2 driven by GPIO) - 1x button (reset) - 1x mini USB for host and main power input - UART header on PCB Flash instruction: You can use sysupgrade image directly in vendor firmware which is based on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot: 1. Power device with reset button pressed and release it after ~5 sec. 2. Setup static IP 192.168.1.2/4 on your PC. 3. Go to 192.168.1.1 in browser and upload "sysupgrade" image. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ramips: improve GnuBee Personal Cloud Two supportMathias Kresin2018-02-201-1/+1
| | | | | | | | | | | | | | | | | | Use the generic board detection for the GnuBee Personal Cloud Two instead of the target specific one as all recent additions are doing. Fixup the pinmux to set all pins used as GPIO to the function GPIO. Request pins where used. Drop the i2c from the dts. There is nothing connected. While at it fix an indentation issue and use references instead of duplicating the whole node path. Use the same switch config as for the GB-PC1 and drop the led trigger for the not supported IP1001 phy connected to second rgmii. Fixes: c60a21532bc9 ("ramips: Add support for the GnuBee Personal Cloud Two") Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: use generic board detection for D-Link DAP-1522 A1Mathias Kresin2018-02-201-1/+1
| | | | | | | Use the generic board detection for the D-Link DAP-1522 A1 instead of the target specific one as all recent additions are doing. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for D-Link DAP-1522 A1George Hopkins2018-02-131-6/+7
| | | | | | | | | | | | | | | | | | D-Link DAP-1522 is a wireless bridge/access point with 4 LAN ports and a dual-band wireless chipset. Specifications: - Ralink RT2880 - 32 MB of RAM - 4 MB of Flash - 4x 10/100/1000 Mbps Ethernet (RTL8366SR) - 802.11abgn (RT2850) Flash Instructions: 1. Download lede-ramips-rt288x-dap-1522-a1-squashfs-factory.bin 2. Open the web interface and upload the image Signed-off-by: George Hopkins <george-hopkins@null.net>
* ramips: Add support for the GnuBee Personal Cloud TwoRosen Penev2018-02-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The GnuBee Personal Cloud Two crowdfunded on https://www.crowdsupply.com It is a low-cost, low-power, network-attached storage device. Specifications: - SoC: MediaTek MT7621AT - RAM: DDR3 512 MB - Flash: 32 MB - Six SATA ports for 3.5" Drives - One SDcard - One USB 3.0 - Two USB 2.0 - Gigabit Ethernet: Three Ports - UART 3.5mm Audio Jack or 3 pin header - 57600 8N1 - Three GPIOs available on a pin header Flash instructions: The GnuBee Personal Cloud Two ships with libreCMC installed. libreCMC is a Free Software Foundation approved fork of LEDE/OpenWrt. As such one can upgrade using the webinterface or sysupgrade. Das U-Boot has multiple options for recovery or updates including : - USB - http - tftp Errata: - While there are three ethernet ports, the third requires support for the second GMAC. This will come in kernel 4.14. - The first hard drive slot has a clearance issue with the two fan headers. Workaround is to pull the headers out and connect the pins to jumper wires. - Using this device as a NAS is problematic with the 4.9 kernel as many /dev/sdX reads throw silent errors. The current theory behind this is some kind of unhandled DMA mapping error in the kernel. This is not an issue with kernel 4.4. Signed-off-by: L. D. Pinney <ldpinney@gmail.com> Signed-off-by: Rosen Penev <rosenp@gmail.com>
* ramips: add support for TP-Link Archer C50 v3Henryk Heisig2018-02-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link Archer C50 v3 is a router with 5-port FE switch and non-detachable antennas. It's based on MediaTek MT7628N+MT7612E. Specification: - MediaTek MT7628N/N (580 Mhz) - 64 MB of RAM - 8 MB of FLASH - 2T2R 2.4 GHz and 2T2R 5 GHz - 5x 10/100 Mbps Ethernet - 4x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 7x LED (GPIO-controlled*), 2x button, power switch * WAN LED in this devices is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Flash instruction: The only way to flash LEDE image in ArcherC50v3 is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "openwrt-ramips-mt7628-ArcherC50v3-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. Signed-off-by: Henryk Heisig <hyniu@o2.pl>
* ramips: various fixes for zbt-we1226Daniel Golle2018-02-061-2/+2
