From 7b56fb6337756ff7cb07dec09420da7026d7d3e3 Mon Sep 17 00:00:00 2001
From: Florian Fainelli <florian@openwrt.org>
Date: Thu, 4 Feb 2010 10:10:45 +0000
Subject: move generic config and patches directory to be 2.6.30 specific

SVN-Revision: 19513
---
 .../linux/octeon/patches-2.6.30/018-dwc_otg.patch  | 17496 +++++++++++++++++++
 1 file changed, 17496 insertions(+)
 create mode 100644 target/linux/octeon/patches-2.6.30/018-dwc_otg.patch

(limited to 'target/linux/octeon/patches-2.6.30/018-dwc_otg.patch')

diff --git a/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch b/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch
new file mode 100644
index 0000000..6f4a4d6
--- /dev/null
+++ b/target/linux/octeon/patches-2.6.30/018-dwc_otg.patch
@@ -0,0 +1,17496 @@
+Signed-off-by: David Daney <ddaney@caviumnetworks.com>
+---
+ arch/mips/cavium-octeon/octeon-platform.c      |  105 ++
+ arch/mips/include/asm/octeon/cvmx-usbcx-defs.h | 1199 ++++++++++++++++++++++++
+ arch/mips/include/asm/octeon/cvmx-usbnx-defs.h |  760 +++++++++++++++
+ 3 files changed, 2064 insertions(+), 0 deletions(-)
+ create mode 100644 arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
+ create mode 100644 arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
+
+diff --git a/arch/mips/cavium-octeon/octeon-platform.c b/arch/mips/cavium-octeon/octeon-platform.c
+index cfdb4c2..20698a6 100644
+--- a/arch/mips/cavium-octeon/octeon-platform.c
++++ b/arch/mips/cavium-octeon/octeon-platform.c
+@@ -7,13 +7,19 @@
+  * Copyright (C) 2008 Wind River Systems
+  */
+ 
++#include <linux/delay.h>
+ #include <linux/init.h>
+ #include <linux/irq.h>
++#include <linux/kernel.h>
+ #include <linux/module.h>
+ #include <linux/platform_device.h>
+ 
++#include <asm/time.h>
++
+ #include <asm/octeon/octeon.h>
+ #include <asm/octeon/cvmx-rnm-defs.h>
++#include <asm/octeon/cvmx-usbnx-defs.h>
++#include <asm/octeon/cvmx-usbcx-defs.h>
+ 
+ static struct octeon_cf_data octeon_cf_data;
+ 
+@@ -247,6 +253,105 @@ out:
+ }
+ device_initcall(octeon_mgmt_device_init);
+ 
++/* Octeon USB. */
++static int __init octeon_usb_device_init(void)
++{
++	int p_rtype_ref_clk = 2;
++	int number_usb_ports;
++	int usb_port;
++	int ret = 0;
++
++	if (OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)) {
++		number_usb_ports = 0;
++	} else if (OCTEON_IS_MODEL(OCTEON_CN52XX)) {
++		number_usb_ports = 2;
++		/* CN52XX encodes this field differently */
++		p_rtype_ref_clk = 1;
++	} else {
++		number_usb_ports = 1;
++	}
++
++	for (usb_port = 0; usb_port < number_usb_ports; usb_port++) {
++		int divisor;
++		union cvmx_usbnx_clk_ctl usbn_clk_ctl;
++		struct platform_device *pdev;
++		struct resource usb_resource[2];
++
++		/*
++		 * Divide the core clock down such that USB is as
++		 * close as possible to 125Mhz.
++		 */
++		divisor = DIV_ROUND_UP(mips_hpt_frequency, 125000000);
++		/* Lower than 4 doesn't seem to work properly */
++		if (divisor < 4)
++			divisor = 4;
++
++		/* Fetch the value of the Register, and de-assert POR */
++		usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port));
++		usbn_clk_ctl.s.por = 0;
++		if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) {
++			usbn_clk_ctl.cn31xx.p_rclk = 1;
++			usbn_clk_ctl.cn31xx.p_xenbn = 0;
++		} else {
++			if (cvmx_sysinfo_get()->board_type !=
++			    CVMX_BOARD_TYPE_BBGW_REF)
++				usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk;
++			else
++				usbn_clk_ctl.cn56xx.p_rtype = 0;
++		}
++		usbn_clk_ctl.s.divide = divisor;
++		usbn_clk_ctl.s.divide2 = 0;
++		cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
++
++		/* Wait for POR */
++		udelay(850);
++
++		usbn_clk_ctl.u64 = cvmx_read_csr(CVMX_USBNX_CLK_CTL(usb_port));
++		usbn_clk_ctl.s.por = 0;
++		if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) {
++			usbn_clk_ctl.cn31xx.p_rclk = 1;
++			usbn_clk_ctl.cn31xx.p_xenbn = 0;
++		} else {
++			if (cvmx_sysinfo_get()->board_type !=
++			    CVMX_BOARD_TYPE_BBGW_REF)
++				usbn_clk_ctl.cn56xx.p_rtype = p_rtype_ref_clk;
++			else
++				usbn_clk_ctl.cn56xx.p_rtype = 0;
++		}
++		usbn_clk_ctl.s.prst = 1;
++		cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
++
++		udelay(1);
++
++		usbn_clk_ctl.s.hrst = 1;
++		cvmx_write_csr(CVMX_USBNX_CLK_CTL(usb_port), usbn_clk_ctl.u64);
++		udelay(1);
++
++		memset(usb_resource, 0, sizeof(usb_resource));
++		usb_resource[0].start =
++			XKPHYS_TO_PHYS(CVMX_USBCX_GOTGCTL(usb_port));
++		usb_resource[0].end = usb_resource[0].start + 0x10000;
++		usb_resource[0].flags = IORESOURCE_MEM;
++
++		usb_resource[1].start = (usb_port == 0) ?
++			OCTEON_IRQ_USB0 : OCTEON_IRQ_USB1;
++		usb_resource[1].end = usb_resource[1].start;
++		usb_resource[1].flags = IORESOURCE_IRQ;
++
++		pdev = platform_device_register_simple("dwc_otg",
++						       usb_port,
++						       usb_resource, 2);
++		if (!pdev) {
++			pr_err("dwc_otg: Failed to allocate platform device "
++			       "for USB%d\n", usb_port);
++			ret = -ENOMEM;
++		}
++	}
++
++	return ret;
++}
++device_initcall(octeon_usb_device_init);
++
+ MODULE_AUTHOR("David Daney <ddaney@caviumnetworks.com>");
+ MODULE_LICENSE("GPL");
+ MODULE_DESCRIPTION("Platform driver for Octeon SOC");
+diff --git a/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
+new file mode 100644
+index 0000000..c1e078e
+--- /dev/null
++++ b/arch/mips/include/asm/octeon/cvmx-usbcx-defs.h
+@@ -0,0 +1,1199 @@
++/***********************license start***************
++ * Author: Cavium Networks
++ *
++ * Contact: support@caviumnetworks.com
++ * This file is part of the OCTEON SDK
++ *
++ * Copyright (c) 2003-2008 Cavium Networks
++ *
++ * This file is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License, Version 2, as
++ * published by the Free Software Foundation.
++ *
++ * This file is distributed in the hope that it will be useful, but
++ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
++ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
++ * NONINFRINGEMENT.  See the GNU General Public License for more
++ * details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this file; if not, write to the Free Software
++ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
++ * or visit http://www.gnu.org/licenses/.
++ *
++ * This file may also be available under a different license from Cavium.
++ * Contact Cavium Networks for more information
++ ***********************license end**************************************/
++
++#ifndef __CVMX_USBCX_DEFS_H__
++#define __CVMX_USBCX_DEFS_H__
++
++#define CVMX_USBCX_DAINT(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000818ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DAINTMSK(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F001000081Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DCFG(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000800ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DCTL(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000804ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPCTLX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000900ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPINTX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000908ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPMSK(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000810ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DIEPTSIZX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000910ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPCTLX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000B00ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPINTX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000B08ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPMSK(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000814ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DOEPTSIZX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000B10ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DPTXFSIZX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((offset) & 7) * 4) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DSTS(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000808ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR1(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000820ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR2(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000824ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR3(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000830ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_DTKNQR4(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000834ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GAHBCFG(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000008ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG1(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000044ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG2(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000048ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG3(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F001000004Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GHWCFG4(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000050ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GINTMSK(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000018ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GINTSTS(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000014ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GNPTXFSIZ(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000028ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GNPTXSTS(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F001000002Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GOTGCTL(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000000ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GOTGINT(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000004ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRSTCTL(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000010ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXFSIZ(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000024ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSPD(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010040020ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSPH(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000020ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSRD(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F001004001Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GRXSTSRH(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F001000001Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GSNPSID(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000040ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_GUSBCFG(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F001000000Cull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HAINT(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000414ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HAINTMSK(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000418ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCCHARX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000500ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCFG(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000400ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCINTMSKX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F001000050Cull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCINTX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000508ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCSPLTX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000504ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HCTSIZX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000510ull + (((offset) & 7) * 32) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HFIR(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000404ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HFNUM(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000408ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HPRT(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000440ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HPTXFSIZ(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000100ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_HPTXSTS(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000410ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_NPTXDFIFOX(offset, block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010001000ull + (((offset) & 7) * 4096) + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBCX_PCGCCTL(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0010000E00ull + (((block_id) & 1) * 0x100000000000ull))
++
++union cvmx_usbcx_daint {
++	uint32_t u32;
++	struct cvmx_usbcx_daint_s {
++		uint32_t outepint:16;
++		uint32_t inepint:16;
++	} s;
++	struct cvmx_usbcx_daint_s cn30xx;
++	struct cvmx_usbcx_daint_s cn31xx;
++	struct cvmx_usbcx_daint_s cn50xx;
++	struct cvmx_usbcx_daint_s cn52xx;
++	struct cvmx_usbcx_daint_s cn52xxp1;
++	struct cvmx_usbcx_daint_s cn56xx;
++	struct cvmx_usbcx_daint_s cn56xxp1;
++};
++
++union cvmx_usbcx_daintmsk {
++	uint32_t u32;
++	struct cvmx_usbcx_daintmsk_s {
++		uint32_t outepmsk:16;
++		uint32_t inepmsk:16;
++	} s;
++	struct cvmx_usbcx_daintmsk_s cn30xx;
++	struct cvmx_usbcx_daintmsk_s cn31xx;
++	struct cvmx_usbcx_daintmsk_s cn50xx;
++	struct cvmx_usbcx_daintmsk_s cn52xx;
++	struct cvmx_usbcx_daintmsk_s cn52xxp1;
++	struct cvmx_usbcx_daintmsk_s cn56xx;
++	struct cvmx_usbcx_daintmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_dcfg {
++	uint32_t u32;
++	struct cvmx_usbcx_dcfg_s {
++		uint32_t reserved_23_31:9;
++		uint32_t epmiscnt:5;
++		uint32_t reserved_13_17:5;
++		uint32_t perfrint:2;
++		uint32_t devaddr:7;
++		uint32_t reserved_3_3:1;
++		uint32_t nzstsouthshk:1;
++		uint32_t devspd:2;
++	} s;
++	struct cvmx_usbcx_dcfg_s cn30xx;
++	struct cvmx_usbcx_dcfg_s cn31xx;
++	struct cvmx_usbcx_dcfg_s cn50xx;
++	struct cvmx_usbcx_dcfg_s cn52xx;
++	struct cvmx_usbcx_dcfg_s cn52xxp1;
++	struct cvmx_usbcx_dcfg_s cn56xx;
++	struct cvmx_usbcx_dcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_dctl {
++	uint32_t u32;
++	struct cvmx_usbcx_dctl_s {
++		uint32_t reserved_12_31:20;
++		uint32_t pwronprgdone:1;
++		uint32_t cgoutnak:1;
++		uint32_t sgoutnak:1;
++		uint32_t cgnpinnak:1;
++		uint32_t sgnpinnak:1;
++		uint32_t tstctl:3;
++		uint32_t goutnaksts:1;
++		uint32_t gnpinnaksts:1;
++		uint32_t sftdiscon:1;
++		uint32_t rmtwkupsig:1;
++	} s;
++	struct cvmx_usbcx_dctl_s cn30xx;
++	struct cvmx_usbcx_dctl_s cn31xx;
++	struct cvmx_usbcx_dctl_s cn50xx;
++	struct cvmx_usbcx_dctl_s cn52xx;
++	struct cvmx_usbcx_dctl_s cn52xxp1;
++	struct cvmx_usbcx_dctl_s cn56xx;
++	struct cvmx_usbcx_dctl_s cn56xxp1;
++};
++
++union cvmx_usbcx_diepctlx {
++	uint32_t u32;
++	struct cvmx_usbcx_diepctlx_s {
++		uint32_t epena:1;
++		uint32_t epdis:1;
++		uint32_t setd1pid:1;
++		uint32_t setd0pid:1;
++		uint32_t snak:1;
++		uint32_t cnak:1;
++		uint32_t txfnum:4;
++		uint32_t stall:1;
++		uint32_t reserved_20_20:1;
++		uint32_t eptype:2;
++		uint32_t naksts:1;
++		uint32_t dpid:1;
++		uint32_t usbactep:1;
++		uint32_t nextep:4;
++		uint32_t mps:11;
++	} s;
++	struct cvmx_usbcx_diepctlx_s cn30xx;
++	struct cvmx_usbcx_diepctlx_s cn31xx;
++	struct cvmx_usbcx_diepctlx_s cn50xx;
++	struct cvmx_usbcx_diepctlx_s cn52xx;
++	struct cvmx_usbcx_diepctlx_s cn52xxp1;
++	struct cvmx_usbcx_diepctlx_s cn56xx;
++	struct cvmx_usbcx_diepctlx_s cn56xxp1;
++};
++
++union cvmx_usbcx_diepintx {
++	uint32_t u32;
++	struct cvmx_usbcx_diepintx_s {
++		uint32_t reserved_7_31:25;
++		uint32_t inepnakeff:1;
++		uint32_t intknepmis:1;
++		uint32_t intkntxfemp:1;
++		uint32_t timeout:1;
++		uint32_t ahberr:1;
++		uint32_t epdisbld:1;
++		uint32_t xfercompl:1;
++	} s;
++	struct cvmx_usbcx_diepintx_s cn30xx;
++	struct cvmx_usbcx_diepintx_s cn31xx;
++	struct cvmx_usbcx_diepintx_s cn50xx;
++	struct cvmx_usbcx_diepintx_s cn52xx;
++	struct cvmx_usbcx_diepintx_s cn52xxp1;
++	struct cvmx_usbcx_diepintx_s cn56xx;
++	struct cvmx_usbcx_diepintx_s cn56xxp1;
++};
++
++union cvmx_usbcx_diepmsk {
++	uint32_t u32;
++	struct cvmx_usbcx_diepmsk_s {
++		uint32_t reserved_7_31:25;
++		uint32_t inepnakeffmsk:1;
++		uint32_t intknepmismsk:1;
++		uint32_t intkntxfempmsk:1;
++		uint32_t timeoutmsk:1;
++		uint32_t ahberrmsk:1;
++		uint32_t epdisbldmsk:1;
++		uint32_t xfercomplmsk:1;
++	} s;
++	struct cvmx_usbcx_diepmsk_s cn30xx;
++	struct cvmx_usbcx_diepmsk_s cn31xx;
++	struct cvmx_usbcx_diepmsk_s cn50xx;
++	struct cvmx_usbcx_diepmsk_s cn52xx;
++	struct cvmx_usbcx_diepmsk_s cn52xxp1;
++	struct cvmx_usbcx_diepmsk_s cn56xx;
++	struct cvmx_usbcx_diepmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_dieptsizx {
++	uint32_t u32;
++	struct cvmx_usbcx_dieptsizx_s {
++		uint32_t reserved_31_31:1;
++		uint32_t mc:2;
++		uint32_t pktcnt:10;
++		uint32_t xfersize:19;
++	} s;
++	struct cvmx_usbcx_dieptsizx_s cn30xx;
++	struct cvmx_usbcx_dieptsizx_s cn31xx;
++	struct cvmx_usbcx_dieptsizx_s cn50xx;
++	struct cvmx_usbcx_dieptsizx_s cn52xx;
++	struct cvmx_usbcx_dieptsizx_s cn52xxp1;
++	struct cvmx_usbcx_dieptsizx_s cn56xx;
++	struct cvmx_usbcx_dieptsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_doepctlx {
++	uint32_t u32;
++	struct cvmx_usbcx_doepctlx_s {
++		uint32_t epena:1;
++		uint32_t epdis:1;
++		uint32_t setd1pid:1;
++		uint32_t setd0pid:1;
++		uint32_t snak:1;
++		uint32_t cnak:1;
++		uint32_t reserved_22_25:4;
++		uint32_t stall:1;
++		uint32_t snp:1;
++		uint32_t eptype:2;
++		uint32_t naksts:1;
++		uint32_t dpid:1;
++		uint32_t usbactep:1;
++		uint32_t reserved_11_14:4;
++		uint32_t mps:11;
++	} s;
++	struct cvmx_usbcx_doepctlx_s cn30xx;
++	struct cvmx_usbcx_doepctlx_s cn31xx;
++	struct cvmx_usbcx_doepctlx_s cn50xx;
++	struct cvmx_usbcx_doepctlx_s cn52xx;
++	struct cvmx_usbcx_doepctlx_s cn52xxp1;
++	struct cvmx_usbcx_doepctlx_s cn56xx;
++	struct cvmx_usbcx_doepctlx_s cn56xxp1;
++};
++
++union cvmx_usbcx_doepintx {
++	uint32_t u32;
++	struct cvmx_usbcx_doepintx_s {
++		uint32_t reserved_5_31:27;
++		uint32_t outtknepdis:1;
++		uint32_t setup:1;
++		uint32_t ahberr:1;
++		uint32_t epdisbld:1;
++		uint32_t xfercompl:1;
++	} s;
++	struct cvmx_usbcx_doepintx_s cn30xx;
++	struct cvmx_usbcx_doepintx_s cn31xx;
++	struct cvmx_usbcx_doepintx_s cn50xx;
++	struct cvmx_usbcx_doepintx_s cn52xx;
++	struct cvmx_usbcx_doepintx_s cn52xxp1;
++	struct cvmx_usbcx_doepintx_s cn56xx;
++	struct cvmx_usbcx_doepintx_s cn56xxp1;
++};
++
++union cvmx_usbcx_doepmsk {
++	uint32_t u32;
++	struct cvmx_usbcx_doepmsk_s {
++		uint32_t reserved_5_31:27;
++		uint32_t outtknepdismsk:1;
++		uint32_t setupmsk:1;
++		uint32_t ahberrmsk:1;
++		uint32_t epdisbldmsk:1;
++		uint32_t xfercomplmsk:1;
++	} s;
++	struct cvmx_usbcx_doepmsk_s cn30xx;
++	struct cvmx_usbcx_doepmsk_s cn31xx;
++	struct cvmx_usbcx_doepmsk_s cn50xx;
++	struct cvmx_usbcx_doepmsk_s cn52xx;
++	struct cvmx_usbcx_doepmsk_s cn52xxp1;
++	struct cvmx_usbcx_doepmsk_s cn56xx;
++	struct cvmx_usbcx_doepmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_doeptsizx {
++	uint32_t u32;
++	struct cvmx_usbcx_doeptsizx_s {
++		uint32_t reserved_31_31:1;
++		uint32_t mc:2;
++		uint32_t pktcnt:10;
++		uint32_t xfersize:19;
++	} s;
++	struct cvmx_usbcx_doeptsizx_s cn30xx;
++	struct cvmx_usbcx_doeptsizx_s cn31xx;
++	struct cvmx_usbcx_doeptsizx_s cn50xx;
++	struct cvmx_usbcx_doeptsizx_s cn52xx;
++	struct cvmx_usbcx_doeptsizx_s cn52xxp1;
++	struct cvmx_usbcx_doeptsizx_s cn56xx;
++	struct cvmx_usbcx_doeptsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_dptxfsizx {
++	uint32_t u32;
++	struct cvmx_usbcx_dptxfsizx_s {
++		uint32_t dptxfsize:16;
++		uint32_t dptxfstaddr:16;
++	} s;
++	struct cvmx_usbcx_dptxfsizx_s cn30xx;
++	struct cvmx_usbcx_dptxfsizx_s cn31xx;
++	struct cvmx_usbcx_dptxfsizx_s cn50xx;
++	struct cvmx_usbcx_dptxfsizx_s cn52xx;
++	struct cvmx_usbcx_dptxfsizx_s cn52xxp1;
++	struct cvmx_usbcx_dptxfsizx_s cn56xx;
++	struct cvmx_usbcx_dptxfsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_dsts {
++	uint32_t u32;
++	struct cvmx_usbcx_dsts_s {
++		uint32_t reserved_22_31:10;
++		uint32_t soffn:14;
++		uint32_t reserved_4_7:4;
++		uint32_t errticerr:1;
++		uint32_t enumspd:2;
++		uint32_t suspsts:1;
++	} s;
++	struct cvmx_usbcx_dsts_s cn30xx;
++	struct cvmx_usbcx_dsts_s cn31xx;
++	struct cvmx_usbcx_dsts_s cn50xx;
++	struct cvmx_usbcx_dsts_s cn52xx;
++	struct cvmx_usbcx_dsts_s cn52xxp1;
++	struct cvmx_usbcx_dsts_s cn56xx;
++	struct cvmx_usbcx_dsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr1 {
++	uint32_t u32;
++	struct cvmx_usbcx_dtknqr1_s {
++		uint32_t eptkn:24;
++		uint32_t wrapbit:1;
++		uint32_t reserved_5_6:2;
++		uint32_t intknwptr:5;
++	} s;
++	struct cvmx_usbcx_dtknqr1_s cn30xx;
++	struct cvmx_usbcx_dtknqr1_s cn31xx;
++	struct cvmx_usbcx_dtknqr1_s cn50xx;
++	struct cvmx_usbcx_dtknqr1_s cn52xx;
++	struct cvmx_usbcx_dtknqr1_s cn52xxp1;
++	struct cvmx_usbcx_dtknqr1_s cn56xx;
++	struct cvmx_usbcx_dtknqr1_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr2 {
++	uint32_t u32;
++	struct cvmx_usbcx_dtknqr2_s {
++		uint32_t eptkn:32;
++	} s;
++	struct cvmx_usbcx_dtknqr2_s cn30xx;
++	struct cvmx_usbcx_dtknqr2_s cn31xx;
++	struct cvmx_usbcx_dtknqr2_s cn50xx;
++	struct cvmx_usbcx_dtknqr2_s cn52xx;
++	struct cvmx_usbcx_dtknqr2_s cn52xxp1;
++	struct cvmx_usbcx_dtknqr2_s cn56xx;
++	struct cvmx_usbcx_dtknqr2_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr3 {
++	uint32_t u32;
++	struct cvmx_usbcx_dtknqr3_s {
++		uint32_t eptkn:32;
++	} s;
++	struct cvmx_usbcx_dtknqr3_s cn30xx;
++	struct cvmx_usbcx_dtknqr3_s cn31xx;
++	struct cvmx_usbcx_dtknqr3_s cn50xx;
++	struct cvmx_usbcx_dtknqr3_s cn52xx;
++	struct cvmx_usbcx_dtknqr3_s cn52xxp1;
++	struct cvmx_usbcx_dtknqr3_s cn56xx;
++	struct cvmx_usbcx_dtknqr3_s cn56xxp1;
++};
++
++union cvmx_usbcx_dtknqr4 {
++	uint32_t u32;
++	struct cvmx_usbcx_dtknqr4_s {
++		uint32_t eptkn:32;
++	} s;
++	struct cvmx_usbcx_dtknqr4_s cn30xx;
++	struct cvmx_usbcx_dtknqr4_s cn31xx;
++	struct cvmx_usbcx_dtknqr4_s cn50xx;
++	struct cvmx_usbcx_dtknqr4_s cn52xx;
++	struct cvmx_usbcx_dtknqr4_s cn52xxp1;
++	struct cvmx_usbcx_dtknqr4_s cn56xx;
++	struct cvmx_usbcx_dtknqr4_s cn56xxp1;
++};
++
++union cvmx_usbcx_gahbcfg {
++	uint32_t u32;
++	struct cvmx_usbcx_gahbcfg_s {
++		uint32_t reserved_9_31:23;
++		uint32_t ptxfemplvl:1;
++		uint32_t nptxfemplvl:1;
++		uint32_t reserved_6_6:1;
++		uint32_t dmaen:1;
++		uint32_t hbstlen:4;
++		uint32_t glblintrmsk:1;
++	} s;
++	struct cvmx_usbcx_gahbcfg_s cn30xx;
++	struct cvmx_usbcx_gahbcfg_s cn31xx;
++	struct cvmx_usbcx_gahbcfg_s cn50xx;
++	struct cvmx_usbcx_gahbcfg_s cn52xx;
++	struct cvmx_usbcx_gahbcfg_s cn52xxp1;
++	struct cvmx_usbcx_gahbcfg_s cn56xx;
++	struct cvmx_usbcx_gahbcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg1 {
++	uint32_t u32;
++	struct cvmx_usbcx_ghwcfg1_s {
++		uint32_t epdir:32;
++	} s;
++	struct cvmx_usbcx_ghwcfg1_s cn30xx;
++	struct cvmx_usbcx_ghwcfg1_s cn31xx;
++	struct cvmx_usbcx_ghwcfg1_s cn50xx;
++	struct cvmx_usbcx_ghwcfg1_s cn52xx;
++	struct cvmx_usbcx_ghwcfg1_s cn52xxp1;
++	struct cvmx_usbcx_ghwcfg1_s cn56xx;
++	struct cvmx_usbcx_ghwcfg1_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg2 {
++	uint32_t u32;
++	struct cvmx_usbcx_ghwcfg2_s {
++		uint32_t reserved_31_31:1;
++		uint32_t tknqdepth:5;
++		uint32_t ptxqdepth:2;
++		uint32_t nptxqdepth:2;
++		uint32_t reserved_20_21:2;
++		uint32_t dynfifosizing:1;
++		uint32_t periosupport:1;
++		uint32_t numhstchnl:4;
++		uint32_t numdeveps:4;
++		uint32_t fsphytype:2;
++		uint32_t hsphytype:2;
++		uint32_t singpnt:1;
++		uint32_t otgarch:2;
++		uint32_t otgmode:3;
++	} s;
++	struct cvmx_usbcx_ghwcfg2_s cn30xx;
++	struct cvmx_usbcx_ghwcfg2_s cn31xx;
++	struct cvmx_usbcx_ghwcfg2_s cn50xx;
++	struct cvmx_usbcx_ghwcfg2_s cn52xx;
++	struct cvmx_usbcx_ghwcfg2_s cn52xxp1;
++	struct cvmx_usbcx_ghwcfg2_s cn56xx;
++	struct cvmx_usbcx_ghwcfg2_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg3 {
++	uint32_t u32;
++	struct cvmx_usbcx_ghwcfg3_s {
++		uint32_t dfifodepth:16;
++		uint32_t reserved_13_15:3;
++		uint32_t ahbphysync:1;
++		uint32_t rsttype:1;
++		uint32_t optfeature:1;
++		uint32_t vendor_control_interface_support:1;
++		uint32_t i2c_selection:1;
++		uint32_t otgen:1;
++		uint32_t pktsizewidth:3;
++		uint32_t xfersizewidth:4;
++	} s;
++	struct cvmx_usbcx_ghwcfg3_s cn30xx;
++	struct cvmx_usbcx_ghwcfg3_s cn31xx;
++	struct cvmx_usbcx_ghwcfg3_s cn50xx;
++	struct cvmx_usbcx_ghwcfg3_s cn52xx;
++	struct cvmx_usbcx_ghwcfg3_s cn52xxp1;
++	struct cvmx_usbcx_ghwcfg3_s cn56xx;
++	struct cvmx_usbcx_ghwcfg3_s cn56xxp1;
++};
++
++union cvmx_usbcx_ghwcfg4 {
++	uint32_t u32;
++	struct cvmx_usbcx_ghwcfg4_s {
++		uint32_t reserved_30_31:2;
++		uint32_t numdevmodinend:4;
++		uint32_t endedtrfifo:1;
++		uint32_t sessendfltr:1;
++		uint32_t bvalidfltr:1;
++		uint32_t avalidfltr:1;
++		uint32_t vbusvalidfltr:1;
++		uint32_t iddgfltr:1;
++		uint32_t numctleps:4;
++		uint32_t phydatawidth:2;
++		uint32_t reserved_6_13:8;
++		uint32_t ahbfreq:1;
++		uint32_t enablepwropt:1;
++		uint32_t numdevperioeps:4;
++	} s;
++	struct cvmx_usbcx_ghwcfg4_cn30xx {
++		uint32_t reserved_25_31:7;
++		uint32_t sessendfltr:1;
++		uint32_t bvalidfltr:1;
++		uint32_t avalidfltr:1;
++		uint32_t vbusvalidfltr:1;
++		uint32_t iddgfltr:1;
++		uint32_t numctleps:4;
++		uint32_t phydatawidth:2;
++		uint32_t reserved_6_13:8;
++		uint32_t ahbfreq:1;
++		uint32_t enablepwropt:1;
++		uint32_t numdevperioeps:4;
++	} cn30xx;
++	struct cvmx_usbcx_ghwcfg4_cn30xx cn31xx;
++	struct cvmx_usbcx_ghwcfg4_s cn50xx;
++	struct cvmx_usbcx_ghwcfg4_s cn52xx;
++	struct cvmx_usbcx_ghwcfg4_s cn52xxp1;
++	struct cvmx_usbcx_ghwcfg4_s cn56xx;
++	struct cvmx_usbcx_ghwcfg4_s cn56xxp1;
++};
++
++union cvmx_usbcx_gintmsk {
++	uint32_t u32;
++	struct cvmx_usbcx_gintmsk_s {
++		uint32_t wkupintmsk:1;
++		uint32_t sessreqintmsk:1;
++		uint32_t disconnintmsk:1;
++		uint32_t conidstschngmsk:1;
++		uint32_t reserved_27_27:1;
++		uint32_t ptxfempmsk:1;
++		uint32_t hchintmsk:1;
++		uint32_t prtintmsk:1;
++		uint32_t reserved_23_23:1;
++		uint32_t fetsuspmsk:1;
++		uint32_t incomplpmsk:1;
++		uint32_t incompisoinmsk:1;
++		uint32_t oepintmsk:1;
++		uint32_t inepintmsk:1;
++		uint32_t epmismsk:1;
++		uint32_t reserved_16_16:1;
++		uint32_t eopfmsk:1;
++		uint32_t isooutdropmsk:1;
++		uint32_t enumdonemsk:1;
++		uint32_t usbrstmsk:1;
++		uint32_t usbsuspmsk:1;
++		uint32_t erlysuspmsk:1;
++		uint32_t i2cint:1;
++		uint32_t ulpickintmsk:1;
++		uint32_t goutnakeffmsk:1;
++		uint32_t ginnakeffmsk:1;
++		uint32_t nptxfempmsk:1;
++		uint32_t rxflvlmsk:1;
++		uint32_t sofmsk:1;
++		uint32_t otgintmsk:1;
++		uint32_t modemismsk:1;
++		uint32_t reserved_0_0:1;
++	} s;
++	struct cvmx_usbcx_gintmsk_s cn30xx;
++	struct cvmx_usbcx_gintmsk_s cn31xx;
++	struct cvmx_usbcx_gintmsk_s cn50xx;
++	struct cvmx_usbcx_gintmsk_s cn52xx;
++	struct cvmx_usbcx_gintmsk_s cn52xxp1;
++	struct cvmx_usbcx_gintmsk_s cn56xx;
++	struct cvmx_usbcx_gintmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_gintsts {
++	uint32_t u32;
++	struct cvmx_usbcx_gintsts_s {
++		uint32_t wkupint:1;
++		uint32_t sessreqint:1;
++		uint32_t disconnint:1;
++		uint32_t conidstschng:1;
++		uint32_t reserved_27_27:1;
++		uint32_t ptxfemp:1;
++		uint32_t hchint:1;
++		uint32_t prtint:1;
++		uint32_t reserved_23_23:1;
++		uint32_t fetsusp:1;
++		uint32_t incomplp:1;
++		uint32_t incompisoin:1;
++		uint32_t oepint:1;
++		uint32_t iepint:1;
++		uint32_t epmis:1;
++		uint32_t reserved_16_16:1;
++		uint32_t eopf:1;
++		uint32_t isooutdrop:1;
++		uint32_t enumdone:1;
++		uint32_t usbrst:1;
++		uint32_t usbsusp:1;
++		uint32_t erlysusp:1;
++		uint32_t i2cint:1;
++		uint32_t ulpickint:1;
++		uint32_t goutnakeff:1;
++		uint32_t ginnakeff:1;
++		uint32_t nptxfemp:1;
++		uint32_t rxflvl:1;
++		uint32_t sof:1;
++		uint32_t otgint:1;
++		uint32_t modemis:1;
++		uint32_t curmod:1;
++	} s;
++	struct cvmx_usbcx_gintsts_s cn30xx;
++	struct cvmx_usbcx_gintsts_s cn31xx;
++	struct cvmx_usbcx_gintsts_s cn50xx;
++	struct cvmx_usbcx_gintsts_s cn52xx;
++	struct cvmx_usbcx_gintsts_s cn52xxp1;
++	struct cvmx_usbcx_gintsts_s cn56xx;
++	struct cvmx_usbcx_gintsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_gnptxfsiz {
++	uint32_t u32;
++	struct cvmx_usbcx_gnptxfsiz_s {
++		uint32_t nptxfdep:16;
++		uint32_t nptxfstaddr:16;
++	} s;
++	struct cvmx_usbcx_gnptxfsiz_s cn30xx;
++	struct cvmx_usbcx_gnptxfsiz_s cn31xx;
++	struct cvmx_usbcx_gnptxfsiz_s cn50xx;
++	struct cvmx_usbcx_gnptxfsiz_s cn52xx;
++	struct cvmx_usbcx_gnptxfsiz_s cn52xxp1;
++	struct cvmx_usbcx_gnptxfsiz_s cn56xx;
++	struct cvmx_usbcx_gnptxfsiz_s cn56xxp1;
++};
++
++union cvmx_usbcx_gnptxsts {
++	uint32_t u32;
++	struct cvmx_usbcx_gnptxsts_s {
++		uint32_t reserved_31_31:1;
++		uint32_t nptxqtop:7;
++		uint32_t nptxqspcavail:8;
++		uint32_t nptxfspcavail:16;
++	} s;
++	struct cvmx_usbcx_gnptxsts_s cn30xx;
++	struct cvmx_usbcx_gnptxsts_s cn31xx;
++	struct cvmx_usbcx_gnptxsts_s cn50xx;
++	struct cvmx_usbcx_gnptxsts_s cn52xx;
++	struct cvmx_usbcx_gnptxsts_s cn52xxp1;
++	struct cvmx_usbcx_gnptxsts_s cn56xx;
++	struct cvmx_usbcx_gnptxsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_gotgctl {
++	uint32_t u32;
++	struct cvmx_usbcx_gotgctl_s {
++		uint32_t reserved_20_31:12;
++		uint32_t bsesvld:1;
++		uint32_t asesvld:1;
++		uint32_t dbnctime:1;
++		uint32_t conidsts:1;
++		uint32_t reserved_12_15:4;
++		uint32_t devhnpen:1;
++		uint32_t hstsethnpen:1;
++		uint32_t hnpreq:1;
++		uint32_t hstnegscs:1;
++		uint32_t reserved_2_7:6;
++		uint32_t sesreq:1;
++		uint32_t sesreqscs:1;
++	} s;
++	struct cvmx_usbcx_gotgctl_s cn30xx;
++	struct cvmx_usbcx_gotgctl_s cn31xx;
++	struct cvmx_usbcx_gotgctl_s cn50xx;
++	struct cvmx_usbcx_gotgctl_s cn52xx;
++	struct cvmx_usbcx_gotgctl_s cn52xxp1;
++	struct cvmx_usbcx_gotgctl_s cn56xx;
++	struct cvmx_usbcx_gotgctl_s cn56xxp1;
++};
++
++union cvmx_usbcx_gotgint {
++	uint32_t u32;
++	struct cvmx_usbcx_gotgint_s {
++		uint32_t reserved_20_31:12;
++		uint32_t dbncedone:1;
++		uint32_t adevtoutchg:1;
++		uint32_t hstnegdet:1;
++		uint32_t reserved_10_16:7;
++		uint32_t hstnegsucstschng:1;
++		uint32_t sesreqsucstschng:1;
++		uint32_t reserved_3_7:5;
++		uint32_t sesenddet:1;
++		uint32_t reserved_0_1:2;
++	} s;
++	struct cvmx_usbcx_gotgint_s cn30xx;
++	struct cvmx_usbcx_gotgint_s cn31xx;
++	struct cvmx_usbcx_gotgint_s cn50xx;
++	struct cvmx_usbcx_gotgint_s cn52xx;
++	struct cvmx_usbcx_gotgint_s cn52xxp1;
++	struct cvmx_usbcx_gotgint_s cn56xx;
++	struct cvmx_usbcx_gotgint_s cn56xxp1;
++};
++
++union cvmx_usbcx_grstctl {
++	uint32_t u32;
++	struct cvmx_usbcx_grstctl_s {
++		uint32_t ahbidle:1;
++		uint32_t dmareq:1;
++		uint32_t reserved_11_29:19;
++		uint32_t txfnum:5;
++		uint32_t txfflsh:1;
++		uint32_t rxfflsh:1;
++		uint32_t intknqflsh:1;
++		uint32_t frmcntrrst:1;
++		uint32_t hsftrst:1;
++		uint32_t csftrst:1;
++	} s;
++	struct cvmx_usbcx_grstctl_s cn30xx;
++	struct cvmx_usbcx_grstctl_s cn31xx;
++	struct cvmx_usbcx_grstctl_s cn50xx;
++	struct cvmx_usbcx_grstctl_s cn52xx;
++	struct cvmx_usbcx_grstctl_s cn52xxp1;
++	struct cvmx_usbcx_grstctl_s cn56xx;
++	struct cvmx_usbcx_grstctl_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxfsiz {
++	uint32_t u32;
++	struct cvmx_usbcx_grxfsiz_s {
++		uint32_t reserved_16_31:16;
++		uint32_t rxfdep:16;
++	} s;
++	struct cvmx_usbcx_grxfsiz_s cn30xx;
++	struct cvmx_usbcx_grxfsiz_s cn31xx;
++	struct cvmx_usbcx_grxfsiz_s cn50xx;
++	struct cvmx_usbcx_grxfsiz_s cn52xx;
++	struct cvmx_usbcx_grxfsiz_s cn52xxp1;
++	struct cvmx_usbcx_grxfsiz_s cn56xx;
++	struct cvmx_usbcx_grxfsiz_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstspd {
++	uint32_t u32;
++	struct cvmx_usbcx_grxstspd_s {
++		uint32_t reserved_25_31:7;
++		uint32_t fn:4;
++		uint32_t pktsts:4;
++		uint32_t dpid:2;
++		uint32_t bcnt:11;
++		uint32_t epnum:4;
++	} s;
++	struct cvmx_usbcx_grxstspd_s cn30xx;
++	struct cvmx_usbcx_grxstspd_s cn31xx;
++	struct cvmx_usbcx_grxstspd_s cn50xx;
++	struct cvmx_usbcx_grxstspd_s cn52xx;
++	struct cvmx_usbcx_grxstspd_s cn52xxp1;
++	struct cvmx_usbcx_grxstspd_s cn56xx;
++	struct cvmx_usbcx_grxstspd_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstsph {
++	uint32_t u32;
++	struct cvmx_usbcx_grxstsph_s {
++		uint32_t reserved_21_31:11;
++		uint32_t pktsts:4;
++		uint32_t dpid:2;
++		uint32_t bcnt:11;
++		uint32_t chnum:4;
++	} s;
++	struct cvmx_usbcx_grxstsph_s cn30xx;
++	struct cvmx_usbcx_grxstsph_s cn31xx;
++	struct cvmx_usbcx_grxstsph_s cn50xx;
++	struct cvmx_usbcx_grxstsph_s cn52xx;
++	struct cvmx_usbcx_grxstsph_s cn52xxp1;
++	struct cvmx_usbcx_grxstsph_s cn56xx;
++	struct cvmx_usbcx_grxstsph_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstsrd {
++	uint32_t u32;
++	struct cvmx_usbcx_grxstsrd_s {
++		uint32_t reserved_25_31:7;
++		uint32_t fn:4;
++		uint32_t pktsts:4;
++		uint32_t dpid:2;
++		uint32_t bcnt:11;
++		uint32_t epnum:4;
++	} s;
++	struct cvmx_usbcx_grxstsrd_s cn30xx;
++	struct cvmx_usbcx_grxstsrd_s cn31xx;
++	struct cvmx_usbcx_grxstsrd_s cn50xx;
++	struct cvmx_usbcx_grxstsrd_s cn52xx;
++	struct cvmx_usbcx_grxstsrd_s cn52xxp1;
++	struct cvmx_usbcx_grxstsrd_s cn56xx;
++	struct cvmx_usbcx_grxstsrd_s cn56xxp1;
++};
++
++union cvmx_usbcx_grxstsrh {
++	uint32_t u32;
++	struct cvmx_usbcx_grxstsrh_s {
++		uint32_t reserved_21_31:11;
++		uint32_t pktsts:4;
++		uint32_t dpid:2;
++		uint32_t bcnt:11;
++		uint32_t chnum:4;
++	} s;
++	struct cvmx_usbcx_grxstsrh_s cn30xx;
++	struct cvmx_usbcx_grxstsrh_s cn31xx;
++	struct cvmx_usbcx_grxstsrh_s cn50xx;
++	struct cvmx_usbcx_grxstsrh_s cn52xx;
++	struct cvmx_usbcx_grxstsrh_s cn52xxp1;
++	struct cvmx_usbcx_grxstsrh_s cn56xx;
++	struct cvmx_usbcx_grxstsrh_s cn56xxp1;
++};
++
++union cvmx_usbcx_gsnpsid {
++	uint32_t u32;
++	struct cvmx_usbcx_gsnpsid_s {
++		uint32_t synopsysid:32;
++	} s;
++	struct cvmx_usbcx_gsnpsid_s cn30xx;
++	struct cvmx_usbcx_gsnpsid_s cn31xx;
++	struct cvmx_usbcx_gsnpsid_s cn50xx;
++	struct cvmx_usbcx_gsnpsid_s cn52xx;
++	struct cvmx_usbcx_gsnpsid_s cn52xxp1;
++	struct cvmx_usbcx_gsnpsid_s cn56xx;
++	struct cvmx_usbcx_gsnpsid_s cn56xxp1;
++};
++
++union cvmx_usbcx_gusbcfg {
++	uint32_t u32;
++	struct cvmx_usbcx_gusbcfg_s {
++		uint32_t reserved_17_31:15;
++		uint32_t otgi2csel:1;
++		uint32_t phylpwrclksel:1;
++		uint32_t reserved_14_14:1;
++		uint32_t usbtrdtim:4;
++		uint32_t hnpcap:1;
++		uint32_t srpcap:1;
++		uint32_t ddrsel:1;
++		uint32_t physel:1;
++		uint32_t fsintf:1;
++		uint32_t ulpi_utmi_sel:1;
++		uint32_t phyif:1;
++		uint32_t toutcal:3;
++	} s;
++	struct cvmx_usbcx_gusbcfg_s cn30xx;
++	struct cvmx_usbcx_gusbcfg_s cn31xx;
++	struct cvmx_usbcx_gusbcfg_s cn50xx;
++	struct cvmx_usbcx_gusbcfg_s cn52xx;
++	struct cvmx_usbcx_gusbcfg_s cn52xxp1;
++	struct cvmx_usbcx_gusbcfg_s cn56xx;
++	struct cvmx_usbcx_gusbcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_haint {
++	uint32_t u32;
++	struct cvmx_usbcx_haint_s {
++		uint32_t reserved_16_31:16;
++		uint32_t haint:16;
++	} s;
++	struct cvmx_usbcx_haint_s cn30xx;
++	struct cvmx_usbcx_haint_s cn31xx;
++	struct cvmx_usbcx_haint_s cn50xx;
++	struct cvmx_usbcx_haint_s cn52xx;
++	struct cvmx_usbcx_haint_s cn52xxp1;
++	struct cvmx_usbcx_haint_s cn56xx;
++	struct cvmx_usbcx_haint_s cn56xxp1;
++};
++
++union cvmx_usbcx_haintmsk {
++	uint32_t u32;
++	struct cvmx_usbcx_haintmsk_s {
++		uint32_t reserved_16_31:16;
++		uint32_t haintmsk:16;
++	} s;
++	struct cvmx_usbcx_haintmsk_s cn30xx;
++	struct cvmx_usbcx_haintmsk_s cn31xx;
++	struct cvmx_usbcx_haintmsk_s cn50xx;
++	struct cvmx_usbcx_haintmsk_s cn52xx;
++	struct cvmx_usbcx_haintmsk_s cn52xxp1;
++	struct cvmx_usbcx_haintmsk_s cn56xx;
++	struct cvmx_usbcx_haintmsk_s cn56xxp1;
++};
++
++union cvmx_usbcx_hccharx {
++	uint32_t u32;
++	struct cvmx_usbcx_hccharx_s {
++		uint32_t chena:1;
++		uint32_t chdis:1;
++		uint32_t oddfrm:1;
++		uint32_t devaddr:7;
++		uint32_t ec:2;
++		uint32_t eptype:2;
++		uint32_t lspddev:1;
++		uint32_t reserved_16_16:1;
++		uint32_t epdir:1;
++		uint32_t epnum:4;
++		uint32_t mps:11;
++	} s;
++	struct cvmx_usbcx_hccharx_s cn30xx;
++	struct cvmx_usbcx_hccharx_s cn31xx;
++	struct cvmx_usbcx_hccharx_s cn50xx;
++	struct cvmx_usbcx_hccharx_s cn52xx;
++	struct cvmx_usbcx_hccharx_s cn52xxp1;
++	struct cvmx_usbcx_hccharx_s cn56xx;
++	struct cvmx_usbcx_hccharx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcfg {
++	uint32_t u32;
++	struct cvmx_usbcx_hcfg_s {
++		uint32_t reserved_3_31:29;
++		uint32_t fslssupp:1;
++		uint32_t fslspclksel:2;
++	} s;
++	struct cvmx_usbcx_hcfg_s cn30xx;
++	struct cvmx_usbcx_hcfg_s cn31xx;
++	struct cvmx_usbcx_hcfg_s cn50xx;
++	struct cvmx_usbcx_hcfg_s cn52xx;
++	struct cvmx_usbcx_hcfg_s cn52xxp1;
++	struct cvmx_usbcx_hcfg_s cn56xx;
++	struct cvmx_usbcx_hcfg_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcintx {
++	uint32_t u32;
++	struct cvmx_usbcx_hcintx_s {
++		uint32_t reserved_11_31:21;
++		uint32_t datatglerr:1;
++		uint32_t frmovrun:1;
++		uint32_t bblerr:1;
++		uint32_t xacterr:1;
++		uint32_t nyet:1;
++		uint32_t ack:1;
++		uint32_t nak:1;
++		uint32_t stall:1;
++		uint32_t ahberr:1;
++		uint32_t chhltd:1;
++		uint32_t xfercompl:1;
++	} s;
++	struct cvmx_usbcx_hcintx_s cn30xx;
++	struct cvmx_usbcx_hcintx_s cn31xx;
++	struct cvmx_usbcx_hcintx_s cn50xx;
++	struct cvmx_usbcx_hcintx_s cn52xx;
++	struct cvmx_usbcx_hcintx_s cn52xxp1;
++	struct cvmx_usbcx_hcintx_s cn56xx;
++	struct cvmx_usbcx_hcintx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcintmskx {
++	uint32_t u32;
++	struct cvmx_usbcx_hcintmskx_s {
++		uint32_t reserved_11_31:21;
++		uint32_t datatglerrmsk:1;
++		uint32_t frmovrunmsk:1;
++		uint32_t bblerrmsk:1;
++		uint32_t xacterrmsk:1;
++		uint32_t nyetmsk:1;
++		uint32_t ackmsk:1;
++		uint32_t nakmsk:1;
++		uint32_t stallmsk:1;
++		uint32_t ahberrmsk:1;
++		uint32_t chhltdmsk:1;
++		uint32_t xfercomplmsk:1;
++	} s;
++	struct cvmx_usbcx_hcintmskx_s cn30xx;
++	struct cvmx_usbcx_hcintmskx_s cn31xx;
++	struct cvmx_usbcx_hcintmskx_s cn50xx;
++	struct cvmx_usbcx_hcintmskx_s cn52xx;
++	struct cvmx_usbcx_hcintmskx_s cn52xxp1;
++	struct cvmx_usbcx_hcintmskx_s cn56xx;
++	struct cvmx_usbcx_hcintmskx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hcspltx {
++	uint32_t u32;
++	struct cvmx_usbcx_hcspltx_s {
++		uint32_t spltena:1;
++		uint32_t reserved_17_30:14;
++		uint32_t compsplt:1;
++		uint32_t xactpos:2;
++		uint32_t hubaddr:7;
++		uint32_t prtaddr:7;
++	} s;
++	struct cvmx_usbcx_hcspltx_s cn30xx;
++	struct cvmx_usbcx_hcspltx_s cn31xx;
++	struct cvmx_usbcx_hcspltx_s cn50xx;
++	struct cvmx_usbcx_hcspltx_s cn52xx;
++	struct cvmx_usbcx_hcspltx_s cn52xxp1;
++	struct cvmx_usbcx_hcspltx_s cn56xx;
++	struct cvmx_usbcx_hcspltx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hctsizx {
++	uint32_t u32;
++	struct cvmx_usbcx_hctsizx_s {
++		uint32_t dopng:1;
++		uint32_t pid:2;
++		uint32_t pktcnt:10;
++		uint32_t xfersize:19;
++	} s;
++	struct cvmx_usbcx_hctsizx_s cn30xx;
++	struct cvmx_usbcx_hctsizx_s cn31xx;
++	struct cvmx_usbcx_hctsizx_s cn50xx;
++	struct cvmx_usbcx_hctsizx_s cn52xx;
++	struct cvmx_usbcx_hctsizx_s cn52xxp1;
++	struct cvmx_usbcx_hctsizx_s cn56xx;
++	struct cvmx_usbcx_hctsizx_s cn56xxp1;
++};
++
++union cvmx_usbcx_hfir {
++	uint32_t u32;
++	struct cvmx_usbcx_hfir_s {
++		uint32_t reserved_16_31:16;
++		uint32_t frint:16;
++	} s;
++	struct cvmx_usbcx_hfir_s cn30xx;
++	struct cvmx_usbcx_hfir_s cn31xx;
++	struct cvmx_usbcx_hfir_s cn50xx;
++	struct cvmx_usbcx_hfir_s cn52xx;
++	struct cvmx_usbcx_hfir_s cn52xxp1;
++	struct cvmx_usbcx_hfir_s cn56xx;
++	struct cvmx_usbcx_hfir_s cn56xxp1;
++};
++
++union cvmx_usbcx_hfnum {
++	uint32_t u32;
++	struct cvmx_usbcx_hfnum_s {
++		uint32_t frrem:16;
++		uint32_t frnum:16;
++	} s;
++	struct cvmx_usbcx_hfnum_s cn30xx;
++	struct cvmx_usbcx_hfnum_s cn31xx;
++	struct cvmx_usbcx_hfnum_s cn50xx;
++	struct cvmx_usbcx_hfnum_s cn52xx;
++	struct cvmx_usbcx_hfnum_s cn52xxp1;
++	struct cvmx_usbcx_hfnum_s cn56xx;
++	struct cvmx_usbcx_hfnum_s cn56xxp1;
++};
++
++union cvmx_usbcx_hprt {
++	uint32_t u32;
++	struct cvmx_usbcx_hprt_s {
++		uint32_t reserved_19_31:13;
++		uint32_t prtspd:2;
++		uint32_t prttstctl:4;
++		uint32_t prtpwr:1;
++		uint32_t prtlnsts:2;
++		uint32_t reserved_9_9:1;
++		uint32_t prtrst:1;
++		uint32_t prtsusp:1;
++		uint32_t prtres:1;
++		uint32_t prtovrcurrchng:1;
++		uint32_t prtovrcurract:1;
++		uint32_t prtenchng:1;
++		uint32_t prtena:1;
++		uint32_t prtconndet:1;
++		uint32_t prtconnsts:1;
++	} s;
++	struct cvmx_usbcx_hprt_s cn30xx;
++	struct cvmx_usbcx_hprt_s cn31xx;
++	struct cvmx_usbcx_hprt_s cn50xx;
++	struct cvmx_usbcx_hprt_s cn52xx;
++	struct cvmx_usbcx_hprt_s cn52xxp1;
++	struct cvmx_usbcx_hprt_s cn56xx;
++	struct cvmx_usbcx_hprt_s cn56xxp1;
++};
++
++union cvmx_usbcx_hptxfsiz {
++	uint32_t u32;
++	struct cvmx_usbcx_hptxfsiz_s {
++		uint32_t ptxfsize:16;
++		uint32_t ptxfstaddr:16;
++	} s;
++	struct cvmx_usbcx_hptxfsiz_s cn30xx;
++	struct cvmx_usbcx_hptxfsiz_s cn31xx;
++	struct cvmx_usbcx_hptxfsiz_s cn50xx;
++	struct cvmx_usbcx_hptxfsiz_s cn52xx;
++	struct cvmx_usbcx_hptxfsiz_s cn52xxp1;
++	struct cvmx_usbcx_hptxfsiz_s cn56xx;
++	struct cvmx_usbcx_hptxfsiz_s cn56xxp1;
++};
++
++union cvmx_usbcx_hptxsts {
++	uint32_t u32;
++	struct cvmx_usbcx_hptxsts_s {
++		uint32_t ptxqtop:8;
++		uint32_t ptxqspcavail:8;
++		uint32_t ptxfspcavail:16;
++	} s;
++	struct cvmx_usbcx_hptxsts_s cn30xx;
++	struct cvmx_usbcx_hptxsts_s cn31xx;
++	struct cvmx_usbcx_hptxsts_s cn50xx;
++	struct cvmx_usbcx_hptxsts_s cn52xx;
++	struct cvmx_usbcx_hptxsts_s cn52xxp1;
++	struct cvmx_usbcx_hptxsts_s cn56xx;
++	struct cvmx_usbcx_hptxsts_s cn56xxp1;
++};
++
++union cvmx_usbcx_nptxdfifox {
++	uint32_t u32;
++	struct cvmx_usbcx_nptxdfifox_s {
++		uint32_t data:32;
++	} s;
++	struct cvmx_usbcx_nptxdfifox_s cn30xx;
++	struct cvmx_usbcx_nptxdfifox_s cn31xx;
++	struct cvmx_usbcx_nptxdfifox_s cn50xx;
++	struct cvmx_usbcx_nptxdfifox_s cn52xx;
++	struct cvmx_usbcx_nptxdfifox_s cn52xxp1;
++	struct cvmx_usbcx_nptxdfifox_s cn56xx;
++	struct cvmx_usbcx_nptxdfifox_s cn56xxp1;
++};
++
++union cvmx_usbcx_pcgcctl {
++	uint32_t u32;
++	struct cvmx_usbcx_pcgcctl_s {
++		uint32_t reserved_5_31:27;
++		uint32_t physuspended:1;
++		uint32_t rstpdwnmodule:1;
++		uint32_t pwrclmp:1;
++		uint32_t gatehclk:1;
++		uint32_t stoppclk:1;
++	} s;
++	struct cvmx_usbcx_pcgcctl_s cn30xx;
++	struct cvmx_usbcx_pcgcctl_s cn31xx;
++	struct cvmx_usbcx_pcgcctl_s cn50xx;
++	struct cvmx_usbcx_pcgcctl_s cn52xx;
++	struct cvmx_usbcx_pcgcctl_s cn52xxp1;
++	struct cvmx_usbcx_pcgcctl_s cn56xx;
++	struct cvmx_usbcx_pcgcctl_s cn56xxp1;
++};
++
++#endif
+diff --git a/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
+new file mode 100644
+index 0000000..90be974
+--- /dev/null
++++ b/arch/mips/include/asm/octeon/cvmx-usbnx-defs.h
+@@ -0,0 +1,760 @@
++/***********************license start***************
++ * Author: Cavium Networks
++ *
++ * Contact: support@caviumnetworks.com
++ * This file is part of the OCTEON SDK
++ *
++ * Copyright (c) 2003-2008 Cavium Networks
++ *
++ * This file is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License, Version 2, as
++ * published by the Free Software Foundation.