| | | | | | | | | | | Convert userspace code to use generic device-tree compatible board detection method. Users of the existing code will have to use sysupgrade -F once to switch to the new generic board naming. Properly setup pinctrl fixing the switch port LEDs. Fixes commit 9c4fe103cb (ramips: add support for ZBT-WE1226) Reported-by: Mathias Kresin <dev@kresin.me> Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ramips: add support for Widora Neo 32MB flash revisionJackson Ming Hu2018-01-231-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Widora has updated their Widora Neo board recently. The new model uses 32MB WSON-8 factor SPI flash instead of the original 16MB SOP-8 factor SPI flash. All the other hardware components are the same as the first revision. Detailed hardware specs listed below: CPU: MTK MT7688AN RAM: 128MB DDR2 ROM: 32MB WSON-8 factor SPI Flash (Winbond) WiFi: Built-in 802.11n 150Mbps? Ethernet: 10/100Mbps x1 Audio codec: WM8960 Other IO: USB OTG; USB Power+Serial (CP2104); 3x LEDs (Power, LAN, WiFi); 2x Keys (WPS, CPU Reset) 1x Audio In/Out 1x IPEX antenna port 1x Micro SD slot Signed-off-by: Jackson Ming Hu <huming2207@gmail.com> Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add flash size postfix to Widora neoMathias Kresin2018-01-231-1/+1
| | | | | | | | | | Rename the Widora neo by adding a flash size prefix. Move the common parts into a dtsi to be prepare everything for upcomming support of the 32MB version. Migrate the Widora neo to the generic board detection as well. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for ZBT-WE1226Daniel Golle2018-01-231-0/+3
| | | | | | | | MT7628NN (580MHz), 8MB SPI NOR, 64MB DDR2 RAM Everything except for the switch LEDs works great. Signed-off-by: Daniel Golle <daniel@makrotopia.org>
* ramips: use blue status LED for Xiaomi Router 3GDaniel Gimpelevich2018-01-151-3/+1
| | | | | | | | | | | | The blue LED is what other firmwares use for this device, and it's a lot easier on the eyes than its shade of yellow, which implies an error condition. Signed-off-by: Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us> [merge into existing $boardname:blue:status block] Signed-off-by: Mathias Kresin <dev@kresin.me> Acked-by: Piotr Dymacz <pepe2k@gmail.com> Acked-by: Cezary Jackiewicz <cezary@eko.one.pl>
* ramips: add support for TP-Link Archer C20 v4Maxim Anisimov2018-01-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link Archer C20 v4 is a router with 5-port FE switch and non-detachable antennas. It's based on MediaTek MT7628N+MT7610EN. Specification: - MediaTek MT7628N/N (580 Mhz) - 64 MB of RAM - 8 MB of FLASH - 2T2R 2.4 GHz and 1T1R 5 GHz - 5x 10/100 Mbps Ethernet - 3x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 7x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in this devices is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. * MT7610EN ac chip isn't not supported by LEDE. Therefore 5Ghz won't work. Flash instruction: The only way to flash LEDE image in ArcherC20v4 is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "openwrt-ramips-mt7628-ArcherC20v4-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
* ramips: rename TP-Link Archer C20 to TP-Link Archer C20 v1Maxim Anisimov2018-01-151-1/+1
| | | | | | | | This changes device name from "TP-Link Archer C20" to "TP-Link Archer C20 v1" because of TPLINK released new TP-Link Archer C20 v4. Additionally migration to the generic board detection has been made. Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
* ramips: add support for ALFA Network AC1200RMPiotr Dymacz2018-01-151-6/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | ALFA Network AC1200RM is an AC1200 router, with 5-port FE switch and USB 2.0 port. Device is based on MediaTek MT7620A + MT7612EN. Specification: - MT7620A (580 MHz) - 64 MB of RAM (DDR2) - 16 MB of FLASH (SPI NOR) - 5x 10/100 Mbps Ethernet with passive PoE output in WAN and LAN4 - 2T2R 2.4 GHz (MT7620A) - 2T2R 5 GHz (MT7612EN) - 1x USB 2.0 - 9x LED (8 driven by GPIO) - 1x button (reset) - DC jack for main power input (12-24 V) - 2x UART, I2C, I2S and LED headers Flash instruction (do it under U-Boot, using UART and TFTP server): Select option "2: Load system code then write to Flash via TFTP" and use "sysupgrade" image. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
* ramips: firewrt: indicate boot status via LEDMathias Kresin2018-01-091-0/+1
| | | | | | | Add the Firefly FireWRT gree power LED to diag.sh to indicate the boot status via the power LED. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: fix widora neo diag ledMathias Kresin2017-12-291-2/+4
| | | | | | | The diag LED is named widora:orange:wifi and can't be derived from the boardname. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: fix Linkit smart 7688 supportMathias Kresin2017-12-231-1/+1
| | | | | | | | | | Use a more appropriate compatible string. Fix the wireless led GPIO and add the default wireless trigger. Use the wireless LED for boot state indication as well. Remove the GPIO pinmux for pins not exposed on the board. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for TP-Link TL-MR3420 v5Henryk Heisig2017-12-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link TL-MR3420 v5 are simple N300 router with 5-port FE switch and non-detachable antennas. Its very similar to TP-Link TL-WR841N V13. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - USB 2.0 Port - UART (J1) header on PCB (115200 8n1) - 8x LED, 2x button, power input switch Flash instruction: The only way to flash LEDE image in mr3420v5 is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.225/24 and tftp server. 2. Rename "lede-ramips-mt7628-tplink_tl-mr3420-v5-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. Signed-off-by: Henryk Heisig <hyniu@o2.pl>
* ramips: add support for newifi d2Jackson Ming Hu2017-12-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | Previously Newifi D2 could only use PandoraBox M1's firmware. It works fine, but LED GPIO is different. As a result, a separated DTS file for this device should be implemented. Hardware spec: * CPU: MTK MT7621A * RAM: 512MB * ROM: 32MB SPI Flash * WiFi: MTK MT7603+MT7612 * Button: 2 buttons (reset, wps) * LED: 3 single-color LEDs (USB, WiFi 2.4GHz, WiFi 5GHz) & 2 dual-color LEDs (Power, Internet) * Ethernet: 5 ports, 4 LAN + 1 WAN Installation method: Same as Newifi D1, users may need to request unlock code from the device manufacturer. Otherwise, a SPI flash programmer may be necessary to get the firmware flashed. After the device is unlocked, press and hold reset button before power cable plugs in. Then go to http://192.168.1.1 to upload and flash the firmware package. Signed-off-by: Jackson Ming Hu <huming2207@gmail.com>
* ramips: add support for Vonets VAR11N-300Andrew Crawley2017-12-211-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The VAR11N-300 is a tiny wireless-N device with a hardwired Ethernet cable, one extra Ethernet port, and an internal antenna, based on the MediaTek MT7620n chipset. Specs: - MT7620n WiSoC @ 600MHz - 32 MB SDRAM - 4 MB SPI flash - 2T2R 2.4GHz WiFi-N - 1 attached 10/100 Ethernet cable (LAN) - 1 10/100 Ethernet port (WAN) - 1 attached USB / barrel 5vdc power cable - 5 LEDs (see notes below) - 1 reset button - 1 UART (3 pads on board) Installation: The stock firmware does not support uploading new firmware directly, only checking the manufacturer's site for updates. This process may be possible to spoof, but the update check uses some kind of homebrew encryption that I didn't investigate. Instead, you can install via a backdoor: 1. Set up a TFTP server to serve the firmware binary (lede-ramips-mt7620-var11n-300-squashfs-sysupgrade.bin) 2. Factory reset the device by holding the reset button for a few seconds. 3. Open the web interface (default IP: 192.168.253.254) 4. Log in with the "super admin" credentials: username `vonets`, password `vonets26642519`. 5. On the "Operative Status" page, click the text "System Uptime", then quickly click the uptime value. 6. If successful, an alert dialog will appear reading "Ated start", and the device will now accept telnet connections. If the alert does not appear, repeat step 5 until it works (the timing is a bit tricky). 