++ *
++ * This file is distributed in the hope that it will be useful, but
++ * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
++ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
++ * NONINFRINGEMENT.  See the GNU General Public License for more
++ * details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with this file; if not, write to the Free Software
++ * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
++ * or visit http://www.gnu.org/licenses/.
++ *
++ * This file may also be available under a different license from Cavium.
++ * Contact Cavium Networks for more information
++ ***********************license end**************************************/
++
++#ifndef __CVMX_USBNX_DEFS_H__
++#define __CVMX_USBNX_DEFS_H__
++
++#define CVMX_USBNX_BIST_STATUS(block_id) \
++	 CVMX_ADD_IO_SEG(0x00011800680007F8ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_CLK_CTL(block_id) \
++	 CVMX_ADD_IO_SEG(0x0001180068000010ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_CTL_STATUS(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000800ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN0(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000818ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN1(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000820ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN2(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000828ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN3(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000830ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN4(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000838ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN5(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000840ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN6(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000848ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_INB_CHN7(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000850ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN0(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000858ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN1(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000860ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN2(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000868ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN3(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000870ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN4(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000878ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN5(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000880ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN6(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000888ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA0_OUTB_CHN7(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000890ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_DMA_TEST(block_id) \
++	 CVMX_ADD_IO_SEG(0x00016F0000000808ull + (((block_id) & 1) * 0x100000000000ull))
++#define CVMX_USBNX_INT_ENB(block_id) \
++	 CVMX_ADD_IO_SEG(0x0001180068000008ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_INT_SUM(block_id) \
++	 CVMX_ADD_IO_SEG(0x0001180068000000ull + (((block_id) & 1) * 0x10000000ull))
++#define CVMX_USBNX_USBP_CTL_STATUS(block_id) \
++	 CVMX_ADD_IO_SEG(0x0001180068000018ull + (((block_id) & 1) * 0x10000000ull))
++
++union cvmx_usbnx_bist_status {
++	uint64_t u64;
++	struct cvmx_usbnx_bist_status_s {
++		uint64_t reserved_7_63:57;
++		uint64_t u2nc_bis:1;
++		uint64_t u2nf_bis:1;
++		uint64_t e2hc_bis:1;
++		uint64_t n2uf_bis:1;
++		uint64_t usbc_bis:1;
++		uint64_t nif_bis:1;
++		uint64_t nof_bis:1;
++	} s;
++	struct cvmx_usbnx_bist_status_cn30xx {
++		uint64_t reserved_3_63:61;
++		uint64_t usbc_bis:1;
++		uint64_t nif_bis:1;
++		uint64_t nof_bis:1;
++	} cn30xx;
++	struct cvmx_usbnx_bist_status_cn30xx cn31xx;
++	struct cvmx_usbnx_bist_status_s cn50xx;
++	struct cvmx_usbnx_bist_status_s cn52xx;
++	struct cvmx_usbnx_bist_status_s cn52xxp1;
++	struct cvmx_usbnx_bist_status_s cn56xx;
++	struct cvmx_usbnx_bist_status_s cn56xxp1;
++};
++
++union cvmx_usbnx_clk_ctl {
++	uint64_t u64;
++	struct cvmx_usbnx_clk_ctl_s {
++		uint64_t reserved_20_63:44;
++		uint64_t divide2:2;
++		uint64_t hclk_rst:1;
++		uint64_t p_x_on:1;
++		uint64_t reserved_14_15:2;
++		uint64_t p_com_on:1;
++		uint64_t p_c_sel:2;
++		uint64_t cdiv_byp:1;
++		uint64_t sd_mode:2;
++		uint64_t s_bist:1;
++		uint64_t por:1;
++		uint64_t enable:1;
++		uint64_t prst:1;
++		uint64_t hrst:1;
++		uint64_t divide:3;
++	} s;
++	struct cvmx_usbnx_clk_ctl_cn30xx {
++		uint64_t reserved_18_63:46;
++		uint64_t hclk_rst:1;
++		uint64_t p_x_on:1;
++		uint64_t p_rclk:1;
++		uint64_t p_xenbn:1;
++		uint64_t p_com_on:1;
++		uint64_t p_c_sel:2;
++		uint64_t cdiv_byp:1;
++		uint64_t sd_mode:2;
++		uint64_t s_bist:1;
++		uint64_t por:1;
++		uint64_t enable:1;
++		uint64_t prst:1;
++		uint64_t hrst:1;
++		uint64_t divide:3;
++	} cn30xx;
++	struct cvmx_usbnx_clk_ctl_cn30xx cn31xx;
++	struct cvmx_usbnx_clk_ctl_cn50xx {
++		uint64_t reserved_20_63:44;
++		uint64_t divide2:2;
++		uint64_t hclk_rst:1;
++		uint64_t reserved_16_16:1;
++		uint64_t p_rtype:2;
++		uint64_t p_com_on:1;
++		uint64_t p_c_sel:2;
++		uint64_t cdiv_byp:1;
++		uint64_t sd_mode:2;
++		uint64_t s_bist:1;
++		uint64_t por:1;
++		uint64_t enable:1;
++		uint64_t prst:1;
++		uint64_t hrst:1;
++		uint64_t divide:3;
++	} cn50xx;
++	struct cvmx_usbnx_clk_ctl_cn50xx cn52xx;
++	struct cvmx_usbnx_clk_ctl_cn50xx cn52xxp1;
++	struct cvmx_usbnx_clk_ctl_cn50xx cn56xx;
++	struct cvmx_usbnx_clk_ctl_cn50xx cn56xxp1;
++};
++
++union cvmx_usbnx_ctl_status {
++	uint64_t u64;
++	struct cvmx_usbnx_ctl_status_s {
++		uint64_t reserved_6_63:58;
++		uint64_t dma_0pag:1;
++		uint64_t dma_stt:1;
++		uint64_t dma_test:1;
++		uint64_t inv_a2:1;
++		uint64_t l2c_emod:2;
++	} s;
++	struct cvmx_usbnx_ctl_status_s cn30xx;
++	struct cvmx_usbnx_ctl_status_s cn31xx;
++	struct cvmx_usbnx_ctl_status_s cn50xx;
++	struct cvmx_usbnx_ctl_status_s cn52xx;
++	struct cvmx_usbnx_ctl_status_s cn52xxp1;
++	struct cvmx_usbnx_ctl_status_s cn56xx;
++	struct cvmx_usbnx_ctl_status_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn0 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn0_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn0_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn0_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn0_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn0_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn0_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn0_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn0_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn1 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn1_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn1_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn1_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn1_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn1_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn1_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn1_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn1_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn2 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn2_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn2_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn2_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn2_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn2_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn2_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn2_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn2_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn3 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn3_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn3_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn3_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn3_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn3_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn3_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn3_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn3_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn4 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn4_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn4_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn4_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn4_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn4_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn4_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn4_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn4_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn5 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn5_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn5_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn5_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn5_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn5_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn5_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn5_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn5_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn6 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn6_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn6_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn6_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn6_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn6_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn6_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn6_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn6_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_inb_chn7 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_inb_chn7_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_inb_chn7_s cn30xx;
++	struct cvmx_usbnx_dma0_inb_chn7_s cn31xx;
++	struct cvmx_usbnx_dma0_inb_chn7_s cn50xx;
++	struct cvmx_usbnx_dma0_inb_chn7_s cn52xx;
++	struct cvmx_usbnx_dma0_inb_chn7_s cn52xxp1;
++	struct cvmx_usbnx_dma0_inb_chn7_s cn56xx;
++	struct cvmx_usbnx_dma0_inb_chn7_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn0 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn0_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn0_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn0_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn0_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn0_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn0_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn0_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn0_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn1 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn1_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn1_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn1_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn1_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn1_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn1_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn1_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn1_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn2 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn2_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn2_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn2_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn2_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn2_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn2_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn2_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn2_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn3 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn3_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn3_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn3_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn3_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn3_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn3_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn3_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn3_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn4 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn4_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn4_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn4_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn4_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn4_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn4_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn4_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn4_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn5 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn5_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn5_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn5_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn5_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn5_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn5_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn5_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn5_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn6 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn6_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn6_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn6_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn6_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn6_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn6_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn6_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn6_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma0_outb_chn7 {
++	uint64_t u64;
++	struct cvmx_usbnx_dma0_outb_chn7_s {
++		uint64_t reserved_36_63:28;
++		uint64_t addr:36;
++	} s;
++	struct cvmx_usbnx_dma0_outb_chn7_s cn30xx;
++	struct cvmx_usbnx_dma0_outb_chn7_s cn31xx;
++	struct cvmx_usbnx_dma0_outb_chn7_s cn50xx;
++	struct cvmx_usbnx_dma0_outb_chn7_s cn52xx;
++	struct cvmx_usbnx_dma0_outb_chn7_s cn52xxp1;
++	struct cvmx_usbnx_dma0_outb_chn7_s cn56xx;
++	struct cvmx_usbnx_dma0_outb_chn7_s cn56xxp1;
++};
++
++union cvmx_usbnx_dma_test {
++	uint64_t u64;
++	struct cvmx_usbnx_dma_test_s {
++		uint64_t reserved_40_63:24;
++		uint64_t done:1;
++		uint64_t req:1;
++		uint64_t f_addr:18;
++		uint64_t count:11;
++		uint64_t channel:5;
++		uint64_t burst:4;
++	} s;
++	struct cvmx_usbnx_dma_test_s cn30xx;
++	struct cvmx_usbnx_dma_test_s cn31xx;
++	struct cvmx_usbnx_dma_test_s cn50xx;
++	struct cvmx_usbnx_dma_test_s cn52xx;
++	struct cvmx_usbnx_dma_test_s cn52xxp1;
++	struct cvmx_usbnx_dma_test_s cn56xx;
++	struct cvmx_usbnx_dma_test_s cn56xxp1;
++};
++
++union cvmx_usbnx_int_enb {
++	uint64_t u64;
++	struct cvmx_usbnx_int_enb_s {
++		uint64_t reserved_38_63:26;
++		uint64_t nd4o_dpf:1;
++		uint64_t nd4o_dpe:1;
++		uint64_t nd4o_rpf:1;
++		uint64_t nd4o_rpe:1;
++		uint64_t ltl_f_pf:1;
++		uint64_t ltl_f_pe:1;
++		uint64_t u2n_c_pe:1;
++		uint64_t u2n_c_pf:1;
++		uint64_t u2n_d_pf:1;
++		uint64_t u2n_d_pe:1;
++		uint64_t n2u_pe:1;
++		uint64_t n2u_pf:1;
++		uint64_t uod_pf:1;
++		uint64_t uod_pe:1;
++		uint64_t rq_q3_e:1;
++		uint64_t rq_q3_f:1;
++		uint64_t rq_q2_e:1;
++		uint64_t rq_q2_f:1;
++		uint64_t rg_fi_f:1;
++		uint64_t rg_fi_e:1;
++		uint64_t l2_fi_f:1;
++		uint64_t l2_fi_e:1;
++		uint64_t l2c_a_f:1;
++		uint64_t l2c_s_e:1;
++		uint64_t dcred_f:1;
++		uint64_t dcred_e:1;
++		uint64_t lt_pu_f:1;
++		uint64_t lt_po_e:1;
++		uint64_t nt_pu_f:1;
++		uint64_t nt_po_e:1;
++		uint64_t pt_pu_f:1;
++		uint64_t pt_po_e:1;
++		uint64_t lr_pu_f:1;
++		uint64_t lr_po_e:1;
++		uint64_t nr_pu_f:1;
++		uint64_t nr_po_e:1;
++		uint64_t pr_pu_f:1;
++		uint64_t pr_po_e:1;
++	} s;
++	struct cvmx_usbnx_int_enb_s cn30xx;
++	struct cvmx_usbnx_int_enb_s cn31xx;
++	struct cvmx_usbnx_int_enb_cn50xx {
++		uint64_t reserved_38_63:26;
++		uint64_t nd4o_dpf:1;
++		uint64_t nd4o_dpe:1;
++		uint64_t nd4o_rpf:1;
++		uint64_t nd4o_rpe:1;
++		uint64_t ltl_f_pf:1;
++		uint64_t ltl_f_pe:1;
++		uint64_t reserved_26_31:6;
++		uint64_t uod_pf:1;
++		uint64_t uod_pe:1;
++		uint64_t rq_q3_e:1;
++		uint64_t rq_q3_f:1;
++		uint64_t rq_q2_e:1;
++		uint64_t rq_q2_f:1;
++		uint64_t rg_fi_f:1;
++		uint64_t rg_fi_e:1;
++		uint64_t l2_fi_f:1;
++		uint64_t l2_fi_e:1;
++		uint64_t l2c_a_f:1;
++		uint64_t l2c_s_e:1;
++		uint64_t dcred_f:1;
++		uint64_t dcred_e:1;
++		uint64_t lt_pu_f:1;
++		uint64_t lt_po_e:1;
++		uint64_t nt_pu_f:1;
++		uint64_t nt_po_e:1;
++		uint64_t pt_pu_f:1;
++		uint64_t pt_po_e:1;
++		uint64_t lr_pu_f:1;
++		uint64_t lr_po_e:1;
++		uint64_t nr_pu_f:1;
++		uint64_t nr_po_e:1;
++		uint64_t pr_pu_f:1;
++		uint64_t pr_po_e:1;
++	} cn50xx;
++	struct cvmx_usbnx_int_enb_cn50xx cn52xx;
++	struct cvmx_usbnx_int_enb_cn50xx cn52xxp1;
++	struct cvmx_usbnx_int_enb_cn50xx cn56xx;
++	struct cvmx_usbnx_int_enb_cn50xx cn56xxp1;
++};
++
++union cvmx_usbnx_int_sum {
++	uint64_t u64;
++	struct cvmx_usbnx_int_sum_s {
++		uint64_t reserved_38_63:26;
++		uint64_t nd4o_dpf:1;
++		uint64_t nd4o_dpe:1;
++		uint64_t nd4o_rpf:1;
++		uint64_t nd4o_rpe:1;
++		uint64_t ltl_f_pf:1;
++		uint64_t ltl_f_pe:1;
++		uint64_t u2n_c_pe:1;
++		uint64_t u2n_c_pf:1;
++		uint64_t u2n_d_pf:1;
++		uint64_t u2n_d_pe:1;
++		uint64_t n2u_pe:1;
++		uint64_t n2u_pf:1;
++		uint64_t uod_pf:1;
++		uint64_t uod_pe:1;
++		uint64_t rq_q3_e:1;
++		uint64_t rq_q3_f:1;
++		uint64_t rq_q2_e:1;
++		uint64_t rq_q2_f:1;
++		uint64_t rg_fi_f:1;
++		uint64_t rg_fi_e:1;
++		uint64_t lt_fi_f:1;
++		uint64_t lt_fi_e:1;
++		uint64_t l2c_a_f:1;
++		uint64_t l2c_s_e:1;
++		uint64_t dcred_f:1;
++		uint64_t dcred_e:1;
++		uint64_t lt_pu_f:1;
++		uint64_t lt_po_e:1;
++		uint64_t nt_pu_f:1;
++		uint64_t nt_po_e:1;
++		uint64_t pt_pu_f:1;
++		uint64_t pt_po_e:1;
++		uint64_t lr_pu_f:1;
++		uint64_t lr_po_e:1;
++		uint64_t nr_pu_f:1;
++		uint64_t nr_po_e:1;
++		uint64_t pr_pu_f:1;
++		uint64_t pr_po_e:1;
++	} s;
++	struct cvmx_usbnx_int_sum_s cn30xx;
++	struct cvmx_usbnx_int_sum_s cn31xx;
++	struct cvmx_usbnx_int_sum_cn50xx {
++		uint64_t reserved_38_63:26;
++		uint64_t nd4o_dpf:1;
++		uint64_t nd4o_dpe:1;
++		uint64_t nd4o_rpf:1;
++		uint64_t nd4o_rpe:1;
++		uint64_t ltl_f_pf:1;
++		uint64_t ltl_f_pe:1;
++		uint64_t reserved_26_31:6;
++		uint64_t uod_pf:1;
++		uint64_t uod_pe:1;
++		uint64_t rq_q3_e:1;
++		uint64_t rq_q3_f:1;
++		uint64_t rq_q2_e:1;
++		uint64_t rq_q2_f:1;
++		uint64_t rg_fi_f:1;
++		uint64_t rg_fi_e:1;
++		uint64_t lt_fi_f:1;
++		uint64_t lt_fi_e:1;
++		uint64_t l2c_a_f:1;
++		uint64_t l2c_s_e:1;
++		uint64_t dcred_f:1;
++		uint64_t dcred_e:1;
++		uint64_t lt_pu_f:1;
++		uint64_t lt_po_e:1;
++		uint64_t nt_pu_f:1;
++		uint64_t nt_po_e:1;
++		uint64_t pt_pu_f:1;
++		uint64_t pt_po_e:1;
++		uint64_t lr_pu_f:1;
++		uint64_t lr_po_e:1;
++		uint64_t nr_pu_f:1;
++		uint64_t nr_po_e:1;
++		uint64_t pr_pu_f:1;
++		uint64_t pr_po_e:1;
++	} cn50xx;
++	struct cvmx_usbnx_int_sum_cn50xx cn52xx;
++	struct cvmx_usbnx_int_sum_cn50xx cn52xxp1;
++	struct cvmx_usbnx_int_sum_cn50xx cn56xx;
++	struct cvmx_usbnx_int_sum_cn50xx cn56xxp1;
++};
++
++union cvmx_usbnx_usbp_ctl_status {
++	uint64_t u64;
++	struct cvmx_usbnx_usbp_ctl_status_s {
++		uint64_t txrisetune:1;
++		uint64_t txvreftune:4;
++		uint64_t txfslstune:4;
++		uint64_t txhsxvtune:2;
++		uint64_t sqrxtune:3;
++		uint64_t compdistune:3;
++		uint64_t otgtune:3;
++		uint64_t otgdisable:1;
++		uint64_t portreset:1;
++		uint64_t drvvbus:1;
++		uint64_t lsbist:1;
++		uint64_t fsbist:1;
++		uint64_t hsbist:1;
++		uint64_t bist_done:1;
++		uint64_t bist_err:1;
++		uint64_t tdata_out:4;
++		uint64_t siddq:1;
++		uint64_t txpreemphasistune:1;
++		uint64_t dma_bmode:1;
++		uint64_t usbc_end:1;
++		uint64_t usbp_bist:1;
++		uint64_t tclk:1;
++		uint64_t dp_pulld:1;
++		uint64_t dm_pulld:1;
++		uint64_t hst_mode:1;
++		uint64_t tuning:4;
++		uint64_t tx_bs_enh:1;
++		uint64_t tx_bs_en:1;
++		uint64_t loop_enb:1;
++		uint64_t vtest_enb:1;
++		uint64_t bist_enb:1;
++		uint64_t tdata_sel:1;
++		uint64_t taddr_in:4;
++		uint64_t tdata_in:8;
++		uint64_t ate_reset:1;
++	} s;
++	struct cvmx_usbnx_usbp_ctl_status_cn30xx {
++		uint64_t reserved_38_63:26;
++		uint64_t bist_done:1;
++		uint64_t bist_err:1;
++		uint64_t tdata_out:4;
++		uint64_t reserved_30_31:2;
++		uint64_t dma_bmode:1;
++		uint64_t usbc_end:1;
++		uint64_t usbp_bist:1;
++		uint64_t tclk:1;
++		uint64_t dp_pulld:1;
++		uint64_t dm_pulld:1;
++		uint64_t hst_mode:1;
++		uint64_t tuning:4;
++		uint64_t tx_bs_enh:1;
++		uint64_t tx_bs_en:1;
++		uint64_t loop_enb:1;
++		uint64_t vtest_enb:1;
++		uint64_t bist_enb:1;
++		uint64_t tdata_sel:1;
++		uint64_t taddr_in:4;
++		uint64_t tdata_in:8;
++		uint64_t ate_reset:1;
++	} cn30xx;
++	struct cvmx_usbnx_usbp_ctl_status_cn30xx cn31xx;
++	struct cvmx_usbnx_usbp_ctl_status_cn50xx {
++		uint64_t txrisetune:1;
++		uint64_t txvreftune:4;
++		uint64_t txfslstune:4;
++		uint64_t txhsxvtune:2;
++		uint64_t sqrxtune:3;
++		uint64_t compdistune:3;
++		uint64_t otgtune:3;
++		uint64_t otgdisable:1;
++		uint64_t portreset:1;
++		uint64_t drvvbus:1;
++		uint64_t lsbist:1;
++		uint64_t fsbist:1;
++		uint64_t hsbist:1;
++		uint64_t bist_done:1;
++		uint64_t bist_err:1;
++		uint64_t tdata_out:4;
++		uint64_t reserved_31_31:1;
++		uint64_t txpreemphasistune:1;
++		uint64_t dma_bmode:1;
++		uint64_t usbc_end:1;
++		uint64_t usbp_bist:1;
++		uint64_t tclk:1;
++		uint64_t dp_pulld:1;
++		uint64_t dm_pulld:1;
++		uint64_t hst_mode:1;
++		uint64_t reserved_19_22:4;
++		uint64_t tx_bs_enh:1;
++		uint64_t tx_bs_en:1;
++		uint64_t loop_enb:1;
++		uint64_t vtest_enb:1;
++		uint64_t bist_enb:1;
++		uint64_t tdata_sel:1;
++		uint64_t taddr_in:4;
++		uint64_t tdata_in:8;
++		uint64_t ate_reset:1;
++	} cn50xx;
++	struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xx;
++	struct cvmx_usbnx_usbp_ctl_status_cn50xx cn52xxp1;
++	struct cvmx_usbnx_usbp_ctl_status_cn56xx {
++		uint64_t txrisetune:1;
++		uint64_t txvreftune:4;
++		uint64_t txfslstune:4;
++		uint64_t txhsxvtune:2;
++		uint64_t sqrxtune:3;
++		uint64_t compdistune:3;
++		uint64_t otgtune:3;
++		uint64_t otgdisable:1;
++		uint64_t portreset:1;
++		uint64_t drvvbus:1;
++		uint64_t lsbist:1;
++		uint64_t fsbist:1;
++		uint64_t hsbist:1;
++		uint64_t bist_done:1;
++		uint64_t bist_err:1;
++		uint64_t tdata_out:4;
++		uint64_t siddq:1;
++		uint64_t txpreemphasistune:1;
++		uint64_t dma_bmode:1;
++		uint64_t usbc_end:1;
++		uint64_t usbp_bist:1;
++		uint64_t tclk:1;
++		uint64_t dp_pulld:1;
++		uint64_t dm_pulld:1;
++		uint64_t hst_mode:1;
++		uint64_t reserved_19_22:4;
++		uint64_t tx_bs_enh:1;
++		uint64_t tx_bs_en:1;
++		uint64_t loop_enb:1;
++		uint64_t vtest_enb:1;
++		uint64_t bist_enb:1;
++		uint64_t tdata_sel:1;
++		uint64_t taddr_in:4;
++		uint64_t tdata_in:8;
++		uint64_t ate_reset:1;
++	} cn56xx;
++	struct cvmx_usbnx_usbp_ctl_status_cn50xx cn56xxp1;
++};
++
++#endif
+-- 
+1.6.0.6
+
+--
+To unsubscribe from this list: send the line "unsubscribe linux-usb" in
+the body of a message to majordomo@vger.kernel.org
+More majordomo info at  http://vger.kernel.org/majordomo-info.htmlSigned-off-by: David Daney <ddaney@caviumnetworks.com>
+---
+ drivers/usb/host/Kconfig                     |    8 +
+ drivers/usb/host/Makefile                    |    1 +
+ drivers/usb/host/dwc_otg/Kbuild              |   16 +
+ drivers/usb/host/dwc_otg/dwc_otg_attr.c      |  854 ++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_attr.h      |   63 +
+ drivers/usb/host/dwc_otg/dwc_otg_cil.c       | 2887 ++++++++++++++++++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_cil.h       |  866 ++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c  |  689 ++++++
+ drivers/usb/host/dwc_otg/dwc_otg_driver.h    |   63 +
+ drivers/usb/host/dwc_otg/dwc_otg_hcd.c       | 2878 +++++++++++++++++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_hcd.h       |  661 ++++++
+ drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c  | 1890 +++++++++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c |  695 +++++++
+ drivers/usb/host/dwc_otg/dwc_otg_octeon.c    | 1078 ++++++++++
+ drivers/usb/host/dwc_otg/dwc_otg_plat.h      |  236 +++
+ drivers/usb/host/dwc_otg/dwc_otg_regs.h      | 2355 +++++++++++++++++++++
+ 16 files changed, 15240 insertions(+), 0 deletions(-)
+ create mode 100644 drivers/usb/host/dwc_otg/Kbuild
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_attr.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_driver.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_octeon.c
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_plat.h
+ create mode 100644 drivers/usb/host/dwc_otg/dwc_otg_regs.h
+
+diff --git a/drivers/usb/host/Kconfig b/drivers/usb/host/Kconfig
+index 9b43b22..342dc54 100644
+--- a/drivers/usb/host/Kconfig
++++ b/drivers/usb/host/Kconfig
+@@ -381,3 +381,11 @@ config USB_HWA_HCD
+ 
+ 	  To compile this driver a module, choose M here: the module
+ 	  will be called "hwa-hc".
++
++config USB_DWC_OTG
++	tristate "Cavium Octeon USB"
++	depends on USB && CPU_CAVIUM_OCTEON
++	---help---
++	  The Cavium Octeon on-chip USB controller.  To compile this
++	  driver as a module, choose M here: the module will be called
++	  "dwc_otg".
+diff --git a/drivers/usb/host/Makefile b/drivers/usb/host/Makefile
+index f58b249..76faf12 100644
+--- a/drivers/usb/host/Makefile
++++ b/drivers/usb/host/Makefile
+@@ -15,6 +15,7 @@ endif
+ xhci-objs := xhci-hcd.o xhci-mem.o xhci-pci.o xhci-ring.o xhci-hub.o xhci-dbg.o
+ 
+ obj-$(CONFIG_USB_WHCI_HCD)	+= whci/
++obj-$(CONFIG_USB_DWC_OTG)	+= dwc_otg/
+ 
+ obj-$(CONFIG_PCI)		+= pci-quirks.o
+ 
+diff --git a/drivers/usb/host/dwc_otg/Kbuild b/drivers/usb/host/dwc_otg/Kbuild
+new file mode 100644
+index 0000000..cb32638
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/Kbuild
+@@ -0,0 +1,16 @@
++#
++# Makefile for DWC_otg Highspeed USB controller driver
++#
++
++# Use one of the following flags to compile the software in host-only or
++# device-only mode.
++#EXTRA_CFLAGS   += -DDWC_HOST_ONLY
++#EXTRA_CFLAGS	+= -DDWC_DEVICE_ONLY
++
++EXTRA_CFLAGS   += -DDWC_HOST_ONLY
++obj-$(CONFIG_USB_DWC_OTG)	+= dwc_otg.o
++
++dwc_otg-y := dwc_otg_octeon.o dwc_otg_attr.o
++dwc_otg-y	+= dwc_otg_cil.o dwc_otg_cil_intr.o
++dwc_otg-y	+= dwc_otg_hcd.o dwc_otg_hcd_intr.o dwc_otg_hcd_queue.o
++
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.c b/drivers/usb/host/dwc_otg/dwc_otg_attr.c
+new file mode 100644
+index 0000000..d854a79
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.c
+@@ -0,0 +1,854 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/*
++ *
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing.  The Linux driver attributes
++ * feature will be used to provide the Linux Diagnostic
++ * Interface. These attributes are accessed through sysfs.
++ */
++
++/** @page "Linux Module Attributes"
++ *
++ * The Linux module attributes feature is used to provide the Linux
++ * Diagnostic Interface.  These attributes are accessed through sysfs.
++ * The diagnostic interface will provide access to the controller for
++ * bringing up the hardware and testing.
++
++ The following table shows the attributes.
++ <table>
++ <tr>
++ <td><b> Name</b></td>
++ <td><b> Description</b></td>
++ <td><b> Access</b></td>
++ </tr>
++
++ <tr>
++ <td> mode </td>
++ <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hnpcapable </td>
++ <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srpcapable </td>
++ <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
++ Read returns the current value.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> hnp </td>
++ <td> Initiates the Host Negotiation Protocol.  Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> srp </td>
++ <td> Initiates the Session Request Protocol.  Read returns the status.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> buspower </td>
++ <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> bussuspend </td>
++ <td> Suspends the USB bus.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> busconnected </td>
++ <td> Gets the connection status of the bus</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> gotgctl </td>
++ <td> Gets or sets the Core Control Status Register.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gusbcfg </td>
++ <td> Gets or sets the Core USB Configuration Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> grxfsiz </td>
++ <td> Gets or sets the Receive FIFO Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gnptxfsiz </td>
++ <td> Gets or sets the non-periodic Transmit Size Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gpvndctl </td>
++ <td> Gets or sets the PHY Vendor Control Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> ggpio </td>
++ <td> Gets the value in the lower 16-bits of the General Purpose IO Register
++ or sets the upper 16 bits.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> guid </td>
++ <td> Gets or sets the value of the User ID Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> gsnpsid </td>
++ <td> Gets the value of the Synopsys ID Regester</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> devspeed </td>
++ <td> Gets or sets the device speed setting in the DCFG register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> enumspeed </td>
++ <td> Gets the device enumeration Speed.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hptxfsiz </td>
++ <td> Gets the value of the Host Periodic Transmit FIFO</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hprt0 </td>
++ <td> Gets or sets the value in the Host Port Control and Status Register</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regoffset </td>
++ <td> Sets the register offset for the next Register Access</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regvalue </td>
++ <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> remote_wakeup </td>
++ <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
++ wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
++ Wakeup signalling bit in the Device Control Register is set for 1
++ milli-second.</td>
++ <td> Read/Write</td>
++ </tr>
++
++ <tr>
++ <td> regdump </td>
++ <td> Dumps the contents of core registers.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcddump </td>
++ <td> Dumps the current HCD state.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> hcd_frrem </td>
++ <td> Shows the average value of the Frame Remaining
++ field in the Host Frame Number/Frame Remaining register when an SOF interrupt
++ occurs. This can be used to determine the average interrupt latency. Also
++ shows the average Frame Remaining value for start_transfer and the "a" and
++ "b" sample points. The "a" and "b" sample points may be used during debugging
++ bto determine how long it takes to execute a section of the HCD code.</td>
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> rd_reg_test </td>
++ <td> Displays the time required to read the GNPTXFSIZ register many times
++ (the output shows the number of times the register is read).
++ <td> Read</td>
++ </tr>
++
++ <tr>
++ <td> wr_reg_test </td>
++ <td> Displays the time required to write the GNPTXFSIZ register many times
++ (the output shows the number of times the register is written).
++ <td> Read</td>
++ </tr>
++
++ </table>
++
++ Example usage:
++ To get the current mode:
++ cat /sys/devices/lm0/mode
++
++ To power down the USB:
++ echo 0 > /sys/devices/lm0/buspower
++ */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h>		/* permission constants */
++
++#include <asm/io.h>
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_driver.h"
++#ifndef DWC_HOST_ONLY
++#include "dwc_otg_pcd.h"
++#endif
++#include "dwc_otg_hcd.h"
++
++/*
++ * MACROs for defining sysfs attribute
++ */
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_,	\
++					_mask_, _shift_, _string_)	\
++	static ssize_t _otg_attr_name_##_show (struct device *_dev,	\
++					struct device_attribute *attr,	\
++					char *buf)			\
++	{								\
++		struct dwc_otg_device *otg_dev = _dev->platform_data;	\
++		uint32_t val;						\
++		val = dwc_read_reg32(_addr_);				\
++		val = (val & (_mask_)) >> _shift_;			\
++		return sprintf(buf, "%s = 0x%x\n", _string_, val);	\
++	}
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_,	\
++					_mask_, _shift_, _string_)	\
++	static ssize_t _otg_attr_name_##_store (struct device *_dev,	\
++						struct device_attribute *attr, \
++						const char *buf, size_t count) \
++	{								\
++		struct dwc_otg_device *otg_dev = _dev->platform_data;	\
++		uint32_t set = simple_strtoul(buf, NULL, 16);		\
++		uint32_t clear = set;					\
++		clear = ((~clear) << _shift_) & _mask_;			\
++		set = (set << _shift_) & _mask_;			\
++		dev_dbg(_dev,						\
++			"Storing Address=%p Set=0x%08x Clear=0x%08x\n",	\
++			_addr_, set, clear);				\
++		dwc_modify_reg32(_addr_, clear, set);			\
++		return count;						\
++	}
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_, _addr_,	\
++					_mask_, _shift_, _string_)	\
++	DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_, _addr_,	\
++					_mask_, _shift_, _string_)	\
++	DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_, _addr_,	\
++					_mask_, _shift_, _string_)	\
++	DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show,	\
++		_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_, _addr_,	\
++					_mask_,	_shift_, _string_)	\
++	DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,		\
++					_addr_, _mask_, _shift_, _string_) \
++	DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
++
++/*
++ * MACROs for defining sysfs attribute for 32-bit registers
++ */
++#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
++	static ssize_t _otg_attr_name_##_show(struct device *_dev,	\
++					struct device_attribute *attr,	\
++					char *buf)			\
++	{								\
++		struct dwc_otg_device *otg_dev = _dev->platform_data;	\
++		uint32_t val;						\
++		val = dwc_read_reg32(_addr_);				\
++		return sprintf(buf, "%s = 0x%08x\n", _string_, val);	\
++	}
++
++#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \
++	static ssize_t _otg_attr_name_##_store(struct device *_dev,	\
++					struct device_attribute *attr,	\
++					const char *buf, size_t count)	\
++	{								\
++		struct dwc_otg_device *otg_dev = _dev->platform_data;	\
++		uint32_t val = simple_strtoul(buf, NULL, 16);		\
++		dev_dbg(_dev, "Storing Address=%p Val=0x%08x\n", _addr_, val); \
++		dwc_write_reg32(_addr_, val);				\
++		return count;						\
++	}
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_, _addr_, _string_) \
++	DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
++	DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_, _addr_, _string_) \
++	DEVICE_ATTR(_otg_attr_name_, 0644, _otg_attr_name_##_show,	\
++		_otg_attr_name_##_store);
++
++#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_, _addr_, _string_) \
++	DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_, _addr_, _string_) \
++	DEVICE_ATTR(_otg_attr_name_, 0444, _otg_attr_name_##_show, NULL);
++
++/**
++ * Show the register offset of the Register Access.
++ */
++static ssize_t regoffset_show(struct device *_dev,
++			      struct device_attribute *attr, char *buf)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	return snprintf(buf, sizeof("0xFFFFFFFF\n") + 1, "0x%08x\n",
++			otg_dev->reg_offset);
++}
++
++/**
++ * Set the register offset for the next Register Access 	Read/Write
++ */
++static ssize_t regoffset_store(struct device *_dev,
++			       struct device_attribute *attr, const char *buf,
++			       size_t count)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	uint32_t offset = simple_strtoul(buf, NULL, 16);
++
++	if (offset < SZ_256K)
++		otg_dev->reg_offset = offset;
++	else
++		dev_err(_dev, "invalid offset\n");
++
++	return count;
++}
++
++DEVICE_ATTR(regoffset, S_IRUGO | S_IWUSR, regoffset_show, regoffset_store);
++
++/**
++ * Show the value of the register at the offset in the reg_offset
++ * attribute.
++ */
++static ssize_t regvalue_show(struct device *_dev, struct device_attribute *attr,
++			     char *buf)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	uint32_t val;
++	uint32_t *addr;
++
++	if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
++		/* Calculate the address */
++		addr = (uint32_t *) (otg_dev->reg_offset +
++				     (uint8_t *) otg_dev->base);
++
++		val = dwc_read_reg32(addr);
++		return snprintf(buf,
++				sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n") + 1,
++				"Reg@0x%06x = 0x%08x\n", otg_dev->reg_offset,
++				val);
++	} else {
++		dev_err(_dev, "Invalid offset (0x%0x)\n", otg_dev->reg_offset);
++		return sprintf(buf, "invalid offset\n");
++	}
++}
++
++/**
++ * Store the value in the register at the offset in the reg_offset
++ * attribute.
++ *
++ */
++static ssize_t regvalue_store(struct device *_dev,
++			      struct device_attribute *attr, const char *buf,
++			      size_t count)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	uint32_t *addr;
++	uint32_t val = simple_strtoul(buf, NULL, 16);
++
++	if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
++		/* Calculate the address */
++		addr = (uint32_t *) (otg_dev->reg_offset +
++				     (uint8_t *) otg_dev->base);
++
++		dwc_write_reg32(addr, val);
++	} else {
++		dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
++			otg_dev->reg_offset);
++	}
++	return count;
++}
++
++DEVICE_ATTR(regvalue, S_IRUGO | S_IWUSR, regvalue_show, regvalue_store);
++
++/*
++ * Attributes
++ */
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,
++				&(otg_dev->core_if->core_global_regs->gotgctl),
++				(1 << 20), 20, "Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,
++				&(otg_dev->core_if->core_global_regs->gusbcfg),
++				(1 << 9), 9, "Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,
++				&(otg_dev->core_if->core_global_regs->gusbcfg),
++				(1 << 8), 8, "Mode");
++#if 0
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend, &(otg_dev->core_if->core_global_regs->gotgctl), (1<<8), 8, "Mode");
++#endif
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected, otg_dev->core_if->host_if->hprt0,
++				0x01, 0, "Bus Connected");
++
++DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,
++			     &(otg_dev->core_if->core_global_regs->gotgctl),
++			     "GOTGCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,
++			     &(otg_dev->core_if->core_global_regs->gusbcfg),
++			     "GUSBCFG");
++DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,
++			     &(otg_dev->core_if->core_global_regs->grxfsiz),
++			     "GRXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,
++			     &(otg_dev->core_if->core_global_regs->gnptxfsiz),
++			     "GNPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,
++			     &(otg_dev->core_if->core_global_regs->gpvndctl),
++			     "GPVNDCTL");
++DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,
++			     &(otg_dev->core_if->core_global_regs->ggpio),
++			     "GGPIO");
++DWC_OTG_DEVICE_ATTR_REG32_RW(guid, &(otg_dev->core_if->core_global_regs->guid),
++			     "GUID");
++DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,
++			     &(otg_dev->core_if->core_global_regs->gsnpsid),
++			     "GSNPSID");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,
++				&(otg_dev->core_if->dev_if->dev_global_regs->
++				  dcfg), 0x3, 0, "Device Speed");
++DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,
++				&(otg_dev->core_if->dev_if->dev_global_regs->
++				  dsts), 0x6, 1, "Device Enumeration Speed");
++
++DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,
++			     &(otg_dev->core_if->core_global_regs->hptxfsiz),
++			     "HPTXFSIZ");
++DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0, otg_dev->core_if->host_if->hprt0, "HPRT0");
++
++/**
++ * @todo Add code to initiate the HNP.
++ */
++/**
++ * Show the HNP status bit
++ */
++static ssize_t hnp_show(struct device *_dev, struct device_attribute *attr,
++			char *buf)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	union gotgctl_data val;
++	val.d32 =
++	    dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl));
++	return sprintf(buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
++}
++
++/**
++ * Set the HNP Request bit
++ */
++static ssize_t hnp_store(struct device *_dev, struct device_attribute *attr,
++			 const char *buf, size_t count)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	uint32_t in = simple_strtoul(buf, NULL, 16);
++	uint32_t *addr =
++	    (uint32_t *) &(otg_dev->core_if->core_global_regs->gotgctl);
++	union gotgctl_data mem;
++	mem.d32 = dwc_read_reg32(addr);
++	mem.b.hnpreq = in;
++	dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32);
++	dwc_write_reg32(addr, mem.d32);
++	return count;
++}
++
++DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
++
++/**
++ * @todo Add code to initiate the SRP.
++ */
++/**
++ * Show the SRP status bit
++ */
++static ssize_t srp_show(struct device *_dev, struct device_attribute *attr,
++			char *buf)
++{
++#ifndef DWC_HOST_ONLY
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	union gotgctl_data val;
++	val.d32 =
++	    dwc_read_reg32(&(otg_dev->core_if->core_global_regs->gotgctl));
++	return sprintf(buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
++#else
++	return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++/**
++ * Set the SRP Request bit
++ */
++static ssize_t srp_store(struct device *_dev, struct device_attribute *attr,
++			 const char *buf, size_t count)
++{
++#ifndef DWC_HOST_ONLY
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	dwc_otg_pcd_initiate_srp(otg_dev->pcd);
++#endif
++	return count;
++}
++
++DEVICE_ATTR(srp, 0644, srp_show, srp_store);
++
++/**
++ * @todo Need to do more for power on/off?
++ */
++/**
++ * Show the Bus Power status
++ */
++static ssize_t buspower_show(struct device *_dev, struct device_attribute *attr,
++			     char *buf)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	union hprt0_data val;
++	val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0);
++	return sprintf(buf, "Bus Power = 0x%x\n", val.b.prtpwr);
++}
++
++/**
++ * Set the Bus Power status
++ */
++static ssize_t buspower_store(struct device *_dev,
++			      struct device_attribute *attr, const char *buf,
++			      size_t count)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	uint32_t on = simple_strtoul(buf, NULL, 16);
++	uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0;
++	union hprt0_data mem;
++
++	mem.d32 = dwc_read_reg32(addr);
++	mem.b.prtpwr = on;
++
++	dwc_write_reg32(addr, mem.d32);
++
++	return count;
++}
++
++DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
++
++/**
++ * @todo Need to do more for suspend?
++ */
++/**
++ * Show the Bus Suspend status
++ */
++static ssize_t bussuspend_show(struct device *_dev,
++			       struct device_attribute *attr, char *buf)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	union hprt0_data val;
++	val.d32 = dwc_read_reg32(otg_dev->core_if->host_if->hprt0);
++	return sprintf(buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
++}
++
++/**
++ * Set the Bus Suspend status
++ */
++static ssize_t bussuspend_store(struct device *_dev,
++				struct device_attribute *attr, const char *buf,
++				size_t count)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	uint32_t in = simple_strtoul(buf, NULL, 16);
++	uint32_t *addr = (uint32_t *) otg_dev->core_if->host_if->hprt0;
++	union hprt0_data mem;
++	mem.d32 = dwc_read_reg32(addr);
++	mem.b.prtsusp = in;
++	dev_dbg(_dev, "Storing Address=%p Data=0x%08x\n", addr, mem.d32);
++	dwc_write_reg32(addr, mem.d32);
++	return count;
++}
++
++DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
++
++/**
++ * Show the status of Remote Wakeup.
++ */
++static ssize_t remote_wakeup_show(struct device *_dev,
++				  struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_HOST_ONLY
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	union dctl_data val;
++	val.d32 =
++	    dwc_read_reg32(&otg_dev->core_if->dev_if->dev_global_regs->dctl);
++	return sprintf(buf, "Remote Wakeup = %d Enabled = %d\n",
++		       val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
++#else
++	return sprintf(buf, "Host Only Mode!\n");
++#endif
++}
++
++/**
++ * Initiate a remote wakeup of the host.  The Device control register
++ * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
++ * flag is set.
++ *
++ */
++static ssize_t remote_wakeup_store(struct device *_dev,
++				   struct device_attribute *attr,
++				   const char *buf, size_t count)
++{
++#ifndef DWC_HOST_ONLY
++	uint32_t val = simple_strtoul(buf, NULL, 16);
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	if (val & 1)
++		dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
++	else
++		dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
++#endif
++	return count;
++}
++
++DEVICE_ATTR(remote_wakeup, S_IRUGO | S_IWUSR, remote_wakeup_show,
++	    remote_wakeup_store);
++
++/**
++ * Dump global registers and either host or device registers (depending on the
++ * current mode of the core).
++ */
++static ssize_t regdump_show(struct device *_dev, struct device_attribute *attr,
++			    char *buf)
++{
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++
++	dwc_otg_dump_global_registers(otg_dev->core_if);
++	if (dwc_otg_is_host_mode(otg_dev->core_if))
++		dwc_otg_dump_host_registers(otg_dev->core_if);
++	else
++		dwc_otg_dump_dev_registers(otg_dev->core_if);
++
++	return sprintf(buf, "Register Dump\n");
++}
++
++DEVICE_ATTR(regdump, S_IRUGO | S_IWUSR, regdump_show, 0);
++
++/**
++ * Dump the current hcd state.
++ */
++static ssize_t hcddump_show(struct device *_dev, struct device_attribute *attr,
++			    char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	dwc_otg_hcd_dump_state(otg_dev->hcd);
++#endif
++	return sprintf(buf, "HCD Dump\n");
++}
++
++DEVICE_ATTR(hcddump, S_IRUGO | S_IWUSR, hcddump_show, 0);
++
++/**
++ * Dump the average frame remaining at SOF. This can be used to
++ * determine average interrupt latency. Frame remaining is also shown for
++ * start transfer and two additional sample points.
++ */
++static ssize_t hcd_frrem_show(struct device *_dev,
++			      struct device_attribute *attr, char *buf)
++{
++#ifndef DWC_DEVICE_ONLY
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	dwc_otg_hcd_dump_frrem(otg_dev->hcd);
++#endif
++	return sprintf(buf, "HCD Dump Frame Remaining\n");
++}
++
++DEVICE_ATTR(hcd_frrem, S_IRUGO | S_IWUSR, hcd_frrem_show, 0);
++
++/**
++ * Displays the time required to read the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is read).
++ */
++#define RW_REG_COUNT 10000000
++#define MSEC_PER_JIFFIE (1000/HZ)
++static ssize_t rd_reg_test_show(struct device *_dev,
++				struct device_attribute *attr, char *buf)
++{
++	int i;
++	int time;
++	int start_jiffies;
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++
++	pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++	       HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++	start_jiffies = jiffies;
++	for (i = 0; i < RW_REG_COUNT; i++)
++		dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++
++	time = jiffies - start_jiffies;
++	return sprintf(buf,
++		       "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++		       RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(rd_reg_test, S_IRUGO | S_IWUSR, rd_reg_test_show, 0);
++
++/**
++ * Displays the time required to write the GNPTXFSIZ register many times (the
++ * output shows the number of times the register is written).