7. Telnet to the device using credentials "admin / admin" 8. Retrieve the firmware binary from the tftp server: `tftp -l lede.bin -r lede-ramips-mt7620-var11n-300-squashfs-sysupgrade.bin -g <tftp-server-ip>` 9. Write the firmware to flash: `mtd_write write lede.bin /dev/mtd4` 10. Reboot Tested: - LAN / WAN ethernet - WiFi - LAN / WAN / status LED GPIOs (see notes below) - Reset button - Sysupgrade Notes: LEDs: The board has 5 LEDs - two green LEDs for LAN / WAN activity, one blue LED for WiFi, and a pair of "status" LEDs connected to the same GPIO (the blue LED lights when the GPIO is low, and the green when it's high). I was unable to determine how to operate the WiFi LED, as it does not appear to be controlled by a GPIO directly. Recovery: The default U-boot installation will only boot from flash due to a missing environment block. I generated a valid 4KB env block using U-boot's `fw_setenv` tool and wrote it to flash at 0x30000 using an external programmer. After this, it was possible to enter the U-boot commandline interface and download a new image via TFTP (`tftpboot 81b00000 <image-filename>`), but while I could boot this image sucessfully (`bootm`), writing it to flash (`cp.linux`) just corrupted the flash chip. The sysupgrade file can be written to flash at 0x50000 using an external programmer. Signed-off-by: Andrew Crawley <acrawley@gmail.com>
* ramips: add helper variable for boardnameMathias Kresin2017-12-211-45/+46
| | | | | | | | | | | | | Add a helper variable which contains the boardname separated from the vendor name. It allows to switch to a device tree compatible string based boardname, by keeping the $board:colour:function syntax in scripts handling/adding config for LEDs. Boards not using the device tree compatible string as based boardname are unaffected by the change, since none of them uses a comma in the boardname. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: drop LinkIt Smart 7688 Duo userspace supportMathias Kresin2017-12-211-2/+1
| | | | | | | | | | The LinkIt Smart 7688/LinkIt Smart 7688 Duo are identical beside the extra ATmega32U4 - accessible via UART - on the the Duo. Since all relevant hardware is identical, drop the Duo special handling in userspace. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for UniElec U7628-01Piotr Dymacz2017-11-141-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UniElec U7628-01 is a router platform board based on MediaTek MT7628AN. The device has the following specifications: - MT7628AN (580MHz) - 64/128/256 MB of RAM (DDR2) - 8/16 MB of flash (SPI NOR) - 5x 10/100 Mbps Ethernet (MT7628 built-in switch) - 1x 2T2R 2.4 GHz Wi-Fi (MT7628) - 1x miniPCIe slot (with PCIe and USB 2.0 buses) - 1x miniSIM slot - 1x microSD slot - 1x USB 2.0 port - 7x single-color LEDs (GPIO-controlled) - 1x bi-color LED (green GPIO-controlled, red -> LED_WLAN# in miniPCIe) - 1x reset button - 1x UART header (4-pins) - 1x SDXC/GPIO header (10-pins, connected with microSD slot) - 1x DC jack for main power (12 V) The following has been tested and is working: - Ethernet switch - miniPCIe slot (tested with modem and Wi-Fi card) - miniSIM slot - sysupgrade - reset button - USB 2.0 port* Due to a missing driver (MMC over GPIO) this is not supported: - microSD card reader * Warning: USB buses in miniPCIe and regular A-type socket are connected together, without any proper analog switch or USB HUB. Installation: This board might come with a different firmware versions (MediaTek SDK, PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can install LEDE using sysupgrade. Just SSH to the router and perform forced sysupgrade (due to a board name mismatch). The default IP of this board should be: 192.168.1.1 and username/password: root/admin. In case of a different firmware, you can use web based recovery described below. Use the following command to perform the sysupgrade (for the 128MB RAM/16MB flash version): sysupgrade -n -F lede-ramips-mt76x8-u7628-01-128M-16M-squashfs-sysupgrade.bin Recovery: This board contains a Chinese, closed-source bootloader called Breed (Boot and Recovery Environment for Embedded Devices). Breed supports web recovery and to enter it, you keep the reset button pressed for around 5 seconds during boot. Your machine will be assigned an IP through DHCP and the router will use IP address 192.168.1.1. The recovery website is in Chinese, but is easy to use. Click on the second item in the list to access the recovery page, then the second item on the next page is where you select the firmware. In order to start the recovery, you click the button at the bottom. SDXC/GPIO header (J3): 1. SDXC_D3 / I2C_SCLK 2. SDXC_D2 / I2C_SD 3. SDXC_D1 / I2S_DI 4. SDXC_D0 / I2S_WS 5. SDXC_CMD / I2S_CLK 6. SDXC_CLK / GPIO0 7. SDXC_CD / UART_RXD1 8. UART_TXD1 9. 3V3 10. GND Other notes: 1. The board is available with different amounts of RAM and flash. We have only added support for the 128/16 MB configuration, as that seems to be the default. However, all the required infrastructure is in place for making support for the other configurations easy. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
* ramips: add support for UniElec U7621-06Piotr Dymacz2017-11-141-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UniElec U7621-06 is a router platform board based on MediaTek MT7621AT. The device has the following specifications: - MT7621AT (880 MHz) - 256/512 MB of RAM (DDR3) - 8/16/32/64 MB of FLASH (SPI NOR) - 5x 1 Gbps Ethernet (MT7621 built-in switch) - 1x ASMedia ASM1061 (for mSATA and SATA) - 2x miniPCIe slots (PCIe bus only) - 1x mSATA slot (with USB 2.0 bus for modem) - 1x SATA - 1x miniSIM slot - 1x microSD slot - 1x USB 3.0 - 12x LEDs (3 GPIO-controlled) - 1x reset button - 1x UART header (4-pins) - 1x GPIO header (30-pins) - 1x FPC connector for LEDs (20-pin, 0.5 mm pitch) - 1x DC jack for main power (12 V) The following has been tested and is working: - Ethernet switch - miniPCIe slots (tested with Wi-Fi cards) - mSATA slot (tested with modem and mSATA drive) - miniSIM slot - sysupgrade - reset button - microSD slot Installation: This board might come with a different firmware versions (MediaTek SDK, PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can install LEDE using sysupgrade. Just SSH to the router and perform forced sysupgrade (due to a board name mismatch). The default IP of this board should be: 192.168.1.1 and username/password: root/admin. In case of a different firmware, you can use web based recovery described below. Use the following command to perform the sysupgrade (for the 256MB RAM/16MB flash version): sysupgrade -n -F lede-ramips-mt7621-u7621-06-256M-16M-squashfs-sysupgrade.bin Recovery: This board contains a Chinese, closed-source bootloader called Breed (Boot and Recovery Environment for Embedded Devices). Breed supports web recovery and to enter it, you keep the reset button pressed for around 5 seconds during boot. Your machine will be assigned an IP through DHCP and the router will use IP address 192.168.1.1. The recovery website is in Chinese, but is easy to use. Click on the second item in the list to access the recovery page, then the second item on the next page is where you select the firmware. In order to start the recovery, you click the button at the bottom. LEDs list (top row, left to right): - LED_WWAN# (connected with pin 42 in LTE/mSATA slot) - Power (connected directly to 3V3) - CTS2_N (GPIO10, configured as "status" LED) - TXD2 (GPIO11, configured as "led4", without default trigger) - RXD2 (GPIO12, configured as "led5", without default trigger) - LED_WLAN# (connected with pin 44 in wifi0 slot) LEDs list (bottom row, left to right): - ESW_P0_LED_0 - ESW_P1_LED_0 - ESW_P2_LED_0 - ESW_P3_LED_0 - ESW_P4_LED_0 - LED_WLAN# (connected with pin 44 in wifi1 slot) Other notes: 1. The board is available with different amounts of RAM and flash. We have only added support for the 256/16 MB configuration, as that seems to be the default. However, all the required infrastructure is in place for making support for the other configurations easy. 2. The manufacturer offers five different wireless cards with MediaTek chipsets, based on MT76x2, MT7603 and MT7615. Images of the board all show that the miniPCIe slots are dedicated to specific Wi-Fi cards. However, the slots are generic. 3. All boards we got access to had the same EEPROM content. The default firmware reads the Ethernet MAC from offset 0xe000 in factory partition. This offset only contains 0xffs, so a random MAC will be generated on every boot of the router. There is a valid MAC stored at offset 0xe006 and this MAC is shown as the WAN MAC in the bootloader. However, it is the same on all boards we have checked. Based on information provided by the vendor, all boards sold in small quantities are considered more as samples for development purposes. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