++ */
++static ssize_t wr_reg_test_show(struct device *_dev,
++				struct device_attribute *attr, char *buf)
++{
++	int i;
++	int time;
++	int start_jiffies;
++	struct dwc_otg_device *otg_dev = _dev->platform_data;
++	uint32_t reg_val;
++
++	pr_info("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
++	       HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
++	reg_val =
++	    dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
++	start_jiffies = jiffies;
++	for (i = 0; i < RW_REG_COUNT; i++)
++		dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz,
++				reg_val);
++
++	time = jiffies - start_jiffies;
++	return sprintf(buf,
++		       "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
++		       RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
++}
++
++DEVICE_ATTR(wr_reg_test, S_IRUGO | S_IWUSR, wr_reg_test_show, 0);
++
++/*
++ * Create the device files
++ */
++void dwc_otg_attr_create(struct device *dev)
++{
++	int error;
++	error = device_create_file(dev, &dev_attr_regoffset);
++	error |= device_create_file(dev, &dev_attr_regvalue);
++	error |= device_create_file(dev, &dev_attr_mode);
++	error |= device_create_file(dev, &dev_attr_hnpcapable);
++	error |= device_create_file(dev, &dev_attr_srpcapable);
++	error |= device_create_file(dev, &dev_attr_hnp);
++	error |= device_create_file(dev, &dev_attr_srp);
++	error |= device_create_file(dev, &dev_attr_buspower);
++	error |= device_create_file(dev, &dev_attr_bussuspend);
++	error |= device_create_file(dev, &dev_attr_busconnected);
++	error |= device_create_file(dev, &dev_attr_gotgctl);
++	error |= device_create_file(dev, &dev_attr_gusbcfg);
++	error |= device_create_file(dev, &dev_attr_grxfsiz);
++	error |= device_create_file(dev, &dev_attr_gnptxfsiz);
++	error |= device_create_file(dev, &dev_attr_gpvndctl);
++	error |= device_create_file(dev, &dev_attr_ggpio);
++	error |= device_create_file(dev, &dev_attr_guid);
++	error |= device_create_file(dev, &dev_attr_gsnpsid);
++	error |= device_create_file(dev, &dev_attr_devspeed);
++	error |= device_create_file(dev, &dev_attr_enumspeed);
++	error |= device_create_file(dev, &dev_attr_hptxfsiz);
++	error |= device_create_file(dev, &dev_attr_hprt0);
++	error |= device_create_file(dev, &dev_attr_remote_wakeup);
++	error |= device_create_file(dev, &dev_attr_regdump);
++	error |= device_create_file(dev, &dev_attr_hcddump);
++	error |= device_create_file(dev, &dev_attr_hcd_frrem);
++	error |= device_create_file(dev, &dev_attr_rd_reg_test);
++	error |= device_create_file(dev, &dev_attr_wr_reg_test);
++	if (error)
++		pr_err("DWC_OTG: Creating some device files failed\n");
++}
++
++/*
++ * Remove the device files
++ */
++void dwc_otg_attr_remove(struct device *dev)
++{
++	device_remove_file(dev, &dev_attr_regoffset);
++	device_remove_file(dev, &dev_attr_regvalue);
++	device_remove_file(dev, &dev_attr_mode);
++	device_remove_file(dev, &dev_attr_hnpcapable);
++	device_remove_file(dev, &dev_attr_srpcapable);
++	device_remove_file(dev, &dev_attr_hnp);
++	device_remove_file(dev, &dev_attr_srp);
++	device_remove_file(dev, &dev_attr_buspower);
++	device_remove_file(dev, &dev_attr_bussuspend);
++	device_remove_file(dev, &dev_attr_busconnected);
++	device_remove_file(dev, &dev_attr_gotgctl);
++	device_remove_file(dev, &dev_attr_gusbcfg);
++	device_remove_file(dev, &dev_attr_grxfsiz);
++	device_remove_file(dev, &dev_attr_gnptxfsiz);
++	device_remove_file(dev, &dev_attr_gpvndctl);
++	device_remove_file(dev, &dev_attr_ggpio);
++	device_remove_file(dev, &dev_attr_guid);
++	device_remove_file(dev, &dev_attr_gsnpsid);
++	device_remove_file(dev, &dev_attr_devspeed);
++	device_remove_file(dev, &dev_attr_enumspeed);
++	device_remove_file(dev, &dev_attr_hptxfsiz);
++	device_remove_file(dev, &dev_attr_hprt0);
++	device_remove_file(dev, &dev_attr_remote_wakeup);
++	device_remove_file(dev, &dev_attr_regdump);
++	device_remove_file(dev, &dev_attr_hcddump);
++	device_remove_file(dev, &dev_attr_hcd_frrem);
++	device_remove_file(dev, &dev_attr_rd_reg_test);
++	device_remove_file(dev, &dev_attr_wr_reg_test);
++}
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_attr.h b/drivers/usb/host/dwc_otg/dwc_otg_attr.h
+new file mode 100644
+index 0000000..925524f
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_attr.h
+@@ -0,0 +1,63 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_ATTR_H__)
++#define __DWC_OTG_ATTR_H__
++
++/*
++ * This file contains the interface to the Linux device attributes.
++ */
++extern struct device_attribute dev_attr_regoffset;
++extern struct device_attribute dev_attr_regvalue;
++
++extern struct device_attribute dev_attr_mode;
++extern struct device_attribute dev_attr_hnpcapable;
++extern struct device_attribute dev_attr_srpcapable;
++extern struct device_attribute dev_attr_hnp;
++extern struct device_attribute dev_attr_srp;
++extern struct device_attribute dev_attr_buspower;
++extern struct device_attribute dev_attr_bussuspend;
++extern struct device_attribute dev_attr_busconnected;
++extern struct device_attribute dev_attr_gotgctl;
++extern struct device_attribute dev_attr_gusbcfg;
++extern struct device_attribute dev_attr_grxfsiz;
++extern struct device_attribute dev_attr_gnptxfsiz;
++extern struct device_attribute dev_attr_gpvndctl;
++extern struct device_attribute dev_attr_ggpio;
++extern struct device_attribute dev_attr_guid;
++extern struct device_attribute dev_attr_gsnpsid;
++extern struct device_attribute dev_attr_devspeed;
++extern struct device_attribute dev_attr_enumspeed;
++extern struct device_attribute dev_attr_hptxfsiz;
++extern struct device_attribute dev_attr_hprt0;
++
++void dwc_otg_attr_create(struct device *dev);
++void dwc_otg_attr_remove(struct device *dev);
++
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.c b/drivers/usb/host/dwc_otg/dwc_otg_cil.c
+new file mode 100644
+index 0000000..86153ba
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.c
+@@ -0,0 +1,2887 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/*
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * The CIL manages the memory map for the core so that the HCD and PCD
++ * don't have to do this separately. It also handles basic tasks like
++ * reading/writing the registers and data FIFOs in the controller.
++ * Some of the data access functions provide encapsulation of several
++ * operations required to perform a task, such as writing multiple
++ * registers to start a transfer. Finally, the CIL performs basic
++ * services that are not specific to either the host or device modes
++ * of operation. These services include management of the OTG Host
++ * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
++ * Diagnostic API is also provided to allow testing of the controller
++ * hardware.
++ *
++ * The Core Interface Layer has the following requirements:
++ * - Provides basic controller operations.
++ * - Minimal use of OS services.
++ * - The OS services used will be abstracted by using inline functions
++ *   or macros.
++ *
++ */
++#include <asm/unaligned.h>
++#ifdef DEBUG
++#include <linux/jiffies.h>
++#endif
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++
++/**
++ * This function is called to initialize the DWC_otg CSR data
++ * structures.  The register addresses in the device and host
++ * structures are initialized from the base address supplied by the
++ * caller.  The calling function must make the OS calls to get the
++ * base address of the DWC_otg controller registers.  The core_params
++ * argument holds the parameters that specify how the core should be
++ * configured.
++ *
++ * @reg_base_addr: Base address of DWC_otg core registers
++ * @core_params: Pointer to the core configuration parameters
++ *
++ */
++struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr,
++				    struct dwc_otg_core_params *core_params)
++{
++	struct dwc_otg_core_if *core_if = 0;
++	struct dwc_otg_dev_if *dev_if = 0;
++	struct dwc_otg_host_if *host_if = 0;
++	uint8_t *reg_base = (uint8_t *) reg_base_addr;
++	int i = 0;
++
++	DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr,
++		    core_params);
++
++	core_if = kmalloc(sizeof(struct dwc_otg_core_if), GFP_KERNEL);
++	if (core_if == 0) {
++		DWC_DEBUGPL(DBG_CIL,
++			    "Allocation of struct dwc_otg_core_if failed\n");
++		return 0;
++	}
++	memset(core_if, 0, sizeof(struct dwc_otg_core_if));
++
++	core_if->core_params = core_params;
++	core_if->core_global_regs =
++		(struct dwc_otg_core_global_regs *)reg_base;
++	/*
++	 * Allocate the Device Mode structures.
++	 */
++	dev_if = kmalloc(sizeof(struct dwc_otg_dev_if), GFP_KERNEL);
++	if (dev_if == 0) {
++		DWC_DEBUGPL(DBG_CIL, "Allocation of struct dwc_otg_dev_if "
++			    "failed\n");
++		kfree(core_if);
++		return 0;
++	}
++
++	dev_if->dev_global_regs =
++	    (struct dwc_otg_dev_global_regs *) (reg_base +
++					      DWC_DEV_GLOBAL_REG_OFFSET);
++
++	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++		dev_if->in_ep_regs[i] = (struct dwc_otg_dev_in_ep_regs *)
++		    (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
++		     (i * DWC_EP_REG_OFFSET));
++
++		dev_if->out_ep_regs[i] = (struct dwc_otg_dev_out_ep_regs *)
++		    (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
++		     (i * DWC_EP_REG_OFFSET));
++		DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
++			    i, &dev_if->in_ep_regs[i]->diepctl);
++		DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
++			    i, &dev_if->out_ep_regs[i]->doepctl);
++	}
++	dev_if->speed = 0;	/* unknown */
++	dev_if->num_eps = MAX_EPS_CHANNELS;
++	dev_if->num_perio_eps = 0;
++
++	core_if->dev_if = dev_if;
++	/*
++	 * Allocate the Host Mode structures.
++	 */
++	host_if = kmalloc(sizeof(struct dwc_otg_host_if), GFP_KERNEL);
++	if (host_if == 0) {
++		DWC_DEBUGPL(DBG_CIL,
++			    "Allocation of struct dwc_otg_host_if failed\n");
++		kfree(dev_if);
++		kfree(core_if);
++		return 0;
++	}
++
++	host_if->host_global_regs = (struct dwc_otg_host_global_regs *)
++	    (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
++	host_if->hprt0 =
++	    (uint32_t *) (reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
++	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++		host_if->hc_regs[i] = (struct dwc_otg_hc_regs *)
++		    (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
++		     (i * DWC_OTG_CHAN_REGS_OFFSET));
++		DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
++			    i, &host_if->hc_regs[i]->hcchar);
++	}
++	host_if->num_host_channels = MAX_EPS_CHANNELS;
++	core_if->host_if = host_if;
++
++	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++		core_if->data_fifo[i] =
++		    (uint32_t *) (reg_base + DWC_OTG_DATA_FIFO_OFFSET +
++				  (i * DWC_OTG_DATA_FIFO_SIZE));
++		DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=%p\n",
++			    i, core_if->data_fifo[i]);
++	}
++
++	core_if->pcgcctl = (uint32_t *) (reg_base + DWC_OTG_PCGCCTL_OFFSET);
++
++	/*
++	 * Store the contents of the hardware configuration registers here for
++	 * easy access later.
++	 */
++	core_if->hwcfg1.d32 =
++	    dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
++	core_if->hwcfg2.d32 =
++	    dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
++	core_if->hwcfg3.d32 =
++	    dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
++	core_if->hwcfg4.d32 =
++	    dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
++
++	DWC_DEBUGPL(DBG_CILV, "hwcfg1=%08x\n", core_if->hwcfg1.d32);
++	DWC_DEBUGPL(DBG_CILV, "hwcfg2=%08x\n", core_if->hwcfg2.d32);
++	DWC_DEBUGPL(DBG_CILV, "hwcfg3=%08x\n", core_if->hwcfg3.d32);
++	DWC_DEBUGPL(DBG_CILV, "hwcfg4=%08x\n", core_if->hwcfg4.d32);
++
++	DWC_DEBUGPL(DBG_CILV, "op_mode=%0x\n", core_if->hwcfg2.b.op_mode);
++	DWC_DEBUGPL(DBG_CILV, "arch=%0x\n", core_if->hwcfg2.b.architecture);
++	DWC_DEBUGPL(DBG_CILV, "num_dev_ep=%d\n", core_if->hwcfg2.b.num_dev_ep);
++	DWC_DEBUGPL(DBG_CILV, "num_host_chan=%d\n",
++		    core_if->hwcfg2.b.num_host_chan);
++	DWC_DEBUGPL(DBG_CILV, "nonperio_tx_q_depth=0x%0x\n",
++		    core_if->hwcfg2.b.nonperio_tx_q_depth);
++	DWC_DEBUGPL(DBG_CILV, "host_perio_tx_q_depth=0x%0x\n",
++		    core_if->hwcfg2.b.host_perio_tx_q_depth);
++	DWC_DEBUGPL(DBG_CILV, "dev_token_q_depth=0x%0x\n",
++		    core_if->hwcfg2.b.dev_token_q_depth);
++
++	DWC_DEBUGPL(DBG_CILV, "Total FIFO SZ=%d\n",
++		    core_if->hwcfg3.b.dfifo_depth);
++	DWC_DEBUGPL(DBG_CILV, "xfer_size_cntr_width=%0x\n",
++		    core_if->hwcfg3.b.xfer_size_cntr_width);
++
++	/*
++	 * Set the SRP sucess bit for FS-I2c
++	 */
++	core_if->srp_success = 0;
++	core_if->srp_timer_started = 0;
++
++	return core_if;
++}
++
++/**
++ * This function frees the structures allocated by dwc_otg_cil_init().
++ *
++ * @core_if: The core interface pointer returned from
++ * dwc_otg_cil_init().
++ *
++ */
++void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if)
++{
++	/* Disable all interrupts */
++	dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
++	dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
++
++	kfree(core_if->dev_if);
++	kfree(core_if->host_if);
++
++	kfree(core_if);
++}
++
++/**
++ * This function enables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if)
++{
++	union gahbcfg_data ahbcfg = {.d32 = 0 };
++	ahbcfg.b.glblintrmsk = 1;	/* Enable interrupts */
++	dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
++}
++
++/**
++ * This function disables the controller's Global Interrupt in the AHB Config
++ * register.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if)
++{
++	union gahbcfg_data ahbcfg = {.d32 = 0 };
++	ahbcfg.b.glblintrmsk = 1;	/* Enable interrupts */
++	dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
++}
++
++/**
++ * This function initializes the commmon interrupts, used in both
++ * device and host modes.
++ *
++ * @core_if: Programming view of the DWC_otg controller
++ *
++ */
++static void dwc_otg_enable_common_interrupts(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs =
++		core_if->core_global_regs;
++	union gintmsk_data intr_mask = {.d32 = 0 };
++	/* Clear any pending OTG Interrupts */
++	dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
++	/* Clear any pending interrupts */
++	dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++	/*
++	 * Enable the interrupts in the GINTMSK.
++	 */
++	intr_mask.b.modemismatch = 1;
++	intr_mask.b.otgintr = 1;
++	if (!core_if->dma_enable)
++		intr_mask.b.rxstsqlvl = 1;
++
++	intr_mask.b.conidstschng = 1;
++	intr_mask.b.wkupintr = 1;
++	intr_mask.b.disconnect = 1;
++	intr_mask.b.usbsuspend = 1;
++	intr_mask.b.sessreqintr = 1;
++	dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
++}
++
++/**
++ * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
++ * type.
++ */
++static void init_fslspclksel(struct dwc_otg_core_if *core_if)
++{
++	uint32_t val;
++	union hcfg_data hcfg;
++
++	if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++	     (core_if->hwcfg2.b.fs_phy_type == 1) &&
++	     (core_if->core_params->ulpi_fs_ls)) ||
++	    (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++		/* Full speed PHY */
++		val = DWC_HCFG_48_MHZ;
++	} else {
++		/* High speed PHY running at full speed or high speed */
++		val = DWC_HCFG_30_60_MHZ;
++	}
++
++	DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
++	hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
++	hcfg.b.fslspclksel = val;
++	dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
++}
++
++/**
++ * Initializes the DevSpd field of the DCFG register depending on the PHY type
++ * and the enumeration speed of the device.
++ */
++static void init_devspd(struct dwc_otg_core_if *core_if)
++{
++	uint32_t val;
++	union dcfg_data dcfg;
++
++	if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
++	     (core_if->hwcfg2.b.fs_phy_type == 1) &&
++	     (core_if->core_params->ulpi_fs_ls)) ||
++	    (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++		/* Full speed PHY */
++		val = 0x3;
++	} else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++		/* High speed PHY running at full speed */
++		val = 0x1;
++	} else {
++		/* High speed PHY running at high speed */
++		val = 0x0;
++	}
++
++	DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
++	dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
++	dcfg.b.devspd = val;
++	dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
++}
++
++/**
++ * This function initializes the DWC_otg controller registers and
++ * prepares the core for device mode or host mode operation.
++ *
++ * @core_if: Programming view of the DWC_otg controller
++ *
++ */
++void dwc_otg_core_init(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++	int i = 0;
++	union gahbcfg_data ahbcfg = {.d32 = 0 };
++	union gusbcfg_data usbcfg = {.d32 = 0 };
++	union gi2cctl_data i2cctl = {.d32 = 0 };
++
++	DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
++
++	/* Common Initialization */
++
++	usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++
++	/* Program the ULPI External VBUS bit if needed */
++	usbcfg.b.ulpi_ext_vbus_drv =
++	    (core_if->core_params->phy_ulpi_ext_vbus ==
++	     DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
++
++	/* Set external TS Dline pulsing */
++	usbcfg.b.term_sel_dl_pulse =
++	    (core_if->core_params->ts_dline == 1) ? 1 : 0;
++	dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++	/* Reset the Controller */
++	dwc_otg_core_reset(core_if);
++
++	/* Initialize parameters from Hardware configuration registers. */
++	dev_if->num_eps = core_if->hwcfg2.b.num_dev_ep;
++	dev_if->num_perio_eps = core_if->hwcfg4.b.num_dev_perio_in_ep;
++
++	DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n",
++		    core_if->hwcfg4.b.num_dev_perio_in_ep);
++	for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++		dev_if->perio_tx_fifo_size[i] =
++		    dwc_read_reg32(&global_regs->dptxfsiz[i]) >> 16;
++		DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
++			    i, dev_if->perio_tx_fifo_size[i]);
++	}
++
++	core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
++	core_if->rx_fifo_size = dwc_read_reg32(&global_regs->grxfsiz);
++	core_if->nperio_tx_fifo_size =
++	    dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
++
++	DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
++	DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
++	DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n",
++		    core_if->nperio_tx_fifo_size);
++
++	/* This programming sequence needs to happen in FS mode before any other
++	 * programming occurs */
++	if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
++	    (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
++		/* If FS mode with FS PHY */
++
++		/* core_init() is now called on every switch so only call the
++		 * following for the first time through. */
++		if (!core_if->phy_init_done) {
++			core_if->phy_init_done = 1;
++			DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
++			usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++			usbcfg.b.physel = 1;
++			dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++			/* Reset after a PHY select */
++			dwc_otg_core_reset(core_if);
++		}
++
++		/* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS.  Also
++		 * do this on HNP Dev/Host mode switches (done in dev_init and
++		 * host_init). */
++		if (dwc_otg_is_host_mode(core_if))
++			init_fslspclksel(core_if);
++		else
++			init_devspd(core_if);
++
++		if (core_if->core_params->i2c_enable) {
++			DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
++			/* Program GUSBCFG.OtgUtmifsSel to I2C */
++			usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++			usbcfg.b.otgutmifssel = 1;
++			dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++			/* Program GI2CCTL.I2CEn */
++			i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
++			i2cctl.b.i2cdevaddr = 1;
++			i2cctl.b.i2cen = 0;
++			dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
++			i2cctl.b.i2cen = 1;
++			dwc_write_reg32(&global_regs->gi2cctl, i2cctl.d32);
++		}
++
++	}
++	/* endif speed == DWC_SPEED_PARAM_FULL */
++	else {
++		/* High speed PHY. */
++		if (!core_if->phy_init_done) {
++			core_if->phy_init_done = 1;
++			/* HS PHY parameters.  These parameters are preserved
++			 * during soft reset so only program the first time.  Do
++			 * a soft reset immediately after setting phyif.  */
++			usbcfg.b.ulpi_utmi_sel =
++			    (core_if->core_params->phy_type ==
++			     DWC_PHY_TYPE_PARAM_ULPI);
++			if (usbcfg.b.ulpi_utmi_sel == 1) {
++				/* ULPI interface */
++				usbcfg.b.phyif = 0;
++				usbcfg.b.ddrsel =
++				    core_if->core_params->phy_ulpi_ddr;
++			} else {
++				/* UTMI+ interface */
++				if (core_if->core_params->phy_utmi_width == 16)
++					usbcfg.b.phyif = 1;
++				else
++					usbcfg.b.phyif = 0;
++			}
++			dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++			/* Reset after setting the PHY parameters */
++			dwc_otg_core_reset(core_if);
++		}
++	}
++
++	if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
++	    (core_if->hwcfg2.b.fs_phy_type == 1) &&
++	    (core_if->core_params->ulpi_fs_ls)) {
++		DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
++		usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++		usbcfg.b.ulpi_fsls = 1;
++		usbcfg.b.ulpi_clk_sus_m = 1;
++		dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++	} else {
++		usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++		usbcfg.b.ulpi_fsls = 0;
++		usbcfg.b.ulpi_clk_sus_m = 0;
++		dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++	}
++
++	/* Program the GAHBCFG Register. */
++	switch (core_if->hwcfg2.b.architecture) {
++
++	case DWC_SLAVE_ONLY_ARCH:
++		DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
++		ahbcfg.b.nptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++		ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
++		core_if->dma_enable = 0;
++		break;
++
++	case DWC_EXT_DMA_ARCH:
++		DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
++		ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
++		core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++		break;
++
++	case DWC_INT_DMA_ARCH:
++		DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
++		ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
++		core_if->dma_enable = (core_if->core_params->dma_enable != 0);
++		break;
++
++	}
++	ahbcfg.b.dmaenable = core_if->dma_enable;
++	dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
++
++	/*
++	 * Program the GUSBCFG register.
++	 */
++	usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
++
++	switch (core_if->hwcfg2.b.op_mode) {
++	case DWC_MODE_HNP_SRP_CAPABLE:
++		usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
++				   DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
++		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++				   DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++		break;
++
++	case DWC_MODE_SRP_ONLY_CAPABLE:
++		usbcfg.b.hnpcap = 0;
++		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++				   DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++		break;
++
++	case DWC_MODE_NO_HNP_SRP_CAPABLE:
++		usbcfg.b.hnpcap = 0;
++		usbcfg.b.srpcap = 0;
++		break;
++
++	case DWC_MODE_SRP_CAPABLE_DEVICE:
++		usbcfg.b.hnpcap = 0;
++		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++				   DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++		break;
++
++	case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
++		usbcfg.b.hnpcap = 0;
++		usbcfg.b.srpcap = 0;
++		break;
++
++	case DWC_MODE_SRP_CAPABLE_HOST:
++		usbcfg.b.hnpcap = 0;
++		usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
++				   DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
++		break;
++
++	case DWC_MODE_NO_SRP_CAPABLE_HOST:
++		usbcfg.b.hnpcap = 0;
++		usbcfg.b.srpcap = 0;
++		break;
++	}
++
++	dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
++
++	/* Enable common interrupts */
++	dwc_otg_enable_common_interrupts(core_if);
++
++	/* Do device or host intialization based on mode during PCD
++	 * and HCD initialization  */
++	if (dwc_otg_is_host_mode(core_if)) {
++		DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
++		core_if->op_state = A_HOST;
++	} else {
++		DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
++		core_if->op_state = B_PERIPHERAL;
++#ifdef DWC_DEVICE_ONLY
++		dwc_otg_core_dev_init(core_if);
++#endif
++	}
++}
++
++/**
++ * This function enables the Device mode interrupts.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if)
++{
++	union gintmsk_data intr_mask = {.d32 = 0 };
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++
++	DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++	/* Disable all interrupts. */
++	dwc_write_reg32(&global_regs->gintmsk, 0);
++
++	/* Clear any pending interrupts */
++	dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++	/* Enable the common interrupts */
++	dwc_otg_enable_common_interrupts(core_if);
++
++	/* Enable interrupts */
++	intr_mask.b.usbreset = 1;
++	intr_mask.b.enumdone = 1;
++	intr_mask.b.epmismatch = 1;
++	intr_mask.b.inepintr = 1;
++	intr_mask.b.outepintr = 1;
++	intr_mask.b.erlysuspend = 1;
++
++#ifdef USE_PERIODIC_EP
++	/** @todo NGS: Should this be a module parameter? */
++	intr_mask.b.isooutdrop = 1;
++	intr_mask.b.eopframe = 1;
++	intr_mask.b.incomplisoin = 1;
++	intr_mask.b.incomplisoout = 1;
++#endif
++	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++
++	DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
++		    dwc_read_reg32(&global_regs->gintmsk));
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * device mode.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++	struct dwc_otg_core_params *params = core_if->core_params;
++	union dcfg_data dcfg = {.d32 = 0 };
++	union grstctl_data resetctl = {.d32 = 0 };
++	int i;
++	uint32_t rx_fifo_size;
++	union fifosize_data nptxfifosize;
++#ifdef USE_PERIODIC_EP
++	union fifosize_data ptxfifosize;
++#endif
++
++	/* Restart the Phy Clock */
++	dwc_write_reg32(core_if->pcgcctl, 0);
++
++	/* Device configuration register */
++	init_devspd(core_if);
++	dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
++	dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
++	dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
++
++	/* Configure data FIFO sizes */
++	if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++
++		DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
++			    core_if->total_fifo_size);
++		DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
++			    params->dev_rx_fifo_size);
++		DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
++			    params->dev_nperio_tx_fifo_size);
++
++		/* Rx FIFO */
++		DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->grxfsiz));
++		rx_fifo_size = params->dev_rx_fifo_size;
++		dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
++		DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->grxfsiz));
++
++		/* Non-periodic Tx FIFO */
++		DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->gnptxfsiz));
++		nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
++		nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
++		dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++		DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->gnptxfsiz));
++
++#ifdef USE_PERIODIC_EP
++		/**@todo NGS: Fix Periodic FIFO Sizing! */
++		/*
++		 * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
++		 * Indexes of the FIFO size module parameters in the
++		 * dev_perio_tx_fifo_size array and the FIFO size registers in
++		 * the dptxfsiz array run from 0 to 14.
++		 */
++		/** @todo Finish debug of this */
++		ptxfifosize.b.startaddr =
++		    nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++		for (i = 0; i < dev_if->num_perio_eps; i++) {
++			ptxfifosize.b.depth = params->dev_perio_tx_fifo_size[i];
++			DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz[%d]=%08x\n", i,
++				    dwc_read_reg32(&global_regs->dptxfsiz[i]));
++			dwc_write_reg32(&global_regs->dptxfsiz[i],
++					ptxfifosize.d32);
++			DWC_DEBUGPL(DBG_CIL, "new dptxfsiz[%d]=%08x\n", i,
++				    dwc_read_reg32(&global_regs->dptxfsiz[i]));
++			ptxfifosize.b.startaddr += ptxfifosize.b.depth;
++		}
++#endif
++	}
++	/* Flush the FIFOs */
++	dwc_otg_flush_tx_fifo(core_if, 0x10);	/* all Tx FIFOs */
++	dwc_otg_flush_rx_fifo(core_if);
++
++	/* Flush the Learning Queue. */
++	resetctl.b.intknqflsh = 1;
++	dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
++
++	/* Clear all pending Device Interrupts */
++	dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
++	dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
++	dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
++	dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
++
++	for (i = 0; i < dev_if->num_eps; i++) {
++		union depctl_data depctl;
++		depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
++		if (depctl.b.epena) {
++			depctl.d32 = 0;
++			depctl.b.epdis = 1;
++			depctl.b.snak = 1;
++		} else {
++			depctl.d32 = 0;
++		}
++		dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
++
++		depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
++		if (depctl.b.epena) {
++			depctl.d32 = 0;
++			depctl.b.epdis = 1;
++			depctl.b.snak = 1;
++		} else {
++			depctl.d32 = 0;
++		}
++		dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
++
++		dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
++		dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
++		dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
++		dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
++		dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
++		dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
++	}
++
++	dwc_otg_enable_device_interrupts(core_if);
++}
++
++/**
++ * This function enables the Host mode interrupts.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ */
++void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	union gintmsk_data intr_mask = {.d32 = 0 };
++
++	DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
++
++	/* Disable all interrupts. */
++	dwc_write_reg32(&global_regs->gintmsk, 0);
++
++	/* Clear any pending interrupts. */
++	dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
++
++	/* Enable the common interrupts */
++	dwc_otg_enable_common_interrupts(core_if);
++
++	/*
++	 * Enable host mode interrupts without disturbing common
++	 * interrupts.
++	 */
++	intr_mask.b.sofintr = 1;
++	intr_mask.b.portintr = 1;
++	intr_mask.b.hcintr = 1;
++
++	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
++}
++
++/**
++ * This function disables the Host Mode interrupts.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ */
++void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	union gintmsk_data intr_mask = {.d32 = 0 };
++
++	DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
++
++	/*
++	 * Disable host mode interrupts without disturbing common
++	 * interrupts.
++	 */
++	intr_mask.b.sofintr = 1;
++	intr_mask.b.portintr = 1;
++	intr_mask.b.hcintr = 1;
++	intr_mask.b.ptxfempty = 1;
++	intr_mask.b.nptxfempty = 1;
++
++	dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
++}
++
++/**
++ * The FIFOs are established based on a default percentage of the
++ * total FIFO depth. This function converts the percentage into the
++ * proper setting.
++ *
++ */
++static inline uint32_t fifo_percentage(uint16_t total_fifo_size,
++				       int32_t percentage)
++{
++	/* 16-byte aligned */
++	return ((total_fifo_size * percentage) / 100) & (-1 << 3);
++}
++
++/**
++ * This function initializes the DWC_otg controller registers for
++ * host mode.
++ *
++ * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
++ * request queues. Host channels are reset to ensure that they are ready for
++ * performing transfers.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ *
++ */
++void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	struct dwc_otg_host_if *host_if = core_if->host_if;
++	struct dwc_otg_core_params *params = core_if->core_params;
++	union hprt0_data hprt0 = {.d32 = 0 };
++	union fifosize_data nptxfifosize;
++	union fifosize_data ptxfifosize;
++	int i;
++	union hcchar_data hcchar;
++	union hcfg_data hcfg;
++	struct dwc_otg_hc_regs *hc_regs;
++	int num_channels;
++	union gotgctl_data gotgctl = {.d32 = 0 };
++
++	DWC_DEBUGPL(DBG_CILV, "%s(%p)\n", __func__, core_if);
++
++	/* Restart the Phy Clock */
++	dwc_write_reg32(core_if->pcgcctl, 0);
++
++	/* Initialize Host Configuration Register */
++	init_fslspclksel(core_if);
++	if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
++		hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
++		hcfg.b.fslssupp = 1;
++		dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
++	}
++
++	/* Configure data FIFO sizes */
++	if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
++		DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n",
++			    core_if->total_fifo_size);
++		DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n",
++			    params->host_rx_fifo_size);
++		DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n",
++			    params->host_nperio_tx_fifo_size);
++		DWC_DEBUGPL(DBG_CIL, "P Tx FIFO Size=%d\n",
++			    params->host_perio_tx_fifo_size);
++
++		/* Rx FIFO */
++		DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->grxfsiz));
++		dwc_write_reg32(&global_regs->grxfsiz,
++				fifo_percentage(core_if->total_fifo_size,
++						dwc_param_host_rx_fifo_size_percentage));
++		DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->grxfsiz));
++
++		/* Non-periodic Tx FIFO */
++		DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->gnptxfsiz));
++		nptxfifosize.b.depth =
++		    fifo_percentage(core_if->total_fifo_size,
++				    dwc_param_host_nperio_tx_fifo_size_percentage);
++		nptxfifosize.b.startaddr =
++		    dwc_read_reg32(&global_regs->grxfsiz);
++		dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
++		DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->gnptxfsiz));
++
++		/* Periodic Tx FIFO */
++		DWC_DEBUGPL(DBG_CIL, "initial hptxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->hptxfsiz));
++		ptxfifosize.b.depth =
++		    core_if->total_fifo_size -
++		    dwc_read_reg32(&global_regs->grxfsiz) -
++		    nptxfifosize.b.depth;
++		ptxfifosize.b.startaddr =
++		    nptxfifosize.b.startaddr + nptxfifosize.b.depth;
++		dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
++		DWC_DEBUGPL(DBG_CIL, "new hptxfsiz=%08x\n",
++			    dwc_read_reg32(&global_regs->hptxfsiz));
++	}
++
++	/* Clear Host Set HNP Enable in the OTG Control Register */
++	gotgctl.b.hstsethnpen = 1;
++	dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
++
++	/* Make sure the FIFOs are flushed. */
++	dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
++	dwc_otg_flush_rx_fifo(core_if);
++
++	/* Flush out any leftover queued requests. */
++	num_channels = core_if->core_params->host_channels;
++	for (i = 0; i < num_channels; i++) {
++		hc_regs = core_if->host_if->hc_regs[i];
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++		hcchar.b.chen = 0;
++		hcchar.b.chdis = 1;
++		hcchar.b.epdir = 0;
++		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++	}
++
++	/* Halt all channels to put them into a known state. */
++	for (i = 0; i < num_channels; i++) {
++		int count = 0;
++		hc_regs = core_if->host_if->hc_regs[i];
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++		hcchar.b.chen = 1;
++		hcchar.b.chdis = 1;
++		hcchar.b.epdir = 0;
++		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++		DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
++		do {
++			hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++			if (++count > 1000) {
++				DWC_ERROR
++				    ("%s: Unable to clear halt on channel %d\n",
++				     __func__, i);
++				break;
++			}
++		} while (hcchar.b.chen);
++	}
++
++	/* Turn on the vbus power. */
++	DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
++	if (core_if->op_state == A_HOST) {
++		hprt0.d32 = dwc_otg_read_hprt0(core_if);
++		DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
++		if (hprt0.b.prtpwr == 0) {
++			hprt0.b.prtpwr = 1;
++			dwc_write_reg32(host_if->hprt0, hprt0.d32);
++		}
++	}
++
++	dwc_otg_enable_host_interrupts(core_if);
++}
++
++/**
++ * Prepares a host channel for transferring packets to/from a specific
++ * endpoint. The HCCHARn register is set up with the characteristics specified
++ * in hc. Host channel interrupts that may need to be serviced while this
++ * transfer is in progress are enabled.
++ *
++ * @core_if: Programming view of DWC_otg controller
++ * @hc: Information needed to initialize the host channel
++ */
++void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++	uint32_t intr_enable;
++	union hcintmsk_data hc_intr_mask;
++	union gintmsk_data gintmsk = {.d32 = 0 };
++	union hcchar_data hcchar;
++	union hcsplt_data hcsplt;
++
++	uint8_t hc_num = hc->hc_num;
++	struct dwc_otg_host_if *host_if = core_if->host_if;
++	struct dwc_otg_hc_regs *hc_regs = host_if->hc_regs[hc_num];
++
++	/* Clear old interrupt conditions for this host channel. */
++	hc_intr_mask.d32 = 0xFFFFFFFF;
++	hc_intr_mask.b.reserved = 0;
++	dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
++
++	/* Enable channel interrupts required for this transfer. */
++	hc_intr_mask.d32 = 0;
++	hc_intr_mask.b.chhltd = 1;
++	if (core_if->dma_enable) {
++		hc_intr_mask.b.ahberr = 1;
++		if (hc->error_state && !hc->do_split &&
++		    hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++			hc_intr_mask.b.ack = 1;
++			if (hc->ep_is_in) {
++				hc_intr_mask.b.datatglerr = 1;
++				if (hc->ep_type != DWC_OTG_EP_TYPE_INTR)
++					hc_intr_mask.b.nak = 1;
++			}
++		}
++	} else {
++		switch (hc->ep_type) {
++		case DWC_OTG_EP_TYPE_CONTROL:
++		case DWC_OTG_EP_TYPE_BULK:
++			hc_intr_mask.b.xfercompl = 1;
++			hc_intr_mask.b.stall = 1;
++			hc_intr_mask.b.xacterr = 1;
++			hc_intr_mask.b.datatglerr = 1;
++			if (hc->ep_is_in) {
++				hc_intr_mask.b.bblerr = 1;
++			} else {
++				hc_intr_mask.b.nak = 1;
++				hc_intr_mask.b.nyet = 1;
++				if (hc->do_ping)
++					hc_intr_mask.b.ack = 1;
++			}
++
++			if (hc->do_split) {
++				hc_intr_mask.b.nak = 1;
++				if (hc->complete_split)
++					hc_intr_mask.b.nyet = 1;
++				else
++					hc_intr_mask.b.ack = 1;
++			}
++
++			if (hc->error_state)
++				hc_intr_mask.b.ack = 1;
++			break;
++		case DWC_OTG_EP_TYPE_INTR:
++			hc_intr_mask.b.xfercompl = 1;
++			hc_intr_mask.b.nak = 1;
++			hc_intr_mask.b.stall = 1;
++			hc_intr_mask.b.xacterr = 1;
++			hc_intr_mask.b.datatglerr = 1;
++			hc_intr_mask.b.frmovrun = 1;
++
++			if (hc->ep_is_in)
++				hc_intr_mask.b.bblerr = 1;
++			if (hc->error_state)
++				hc_intr_mask.b.ack = 1;
++			if (hc->do_split) {
++				if (hc->complete_split)
++					hc_intr_mask.b.nyet = 1;
++				else
++					hc_intr_mask.b.ack = 1;
++			}
++			break;
++		case DWC_OTG_EP_TYPE_ISOC:
++			hc_intr_mask.b.xfercompl = 1;
++			hc_intr_mask.b.frmovrun = 1;
++			hc_intr_mask.b.ack = 1;
++
++			if (hc->ep_is_in) {
++				hc_intr_mask.b.xacterr = 1;
++				hc_intr_mask.b.bblerr = 1;
++			}
++			break;
++		}
++	}
++	dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
++
++	/* Enable the top level host channel interrupt. */
++	intr_enable = (1 << hc_num);
++	dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
++
++	/* Make sure host channel interrupts are enabled. */
++	gintmsk.b.hcintr = 1;
++	dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
++
++	/*
++	 * Program the HCCHARn register with the endpoint characteristics for
++	 * the current transfer.
++	 */
++	hcchar.d32 = 0;
++	hcchar.b.devaddr = hc->dev_addr;
++	hcchar.b.epnum = hc->ep_num;
++	hcchar.b.epdir = hc->ep_is_in;
++	hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
++	hcchar.b.eptype = hc->ep_type;
++	hcchar.b.mps = hc->max_packet;
++
++	dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
++
++	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++	DWC_DEBUGPL(DBG_HCDV, "  Dev Addr: %d\n", hcchar.b.devaddr);
++	DWC_DEBUGPL(DBG_HCDV, "  Ep Num: %d\n", hcchar.b.epnum);
++	DWC_DEBUGPL(DBG_HCDV, "  Is In: %d\n", hcchar.b.epdir);
++	DWC_DEBUGPL(DBG_HCDV, "  Is Low Speed: %d\n", hcchar.b.lspddev);
++	DWC_DEBUGPL(DBG_HCDV, "  Ep Type: %d\n", hcchar.b.eptype);
++	DWC_DEBUGPL(DBG_HCDV, "  Max Pkt: %d\n", hcchar.b.mps);
++	DWC_DEBUGPL(DBG_HCDV, "  Multi Cnt: %d\n", hcchar.b.multicnt);
++
++	/*
++	 * Program the HCSPLIT register for SPLITs
++	 */
++	hcsplt.d32 = 0;
++	if (hc->do_split) {
++		DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n",
++			    hc->hc_num,
++			    hc->complete_split ? "CSPLIT" : "SSPLIT");
++		hcsplt.b.compsplt = hc->complete_split;
++		hcsplt.b.xactpos = hc->xact_pos;
++		hcsplt.b.hubaddr = hc->hub_addr;
++		hcsplt.b.prtaddr = hc->port_addr;
++		DWC_DEBUGPL(DBG_HCDV, "   comp split %d\n",
++			    hc->complete_split);
++		DWC_DEBUGPL(DBG_HCDV, "   xact pos %d\n", hc->xact_pos);
++		DWC_DEBUGPL(DBG_HCDV, "   hub addr %d\n", hc->hub_addr);
++		DWC_DEBUGPL(DBG_HCDV, "   port addr %d\n", hc->port_addr);
++		DWC_DEBUGPL(DBG_HCDV, "   is_in %d\n", hc->ep_is_in);
++		DWC_DEBUGPL(DBG_HCDV, "   Max Pkt: %d\n", hcchar.b.mps);
++		DWC_DEBUGPL(DBG_HCDV, "   xferlen: %d\n", hc->xfer_len);
++	}
++	dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
++
++}
++
++/**
++ * Attempts to halt a host channel. This function should only be called in
++ * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
++ * normal circumstances in DMA mode, the controller halts the channel when the
++ * transfer is complete or a condition occurs that requires application
++ * intervention.
++ *
++ * In slave mode, checks for a free request queue entry, then sets the Channel
++ * Enable and Channel Disable bits of the Host Channel Characteristics
++ * register of the specified channel to intiate the halt. If there is no free
++ * request queue entry, sets only the Channel Disable bit of the HCCHARn
++ * register to flush requests for this channel. In the latter case, sets a
++ * flag to indicate that the host channel needs to be halted when a request
++ * queue slot is open.
++ *
++ * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
++ * HCCHARn register. The controller ensures there is space in the request
++ * queue before submitting the halt request.
++ *
++ * Some time may elapse before the core flushes any posted requests for this
++ * host channel and halts. The Channel Halted interrupt handler completes the
++ * deactivation of the host channel.
++ *
++ * @core_if: Controller register interface.
++ * @hc: Host channel to halt.
++ * @halt_status: Reason for halting the channel.
++ */
++void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if,
++		     struct dwc_hc *hc, enum dwc_otg_halt_status halt_status)
++{
++	union gnptxsts_data nptxsts;
++	union hptxsts_data hptxsts;
++	union hcchar_data hcchar;
++	struct dwc_otg_hc_regs *hc_regs;
++	struct dwc_otg_core_global_regs *global_regs;
++	struct dwc_otg_host_global_regs *host_global_regs;
++
++	hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++	global_regs = core_if->core_global_regs;
++	host_global_regs = core_if->host_if->host_global_regs;
++
++	WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
++
++	if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++	    halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++		/*
++		 * Disable all channel interrupts except Ch Halted. The QTD
++		 * and QH state associated with this transfer has been cleared
++		 * (in the case of URB_DEQUEUE), so the channel needs to be
++		 * shut down carefully to prevent crashes.
++		 */
++		union hcintmsk_data hcintmsk;
++		hcintmsk.d32 = 0;
++		hcintmsk.b.chhltd = 1;
++		dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
++
++		/*
++		 * Make sure no other interrupts besides halt are currently
++		 * pending. Handling another interrupt could cause a crash due
++		 * to the QTD and QH state.
++		 */
++		dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
++
++		/*
++		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
++		 * even if the channel was already halted for some other
++		 * reason.
++		 */
++		hc->halt_status = halt_status;
++
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++		if (hcchar.b.chen == 0) {
++			/*
++			 * The channel is either already halted or it hasn't
++			 * started yet. In DMA mode, the transfer may halt if
++			 * it finishes normally or a condition occurs that
++			 * requires driver intervention. Don't want to halt
++			 * the channel again. In either Slave or DMA mode,
++			 * it's possible that the transfer has been assigned
++			 * to a channel, but not started yet when an URB is
++			 * dequeued. Don't want to halt a channel that hasn't
++			 * started yet.
++			 */
++			return;
++		}
++	}
++
++	if (hc->halt_pending) {
++		/*
++		 * A halt has already been issued for this channel. This might
++		 * happen when a transfer is aborted by a higher level in
++		 * the stack.
++		 */
++#ifdef DEBUG
++		DWC_PRINT
++		    ("*** %s: Channel %d, hc->halt_pending already set ***\n",
++		     __func__, hc->hc_num);
++
++/* 		dwc_otg_dump_global_registers(core_if); */
++/* 		dwc_otg_dump_host_registers(core_if); */
++#endif
++		return;
++	}
++
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	hcchar.b.chen = 1;
++	hcchar.b.chdis = 1;
++
++	if (!core_if->dma_enable) {
++		/* Check for space in the request queue to issue the halt. */
++		if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++		    hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++			nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++			if (nptxsts.b.nptxqspcavail == 0)
++				hcchar.b.chen = 0;
++		} else {
++			hptxsts.d32 =
++			    dwc_read_reg32(&host_global_regs->hptxsts);
++			if ((hptxsts.b.ptxqspcavail == 0)
++			    || (core_if->queuing_high_bandwidth)) {
++				hcchar.b.chen = 0;
++			}
++		}
++	}
++
++	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++	hc->halt_status = halt_status;
++
++	if (hcchar.b.chen) {
++		hc->halt_pending = 1;
++		hc->halt_on_queue = 0;
++	} else {
++		hc->halt_on_queue = 1;
++	}
++
++	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++	DWC_DEBUGPL(DBG_HCDV, "  hcchar: 0x%08x\n", hcchar.d32);
++	DWC_DEBUGPL(DBG_HCDV, "  halt_pending: %d\n", hc->halt_pending);
++	DWC_DEBUGPL(DBG_HCDV, "  halt_on_queue: %d\n", hc->halt_on_queue);
++	DWC_DEBUGPL(DBG_HCDV, "  halt_status: %d\n", hc->halt_status);
++
++	return;
++}
++
++/**
++ * Clears the transfer state for a host channel. This function is normally
++ * called after a transfer is done and the host channel is being released.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @hc: Identifies the host channel to clean up.
++ */
++void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++	struct dwc_otg_hc_regs *hc_regs;
++
++	hc->xfer_started = 0;
++
++	/*
++	 * Clear channel interrupt enables and any unhandled channel interrupt
++	 * conditions.
++	 */
++	hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++	dwc_write_reg32(&hc_regs->hcintmsk, 0);
++	dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
++
++#ifdef DEBUG
++	del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
++	{
++		union hcchar_data hcchar;
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++		if (hcchar.b.chdis) {
++			DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++				 __func__, hc->hc_num, hcchar.d32);
++		}
++	}
++#endif
++}
++
++/**
++ * Sets the channel property that indicates in which frame a periodic transfer
++ * should occur. This is always set to the _next_ frame. This function has no
++ * effect on non-periodic transfers.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @hc: Identifies the host channel to set up and its properties.
++ * @hcchar: Current value of the HCCHAR register for the specified host
++ * channel.
++ */
++static inline void hc_set_even_odd_frame(struct dwc_otg_core_if *core_if,
++					 struct dwc_hc *hc,
++					 union hcchar_data *hcchar)
++{
++	if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++	    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++		union hfnum_data hfnum;
++		hfnum.d32 =
++		    dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
++		/* 1 if _next_ frame is odd, 0 if it's even */
++		hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
++#ifdef DEBUG
++		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split
++		    && !hc->complete_split) {
++			switch (hfnum.b.frnum & 0x7) {
++			case 7:
++				core_if->hfnum_7_samples++;
++				core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
++				break;
++			case 0:
++				core_if->hfnum_0_samples++;
++				core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
++				break;
++			default:
++				core_if->hfnum_other_samples++;
++				core_if->hfnum_other_frrem_accum +=
++				    hfnum.b.frrem;
++				break;
++			}
++		}
++#endif
++	}
++}
++
++#ifdef DEBUG
++static void hc_xfer_timeout(unsigned long _ptr)
++{
++	struct hc_xfer_info *xfer_info = (struct hc_xfer_info *) _ptr;
++	int hc_num = xfer_info->hc->hc_num;
++	DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
++	DWC_WARN("  start_hcchar_val 0x%08x\n",
++		 xfer_info->core_if->start_hcchar_val[hc_num]);
++}
++#endif
++
++/**
++ * This function does the setup for a data transfer for a host channel and
++ * starts the transfer. May be called in either Slave mode or DMA mode. In
++ * Slave mode, the caller must ensure that there is sufficient space in the
++ * request queue and Tx Data FIFO.
++ *
++ * For an OUT transfer in Slave mode, it loads a data packet into the
++ * appropriate FIFO. If necessary, additional data packets will be loaded in
++ * the Host ISR.
++ *
++ * For an IN transfer in Slave mode, a data packet is requested. The data
++ * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
++ * additional data packets are requested in the Host ISR.
++ *
++ * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
++ * register along with a packet count of 1 and the channel is enabled. This
++ * causes a single PING transaction to occur. Other fields in HCTSIZ are
++ * simply set to 0 since no data transfer occurs in this case.
++ *
++ * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
++ * all the information required to perform the subsequent data transfer. In
++ * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
++ * controller performs the entire PING protocol, then starts the data
++ * transfer.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @hc: Information needed to initialize the host channel. The xfer_len
++ * value may be reduced to accommodate the max widths of the XferSize and
++ * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
++ * to reflect the final xfer_len value.
++ */
++void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if,
++			       struct dwc_hc *hc)
++{
++	union hcchar_data hcchar;
++	union hctsiz_data hctsiz;
++	uint16_t num_packets;
++	uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
++	uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
++	struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++	hctsiz.d32 = 0;
++
++	if (hc->do_ping) {
++		if (!core_if->dma_enable) {
++			dwc_otg_hc_do_ping(core_if, hc);
++			hc->xfer_started = 1;
++			return;
++		} else {
++			hctsiz.b.dopng = 1;
++		}
++	}
++
++	if (hc->do_split) {
++		num_packets = 1;
++
++		if (hc->complete_split && !hc->ep_is_in) {
++			/* For CSPLIT OUT Transfer, set the size to 0 so the
++			 * core doesn't expect any data written to the FIFO */
++			hc->xfer_len = 0;
++		} else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
++			hc->xfer_len = hc->max_packet;
++		} else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
++			hc->xfer_len = 188;
++		}
++
++		hctsiz.b.xfersize = hc->xfer_len;
++	} else {
++		/*
++		 * Ensure that the transfer length and packet count will fit
++		 * in the widths allocated for them in the HCTSIZn register.
++		 */
++		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++		    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++			/*
++			 * Make sure the transfer size is no larger than one
++			 * (micro)frame's worth of data. (A check was done
++			 * when the periodic transfer was accepted to ensure
++			 * that a (micro)frame's worth of data can be
++			 * programmed into a channel.)
++			 */
++			uint32_t max_periodic_len =
++			    hc->multi_count * hc->max_packet;
++			if (hc->xfer_len > max_periodic_len)
++				hc->xfer_len = max_periodic_len;
++		} else if (hc->xfer_len > max_hc_xfer_size) {
++			/*
++			 * Make sure that xfer_len is a multiple of
++			 * max packet size.
++			 */
++			hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
++		}
++
++		if (hc->xfer_len > 0) {
++			num_packets =
++			    (hc->xfer_len + hc->max_packet -
++			     1) / hc->max_packet;
++			if (num_packets > max_hc_pkt_count) {
++				num_packets = max_hc_pkt_count;
++				hc->xfer_len = num_packets * hc->max_packet;
++			}
++		} else {
++			/* Need 1 packet for transfer length of 0. */
++			num_packets = 1;
++		}
++
++		if (hc->ep_is_in) {
++			/*
++			 * Always program an integral # of max packets
++			 * for IN transfers.
++			 */
++			hc->xfer_len = num_packets * hc->max_packet;
++		}
++
++		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++		    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++			/*
++			 * Make sure that the multi_count field matches the
++			 * actual transfer length.
++			 */
++			hc->multi_count = num_packets;
++
++		}
++
++		if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++			/* Set up the initial PID for the transfer. */
++			if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
++				if (hc->ep_is_in) {
++					if (hc->multi_count == 1) {
++						hc->data_pid_start =
++						    DWC_OTG_HC_PID_DATA0;
++					} else if (hc->multi_count == 2) {
++						hc->data_pid_start =
++						    DWC_OTG_HC_PID_DATA1;
++					} else {
++						hc->data_pid_start =
++						    DWC_OTG_HC_PID_DATA2;
++					}
++				} else {
++					if (hc->multi_count == 1) {
++						hc->data_pid_start =
++						    DWC_OTG_HC_PID_DATA0;
++					} else {
++						hc->data_pid_start =
++						    DWC_OTG_HC_PID_MDATA;
++					}
++				}
++			} else {
++				hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
++			}
++		}
++
++		hctsiz.b.xfersize = hc->xfer_len;
++	}
++
++	hc->start_pkt_count = num_packets;
++	hctsiz.b.pktcnt = num_packets;
++	hctsiz.b.pid = hc->data_pid_start;
++	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++	DWC_DEBUGPL(DBG_HCDV, "  Xfer Size: %d\n", hctsiz.b.xfersize);
++	DWC_DEBUGPL(DBG_HCDV, "  Num Pkts: %d\n", hctsiz.b.pktcnt);
++	DWC_DEBUGPL(DBG_HCDV, "  Start PID: %d\n", hctsiz.b.pid);
++
++	if (core_if->dma_enable) {
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++		/* Octeon uses external DMA */
++		const uint64_t USBN_DMA0_OUTB_CHN0 =
++		    CVMX_USBNX_DMA0_OUTB_CHN0(core_if->usb_num);
++		wmb();
++		cvmx_write_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8,
++			       (unsigned long)hc->xfer_buff);
++		cvmx_read_csr(USBN_DMA0_OUTB_CHN0 + hc->hc_num * 8);
++		DWC_DEBUGPL(DBG_HCDV,
++			    "OUT: hc->hc_num = %d, hc->xfer_buff = %p\n",
++			    hc->hc_num, hc->xfer_buff);
++#else
++		dwc_write_reg32(&hc_regs->hcdma,
++				(uint32_t) (long)hc->xfer_buff);
++#endif /* CONFIG_CPU_CAVIUM_OCTEON */
++	}
++
++	/* Start the split */
++	if (hc->do_split) {
++		union hcsplt_data hcsplt;
++		hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++		hcsplt.b.spltena = 1;
++		dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
++	}
++
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	hcchar.b.multicnt = hc->multi_count;
++	hc_set_even_odd_frame(core_if, hc, &hcchar);
++#ifdef DEBUG
++	core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
++	if (hcchar.b.chdis) {
++		DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
++			 __func__, hc->hc_num, hcchar.d32);
++	}
++#endif
++
++	/* Set host channel enable after all other setup is complete. */
++	hcchar.b.chen = 1;
++	hcchar.b.chdis = 0;
++	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++	hc->xfer_started = 1;
++	hc->requests++;
++
++	if (!core_if->dma_enable && !hc->ep_is_in && hc->xfer_len > 0) {
++		/* Load OUT packet into the appropriate Tx FIFO. */
++		dwc_otg_hc_write_packet(core_if, hc);
++	}
++#ifdef DEBUG
++	/* Start a timer for this transfer. */
++	core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
++	core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
++	core_if->hc_xfer_info[hc->hc_num].hc = hc;
++	core_if->hc_xfer_timer[hc->hc_num].data =
++	    (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
++	core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ * 10);
++	add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
++#endif
++}
++
++/**
++ * This function continues a data transfer that was started by previous call
++ * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
++ * sufficient space in the request queue and Tx Data FIFO. This function
++ * should only be called in Slave mode. In DMA mode, the controller acts
++ * autonomously to complete transfers programmed to a host channel.