* ramips: add support for TP-Link TL-WR840N v5Robert Marko2017-11-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 4 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 1x LED (GPIO-controlled), 1x button * LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Orange LED is registered so you can later use it for your own purposes. Flash instruction: Unlike TL-WR840N v4 flashing through WEB UI works in v5. 1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image. 2. Go to 192.168.0.1 3. Flash the sysupgrade image through Firmware upgrade section of WEB UI. 4. Wait until green LED stops flashing and use the router. Notes: TFTP recovery is broken since TP-Link reused bootloader code for v4 and that does not take into account only 4 MB of flash and bricks the device. So do not use TFTP Recovery or you will have to rewrite SPI flash. They fixed it in later GPL code,but it is unknown which version of bootloader you have. After manually compiling and flashing bootloader from GPL sources TFTP recovery works properly. Signed-off-by: Robert Marko <robimarko@gmail.com>
* ramips: fix Youku-YK1 supportEdmunt Pienkowsky2017-10-271-1/+2
| | | | | | | | | | | | | | | | | | | | | | Remove the ephy-pins from the ethernet device tree node. The ephy-pins are useed to controll the ePHY LEDs and this board doesn't have these. Instead one of the ePHY pins is used in GPIO mode to control the WAN LED. Use the switch LED trigger to control the WAN LED. Move the power LED handling to diag.sh to show the boot status via this LED. Add the missing kernel packages for USB and microSD card reader to the default package selection. Fix the maximum image size value. The board has a 32MByte flash chip. Fixes: FS#1055 Signed-off-by: Edmunt Pienkowsky <roed@onet.eu> [make the commit message more verbose, remove GPIO pinmux for pins not used as GPIOs] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for Kimax U25AWF-H1Daniel Kucera2017-10-141-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Kimax U-25AWF-H1 is is a 2,5" HDD Enclosure with Wi-Fi/Eth conection and battery, based on MediaTek MT7620A. Patch rewritten from: https://forum.openwrt.org/viewtopic.php?pid=305643 Specification: - MT7620A CPU - 64 MB of RAM - 16 MB of FLASH - 802.11bgn WiFi - 1x 10/100 Mbps Ethernet - USB 2.0 Host - UART for serial console Flash instruction: 1. Download lede-ramips-mt7620-u25awf-h1-squashfs-sysupgrade.bin 2. Open webinterface a upgrade 3. After boot connect via ethernet to ip 192.168.1.1 Signed-off-by: Daniel Kucera <daniel.kucera@gmail.com> [fix reset button gpio, don't add a lan/wan vlan config for single port board, add -H1 suffix do make sure that this revision of the board is supported/tested] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for TP-Link Archer C20 v1Maxim Anisimov2017-09-131-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | TP-Link Archer C20 v1 is a router with 5-port FE switch and non-detachable antennas. It's very similiar to TP-Link Archer C50. Also it's based on MediaTek MT7620A+MT7610EN. Specification: - MediaTek MT7620A (580 Mhz) - 64 MB of RAM - 8 MB of FLASH - 2T2R 2.4 GHz and 1T1R 5 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 8x LED (GPIO-controlled*), 2x button, power input switch - 1 x USB 2.0 port * WAN LED in this devices is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the blue part of the LED. * MT7610EN ac chip isn't not supported by LEDE. Therefore 5Ghz won't work. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. So, to flash this device we must to prepare image using original firmware from tp-link site with uboot. Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot. There are two ways to flash the device to LEDE: 1) Using tftp mode with UART connection and original LEDE image - Place lede-ramips-mt7620-ArcherC20-squashfs-factory.bin in tftp server directory - Configure PC with static IP 192.168.0.66/24 and tftp server. - Connect PC with one of LAN ports, power up the router and press key "4" to access U-Boot CLI. - Use the following commands to update the device to LEDE: setenv serverip 192.168.0.66 tftp 0x80060000 lede-ramips-mt7620-ArcherC20-squashfs-factory.bin erase tplink 0x20000 0x7a0000 cp.b 0x80060000 0x20000 0x7a0000 reset - After that the device will reboot and boot to LEDE 2) Using tftp mode without UART connection but require some manipulations with target image - Download and unpack TP-Link Archer C20 v1 