++ *
++ * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
++ * if there is any data remaining to be queued. For an IN transfer, another
++ * data packet is always requested. For the SETUP phase of a control transfer,
++ * this function does nothing.
++ *
++ * Returns 1 if a new request is queued, 0 if no more requests are required
++ * for this transfer.
++ */
++int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if,
++				 struct dwc_hc *hc)
++{
++	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++	if (hc->do_split) {
++		/* SPLITs always queue just once per channel */
++		return 0;
++	} else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++		/* SETUPs are queued only once since they can't be NAKed. */
++		return 0;
++	} else if (hc->ep_is_in) {
++		/*
++		 * Always queue another request for other IN transfers. If
++		 * back-to-back INs are issued and NAKs are received for both,
++		 * the driver may still be processing the first NAK when the
++		 * second NAK is received. When the interrupt handler clears
++		 * the NAK interrupt for the first NAK, the second NAK will
++		 * not be seen. So we can't depend on the NAK interrupt
++		 * handler to requeue a NAKed request. Instead, IN requests
++		 * are issued each time this function is called. When the
++		 * transfer completes, the extra requests for the channel will
++		 * be flushed.
++		 */
++		union hcchar_data hcchar;
++		struct dwc_otg_hc_regs *hc_regs =
++		    core_if->host_if->hc_regs[hc->hc_num];
++
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++		hc_set_even_odd_frame(core_if, hc, &hcchar);
++		hcchar.b.chen = 1;
++		hcchar.b.chdis = 0;
++		DWC_DEBUGPL(DBG_HCDV, "  IN xfer: hcchar = 0x%08x\n",
++			    hcchar.d32);
++		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++		hc->requests++;
++		return 1;
++	} else {
++		/* OUT transfers. */
++		if (hc->xfer_count < hc->xfer_len) {
++			if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++			    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++				union hcchar_data hcchar;
++				struct dwc_otg_hc_regs *hc_regs;
++				hc_regs =
++				    core_if->host_if->hc_regs[hc->hc_num];
++				hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++				hc_set_even_odd_frame(core_if, hc, &hcchar);
++			}
++
++			/* Load OUT packet into the appropriate Tx FIFO. */
++			dwc_otg_hc_write_packet(core_if, hc);
++			hc->requests++;
++			return 1;
++		} else {
++			return 0;
++		}
++	}
++}
++
++/**
++ * Starts a PING transfer. This function should only be called in Slave mode.
++ * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
++ */
++void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++	union hcchar_data hcchar;
++	union hctsiz_data hctsiz;
++	struct dwc_otg_hc_regs *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
++
++	DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
++
++	hctsiz.d32 = 0;
++	hctsiz.b.dopng = 1;
++	hctsiz.b.pktcnt = 1;
++	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	hcchar.b.chen = 1;
++	hcchar.b.chdis = 0;
++	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++}
++
++/*
++ * This function writes a packet into the Tx FIFO associated with the Host
++ * Channel. For a channel associated with a non-periodic EP, the non-periodic
++ * Tx FIFO is written. For a channel associated with a periodic EP, the
++ * periodic Tx FIFO is written. This function should only be called in Slave
++ * mode.
++ *
++ * Upon return the xfer_buff and xfer_count fields in hc are incremented by
++ * then number of bytes written to the Tx FIFO.
++ */
++void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if, struct dwc_hc *hc)
++{
++	uint32_t i;
++	uint32_t remaining_count;
++	uint32_t byte_count;
++	uint32_t dword_count;
++
++	uint32_t *data_buff = (uint32_t *) (hc->xfer_buff);
++	uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
++
++	remaining_count = hc->xfer_len - hc->xfer_count;
++	if (remaining_count > hc->max_packet)
++		byte_count = hc->max_packet;
++	else
++		byte_count = remaining_count;
++
++	dword_count = (byte_count + 3) / 4;
++
++	if ((((unsigned long)data_buff) & 0x3) == 0) {
++		/* xfer_buff is DWORD aligned. */
++		for (i = 0; i < dword_count; i++, data_buff++)
++			dwc_write_reg32(data_fifo, *data_buff);
++	} else {
++		/* xfer_buff is not DWORD aligned. */
++		for (i = 0; i < dword_count; i++, data_buff++)
++			dwc_write_reg32(data_fifo, get_unaligned(data_buff));
++	}
++
++	hc->xfer_count += byte_count;
++	hc->xfer_buff += byte_count;
++}
++
++/**
++ * Gets the current USB frame number. This is the frame number from the last
++ * SOF packet.
++ */
++uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if)
++{
++	union dsts_data dsts;
++	dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++
++	/* read current frame/microfreme number from DSTS register */
++	return dsts.b.soffn;
++}
++
++/**
++ * This function reads a setup packet from the Rx FIFO into the destination
++ * buffer.  This function is called from the Rx Status Queue Level (RxStsQLvl)
++ * Interrupt routine when a SETUP packet has been received in Slave mode.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @dest: Destination buffer for packet data.
++ */
++void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if, uint32_t *dest)
++{
++	/* Get the 8 bytes of a setup transaction data */
++
++	/* Pop 2 DWORDS off the receive data FIFO into memory */
++	dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
++	dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
++}
++
++/**
++ * This function enables EP0 OUT to receive SETUP packets and configures EP0
++ * IN for transmitting packets.  It is normally called when the
++ * "Enumeration Done" interrupt occurs.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP0 data.
++ */
++void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++	struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++	union dsts_data dsts;
++	union depctl_data diepctl;
++	union depctl_data doepctl;
++	union dctl_data dctl = {.d32 = 0 };
++
++	/* Read the Device Status and Endpoint 0 Control registers */
++	dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
++	diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
++	doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
++
++	/* Set the MPS of the IN EP based on the enumeration speed */
++	switch (dsts.b.enumspd) {
++	case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
++	case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
++	case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
++		diepctl.b.mps = DWC_DEP0CTL_MPS_64;
++		break;
++	case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
++		diepctl.b.mps = DWC_DEP0CTL_MPS_8;
++		break;
++	}
++
++	dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
++
++	/* Enable OUT EP for receive */
++	doepctl.b.epena = 1;
++	dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
++
++#ifdef VERBOSE
++	DWC_DEBUGPL(DBG_PCDV, "doepctl0=%0x\n",
++		    dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
++	DWC_DEBUGPL(DBG_PCDV, "diepctl0=%0x\n",
++		    dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
++#endif
++	dctl.b.cgnpinnak = 1;
++	dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
++	DWC_DEBUGPL(DBG_PCDV, "dctl=%0x\n",
++		    dwc_read_reg32(&dev_if->dev_global_regs->dctl));
++}
++
++/**
++ * This function activates an EP.  The Device EP control register for
++ * the EP is configured as defined in the ep structure.  Note: This
++ * function is not used for EP0.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to activate.
++ */
++void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++	struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++	union depctl_data depctl;
++	uint32_t *addr;
++	union daint_data daintmsk = {.d32 = 0 };
++
++	DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
++		    (ep->is_in ? "IN" : "OUT"));
++
++	/* Read DEPCTLn register */
++	if (ep->is_in == 1) {
++		addr = &dev_if->in_ep_regs[ep->num]->diepctl;
++		daintmsk.ep.in = 1 << ep->num;
++	} else {
++		addr = &dev_if->out_ep_regs[ep->num]->doepctl;
++		daintmsk.ep.out = 1 << ep->num;
++	}
++
++	/* If the EP is already active don't change the EP Control
++	 * register. */
++	depctl.d32 = dwc_read_reg32(addr);
++	if (!depctl.b.usbactep) {
++		depctl.b.mps = ep->maxpacket;
++		depctl.b.eptype = ep->type;
++		depctl.b.txfnum = ep->tx_fifo_num;
++
++		if (ep->type != DWC_OTG_EP_TYPE_ISOC)
++			depctl.b.setd0pid = 1;
++
++		depctl.b.usbactep = 1;
++
++		dwc_write_reg32(addr, depctl.d32);
++		DWC_DEBUGPL(DBG_PCDV, "DEPCTL=%08x\n", dwc_read_reg32(addr));
++	}
++
++	/* Enable the Interrupt for this EP */
++	dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk, 0, daintmsk.d32);
++	DWC_DEBUGPL(DBG_PCDV, "DAINTMSK=%0x\n",
++		    dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
++	return;
++}
++
++/**
++ * This function deactivates an EP.  This is done by clearing the USB Active
++ * EP bit in the Device EP control register.  Note: This function is not used
++ * for EP0. EP0 cannot be deactivated.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to deactivate.
++ */
++void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++	union depctl_data depctl = {.d32 = 0 };
++	uint32_t *addr;
++	union daint_data daintmsk = {.d32 = 0 };
++
++	/* Read DEPCTLn register */
++	if (ep->is_in == 1) {
++		addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
++		daintmsk.ep.in = 1 << ep->num;
++	} else {
++		addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
++		daintmsk.ep.out = 1 << ep->num;
++	}
++
++	depctl.b.usbactep = 0;
++	dwc_write_reg32(addr, depctl.d32);
++
++	/* Disable the Interrupt for this EP */
++	dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
++			 daintmsk.d32, 0);
++
++	return;
++}
++
++/**
++ * This function does the setup for a data transfer for an EP and
++ * starts the transfer.  For an IN transfer, the packets will be
++ * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
++ * the packets are unloaded from the Rx FIFO in the ISR.  the ISR.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to start the transfer on.
++ */
++void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if,
++			       struct dwc_ep *ep)
++{
++	/*
++	 * @todo Refactor this funciton to check the transfer size
++	 * count value does not execed the number bits in the Transfer
++	 * count register.
++	 */
++	union depctl_data depctl;
++	union deptsiz_data deptsiz;
++	union gintmsk_data intr_mask = {.d32 = 0 };
++
++#ifdef CHECK_PACKET_COUNTER_WIDTH
++	const uint32_t MAX_XFER_SIZE = core_if->core_params->max_transfer_size;
++	const uint32_t MAX_PKT_COUNT = core_if->core_params->max_packet_count;
++	uint32_t num_packets;
++	uint32_t transfer_len;
++	struct dwc_otg_dev_out_ep_regs *out_regs =
++	    core_if->dev_if->out_ep_regs[ep->num];
++	struct dwc_otg_dev_in_ep_regs *in_regs =
++	    core_if->dev_if->in_ep_regs[ep->num];
++	union gnptxsts_data txstatus;
++
++	int lvl = SET_DEBUG_LEVEL(DBG_PCD);
++
++	DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++		    "xfer_buff=%p start_xfer_buff=%p\n",
++		    ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++		    ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
++
++	transfer_len = ep->xfer_len - ep->xfer_count;
++	if (transfer_len > MAX_XFER_SIZE)
++		transfer_len = MAX_XFER_SIZE;
++
++	if (transfer_len == 0) {
++		num_packets = 1;
++		/* OUT EP to recieve Zero-length packet set transfer
++		 * size to maxpacket size. */
++		if (!ep->is_in)
++			transfer_len = ep->maxpacket;
++	} else {
++		num_packets =
++		    (transfer_len + ep->maxpacket - 1) / ep->maxpacket;
++		if (num_packets > MAX_PKT_COUNT)
++			num_packets = MAX_PKT_COUNT;
++	}
++	DWC_DEBUGPL(DBG_PCD, "transfer_len=%d #pckt=%d\n", transfer_len,
++		    num_packets);
++
++	deptsiz.b.xfersize = transfer_len;
++	deptsiz.b.pktcnt = num_packets;
++
++	/* IN endpoint */
++	if (ep->is_in == 1) {
++		depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++	} else {		/* OUT endpoint */
++		depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++	}
++
++	/* EP enable, IN data in FIFO */
++	depctl.b.cnak = 1;
++	depctl.b.epena = 1;
++	/* IN endpoint */
++	if (ep->is_in == 1) {
++		txstatus.d32 =
++		    dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++		if (txstatus.b.nptxqspcavail == 0) {
++			DWC_DEBUGPL(DBG_ANY, "TX Queue Full (0x%0x)\n",
++				    txstatus.d32);
++			return;
++		}
++		dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++		/*
++		 * Enable the Non-Periodic Tx FIFO empty interrupt, the
++		 * data will be written into the fifo by the ISR.
++		 */
++		if (core_if->dma_enable) {
++			dwc_write_reg32(&in_regs->diepdma,
++					(uint32_t) ep->xfer_buff);
++		} else {
++			intr_mask.b.nptxfempty = 1;
++			dwc_modify_reg32(&core_if->core_global_regs->gintsts,
++					 intr_mask.d32, 0);
++			dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++					 intr_mask.d32, intr_mask.d32);
++		}
++	} else {		/* OUT endpoint */
++		dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++		dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++		if (core_if->dma_enable) {
++			dwc_write_reg32(&out_regs->doepdma,
++					(uint32_t) ep->xfer_buff);
++		}
++	}
++	DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
++		    dwc_read_reg32(&out_regs->doepctl),
++		    dwc_read_reg32(&out_regs->doeptsiz));
++	DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++		    dwc_read_reg32(&core_if->dev_if->dev_global_regs->
++				   daintmsk),
++		    dwc_read_reg32(&core_if->core_global_regs->gintmsk));
++
++	SET_DEBUG_LEVEL(lvl);
++#endif
++	DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
++
++	DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++		    "xfer_buff=%p start_xfer_buff=%p\n",
++		    ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++		    ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
++
++	/* IN endpoint */
++	if (ep->is_in == 1) {
++		struct dwc_otg_dev_in_ep_regs *in_regs =
++		    core_if->dev_if->in_ep_regs[ep->num];
++		union gnptxsts_data txstatus;
++
++		txstatus.d32 =
++		    dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++		if (txstatus.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++			DWC_PRINT("TX Queue Full (0x%0x)\n", txstatus.d32);
++#endif
++			return;
++		}
++
++		depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
++		deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
++
++		/* Zero Length Packet? */
++		if (ep->xfer_len == 0) {
++			deptsiz.b.xfersize = 0;
++			deptsiz.b.pktcnt = 1;
++		} else {
++
++			/* Program the transfer size and packet count
++			 *  as follows: xfersize = N * maxpacket +
++			 *  short_packet pktcnt = N + (short_packet
++			 *  exist ? 1 : 0)
++			 */
++			deptsiz.b.xfersize = ep->xfer_len;
++			deptsiz.b.pktcnt =
++			    (ep->xfer_len - 1 + ep->maxpacket) /
++			    ep->maxpacket;
++		}
++
++		dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++
++		/* Write the DMA register */
++		if (core_if->dma_enable) {
++			dwc_write_reg32(&(in_regs->diepdma),
++					(uint32_t) ep->dma_addr);
++		} else {
++			/*
++			 * Enable the Non-Periodic Tx FIFO empty interrupt,
++			 * the data will be written into the fifo by the ISR.
++			 */
++			intr_mask.b.nptxfempty = 1;
++			dwc_modify_reg32(&core_if->core_global_regs->gintsts,
++					 intr_mask.d32, 0);
++			dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++					 intr_mask.d32, intr_mask.d32);
++		}
++
++		/* EP enable, IN data in FIFO */
++		depctl.b.cnak = 1;
++		depctl.b.epena = 1;
++		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++		depctl.d32 =
++		    dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
++		depctl.b.nextep = ep->num;
++		dwc_write_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl,
++				depctl.d32);
++
++	} else {
++		/* OUT endpoint */
++		struct dwc_otg_dev_out_ep_regs *out_regs =
++		    core_if->dev_if->out_ep_regs[ep->num];
++
++		depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
++		deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
++
++		/* Program the transfer size and packet count as follows:
++		 *
++		 *  pktcnt = N
++		 *  xfersize = N * maxpacket
++		 */
++		if (ep->xfer_len == 0) {
++			/* Zero Length Packet */
++			deptsiz.b.xfersize = ep->maxpacket;
++			deptsiz.b.pktcnt = 1;
++		} else {
++			deptsiz.b.pktcnt =
++			    (ep->xfer_len + (ep->maxpacket - 1)) /
++			    ep->maxpacket;
++			deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++		}
++		dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++
++		DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
++			    ep->num, deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++		if (core_if->dma_enable) {
++			dwc_write_reg32(&(out_regs->doepdma),
++					(uint32_t) ep->dma_addr);
++		}
++
++		if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
++			/*
++			 * @todo NGS: dpid is read-only. Use setd0pid
++			 * or setd1pid.
++			 */
++			depctl.b.dpid = ep->even_odd_frame;
++		}
++
++		/* EP enable */
++		depctl.b.cnak = 1;
++		depctl.b.epena = 1;
++
++		dwc_write_reg32(&out_regs->doepctl, depctl.d32);
++
++		DWC_DEBUGPL(DBG_PCD, "DOEPCTL=%08x DOEPTSIZ=%08x\n",
++			    dwc_read_reg32(&out_regs->doepctl),
++			    dwc_read_reg32(&out_regs->doeptsiz));
++		DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
++			    dwc_read_reg32(&core_if->dev_if->dev_global_regs->
++					   daintmsk),
++			    dwc_read_reg32(&core_if->core_global_regs->
++					   gintmsk));
++	}
++}
++
++/**
++ * This function does the setup for a data transfer for EP0 and starts
++ * the transfer.  For an IN transfer, the packets will be loaded into
++ * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
++ * unloaded from the Rx FIFO in the ISR.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP0 data.
++ */
++void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if,
++				struct dwc_ep *ep)
++{
++	union depctl_data depctl;
++	union deptsiz0_data deptsiz;
++	union gintmsk_data intr_mask = {.d32 = 0 };
++
++	DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
++		    "xfer_buff=%p start_xfer_buff=%p total_len=%d\n",
++		    ep->num, (ep->is_in ? "IN" : "OUT"), ep->xfer_len,
++		    ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,
++		    ep->total_len);
++	ep->total_len = ep->xfer_len;
++
++	/* IN endpoint */
++	if (ep->is_in == 1) {
++		struct dwc_otg_dev_in_ep_regs *in_regs =
++		    core_if->dev_if->in_ep_regs[0];
++		union gnptxsts_data tx_status = {.d32 = 0 };
++
++		tx_status.d32 =
++		    dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++		if (tx_status.b.nptxqspcavail == 0) {
++#ifdef DEBUG
++			deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++			DWC_DEBUGPL(DBG_PCD, "DIEPCTL0=%0x\n",
++				    dwc_read_reg32(&in_regs->diepctl));
++			DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
++				    deptsiz.d32,
++				    deptsiz.b.xfersize, deptsiz.b.pktcnt);
++			DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
++				  tx_status.d32);
++#endif
++
++			return;
++		}
++
++		depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++		deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++		/* Zero Length Packet? */
++		if (ep->xfer_len == 0) {
++			deptsiz.b.xfersize = 0;
++			deptsiz.b.pktcnt = 1;
++		} else {
++			/* Program the transfer size and packet count
++			 *  as follows: xfersize = N * maxpacket +
++			 *  short_packet pktcnt = N + (short_packet
++			 *  exist ? 1 : 0)
++			 */
++			if (ep->xfer_len > ep->maxpacket) {
++				ep->xfer_len = ep->maxpacket;
++				deptsiz.b.xfersize = ep->maxpacket;
++			} else {
++				deptsiz.b.xfersize = ep->xfer_len;
++			}
++			deptsiz.b.pktcnt = 1;
++
++		}
++		dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++		DWC_DEBUGPL(DBG_PCDV,
++			    "IN len=%d  xfersize=%d pktcnt=%d [%08x]\n",
++			    ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
++			    deptsiz.d32);
++
++		/* Write the DMA register */
++		if (core_if->dma_enable) {
++			dwc_write_reg32(&(in_regs->diepdma),
++					(uint32_t) ep->dma_addr);
++		}
++
++		/* EP enable, IN data in FIFO */
++		depctl.b.cnak = 1;
++		depctl.b.epena = 1;
++		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++		/*
++		 * Enable the Non-Periodic Tx FIFO empty interrupt, the
++		 * data will be written into the fifo by the ISR.
++		 */
++		if (!core_if->dma_enable) {
++			/* First clear it from GINTSTS */
++			intr_mask.b.nptxfempty = 1;
++			dwc_modify_reg32(&core_if->core_global_regs->gintsts,
++					 intr_mask.d32, 0);
++
++			dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++					 intr_mask.d32, intr_mask.d32);
++		}
++
++	} else {		/* OUT endpoint */
++		struct dwc_otg_dev_out_ep_regs *out_regs =
++		    core_if->dev_if->out_ep_regs[ep->num];
++
++		depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
++		deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
++
++		/* Program the transfer size and packet count as follows:
++		 *  xfersize = N * (maxpacket + 4 - (maxpacket % 4))
++		 *  pktcnt = N                                          */
++		if (ep->xfer_len == 0) {
++			/* Zero Length Packet */
++			deptsiz.b.xfersize = ep->maxpacket;
++			deptsiz.b.pktcnt = 1;
++		} else {
++			deptsiz.b.pktcnt =
++			    (ep->xfer_len + (ep->maxpacket - 1)) /
++			    ep->maxpacket;
++			deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
++		}
++
++		dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
++		DWC_DEBUGPL(DBG_PCDV, "len=%d  xfersize=%d pktcnt=%d\n",
++			    ep->xfer_len,
++			    deptsiz.b.xfersize, deptsiz.b.pktcnt);
++
++		if (core_if->dma_enable) {
++			dwc_write_reg32(&(out_regs->doepdma),
++					(uint32_t) ep->dma_addr);
++		}
++
++		/* EP enable */
++		depctl.b.cnak = 1;
++		depctl.b.epena = 1;
++		dwc_write_reg32(&(out_regs->doepctl), depctl.d32);
++	}
++}
++
++/**
++ * This function continues control IN transfers started by
++ * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
++ * single packet.  NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
++ * bit for the packet count.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP0 data.
++ */
++void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if,
++				   struct dwc_ep *ep)
++{
++	union depctl_data depctl;
++	union deptsiz0_data deptsiz;
++	union gintmsk_data intr_mask = {.d32 = 0 };
++
++	if (ep->is_in == 1) {
++		struct dwc_otg_dev_in_ep_regs *in_regs =
++		    core_if->dev_if->in_ep_regs[0];
++		union gnptxsts_data tx_status = {.d32 = 0 };
++
++		tx_status.d32 =
++		    dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
++		/*
++		 * @todo Should there be check for room in the Tx
++		 * Status Queue.  If not remove the code above this comment.
++		 */
++
++		depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
++		deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
++
++		/*
++		 * Program the transfer size and packet count
++		 * as follows: xfersize = N * maxpacket +
++		 * short_packet pktcnt = N + (short_packet
++		 * exist ? 1 : 0)
++		 */
++		deptsiz.b.xfersize =
++		    (ep->total_len - ep->xfer_count) >
++		    ep->maxpacket ? ep->maxpacket : (ep->total_len -
++						       ep->xfer_count);
++		deptsiz.b.pktcnt = 1;
++		ep->xfer_len += deptsiz.b.xfersize;
++
++		dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
++		DWC_DEBUGPL(DBG_PCDV,
++			    "IN len=%d  xfersize=%d pktcnt=%d [%08x]\n",
++			    ep->xfer_len, deptsiz.b.xfersize, deptsiz.b.pktcnt,
++			    deptsiz.d32);
++
++		/* Write the DMA register */
++		if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
++			dwc_write_reg32(&(in_regs->diepdma),
++					(uint32_t) ep->dma_addr);
++		}
++
++		/* EP enable, IN data in FIFO */
++		depctl.b.cnak = 1;
++		depctl.b.epena = 1;
++		dwc_write_reg32(&in_regs->diepctl, depctl.d32);
++
++		/*
++		 * Enable the Non-Periodic Tx FIFO empty interrupt, the
++		 * data will be written into the fifo by the ISR.
++		 */
++		if (!core_if->dma_enable) {
++			/* First clear it from GINTSTS */
++			intr_mask.b.nptxfempty = 1;
++			dwc_write_reg32(&core_if->core_global_regs->gintsts,
++					intr_mask.d32);
++
++			dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
++					 intr_mask.d32, intr_mask.d32);
++		}
++
++	}
++
++}
++
++#ifdef DEBUG
++void dump_msg(const u8 *buf, unsigned int length)
++{
++	unsigned int start, num, i;
++	char line[52], *p;
++
++	if (length >= 512)
++		return;
++	start = 0;
++	while (length > 0) {
++		num = min(length, 16u);
++		p = line;
++		for (i = 0; i < num; ++i) {
++			if (i == 8)
++				*p++ = ' ';
++			sprintf(p, " %02x", buf[i]);
++			p += 3;
++		}
++		*p = 0;
++		DWC_PRINT("%6x: %s\n", start, line);
++		buf += num;
++		start += num;
++		length -= num;
++	}
++}
++#else
++static inline void dump_msg(const u8 *buf, unsigned int length)
++{
++}
++#endif
++
++/**
++ * This function writes a packet into the Tx FIFO associated with the
++ * EP.  For non-periodic EPs the non-periodic Tx FIFO is written.  For
++ * periodic EPs the periodic Tx FIFO associated with the EP is written
++ * with all packets for the next micro-frame.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to write packet for.
++ * @_dma: Indicates if DMA is being used.
++ */
++void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if,
++			     struct dwc_ep *ep,
++			     int _dma)
++{
++	/**
++	 * The buffer is padded to DWORD on a per packet basis in
++	 * slave/dma mode if the MPS is not DWORD aligned.  The last
++	 * packet, if short, is also padded to a multiple of DWORD.
++	 *
++	 * ep->xfer_buff always starts DWORD aligned in memory and is a
++	 * multiple of DWORD in length
++	 *
++	 * ep->xfer_len can be any number of bytes
++	 *
++	 * ep->xfer_count is a multiple of ep->maxpacket until the last
++	 *  packet
++	 *
++	 * FIFO access is DWORD */
++
++	uint32_t i;
++	uint32_t byte_count;
++	uint32_t dword_count;
++	uint32_t *fifo;
++	uint32_t *data_buff = (uint32_t *) ep->xfer_buff;
++
++	if (ep->xfer_count >= ep->xfer_len) {
++		DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
++		return;
++	}
++
++	/* Find the byte length of the packet either short packet or MPS */
++	if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket)
++		byte_count = ep->xfer_len - ep->xfer_count;
++	else
++		byte_count = ep->maxpacket;
++
++	/* Find the DWORD length, padded by extra bytes as neccessary if MPS
++	 * is not a multiple of DWORD */
++	dword_count = (byte_count + 3) / 4;
++
++#ifdef VERBOSE
++	dump_msg(ep->xfer_buff, byte_count);
++#endif
++	if (ep->type == DWC_OTG_EP_TYPE_ISOC)
++		/*
++		 *@todo NGS Where are the Periodic Tx FIFO addresses
++		 * intialized?  What should this be?
++		 */
++		fifo = core_if->data_fifo[ep->tx_fifo_num];
++	else
++		fifo = core_if->data_fifo[ep->num];
++
++	DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n",
++		    fifo, data_buff, *data_buff, byte_count);
++
++	if (!_dma) {
++		for (i = 0; i < dword_count; i++, data_buff++)
++			dwc_write_reg32(fifo, *data_buff);
++	}
++
++	ep->xfer_count += byte_count;
++	ep->xfer_buff += byte_count;
++}
++
++/**
++ * Set the EP STALL.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to set the stall on.
++ */
++void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++	union depctl_data depctl;
++	uint32_t *depctl_addr;
++
++	DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
++		    (ep->is_in ? "IN" : "OUT"));
++
++	if (ep->is_in == 1) {
++		depctl_addr =
++		    &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++		depctl.d32 = dwc_read_reg32(depctl_addr);
++
++		/* set the disable and stall bits */
++		if (depctl.b.epena)
++			depctl.b.epdis = 1;
++		depctl.b.stall = 1;
++		dwc_write_reg32(depctl_addr, depctl.d32);
++
++	} else {
++		depctl_addr =
++		    &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++		depctl.d32 = dwc_read_reg32(depctl_addr);
++
++		/* set the stall bit */
++		depctl.b.stall = 1;
++		dwc_write_reg32(depctl_addr, depctl.d32);
++	}
++	DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
++	return;
++}
++
++/**
++ * Clear the EP STALL.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @ep: The EP to clear stall from.
++ */
++void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++	union depctl_data depctl;
++	uint32_t *depctl_addr;
++
++	DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
++		    (ep->is_in ? "IN" : "OUT"));
++
++	if (ep->is_in == 1) {
++		depctl_addr =
++		    &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
++	} else {
++		depctl_addr =
++		    &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
++	}
++
++	depctl.d32 = dwc_read_reg32(depctl_addr);
++
++	/* clear the stall bits */
++	depctl.b.stall = 0;
++
++	/*
++	 * USB Spec 9.4.5: For endpoints using data toggle, regardless
++	 * of whether an endpoint has the Halt feature set, a
++	 * ClearFeature(ENDPOINT_HALT) request always results in the
++	 * data toggle being reinitialized to DATA0.
++	 */
++	if (ep->type == DWC_OTG_EP_TYPE_INTR ||
++	    ep->type == DWC_OTG_EP_TYPE_BULK) {
++		depctl.b.setd0pid = 1;	/* DATA0 */
++	}
++
++	dwc_write_reg32(depctl_addr, depctl.d32);
++	DWC_DEBUGPL(DBG_PCD, "DEPCTL=%0x\n", dwc_read_reg32(depctl_addr));
++	return;
++}
++
++/**
++ * This function reads a packet from the Rx FIFO into the destination
++ * buffer.  To read SETUP data use dwc_otg_read_setup_packet.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @dest:   Destination buffer for the packet.
++ * @bytes:  Number of bytes to copy to the destination.
++ */
++void dwc_otg_read_packet(struct dwc_otg_core_if *core_if,
++			 uint8_t *dest, uint16_t bytes)
++{
++	int i;
++	int word_count = (bytes + 3) / 4;
++
++	uint32_t *fifo = core_if->data_fifo[0];
++	uint32_t *data_buff = (uint32_t *) dest;
++
++	/**
++	 * @todo Account for the case where dest is not dword aligned. This
++	 * requires reading data from the FIFO into a uint32_t temp buffer,
++	 * then moving it into the data buffer.
++	 */
++
++	DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
++		    core_if, dest, bytes);
++
++	for (i = 0; i < word_count; i++, data_buff++)
++		*data_buff = dwc_read_reg32(fifo);
++	return;
++}
++
++/**
++ * This functions reads the device registers and prints them
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if)
++{
++	int i;
++	uint32_t *addr;
++
++	DWC_PRINT("Device Global Registers\n");
++	addr = &core_if->dev_if->dev_global_regs->dcfg;
++	DWC_PRINT("DCFG      @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->dev_if->dev_global_regs->dctl;
++	DWC_PRINT("DCTL      @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->dev_if->dev_global_regs->dsts;
++	DWC_PRINT("DSTS      @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->dev_if->dev_global_regs->diepmsk;
++	DWC_PRINT("DIEPMSK   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->dev_if->dev_global_regs->doepmsk;
++	DWC_PRINT("DOEPMSK   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->dev_if->dev_global_regs->daint;
++	DWC_PRINT("DAINT     @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->dev_if->dev_global_regs->dtknqr1;
++	DWC_PRINT("DTKNQR1   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
++		addr = &core_if->dev_if->dev_global_regs->dtknqr2;
++		DWC_PRINT("DTKNQR2   @%p : 0x%08X\n",
++			  addr, dwc_read_reg32(addr));
++	}
++
++	addr = &core_if->dev_if->dev_global_regs->dvbusdis;
++	DWC_PRINT("DVBUSID   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++	addr = &core_if->dev_if->dev_global_regs->dvbuspulse;
++	DWC_PRINT("DVBUSPULSE   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++	if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
++		addr = &core_if->dev_if->dev_global_regs->dtknqr3;
++		DWC_PRINT("DTKNQR3   @%p : 0x%08X\n",
++			  addr, dwc_read_reg32(addr));
++	}
++
++	if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
++		addr = &core_if->dev_if->dev_global_regs->dtknqr4;
++		DWC_PRINT("DTKNQR4   @%p : 0x%08X\n",
++			  addr, dwc_read_reg32(addr));
++	}
++
++	for (i = 0; i < core_if->dev_if->num_eps; i++) {
++		DWC_PRINT("Device IN EP %d Registers\n", i);
++		addr = &core_if->dev_if->in_ep_regs[i]->diepctl;
++		DWC_PRINT("DIEPCTL   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->dev_if->in_ep_regs[i]->diepint;
++		DWC_PRINT("DIEPINT   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->dev_if->in_ep_regs[i]->dieptsiz;
++		DWC_PRINT("DIETSIZ   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->dev_if->in_ep_regs[i]->diepdma;
++		DWC_PRINT("DIEPDMA   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++
++		DWC_PRINT("Device OUT EP %d Registers\n", i);
++		addr = &core_if->dev_if->out_ep_regs[i]->doepctl;
++		DWC_PRINT("DOEPCTL   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->dev_if->out_ep_regs[i]->doepfn;
++		DWC_PRINT("DOEPFN    @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->dev_if->out_ep_regs[i]->doepint;
++		DWC_PRINT("DOEPINT   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->dev_if->out_ep_regs[i]->doeptsiz;
++		DWC_PRINT("DOETSIZ   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->dev_if->out_ep_regs[i]->doepdma;
++		DWC_PRINT("DOEPDMA   @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++	}
++	return;
++}
++
++/**
++ * This function reads the host registers and prints them
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if)
++{
++	int i;
++	uint32_t *addr;
++
++	DWC_PRINT("Host Global Registers\n");
++	addr = &core_if->host_if->host_global_regs->hcfg;
++	DWC_PRINT("HCFG      @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->host_if->host_global_regs->hfir;
++	DWC_PRINT("HFIR      @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->host_if->host_global_regs->hfnum;
++	DWC_PRINT("HFNUM     @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->host_if->host_global_regs->hptxsts;
++	DWC_PRINT("HPTXSTS   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->host_if->host_global_regs->haint;
++	DWC_PRINT("HAINT     @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->host_if->host_global_regs->haintmsk;
++	DWC_PRINT("HAINTMSK  @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = core_if->host_if->hprt0;
++	DWC_PRINT("HPRT0     @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++	for (i = 0; i < core_if->core_params->host_channels; i++) {
++		DWC_PRINT("Host Channel %d Specific Registers\n", i);
++		addr = &core_if->host_if->hc_regs[i]->hcchar;
++		DWC_PRINT("HCCHAR    @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->host_if->hc_regs[i]->hcsplt;
++		DWC_PRINT("HCSPLT    @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->host_if->hc_regs[i]->hcint;
++		DWC_PRINT("HCINT     @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->host_if->hc_regs[i]->hcintmsk;
++		DWC_PRINT("HCINTMSK  @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->host_if->hc_regs[i]->hctsiz;
++		DWC_PRINT("HCTSIZ    @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++		addr = &core_if->host_if->hc_regs[i]->hcdma;
++		DWC_PRINT("HCDMA     @%p : 0x%08X\n", addr,
++			  dwc_read_reg32(addr));
++
++	}
++	return;
++}
++
++/**
++ * This function reads the core global registers and prints them
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if)
++{
++	int i;
++	uint32_t *addr;
++
++	DWC_PRINT("Core Global Registers\n");
++	addr = &core_if->core_global_regs->gotgctl;
++	DWC_PRINT("GOTGCTL   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gotgint;
++	DWC_PRINT("GOTGINT   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gahbcfg;
++	DWC_PRINT("GAHBCFG   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gusbcfg;
++	DWC_PRINT("GUSBCFG   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->grstctl;
++	DWC_PRINT("GRSTCTL   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gintsts;
++	DWC_PRINT("GINTSTS   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gintmsk;
++	DWC_PRINT("GINTMSK   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->grxstsr;
++	DWC_PRINT("GRXSTSR   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->grxfsiz;
++	DWC_PRINT("GRXFSIZ   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gnptxfsiz;
++	DWC_PRINT("GNPTXFSIZ @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gnptxsts;
++	DWC_PRINT("GNPTXSTS  @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gi2cctl;
++	DWC_PRINT("GI2CCTL   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gpvndctl;
++	DWC_PRINT("GPVNDCTL  @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->ggpio;
++	DWC_PRINT("GGPIO     @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->guid;
++	DWC_PRINT("GUID      @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->gsnpsid;
++	DWC_PRINT("GSNPSID   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->ghwcfg1;
++	DWC_PRINT("GHWCFG1   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->ghwcfg2;
++	DWC_PRINT("GHWCFG2   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->ghwcfg3;
++	DWC_PRINT("GHWCFG3   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->ghwcfg4;
++	DWC_PRINT("GHWCFG4   @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++	addr = &core_if->core_global_regs->hptxfsiz;
++	DWC_PRINT("HPTXFSIZ  @%p : 0x%08X\n", addr, dwc_read_reg32(addr));
++
++	for (i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++) {
++		addr = &core_if->core_global_regs->dptxfsiz[i];
++		DWC_PRINT("DPTXFSIZ[%d] @%p : 0x%08X\n", i, addr,
++			  dwc_read_reg32(addr));
++	}
++
++}
++
++/**
++ * Flush a Tx FIFO.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @_num: Tx FIFO to flush.
++ */
++extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if, const int _num)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	union grstctl_data greset = {.d32 = 0 };
++	int count = 0;
++
++	DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "Flush Tx FIFO %d\n", _num);
++
++	greset.b.txfflsh = 1;
++	greset.b.txfnum = _num;
++	dwc_write_reg32(&global_regs->grstctl, greset.d32);
++
++	do {
++		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++		if (++count > 10000) {
++			DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
++				 __func__, greset.d32,
++				 dwc_read_reg32(&global_regs->gnptxsts));
++			break;
++		}
++
++	} while (greset.b.txfflsh == 1);
++	/* Wait for 3 PHY Clocks */
++	udelay(1);
++}
++
++/**
++ * Flush Rx FIFO.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	union grstctl_data greset = {.d32 = 0 };
++	int count = 0;
++
++	DWC_DEBUGPL((DBG_CIL | DBG_PCDV), "%s\n", __func__);
++	/*
++	 *
++	 */
++	greset.b.rxfflsh = 1;
++	dwc_write_reg32(&global_regs->grstctl, greset.d32);
++
++	do {
++		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++		if (++count > 10000) {
++			DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
++				 greset.d32);
++			break;
++		}
++	} while (greset.b.rxfflsh == 1);
++	/* Wait for 3 PHY Clocks */
++	udelay(1);
++}
++
++/**
++ * Do core a soft reset of the core.  Be careful with this because it
++ * resets all the internal state machines of the core.
++ */
++void dwc_otg_core_reset(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	union grstctl_data greset = {.d32 = 0 };
++	int count = 0;
++
++	DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
++	/* Wait for AHB master IDLE state. */
++	do {
++		udelay(10);
++		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++		if (++count > 100000) {
++			DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
++				 greset.d32);
++			return;
++		}
++	} while (greset.b.ahbidle == 0);
++
++	/* Core Soft Reset */
++	count = 0;
++	greset.b.csftrst = 1;
++	dwc_write_reg32(&global_regs->grstctl, greset.d32);
++	do {
++		greset.d32 = dwc_read_reg32(&global_regs->grstctl);
++		if (++count > 10000) {
++			DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n",
++				 __func__, greset.d32);
++			break;
++		}
++	} while (greset.b.csftrst == 1);
++	/* Wait for 3 PHY Clocks */
++	mdelay(100);
++}
++
++/**
++ * Register HCD callbacks.  The callbacks are used to start and stop
++ * the HCD for interrupt processing.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @_cb: the HCD callback structure.
++ * @_p: pointer to be passed to callback function (usb_hcd*).
++ */
++extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if,
++					       struct dwc_otg_cil_callbacks *_cb,
++					       void *_p)
++{
++	core_if->hcd_cb = _cb;
++	_cb->p = _p;
++}
++
++/**
++ * Register PCD callbacks.  The callbacks are used to start and stop
++ * the PCD for interrupt processing.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ * @_cb: the PCD callback structure.
++ * @_p: pointer to be passed to callback function (pcd*).
++ */
++extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if,
++					       struct dwc_otg_cil_callbacks *_cb,
++					       void *_p)
++{
++	core_if->pcd_cb = _cb;
++	_cb->p = _p;
++}
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil.h b/drivers/usb/host/dwc_otg/dwc_otg_cil.h
+new file mode 100644
+index 0000000..36ef561
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil.h
+@@ -0,0 +1,866 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_CIL_H__)
++#define __DWC_CIL_H__
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_regs.h"
++#ifdef DEBUG
++#include "linux/timer.h"
++#endif
++
++/*
++ * This file contains the interface to the Core Interface Layer.
++ */
++
++/**
++ * The <code>dwc_ep</code> structure represents the state of a single
++ * endpoint when acting in device mode. It contains the data items
++ * needed for an endpoint to be activated and transfer packets.
++ */
++struct dwc_ep {
++	/** EP number used for register address lookup */
++	uint8_t num;
++	/** EP direction 0 = OUT */
++	unsigned is_in:1;
++	/** EP active. */
++	unsigned active:1;
++
++	/*
++	 * Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use
++	 * non-periodic Tx FIFO
++	 */
++	unsigned tx_fifo_num:4;
++	/** EP type: 0 - Control, 1 - ISOC,  2 - BULK,  3 - INTR */
++	unsigned type:2;
++#define DWC_OTG_EP_TYPE_CONTROL    0
++#define DWC_OTG_EP_TYPE_ISOC       1
++#define DWC_OTG_EP_TYPE_BULK       2
++#define DWC_OTG_EP_TYPE_INTR       3
++
++	/** DATA start PID for INTR and BULK EP */
++	unsigned data_pid_start:1;
++	/** Frame (even/odd) for ISOC EP */
++	unsigned even_odd_frame:1;
++	/** Max Packet bytes */
++	unsigned maxpacket:11;
++
++	/** @name Transfer state */
++	/** @{ */
++
++	/**
++	 * Pointer to the beginning of the transfer buffer -- do not modify
++	 * during transfer.
++	 */
++
++	uint32_t dma_addr;
++
++	uint8_t *start_xfer_buff;
++	/** pointer to the transfer buffer */
++	uint8_t *xfer_buff;
++	/** Number of bytes to transfer */
++	unsigned xfer_len:19;
++	/** Number of bytes transferred. */
++	unsigned xfer_count:19;
++	/** Sent ZLP */
++	unsigned sent_zlp:1;
++	/** Total len for control transfer */
++	unsigned total_len:19;
++
++	/** @} */
++};
++
++/*
++ * Reasons for halting a host channel.
++ */
++enum dwc_otg_halt_status {
++	DWC_OTG_HC_XFER_NO_HALT_STATUS,
++	DWC_OTG_HC_XFER_COMPLETE,
++	DWC_OTG_HC_XFER_URB_COMPLETE,
++	DWC_OTG_HC_XFER_ACK,
++	DWC_OTG_HC_XFER_NAK,
++	DWC_OTG_HC_XFER_NYET,
++	DWC_OTG_HC_XFER_STALL,
++	DWC_OTG_HC_XFER_XACT_ERR,
++	DWC_OTG_HC_XFER_FRAME_OVERRUN,
++	DWC_OTG_HC_XFER_BABBLE_ERR,
++	DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
++	DWC_OTG_HC_XFER_AHB_ERR,
++	DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
++	DWC_OTG_HC_XFER_URB_DEQUEUE
++};
++
++/**
++ * Host channel descriptor. This structure represents the state of a single
++ * host channel when acting in host mode. It contains the data items needed to
++ * transfer packets to an endpoint via a host channel.
++ */
++struct dwc_hc {
++	/** Host channel number used for register address lookup */
++	uint8_t hc_num;
++
++	/** Device to access */
++	unsigned dev_addr:7;
++
++	/** EP to access */
++	unsigned ep_num:4;
++
++	/** EP direction. 0: OUT, 1: IN */
++	unsigned ep_is_in:1;
++
++	/**
++	 * EP speed.
++	 * One of the following values:
++	 * 	- DWC_OTG_EP_SPEED_LOW
++	 *	- DWC_OTG_EP_SPEED_FULL
++	 *	- DWC_OTG_EP_SPEED_HIGH
++	 */
++	unsigned speed:2;
++#define DWC_OTG_EP_SPEED_LOW	0
++#define DWC_OTG_EP_SPEED_FULL	1
++#define DWC_OTG_EP_SPEED_HIGH	2
++
++	/**
++	 * Endpoint type.
++	 * One of the following values:
++	 *	- DWC_OTG_EP_TYPE_CONTROL: 0
++	 *	- DWC_OTG_EP_TYPE_ISOC: 1
++	 *	- DWC_OTG_EP_TYPE_BULK: 2
++	 *	- DWC_OTG_EP_TYPE_INTR: 3
++	 */
++	unsigned ep_type:2;
++
++	/** Max packet size in bytes */
++	unsigned max_packet:11;
++
++	/**
++	 * PID for initial transaction.
++	 * 0: DATA0,<br>
++	 * 1: DATA2,<br>
++	 * 2: DATA1,<br>
++	 * 3: MDATA (non-Control EP),
++	 *    SETUP (Control EP)
++	 */
++	unsigned data_pid_start:2;
++#define DWC_OTG_HC_PID_DATA0 0
++#define DWC_OTG_HC_PID_DATA2 1
++#define DWC_OTG_HC_PID_DATA1 2
++#define DWC_OTG_HC_PID_MDATA 3
++#define DWC_OTG_HC_PID_SETUP 3
++
++	/** Number of periodic transactions per (micro)frame */
++	unsigned multi_count:2;
++
++	/** @name Transfer State */
++	/** @{ */
++
++	/** Pointer to the current transfer buffer position. */
++	uint8_t *xfer_buff;
++	/** Total number of bytes to transfer. */
++	uint32_t xfer_len;
++	/** Number of bytes transferred so far. */
++	uint32_t xfer_count;
++	/** Packet count at start of transfer.*/
++	uint16_t start_pkt_count;
++
++	/**
++	 * Flag to indicate whether the transfer has been started. Set to 1 if
++	 * it has been started, 0 otherwise.
++	 */
++	uint8_t xfer_started;
++
++	/**
++	 * Set to 1 to indicate that a PING request should be issued on this
++	 * channel. If 0, process normally.
++	 */
++	uint8_t do_ping;
++
++	/**
++	 * Set to 1 to indicate that the error count for this transaction is
++	 * non-zero. Set to 0 if the error count is 0.
++	 */
++	uint8_t error_state;
++
++	/**
++	 * Set to 1 to indicate that this channel should be halted the next
++	 * time a request is queued for the channel. This is necessary in
++	 * slave mode if no request queue space is available when an attempt
++	 * is made to halt the channel.
++	 */
++	uint8_t halt_on_queue;
++
++	/**
++	 * Set to 1 if the host channel has been halted, but the core is not
++	 * finished flushing queued requests. Otherwise 0.
++	 */
++	uint8_t halt_pending;
++
++	/**
++	 * Reason for halting the host channel.
++	 */
++	enum dwc_otg_halt_status halt_status;
++
++	/*
++	 * Split settings for the host channel
++	 */
++	uint8_t do_split;	   /**< Enable split for the channel */
++	uint8_t complete_split;	   /**< Enable complete split */
++	uint8_t hub_addr;	   /**< Address of high speed hub */
++
++	uint8_t port_addr;	   /**< Port of the low/full speed device */
++	/** Split transaction position
++	 * One of the following values:
++	 *    - DWC_HCSPLIT_XACTPOS_MID
++	 *    - DWC_HCSPLIT_XACTPOS_BEGIN
++	 *    - DWC_HCSPLIT_XACTPOS_END
++	 *    - DWC_HCSPLIT_XACTPOS_ALL */
++	uint8_t xact_pos;
++
++	/** Set when the host channel does a short read. */
++	uint8_t short_read;
++
++	/**
++	 * Number of requests issued for this channel since it was assigned to
++	 * the current transfer (not counting PINGs).
++	 */
++	uint8_t requests;
++
++	/**
++	 * Queue Head for the transfer being processed by this channel.
++	 */
++	struct dwc_otg_qh *qh;
++
++	/** @} */
++
++	/** Entry in list of host channels. */
++	struct list_head hc_list_entry;
++};
++
++/**
++ * The following parameters may be specified when starting the module. These
++ * parameters define how the DWC_otg controller should be configured.
++ * Parameter values are passed to the CIL initialization function
++ * dwc_otg_cil_init.
++ */
++struct dwc_otg_core_params {
++	int32_t opt;
++#define dwc_param_opt_default 1
++
++	/*
++	 * Specifies the OTG capabilities. The driver will automatically
++	 * detect the value for this parameter if none is specified.
++	 * 0 - HNP and SRP capable (default)
++	 * 1 - SRP Only capable
++	 * 2 - No HNP/SRP capable
++	 */
++	int32_t otg_cap;
++#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
++#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
++#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
++#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
++
++	/*
++	 * Specifies whether to use slave or DMA mode for accessing the data
++	 * FIFOs. The driver will automatically detect the value for this
++	 * parameter if none is specified.
++	 * 0 - Slave
++	 * 1 - DMA (default, if available)
++	 */
++	int32_t dma_enable;
++#define dwc_param_dma_enable_default 1
++
++	/*
++	 * The DMA Burst size (applicable only for External DMA
++	 * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++	 */
++	int32_t dma_burst_size;	/* Translate this to GAHBCFG values */
++#define dwc_param_dma_burst_size_default 32
++
++	/*
++	 * Specifies the maximum speed of operation in host and device mode.
++	 * The actual speed depends on the speed of the attached device and
++	 * the value of phy_type. The actual speed depends on the speed of the
++	 * attached device.
++	 * 0 - High Speed (default)
++	 * 1 - Full Speed
++	 */
++	int32_t speed;
++#define dwc_param_speed_default 0
++#define DWC_SPEED_PARAM_HIGH 0
++#define DWC_SPEED_PARAM_FULL 1
++
++	/** Specifies whether low power mode is supported when attached
++	 *  to a Full Speed or Low Speed device in host mode.
++	 * 0 - Don't support low power mode (default)
++	 * 1 - Support low power mode
++	 */
++	int32_t host_support_fs_ls_low_power;
++#define dwc_param_host_support_fs_ls_low_power_default 0
++
++	/** Specifies the PHY clock rate in low power mode when connected to a
++	 * Low Speed device in host mode. This parameter is applicable only if
++	 * HOST_SUPPORT_FS_LS_LOW_POWER is enabled.  If PHY_TYPE is set to FS
++	 * then defaults to 6 MHZ otherwise 48 MHZ.