firmware from original web site - Split uboot.bin from original firmware by this command (example): dd if=Archer_C20v1_0.9.1_4.0_up_boot(160427)_2016-04-27_13.53.59.bin of=uboot.bin bs=512 count=256 skip=1 - Create ArcherC20V1_tp_recovery.bin using this command: cat uboot.bin lede-ramips-mt7620-ArcherC20-squashfs-factory.bin > ArcherC20V1_tp_recovery.bin - Place ArcherC20V1_tp_recovery.bin in tftp server directory. - Configure PC with static IP 192.168.0.66/24 and tftp server. - Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. - Router will download file from server, write it to flash and reboot. Signed-off-by: Maxim Anisimov <maxim.anisimov.ua@gmail.com>
* ramips: fix hg255d LED status supportDavid Yang2017-09-131-0/+1
| | | | | | | | Use the green power LED for boot status indication. Source: https://my.oschina.net/osbin/blog/278782 Para 3 Signed-off-by: David Yang <mmyangfl@gmail.com>
* ramips: add support for the HNET C108Kristian Evensen2017-09-091-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The HNET C108 (http://www.szhwtech88.com/Product-product-cid-100-id-4374.html) is a mifi based on MT7602A, which has the following specifications: * CPU: MT7620A * 1x 10/100Mbps Ethernet. * 16 MB Flash. * 64 MB RAM. * 1x USB 2.0 port. Only power is connected, this port is meant for charging other devices. * 1x mini-PCIe slots. * 1x SIM slots. * 1x 2.4Ghz WIFI. * 1x button. * 6000 mAh battery. * 5x controllable LEDs. Works: * Wifi. * Switch. * mini-PCIe slot. Only tested with a USB device (a modem). * SIM slot. * Sysupgrade. * Button (reset). Not working (also applies to the factory firmware): * Wifi LED. It is always switched on, there is no relation to the up/down state or activity of the wireless interface. Not tested: * SD card reader. Notes: * The C108 has no dedicated status LED. I therefore set the LAN LED as status LED. Installation: The router comes pre-installed with OpenWRT, including a variant of Luci. The initial firmware install can be done through this UI, following normal procedure. I.e., access the UI and update the firmware using the sysupgrade-image. Remember to select that you do not want to keep existing settings. Recovery: If you brick the device, the C108 supports recovery using TFTP. Keep the reset button pressed for ~5sec when booting to trigger TFTP. Set the address of the network interface on your machine to 10.10.10.3/24, and rename your image file to Kernal.bin. Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
* ramips: add Xiaomi Mi Router 3G supportPavel Kubelun2017-08-231-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit adds support for Xiaomi Mi WiFi Router 3G. Short specification: - MT7621AT + MT7603EN + 7612EN - 256MB DDR3 RAM - 128MB NAND flash - 1+2 x 1000M Ethernet - 1x USB 3.0 port - reset button - yellow, blue, red leds Installation through telnet/ssh: - copy lede-ramips-mt7621-mir3g-squashfs-kernel1.bin and lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin to usb disk or wget it from LEDE download site to /tmp - switch to /extdisks/sda1/ (if copied to USB drive) or to /tmp if wgetted from LEDE download site - run: mtd write lede-ramips-mt7621-mir3g-squashfs-kernel1.bin kernel1 - run: mtd write lede-ramips-mt7621-mir3g-squashfs-rootfs0.bin rootfs0 - run: mtd erase kernel0 - run: reboot Originally stock firmware has following partitions: - ... - kernel0 (primary kernel image) - kernel1 (secondary kernel image, used by u-boot in failsafe routine) - rootfs0 (primary rootfs) - rootfs1 (secondary rootfs in case primary fails) - overlay (used as ubi overlay) This commit squashes rootfs0, rootfs1 and overlay partitions into 1, so it can be used by LEDE fully for package installation, resulting in 117,5MiB. This device lacks hw watchdog, so adding softdog instead (stock does the same). Signed-off-by: Pavel Kubelun <be.dissent@gmail.com>
* ramips: add support for the VoCore2 LiteL. D. Pinney2017-08-111-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | The VoCore2 Lite uses the same PCB as the Vocore2. This patch moves the common VoCore2 parts into dtsi. Removed memory node in the device tree source file. Memory is detected automatically. http://vocore.io/ http://vonger.net/ http://vonger.cn/ Specifications: - SoC: MediaTek MT7688AN - RAM: 64MB DDR2 EtronTech EM68B16CWQH-25H - Flash: 8MB NOR SPI Flash GigaDevice GD25Q64CWIG - Wireless: Built into MT7688AN with onboard IPEX connector Firmware installation: - VoCore2-Lite ships with firmware forked from OpenWrt. - Installation from the bootloader is recommended. - If using luci/sysupgrade use the -n option (do not keep settings) original firmware uses a modified proprietary MediaTek wireless driver. - The wireless is disabled by default in LEDE. - If reverting to factory firmware using the bootloader is recommended. Signed-off-by: L. D. Pinney <ldpinney@gmail.com> Tested by: Noble Pepper <noblepepper@gmail.com>
* ramips: cleanup EX2700 and WN3000RPv3 LEDsThibaut VARENE2017-08-031-4/+4
| | | | | | | | | | | | | | | This patch cleans up the WN3000RPv3 and EX2700 setup, bringing it in line with other similar devices: The power led is a bicolor one. The bootloader brings the red side on at powerup. Instead of blinking the red side in diag.sh and need to forcefully turn it off in 01_leds, this patch simplifies the setup by relying on the default off state of the gpio-led driver for the red side and blinking the green side as with other devices. Signed-off-by: Thibaut VARENE <hacks@slashdirt.org>
* ramips: drop Edimax BR-6425 supportMathias Kresin2017-08-031-1/+0
| | | | | | Code to build an image for the Edimax BR-6425 never existed. Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for the GnuBee Personal Cloud OneL. D. Pinney2017-07-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The GnuBee Personal Cloud One crowdfunded on https://www.crowdsupply.com It is a low-cost, low-power, network-attached storage device. Specifications: - SoC: MediaTek MT7621AT - RAM: DDR3 512 MB - Flash: 32 MB - Six SATA ports for 2.5" Drives - One micro SDcard - One USB 3.0 - Two USB 2.0 - Gigabit Ethernet: 1 x WAN and 1 x LAN - UART 3.5mm Audio Jack or 3 pin header - 57600 8N1 - Four GPIOs available on a pin header Flash instructions: The GnuBee Personal Cloud One ships with libreCMC installed. libreCMC is a Free Software Foundation approved fork of LEDE/OpenWrt. As such one can upgrade using the webinterface or sysupgrade. Das U-Boot has multiple options for recovery or updates including : - USB - http - tftp Signed-off-by: L. D. Pinney <ldpinney@gmail.com> [use switchdev led trigger, all interfaces are in vlan1; rename leds according to board.d setting; remove ge2 group from the pinmux, this group doesn't exist in the driver] Signed-off-by: Mathias Kresin <dev@kresin.me>
* ramips: add support for TP-Link RE350Alex Maclean2017-07-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | The TP-Link RE350 is a wall-wart AC1200 range extender/access point with a single gigabit ethernet port and two non-detachable antennas, based on the MT7621A SoC with MT7603E and MT7612E radios. Firmware wise it is very similar to the QCA based RE450. SoC: MediaTek MT7621A (880MHz) Flash: 8MiB (Winbond W25Q64) RAM: 64MiB (DDR2) Ethernet: 1x 1Gbit Wireless: 2T2R 2.4Ghz (MT7603E) and 5GHz (MT7612E) LEDs: Power, 2.4G, 5G (blue), WPS (red and blue), ethernet link/act (green) Buttons: On/off, LED, reset, WPS Serial header at J1, 57600 8n1: Pin 1 TX Pin 2 RX Pin 3 GND Pin 4 3.3V Factory image can be uploaded directly through the stock UI. Signed-off-by: Alex Maclean <monkeh@monkeh.net>
* ramips: add support for Phicomm K2PChuanhong Guo2017-07-201-4/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It uses one MT7615D radio chip with DBDC mode enabled. This mode allows this single chip act as an 2x2 11n radio and an 2x2 11ac radio at the same time. However mt76 doesn't support it currently so there is no wireless available. Specification: - SoC: MediaTek MT7621AT - Flash: 16 MB - RAM: 128 MB - Ethernet: 1 x WAN (10/100/1000Mbps) and 4 x LAN (10/100/1000 Mbps) - Wireless radio: MT7615D on PCIE0 - UART: 1 x UART on PCB - 57600 8N1 Issue: - Wireless radio doesn't work due to the lack of driver. Flash instruction: Using UART: 1. Configure PC with a static IP address and setup an TFTP server. 2. Put the firmware into the tftp directory. 3. Connect the UART line as described on the PCB. 4. Power up the device and press 2,then follow the instruction to set device and tftp server IP address and input the firmware file name.U-boot will then load the firmware and write it into the flash. Signed-off-by: Chuanhong Guo <gch981213@gmail.com>