++	 *
++	 * 0 - 48 MHz
++	 * 1 - 6 MHz
++	 */
++	int32_t host_ls_low_power_phy_clk;
++#define dwc_param_host_ls_low_power_phy_clk_default 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
++#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
++
++	/**
++	 * 0 - Use cC FIFO size parameters
++	 * 1 - Allow dynamic FIFO sizing (default)
++	 */
++	int32_t enable_dynamic_fifo;
++#define dwc_param_enable_dynamic_fifo_default 1
++
++	/** Total number of 4-byte words in the data FIFO memory. This
++	 * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
++	 * Tx FIFOs.
++	 * 32 to 32768 (default 8192)
++	 * Note: The total FIFO memory depth in the FPGA configuration is 8192.
++	 */
++	int32_t data_fifo_size;
++#define dwc_param_data_fifo_size_default 8192
++
++	/** Number of 4-byte words in the Rx FIFO in device mode when dynamic
++	 * FIFO sizing is enabled.
++	 * 16 to 32768 (default 1064)
++	 */
++	int32_t dev_rx_fifo_size;
++#define dwc_param_dev_rx_fifo_size_default 1064
++
++	/** Number of 4-byte words in the non-periodic Tx FIFO in device mode
++	 * when dynamic FIFO sizing is enabled.
++	 * 16 to 32768 (default 1024)
++	 */
++	int32_t dev_nperio_tx_fifo_size;
++#define dwc_param_dev_nperio_tx_fifo_size_default 1024
++
++	/** Number of 4-byte words in each of the periodic Tx FIFOs in device
++	 * mode when dynamic FIFO sizing is enabled.
++	 * 4 to 768 (default 256)
++	 */
++	uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
++#define dwc_param_dev_perio_tx_fifo_size_default 256
++
++	/** Number of 4-byte words in the Rx FIFO in host mode when dynamic
++	 * FIFO sizing is enabled.
++	 * 16 to 32768 (default 1024)
++	 */
++	int32_t host_rx_fifo_size;
++#define dwc_param_host_rx_fifo_size_default 1024
++#define dwc_param_host_rx_fifo_size_percentage 30
++
++	/** Number of 4-byte words in the non-periodic Tx FIFO in host mode
++	 * when Dynamic FIFO sizing is enabled in the core.
++	 * 16 to 32768 (default 1024)
++	 */
++	int32_t host_nperio_tx_fifo_size;
++#define dwc_param_host_nperio_tx_fifo_size_default 1024
++#define dwc_param_host_nperio_tx_fifo_size_percentage 40
++
++	/*
++	 * Number of 4-byte words in the host periodic Tx FIFO when dynamic
++	 * FIFO sizing is enabled.
++	 * 16 to 32768 (default 1024)
++	 */
++	int32_t host_perio_tx_fifo_size;
++#define dwc_param_host_perio_tx_fifo_size_default 1024
++#define dwc_param_host_perio_tx_fifo_size_percentage 30
++
++	/*
++	 * The maximum transfer size supported in bytes.
++	 * 2047 to 65,535  (default 65,535)
++	 */
++	int32_t max_transfer_size;
++#define dwc_param_max_transfer_size_default 65535
++
++	/*
++	 * The maximum number of packets in a transfer.
++	 * 15 to 511  (default 511)
++	 */
++	int32_t max_packet_count;
++#define dwc_param_max_packet_count_default 511
++
++	/*
++	 * The number of host channel registers to use.
++	 * 1 to 16 (default 12)
++	 * Note: The FPGA configuration supports a maximum of 12 host channels.
++	 */
++	int32_t host_channels;
++#define dwc_param_host_channels_default 12
++
++	/*
++	 * The number of endpoints in addition to EP0 available for device
++	 * mode operations.
++	 * 1 to 15 (default 6 IN and OUT)
++	 * Note: The FPGA configuration supports a maximum of 6 IN and OUT
++	 * endpoints in addition to EP0.
++	 */
++	int32_t dev_endpoints;
++#define dwc_param_dev_endpoints_default 6
++
++	/*
++	 * Specifies the type of PHY interface to use. By default, the driver
++	 * will automatically detect the phy_type.
++	 *
++	 * 0 - Full Speed PHY
++	 * 1 - UTMI+ (default)
++	 * 2 - ULPI
++	 */
++	int32_t phy_type;
++#define DWC_PHY_TYPE_PARAM_FS 0
++#define DWC_PHY_TYPE_PARAM_UTMI 1
++#define DWC_PHY_TYPE_PARAM_ULPI 2
++#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
++
++	/*
++	 * Specifies the UTMI+ Data Width.  This parameter is
++	 * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
++	 * PHY_TYPE, this parameter indicates the data width between
++	 * the MAC and the ULPI Wrapper.) Also, this parameter is
++	 * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
++	 * to "8 and 16 bits", meaning that the core has been
++	 * configured to work at either data path width.
++	 *
++	 * 8 or 16 bits (default 16)
++	 */
++	int32_t phy_utmi_width;
++#define dwc_param_phy_utmi_width_default 16
++
++	/*
++	 * Specifies whether the ULPI operates at double or single
++	 * data rate. This parameter is only applicable if PHY_TYPE is
++	 * ULPI.
++	 *
++	 * 0 - single data rate ULPI interface with 8 bit wide data
++	 * bus (default)
++	 * 1 - double data rate ULPI interface with 4 bit wide data
++	 * bus
++	 */
++	int32_t phy_ulpi_ddr;
++#define dwc_param_phy_ulpi_ddr_default 0
++
++	/*
++	 * Specifies whether to use the internal or external supply to
++	 * drive the vbus with a ULPI phy.
++	 */
++	int32_t phy_ulpi_ext_vbus;
++#define DWC_PHY_ULPI_INTERNAL_VBUS 0
++#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
++#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
++
++	/*
++	 * Specifies whether to use the I2Cinterface for full speed PHY. This
++	 * parameter is only applicable if PHY_TYPE is FS.
++	 * 0 - No (default)
++	 * 1 - Yes
++	 */
++	int32_t i2c_enable;
++#define dwc_param_i2c_enable_default 0
++
++	int32_t ulpi_fs_ls;
++#define dwc_param_ulpi_fs_ls_default 0
++
++	int32_t ts_dline;
++#define dwc_param_ts_dline_default 0
++
++};
++
++/**
++ * The FIFOs are established based on a default percentage of the total
++ * FIFO depth. This check insures that the defaults are reasonable.
++ */
++#if (((dwc_param_host_rx_fifo_size_percentage) \
++     +(dwc_param_host_nperio_tx_fifo_size_percentage) \
++     +(dwc_param_host_perio_tx_fifo_size_percentage)) > 100)
++#error Invalid FIFO allocation
++#endif
++
++#ifdef DEBUG
++struct dwc_otg_core_if;
++struct hc_xfer_info {
++	struct dwc_otg_core_if *core_if;
++	struct dwc_hc *hc;
++};
++#endif
++
++/*
++ * The <code>dwc_otg_core_if</code> structure contains information
++ * needed to manage the DWC_otg controller acting in either host or
++ * device mode. It represents the programming view of the controller
++ * as a whole.
++ */
++struct dwc_otg_core_if {
++	/** USB block index number for Octeon's that support multiple */
++	int usb_num;
++
++	/** Parameters that define how the core should be configured.*/
++	struct dwc_otg_core_params *core_params;
++
++	/** Core Global registers starting at offset 000h. */
++	struct dwc_otg_core_global_regs *core_global_regs;
++
++	/** Device-specific information */
++	struct dwc_otg_dev_if *dev_if;
++	/** Host-specific information */
++	struct dwc_otg_host_if *host_if;
++
++	/*
++	 * Set to 1 if the core PHY interface bits in USBCFG have been
++	 * initialized.
++	 */
++	uint8_t phy_init_done;
++
++	/*
++	 * SRP Success flag, set by srp success interrupt in FS I2C mode
++	 */
++	uint8_t srp_success;
++	uint8_t srp_timer_started;
++
++	/* Common configuration information */
++	/** Power and Clock Gating Control Register */
++	uint32_t *pcgcctl;
++#define DWC_OTG_PCGCCTL_OFFSET 0xE00
++
++	/** Push/pop addresses for endpoints or host channels.*/
++	uint32_t *data_fifo[MAX_EPS_CHANNELS];
++#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
++#define DWC_OTG_DATA_FIFO_SIZE 0x1000
++
++	/** Total RAM for FIFOs (Bytes) */
++	uint16_t total_fifo_size;
++	/** Size of Rx FIFO (Bytes) */
++	uint16_t rx_fifo_size;
++	/** Size of Non-periodic Tx FIFO (Bytes) */
++	uint16_t nperio_tx_fifo_size;
++
++	/** 1 if DMA is enabled, 0 otherwise. */
++	uint8_t dma_enable;
++
++	/** Set to 1 if multiple packets of a high-bandwidth transfer is in
++	 * process of being queued */
++	uint8_t queuing_high_bandwidth;
++
++	/** Hardware Configuration -- stored here for convenience.*/
++	union hwcfg1_data hwcfg1;
++	union hwcfg2_data hwcfg2;
++	union hwcfg3_data hwcfg3;
++	union hwcfg4_data hwcfg4;
++
++	/*
++	 * The operational State, during transations
++	 * (a_host>>a_peripherial and b_device=>b_host) this may not
++	 * match the core but allows the software to determine
++	 * transitions.
++	 */
++	uint8_t op_state;
++
++	/*
++	 * Set to 1 if the HCD needs to be restarted on a session request
++	 * interrupt. This is required if no connector ID status change has
++	 * occurred since the HCD was last disconnected.
++	 */
++	uint8_t restart_hcd_on_session_req;
++
++	/** HCD callbacks */
++	/** A-Device is a_host */
++#define A_HOST 		(1)
++	/** A-Device is a_suspend */
++#define A_SUSPEND 	(2)
++	/** A-Device is a_peripherial */
++#define A_PERIPHERAL 	(3)
++	/** B-Device is operating as a Peripheral. */
++#define B_PERIPHERAL	(4)
++	/** B-Device is operating as a Host. */
++#define B_HOST 		(5)
++
++	/** HCD callbacks */
++	struct dwc_otg_cil_callbacks *hcd_cb;
++	/** PCD callbacks */
++	struct dwc_otg_cil_callbacks *pcd_cb;
++
++#ifdef DEBUG
++	uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
++
++	struct hc_xfer_info hc_xfer_info[MAX_EPS_CHANNELS];
++	struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
++
++	uint32_t hfnum_7_samples;
++	uint64_t hfnum_7_frrem_accum;
++	uint32_t hfnum_0_samples;
++	uint64_t hfnum_0_frrem_accum;
++	uint32_t hfnum_other_samples;
++	uint64_t hfnum_other_frrem_accum;
++#endif
++
++};
++
++/*
++ * The following functions support initialization of the CIL driver component
++ * and the DWC_otg controller.
++ */
++extern struct dwc_otg_core_if *dwc_otg_cil_init(const uint32_t *reg_base_addr,
++					   struct dwc_otg_core_params *
++					   _core_params);
++extern void dwc_otg_cil_remove(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_init(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_host_init(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_dev_init(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_enable_global_interrupts(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_disable_global_interrupts(struct dwc_otg_core_if *core_if);
++
++/* Device CIL Functions
++ * The following functions support managing the DWC_otg controller in device
++ * mode.
++ */
++
++extern void dwc_otg_wakeup(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_read_setup_packet(struct dwc_otg_core_if *core_if,
++				      uint32_t *dest);
++extern uint32_t dwc_otg_get_frame_number(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_ep0_activate(struct dwc_otg_core_if *core_if,
++				 struct dwc_ep *ep);
++extern void dwc_otg_ep_activate(struct dwc_otg_core_if *core_if,
++				struct dwc_ep *ep);
++extern void dwc_otg_ep_deactivate(struct dwc_otg_core_if *core_if,
++				  struct dwc_ep *ep);
++extern void dwc_otg_ep_start_transfer(struct dwc_otg_core_if *core_if,
++				      struct dwc_ep *ep);
++extern void dwc_otg_ep0_start_transfer(struct dwc_otg_core_if *core_if,
++				       struct dwc_ep *ep);
++extern void dwc_otg_ep0_continue_transfer(struct dwc_otg_core_if *core_if,
++					  struct dwc_ep *ep);
++extern void dwc_otg_ep_write_packet(struct dwc_otg_core_if *core_if,
++				    struct dwc_ep *ep, int _dma);
++extern void dwc_otg_ep_set_stall(struct dwc_otg_core_if *core_if,
++				 struct dwc_ep *ep);
++extern void dwc_otg_ep_clear_stall(struct dwc_otg_core_if *core_if,
++				   struct dwc_ep *ep);
++extern void dwc_otg_enable_device_interrupts(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_dump_dev_registers(struct dwc_otg_core_if *core_if);
++
++/* Host CIL Functions
++ * The following functions support managing the DWC_otg controller in host
++ * mode.
++ */
++
++extern void dwc_otg_hc_init(struct dwc_otg_core_if *core_if, struct dwc_hc *hc);
++extern void dwc_otg_hc_halt(struct dwc_otg_core_if *core_if,
++			    struct dwc_hc *hc,
++			    enum dwc_otg_halt_status halt_status);
++extern void dwc_otg_hc_cleanup(struct dwc_otg_core_if *core_if,
++			       struct dwc_hc *hc);
++extern void dwc_otg_hc_start_transfer(struct dwc_otg_core_if *core_if,
++				      struct dwc_hc *hc);
++extern int dwc_otg_hc_continue_transfer(struct dwc_otg_core_if *core_if,
++					struct dwc_hc *hc);
++extern void dwc_otg_hc_do_ping(struct dwc_otg_core_if *core_if,
++			       struct dwc_hc *hc);
++extern void dwc_otg_hc_write_packet(struct dwc_otg_core_if *core_if,
++				    struct dwc_hc *hc);
++extern void dwc_otg_enable_host_interrupts(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_disable_host_interrupts(struct dwc_otg_core_if *core_if);
++
++/**
++ * This function Reads HPRT0 in preparation to modify.  It keeps the
++ * WC bits 0 so that if they are read as 1, they won't clear when you
++ * write it back
++ */
++static inline uint32_t dwc_otg_read_hprt0(struct dwc_otg_core_if *core_if)
++{
++	union hprt0_data hprt0;
++	hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
++	hprt0.b.prtena = 0;
++	hprt0.b.prtconndet = 0;
++	hprt0.b.prtenchng = 0;
++	hprt0.b.prtovrcurrchng = 0;
++	return hprt0.d32;
++}
++
++extern void dwc_otg_dump_host_registers(struct dwc_otg_core_if *core_if);
++
++/* Common CIL Functions
++ * The following functions support managing the DWC_otg controller in either
++ * device or host mode.
++ */
++
++
++extern void dwc_otg_read_packet(struct dwc_otg_core_if *core_if,
++				uint8_t *dest, uint16_t bytes);
++
++extern void dwc_otg_dump_global_registers(struct dwc_otg_core_if *core_if);
++
++extern void dwc_otg_flush_tx_fifo(struct dwc_otg_core_if *core_if,
++				  const int _num);
++extern void dwc_otg_flush_rx_fifo(struct dwc_otg_core_if *core_if);
++extern void dwc_otg_core_reset(struct dwc_otg_core_if *core_if);
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_core_intr(struct dwc_otg_core_if *core_if)
++{
++	return dwc_read_reg32(&core_if->core_global_regs->gintsts) &
++		dwc_read_reg32(&core_if->core_global_regs->gintmsk);
++}
++
++/**
++ * This function returns the OTG Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_otg_intr(struct dwc_otg_core_if *core_if)
++{
++	return dwc_read_reg32(&core_if->core_global_regs->gotgint);
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the IN endpoint interrupt bits.
++ */
++static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(struct dwc_otg_core_if *
++						       core_if)
++{
++	uint32_t v;
++	v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
++	    dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
++	return v & 0xffff;
++
++}
++
++/**
++ * This function reads the Device All Endpoints Interrupt register and
++ * returns the OUT endpoint interrupt bits.
++ */
++static inline uint32_t
++dwc_otg_read_dev_all_out_ep_intr(struct dwc_otg_core_if *core_if)
++{
++	uint32_t v;
++	v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
++	    dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
++	return (v & 0xffff0000) >> 16;
++}
++
++/**
++ * This function returns the Device IN EP Interrupt register
++ */
++static inline uint32_t
++dwc_otg_read_dev_in_ep_intr(struct dwc_otg_core_if *core_if, struct dwc_ep *ep)
++{
++	struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++	uint32_t v;
++	v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) &
++	    dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
++	return v;
++}
++
++/**
++ * This function returns the Device OUT EP Interrupt register
++ */
++static inline uint32_t dwc_otg_read_dev_out_ep_intr(struct dwc_otg_core_if *
++						    core_if, struct dwc_ep *ep)
++{
++	struct dwc_otg_dev_if *dev_if = core_if->dev_if;
++	uint32_t v;
++	v = dwc_read_reg32(&dev_if->out_ep_regs[ep->num]->doepint) &
++	    dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
++	return v;
++}
++
++/**
++ * This function returns the Host All Channel Interrupt register
++ */
++static inline uint32_t
++dwc_otg_read_host_all_channels_intr(struct dwc_otg_core_if *core_if)
++{
++	return dwc_read_reg32(&core_if->host_if->host_global_regs->haint);
++}
++
++static inline uint32_t
++dwc_otg_read_host_channel_intr(struct dwc_otg_core_if *core_if,
++			       struct dwc_hc *hc)
++{
++	return dwc_read_reg32(&core_if->host_if->hc_regs[hc->hc_num]->hcint);
++}
++
++/**
++ * This function returns the mode of the operation, host or device.
++ *
++ * Returns 0 - Device Mode, 1 - Host Mode
++ */
++static inline uint32_t dwc_otg_mode(struct dwc_otg_core_if *core_if)
++{
++	return dwc_read_reg32(&core_if->core_global_regs->gintsts) & 0x1;
++}
++
++static inline uint8_t dwc_otg_is_device_mode(struct dwc_otg_core_if *core_if)
++{
++	return dwc_otg_mode(core_if) != DWC_HOST_MODE;
++}
++
++static inline uint8_t dwc_otg_is_host_mode(struct dwc_otg_core_if *core_if)
++{
++	return dwc_otg_mode(core_if) == DWC_HOST_MODE;
++}
++
++extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if);
++
++/*
++ * DWC_otg CIL callback structure.  This structure allows the HCD and
++ * PCD to register functions used for starting and stopping the PCD
++ * and HCD for role change on for a DRD.
++ */
++struct dwc_otg_cil_callbacks {
++	/* Start function for role change */
++	int (*start) (void *p);
++	/* Stop Function for role change */
++	int (*stop) (void *p);
++	/* Disconnect Function for role change */
++	int (*disconnect) (void *p);
++	/* Resume/Remote wakeup Function */
++	int (*resume_wakeup) (void *p);
++	/* Suspend function */
++	int (*suspend) (void *p);
++	/* Session Start (SRP) */
++	int (*session_start) (void *p);
++	/* Pointer passed to start() and stop() */
++	void *p;
++};
++
++extern void dwc_otg_cil_register_pcd_callbacks(struct dwc_otg_core_if *core_if,
++					       struct dwc_otg_cil_callbacks *cb,
++					       void *p);
++extern void dwc_otg_cil_register_hcd_callbacks(struct dwc_otg_core_if *core_if,
++					       struct dwc_otg_cil_callbacks *cb,
++					       void *p);
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
+new file mode 100644
+index 0000000..38c46df
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_cil_intr.c
+@@ -0,0 +1,689 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++/**
++ *
++ * The Core Interface Layer provides basic services for accessing and
++ * managing the DWC_otg hardware. These services are used by both the
++ * Host Controller Driver and the Peripheral Controller Driver.
++ *
++ * This file contains the Common Interrupt handlers.
++ */
++#include "dwc_otg_plat.h"
++#include "dwc_otg_regs.h"
++#include "dwc_otg_cil.h"
++
++#ifdef DEBUG
++inline const char *op_state_str(struct dwc_otg_core_if *core_if)
++{
++	return (core_if->op_state == A_HOST ? "a_host" :
++		(core_if->op_state == A_SUSPEND ? "a_suspend" :
++		 (core_if->op_state == A_PERIPHERAL ? "a_peripheral" :
++		  (core_if->op_state == B_PERIPHERAL ? "b_peripheral" :
++		   (core_if->op_state == B_HOST ? "b_host" : "unknown")))));
++}
++#endif
++
++/** This function will log a debug message
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_mode_mismatch_intr(struct dwc_otg_core_if *core_if)
++{
++	union gintsts_data gintsts;
++	DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
++		 dwc_otg_mode(core_if) ? "Host" : "Device");
++
++	/* Clear interrupt */
++	gintsts.d32 = 0;
++	gintsts.b.modemismatch = 1;
++	dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++	return 1;
++}
++
++/** Start the HCD.  Helper function for using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_start(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->hcd_cb && core_if->hcd_cb->start)
++		core_if->hcd_cb->start(core_if->hcd_cb->p);
++}
++
++/** Stop the HCD.  Helper function for using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_stop(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->hcd_cb && core_if->hcd_cb->stop)
++		core_if->hcd_cb->stop(core_if->hcd_cb->p);
++}
++
++/** Disconnect the HCD.  Helper function for using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_disconnect(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->hcd_cb && core_if->hcd_cb->disconnect)
++		core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
++}
++
++/** Inform the HCD the a New Session has begun.  Helper function for
++ * using the HCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void hcd_session_start(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->hcd_cb && core_if->hcd_cb->session_start)
++		core_if->hcd_cb->session_start(core_if->hcd_cb->p);
++}
++
++/** Start the PCD.  Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_start(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->pcd_cb && core_if->pcd_cb->start)
++		core_if->pcd_cb->start(core_if->pcd_cb->p);
++}
++
++/** Stop the PCD.  Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_stop(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->pcd_cb && core_if->pcd_cb->stop)
++		core_if->pcd_cb->stop(core_if->pcd_cb->p);
++}
++
++/** Suspend the PCD.  Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_suspend(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->pcd_cb && core_if->pcd_cb->suspend)
++		core_if->pcd_cb->suspend(core_if->pcd_cb->p);
++}
++
++/** Resume the PCD.  Helper function for using the PCD callbacks.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++static inline void pcd_resume(struct dwc_otg_core_if *core_if)
++{
++	if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup)
++		core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++}
++
++/**
++ * This function handles the OTG Interrupts. It reads the OTG
++ * Interrupt Register (GOTGINT) to determine what interrupt has
++ * occurred.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_otg_intr(struct dwc_otg_core_if *core_if)
++{
++	struct dwc_otg_core_global_regs *global_regs = core_if->core_global_regs;
++	union gotgint_data gotgint;
++	union gotgctl_data gotgctl;
++	union gintmsk_data gintmsk;
++
++	gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
++	gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++	DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
++		    op_state_str(core_if));
++
++	if (gotgint.b.sesenddet) {
++		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++			    "Session End Detected++ (%s)\n",
++			    op_state_str(core_if));
++		gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++
++		if (core_if->op_state == B_HOST) {
++			pcd_start(core_if);
++			core_if->op_state = B_PERIPHERAL;
++		} else {
++			/* If not B_HOST and Device HNP still set. HNP
++			 * Did not succeed!*/
++			if (gotgctl.b.devhnpen) {
++				DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
++				DWC_ERROR("Device Not Connected/Responding!\n");
++			}
++
++			/* If Session End Detected the B-Cable has
++			 * been disconnected. */
++			/* Reset PCD and Gadget driver to a
++			 * clean state. */
++			pcd_stop(core_if);
++		}
++		gotgctl.d32 = 0;
++		gotgctl.b.devhnpen = 1;
++		dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
++	}
++	if (gotgint.b.sesreqsucstschng) {
++		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++			    "Session Reqeust Success Status Change++\n");
++		gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++		if (gotgctl.b.sesreqscs) {
++			if ((core_if->core_params->phy_type ==
++			     DWC_PHY_TYPE_PARAM_FS)
++			    && (core_if->core_params->i2c_enable)) {
++				core_if->srp_success = 1;
++			} else {
++				pcd_resume(core_if);
++				/* Clear Session Request */
++				gotgctl.d32 = 0;
++				gotgctl.b.sesreq = 1;
++				dwc_modify_reg32(&global_regs->gotgctl,
++						 gotgctl.d32, 0);
++			}
++		}
++	}
++	if (gotgint.b.hstnegsucstschng) {
++		/* Print statements during the HNP interrupt handling
++		 * can cause it to fail.*/
++		gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
++		if (gotgctl.b.hstnegscs) {
++			if (dwc_otg_is_host_mode(core_if)) {
++				core_if->op_state = B_HOST;
++				/*
++				 * Need to disable SOF interrupt immediately.
++				 * When switching from device to host, the PCD
++				 * interrupt handler won't handle the
++				 * interrupt if host mode is already set. The
++				 * HCD interrupt handler won't get called if
++				 * the HCD state is HALT. This means that the
++				 * interrupt does not get handled and Linux
++				 * complains loudly.
++				 */
++				gintmsk.d32 = 0;
++				gintmsk.b.sofintr = 1;
++				dwc_modify_reg32(&global_regs->gintmsk,
++						 gintmsk.d32, 0);
++				pcd_stop(core_if);
++				/*
++				 * Initialize the Core for Host mode.
++				 */
++				hcd_start(core_if);
++				core_if->op_state = B_HOST;
++			}
++		} else {
++			gotgctl.d32 = 0;
++			gotgctl.b.hnpreq = 1;
++			gotgctl.b.devhnpen = 1;
++			dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
++			DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
++			DWC_ERROR("Device Not Connected/Responding\n");
++		}
++	}
++	if (gotgint.b.hstnegdet) {
++		/* The disconnect interrupt is set at the same time as
++		 * Host Negotiation Detected.  During the mode
++		 * switch all interrupts are cleared so the disconnect
++		 * interrupt handler will not get executed.
++		 */
++		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++			    "Host Negotiation Detected++ (%s)\n",
++			    (dwc_otg_is_host_mode(core_if) ? "Host" :
++			     "Device"));
++		if (dwc_otg_is_device_mode(core_if)) {
++			DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n",
++				    core_if->op_state);
++			hcd_disconnect(core_if);
++			pcd_start(core_if);
++			core_if->op_state = A_PERIPHERAL;
++		} else {
++			/*
++			 * Need to disable SOF interrupt immediately. When
++			 * switching from device to host, the PCD interrupt
++			 * handler won't handle the interrupt if host mode is
++			 * already set. The HCD interrupt handler won't get
++			 * called if the HCD state is HALT. This means that
++			 * the interrupt does not get handled and Linux
++			 * complains loudly.
++			 */
++			gintmsk.d32 = 0;
++			gintmsk.b.sofintr = 1;
++			dwc_modify_reg32(&global_regs->gintmsk, gintmsk.d32, 0);
++			pcd_stop(core_if);
++			hcd_start(core_if);
++			core_if->op_state = A_HOST;
++		}
++	}
++	if (gotgint.b.adevtoutchng)
++		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
++			    "A-Device Timeout Change++\n");
++	if (gotgint.b.debdone)
++		DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: " "Debounce Done++\n");
++
++	/* Clear GOTGINT */
++	dwc_write_reg32(&core_if->core_global_regs->gotgint, gotgint.d32);
++
++	return 1;
++}
++
++/**
++ * This function handles the Connector ID Status Change Interrupt.  It
++ * reads the OTG Interrupt Register (GOTCTL) to determine whether this
++ * is a Device to Host Mode transition or a Host Mode to Device
++ * Transition.
++ *
++ * This only occurs when the cable is connected/removed from the PHY
++ * connector.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_conn_id_status_change_intr(struct dwc_otg_core_if *core_if)
++{
++	uint32_t count = 0;
++
++	union gintsts_data gintsts = {.d32 = 0 };
++	union gintmsk_data gintmsk = {.d32 = 0 };
++	union gotgctl_data gotgctl = {.d32 = 0 };
++
++	/*
++	 * Need to disable SOF interrupt immediately. If switching from device
++	 * to host, the PCD interrupt handler won't handle the interrupt if
++	 * host mode is already set. The HCD interrupt handler won't get
++	 * called if the HCD state is HALT. This means that the interrupt does
++	 * not get handled and Linux complains loudly.
++	 */
++	gintmsk.b.sofintr = 1;
++	dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
++
++	DWC_DEBUGPL(DBG_CIL,
++		    " ++Connector ID Status Change Interrupt++  (%s)\n",
++		    (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"));
++	gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
++	DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
++	DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
++
++	/* B-Device connector (Device Mode) */
++	if (gotgctl.b.conidsts) {
++		/* Wait for switch to device mode. */
++		while (!dwc_otg_is_device_mode(core_if)) {
++			DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
++				  (dwc_otg_is_host_mode(core_if) ? "Host" :
++				   "Peripheral"));
++			mdelay(100);
++			if (++count > 10000)
++				*(uint32_t *) NULL = 0;
++		}
++		core_if->op_state = B_PERIPHERAL;
++		dwc_otg_core_init(core_if);
++		dwc_otg_enable_global_interrupts(core_if);
++		pcd_start(core_if);
++	} else {
++		/* A-Device connector (Host Mode) */
++		while (!dwc_otg_is_host_mode(core_if)) {
++			DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
++				  (dwc_otg_is_host_mode(core_if) ? "Host" :
++				   "Peripheral"));
++			mdelay(100);
++			if (++count > 10000)
++				*(uint32_t *) NULL = 0;
++		}
++		core_if->op_state = A_HOST;
++		/*
++		 * Initialize the Core for Host mode.
++		 */
++		dwc_otg_core_init(core_if);
++		dwc_otg_enable_global_interrupts(core_if);
++		hcd_start(core_if);
++	}
++
++	/* Set flag and clear interrupt */
++	gintsts.b.conidstschng = 1;
++	dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++	return 1;
++}
++
++/**
++ * This interrupt indicates that a device is initiating the Session
++ * Request Protocol to request the host to turn on bus power so a new
++ * session can begin. The handler responds by turning on bus power. If
++ * the DWC_otg controller is in low power mode, the handler brings the
++ * controller out of low power mode before turning on bus power.
++ *
++ * @core_if: Programming view of DWC_otg controller.
++ */
++int32_t dwc_otg_handle_session_req_intr(struct dwc_otg_core_if *core_if)
++{
++	union gintsts_data gintsts;
++#ifndef DWC_HOST_ONLY
++	union hprt0_data hprt0;
++
++	DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
++
++	if (dwc_otg_is_device_mode(core_if)) {
++		DWC_PRINT("SRP: Device mode\n");
++	} else {
++		DWC_PRINT("SRP: Host mode\n");
++
++		/* Turn on the port power bit. */
++		hprt0.d32 = dwc_otg_read_hprt0(core_if);
++		hprt0.b.prtpwr = 1;
++		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++
++		/* Start the Connection timer. So a message can be displayed
++		 * if connect does not occur within 10 seconds. */
++		hcd_session_start(core_if);
++	}
++#endif
++
++	/* Clear interrupt */
++	gintsts.d32 = 0;
++	gintsts.b.sessreqintr = 1;
++	dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++	return 1;
++}
++
++/**
++ * This interrupt indicates that the DWC_otg controller has detected a
++ * resume or remote wakeup sequence. If the DWC_otg controller is in
++ * low power mode, the handler must brings the controller out of low
++ * power mode. The controller automatically begins resume
++ * signaling. The handler schedules a time to stop resume signaling.
++ */
++int32_t dwc_otg_handle_wakeup_detected_intr(struct dwc_otg_core_if *core_if)
++{
++	union gintsts_data gintsts;
++
++	DWC_DEBUGPL(DBG_ANY,
++		    "++Resume and Remote Wakeup Detected Interrupt++\n");
++
++	if (dwc_otg_is_device_mode(core_if)) {
++		union dctl_data dctl = {.d32 = 0 };
++		DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
++			    dwc_read_reg32(&core_if->dev_if->dev_global_regs->
++					   dsts));
++#ifdef PARTIAL_POWER_DOWN
++		if (core_if->hwcfg4.b.power_optimiz) {
++			union pcgcctl_data power = {.d32 = 0 };
++
++			power.d32 = dwc_read_reg32(core_if->pcgcctl);
++			DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
++
++			power.b.stoppclk = 0;
++			dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++			power.b.pwrclmp = 0;
++			dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++			power.b.rstpdwnmodule = 0;
++			dwc_write_reg32(core_if->pcgcctl, power.d32);
++		}
++#endif
++		/* Clear the Remote Wakeup Signalling */
++		dctl.b.rmtwkupsig = 1;
++		dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
++				 dctl.d32, 0);
++
++		if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup)
++			core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
++	} else {
++		/*
++		 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
++		 * so that OPT tests pass with all PHYs).
++		 */
++		union hprt0_data hprt0 = {.d32 = 0 };
++		union pcgcctl_data pcgcctl = {.d32 = 0 };
++		/* Restart the Phy Clock */
++		pcgcctl.b.stoppclk = 1;
++		dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
++		udelay(10);
++
++		/* Now wait for 70 ms. */
++		hprt0.d32 = dwc_otg_read_hprt0(core_if);
++		DWC_DEBUGPL(DBG_ANY, "Resume: HPRT0=%0x\n", hprt0.d32);
++		mdelay(70);
++		hprt0.b.prtres = 0;	/* Resume */
++		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++		DWC_DEBUGPL(DBG_ANY, "Clear Resume: HPRT0=%0x\n",
++			    dwc_read_reg32(core_if->host_if->hprt0));
++	}
++
++	/* Clear interrupt */
++	gintsts.d32 = 0;
++	gintsts.b.wkupintr = 1;
++	dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++	return 1;
++}
++
++/**
++ * This interrupt indicates that a device has been disconnected from
++ * the root port.
++ */
++int32_t dwc_otg_handle_disconnect_intr(struct dwc_otg_core_if *core_if)
++{
++	union gintsts_data gintsts;
++
++	DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
++		    (dwc_otg_is_host_mode(core_if) ? "Host" : "Device"),
++		    op_state_str(core_if));
++
++/** @todo Consolidate this if statement. */
++#ifndef DWC_HOST_ONLY
++	if (core_if->op_state == B_HOST) {
++		/* If in device mode Disconnect and stop the HCD, then
++		 * start the PCD. */
++		hcd_disconnect(core_if);
++		pcd_start(core_if);
++		core_if->op_state = B_PERIPHERAL;
++	} else if (dwc_otg_is_device_mode(core_if)) {
++		union gotgctl_data gotgctl = {.d32 = 0 };
++		gotgctl.d32 =
++		    dwc_read_reg32(&core_if->core_global_regs->gotgctl);
++		if (gotgctl.b.hstsethnpen == 1) {
++			/* Do nothing, if HNP in process the OTG
++			 * interrupt "Host Negotiation Detected"
++			 * interrupt will do the mode switch.
++			 */
++		} else if (gotgctl.b.devhnpen == 0) {
++			/* If in device mode Disconnect and stop the HCD, then
++			 * start the PCD. */
++			hcd_disconnect(core_if);
++			pcd_start(core_if);
++			core_if->op_state = B_PERIPHERAL;
++		} else {
++			DWC_DEBUGPL(DBG_ANY, "!a_peripheral && !devhnpen\n");
++		}
++	} else {
++		if (core_if->op_state == A_HOST) {
++			/* A-Cable still connected but device disconnected. */
++			hcd_disconnect(core_if);
++		}
++	}
++#endif
++
++	gintsts.d32 = 0;
++	gintsts.b.disconnect = 1;
++	dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++	return 1;
++}
++
++/**
++ * This interrupt indicates that SUSPEND state has been detected on
++ * the USB.
++ *
++ * For HNP the USB Suspend interrupt signals the change from
++ * "a_peripheral" to "a_host".
++ *
++ * When power management is enabled the core will be put in low power
++ * mode.
++ */
++int32_t dwc_otg_handle_usb_suspend_intr(struct dwc_otg_core_if *core_if)
++{
++	union dsts_data dsts;
++	union gintsts_data gintsts;
++
++	DWC_DEBUGPL(DBG_ANY, "USB SUSPEND\n");
++
++	if (dwc_otg_is_device_mode(core_if)) {
++		/* Check the Device status register to determine if the Suspend
++		 * state is active. */
++		dsts.d32 =
++		    dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
++		DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
++		DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
++			    "HWCFG4.power Optimize=%d\n",
++			    dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
++
++#ifdef PARTIAL_POWER_DOWN
++/** @todo Add a module parameter for power management. */
++
++		if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
++			union pcgcctl_data_t power = {.d32 = 0 };
++			DWC_DEBUGPL(DBG_CIL, "suspend\n");
++
++			power.b.pwrclmp = 1;
++			dwc_write_reg32(core_if->pcgcctl, power.d32);
++
++			power.b.rstpdwnmodule = 1;
++			dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
++
++			power.b.stoppclk = 1;
++			dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
++
++		} else {
++			DWC_DEBUGPL(DBG_ANY, "disconnect?\n");
++		}
++#endif
++		/* PCD callback for suspend. */
++		pcd_suspend(core_if);
++	} else {
++		if (core_if->op_state == A_PERIPHERAL) {
++			DWC_DEBUGPL(DBG_ANY, "a_peripheral->a_host\n");
++			/* Clear the a_peripheral flag, back to a_host. */
++			pcd_stop(core_if);
++			hcd_start(core_if);
++			core_if->op_state = A_HOST;
++		}
++	}
++
++	/* Clear interrupt */
++	gintsts.d32 = 0;
++	gintsts.b.usbsuspend = 1;
++	dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
++
++	return 1;
++}
++
++/**
++ * This function returns the Core Interrupt register.
++ */
++static inline uint32_t dwc_otg_read_common_intr(struct dwc_otg_core_if *core_if)
++{
++	union gintsts_data gintsts;
++	union gintmsk_data gintmsk;
++	union gintmsk_data gintmsk_common = {.d32 = 0 };
++	gintmsk_common.b.wkupintr = 1;
++	gintmsk_common.b.sessreqintr = 1;
++	gintmsk_common.b.conidstschng = 1;
++	gintmsk_common.b.otgintr = 1;
++	gintmsk_common.b.modemismatch = 1;
++	gintmsk_common.b.disconnect = 1;
++	gintmsk_common.b.usbsuspend = 1;
++	/*
++	 * @todo: The port interrupt occurs while in device
++	 * mode. Added code to CIL to clear the interrupt for now!
++	 */
++	gintmsk_common.b.portintr = 1;
++
++	gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
++	gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
++#ifdef DEBUG
++	/* if any common interrupts set */
++	if (gintsts.d32 & gintmsk_common.d32) {
++		DWC_DEBUGPL(DBG_ANY, "gintsts=%08x  gintmsk=%08x\n",
++			    gintsts.d32, gintmsk.d32);
++	}
++#endif
++
++	return (gintsts.d32 & gintmsk.d32) & gintmsk_common.d32;
++
++}
++
++/**
++ * Common interrupt handler.
++ *
++ * The common interrupts are those that occur in both Host and Device mode.
++ * This handler handles the following interrupts:
++ * - Mode Mismatch Interrupt
++ * - Disconnect Interrupt
++ * - OTG Interrupt
++ * - Connector ID Status Change Interrupt
++ * - Session Request Interrupt.
++ * - Resume / Remote Wakeup Detected Interrupt.
++ *
++ */
++extern int32_t dwc_otg_handle_common_intr(struct dwc_otg_core_if *core_if)
++{
++	int retval = 0;
++	union gintsts_data gintsts;
++
++	gintsts.d32 = dwc_otg_read_common_intr(core_if);
++
++	if (gintsts.b.modemismatch)
++		retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
++	if (gintsts.b.otgintr)
++		retval |= dwc_otg_handle_otg_intr(core_if);
++	if (gintsts.b.conidstschng)
++		retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
++	if (gintsts.b.disconnect)
++		retval |= dwc_otg_handle_disconnect_intr(core_if);
++	if (gintsts.b.sessreqintr)
++		retval |= dwc_otg_handle_session_req_intr(core_if);
++	if (gintsts.b.wkupintr)
++		retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
++	if (gintsts.b.usbsuspend)
++		retval |= dwc_otg_handle_usb_suspend_intr(core_if);
++	if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
++		/* The port interrupt occurs while in device mode with HPRT0
++		 * Port Enable/Disable.
++		 */
++		gintsts.d32 = 0;
++		gintsts.b.portintr = 1;
++		dwc_write_reg32(&core_if->core_global_regs->gintsts,
++				gintsts.d32);
++		retval |= 1;
++
++	}
++	return retval;
++}
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_driver.h b/drivers/usb/host/dwc_otg/dwc_otg_driver.h
+new file mode 100644
+index 0000000..1cc116d
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_driver.h
+@@ -0,0 +1,63 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_DRIVER_H__
++#define __DWC_OTG_DRIVER_H__
++
++#include "dwc_otg_cil.h"
++
++/* Type declarations */
++struct dwc_otg_pcd;
++struct dwc_otg_hcd;
++
++/**
++ * This structure is a wrapper that encapsulates the driver components used to
++ * manage a single DWC_otg controller.
++ */
++struct dwc_otg_device {
++	/** Base address returned from ioremap() */
++	void *base;
++
++	/** Pointer to the core interface structure. */
++	struct dwc_otg_core_if *core_if;
++
++	/** Register offset for Diagnostic API.*/
++	uint32_t reg_offset;
++
++	/** Pointer to the PCD structure. */
++	struct dwc_otg_pcd *pcd;
++
++	/** Pointer to the HCD structure. */
++	struct dwc_otg_hcd *hcd;
++
++	/** Flag to indicate whether the common IRQ handler is installed. */
++	uint8_t common_irq_installed;
++
++};
++
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c
+new file mode 100644
+index 0000000..a4392f5
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.c
+@@ -0,0 +1,2878 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/**
++ *
++ * This file contains the implementation of the HCD. In Linux, the HCD
++ * implements the hc_driver API.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++#include <linux/dma-mapping.h>
++#include <linux/workqueue.h>
++#include <linux/platform_device.h>
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
++
++static const struct hc_driver dwc_otg_hc_driver = {
++
++	.description = dwc_otg_hcd_name,
++	.product_desc = "DWC OTG Controller",
++	.hcd_priv_size = sizeof(struct dwc_otg_hcd),
++
++	.irq = dwc_otg_hcd_irq,
++
++	.flags = HCD_MEMORY | HCD_USB2,
++
++	.start = dwc_otg_hcd_start,
++	.stop = dwc_otg_hcd_stop,
++
++	.urb_enqueue = dwc_otg_hcd_urb_enqueue,
++	.urb_dequeue = dwc_otg_hcd_urb_dequeue,
++	.endpoint_disable = dwc_otg_hcd_endpoint_disable,
++
++	.get_frame_number = dwc_otg_hcd_get_frame_number,
++
++	.hub_status_data = dwc_otg_hcd_hub_status_data,
++	.hub_control = dwc_otg_hcd_hub_control,
++};
++
++/**
++ * Work queue function for starting the HCD when A-Cable is connected.
++ * The dwc_otg_hcd_start() must be called in a process context.
++ */
++static void hcd_start_func(struct work_struct *work)
++{
++	void *_vp =
++	    (void *)(atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
++	struct usb_hcd *usb_hcd = (struct usb_hcd *)_vp;
++	DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
++	if (usb_hcd)
++		dwc_otg_hcd_start(usb_hcd);
++}
++
++/**
++ * HCD Callback function for starting the HCD when A-Cable is
++ * connected.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_start_cb(void *_p)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
++	struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++	union hprt0_data hprt0;
++
++	if (core_if->op_state == B_HOST) {
++		/*
++		 * Reset the port.  During a HNP mode switch the reset
++		 * needs to occur within 1ms and have a duration of at
++		 * least 50ms.
++		 */
++		hprt0.d32 = dwc_otg_read_hprt0(core_if);
++		hprt0.b.prtrst = 1;
++		dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++		((struct usb_hcd *)_p)->self.is_b_host = 1;
++	} else {
++		((struct usb_hcd *)_p)->self.is_b_host = 0;
++	}
++
++	/* Need to start the HCD in a non-interrupt context. */
++	INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
++	atomic_long_set(&dwc_otg_hcd->start_work.data, (long)_p);
++	schedule_work(&dwc_otg_hcd->start_work);
++
++	return 1;
++}
++
++/**
++ * HCD Callback function for stopping the HCD.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_stop_cb(void *_p)
++{
++	struct usb_hcd *usb_hcd = (struct usb_hcd *)_p;
++	DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
++	dwc_otg_hcd_stop(usb_hcd);
++	return 1;
++}
++
++static void del_xfer_timers(struct dwc_otg_hcd *hcd)
++{
++#ifdef DEBUG
++	int i;
++	int num_channels = hcd->core_if->core_params->host_channels;
++	for (i = 0; i < num_channels; i++)
++		del_timer(&hcd->core_if->hc_xfer_timer[i]);
++#endif
++}
++
++static void del_timers(struct dwc_otg_hcd *hcd)
++{
++	del_xfer_timers(hcd);
++	del_timer(&hcd->conn_timer);
++}
++
++/**
++ * Processes all the URBs in a single list of QHs. Completes them with
++ * -ETIMEDOUT and frees the QTD.
++ */
++static void kill_urbs_in_qh_list(struct dwc_otg_hcd *hcd,
++				 struct list_head *_qh_list)
++{
++	struct dwc_otg_qh *qh;
++	struct dwc_otg_qtd *qtd;
++	struct dwc_otg_qtd *qtd_next;
++
++	list_for_each_entry(qh, _qh_list, qh_list_entry) {
++		list_for_each_entry_safe(qtd, qtd_next, &qh->qtd_list,
++					 qtd_list_entry) {
++			if (qtd->urb != NULL) {
++				dwc_otg_hcd_complete_urb(hcd, qtd->urb,
++							 -ETIMEDOUT);
++				qtd->urb = NULL;
++			}
++			dwc_otg_hcd_qtd_remove_and_free(qtd);
++		}
++	}
++}
++
++/**
++ * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
++ * and periodic schedules. The QTD associated with each URB is removed from
++ * the schedule and freed. This function may be called when a disconnect is
++ * detected or when the HCD is being stopped.
++ */
++static void kill_all_urbs(struct dwc_otg_hcd *hcd)
++{
++	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
++	kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
++	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
++	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
++	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
++	kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_disconnect_cb(void *_p)
++{
++	union gintsts_data intr;
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
++
++	/*
++	 * Set status flags for the hub driver.
++	 */
++	dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++	dwc_otg_hcd->flags.b.port_connect_status = 0;
++
++	/*
++	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
++	 * interrupt mask and status bits and disabling subsequent host
++	 * channel interrupts.
++	 */
++	intr.d32 = 0;
++	intr.b.nptxfempty = 1;
++	intr.b.ptxfempty = 1;
++	intr.b.hcintr = 1;
++	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk,
++			 intr.d32, 0);
++	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts,
++			 intr.d32, 0);
++
++	del_timers(dwc_otg_hcd);
++
++	/*
++	 * Turn off the vbus power only if the core has transitioned to device
++	 * mode. If still in host mode, need to keep power on to detect a
++	 * reconnection.
++	 */
++	if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
++		if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
++			union hprt0_data hprt0 = {.d32 = 0 };
++			DWC_PRINT("Disconnect: PortPower off\n");
++			hprt0.b.prtpwr = 0;
++			dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0,
++					hprt0.d32);
++		}
++
++		dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
++	}
++
++	/* Respond with an error status to all URBs in the schedule. */
++	kill_all_urbs(dwc_otg_hcd);
++
++	if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
++		/* Clean up any host channels that were in use. */
++		int num_channels;
++		int i;
++		struct dwc_hc *channel;
++		struct dwc_otg_hc_regs *hc_regs;
++		union hcchar_data hcchar;
++
++		num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++
++		if (!dwc_otg_hcd->core_if->dma_enable) {
++			/* Flush out any channel requests in slave mode. */
++			for (i = 0; i < num_channels; i++) {
++				channel = dwc_otg_hcd->hc_ptr_array[i];
++				if (list_empty(&channel->hc_list_entry)) {
++					hc_regs =
++					    dwc_otg_hcd->core_if->host_if->
++					    hc_regs[i];
++					hcchar.d32 =
++					    dwc_read_reg32(&hc_regs->hcchar);
++					if (hcchar.b.chen) {
++						hcchar.b.chen = 0;
++						hcchar.b.chdis = 1;
++						hcchar.b.epdir = 0;
++						dwc_write_reg32(&hc_regs->
++								hcchar,
++								hcchar.d32);
++					}
++				}
++			}
++		}
++
++		for (i = 0; i < num_channels; i++) {
++			channel = dwc_otg_hcd->hc_ptr_array[i];
++			if (list_empty(&channel->hc_list_entry)) {
++				hc_regs =
++				    dwc_otg_hcd->core_if->host_if->hc_regs[i];
++				hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++				if (hcchar.b.chen) {
++					/* Halt the channel. */
++					hcchar.b.chdis = 1;
++					dwc_write_reg32(&hc_regs->hcchar,
++							hcchar.d32);
++				}
++
++				dwc_otg_hc_cleanup(dwc_otg_hcd->core_if,
++						   channel);
++				list_add_tail(&channel->hc_list_entry,
++					      &dwc_otg_hcd->free_hc_list);
++			}
++		}
++	}
++
++	/* A disconnect will end the session so the B-Device is no
++	 * longer a B-host. */
++	((struct usb_hcd *)_p)->self.is_b_host = 0;
++	return 1;
++}
++
++/**
++ * Connection timeout function.  An OTG host is required to display a
++ * message if the device does not connect within 10 seconds.
++ */
++void dwc_otg_hcd_connect_timeout(unsigned long _ptr)
++{
++	DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)_ptr);
++	DWC_PRINT("Connect Timeout\n");
++	DWC_ERROR("Device Not Connected/Responding\n");
++}
++
++/**
++ * Start the connection timer.  An OTG host is required to display a
++ * message if the device does not connect within 10 seconds.  The
++ * timer is deleted if a port connect interrupt occurs before the
++ * timer expires.
++ */
++static void dwc_otg_hcd_start_connect_timer(struct dwc_otg_hcd *hcd)
++{
++	init_timer(&hcd->conn_timer);
++	hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
++	hcd->conn_timer.data = (unsigned long)0;
++	hcd->conn_timer.expires = jiffies + (HZ * 10);
++	add_timer(&hcd->conn_timer);
++}
++
++/**
++ * HCD Callback function for disconnect of the HCD.
++ *
++ * @_p: void pointer to the <code>struct usb_hcd</code>
++ */
++static int32_t dwc_otg_hcd_session_start_cb(void *_p)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(_p);
++	DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, _p);
++	dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
++	return 1;
++}
++
++/**
++ * HCD Callback structure for handling mode switching.
++ */
++static struct dwc_otg_cil_callbacks hcd_cil_callbacks = {
++	.start = dwc_otg_hcd_start_cb,
++	.stop = dwc_otg_hcd_stop_cb,
++	.disconnect = dwc_otg_hcd_disconnect_cb,
++	.session_start = dwc_otg_hcd_session_start_cb,
++	.p = 0,
++};
++
++/**
++ * Reset tasklet function
++ */
++static void reset_tasklet_func(unsigned long data)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = (struct dwc_otg_hcd *)data;
++	struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++	union hprt0_data hprt0;
++
++	DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
++
++	hprt0.d32 = dwc_otg_read_hprt0(core_if);
++	hprt0.b.prtrst = 1;
++	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++	mdelay(60);
++
++	hprt0.b.prtrst = 0;
++	dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++	dwc_otg_hcd->flags.b.port_reset_change = 1;
++
++	return;
++}
++
++static struct tasklet_struct reset_tasklet = {
++	.next = NULL,
++	.state = 0,
++	.count = ATOMIC_INIT(0),
++	.func = reset_tasklet_func,
++	.data = 0,
++};
++
++static enum hrtimer_restart delayed_enable(struct hrtimer *t)
++{
++	struct dwc_otg_hcd *hcd = container_of(t, struct dwc_otg_hcd,
++					       poll_rate_limit);
++	struct dwc_otg_core_global_regs *global_regs =
++	    hcd->core_if->core_global_regs;
++	union gintmsk_data intr_mask = {.d32 = 0 };
++	intr_mask.b.nptxfempty = 1;
++	dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
++
++	return HRTIMER_NORESTART;
++}
++
++/**
++ * Initializes the HCD. This function allocates memory for and initializes the
++ * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
++ * USB bus with the core and calls the hc_driver->start() function. It returns
++ * a negative error on failure.
++ */
++int __devinit dwc_otg_hcd_init(struct device *dev)
++{
++	struct usb_hcd *hcd = NULL;
++	struct dwc_otg_hcd *dwc_otg_hcd = NULL;
++	struct dwc_otg_device *otg_dev = dev->platform_data;
++
++	int num_channels;
++	int i;
++	struct dwc_hc *channel;
++
++	int retval = 0;
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
++
++	/* Set device flags indicating whether the HCD supports DMA. */
++	if (otg_dev->core_if->dma_enable) {
++		DWC_PRINT("Using DMA mode\n");
++		dev->coherent_dma_mask = ~0;
++		dev->dma_mask = &dev->coherent_dma_mask;
++	} else {
++		DWC_PRINT("Using Slave mode\n");
++		dev->coherent_dma_mask = 0;
++		dev->dma_mask = NULL;
++	}
++
++	/*
++	 * Allocate memory for the base HCD plus the DWC OTG HCD.
++	 * Initialize the base HCD.
++	 */
++	hcd = usb_create_hcd(&dwc_otg_hc_driver, dev, dev_name(dev));
++	if (hcd == NULL) {
++		retval = -ENOMEM;
++		goto error1;
++	}
++	hcd->regs = otg_dev->base;
++	hcd->self.otg_port = 1;
++
++	/* Integrate TT in root hub, by default this is disbled. */
++	hcd->has_tt = 1;
++
++	/* Initialize the DWC OTG HCD. */
++	dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++	spin_lock_init(&dwc_otg_hcd->global_lock);
++
++	dwc_otg_hcd->core_if = otg_dev->core_if;
++	otg_dev->hcd = dwc_otg_hcd;
++
++	/* Register the HCD CIL Callbacks */
++	dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
++					   &hcd_cil_callbacks, hcd);
++
++	/* Initialize the non-periodic schedule. */
++	INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
++	INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
++
++	/* Initialize the periodic schedule. */
++	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
++	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
++	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
++	INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
++
++	/*
++	 * Create a host channel descriptor for each host channel implemented
++	 * in the controller. Initialize the channel descriptor array.
++	 */
++	INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
++	num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
++	for (i = 0; i < num_channels; i++) {
++		channel = kmalloc(sizeof(struct dwc_hc), GFP_KERNEL);
++		if (channel == NULL) {
++			retval = -ENOMEM;
++			DWC_ERROR("%s: host channel allocation failed\n",
++				  __func__);
++			goto error2;
++		}
++		memset(channel, 0, sizeof(struct dwc_hc));
++		channel->hc_num = i;
++		dwc_otg_hcd->hc_ptr_array[i] = channel;
++#ifdef DEBUG
++		init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
++#endif
++
++		DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i,
++			    channel);
++	}
++
++	/* Initialize the Connection timeout timer. */
++	init_timer(&dwc_otg_hcd->conn_timer);
++
++	/* Initialize reset tasklet. */
++	reset_tasklet.data = (unsigned long)dwc_otg_hcd;
++	dwc_otg_hcd->reset_tasklet = &reset_tasklet;
++
++	hrtimer_init(&dwc_otg_hcd->poll_rate_limit, CLOCK_MONOTONIC,
++		     HRTIMER_MODE_REL);
++	dwc_otg_hcd->poll_rate_limit.function = delayed_enable;
++
++	/*
++	 * Finish generic HCD initialization and start the HCD. This function
++	 * allocates the DMA buffer pool, registers the USB bus, requests the
++	 * IRQ line, and calls dwc_otg_hcd_start method.
++	 */
++	retval =
++	    usb_add_hcd(hcd, platform_get_irq(to_platform_device(dev), 0),
++			IRQF_SHARED);
++	if (retval < 0)
++		goto error2;
++
++	/*
++	 * Allocate space for storing data on status transactions. Normally no
++	 * data is sent, but this space acts as a bit bucket. This must be
++	 * done after usb_add_hcd since that function allocates the DMA buffer
++	 * pool.
++	 */
++	if (otg_dev->core_if->dma_enable) {
++		dwc_otg_hcd->status_buf =
++		    dma_alloc_coherent(dev,
++				       DWC_OTG_HCD_STATUS_BUF_SIZE,
++				       &dwc_otg_hcd->status_buf_dma,
++				       GFP_KERNEL | GFP_DMA);
++	} else {
++		dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
++						  GFP_KERNEL);
++	}
++	if (dwc_otg_hcd->status_buf == NULL) {
++		retval = -ENOMEM;
++		DWC_ERROR("%s: status_buf allocation failed\n", __func__);
++		goto error3;
++	}
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
++		    hcd->self.busnum);
++
++	return 0;
++
++	/* Error conditions */
++error3:
++	usb_remove_hcd(hcd);
++error2:
++	dwc_otg_hcd_free(hcd);
++	usb_put_hcd(hcd);
++error1:
++	return retval;
++}
++
++/**
++ * Removes the HCD.
++ * Frees memory and resources associated with the HCD and deregisters the bus.
++ */
++void dwc_otg_hcd_remove(struct device *dev)
++{
++	struct dwc_otg_device *otg_dev = dev->platform_data;
++	struct dwc_otg_hcd *dwc_otg_hcd = otg_dev->hcd;
++	struct usb_hcd *hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
++
++	/* Turn off all interrupts */
++	dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
++	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1,
++			 0);
++
++	usb_remove_hcd(hcd);
++	dwc_otg_hcd_free(hcd);
++	usb_put_hcd(hcd);
++
++	return;
++}
++
++/* =========================================================================
++ *  Linux HC Driver Functions
++ * ========================================================================= */
++
++/**
++ * Initializes dynamic portions of the DWC_otg HCD state.
++ */
++static void hcd_reinit(struct dwc_otg_hcd *hcd)
++{
++	struct list_head *item;
++	int num_channels;
++	int i;
++	struct dwc_hc *channel;
++
++	hcd->flags.d32 = 0;
++
++	hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
++	hcd->non_periodic_channels = 0;
++	hcd->periodic_channels = 0;
++
++	/*
++	 * Put all channels in the free channel list and clean up channel
++	 * states.
++	 */
++	item = hcd->free_hc_list.next;
++	while (item != &hcd->free_hc_list) {
++		list_del(item);
++		item = hcd->free_hc_list.next;
++	}
++	num_channels = hcd->core_if->core_params->host_channels;
++	for (i = 0; i < num_channels; i++) {
++		channel = hcd->hc_ptr_array[i];
++		list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
++		dwc_otg_hc_cleanup(hcd->core_if, channel);
++	}
++
++	/* Initialize the DWC core for host mode operation. */
++	dwc_otg_core_host_init(hcd->core_if);
++}
++
++/** Initializes the DWC_otg controller and its root hub and prepares it for host
++ * mode operation. Activates the root port. Returns 0 on success and a negative
++ * error code on failure. */
++int dwc_otg_hcd_start(struct usb_hcd *hcd)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++	struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++	unsigned long flags;
++
++	struct usb_bus *bus;
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
++
++	spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++	bus = hcd_to_bus(hcd);
++
++	/* Initialize the bus state.  If the core is in Device Mode
++	 * HALT the USB bus and return. */
++	if (dwc_otg_is_device_mode(core_if)) {
++		hcd->state = HC_STATE_HALT;
++		goto out;
++	}
++	hcd->state = HC_STATE_RUNNING;
++
++	hcd_reinit(dwc_otg_hcd);
++out:
++	spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++	return 0;
++}
++
++static void qh_list_free(struct dwc_otg_hcd *hcd, struct list_head *_qh_list)
++{
++	struct list_head *item;
++	struct dwc_otg_qh *qh;
++
++	if (_qh_list->next == NULL) {
++		/* The list hasn't been initialized yet. */
++		return;
++	}
++
++	/* Ensure there are no QTDs or URBs left. */
++	kill_urbs_in_qh_list(hcd, _qh_list);
++
++	for (item = _qh_list->next; item != _qh_list; item = _qh_list->next) {
++		qh = list_entry(item, struct dwc_otg_qh, qh_list_entry);
++		dwc_otg_hcd_qh_remove_and_free(hcd, qh);
++	}
++}
++
++/**
++ * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
++ * stopped.
++ */
++void dwc_otg_hcd_stop(struct usb_hcd *hcd)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++	union hprt0_data hprt0 = {.d32 = 0 };
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
++
++	/* Turn off all host-specific interrupts. */
++	dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
++
++	/*
++	 * The root hub should be disconnected before this function is called.
++	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
++	 * and the QH lists (via ..._hcd_endpoint_disable).
++	 */
++
++	/* Turn off the vbus power */
++	DWC_PRINT("PortPower off\n");
++	hprt0.b.prtpwr = 0;
++	dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
++
++	return;
++}
++
++/** Returns the current frame number. */
++int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++	union hfnum_data hfnum;
++
++	hfnum.d32 =
++	    dwc_read_reg32(&dwc_otg_hcd->core_if->host_if->host_global_regs->
++			   hfnum);
++
++#ifdef DEBUG_SOF
++	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n",
++		    hfnum.b.frnum);
++#endif
++	return hfnum.b.frnum;
++}
++
++/**
++ * Frees secondary storage associated with the dwc_otg_hcd structure contained
++ * in the struct usb_hcd field.
++ */
++void dwc_otg_hcd_free(struct usb_hcd *hcd)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++	int i;
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
++
++	del_timers(dwc_otg_hcd);
++
++	/* Free memory for QH/QTD lists */
++	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
++	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
++	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
++	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
++	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
++	qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
++
++	/* Free memory for the host channels. */
++	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
++		struct dwc_hc *hc = dwc_otg_hcd->hc_ptr_array[i];
++		if (hc != NULL) {
++			DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n",
++				    i, hc);
++			kfree(hc);
++		}
++	}
++
++	if (dwc_otg_hcd->core_if->dma_enable) {
++		if (dwc_otg_hcd->status_buf_dma) {
++			dma_free_coherent(hcd->self.controller,
++					  DWC_OTG_HCD_STATUS_BUF_SIZE,
++					  dwc_otg_hcd->status_buf,
++					  dwc_otg_hcd->status_buf_dma);
++		}
++	} else if (dwc_otg_hcd->status_buf != NULL) {
++		kfree(dwc_otg_hcd->status_buf);
++	}
++
++	return;
++}
++
++#ifdef DEBUG
++static void dump_urb_info(struct urb *urb, char *_fn_name)
++{
++	DWC_PRINT("%s, urb %p\n", _fn_name, urb);
++	DWC_PRINT("  Device address: %d\n", usb_pipedevice(urb->pipe));
++	DWC_PRINT("  Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++		  (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++	DWC_PRINT("  Endpoint type: %s\n",
++		({
++			char *pipetype;
++			switch (usb_pipetype(urb->pipe)) {
++			case PIPE_CONTROL:
++				pipetype = "CONTROL";
++				break;
++			case PIPE_BULK:
++				pipetype = "BULK";
++				break;
++			case PIPE_INTERRUPT:
++				pipetype = "INTERRUPT";
++				break;
++			case PIPE_ISOCHRONOUS:
++				pipetype = "ISOCHRONOUS";
++				break;
++			default:
++				pipetype = "UNKNOWN";
++				break;
++			}
++			pipetype;
++		})) ;
++	DWC_PRINT("  Speed: %s\n",
++		({
++			char *speed;
++			switch (urb->dev->speed) {
++			case USB_SPEED_HIGH:
++				speed = "HIGH";
++				break;
++			case USB_SPEED_FULL:
++				speed = "FULL";
++				break;
++			case USB_SPEED_LOW:
++				speed = "LOW";
++				break;
++			default:
++				speed = "UNKNOWN";
++				break;
++			}
++			speed;
++		}));
++	DWC_PRINT("  Max packet size: %d\n",
++		  usb_maxpacket(urb->dev, urb->pipe,
++				usb_pipeout(urb->pipe)));
++	DWC_PRINT("  Data buffer length: %d\n", urb->transfer_buffer_length);
++	DWC_PRINT("  Transfer buffer: %p, Transfer DMA: %p\n",
++		  urb->transfer_buffer, (void *)urb->transfer_dma);
++	DWC_PRINT("  Setup buffer: %p, Setup DMA: %p\n",
++		  urb->setup_packet, (void *)urb->setup_dma);
++	DWC_PRINT("  Interval: %d\n", urb->interval);
++	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++		int i;
++		for (i = 0; i < urb->number_of_packets; i++) {
++			DWC_PRINT("  ISO Desc %d:\n", i);
++			DWC_PRINT("    offset: %d, length %d\n",
++				  urb->iso_frame_desc[i].offset,
++				  urb->iso_frame_desc[i].length);
++		}
++	}
++}
++
++static void dump_channel_info(struct dwc_otg_hcd *hcd, struct dwc_otg_qh * qh)
++{
++	if (qh->channel != NULL) {
++		struct dwc_hc *hc = qh->channel;
++		struct list_head *item;
++		struct dwc_otg_qh *qh_item;
++		int num_channels = hcd->core_if->core_params->host_channels;
++		int i;
++
++		struct dwc_otg_hc_regs *hc_regs;
++		union hcchar_data hcchar;
++		union hcsplt_data hcsplt;
++		union hctsiz_data hctsiz;
++		uint32_t hcdma;
++
++		hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++		hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++		hcdma = dwc_read_reg32(&hc_regs->hcdma);
++
++		DWC_PRINT("  Assigned to channel %p:\n", hc);
++		DWC_PRINT("    hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32,
++			  hcsplt.d32);
++		DWC_PRINT("    hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32,
++			  hcdma);
++		DWC_PRINT("    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++			  hc->dev_addr, hc->ep_num, hc->ep_is_in);
++		DWC_PRINT("    ep_type: %d\n", hc->ep_type);
++		DWC_PRINT("    max_packet: %d\n", hc->max_packet);
++		DWC_PRINT("    data_pid_start: %d\n", hc->data_pid_start);
++		DWC_PRINT("    xfer_started: %d\n", hc->xfer_started);
++		DWC_PRINT("    halt_status: %d\n", hc->halt_status);
++		DWC_PRINT("    xfer_buff: %p\n", hc->xfer_buff);
++		DWC_PRINT("    xfer_len: %d\n", hc->xfer_len);
++		DWC_PRINT("    qh: %p\n", hc->qh);
++		DWC_PRINT("  NP inactive sched:\n");
++		list_for_each(item, &hcd->non_periodic_sched_inactive) {
++			qh_item = list_entry(item, struct dwc_otg_qh,
++					     qh_list_entry);
++			DWC_PRINT("    %p\n", qh_item);
++		}
++		DWC_PRINT("  NP active sched:\n");
++		list_for_each(item, &hcd->non_periodic_sched_active) {
++			qh_item = list_entry(item, struct dwc_otg_qh,
++					     qh_list_entry);
++			DWC_PRINT("    %p\n", qh_item);
++		}
++		DWC_PRINT("  Channels: \n");
++		for (i = 0; i < num_channels; i++) {
++			struct dwc_hc *hc = hcd->hc_ptr_array[i];
++			DWC_PRINT("    %2d: %p\n", i, hc);
++		}
++	}
++}
++#endif
++
++/* Starts processing a USB transfer request specified by a USB Request Block
++ * (URB). mem_flags indicates the type of memory allocation to use while
++ * processing this URB. */
++int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
++			    struct urb *urb, unsigned _mem_flags)
++{
++	unsigned long flags;
++	int retval = 0;
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++	struct dwc_otg_qtd *qtd;
++
++	spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++	/*
++	 * Make sure the start of frame interrupt is enabled now that
++	 * we know we should have queued data. The SOF interrupt
++	 * handler automatically disables itself when idle to reduce
++	 * the number of interrupts. See dwc_otg_hcd_handle_sof_intr()
++	 * for the disable
++	 */
++	dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0,
++			 DWC_SOF_INTR_MASK);
++
++#ifdef DEBUG
++	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB))
++		dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
++#endif
++	if (!dwc_otg_hcd->flags.b.port_connect_status) {
++		/* No longer connected. */
++		retval =  -ENODEV;
++		goto out;
++	}
++
++	qtd = dwc_otg_hcd_qtd_create(urb);
++	if (qtd == NULL) {
++		DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
++		retval = -ENOMEM;
++		goto out;
++	}
++
++	retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
++	if (retval < 0) {
++		DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
++			  "Error status %d\n", retval);
++		dwc_otg_hcd_qtd_free(qtd);
++	}
++out:
++	spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++	return retval;
++}
++
++/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
++ * success.  */
++int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
++{
++	unsigned long flags;
++	struct dwc_otg_hcd *dwc_otg_hcd;
++	struct dwc_otg_qtd *urb_qtd;
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
++
++	dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++	spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++	urb_qtd = urb->hcpriv;
++
++#ifdef DEBUG
++	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++		dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
++		if (urb_qtd == urb_qtd->qh->qtd_in_process)
++			dump_channel_info(dwc_otg_hcd, urb_qtd->qh);
++	}
++#endif
++
++	if (urb_qtd == urb_qtd->qh->qtd_in_process) {
++		/* The QTD is in process (it has been assigned to a channel). */
++
++		if (dwc_otg_hcd->flags.b.port_connect_status) {
++			/*
++			 * If still connected (i.e. in host mode), halt the
++			 * channel so it can be used for other transfers. If
++			 * no longer connected, the host registers can't be
++			 * written to halt the channel since the core is in
++			 * device mode.
++			 */
++			dwc_otg_hc_halt(dwc_otg_hcd->core_if,
++					urb_qtd->qh->channel,
++					DWC_OTG_HC_XFER_URB_DEQUEUE);
++		}
++	}
++
++	/*
++	 * Free the QTD and clean up the associated QH. Leave the QH in the
++	 * schedule if it has any remaining QTDs.
++	 */
++	dwc_otg_hcd_qtd_remove_and_free(urb_qtd);
++	if (urb_qtd == urb_qtd->qh->qtd_in_process) {
++		dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, urb_qtd->qh, 0);
++		urb_qtd->qh->channel = NULL;
++		urb_qtd->qh->qtd_in_process = NULL;
++	} else if (list_empty(&urb_qtd->qh->qtd_list)) {
++		dwc_otg_hcd_qh_remove(dwc_otg_hcd, urb_qtd->qh);
++	}
++
++	spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++	urb->hcpriv = NULL;
++
++	/* Higher layer software sets URB status. */
++	usb_hcd_giveback_urb(hcd, urb, status);
++	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++		DWC_PRINT("Called usb_hcd_giveback_urb()\n");
++		DWC_PRINT("  urb->status = %d\n", urb->status);
++	}
++
++	return 0;
++}
++
++/* Frees resources in the DWC_otg controller related to a given endpoint. Also
++ * clears state in the HCD related to the endpoint. Any URBs for the endpoint
++ * must already be dequeued. */
++void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
++				  struct usb_host_endpoint *_ep)
++{
++	unsigned long flags;
++	struct dwc_otg_qh *qh;
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++	spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++	DWC_DEBUGPL(DBG_HCD,
++		    "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
++		    "endpoint=%d\n", _ep->desc.bEndpointAddress,
++		    dwc_ep_addr_to_endpoint(_ep->desc.bEndpointAddress));
++
++	qh = _ep->hcpriv;
++	if (qh != NULL) {
++#if 1
++		/*
++		 * FIXME: Kludge to not crash on Octeon in SMP
++		 * mode. Normally dwc_otg_hcd_qh_remove_and_free() is
++		 * called even if the list isn't empty. This causes a
++		 * crash on SMP, so we don't call it now. It works
++		 * better, but probably does evil things I don't know
++		 * about.
++		 */
++		/* Check that the QTD list is really empty */
++		if (!list_empty(&qh->qtd_list)) {
++			pr_err("DWC OTG HCD EP DISABLE:"
++			       " QTD List for this endpoint is not empty\n");
++		} else
++#endif
++		{
++			dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
++			_ep->hcpriv = NULL;
++		}
++	}
++
++	spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++	return;
++}
++
++/* Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
++ * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
++ * interrupt.
++ *
++ * This function is called by the USB core when an interrupt occurs */
++irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
++{
++	irqreturn_t result;
++	unsigned long flags;
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++	spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++	result = IRQ_RETVAL(dwc_otg_hcd_handle_intr(dwc_otg_hcd));
++
++	spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++	return result;
++}
++
++/** Creates Status Change bitmap for the root hub and root port. The bitmap is
++ * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
++ * is the status change indicator for the single root port. Returns 1 if either
++ * change indicator is 1, otherwise returns 0. */
++int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *_buf)
++{
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++
++	_buf[0] = 0;
++	_buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
++		    dwc_otg_hcd->flags.b.port_reset_change ||
++		    dwc_otg_hcd->flags.b.port_enable_change ||
++		    dwc_otg_hcd->flags.b.port_suspend_change ||
++		    dwc_otg_hcd->flags.b.port_over_current_change) << 1;
++
++#ifdef DEBUG
++	if (_buf[0]) {
++		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
++			    " Root port status changed\n");
++		DWC_DEBUGPL(DBG_HCDV, "  port_connect_status_change: %d\n",
++			    dwc_otg_hcd->flags.b.port_connect_status_change);
++		DWC_DEBUGPL(DBG_HCDV, "  port_reset_change: %d\n",
++			    dwc_otg_hcd->flags.b.port_reset_change);
++		DWC_DEBUGPL(DBG_HCDV, "  port_enable_change: %d\n",
++			    dwc_otg_hcd->flags.b.port_enable_change);
++		DWC_DEBUGPL(DBG_HCDV, "  port_suspend_change: %d\n",
++			    dwc_otg_hcd->flags.b.port_suspend_change);
++		DWC_DEBUGPL(DBG_HCDV, "  port_over_current_change: %d\n",
++			    dwc_otg_hcd->flags.b.port_over_current_change);
++	}
++#endif
++	return (_buf[0] != 0);
++}
++
++#ifdef DWC_HS_ELECT_TST
++/*
++ * Quick and dirty hack to implement the HS Electrical Test
++ * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
++ *
++ * This code was copied from our userspace app "hset". It sends a
++ * Get Device Descriptor control sequence in two parts, first the
++ * Setup packet by itself, followed some time later by the In and
++ * Ack packets. Rather than trying to figure out how to add this
++ * functionality to the normal driver code, we just hijack the
++ * hardware, using these two function to drive the hardware
++ * directly.
++ */
++
++struct dwc_otg_core_global_regs *global_regs;
++struct dwc_otg_host_global_regs *hc_global_regs;
++struct dwc_otg_hc_regs *hc_regs;
++uint32_t *data_fifo;
++
++static void do_setup(void)
++{
++	union gintsts_data gintsts;
++	union hctsiz_data hctsiz;
++	union hcchar_data hcchar;
++	union haint_data haint;
++	union hcint_data hcint;
++
++	/* Enable HAINTs */
++	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++	/* Enable HCINTs */
++	dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Read HAINT */
++	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++	/* Read HCINT */
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++	/* Read HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++	/* Clear HCINT */
++	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++	/* Clear HAINT */
++	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++	/* Clear GINTSTS */
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/*
++	 * Send Setup packet (Get Device Descriptor)
++	 */
++
++	/* Make sure channel is disabled */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	if (hcchar.b.chen) {
++		hcchar.b.chdis = 1;
++		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++		mdelay(1000);
++
++		/* Read GINTSTS */
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++		/* Read HAINT */
++		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++		/* Read HCINT */
++		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++		/* Read HCCHAR */
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++		/* Clear HCINT */
++		dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++		/* Clear HAINT */
++		dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++		/* Clear GINTSTS */
++		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	}
++
++	/* Set HCTSIZ */
++	hctsiz.d32 = 0;
++	hctsiz.b.xfersize = 8;
++	hctsiz.b.pktcnt = 1;
++	hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
++	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++	/* Set HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++	hcchar.b.epdir = 0;
++	hcchar.b.epnum = 0;
++	hcchar.b.mps = 8;
++	hcchar.b.chen = 1;
++	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++	/* Fill FIFO with Setup data for Get Device Descriptor */
++	data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
++	dwc_write_reg32(data_fifo++, 0x01000680);
++	dwc_write_reg32(data_fifo++, 0x00080000);
++
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Wait for host channel interrupt */
++	do {
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++	} while (gintsts.b.hcintr == 0);
++
++
++	/* Disable HCINTs */
++	dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++	/* Disable HAINTs */
++	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++	/* Read HAINT */
++	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++	/* Read HCINT */
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++	/* Read HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++	/* Clear HCINT */
++	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++	/* Clear HAINT */
++	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++	/* Clear GINTSTS */
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++}
++
++static void do_in_ack(void)
++{
++	union gintsts_data gintsts;
++	union hctsiz_data hctsiz;
++	union hcchar_data hcchar;
++	union haint_data haint;
++	union hcint_data hcint;
++	union host_grxsts_data grxsts;
++
++	/* Enable HAINTs */
++	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
++
++	/* Enable HCINTs */
++	dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Read HAINT */
++	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++	/* Read HCINT */
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++	/* Read HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++	/* Clear HCINT */
++	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++	/* Clear HAINT */
++	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++	/* Clear GINTSTS */
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/*
++	 * Receive Control In packet
++	 */
++
++	/* Make sure channel is disabled */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	if (hcchar.b.chen) {
++		hcchar.b.chdis = 1;
++		hcchar.b.chen = 1;
++		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++		mdelay(1000);
++
++		/* Read GINTSTS */
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++		/* Read HAINT */
++		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++		/* Read HCINT */
++		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++		/* Read HCCHAR */
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++		/* Clear HCINT */
++		dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++		/* Clear HAINT */
++		dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++		/* Clear GINTSTS */
++		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	}
++
++	/* Set HCTSIZ */
++	hctsiz.d32 = 0;
++	hctsiz.b.xfersize = 8;
++	hctsiz.b.pktcnt = 1;
++	hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++	/* Set HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++	hcchar.b.epdir = 1;
++	hcchar.b.epnum = 0;
++	hcchar.b.mps = 8;
++	hcchar.b.chen = 1;
++	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Wait for receive status queue interrupt */
++	do {
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++	} while (gintsts.b.rxstsqlvl == 0);
++
++	/* Read RXSTS */
++	grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++
++	/* Clear RXSTSQLVL in GINTSTS */
++	gintsts.d32 = 0;
++	gintsts.b.rxstsqlvl = 1;
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	switch (grxsts.b.pktsts) {
++	case DWC_GRXSTS_PKTSTS_IN:
++		/* Read the data into the host buffer */
++		if (grxsts.b.bcnt > 0) {
++			int i;
++			int word_count = (grxsts.b.bcnt + 3) / 4;
++
++			data_fifo = (uint32_t *) ((char *)global_regs + 0x1000);
++
++			for (i = 0; i < word_count; i++)
++				(void)dwc_read_reg32(data_fifo++);
++		}
++		break;
++
++	default:
++		break;
++	}
++
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Wait for receive status queue interrupt */
++	do {
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++	} while (gintsts.b.rxstsqlvl == 0);
++
++
++	/* Read RXSTS */
++	grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
++
++	/* Clear RXSTSQLVL in GINTSTS */
++	gintsts.d32 = 0;
++	gintsts.b.rxstsqlvl = 1;
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	switch (grxsts.b.pktsts) {
++	case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++		break;
++
++	default:
++		break;
++	}
++
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Wait for host channel interrupt */
++	do {
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++	} while (gintsts.b.hcintr == 0);
++
++
++	/* Read HAINT */
++	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++	/* Read HCINT */
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++	/* Read HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++	/* Clear HCINT */
++	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++	/* Clear HAINT */
++	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++	/* Clear GINTSTS */
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	mdelay(1);
++
++	/*
++	 * Send handshake packet
++	 */
++
++	/* Read HAINT */
++	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++	/* Read HCINT */
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++	/* Read HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++	/* Clear HCINT */
++	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++	/* Clear HAINT */
++	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++	/* Clear GINTSTS */
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Make sure channel is disabled */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	if (hcchar.b.chen) {
++		hcchar.b.chdis = 1;
++		hcchar.b.chen = 1;
++		dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++		mdelay(1000);
++
++		/* Read GINTSTS */
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++		/* Read HAINT */
++		haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++		/* Read HCINT */
++		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++		/* Read HCCHAR */
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++		/* Clear HCINT */
++		dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++		/* Clear HAINT */
++		dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++		/* Clear GINTSTS */
++		dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	}
++
++	/* Set HCTSIZ */
++	hctsiz.d32 = 0;
++	hctsiz.b.xfersize = 0;
++	hctsiz.b.pktcnt = 1;
++	hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
++	dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
++
++	/* Set HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
++	hcchar.b.epdir = 0;
++	hcchar.b.epnum = 0;
++	hcchar.b.mps = 8;
++	hcchar.b.chen = 1;
++	dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
++
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++
++	/* Wait for host channel interrupt */
++	do {
++		gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++	} while (gintsts.b.hcintr == 0);
++
++
++	/* Disable HCINTs */
++	dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
++
++	/* Disable HAINTs */
++	dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
++
++	/* Read HAINT */
++	haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
++
++	/* Read HCINT */
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++
++	/* Read HCCHAR */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++
++	/* Clear HCINT */
++	dwc_write_reg32(&hc_regs->hcint, hcint.d32);
++
++	/* Clear HAINT */
++	dwc_write_reg32(&hc_global_regs->haint, haint.d32);
++
++	/* Clear GINTSTS */
++	dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
++
++	/* Read GINTSTS */
++	gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
++}
++#endif /* DWC_HS_ELECT_TST */
++
++/* Handles hub class-specific requests.*/
++int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
++			    u16 _typeReq,
++			    u16 _wValue, u16 _wIndex, char *_buf, u16 _wLength)
++{
++	int retval = 0;
++	unsigned long flags;
++
++	struct dwc_otg_hcd *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
++	struct dwc_otg_core_if *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
++	struct usb_hub_descriptor *desc;
++	union hprt0_data hprt0 = {.d32 = 0 };
++
++	uint32_t port_status;
++#ifdef DWC_HS_ELECT_TST
++	uint32_t t;
++	union gintmsk_data gintmsk;
++#endif
++	spin_lock_irqsave(&dwc_otg_hcd->global_lock, flags);
++
++	switch (_typeReq) {
++	case ClearHubFeature:
++		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++			    "ClearHubFeature 0x%x\n", _wValue);
++		switch (_wValue) {
++		case C_HUB_LOCAL_POWER:
++		case C_HUB_OVER_CURRENT:
++			/* Nothing required here */
++			break;
++		default:
++			retval = -EINVAL;
++			DWC_ERROR("DWC OTG HCD - "
++				  "ClearHubFeature request %xh unknown\n",
++				  _wValue);
++		}
++		break;
++	case ClearPortFeature:
++		if (!_wIndex || _wIndex > 1)
++			goto error;
++
++		switch (_wValue) {
++		case USB_PORT_FEAT_ENABLE:
++			DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
++			hprt0.d32 = dwc_otg_read_hprt0(core_if);
++			hprt0.b.prtena = 1;
++			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++			break;
++		case USB_PORT_FEAT_SUSPEND:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
++			hprt0.d32 = dwc_otg_read_hprt0(core_if);
++			hprt0.b.prtres = 1;
++			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++			/* Clear Resume bit */
++			mdelay(100);
++			hprt0.b.prtres = 0;
++			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++			break;
++		case USB_PORT_FEAT_POWER:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_POWER\n");
++			hprt0.d32 = dwc_otg_read_hprt0(core_if);
++			hprt0.b.prtpwr = 0;
++			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++			break;
++		case USB_PORT_FEAT_INDICATOR:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
++			/* Port inidicator not supported */
++			break;
++		case USB_PORT_FEAT_C_CONNECTION:
++			/* Clears drivers internal connect status change
++			 * flag */
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
++			dwc_otg_hcd->flags.b.port_connect_status_change = 0;
++			break;
++		case USB_PORT_FEAT_C_RESET:
++			/* Clears the driver's internal Port Reset Change
++			 * flag */
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
++			dwc_otg_hcd->flags.b.port_reset_change = 0;
++			break;
++		case USB_PORT_FEAT_C_ENABLE:
++			/* Clears the driver's internal Port
++			 * Enable/Disable Change flag */
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
++			dwc_otg_hcd->flags.b.port_enable_change = 0;
++			break;
++		case USB_PORT_FEAT_C_SUSPEND:
++			/* Clears the driver's internal Port Suspend
++			 * Change flag, which is set when resume signaling on
++			 * the host port is complete */
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
++			dwc_otg_hcd->flags.b.port_suspend_change = 0;
++			break;
++		case USB_PORT_FEAT_C_OVER_CURRENT:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
++			dwc_otg_hcd->flags.b.port_over_current_change = 0;
++			break;
++		default:
++			retval = -EINVAL;
++			DWC_ERROR("DWC OTG HCD - "
++				  "ClearPortFeature request %xh "
++				  "unknown or unsupported\n", _wValue);
++		}
++		break;
++	case GetHubDescriptor:
++		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++			    "GetHubDescriptor\n");
++		desc = (struct usb_hub_descriptor *)_buf;
++		desc->bDescLength = 9;
++		desc->bDescriptorType = 0x29;
++		desc->bNbrPorts = 1;
++		desc->wHubCharacteristics = 0x08;
++		desc->bPwrOn2PwrGood = 1;
++		desc->bHubContrCurrent = 0;
++		desc->bitmap[0] = 0;
++		desc->bitmap[1] = 0xff;
++		break;
++	case GetHubStatus:
++		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++			    "GetHubStatus\n");
++		memset(_buf, 0, 4);
++		break;
++	case GetPortStatus:
++		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++			    "GetPortStatus\n");
++
++		if (!_wIndex || _wIndex > 1)
++			goto error;
++
++		port_status = 0;
++
++		if (dwc_otg_hcd->flags.b.port_connect_status_change)
++			port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
++
++		if (dwc_otg_hcd->flags.b.port_enable_change)
++			port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
++
++		if (dwc_otg_hcd->flags.b.port_suspend_change)
++			port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
++
++		if (dwc_otg_hcd->flags.b.port_reset_change)
++			port_status |= (1 << USB_PORT_FEAT_C_RESET);
++
++		if (dwc_otg_hcd->flags.b.port_over_current_change) {
++			DWC_ERROR("Device Not Supported\n");
++			port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
++		}
++
++		if (!dwc_otg_hcd->flags.b.port_connect_status) {
++			/*
++			 * The port is disconnected, which means the core is
++			 * either in device mode or it soon will be. Just
++			 * return 0's for the remainder of the port status
++			 * since the port register can't be read if the core
++			 * is in device mode.
++			 */
++			*((__le32 *) _buf) = cpu_to_le32(port_status);
++			break;
++		}
++
++		hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
++		DWC_DEBUGPL(DBG_HCDV, "  HPRT0: 0x%08x\n", hprt0.d32);
++
++		if (hprt0.b.prtconnsts)
++			port_status |= (1 << USB_PORT_FEAT_CONNECTION);
++
++		if (hprt0.b.prtena)
++			port_status |= (1 << USB_PORT_FEAT_ENABLE);
++
++		if (hprt0.b.prtsusp)
++			port_status |= (1 << USB_PORT_FEAT_SUSPEND);
++
++		if (hprt0.b.prtovrcurract)
++			port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
++
++		if (hprt0.b.prtrst)
++			port_status |= (1 << USB_PORT_FEAT_RESET);
++
++		if (hprt0.b.prtpwr)
++			port_status |= (1 << USB_PORT_FEAT_POWER);
++
++		if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
++			port_status |= (1 << USB_PORT_FEAT_HIGHSPEED);
++		else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
++			port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
++
++		if (hprt0.b.prttstctl)
++			port_status |= (1 << USB_PORT_FEAT_TEST);
++
++		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
++
++		*((__le32 *) _buf) = cpu_to_le32(port_status);
++
++		break;
++	case SetHubFeature:
++		DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++			    "SetHubFeature\n");
++		/* No HUB features supported */
++		break;
++	case SetPortFeature:
++		if (_wValue != USB_PORT_FEAT_TEST && (!_wIndex || _wIndex > 1))
++			goto error;
++
++		if (!dwc_otg_hcd->flags.b.port_connect_status) {
++			/*
++			 * The port is disconnected, which means the core is
++			 * either in device mode or it soon will be. Just
++			 * return without doing anything since the port
++			 * register can't be written if the core is in device
++			 * mode.
++			 */
++			break;
++		}
++
++		switch (_wValue) {
++		case USB_PORT_FEAT_SUSPEND:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
++			if (hcd->self.otg_port == _wIndex &&
++			    hcd->self.b_hnp_enable) {
++				union gotgctl_data gotgctl = {.d32 = 0 };
++				gotgctl.b.hstsethnpen = 1;
++				dwc_modify_reg32(&core_if->core_global_regs->
++						 gotgctl, 0, gotgctl.d32);
++				core_if->op_state = A_SUSPEND;
++			}
++			hprt0.d32 = dwc_otg_read_hprt0(core_if);
++			hprt0.b.prtsusp = 1;
++			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++			/* Suspend the Phy Clock */
++			{
++				union pcgcctl_data pcgcctl = {.d32 = 0 };
++				pcgcctl.b.stoppclk = 1;
++				dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
++			}
++
++			/*
++			 * For HNP the bus must be suspended for at
++			 * least 200ms.
++			 */
++			if (hcd->self.b_hnp_enable)
++				mdelay(200);
++			break;
++		case USB_PORT_FEAT_POWER:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "SetPortFeature - USB_PORT_FEAT_POWER\n");
++			hprt0.d32 = dwc_otg_read_hprt0(core_if);
++			hprt0.b.prtpwr = 1;
++			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++			break;
++		case USB_PORT_FEAT_RESET:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "SetPortFeature - USB_PORT_FEAT_RESET\n");
++			hprt0.d32 = dwc_otg_read_hprt0(core_if);
++			/* When B-Host the Port reset bit is set in
++			 * the Start HCD Callback function, so that
++			 * the reset is started within 1ms of the HNP
++			 * success interrupt. */
++			if (!hcd->self.is_b_host) {
++				hprt0.b.prtrst = 1;
++				dwc_write_reg32(core_if->host_if->hprt0,
++						hprt0.d32);
++			}
++			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
++			mdelay(60);
++			hprt0.b.prtrst = 0;
++			dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
++			break;
++
++#ifdef DWC_HS_ELECT_TST
++		case USB_PORT_FEAT_TEST:
++			t = (_wIndex >> 8);	/* MSB wIndex USB */
++			DWC_DEBUGPL(DBG_HCD,
++				"DWC OTG HCD HUB CONTROL - "
++				"SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
++			warn("USB_PORT_FEAT_TEST %d\n", t);
++			if (t < 6) {
++				hprt0.d32 = dwc_otg_read_hprt0(core_if);
++				hprt0.b.prttstctl = t;
++				dwc_write_reg32(core_if->host_if->hprt0,
++						hprt0.d32);
++			} else {
++				/* Setup global vars with reg
++				 * addresses (quick and dirty hack,
++				 * should be cleaned up)
++				 */
++				global_regs = core_if->core_global_regs;
++				hc_global_regs =
++					core_if->host_if->host_global_regs;
++				hc_regs =
++					(struct dwc_otg_hc_regs *) ((char *)
++								global_regs +
++								0x500);
++				data_fifo =
++					(uint32_t *) ((char *)global_regs +
++						0x1000);
++
++				if (t == 6) {	/* HS_HOST_PORT_SUSPEND_RESUME */
++						/* Save current interrupt mask */
++					gintmsk.d32 =
++						dwc_read_reg32(&global_regs->gintmsk);
++
++					/* Disable all interrupts
++					 * while we muck with the
++					 * hardware directly
++					 */
++					dwc_write_reg32(&global_regs->gintmsk,
++							0);
++
++					/* 15 second delay per the test spec */
++					mdelay(15000);
++
++					/* Drive suspend on the root port */
++					hprt0.d32 =
++						dwc_otg_read_hprt0(core_if);
++					hprt0.b.prtsusp = 1;
++					hprt0.b.prtres = 0;
++					dwc_write_reg32(core_if->host_if->hprt0,
++							hprt0.d32);
++
++					/* 15 second delay per the test spec */
++					mdelay(15000);
++
++					/* Drive resume on the root port */
++					hprt0.d32 = dwc_otg_read_hprt0(core_if);
++					hprt0.b.prtsusp = 0;
++					hprt0.b.prtres = 1;
++					dwc_write_reg32(core_if->host_if->hprt0,
++							hprt0.d32);
++					mdelay(100);
++
++					/* Clear the resume bit */
++					hprt0.b.prtres = 0;
++					dwc_write_reg32(core_if->host_if->hprt0,
++							hprt0.d32);
++
++					/* Restore interrupts */
++					dwc_write_reg32(&global_regs->gintmsk,
++							gintmsk.d32);
++				} else if (t == 7) {
++					/* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
++					/* Save current interrupt mask */
++					gintmsk.d32 =
++						dwc_read_reg32(&global_regs->gintmsk);
++
++					/*
++					 * Disable all interrupts
++					 * while we muck with the
++					 * hardware directly
++					 */
++					dwc_write_reg32(&global_regs->gintmsk,
++							0);
++
++					/* 15 second delay per the test spec */
++					mdelay(15000);
++
++					/* Send the Setup packet */
++					do_setup();
++
++					/*
++					 * 15 second delay so nothing
++					 * else happens for awhile.
++					 */
++					mdelay(15000);
++
++					/* Restore interrupts */
++					dwc_write_reg32(&global_regs->gintmsk,
++							gintmsk.d32);
++				} else if (t == 8) {
++					/* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
++					/* Save current interrupt mask */
++					gintmsk.d32 =
++						dwc_read_reg32(&global_regs->gintmsk);
++
++					/*
++					 * Disable all interrupts
++					 * while we muck with the
++					 * hardware directly
++					 */
++					dwc_write_reg32(&global_regs->gintmsk,
++							0);
++
++					/* Send the Setup packet */
++					do_setup();
++
++					/* 15 second delay so nothing else happens for awhile */
++					mdelay(15000);
++
++					/* Send the In and Ack packets */
++					do_in_ack();
++
++					/* 15 second delay so nothing else happens for awhile */
++					mdelay(15000);
++
++					/* Restore interrupts */
++					dwc_write_reg32(&global_regs->gintmsk,
++							gintmsk.d32);
++				}
++			}
++			break;
++#endif /* DWC_HS_ELECT_TST */
++
++		case USB_PORT_FEAT_INDICATOR:
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
++				    "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
++			/* Not supported */
++			break;
++		default:
++			retval = -EINVAL;
++			DWC_ERROR("DWC OTG HCD - "
++				  "SetPortFeature request %xh "
++				  "unknown or unsupported\n", _wValue);
++			break;
++		}
++		break;
++	default:
++error:
++		retval = -EINVAL;
++		DWC_WARN("DWC OTG HCD - Unknown hub control request type or "
++			 "invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
++			 _typeReq, _wIndex, _wValue);
++		break;
++	}
++
++	spin_unlock_irqrestore(&dwc_otg_hcd->global_lock, flags);
++
++	return retval;
++}
++
++/**
++ * Assigns transactions from a QTD to a free host channel and initializes the
++ * host channel to perform the transactions. The host channel is removed from
++ * the free list.
++ *
++ * @hcd: The HCD state structure.
++ * @_qh: Transactions from the first QTD for this QH are selected and
++ * assigned to a free host channel.
++ */
++static void assign_and_init_hc(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *_qh)
++{
++	struct dwc_hc *hc;
++	struct dwc_otg_qtd *qtd;
++	struct urb *urb;
++
++	DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, _qh);
++
++	hc = list_entry(hcd->free_hc_list.next, struct dwc_hc, hc_list_entry);
++
++	/* Remove the host channel from the free list. */
++	list_del_init(&hc->hc_list_entry);
++
++	qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd,
++			 qtd_list_entry);
++	urb = qtd->urb;
++	_qh->channel = hc;
++	_qh->qtd_in_process = qtd;
++
++	/*
++	 * Use usb_pipedevice to determine device address. This address is
++	 * 0 before the SET_ADDRESS command and the correct address afterward.
++	 */
++	hc->dev_addr = usb_pipedevice(urb->pipe);
++	hc->ep_num = usb_pipeendpoint(urb->pipe);
++
++	if (urb->dev->speed == USB_SPEED_LOW)
++		hc->speed = DWC_OTG_EP_SPEED_LOW;
++	else if (urb->dev->speed == USB_SPEED_FULL)
++		hc->speed = DWC_OTG_EP_SPEED_FULL;
++	else
++		hc->speed = DWC_OTG_EP_SPEED_HIGH;
++
++	hc->max_packet = dwc_max_packet(_qh->maxp);
++
++	hc->xfer_started = 0;
++	hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
++	hc->error_state = (qtd->error_count > 0);
++	hc->halt_on_queue = 0;
++	hc->halt_pending = 0;
++	hc->requests = 0;
++
++	/*
++	 * The following values may be modified in the transfer type section
++	 * below. The xfer_len value may be reduced when the transfer is
++	 * started to accommodate the max widths of the XferSize and PktCnt
++	 * fields in the HCTSIZn register.
++	 */
++	hc->do_ping = _qh->ping_state;
++	hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
++	hc->data_pid_start = _qh->data_toggle;
++	hc->multi_count = 1;
++
++	if (hcd->core_if->dma_enable) {
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++		const uint64_t USBN_DMA0_INB_CHN0 =
++		    CVMX_USBNX_DMA0_INB_CHN0(hcd->core_if->usb_num);
++#endif /* CONFIG_CPU_CAVIUM_OCTEON */
++		hc->xfer_buff =
++		    (uint8_t *) (unsigned long)urb->transfer_dma +
++		    urb->actual_length;
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++		/* Octeon uses external DMA */
++		wmb();
++		cvmx_write_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8,
++			       (unsigned long)hc->xfer_buff);
++		cvmx_read_csr(USBN_DMA0_INB_CHN0 + hc->hc_num * 8);
++		DWC_DEBUGPL(DBG_HCDV,
++			    "IN: hc->hc_num = %d, hc->xfer_buff = %p\n",
++			    hc->hc_num, hc->xfer_buff);
++#endif /* CONFIG_CPU_CAVIUM_OCTEON */
++	} else {
++		hc->xfer_buff =
++		    (uint8_t *) urb->transfer_buffer + urb->actual_length;
++	}
++	hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
++	hc->xfer_count = 0;
++
++	/*
++	 * Set the split attributes
++	 */
++	hc->do_split = 0;
++	if (_qh->do_split) {
++		hc->do_split = 1;
++		hc->xact_pos = qtd->isoc_split_pos;
++		hc->complete_split = qtd->complete_split;
++		hc->hub_addr = urb->dev->tt->hub->devnum;
++		hc->port_addr = urb->dev->ttport;
++	}
++
++	switch (usb_pipetype(urb->pipe)) {
++	case PIPE_CONTROL:
++		hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
++		switch (qtd->control_phase) {
++		case DWC_OTG_CONTROL_SETUP:
++			DWC_DEBUGPL(DBG_HCDV, "  Control setup transaction\n");
++			hc->do_ping = 0;
++			hc->ep_is_in = 0;
++			hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
++			if (hcd->core_if->dma_enable) {
++				hc->xfer_buff =
++				    (uint8_t *) (unsigned long)urb->setup_dma;
++			} else {
++				hc->xfer_buff = (uint8_t *) urb->setup_packet;
++			}
++			hc->xfer_len = 8;
++			break;
++		case DWC_OTG_CONTROL_DATA:
++			DWC_DEBUGPL(DBG_HCDV, "  Control data transaction\n");
++			hc->data_pid_start = qtd->data_toggle;
++			break;
++		case DWC_OTG_CONTROL_STATUS:
++			/*
++			 * Direction is opposite of data direction or IN if no
++			 * data.
++			 */
++			DWC_DEBUGPL(DBG_HCDV, "  Control status transaction\n");
++			if (urb->transfer_buffer_length == 0) {
++				hc->ep_is_in = 1;
++			} else {
++				hc->ep_is_in =
++				    (usb_pipein(urb->pipe) != USB_DIR_IN);
++			}
++			if (hc->ep_is_in)
++				hc->do_ping = 0;
++			hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
++			hc->xfer_len = 0;
++			if (hcd->core_if->dma_enable) {
++				hc->xfer_buff =
++				    (uint8_t *) (unsigned long)hcd->
++				    status_buf_dma;
++			} else {
++				hc->xfer_buff = (uint8_t *) hcd->status_buf;
++			}
++			break;
++		}
++		break;
++	case PIPE_BULK:
++		hc->ep_type = DWC_OTG_EP_TYPE_BULK;
++		break;
++	case PIPE_INTERRUPT:
++		hc->ep_type = DWC_OTG_EP_TYPE_INTR;
++		break;
++	case PIPE_ISOCHRONOUS:
++		{
++			struct usb_iso_packet_descriptor *frame_desc;
++			frame_desc =
++			    &urb->iso_frame_desc[qtd->isoc_frame_index];
++			hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
++			if (hcd->core_if->dma_enable) {
++				hc->xfer_buff =
++				    (uint8_t *) (unsigned long)urb->
++				    transfer_dma;
++			} else {
++				hc->xfer_buff =
++				    (uint8_t *) urb->transfer_buffer;
++			}
++			hc->xfer_buff +=
++			    frame_desc->offset + qtd->isoc_split_offset;
++			hc->xfer_len =
++			    frame_desc->length - qtd->isoc_split_offset;
++
++			if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++				if (hc->xfer_len <= 188) {
++					hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
++				} else {
++					hc->xact_pos =
++					    DWC_HCSPLIT_XACTPOS_BEGIN;
++				}
++			}
++		}
++		break;
++	}
++
++	if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++	    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++		/*
++		 * This value may be modified when the transfer is started to
++		 * reflect the actual transfer length.
++		 */
++		hc->multi_count = dwc_hb_mult(_qh->maxp);
++	}
++
++	dwc_otg_hc_init(hcd->core_if, hc);
++	hc->qh = _qh;
++}
++
++/**
++ * This function selects transactions from the HCD transfer schedule and
++ * assigns them to available host channels. It is called from HCD interrupt
++ * handler functions.
++ *
++ * @hcd: The HCD state structure.
++ *
++ * Returns The types of new transactions that were assigned to host channels.
++ */
++enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct dwc_otg_hcd
++							   *hcd)
++{
++	struct list_head *qh_ptr;
++	struct dwc_otg_qh *qh;
++	int num_channels;
++	enum dwc_otg_transaction_type ret_val = DWC_OTG_TRANSACTION_NONE;
++
++#ifdef DEBUG_SOF
++	DWC_DEBUGPL(DBG_HCD, "  Select Transactions\n");
++#endif
++
++	/* Process entries in the periodic ready list. */
++	qh_ptr = hcd->periodic_sched_ready.next;
++	while (qh_ptr != &hcd->periodic_sched_ready &&
++	       !list_empty(&hcd->free_hc_list)) {
++
++		qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
++		assign_and_init_hc(hcd, qh);
++
++		/*
++		 * Move the QH from the periodic ready schedule to the
++		 * periodic assigned schedule.
++		 */
++		qh_ptr = qh_ptr->next;
++		list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
++
++		ret_val = DWC_OTG_TRANSACTION_PERIODIC;
++	}
++
++	/*
++	 * Process entries in the inactive portion of the non-periodic
++	 * schedule. Some free host channels may not be used if they are
++	 * reserved for periodic transfers.
++	 */
++	qh_ptr = hcd->non_periodic_sched_inactive.next;
++	num_channels = hcd->core_if->core_params->host_channels;
++	while (qh_ptr != &hcd->non_periodic_sched_inactive &&
++	       (hcd->non_periodic_channels <
++		num_channels - hcd->periodic_channels) &&
++	       !list_empty(&hcd->free_hc_list)) {
++
++		qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
++		assign_and_init_hc(hcd, qh);
++
++		/*
++		 * Move the QH from the non-periodic inactive schedule to the
++		 * non-periodic active schedule.
++		 */
++		qh_ptr = qh_ptr->next;
++		list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
++
++		if (ret_val == DWC_OTG_TRANSACTION_NONE)
++			ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
++		else
++			ret_val = DWC_OTG_TRANSACTION_ALL;
++
++		hcd->non_periodic_channels++;
++	}
++
++	return ret_val;
++}
++
++/**
++ * Attempts to queue a single transaction request for a host channel
++ * associated with either a periodic or non-periodic transfer. This function
++ * assumes that there is space available in the appropriate request queue. For
++ * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
++ * is available in the appropriate Tx FIFO.
++ *
++ * @hcd: The HCD state structure.
++ * @_hc: Host channel descriptor associated with either a periodic or
++ * non-periodic transfer.
++ * @_fifo_dwords_avail: Number of DWORDs available in the periodic Tx
++ * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
++ * transfers.
++ *
++ * Returns 1 if a request is queued and more requests may be needed to
++ * complete the transfer, 0 if no more requests are required for this
++ * transfer, -1 if there is insufficient space in the Tx FIFO.
++ */
++static int queue_transaction(struct dwc_otg_hcd *hcd,
++			     struct dwc_hc *_hc, uint16_t _fifo_dwords_avail)
++{
++	int retval;
++
++	if (hcd->core_if->dma_enable) {
++		if (!_hc->xfer_started) {
++			dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++			_hc->qh->ping_state = 0;
++		}
++		retval = 0;
++	} else if (_hc->halt_pending) {
++		/* Don't queue a request if the channel has been halted. */
++		retval = 0;
++	} else if (_hc->halt_on_queue) {
++		dwc_otg_hc_halt(hcd->core_if, _hc, _hc->halt_status);
++		retval = 0;
++	} else if (_hc->do_ping) {
++		if (!_hc->xfer_started)
++			dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++		retval = 0;
++	} else if (!_hc->ep_is_in ||
++		   _hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
++		if ((_fifo_dwords_avail * 4) >= _hc->max_packet) {
++			if (!_hc->xfer_started) {
++				dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++				retval = 1;
++			} else {
++				retval =
++				    dwc_otg_hc_continue_transfer(hcd->core_if,
++								 _hc);
++			}
++		} else {
++			retval = -1;
++		}
++	} else {
++		if (!_hc->xfer_started) {
++			dwc_otg_hc_start_transfer(hcd->core_if, _hc);
++			retval = 1;
++		} else {
++			retval =
++			    dwc_otg_hc_continue_transfer(hcd->core_if, _hc);
++		}
++	}
++
++	return retval;
++}
++
++/**
++ * Processes active non-periodic channels and queues transactions for these
++ * channels to the DWC_otg controller. After queueing transactions, the NP Tx
++ * FIFO Empty interrupt is enabled if there are more transactions to queue as
++ * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
++ * FIFO Empty interrupt is disabled.
++ */
++static void process_non_periodic_channels(struct dwc_otg_hcd *hcd)
++{
++	union gnptxsts_data tx_status;
++	struct list_head *orig_qh_ptr;
++	struct dwc_otg_qh *qh;
++	int status;
++	int no_queue_space = 0;
++	int no_fifo_space = 0;
++	int more_to_do = 0;
++
++	struct dwc_otg_core_global_regs *global_regs =
++	    hcd->core_if->core_global_regs;
++
++	DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
++#ifdef DEBUG
++	tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++	DWC_DEBUGPL(DBG_HCDV,
++		    "  NP Tx Req Queue Space Avail (before queue): %d\n",
++		    tx_status.b.nptxqspcavail);
++	DWC_DEBUGPL(DBG_HCDV, "  NP Tx FIFO Space Avail (before queue): %d\n",
++		    tx_status.b.nptxfspcavail);
++#endif
++	/*
++	 * Keep track of the starting point. Skip over the start-of-list
++	 * entry.
++	 */
++	if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active)
++		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++
++	orig_qh_ptr = hcd->non_periodic_qh_ptr;
++
++	/*
++	 * Process once through the active list or until no more space is
++	 * available in the request queue or the Tx FIFO.
++	 */
++	do {
++		tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++		if (!hcd->core_if->dma_enable
++		    && tx_status.b.nptxqspcavail == 0) {
++			no_queue_space = 1;
++			break;
++		}
++
++		qh = list_entry(hcd->non_periodic_qh_ptr, struct dwc_otg_qh,
++				qh_list_entry);
++		status =
++		    queue_transaction(hcd, qh->channel,
++				      tx_status.b.nptxfspcavail);
++
++		if (status > 0) {
++			more_to_do = 1;
++		} else if (status < 0) {
++			no_fifo_space = 1;
++			break;
++		}
++
++		/* Advance to next QH, skipping start-of-list entry. */
++		hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
++		if (hcd->non_periodic_qh_ptr ==
++		    &hcd->non_periodic_sched_active) {
++			hcd->non_periodic_qh_ptr =
++			    hcd->non_periodic_qh_ptr->next;
++		}
++
++	} while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
++
++	if (!hcd->core_if->dma_enable) {
++		union gintmsk_data intr_mask = {.d32 = 0 };
++		intr_mask.b.nptxfempty = 1;
++
++#ifdef DEBUG
++		tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
++		DWC_DEBUGPL(DBG_HCDV,
++			    "  NP Tx Req Queue Space Avail (after queue): %d\n",
++			    tx_status.b.nptxqspcavail);
++		DWC_DEBUGPL(DBG_HCDV,
++			    "  NP Tx FIFO Space Avail (after queue): %d\n",
++			    tx_status.b.nptxfspcavail);
++#endif
++		if (no_queue_space || no_fifo_space) {
++			/*
++			 * May need to queue more transactions as the request
++			 * queue or Tx FIFO empties. Enable the non-periodic
++			 * Tx FIFO empty interrupt. (Always use the half-empty
++			 * level to ensure that new requests are loaded as
++			 * soon as possible.)
++			 */
++			dwc_modify_reg32(&global_regs->gintmsk, 0,
++					 intr_mask.d32);
++		} else {
++			/*
++			 * Disable the Tx FIFO empty interrupt since there are
++			 * no more transactions that need to be queued right
++			 * now. This function is called from interrupt
++			 * handlers to queue more transactions as transfer
++			 * states change.
++			 */
++			dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32,
++					 0);
++			if (more_to_do) {
++				/* When not using DMA, many USB
++				 * devices cause excessive loads on
++				 * the serial bus simply because they
++				 * continuously poll the device for
++				 * status. Here we use the timer to
++				 * rate limit how fast we can get the
++				 * the NP TX fifo empty interrupt. We
++				 * leave the interrupt disable until
++				 * the timer fires and reenables it */
++
++				/* We'll rate limit the interrupt at
++				 * 20000 per second. Making this
++				 * faster improves USB performance but
++				 * uses more CPU */
++				hrtimer_start_range_ns(&hcd->poll_rate_limit,
++						       ktime_set(0, 50000),
++						       5000, HRTIMER_MODE_REL);
++			}
++		}
++	}
++}
++
++/**
++ * Processes periodic channels for the next frame and queues transactions for
++ * these channels to the DWC_otg controller. After queueing transactions, the
++ * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
++ * to queue as Periodic Tx FIFO or request queue space becomes available.
++ * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
++ */
++static void process_periodic_channels(struct dwc_otg_hcd *hcd)
++{
++	union hptxsts_data tx_status;
++	struct list_head *qh_ptr;
++	struct dwc_otg_qh *qh;
++	int status;
++	int no_queue_space = 0;
++	int no_fifo_space = 0;
++
++	struct dwc_otg_host_global_regs *host_regs;
++	host_regs = hcd->core_if->host_if->host_global_regs;
++
++	DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
++#ifdef DEBUG
++	tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++	DWC_DEBUGPL(DBG_HCDV,
++		    "  P Tx Req Queue Space Avail (before queue): %d\n",
++		    tx_status.b.ptxqspcavail);
++	DWC_DEBUGPL(DBG_HCDV, "  P Tx FIFO Space Avail (before queue): %d\n",
++		    tx_status.b.ptxfspcavail);
++#endif
++
++	qh_ptr = hcd->periodic_sched_assigned.next;
++	while (qh_ptr != &hcd->periodic_sched_assigned) {
++		tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++		if (tx_status.b.ptxqspcavail == 0) {
++			no_queue_space = 1;
++			break;
++		}
++
++		qh = list_entry(qh_ptr, struct dwc_otg_qh, qh_list_entry);
++
++		/*
++		 * Set a flag if we're queuing high-bandwidth in slave mode.
++		 * The flag prevents any halts to get into the request queue in
++		 * the middle of multiple high-bandwidth packets getting queued.
++		 */
++		if ((!hcd->core_if->dma_enable) &&
++		    (qh->channel->multi_count > 1)) {
++			hcd->core_if->queuing_high_bandwidth = 1;
++		}
++
++		status =
++		    queue_transaction(hcd, qh->channel,
++				      tx_status.b.ptxfspcavail);
++		if (status < 0) {
++			no_fifo_space = 1;
++			break;
++		}
++
++		/*
++		 * In Slave mode, stay on the current transfer until there is
++		 * nothing more to do or the high-bandwidth request count is
++		 * reached. In DMA mode, only need to queue one request. The
++		 * controller automatically handles multiple packets for
++		 * high-bandwidth transfers.
++		 */
++		if (hcd->core_if->dma_enable ||
++		    (status == 0 ||
++		     qh->channel->requests == qh->channel->multi_count)) {
++			qh_ptr = qh_ptr->next;
++			/*
++			 * Move the QH from the periodic assigned schedule to
++			 * the periodic queued schedule.
++			 */
++			list_move(&qh->qh_list_entry,
++				  &hcd->periodic_sched_queued);
++
++			/* done queuing high bandwidth */
++			hcd->core_if->queuing_high_bandwidth = 0;
++		}
++	}
++
++	if (!hcd->core_if->dma_enable) {
++		struct dwc_otg_core_global_regs *global_regs;
++		union gintmsk_data intr_mask = {.d32 = 0 };
++
++		global_regs = hcd->core_if->core_global_regs;
++		intr_mask.b.ptxfempty = 1;
++#ifdef DEBUG
++		tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
++		DWC_DEBUGPL(DBG_HCDV,
++			    "  P Tx Req Queue Space Avail (after queue): %d\n",
++			    tx_status.b.ptxqspcavail);
++		DWC_DEBUGPL(DBG_HCDV,
++			    "  P Tx FIFO Space Avail (after queue): %d\n",
++			    tx_status.b.ptxfspcavail);
++#endif
++		if (!(list_empty(&hcd->periodic_sched_assigned)) ||
++		    no_queue_space || no_fifo_space) {
++			/*
++			 * May need to queue more transactions as the request
++			 * queue or Tx FIFO empties. Enable the periodic Tx
++			 * FIFO empty interrupt. (Always use the half-empty
++			 * level to ensure that new requests are loaded as
++			 * soon as possible.)
++			 */
++			dwc_modify_reg32(&global_regs->gintmsk, 0,
++					 intr_mask.d32);
++		} else {
++			/*
++			 * Disable the Tx FIFO empty interrupt since there are
++			 * no more transactions that need to be queued right
++			 * now. This function is called from interrupt
++			 * handlers to queue more transactions as transfer
++			 * states change.
++			 */
++			dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32,
++					 0);
++		}
++	}
++}
++
++/**
++ * This function processes the currently active host channels and queues
++ * transactions for these channels to the DWC_otg controller. It is called
++ * from HCD interrupt handler functions.
++ *
++ * @hcd: The HCD state structure.
++ * @_tr_type: The type(s) of transactions to queue (non-periodic,
++ * periodic, or both).
++ */
++void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd,
++				    enum dwc_otg_transaction_type _tr_type)
++{
++#ifdef DEBUG_SOF
++	DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
++#endif
++	/* Process host channels associated with periodic transfers. */
++	if ((_tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
++	     _tr_type == DWC_OTG_TRANSACTION_ALL) &&
++	    !list_empty(&hcd->periodic_sched_assigned)) {
++
++		process_periodic_channels(hcd);
++	}
++
++	/* Process host channels associated with non-periodic transfers. */
++	if ((_tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
++	     _tr_type == DWC_OTG_TRANSACTION_ALL)) {
++		if (!list_empty(&hcd->non_periodic_sched_active)) {
++			process_non_periodic_channels(hcd);
++		} else {
++			/*
++			 * Ensure NP Tx FIFO empty interrupt is disabled when
++			 * there are no non-periodic transfers to process.
++			 */
++			union gintmsk_data gintmsk = {.d32 = 0 };
++			gintmsk.b.nptxfempty = 1;
++			dwc_modify_reg32(&hcd->core_if->core_global_regs->
++					 gintmsk, gintmsk.d32, 0);
++		}
++	}
++}
++
++/**
++ * Sets the final status of an URB and returns it to the device driver. Any
++ * required cleanup of the URB is performed.
++ */
++void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb,
++			      int status)
++{
++#ifdef DEBUG
++	if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
++		DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
++			  __func__, urb, usb_pipedevice(urb->pipe),
++			  usb_pipeendpoint(urb->pipe),
++			  usb_pipein(urb->pipe) ? "IN" : "OUT", status);
++		if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
++			int i;
++			for (i = 0; i < urb->number_of_packets; i++) {
++				DWC_PRINT("  ISO Desc %d status: %d\n",
++					  i, urb->iso_frame_desc[i].status);
++			}
++		}
++	}
++#endif
++
++	urb->status = status;
++	urb->hcpriv = NULL;
++
++	usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
++}
++
++/*
++ * Returns the Queue Head for an URB.
++ */
++struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb)
++{
++	struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
++	return ep->hcpriv;
++}
++
++#ifdef DEBUG
++void dwc_print_setup_data(uint8_t *setup)
++{
++	int i;
++	if (CHK_DEBUG_LEVEL(DBG_HCD)) {
++		DWC_PRINT("Setup Data = MSB ");
++		for (i = 7; i >= 0; i--)
++			DWC_PRINT("%02x ", setup[i]);
++		DWC_PRINT("\n");
++		DWC_PRINT("  bmRequestType Tranfer = %s\n",
++			  (setup[0] & 0x80) ? "Device-to-Host" :
++			  "Host-to-Device");
++		DWC_PRINT("  bmRequestType Type = ");
++		switch ((setup[0] & 0x60) >> 5) {
++		case 0:
++			DWC_PRINT("Standard\n");
++			break;
++		case 1:
++			DWC_PRINT("Class\n");
++			break;
++		case 2:
++			DWC_PRINT("Vendor\n");
++			break;
++		case 3:
++			DWC_PRINT("Reserved\n");
++			break;
++		}
++		DWC_PRINT("  bmRequestType Recipient = ");
++		switch (setup[0] & 0x1f) {
++		case 0:
++			DWC_PRINT("Device\n");
++			break;
++		case 1:
++			DWC_PRINT("Interface\n");
++			break;
++		case 2:
++			DWC_PRINT("Endpoint\n");
++			break;
++		case 3:
++			DWC_PRINT("Other\n");
++			break;
++		default:
++			DWC_PRINT("Reserved\n");
++			break;
++		}
++		DWC_PRINT("  bRequest = 0x%0x\n", setup[1]);
++		DWC_PRINT("  wValue = 0x%0x\n", *((uint16_t *) &setup[2]));
++		DWC_PRINT("  wIndex = 0x%0x\n", *((uint16_t *) &setup[4]));
++		DWC_PRINT("  wLength = 0x%0x\n\n", *((uint16_t *) &setup[6]));
++	}
++}
++#endif
++
++void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd)
++{
++#ifdef DEBUG
++	DWC_PRINT("Frame remaining at SOF:\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->frrem_samples, hcd->frrem_accum,
++		  (hcd->frrem_samples > 0) ?
++		  hcd->frrem_accum / hcd->frrem_samples : 0);
++
++	DWC_PRINT("\n");
++	DWC_PRINT("Frame remaining at start_transfer (uframe 7):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->core_if->hfnum_7_samples,
++		  hcd->core_if->hfnum_7_frrem_accum,
++		  (hcd->core_if->hfnum_7_samples >
++		   0) ? hcd->core_if->hfnum_7_frrem_accum /
++		  hcd->core_if->hfnum_7_samples : 0);
++	DWC_PRINT("Frame remaining at start_transfer (uframe 0):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->core_if->hfnum_0_samples,
++		  hcd->core_if->hfnum_0_frrem_accum,
++		  (hcd->core_if->hfnum_0_samples >
++		   0) ? hcd->core_if->hfnum_0_frrem_accum /
++		  hcd->core_if->hfnum_0_samples : 0);
++	DWC_PRINT("Frame remaining at start_transfer (uframe 1-6):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->core_if->hfnum_other_samples,
++		  hcd->core_if->hfnum_other_frrem_accum,
++		  (hcd->core_if->hfnum_other_samples >
++		   0) ? hcd->core_if->hfnum_other_frrem_accum /
++		  hcd->core_if->hfnum_other_samples : 0);
++
++	DWC_PRINT("\n");
++	DWC_PRINT("Frame remaining at sample point A (uframe 7):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->hfnum_7_samples_a, hcd->hfnum_7_frrem_accum_a,
++		  (hcd->hfnum_7_samples_a > 0) ?
++		  hcd->hfnum_7_frrem_accum_a / hcd->hfnum_7_samples_a : 0);
++	DWC_PRINT("Frame remaining at sample point A (uframe 0):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->hfnum_0_samples_a, hcd->hfnum_0_frrem_accum_a,
++		  (hcd->hfnum_0_samples_a > 0) ?
++		  hcd->hfnum_0_frrem_accum_a / hcd->hfnum_0_samples_a : 0);
++	DWC_PRINT("Frame remaining at sample point A (uframe 1-6):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->hfnum_other_samples_a, hcd->hfnum_other_frrem_accum_a,
++		  (hcd->hfnum_other_samples_a > 0) ?
++		  hcd->hfnum_other_frrem_accum_a /
++		  hcd->hfnum_other_samples_a : 0);
++
++	DWC_PRINT("\n");
++	DWC_PRINT("Frame remaining at sample point B (uframe 7):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->hfnum_7_samples_b, hcd->hfnum_7_frrem_accum_b,
++		  (hcd->hfnum_7_samples_b > 0) ?
++		  hcd->hfnum_7_frrem_accum_b / hcd->hfnum_7_samples_b : 0);
++	DWC_PRINT("Frame remaining at sample point B (uframe 0):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->hfnum_0_samples_b, hcd->hfnum_0_frrem_accum_b,
++		  (hcd->hfnum_0_samples_b > 0) ?
++		  hcd->hfnum_0_frrem_accum_b / hcd->hfnum_0_samples_b : 0);
++	DWC_PRINT("Frame remaining at sample point B (uframe 1-6):\n");
++	DWC_PRINT("  samples %u, accum %lu, avg %lu\n",
++		  hcd->hfnum_other_samples_b, hcd->hfnum_other_frrem_accum_b,
++		  (hcd->hfnum_other_samples_b > 0) ?
++		  hcd->hfnum_other_frrem_accum_b /
++		  hcd->hfnum_other_samples_b : 0);
++#endif
++}
++
++void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd)
++{
++#ifdef DEBUG
++	int num_channels;
++	int i;
++	union gnptxsts_data np_tx_status;
++	union hptxsts_data p_tx_status;
++
++	num_channels = hcd->core_if->core_params->host_channels;
++	DWC_PRINT("\n");
++	DWC_PRINT
++	    ("************************************************************\n");
++	DWC_PRINT("HCD State:\n");
++	DWC_PRINT("  Num channels: %d\n", num_channels);
++	for (i = 0; i < num_channels; i++) {
++		struct dwc_hc *hc = hcd->hc_ptr_array[i];
++		DWC_PRINT("  Channel %d:\n", i);
++		DWC_PRINT("    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
++			  hc->dev_addr, hc->ep_num, hc->ep_is_in);
++		DWC_PRINT("    speed: %d\n", hc->speed);
++		DWC_PRINT("    ep_type: %d\n", hc->ep_type);
++		DWC_PRINT("    max_packet: %d\n", hc->max_packet);
++		DWC_PRINT("    data_pid_start: %d\n", hc->data_pid_start);
++		DWC_PRINT("    multi_count: %d\n", hc->multi_count);
++		DWC_PRINT("    xfer_started: %d\n", hc->xfer_started);
++		DWC_PRINT("    xfer_buff: %p\n", hc->xfer_buff);
++		DWC_PRINT("    xfer_len: %d\n", hc->xfer_len);
++		DWC_PRINT("    xfer_count: %d\n", hc->xfer_count);
++		DWC_PRINT("    halt_on_queue: %d\n", hc->halt_on_queue);
++		DWC_PRINT("    halt_pending: %d\n", hc->halt_pending);
++		DWC_PRINT("    halt_status: %d\n", hc->halt_status);
++		DWC_PRINT("    do_split: %d\n", hc->do_split);
++		DWC_PRINT("    complete_split: %d\n", hc->complete_split);
++		DWC_PRINT("    hub_addr: %d\n", hc->hub_addr);
++		DWC_PRINT("    port_addr: %d\n", hc->port_addr);
++		DWC_PRINT("    xact_pos: %d\n", hc->xact_pos);
++		DWC_PRINT("    requests: %d\n", hc->requests);
++		DWC_PRINT("    qh: %p\n", hc->qh);
++		if (hc->xfer_started) {
++			union hfnum_data hfnum;
++			union hcchar_data hcchar;
++			union hctsiz_data hctsiz;
++			union hcint_data hcint;
++			union hcintmsk_data hcintmsk;
++			hfnum.d32 =
++			    dwc_read_reg32(&hcd->core_if->host_if->
++					   host_global_regs->hfnum);
++			hcchar.d32 =
++			    dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++					   hcchar);
++			hctsiz.d32 =
++			    dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++					   hctsiz);
++			hcint.d32 =
++			    dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++					   hcint);
++			hcintmsk.d32 =
++			    dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->
++					   hcintmsk);
++			DWC_PRINT("    hfnum: 0x%08x\n", hfnum.d32);
++			DWC_PRINT("    hcchar: 0x%08x\n", hcchar.d32);
++			DWC_PRINT("    hctsiz: 0x%08x\n", hctsiz.d32);
++			DWC_PRINT("    hcint: 0x%08x\n", hcint.d32);
++			DWC_PRINT("    hcintmsk: 0x%08x\n", hcintmsk.d32);
++		}
++		if (hc->xfer_started && (hc->qh != NULL)
++		    && (hc->qh->qtd_in_process != NULL)) {
++			struct dwc_otg_qtd *qtd;
++			struct urb *urb;
++			qtd = hc->qh->qtd_in_process;
++			urb = qtd->urb;
++			DWC_PRINT("    URB Info:\n");
++			DWC_PRINT("      qtd: %p, urb: %p\n", qtd, urb);
++			if (urb != NULL) {
++				DWC_PRINT("      Dev: %d, EP: %d %s\n",
++					  usb_pipedevice(urb->pipe),
++					  usb_pipeendpoint(urb->pipe),
++					  usb_pipein(urb->pipe) ? "IN" : "OUT");
++				DWC_PRINT("      Max packet size: %d\n",
++					  usb_maxpacket(urb->dev, urb->pipe,
++							usb_pipeout(urb->
++								    pipe)));
++				DWC_PRINT("      transfer_buffer: %p\n",
++					  urb->transfer_buffer);
++				DWC_PRINT("      transfer_dma: %p\n",
++					  (void *)urb->transfer_dma);
++				DWC_PRINT("      transfer_buffer_length: %d\n",
++					  urb->transfer_buffer_length);
++				DWC_PRINT("      actual_length: %d\n",
++					  urb->actual_length);
++			}
++		}
++	}
++	DWC_PRINT("  non_periodic_channels: %d\n", hcd->non_periodic_channels);
++	DWC_PRINT("  periodic_channels: %d\n", hcd->periodic_channels);
++	DWC_PRINT("  periodic_usecs: %d\n", hcd->periodic_usecs);
++	np_tx_status.d32 =
++	    dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
++	DWC_PRINT("  NP Tx Req Queue Space Avail: %d\n",
++		  np_tx_status.b.nptxqspcavail);
++	DWC_PRINT("  NP Tx FIFO Space Avail: %d\n",
++		  np_tx_status.b.nptxfspcavail);
++	p_tx_status.d32 =
++	    dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
++	DWC_PRINT("  P Tx Req Queue Space Avail: %d\n",
++		  p_tx_status.b.ptxqspcavail);
++	DWC_PRINT("  P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
++	dwc_otg_hcd_dump_frrem(hcd);
++	dwc_otg_dump_global_registers(hcd->core_if);
++	dwc_otg_dump_host_registers(hcd->core_if);
++	DWC_PRINT
++	    ("************************************************************\n");
++	DWC_PRINT("\n");
++#endif
++}
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd.h b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h
+new file mode 100644
+index 0000000..6dcf1f5
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd.h
+@@ -0,0 +1,661 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++#if !defined(__DWC_HCD_H__)
++#define __DWC_HCD_H__
++
++#include <linux/list.h>
++#include <linux/usb.h>
++#include <linux/hrtimer.h>
++
++#include <../drivers/usb/core/hcd.h>
++
++struct dwc_otg_device;
++
++#include "dwc_otg_cil.h"
++
++/**
++ *
++ * This file contains the structures, constants, and interfaces for
++ * the Host Contoller Driver (HCD).
++ *
++ * The Host Controller Driver (HCD) is responsible for translating requests
++ * from the USB Driver into the appropriate actions on the DWC_otg controller.
++ * It isolates the USBD from the specifics of the controller by providing an
++ * API to the USBD.
++ */
++
++/**
++ * Phases for control transfers.
++ */
++enum dwc_otg_control_phase {
++	DWC_OTG_CONTROL_SETUP,
++	DWC_OTG_CONTROL_DATA,
++	DWC_OTG_CONTROL_STATUS
++};
++
++/** Transaction types. */
++enum dwc_otg_transaction_type {
++	DWC_OTG_TRANSACTION_NONE,
++	DWC_OTG_TRANSACTION_PERIODIC,
++	DWC_OTG_TRANSACTION_NON_PERIODIC,
++	DWC_OTG_TRANSACTION_ALL
++};
++
++struct dwc_otg_qh;
++
++/*
++ * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
++ * interrupt, or isochronous transfer. A single QTD is created for each URB
++ * (of one of these types) submitted to the HCD. The transfer associated with
++ * a QTD may require one or multiple transactions.
++ *
++ * A QTD is linked to a Queue Head, which is entered in either the
++ * non-periodic or periodic schedule for execution. When a QTD is chosen for
++ * execution, some or all of its transactions may be executed. After
++ * execution, the state of the QTD is updated. The QTD may be retired if all
++ * its transactions are complete or if an error occurred. Otherwise, it
++ * remains in the schedule so more transactions can be executed later.
++ */
++struct dwc_otg_qtd {
++	/*
++	 * Determines the PID of the next data packet for the data phase of
++	 * control transfers. Ignored for other transfer types.<br>
++	 * One of the following values:
++	 *	- DWC_OTG_HC_PID_DATA0
++	 *	- DWC_OTG_HC_PID_DATA1
++	 */
++	uint8_t data_toggle;
++
++	/** Current phase for control transfers (Setup, Data, or Status). */
++	enum dwc_otg_control_phase control_phase;
++
++	/** Keep track of the current split type
++	 * for FS/LS endpoints on a HS Hub */
++	uint8_t complete_split;
++
++	/** How many bytes transferred during SSPLIT OUT */
++	uint32_t ssplit_out_xfer_count;
++
++	/**
++	 * Holds the number of bus errors that have occurred for a transaction
++	 * within this transfer.
++	 */
++	uint8_t error_count;
++
++	/**
++	 * Index of the next frame descriptor for an isochronous transfer. A
++	 * frame descriptor describes the buffer position and length of the
++	 * data to be transferred in the next scheduled (micro)frame of an
++	 * isochronous transfer. It also holds status for that transaction.
++	 * The frame index starts at 0.
++	 */
++	int isoc_frame_index;
++
++	/** Position of the ISOC split on full/low speed */
++	uint8_t isoc_split_pos;
++
++	/** Position of the ISOC split in the buffer for the current frame */
++	uint16_t isoc_split_offset;
++
++	/** URB for this transfer */
++	struct urb *urb;
++
++	/* The queue head for this transfer. */
++	struct dwc_otg_qh *qh;
++
++	/** This list of QTDs */
++	struct list_head qtd_list_entry;
++
++};
++
++/**
++ * A Queue Head (QH) holds the static characteristics of an endpoint and
++ * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
++ * be entered in either the non-periodic or periodic schedule.
++ */
++struct dwc_otg_qh {
++	/**
++	 * Endpoint type.
++	 * One of the following values:
++	 * 	- USB_ENDPOINT_XFER_CONTROL
++	 *	- USB_ENDPOINT_XFER_ISOC
++	 *	- USB_ENDPOINT_XFER_BULK
++	 *	- USB_ENDPOINT_XFER_INT
++	 */
++	uint8_t ep_type;
++	uint8_t ep_is_in;
++
++	/** wMaxPacketSize Field of Endpoint Descriptor. */
++	uint16_t maxp;
++
++	/**
++	 * Determines the PID of the next data packet for non-control
++	 * transfers. Ignored for control transfers.<br>
++	 * One of the following values:
++	 *	- DWC_OTG_HC_PID_DATA0
++	 * 	- DWC_OTG_HC_PID_DATA1
++	 */
++	uint8_t data_toggle;
++
++	/** Ping state if 1. */
++	uint8_t ping_state;
++
++	/**
++	 * List of QTDs for this QH.
++	 */
++	struct list_head qtd_list;
++
++	/** Host channel currently processing transfers for this QH. */
++	struct dwc_hc *channel;
++
++	/** QTD currently assigned to a host channel for this QH. */
++	struct dwc_otg_qtd *qtd_in_process;
++
++	/** Full/low speed endpoint on high-speed hub requires split. */
++	uint8_t do_split;
++
++	/** @name Periodic schedule information */
++	/** @{ */
++
++	/** Bandwidth in microseconds per (micro)frame. */
++	uint8_t usecs;
++
++	/** Interval between transfers in (micro)frames. */
++	uint16_t interval;
++
++	/**
++	 * (micro)frame to initialize a periodic transfer. The transfer
++	 * executes in the following (micro)frame.
++	 */
++	uint16_t sched_frame;
++
++	/** (micro)frame at which last start split was initialized. */
++	uint16_t start_split_frame;
++
++	/** @} */
++
++	/** Entry for QH in either the periodic or non-periodic schedule. */
++	struct list_head qh_list_entry;
++};
++
++/**
++ * This structure holds the state of the HCD, including the non-periodic and
++ * periodic schedules.
++ */
++struct dwc_otg_hcd {
++
++	/** DWC OTG Core Interface Layer */
++	struct dwc_otg_core_if *core_if;
++
++	/** Internal DWC HCD Flags */
++	union dwc_otg_hcd_internal_flags {
++		uint32_t d32;
++		struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++			unsigned reserved:26;
++			unsigned port_over_current_change:1;
++			unsigned port_suspend_change:1;
++			unsigned port_enable_change:1;
++			unsigned port_reset_change:1;
++			unsigned port_connect_status:1;
++			unsigned port_connect_status_change:1;
++#else
++			unsigned port_connect_status_change:1;
++			unsigned port_connect_status:1;
++			unsigned port_reset_change:1;
++			unsigned port_enable_change:1;
++			unsigned port_suspend_change:1;
++			unsigned port_over_current_change:1;
++			unsigned reserved:26;
++#endif
++		} b;
++	} flags;
++
++	/**
++	 * Inactive items in the non-periodic schedule. This is a list of
++	 * Queue Heads. Transfers associated with these Queue Heads are not
++	 * currently assigned to a host channel.
++	 */
++	struct list_head non_periodic_sched_inactive;
++
++	/**
++	 * Active items in the non-periodic schedule. This is a list of
++	 * Queue Heads. Transfers associated with these Queue Heads are
++	 * currently assigned to a host channel.
++	 */
++	struct list_head non_periodic_sched_active;
++
++	/**
++	 * Pointer to the next Queue Head to process in the active
++	 * non-periodic schedule.
++	 */
++	struct list_head *non_periodic_qh_ptr;
++
++	/**
++	 * Inactive items in the periodic schedule. This is a list of QHs for
++	 * periodic transfers that are _not_ scheduled for the next frame.
++	 * Each QH in the list has an interval counter that determines when it
++	 * needs to be scheduled for execution. This scheduling mechanism
++	 * allows only a simple calculation for periodic bandwidth used (i.e.
++	 * must assume that all periodic transfers may need to execute in the
++	 * same frame). However, it greatly simplifies scheduling and should
++	 * be sufficient for the vast majority of OTG hosts, which need to
++	 * connect to a small number of peripherals at one time.
++	 *
++	 * Items move from this list to periodic_sched_ready when the QH
++	 * interval counter is 0 at SOF.
++	 */
++	struct list_head periodic_sched_inactive;
++
++	/**
++	 * List of periodic QHs that are ready for execution in the next
++	 * frame, but have not yet been assigned to host channels.
++	 *
++	 * Items move from this list to periodic_sched_assigned as host
++	 * channels become available during the current frame.
++	 */
++	struct list_head periodic_sched_ready;
++
++	/**
++	 * List of periodic QHs to be executed in the next frame that are
++	 * assigned to host channels.
++	 *
++	 * Items move from this list to periodic_sched_queued as the
++	 * transactions for the QH are queued to the DWC_otg controller.
++	 */
++	struct list_head periodic_sched_assigned;
++
++	/**
++	 * List of periodic QHs that have been queued for execution.
++	 *
++	 * Items move from this list to either periodic_sched_inactive or
++	 * periodic_sched_ready when the channel associated with the transfer
++	 * is released. If the interval for the QH is 1, the item moves to
++	 * periodic_sched_ready because it must be rescheduled for the next
++	 * frame. Otherwise, the item moves to periodic_sched_inactive.
++	 */
++	struct list_head periodic_sched_queued;
++
++	/**
++	 * Total bandwidth claimed so far for periodic transfers. This value
++	 * is in microseconds per (micro)frame. The assumption is that all
++	 * periodic transfers may occur in the same (micro)frame.
++	 */
++	uint16_t periodic_usecs;
++
++	/**
++	 * Frame number read from the core at SOF. The value ranges from 0 to
++	 * DWC_HFNUM_MAX_FRNUM.
++	 */
++	uint16_t frame_number;
++
++	/**
++	 * Free host channels in the controller. This is a list of
++	 * struct dwc_hc items.
++	 */
++	struct list_head free_hc_list;
++
++	/**
++	 * Number of host channels assigned to periodic transfers. Currently
++	 * assuming that there is a dedicated host channel for each periodic
++	 * transaction and at least one host channel available for
++	 * non-periodic transactions.
++	 */
++	int periodic_channels;
++
++	/**
++	 * Number of host channels assigned to non-periodic transfers.
++	 */
++	int non_periodic_channels;
++
++	/**
++	 * Array of pointers to the host channel descriptors. Allows accessing
++	 * a host channel descriptor given the host channel number. This is
++	 * useful in interrupt handlers.
++	 */
++	struct dwc_hc *hc_ptr_array[MAX_EPS_CHANNELS];
++
++	/**
++	 * Buffer to use for any data received during the status phase of a
++	 * control transfer. Normally no data is transferred during the status
++	 * phase. This buffer is used as a bit bucket.
++	 */
++	uint8_t *status_buf;
++
++	/**
++	 * DMA address for status_buf.
++	 */
++	dma_addr_t status_buf_dma;
++#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
++
++	/**
++	 * Structure to allow starting the HCD in a non-interrupt context
++	 * during an OTG role change.
++	 */
++	struct work_struct start_work;
++
++	/**
++	 * Connection timer. An OTG host must display a message if the device
++	 * does not connect. Started when the VBus power is turned on via
++	 * sysfs attribute "buspower".
++	 */
++	struct timer_list conn_timer;
++
++	/* Tasket to do a reset */
++	struct tasklet_struct *reset_tasklet;
++
++	struct hrtimer poll_rate_limit;
++
++	spinlock_t global_lock;
++
++#ifdef DEBUG
++	uint32_t frrem_samples;
++	uint64_t frrem_accum;
++
++	uint32_t hfnum_7_samples_a;
++	uint64_t hfnum_7_frrem_accum_a;
++	uint32_t hfnum_0_samples_a;
++	uint64_t hfnum_0_frrem_accum_a;
++	uint32_t hfnum_other_samples_a;
++	uint64_t hfnum_other_frrem_accum_a;
++
++	uint32_t hfnum_7_samples_b;
++	uint64_t hfnum_7_frrem_accum_b;
++	uint32_t hfnum_0_samples_b;
++	uint64_t hfnum_0_frrem_accum_b;
++	uint32_t hfnum_other_samples_b;
++	uint64_t hfnum_other_frrem_accum_b;
++#endif
++
++};
++
++/** Gets the dwc_otg_hcd from a struct usb_hcd */
++static inline struct dwc_otg_hcd *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
++{
++	return (struct dwc_otg_hcd *)(hcd->hcd_priv);
++}
++
++/** Gets the struct usb_hcd that contains a struct dwc_otg_hcd. */
++static inline struct usb_hcd *dwc_otg_hcd_to_hcd(struct dwc_otg_hcd
++						 *dwc_otg_hcd)
++{
++	return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
++}
++
++/** @name HCD Create/Destroy Functions */
++/** @{ */
++extern int __init dwc_otg_hcd_init(struct device *_dev);
++extern void dwc_otg_hcd_remove(struct device *_dev);
++/** @} */
++
++/** @name Linux HC Driver API Functions */
++
++extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
++extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
++				   struct urb *urb, unsigned mem_flags);
++extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
++				   struct urb *urb, int status);
++extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
++					 struct usb_host_endpoint *ep);
++extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
++extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf);
++extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
++				   u16 typeReq,
++				   u16 wValue,
++				   u16 wIndex, char *buf, u16 wLength);
++
++
++/** @name Transaction Execution Functions */
++extern enum dwc_otg_transaction_type dwc_otg_hcd_select_transactions(struct
++								  dwc_otg_hcd
++								  *hcd);
++extern void dwc_otg_hcd_queue_transactions(struct dwc_otg_hcd *hcd,
++					   enum dwc_otg_transaction_type tr_type);
++extern void dwc_otg_hcd_complete_urb(struct dwc_otg_hcd *hcd, struct urb *urb,
++				     int status);
++
++/** @name Interrupt Handler Functions */
++extern int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd
++							 *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd
++							*dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd
++							   *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(struct dwc_otg_hcd
++							   *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(struct dwc_otg_hcd
++							     *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_disconnect_intr(struct dwc_otg_hcd
++						  *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd,
++					    uint32_t num);
++extern int32_t dwc_otg_hcd_handle_session_req_intr(struct dwc_otg_hcd
++						   *dwc_otg_hcd);
++extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(struct dwc_otg_hcd
++						       *dwc_otg_hcd);
++
++/** @name Schedule Queue Functions */
++
++/* Implemented in dwc_otg_hcd_queue.c */
++extern struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd,
++					   struct urb *urb);
++extern void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
++				struct urb *urb);
++extern void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh);
++extern int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh);
++extern void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh);
++extern void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd,
++				      struct dwc_otg_qh *qh, int sched_csplit);
++
++/** Remove and free a QH */
++static inline void dwc_otg_hcd_qh_remove_and_free(struct dwc_otg_hcd *hcd,
++						  struct dwc_otg_qh *qh)
++{
++	dwc_otg_hcd_qh_remove(hcd, qh);
++	dwc_otg_hcd_qh_free(qh);
++}
++
++/** Allocates memory for a QH structure.
++ * Returns Returns the memory allocate or NULL on error. */
++static inline struct dwc_otg_qh *dwc_otg_hcd_qh_alloc(void)
++{
++	return kmalloc(sizeof(struct dwc_otg_qh), GFP_ATOMIC);
++}
++
++extern struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb);
++extern void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb);
++extern int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd,
++			       struct dwc_otg_hcd *dwc_otg_hcd);
++
++/** Allocates memory for a QTD structure.
++ * Returns Returns the memory allocate or NULL on error. */
++static inline struct dwc_otg_qtd *dwc_otg_hcd_qtd_alloc(void)
++{
++	return kmalloc(sizeof(struct dwc_otg_qtd), GFP_ATOMIC);
++}
++
++/**
++ * Frees the memory for a QTD structure.  QTD should already be removed from
++ * list.
++ * @qtd: QTD to free.
++ */
++static inline void dwc_otg_hcd_qtd_free(struct dwc_otg_qtd *qtd)
++{
++	kfree(qtd);
++}
++
++/**
++ * Removes a QTD from list.
++ * @qtd: QTD to remove from list.
++ */
++static inline void dwc_otg_hcd_qtd_remove(struct dwc_otg_qtd *qtd)
++{
++	list_del(&qtd->qtd_list_entry);
++}
++
++/** Remove and free a QTD */
++static inline void dwc_otg_hcd_qtd_remove_and_free(struct dwc_otg_qtd *qtd)
++{
++	dwc_otg_hcd_qtd_remove(qtd);
++	dwc_otg_hcd_qtd_free(qtd);
++}
++
++/** @name Internal Functions */
++struct dwc_otg_qh *dwc_urb_to_qh(struct urb *urb);
++void dwc_otg_hcd_dump_frrem(struct dwc_otg_hcd *hcd);
++void dwc_otg_hcd_dump_state(struct dwc_otg_hcd *hcd);
++
++/** Gets the usb_host_endpoint associated with an URB. */
++static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
++{
++	struct usb_device *dev = urb->dev;
++	int ep_num = usb_pipeendpoint(urb->pipe);
++
++	if (usb_pipein(urb->pipe))
++		return dev->ep_in[ep_num];
++	else
++		return dev->ep_out[ep_num];
++}
++
++/*
++ * Gets the endpoint number from a bEndpointAddress argument. The endpoint is
++ * qualified with its direction (possible 32 endpoints per device).
++ */
++#define dwc_ep_addr_to_endpoint(_bEndpointAddress_)	\
++	((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) |		\
++		((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
++
++/** Gets the QH that contains the list_head */
++#define dwc_list_to_qh(_list_head_ptr_)					\
++	(container_of(_list_head_ptr_, struct dwc_otg_qh, qh_list_entry))
++
++/** Gets the QTD that contains the list_head */
++#define dwc_list_to_qtd(_list_head_ptr_)				\
++	(container_of(_list_head_ptr_, struct dwc_otg_qtd, qtd_list_entry))
++
++/** Check if QH is non-periodic  */
++#define dwc_qh_is_non_per(_qh_ptr_)					\
++	((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) ||		\
++		(_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
++
++/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
++#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
++
++/** Packet size for any kind of endpoint descriptor */
++#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
++
++/**
++ * Returns true if frame1 is less than or equal to frame2. The comparison is
++ * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
++ * frame number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
++{
++	return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
++	    (DWC_HFNUM_MAX_FRNUM >> 1);
++}
++
++/**
++ * Returns true if frame1 is greater than frame2. The comparison is done
++ * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
++ * number when the max frame number is reached.
++ */
++static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
++{
++	return (frame1 != frame2) &&
++		(((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
++			(DWC_HFNUM_MAX_FRNUM >> 1));
++}
++
++/**
++ * Increments frame by the amount specified by inc. The addition is done
++ * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
++ */
++static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
++{
++	return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
++}
++
++static inline uint16_t dwc_full_frame_num(uint16_t frame)
++{
++	return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
++}
++
++static inline uint16_t dwc_micro_frame_num(uint16_t frame)
++{
++	return frame & 0x7;
++}
++
++#ifdef DEBUG
++/**
++ * Macro to sample the remaining PHY clocks left in the current frame. This
++ * may be used during debugging to determine the average time it takes to
++ * execute sections of code. There are two possible sample points, "a" and
++ * "b", so the letter argument must be one of these values.
++ *
++ * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
++ * example, "cat /sys/devices/lm0/hcd_frrem".
++ */
++#define dwc_sample_frrem(_hcd, _qh, _letter) \
++{ \
++	union hfnum_data hfnum; \
++	struct dwc_otg_qtd *qtd; \
++	qtd = list_entry(_qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry); \
++	if (usb_pipeint(qtd->urb->pipe) && qh->start_split_frame != 0 && !qtd->complete_split) { \
++		hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
++		switch (hfnum.b.frnum & 0x7) { \
++		case 7: \
++			_hcd->hfnum_7_samples_##_letter++; \
++			_hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
++			break; \
++		case 0: \
++			_hcd->hfnum_0_samples_##_letter++; \
++			_hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
++			break; \
++		default: \
++			_hcd->hfnum_other_samples_##_letter++; \
++			_hcd->hfnum_other_frrem_accum_##_letter += \
++				hfnum.b.frrem;			   \
++			break; \
++		} \
++	} \
++}
++#else
++#define dwc_sample_frrem(hcd, qh, letter)
++#endif
++#endif
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
+new file mode 100644
+index 0000000..2c4266f
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_intr.c
+@@ -0,0 +1,1890 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++/*
++ * This file contains the implementation of the HCD Interrupt handlers.
++ */
++
++/* This function handles interrupts for the HCD. */
++int32_t dwc_otg_hcd_handle_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++	int retval = 0;
++
++	struct dwc_otg_core_if *core_if = dwc_otg_hcd->core_if;
++	union gintsts_data gintsts;
++#ifdef DEBUG
++	struct dwc_otg_core_global_regs *global_regs =
++		core_if->core_global_regs;
++#endif
++
++	/* Check if HOST Mode */
++	if (dwc_otg_is_host_mode(core_if)) {
++		gintsts.d32 = dwc_otg_read_core_intr(core_if);
++		if (!gintsts.d32)
++			return 0;
++#ifdef DEBUG
++		/* Don't print debug message in the interrupt handler on SOF */
++#  ifndef DEBUG_SOF
++		if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#  endif
++			DWC_DEBUGPL(DBG_HCD, "\n");
++#endif
++
++#ifdef DEBUG
++#  ifndef DEBUG_SOF
++		if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#  endif
++			DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected "
++				    "gintsts&gintmsk=0x%08x\n",
++				    gintsts.d32);
++#endif
++
++		if (gintsts.b.sofintr)
++			retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
++
++		if (gintsts.b.rxstsqlvl)
++			retval |=
++				dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
++
++		if (gintsts.b.nptxfempty)
++			retval |=
++				dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
++
++		if (gintsts.b.i2cintr)
++			;/** @todo Implement i2cintr handler. */
++
++		if (gintsts.b.portintr)
++			retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
++
++		if (gintsts.b.hcintr)
++			retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
++
++		if (gintsts.b.ptxfempty) {
++			retval |=
++			    dwc_otg_hcd_handle_perio_tx_fifo_empty_intr
++			    (dwc_otg_hcd);
++		}
++#ifdef DEBUG
++#  ifndef DEBUG_SOF
++		if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#  endif
++		{
++			DWC_DEBUGPL(DBG_HCD,
++				    "DWC OTG HCD Finished Servicing Interrupts\n");
++			DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
++				    dwc_read_reg32(&global_regs->gintsts));
++			DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
++				    dwc_read_reg32(&global_regs->gintmsk));
++		}
++#endif
++
++#ifdef DEBUG
++#  ifndef DEBUG_SOF
++		if (gintsts.d32 != DWC_SOF_INTR_MASK)
++#  endif
++			DWC_DEBUGPL(DBG_HCD, "\n");
++#endif
++
++	}
++
++	return retval;
++}
++
++#ifdef DWC_TRACK_MISSED_SOFS
++#warning Compiling code to track missed SOFs
++#define FRAME_NUM_ARRAY_SIZE 1000
++/**
++ * This function is for debug only.
++ */
++static inline void track_missed_sofs(uint16_t _curr_frame_number)
++{
++	static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
++	static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
++	static int frame_num_idx;
++	static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
++	static int dumped_frame_num_array;
++
++	if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
++		if ((((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) !=
++		     _curr_frame_number)) {
++			frame_num_array[frame_num_idx] = _curr_frame_number;
++			last_frame_num_array[frame_num_idx++] = last_frame_num;
++		}
++	} else if (!dumped_frame_num_array) {
++		int i;
++		printk(KERN_EMERG USB_DWC "Frame     Last Frame\n");
++		printk(KERN_EMERG USB_DWC "-----     ----------\n");
++		for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
++			printk(KERN_EMERG USB_DWC "0x%04x    0x%04x\n",
++			       frame_num_array[i], last_frame_num_array[i]);
++		}
++		dumped_frame_num_array = 1;
++	}
++	last_frame_num = _curr_frame_number;
++}
++#endif
++
++/**
++ * Handles the start-of-frame interrupt in host mode. Non-periodic
++ * transactions may be queued to the DWC_otg controller for the current
++ * (micro)frame. Periodic transactions may be queued to the controller for the
++ * next (micro)frame.
++ */
++int32_t dwc_otg_hcd_handle_sof_intr(struct dwc_otg_hcd *hcd)
++{
++	union hfnum_data hfnum;
++	struct list_head *qh_entry;
++	struct dwc_otg_qh *qh;
++	enum dwc_otg_transaction_type tr_type;
++	union gintsts_data gintsts = {.d32 = 0 };
++
++	hfnum.d32 =
++	    dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
++
++#ifdef DEBUG_SOF
++	DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
++#endif
++
++	hcd->frame_number = hfnum.b.frnum;
++
++#ifdef DEBUG
++	hcd->frrem_accum += hfnum.b.frrem;
++	hcd->frrem_samples++;
++#endif
++
++#ifdef DWC_TRACK_MISSED_SOFS
++	track_missed_sofs(hcd->frame_number);
++#endif
++
++	/* Determine whether any periodic QHs should be executed. */
++	qh_entry = hcd->periodic_sched_inactive.next;
++	while (qh_entry != &hcd->periodic_sched_inactive) {
++		qh = list_entry(qh_entry, struct dwc_otg_qh, qh_list_entry);
++		qh_entry = qh_entry->next;
++		if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
++			/*
++			 * Move QH to the ready list to be executed next
++			 * (micro)frame.
++			 */
++			list_move(&qh->qh_list_entry,
++				  &hcd->periodic_sched_ready);
++		}
++	}
++
++	tr_type = dwc_otg_hcd_select_transactions(hcd);
++	if (tr_type != DWC_OTG_TRANSACTION_NONE) {
++		dwc_otg_hcd_queue_transactions(hcd, tr_type);
++	} else if (list_empty(&hcd->periodic_sched_inactive) &&
++		   list_empty(&hcd->periodic_sched_ready) &&
++		   list_empty(&hcd->periodic_sched_assigned) &&
++		   list_empty(&hcd->periodic_sched_queued)) {
++		/*
++		 * We don't have USB data to send. Unfortunately the
++		 * Synopsis block continues to generate interrupts at
++		 * about 8k/sec. In order not waste time on these
++		 * useless interrupts, we're going to disable the SOF
++		 * interrupt. It will be re-enabled when a new packet
++		 * is enqueued in dwc_otg_hcd_urb_enqueue()
++		 */
++		dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
++				 DWC_SOF_INTR_MASK, 0);
++	}
++
++	/* Clear interrupt */
++	gintsts.b.sofintr = 1;
++	dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
++
++	return 1;
++}
++
++/* Handles the Rx Status Queue Level Interrupt, which indicates that
++ * there is at least one packet in the Rx FIFO.  The packets are moved
++ * from the FIFO to memory if the DWC_otg controller is operating in
++ * Slave mode. */
++int32_t
++dwc_otg_hcd_handle_rx_status_q_level_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++	union host_grxsts_data grxsts;
++	struct dwc_hc *hc = NULL;
++
++	DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
++
++	grxsts.d32 =
++	    dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
++
++	hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
++
++	/* Packet Status */
++	DWC_DEBUGPL(DBG_HCDV, "    Ch num = %d\n", grxsts.b.chnum);
++	DWC_DEBUGPL(DBG_HCDV, "    Count = %d\n", grxsts.b.bcnt);
++	DWC_DEBUGPL(DBG_HCDV, "    DPID = %d, hc.dpid = %d\n", grxsts.b.dpid,
++		    hc->data_pid_start);
++	DWC_DEBUGPL(DBG_HCDV, "    PStatus = %d\n", grxsts.b.pktsts);
++
++	switch (grxsts.b.pktsts) {
++	case DWC_GRXSTS_PKTSTS_IN:
++		/* Read the data into the host buffer. */
++		if (grxsts.b.bcnt > 0) {
++			dwc_otg_read_packet(dwc_otg_hcd->core_if,
++					    hc->xfer_buff, grxsts.b.bcnt);
++
++			/* Update the HC fields for the next packet received. */
++			hc->xfer_count += grxsts.b.bcnt;
++			hc->xfer_buff += grxsts.b.bcnt;
++		}
++
++	case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
++	case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
++	case DWC_GRXSTS_PKTSTS_CH_HALTED:
++		/* Handled in interrupt, just ignore data */
++		break;
++	default:
++		DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n",
++			  grxsts.b.pktsts);
++		break;
++	}
++
++	return 1;
++}
++
++/* This interrupt occurs when the non-periodic Tx FIFO is
++ * half-empty. More data packets may be written to the FIFO for OUT
++ * transfers. More requests may be written to the non-periodic request
++ * queue for IN transfers. This interrupt is enabled only in Slave
++ * mode. */
++int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(struct dwc_otg_hcd *
++						 dwc_otg_hcd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
++	dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++				       DWC_OTG_TRANSACTION_NON_PERIODIC);
++	return 1;
++}
++
++/* This interrupt occurs when the periodic Tx FIFO is half-empty. More
++ * data packets may be written to the FIFO for OUT transfers. More
++ * requests may be written to the periodic request queue for IN
++ * transfers. This interrupt is enabled only in Slave mode. */
++int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(struct dwc_otg_hcd *
++						    dwc_otg_hcd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
++	dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
++				       DWC_OTG_TRANSACTION_PERIODIC);
++	return 1;
++}
++
++/* There are multiple conditions that can cause a port interrupt. This
++ * function determines which interrupt conditions have occurred and
++ * handles them appropriately. */
++int32_t dwc_otg_hcd_handle_port_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++	int retval = 0;
++	union hprt0_data hprt0;
++	union hprt0_data hprt0_modify;
++
++	hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
++	hprt0_modify.d32 =
++	    dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
++
++	/* Clear appropriate bits in HPRT0 to clear the interrupt bit in
++	 * GINTSTS */
++
++	hprt0_modify.b.prtena = 0;
++	hprt0_modify.b.prtconndet = 0;
++	hprt0_modify.b.prtenchng = 0;
++	hprt0_modify.b.prtovrcurrchng = 0;
++
++	/* Port Connect Detected
++	 * Set flag and clear if detected */
++	if (hprt0.b.prtconndet) {
++		DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
++			    "Port Connect Detected--\n", hprt0.d32);
++		dwc_otg_hcd->flags.b.port_connect_status_change = 1;
++		dwc_otg_hcd->flags.b.port_connect_status = 1;
++		hprt0_modify.b.prtconndet = 1;
++
++		/* B-Device has connected, Delete the connection timer.  */
++		del_timer(&dwc_otg_hcd->conn_timer);
++
++		/* The Hub driver asserts a reset when it sees port connect
++		 * status change flag */
++		retval |= 1;
++	}
++
++	/* Port Enable Changed
++	 * Clear if detected - Set internal flag if disabled */
++	if (hprt0.b.prtenchng) {
++		DWC_DEBUGPL(DBG_HCD, "  --Port Interrupt HPRT0=0x%08x "
++			    "Port Enable Changed--\n", hprt0.d32);
++		hprt0_modify.b.prtenchng = 1;
++		if (hprt0.b.prtena == 1) {
++			int do_reset = 0;
++			struct dwc_otg_core_params *params =
++			    dwc_otg_hcd->core_if->core_params;
++			struct dwc_otg_core_global_regs *global_regs =
++			    dwc_otg_hcd->core_if->core_global_regs;
++			struct dwc_otg_host_if *host_if =
++			    dwc_otg_hcd->core_if->host_if;
++
++			/* Check if we need to adjust the PHY clock speed for
++			 * low power and adjust it */
++			if (params->host_support_fs_ls_low_power) {
++				union gusbcfg_data usbcfg;
++
++				usbcfg.d32 =
++				    dwc_read_reg32(&global_regs->gusbcfg);
++
++				if ((hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
++				    || (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED)) {
++					/*
++					 * Low power
++					 */
++					union hcfg_data hcfg;
++					if (usbcfg.b.phylpwrclksel == 0) {
++						/* Set PHY low power clock select for FS/LS devices */
++						usbcfg.b.phylpwrclksel = 1;
++						dwc_write_reg32(&global_regs->gusbcfg,
++								usbcfg.d32);
++						do_reset = 1;
++					}
++
++					hcfg.d32 =
++					    dwc_read_reg32(&host_if->host_global_regs->hcfg);
++
++					if ((hprt0.b.prtspd ==
++					     DWC_HPRT0_PRTSPD_LOW_SPEED)
++					    && (params->
++						host_ls_low_power_phy_clk ==
++						DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ)) {
++						/* 6 MHZ */
++						DWC_DEBUGPL(DBG_CIL,
++							    "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
++						if (hcfg.b.fslspclksel !=
++						    DWC_HCFG_6_MHZ) {
++							hcfg.b.fslspclksel =
++							    DWC_HCFG_6_MHZ;
++							dwc_write_reg32(&host_if->host_global_regs->hcfg,
++									hcfg.d32);
++							do_reset = 1;
++						}
++					} else {
++						/* 48 MHZ */
++						DWC_DEBUGPL(DBG_CIL,
++							    "FS_PHY programming HCFG to 48 MHz ()\n");
++						if (hcfg.b.fslspclksel !=
++						    DWC_HCFG_48_MHZ) {
++							hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
++							dwc_write_reg32(&host_if->host_global_regs->hcfg,
++									hcfg.d32);
++							do_reset = 1;
++						}
++					}
++				} else {
++					/*
++					 * Not low power
++					 */
++					if (usbcfg.b.phylpwrclksel == 1) {
++						usbcfg.b.phylpwrclksel = 0;
++						dwc_write_reg32(&global_regs->gusbcfg,
++								usbcfg.d32);
++						do_reset = 1;
++					}
++				}
++				if (do_reset)
++					tasklet_schedule(dwc_otg_hcd->reset_tasklet);
++			}
++			if (!do_reset)
++				/*
++				 * Port has been enabled set the reset
++				 * change flag
++				 */
++				dwc_otg_hcd->flags.b.port_reset_change = 1;
++		} else {
++			dwc_otg_hcd->flags.b.port_enable_change = 1;
++		}
++		retval |= 1;
++	}
++
++	/** Overcurrent Change Interrupt */
++	if (hprt0.b.prtovrcurrchng) {
++		DWC_DEBUGPL(DBG_HCD, "  --Port Interrupt HPRT0=0x%08x "
++			    "Port Overcurrent Changed--\n", hprt0.d32);
++		dwc_otg_hcd->flags.b.port_over_current_change = 1;
++		hprt0_modify.b.prtovrcurrchng = 1;
++		retval |= 1;
++	}
++
++	/* Clear Port Interrupts */
++	dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0,
++			hprt0_modify.d32);
++
++	return retval;
++}
++
++/** This interrupt indicates that one or more host channels has a pending
++ * interrupt. There are multiple conditions that can cause each host channel
++ * interrupt. This function determines which conditions have occurred for each
++ * host channel interrupt and handles them appropriately. */
++int32_t dwc_otg_hcd_handle_hc_intr(struct dwc_otg_hcd *dwc_otg_hcd)
++{
++	int i;
++	int retval = 0;
++	union haint_data haint;
++
++	/* Clear appropriate bits in HCINTn to clear the interrupt bit in
++	 * GINTSTS */
++
++	haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
++
++	for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
++		if (haint.b2.chint & (1 << i))
++			retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
++	}
++
++	return retval;
++}
++
++/* Macro used to clear one channel interrupt */
++#define clear_hc_int(_hc_regs_, _intr_) \
++do { \
++	union hcint_data hcint_clear = {.d32 = 0}; \
++	hcint_clear.b._intr_ = 1; \
++	dwc_write_reg32(&((_hc_regs_)->hcint), hcint_clear.d32); \
++} while (0)
++
++/*
++ * Macro used to disable one channel interrupt. Channel interrupts are
++ * disabled when the channel is halted or released by the interrupt handler.
++ * There is no need to handle further interrupts of that type until the
++ * channel is re-assigned. In fact, subsequent handling may cause crashes
++ * because the channel structures are cleaned up when the channel is released.
++ */
++#define disable_hc_int(_hc_regs_, _intr_)				\
++	do {								\
++		union hcintmsk_data hcintmsk = {.d32 = 0};		\
++		hcintmsk.b._intr_ = 1;					\
++		dwc_modify_reg32(&((_hc_regs_)->hcintmsk), hcintmsk.d32, 0); \
++	} while (0)
++
++/**
++ * Gets the actual length of a transfer after the transfer halts. _halt_status
++ * holds the reason for the halt.
++ *
++ * For IN transfers where _halt_status is DWC_OTG_HC_XFER_COMPLETE,
++ * *_short_read is set to 1 upon return if less than the requested
++ * number of bytes were transferred. Otherwise, *_short_read is set to 0 upon
++ * return. _short_read may also be NULL on entry, in which case it remains
++ * unchanged.
++ */
++static uint32_t get_actual_xfer_length(struct dwc_hc *hc,
++				       struct dwc_otg_hc_regs *hc_regs,
++				       struct dwc_otg_qtd *qtd,
++				       enum dwc_otg_halt_status _halt_status,
++				       int *_short_read)
++{
++	union hctsiz_data hctsiz;
++	uint32_t length;
++
++	if (_short_read != NULL)
++		*_short_read = 0;
++
++	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++
++	if (_halt_status == DWC_OTG_HC_XFER_COMPLETE) {
++		if (hc->ep_is_in) {
++			length = hc->xfer_len - hctsiz.b.xfersize;
++			if (_short_read != NULL)
++				*_short_read = (hctsiz.b.xfersize != 0);
++		} else if (hc->qh->do_split) {
++			length = qtd->ssplit_out_xfer_count;
++		} else {
++			length = hc->xfer_len;
++		}
++	} else {
++		/*
++		 * Must use the hctsiz.pktcnt field to determine how much data
++		 * has been transferred. This field reflects the number of
++		 * packets that have been transferred via the USB. This is
++		 * always an integral number of packets if the transfer was
++		 * halted before its normal completion. (Can't use the
++		 * hctsiz.xfersize field because that reflects the number of
++		 * bytes transferred via the AHB, not the USB).
++		 */
++		length =
++		    (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
++	}
++
++	return length;
++}
++
++/**
++ * Updates the state of the URB after a Transfer Complete interrupt on the
++ * host channel. Updates the actual_length field of the URB based on the
++ * number of bytes transferred via the host channel. Sets the URB status
++ * if the data transfer is finished.
++ *
++ * Returns 1 if the data transfer specified by the URB is completely finished,
++ * 0 otherwise.
++ */
++static int update_urb_state_xfer_comp(struct dwc_hc *hc,
++				      struct dwc_otg_hc_regs *hc_regs,
++				      struct urb *urb, struct dwc_otg_qtd *qtd)
++{
++	int xfer_done = 0;
++	int short_read = 0;
++
++	urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
++						     DWC_OTG_HC_XFER_COMPLETE,
++						     &short_read);
++
++	if (short_read || (urb->actual_length == urb->transfer_buffer_length)) {
++		xfer_done = 1;
++		if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK))
++			urb->status = -EREMOTEIO;
++		else
++			urb->status = 0;
++	}
++#ifdef DEBUG
++	{
++		union hctsiz_data hctsiz;
++		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++		DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++			    __func__, (hc->ep_is_in ? "IN" : "OUT"),
++			    hc->hc_num);
++		DWC_DEBUGPL(DBG_HCDV, "  hc->xfer_len %d\n", hc->xfer_len);
++		DWC_DEBUGPL(DBG_HCDV, "  hctsiz.xfersize %d\n",
++			    hctsiz.b.xfersize);
++		DWC_DEBUGPL(DBG_HCDV, "  urb->transfer_buffer_length %d\n",
++			    urb->transfer_buffer_length);
++		DWC_DEBUGPL(DBG_HCDV, "  urb->actual_length %d\n",
++			    urb->actual_length);
++		DWC_DEBUGPL(DBG_HCDV, "  short_read %d, xfer_done %d\n",
++			    short_read, xfer_done);
++	}
++#endif
++
++	return xfer_done;
++}
++
++/*
++ * Save the starting data toggle for the next transfer. The data toggle is
++ * saved in the QH for non-control transfers and it's saved in the QTD for
++ * control transfers.
++ */
++static void save_data_toggle(struct dwc_hc *hc,
++			     struct dwc_otg_hc_regs *hc_regs,
++			     struct dwc_otg_qtd *qtd)
++{
++	union hctsiz_data hctsiz;
++	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++
++	if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
++		struct dwc_otg_qh *qh = hc->qh;
++		if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
++			qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++		else
++			qh->data_toggle = DWC_OTG_HC_PID_DATA1;
++	} else {
++		if (hctsiz.b.pid == DWC_HCTSIZ_DATA0)
++			qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
++		else
++			qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++	}
++}
++
++/**
++ * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
++ * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
++ * still linked to the QH, the QH is added to the end of the inactive
++ * non-periodic schedule. For periodic QHs, removes the QH from the periodic
++ * schedule if no more QTDs are linked to the QH.
++ */
++static void deactivate_qh(struct dwc_otg_hcd *hcd,
++			  struct dwc_otg_qh *qh, int free_qtd)
++{
++	int continue_split = 0;
++	struct dwc_otg_qtd *qtd;
++
++	DWC_DEBUGPL(DBG_HCDV, "  %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
++
++	qtd = list_entry(qh->qtd_list.next, struct dwc_otg_qtd, qtd_list_entry);
++
++	if (qtd->complete_split) {
++		continue_split = 1;
++	} else if ((qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID) ||
++		   (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END)) {
++		continue_split = 1;
++	}
++
++	if (free_qtd) {
++		dwc_otg_hcd_qtd_remove_and_free(qtd);
++		continue_split = 0;
++	}
++
++	qh->channel = NULL;
++	qh->qtd_in_process = NULL;
++	dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
++}
++
++/**
++ * Updates the state of an Isochronous URB when the transfer is stopped for
++ * any reason. The fields of the current entry in the frame descriptor array
++ * are set based on the transfer state and the input _halt_status. Completes
++ * the Isochronous URB if all the URB frames have been completed.
++ *
++ * Returns DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
++ * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
++ */
++static enum dwc_otg_halt_status
++update_isoc_urb_state(struct dwc_otg_hcd *hcd,
++		      struct dwc_hc *hc,
++		      struct dwc_otg_hc_regs *hc_regs,
++		      struct dwc_otg_qtd *qtd,
++		      enum dwc_otg_halt_status halt_status)
++{
++	struct urb *urb = qtd->urb;
++	enum dwc_otg_halt_status ret_val = halt_status;
++	struct usb_iso_packet_descriptor *frame_desc;
++
++	frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
++	switch (halt_status) {
++	case DWC_OTG_HC_XFER_COMPLETE:
++		frame_desc->status = 0;
++		frame_desc->actual_length =
++		    get_actual_xfer_length(hc, hc_regs, qtd,
++					   halt_status, NULL);
++		break;
++	case DWC_OTG_HC_XFER_FRAME_OVERRUN:
++		urb->error_count++;
++		if (hc->ep_is_in)
++			frame_desc->status = -ENOSR;
++		else
++			frame_desc->status = -ECOMM;
++		frame_desc->actual_length = 0;
++		break;
++	case DWC_OTG_HC_XFER_BABBLE_ERR:
++		urb->error_count++;
++		frame_desc->status = -EOVERFLOW;
++		/* Don't need to update actual_length in this case. */
++		break;
++	case DWC_OTG_HC_XFER_XACT_ERR:
++		urb->error_count++;
++		frame_desc->status = -EPROTO;
++		frame_desc->actual_length =
++		    get_actual_xfer_length(hc, hc_regs, qtd,
++					   halt_status, NULL);
++		break;
++	default:
++		DWC_ERROR("%s: Unhandled halt_status (%d)\n", __func__,
++			  halt_status);
++		BUG();
++		break;
++	}
++
++	if (++qtd->isoc_frame_index == urb->number_of_packets) {
++		/*
++		 * urb->status is not used for isoc transfers.
++		 * The individual frame_desc statuses are used instead.
++		 */
++		dwc_otg_hcd_complete_urb(hcd, urb, 0);
++		qtd->urb = NULL;
++		ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
++	} else {
++		ret_val = DWC_OTG_HC_XFER_COMPLETE;
++	}
++
++	return ret_val;
++}
++
++/**
++ * Releases a host channel for use by other transfers. Attempts to select and
++ * queue more transactions since at least one host channel is available.
++ *
++ * @hcd: The HCD state structure.
++ * @hc: The host channel to release.
++ * @qtd: The QTD associated with the host channel. This QTD may be freed
++ * if the transfer is complete or an error has occurred.
++ * @_halt_status: Reason the channel is being released. This status
++ * determines the actions taken by this function.
++ */
++static void release_channel(struct dwc_otg_hcd *hcd,
++			    struct dwc_hc *hc,
++			    struct dwc_otg_qtd *qtd,
++			    enum dwc_otg_halt_status halt_status)
++{
++	enum dwc_otg_transaction_type tr_type;
++	int free_qtd;
++
++	DWC_DEBUGPL(DBG_HCDV, "  %s: channel %d, halt_status %d\n",
++		    __func__, hc->hc_num, halt_status);
++
++	switch (halt_status) {
++	case DWC_OTG_HC_XFER_URB_COMPLETE:
++		free_qtd = 1;
++		break;
++	case DWC_OTG_HC_XFER_AHB_ERR:
++	case DWC_OTG_HC_XFER_STALL:
++	case DWC_OTG_HC_XFER_BABBLE_ERR:
++		free_qtd = 1;
++		break;
++	case DWC_OTG_HC_XFER_XACT_ERR:
++		if (qtd->error_count >= 3) {
++			DWC_DEBUGPL(DBG_HCDV,
++				    "  Complete URB with transaction error\n");
++			free_qtd = 1;
++			qtd->urb->status = -EPROTO;
++			dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
++			qtd->urb = NULL;
++		} else {
++			free_qtd = 0;
++		}
++		break;
++	case DWC_OTG_HC_XFER_URB_DEQUEUE:
++		/*
++		 * The QTD has already been removed and the QH has been
++		 * deactivated. Don't want to do anything except release the
++		 * host channel and try to queue more transfers.
++		 */
++		goto cleanup;
++	case DWC_OTG_HC_XFER_NO_HALT_STATUS:
++		DWC_ERROR("%s: No halt_status, channel %d\n", __func__,
++			  hc->hc_num);
++		free_qtd = 0;
++		break;
++	default:
++		free_qtd = 0;
++		break;
++	}
++
++	deactivate_qh(hcd, hc->qh, free_qtd);
++
++cleanup:
++	/*
++	 * Release the host channel for use by other transfers. The cleanup
++	 * function clears the channel interrupt enables and conditions, so
++	 * there's no need to clear the Channel Halted interrupt separately.
++	 */
++	dwc_otg_hc_cleanup(hcd->core_if, hc);
++	list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
++
++	switch (hc->ep_type) {
++	case DWC_OTG_EP_TYPE_CONTROL:
++	case DWC_OTG_EP_TYPE_BULK:
++		hcd->non_periodic_channels--;
++		break;
++
++	default:
++		/*
++		 * Don't release reservations for periodic channels here.
++		 * That's done when a periodic transfer is descheduled (i.e.
++		 * when the QH is removed from the periodic schedule).
++		 */
++		break;
++	}
++
++	/* Try to queue more transfers now that there's a free channel. */
++	tr_type = dwc_otg_hcd_select_transactions(hcd);
++	if (tr_type != DWC_OTG_TRANSACTION_NONE)
++		dwc_otg_hcd_queue_transactions(hcd, tr_type);
++}
++
++/**
++ * Halts a host channel. If the channel cannot be halted immediately because
++ * the request queue is full, this function ensures that the FIFO empty
++ * interrupt for the appropriate queue is enabled so that the halt request can
++ * be queued when there is space in the request queue.
++ *
++ * This function may also be called in DMA mode. In that case, the channel is
++ * simply released since the core always halts the channel automatically in
++ * DMA mode.
++ */
++static void halt_channel(struct dwc_otg_hcd *hcd,
++			 struct dwc_hc *hc,
++			 struct dwc_otg_qtd *qtd,
++			 enum dwc_otg_halt_status halt_status)
++{
++	if (hcd->core_if->dma_enable) {
++		release_channel(hcd, hc, qtd, halt_status);
++		return;
++	}
++
++	/* Slave mode processing... */
++	dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
++
++	if (hc->halt_on_queue) {
++		union gintmsk_data gintmsk = {.d32 = 0 };
++		struct dwc_otg_core_global_regs *global_regs;
++		global_regs = hcd->core_if->core_global_regs;
++
++		if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
++		    hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
++			/*
++			 * Make sure the Non-periodic Tx FIFO empty interrupt
++			 * is enabled so that the non-periodic schedule will
++			 * be processed.
++			 */
++			gintmsk.b.nptxfempty = 1;
++			dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++		} else {
++			/*
++			 * Move the QH from the periodic queued schedule to
++			 * the periodic assigned schedule. This allows the
++			 * halt to be queued when the periodic schedule is
++			 * processed.
++			 */
++			list_move(&hc->qh->qh_list_entry,
++				  &hcd->periodic_sched_assigned);
++
++			/*
++			 * Make sure the Periodic Tx FIFO Empty interrupt is
++			 * enabled so that the periodic schedule will be
++			 * processed.
++			 */
++			gintmsk.b.ptxfempty = 1;
++			dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
++		}
++	}
++}
++
++/**
++ * Performs common cleanup for non-periodic transfers after a Transfer
++ * Complete interrupt. This function should be called after any endpoint type
++ * specific handling is finished to release the host channel.
++ */
++static void complete_non_periodic_xfer(struct dwc_otg_hcd *hcd,
++				       struct dwc_hc *hc,
++				       struct dwc_otg_hc_regs *hc_regs,
++				       struct dwc_otg_qtd *qtd,
++				       enum dwc_otg_halt_status halt_status)
++{
++	union hcint_data hcint;
++
++	qtd->error_count = 0;
++
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++	if (hcint.b.nyet) {
++		/*
++		 * Got a NYET on the last transaction of the transfer. This
++		 * means that the endpoint should be in the PING state at the
++		 * beginning of the next transfer.
++		 */
++		hc->qh->ping_state = 1;
++		clear_hc_int(hc_regs, nyet);
++	}
++
++	/*
++	 * Always halt and release the host channel to make it available for
++	 * more transfers. There may still be more phases for a control
++	 * transfer or more data packets for a bulk transfer at this point,
++	 * but the host channel is still halted. A channel will be reassigned
++	 * to the transfer when the non-periodic schedule is processed after
++	 * the channel is released. This allows transactions to be queued
++	 * properly via dwc_otg_hcd_queue_transactions, which also enables the
++	 * Tx FIFO Empty interrupt if necessary.
++	 */
++	if (hc->ep_is_in) {
++		/*
++		 * IN transfers in Slave mode require an explicit disable to
++		 * halt the channel. (In DMA mode, this call simply releases
++		 * the channel.)
++		 */
++		halt_channel(hcd, hc, qtd, halt_status);
++	} else {
++		/*
++		 * The channel is automatically disabled by the core for OUT
++		 * transfers in Slave mode.
++		 */
++		release_channel(hcd, hc, qtd, halt_status);
++	}
++}
++
++/**
++ * Performs common cleanup for periodic transfers after a Transfer Complete
++ * interrupt. This function should be called after any endpoint type specific
++ * handling is finished to release the host channel.
++ */
++static void complete_periodic_xfer(struct dwc_otg_hcd *hcd,
++				   struct dwc_hc *hc,
++				   struct dwc_otg_hc_regs *hc_regs,
++				   struct dwc_otg_qtd *qtd,
++				   enum dwc_otg_halt_status halt_status)
++{
++	union hctsiz_data hctsiz;
++	qtd->error_count = 0;
++
++	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++	if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
++		/* Core halts channel in these cases. */
++		release_channel(hcd, hc, qtd, halt_status);
++	} else {
++		/* Flush any outstanding requests from the Tx queue. */
++		halt_channel(hcd, hc, qtd, halt_status);
++	}
++}
++
++/**
++ * Handles a host channel Transfer Complete interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xfercomp_intr(struct dwc_otg_hcd *hcd,
++				       struct dwc_hc *hc,
++				       struct dwc_otg_hc_regs *hc_regs,
++				       struct dwc_otg_qtd *qtd)
++{
++	int urb_xfer_done;
++	enum dwc_otg_halt_status halt_status = DWC_OTG_HC_XFER_COMPLETE;
++	struct urb *urb = qtd->urb;
++	int pipe_type = usb_pipetype(urb->pipe);
++
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "Transfer Complete--\n", hc->hc_num);
++
++	/*
++	 * Handle xfer complete on CSPLIT.
++	 */
++	if (hc->qh->do_split)
++		qtd->complete_split = 0;
++
++	/* Update the QTD and URB states. */
++	switch (pipe_type) {
++	case PIPE_CONTROL:
++		switch (qtd->control_phase) {
++		case DWC_OTG_CONTROL_SETUP:
++			if (urb->transfer_buffer_length > 0)
++				qtd->control_phase = DWC_OTG_CONTROL_DATA;
++			else
++				qtd->control_phase = DWC_OTG_CONTROL_STATUS;
++			DWC_DEBUGPL(DBG_HCDV,
++				    "  Control setup transaction done\n");
++			halt_status = DWC_OTG_HC_XFER_COMPLETE;
++			break;
++		case DWC_OTG_CONTROL_DATA:{
++				urb_xfer_done =
++				    update_urb_state_xfer_comp(hc, hc_regs,
++							       urb, qtd);
++				if (urb_xfer_done) {
++					qtd->control_phase =
++					    DWC_OTG_CONTROL_STATUS;
++					DWC_DEBUGPL(DBG_HCDV,
++						    " Control data transfer done\n");
++				} else {
++					save_data_toggle(hc, hc_regs, qtd);
++				}
++				halt_status = DWC_OTG_HC_XFER_COMPLETE;
++				break;
++			}
++		case DWC_OTG_CONTROL_STATUS:
++			DWC_DEBUGPL(DBG_HCDV, "  Control transfer complete\n");
++			if (urb->status == -EINPROGRESS)
++				urb->status = 0;
++			dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++			qtd->urb = NULL;
++			halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++			break;
++		}
++
++		complete_non_periodic_xfer(hcd, hc, hc_regs, qtd,
++					   halt_status);
++		break;
++	case PIPE_BULK:
++		DWC_DEBUGPL(DBG_HCDV, "  Bulk transfer complete\n");
++		urb_xfer_done =
++		    update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++		if (urb_xfer_done) {
++			dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++			qtd->urb = NULL;
++			halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
++		} else {
++			halt_status = DWC_OTG_HC_XFER_COMPLETE;
++		}
++
++		save_data_toggle(hc, hc_regs, qtd);
++		complete_non_periodic_xfer(hcd, hc, hc_regs, qtd,
++					   halt_status);
++		break;
++	case PIPE_INTERRUPT:
++		DWC_DEBUGPL(DBG_HCDV, "  Interrupt transfer complete\n");
++		update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
++
++		/*
++		 * Interrupt URB is done on the first transfer complete
++		 * interrupt.
++		 */
++		dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
++		qtd->urb = NULL;
++		save_data_toggle(hc, hc_regs, qtd);
++		complete_periodic_xfer(hcd, hc, hc_regs, qtd,
++				       DWC_OTG_HC_XFER_URB_COMPLETE);
++		break;
++	case PIPE_ISOCHRONOUS:
++		DWC_DEBUGPL(DBG_HCDV, "  Isochronous transfer complete\n");
++		if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
++			halt_status =
++			    update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++						  DWC_OTG_HC_XFER_COMPLETE);
++		}
++		complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
++		break;
++	}
++
++	disable_hc_int(hc_regs, xfercompl);
++
++	return 1;
++}
++
++/**
++ * Handles a host channel STALL interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_stall_intr(struct dwc_otg_hcd *hcd,
++				    struct dwc_hc *hc,
++				    struct dwc_otg_hc_regs *hc_regs,
++				    struct dwc_otg_qtd *qtd)
++{
++	struct urb *urb = qtd->urb;
++	int pipe_type = usb_pipetype(urb->pipe);
++
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "STALL Received--\n", hc->hc_num);
++
++	if (pipe_type == PIPE_CONTROL) {
++		dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
++		qtd->urb = NULL;
++	}
++
++	if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
++		dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPIPE);
++		qtd->urb = NULL;
++		/*
++		 * USB protocol requires resetting the data toggle for bulk
++		 * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
++		 * setup command is issued to the endpoint. Anticipate the
++		 * CLEAR_FEATURE command since a STALL has occurred and reset
++		 * the data toggle now.
++		 */
++		hc->qh->data_toggle = 0;
++	}
++
++	halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
++
++	disable_hc_int(hc_regs, stall);
++
++	return 1;
++}
++
++/*
++ * Updates the state of the URB when a transfer has been stopped due to an
++ * abnormal condition before the transfer completes. Modifies the
++ * actual_length field of the URB to reflect the number of bytes that have
++ * actually been transferred via the host channel.
++ */
++static void update_urb_state_xfer_intr(struct dwc_hc *hc,
++				       struct dwc_otg_hc_regs *hc_regs,
++				       struct urb *urb,
++				       struct dwc_otg_qtd *qtd,
++				       enum dwc_otg_halt_status halt_status)
++{
++	uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
++							    halt_status, NULL);
++	urb->actual_length += bytes_transferred;
++
++#ifdef DEBUG
++	{
++		union hctsiz_data hctsiz;
++		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++		DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
++			    __func__, (hc->ep_is_in ? "IN" : "OUT"),
++			    hc->hc_num);
++		DWC_DEBUGPL(DBG_HCDV, "  hc->start_pkt_count %d\n",
++			    hc->start_pkt_count);
++		DWC_DEBUGPL(DBG_HCDV, "  hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
++		DWC_DEBUGPL(DBG_HCDV, "  hc->max_packet %d\n",
++			    hc->max_packet);
++		DWC_DEBUGPL(DBG_HCDV, "  bytes_transferred %d\n",
++			    bytes_transferred);
++		DWC_DEBUGPL(DBG_HCDV, "  urb->actual_length %d\n",
++			    urb->actual_length);
++		DWC_DEBUGPL(DBG_HCDV, "  urb->transfer_buffer_length %d\n",
++			    urb->transfer_buffer_length);
++	}
++#endif
++}
++
++/**
++ * Handles a host channel NAK interrupt. This handler may be called in either
++ * DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nak_intr(struct dwc_otg_hcd *hcd,
++				  struct dwc_hc *hc,
++				  struct dwc_otg_hc_regs *hc_regs,
++				  struct dwc_otg_qtd *qtd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "NAK Received--\n", hc->hc_num);
++
++	/*
++	 * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
++	 * interrupt.  Re-start the SSPLIT transfer.
++	 */
++	if (hc->do_split) {
++		if (hc->complete_split)
++			qtd->error_count = 0;
++		qtd->complete_split = 0;
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++		goto handle_nak_done;
++	}
++
++	switch (usb_pipetype(qtd->urb->pipe)) {
++	case PIPE_CONTROL:
++	case PIPE_BULK:
++		if (hcd->core_if->dma_enable && hc->ep_is_in) {
++			/*
++			 * NAK interrupts are enabled on bulk/control IN
++			 * transfers in DMA mode for the sole purpose of
++			 * resetting the error count after a transaction error
++			 * occurs. The core will continue transferring data.
++			 */
++			qtd->error_count = 0;
++			goto handle_nak_done;
++		}
++
++		/*
++		 * NAK interrupts normally occur during OUT transfers in DMA
++		 * or Slave mode. For IN transfers, more requests will be
++		 * queued as request queue space is available.
++		 */
++		qtd->error_count = 0;
++
++		if (!hc->qh->ping_state) {
++			update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
++						   qtd, DWC_OTG_HC_XFER_NAK);
++			save_data_toggle(hc, hc_regs, qtd);
++			if (qtd->urb->dev->speed == USB_SPEED_HIGH)
++				hc->qh->ping_state = 1;
++		}
++
++		/*
++		 * Halt the channel so the transfer can be re-started from
++		 * the appropriate point or the PING protocol will
++		 * start/continue.
++		 */
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++		break;
++	case PIPE_INTERRUPT:
++		qtd->error_count = 0;
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
++		break;
++	case PIPE_ISOCHRONOUS:
++		/* Should never get called for isochronous transfers. */
++		BUG();
++		break;
++	}
++
++handle_nak_done:
++	disable_hc_int(hc_regs, nak);
++
++	return 1;
++}
++
++/**
++ * Handles a host channel ACK interrupt. This interrupt is enabled when
++ * performing the PING protocol in Slave mode, when errors occur during
++ * either Slave mode or DMA mode, and during Start Split transactions.
++ */
++static int32_t handle_hc_ack_intr(struct dwc_otg_hcd *hcd,
++				  struct dwc_hc *hc,
++				  struct dwc_otg_hc_regs *hc_regs,
++				  struct dwc_otg_qtd *qtd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "ACK Received--\n", hc->hc_num);
++
++	if (hc->do_split) {
++		/*
++		 * Handle ACK on SSPLIT.
++		 * ACK should not occur in CSPLIT.
++		 */
++		if ((!hc->ep_is_in)
++		    && (hc->data_pid_start != DWC_OTG_HC_PID_SETUP)) {
++			qtd->ssplit_out_xfer_count = hc->xfer_len;
++		}
++		if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
++			/* Don't need complete for isochronous out transfers. */
++			qtd->complete_split = 1;
++		}
++
++		/* ISOC OUT */
++		if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && !hc->ep_is_in) {
++			switch (hc->xact_pos) {
++			case DWC_HCSPLIT_XACTPOS_ALL:
++				break;
++			case DWC_HCSPLIT_XACTPOS_END:
++				qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++				qtd->isoc_split_offset = 0;
++				break;
++			case DWC_HCSPLIT_XACTPOS_BEGIN:
++			case DWC_HCSPLIT_XACTPOS_MID:
++				/*
++				 * For BEGIN or MID, calculate the length for
++				 * the next microframe to determine the correct
++				 * SSPLIT token, either MID or END.
++				 */
++				do {
++					struct usb_iso_packet_descriptor
++					    *frame_desc;
++
++					frame_desc =
++					    &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
++					qtd->isoc_split_offset += 188;
++
++					if ((frame_desc->length -
++					     qtd->isoc_split_offset) <= 188) {
++						qtd->isoc_split_pos =
++						    DWC_HCSPLIT_XACTPOS_END;
++					} else {
++						qtd->isoc_split_pos =
++						    DWC_HCSPLIT_XACTPOS_MID;
++					}
++
++				} while (0);
++				break;
++			}
++		} else {
++			halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++		}
++	} else {
++		qtd->error_count = 0;
++
++		if (hc->qh->ping_state) {
++			hc->qh->ping_state = 0;
++			/*
++			 * Halt the channel so the transfer can be re-started
++			 * from the appropriate point. This only happens in
++			 * Slave mode. In DMA mode, the ping_state is cleared
++			 * when the transfer is started because the core
++			 * automatically executes the PING, then the transfer.
++			 */
++			halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
++		}
++	}
++
++	/*
++	 * If the ACK occurred when _not_ in the PING state, let the channel
++	 * continue transferring data after clearing the error count.
++	 */
++
++	disable_hc_int(hc_regs, ack);
++
++	return 1;
++}
++
++/**
++ * Handles a host channel NYET interrupt. This interrupt should only occur on
++ * Bulk and Control OUT endpoints and for complete split transactions. If a
++ * NYET occurs at the same time as a Transfer Complete interrupt, it is
++ * handled in the xfercomp interrupt handler, not here. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_nyet_intr(struct dwc_otg_hcd *hcd,
++				   struct dwc_hc *hc,
++				   struct dwc_otg_hc_regs *hc_regs,
++				   struct dwc_otg_qtd *qtd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "NYET Received--\n", hc->hc_num);
++
++	/*
++	 * NYET on CSPLIT
++	 * re-do the CSPLIT immediately on non-periodic
++	 */
++	if ((hc->do_split) && (hc->complete_split)) {
++		if ((hc->ep_type == DWC_OTG_EP_TYPE_INTR) ||
++		    (hc->ep_type == DWC_OTG_EP_TYPE_ISOC)) {
++			int frnum =
++			    dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd
++							 (hcd));
++
++			if (dwc_full_frame_num(frnum) !=
++			    dwc_full_frame_num(hc->qh->sched_frame)) {
++				/*
++				 * No longer in the same full speed frame.
++				 * Treat this as a transaction error.
++				 */
++#if 0
++				/** @todo Fix system performance so this can
++				 * be treated as an error. Right now complete
++				 * splits cannot be scheduled precisely enough
++				 * due to other system activity, so this error
++				 * occurs regularly in Slave mode.
++				 */
++				qtd->error_count++;
++#endif
++				qtd->complete_split = 0;
++				halt_channel(hcd, hc, qtd,
++					     DWC_OTG_HC_XFER_XACT_ERR);
++				/** @todo add support for isoc release */
++				goto handle_nyet_done;
++			}
++		}
++
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++		goto handle_nyet_done;
++	}
++
++	hc->qh->ping_state = 1;
++	qtd->error_count = 0;
++
++	update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
++				   DWC_OTG_HC_XFER_NYET);
++	save_data_toggle(hc, hc_regs, qtd);
++
++	/*
++	 * Halt the channel and re-start the transfer so the PING
++	 * protocol will start.
++	 */
++	halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
++
++handle_nyet_done:
++	disable_hc_int(hc_regs, nyet);
++	return 1;
++}
++
++/**
++ * Handles a host channel babble interrupt. This handler may be called in
++ * either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_babble_intr(struct dwc_otg_hcd *hcd,
++				     struct dwc_hc *hc,
++				     struct dwc_otg_hc_regs *hc_regs,
++				     struct dwc_otg_qtd *qtd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "Babble Error--\n", hc->hc_num);
++	if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
++		dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
++		qtd->urb = NULL;
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
++	} else {
++		enum dwc_otg_halt_status halt_status;
++		halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++						    DWC_OTG_HC_XFER_BABBLE_ERR);
++		halt_channel(hcd, hc, qtd, halt_status);
++	}
++	disable_hc_int(hc_regs, bblerr);
++	return 1;
++}
++
++/**
++ * Handles a host channel AHB error interrupt. This handler is only called in
++ * DMA mode.
++ */
++static int32_t handle_hc_ahberr_intr(struct dwc_otg_hcd *hcd,
++				     struct dwc_hc *hc,
++				     struct dwc_otg_hc_regs *hc_regs,
++				     struct dwc_otg_qtd *qtd)
++{
++	union hcchar_data hcchar;
++	union hcsplt_data hcsplt;
++	union hctsiz_data hctsiz;
++	uint32_t hcdma;
++	struct urb *urb = qtd->urb;
++
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "AHB Error--\n", hc->hc_num);
++
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++	hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++	hcdma = dwc_read_reg32(&hc_regs->hcdma);
++
++	DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
++	DWC_ERROR("  hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
++	DWC_ERROR("  hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
++	DWC_ERROR("  Device address: %d\n", usb_pipedevice(urb->pipe));
++	DWC_ERROR("  Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
++		  (usb_pipein(urb->pipe) ? "IN" : "OUT"));
++	DWC_ERROR("  Endpoint type: %s\n",
++		({
++			char *pipetype;
++			switch (usb_pipetype(urb->pipe)) {
++			case PIPE_CONTROL:
++				pipetype = "CONTROL";
++				break;
++			case PIPE_BULK:
++				pipetype = "BULK";
++				break;
++			case PIPE_INTERRUPT:
++				pipetype = "INTERRUPT";
++				break;
++			case PIPE_ISOCHRONOUS:
++				pipetype = "ISOCHRONOUS";
++				break;
++			default:
++				pipetype = "UNKNOWN";
++				break;
++			}
++			pipetype;
++		}));
++	DWC_ERROR("  Speed: %s\n",
++		({
++			char *speed;
++			switch (urb->dev->speed) {
++			case USB_SPEED_HIGH:
++				speed = "HIGH";
++				break;
++			case USB_SPEED_FULL:
++				speed = "FULL";
++				break;
++			case USB_SPEED_LOW:
++				speed = "LOW";
++				break;
++			default:
++				speed = "UNKNOWN";
++				break;
++			}
++			speed;
++		}));
++	DWC_ERROR("  Max packet size: %d\n",
++		  usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
++	DWC_ERROR("  Data buffer length: %d\n", urb->transfer_buffer_length);
++	DWC_ERROR("  Transfer buffer: %p, Transfer DMA: 0x%llx\n",
++		  urb->transfer_buffer, (unsigned long long)urb->transfer_dma);
++	DWC_ERROR("  Setup buffer: %p, Setup DMA: 0x%llx\n",
++		  urb->setup_packet, (unsigned long long)urb->setup_dma);
++	DWC_ERROR("  Interval: %d\n", urb->interval);
++
++	dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
++	qtd->urb = NULL;
++
++	/*
++	 * Force a channel halt. Don't call halt_channel because that won't
++	 * write to the HCCHARn register in DMA mode to force the halt.
++	 */
++	dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
++
++	disable_hc_int(hc_regs, ahberr);
++	return 1;
++}
++
++/**
++ * Handles a host channel transaction error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_xacterr_intr(struct dwc_otg_hcd *hcd,
++				      struct dwc_hc *hc,
++				      struct dwc_otg_hc_regs *hc_regs,
++				      struct dwc_otg_qtd *qtd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "Transaction Error--\n", hc->hc_num);
++
++	switch (usb_pipetype(qtd->urb->pipe)) {
++	case PIPE_CONTROL:
++	case PIPE_BULK:
++		qtd->error_count++;
++		if (!hc->qh->ping_state) {
++			update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
++						   qtd,
++						   DWC_OTG_HC_XFER_XACT_ERR);
++			save_data_toggle(hc, hc_regs, qtd);
++			if (!hc->ep_is_in
++			    && qtd->urb->dev->speed == USB_SPEED_HIGH) {
++				hc->qh->ping_state = 1;
++			}
++		}
++
++		/*
++		 * Halt the channel so the transfer can be re-started from
++		 * the appropriate point or the PING protocol will start.
++		 */
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++		break;
++	case PIPE_INTERRUPT:
++		qtd->error_count++;
++		if ((hc->do_split) && (hc->complete_split))
++			qtd->complete_split = 0;
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
++		break;
++	case PIPE_ISOCHRONOUS:
++		{
++			enum dwc_otg_halt_status halt_status;
++			halt_status =
++			    update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++						  DWC_OTG_HC_XFER_XACT_ERR);
++
++			halt_channel(hcd, hc, qtd, halt_status);
++		}
++		break;
++	}
++
++	disable_hc_int(hc_regs, xacterr);
++
++	return 1;
++}
++
++/**
++ * Handles a host channel frame overrun interrupt. This handler may be called
++ * in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_frmovrun_intr(struct dwc_otg_hcd *hcd,
++				       struct dwc_hc *hc,
++				       struct dwc_otg_hc_regs *hc_regs,
++				       struct dwc_otg_qtd *qtd)
++{
++	enum dwc_otg_halt_status halt_status;
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "Frame Overrun--\n", hc->hc_num);
++
++	switch (usb_pipetype(qtd->urb->pipe)) {
++	case PIPE_CONTROL:
++	case PIPE_BULK:
++		break;
++	case PIPE_INTERRUPT:
++		halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
++		break;
++	case PIPE_ISOCHRONOUS:
++		halt_status =
++			update_isoc_urb_state(hcd, hc, hc_regs, qtd,
++					      DWC_OTG_HC_XFER_FRAME_OVERRUN);
++			halt_channel(hcd, hc, qtd, halt_status);
++		break;
++	}
++
++	disable_hc_int(hc_regs, frmovrun);
++
++	return 1;
++}
++
++/**
++ * Handles a host channel data toggle error interrupt. This handler may be
++ * called in either DMA mode or Slave mode.
++ */
++static int32_t handle_hc_datatglerr_intr(struct dwc_otg_hcd *hcd,
++					 struct dwc_hc *hc,
++					 struct dwc_otg_hc_regs *hc_regs,
++					 struct dwc_otg_qtd *qtd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "Data Toggle Error--\n", hc->hc_num);
++
++	if (hc->ep_is_in) {
++		qtd->error_count = 0;
++	} else {
++		DWC_ERROR("Data Toggle Error on OUT transfer,"
++			  "channel %d\n", hc->hc_num);
++	}
++
++	disable_hc_int(hc_regs, datatglerr);
++
++	return 1;
++}
++
++#ifdef DEBUG
++/**
++ * This function is for debug only. It checks that a valid halt status is set
++ * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
++ * taken and a warning is issued.
++ * Returns 1 if halt status is ok, 0 otherwise.
++ */
++static inline int halt_status_ok(struct dwc_otg_hcd *hcd,
++				 struct dwc_hc *hc,
++				 struct dwc_otg_hc_regs *hc_regs,
++				 struct dwc_otg_qtd *qtd)
++{
++	union hcchar_data hcchar;
++	union hctsiz_data hctsiz;
++	union hcint_data hcint;
++	union hcintmsk_data hcintmsk;
++	union hcsplt_data hcsplt;
++
++	if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
++		/*
++		 * This code is here only as a check. This condition should
++		 * never happen. Ignore the halt if it does occur.
++		 */
++		hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++		hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
++		hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++		hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++		hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
++		DWC_WARN
++		    ("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
++		     "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
++		     "hcint 0x%08x, hcintmsk 0x%08x, "
++		     "hcsplt 0x%08x, qtd->complete_split %d\n", __func__,
++		     hc->hc_num, hcchar.d32, hctsiz.d32, hcint.d32,
++		     hcintmsk.d32, hcsplt.d32, qtd->complete_split);
++
++		DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
++			 __func__, hc->hc_num);
++		DWC_WARN("\n");
++		clear_hc_int(hc_regs, chhltd);
++		return 0;
++	}
++
++	/*
++	 * This code is here only as a check. hcchar.chdis should
++	 * never be set when the halt interrupt occurs. Halt the
++	 * channel again if it does occur.
++	 */
++	hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
++	if (hcchar.b.chdis) {
++		DWC_WARN("%s: hcchar.chdis set unexpectedly, "
++			 "hcchar 0x%08x, trying to halt again\n",
++			 __func__, hcchar.d32);
++		clear_hc_int(hc_regs, chhltd);
++		hc->halt_pending = 0;
++		halt_channel(hcd, hc, qtd, hc->halt_status);
++		return 0;
++	}
++
++	return 1;
++}
++#endif
++
++/**
++ * Handles a host Channel Halted interrupt in DMA mode. This handler
++ * determines the reason the channel halted and proceeds accordingly.
++ */
++static void handle_hc_chhltd_intr_dma(struct dwc_otg_hcd *hcd,
++				      struct dwc_hc *hc,
++				      struct dwc_otg_hc_regs *hc_regs,
++				      struct dwc_otg_qtd *qtd)
++{
++	union hcint_data hcint;
++	union hcintmsk_data hcintmsk;
++
++	if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
++	    hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
++		/*
++		 * Just release the channel. A dequeue can happen on a
++		 * transfer timeout. In the case of an AHB Error, the channel
++		 * was forced to halt because there's no way to gracefully
++		 * recover.
++		 */
++		release_channel(hcd, hc, qtd, hc->halt_status);
++		return;
++	}
++
++	/* Read the HCINTn register to determine the cause for the halt. */
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++	hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++
++	if (hcint.b.xfercomp) {
++		/*
++		 * @todo This is here because of a possible hardware
++		 * bug.  Spec says that on SPLIT-ISOC OUT transfers in
++		 * DMA mode that a HALT interrupt w/ACK bit set should
++		 * occur, but I only see the XFERCOMP bit, even with
++		 * it masked out.  This is a workaround for that
++		 * behavior.  Should fix this when hardware is fixed.
++		 */
++		if ((hc->ep_type == DWC_OTG_EP_TYPE_ISOC) && (!hc->ep_is_in))
++			handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++		handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
++	} else if (hcint.b.stall) {
++		handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
++	} else if (hcint.b.xacterr) {
++		/*
++		 * Must handle xacterr before nak or ack. Could get a xacterr
++		 * at the same time as either of these on a BULK/CONTROL OUT
++		 * that started with a PING. The xacterr takes precedence.
++		 */
++		handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
++	} else if (hcint.b.nyet) {
++		/*
++		 * Must handle nyet before nak or ack. Could get a nyet at the
++		 * same time as either of those on a BULK/CONTROL OUT that
++		 * started with a PING. The nyet takes precedence.
++		 */
++		handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
++	} else if (hcint.b.bblerr) {
++		handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
++	} else if (hcint.b.frmovrun) {
++		handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
++	} else if (hcint.b.nak && !hcintmsk.b.nak) {
++		/*
++		 * If nak is not masked, it's because a non-split IN transfer
++		 * is in an error state. In that case, the nak is handled by
++		 * the nak interrupt handler, not here. Handle nak here for
++		 * BULK/CONTROL OUT transfers, which halt on a NAK to allow
++		 * rewinding the buffer pointer.
++		 */
++		handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
++	} else if (hcint.b.ack && !hcintmsk.b.ack) {
++		/*
++		 * If ack is not masked, it's because a non-split IN transfer
++		 * is in an error state. In that case, the ack is handled by
++		 * the ack interrupt handler, not here. Handle ack here for
++		 * split transfers. Start splits halt on ACK.
++		 */
++		handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
++	} else {
++		if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
++		    hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
++			/*
++			 * A periodic transfer halted with no other channel
++			 * interrupts set. Assume it was halted by the core
++			 * because it could not be completed in its scheduled
++			 * (micro)frame.
++			 */
++#ifdef DEBUG
++			DWC_PRINT("%s: Halt channel %d (assume incomplete "
++				  "periodic transfer)\n",
++				__func__, hc->hc_num);
++#endif
++			halt_channel(hcd, hc, qtd,
++				     DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
++		} else {
++			DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, "
++				  "but reason for halting is unknown, hcint "
++				  "0x%08x, intsts 0x%08x\n",
++				__func__, hc->hc_num, hcint.d32,
++				dwc_read_reg32(&hcd->core_if->core_global_regs->
++					gintsts));
++		}
++	}
++}
++
++/**
++ * Handles a host channel Channel Halted interrupt.
++ *
++ * In slave mode, this handler is called only when the driver specifically
++ * requests a halt. This occurs during handling other host channel interrupts
++ * (e.g. nak, xacterr, stall, nyet, etc.).
++ *
++ * In DMA mode, this is the interrupt that occurs when the core has finished
++ * processing a transfer on a channel. Other host channel interrupts (except
++ * ahberr) are disabled in DMA mode.
++ */
++static int32_t handle_hc_chhltd_intr(struct dwc_otg_hcd *hcd,
++				     struct dwc_hc *hc,
++				     struct dwc_otg_hc_regs *hc_regs,
++				     struct dwc_otg_qtd *qtd)
++{
++	DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
++		    "Channel Halted--\n", hc->hc_num);
++
++	if (hcd->core_if->dma_enable) {
++		handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
++	} else {
++#ifdef DEBUG
++		if (!halt_status_ok(hcd, hc, hc_regs, qtd))
++			return 1;
++#endif
++		release_channel(hcd, hc, qtd, hc->halt_status);
++	}
++
++	return 1;
++}
++
++/** Handles interrupt for a specific Host Channel */
++int32_t dwc_otg_hcd_handle_hc_n_intr(struct dwc_otg_hcd *dwc_otg_hcd,
++				     uint32_t _num)
++{
++	int retval = 0;
++	union hcint_data hcint;
++	union hcintmsk_data hcintmsk;
++	struct dwc_hc *hc;
++	struct dwc_otg_hc_regs *hc_regs;
++	struct dwc_otg_qtd *qtd;
++
++	DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", _num);
++
++	hc = dwc_otg_hcd->hc_ptr_array[_num];
++	hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[_num];
++	qtd = list_entry(hc->qh->qtd_list.next, struct dwc_otg_qtd,
++			 qtd_list_entry);
++
++	hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
++	hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
++	DWC_DEBUGPL(DBG_HCDV,
++		    "  hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
++		    hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
++	hcint.d32 = hcint.d32 & hcintmsk.d32;
++
++	if (!dwc_otg_hcd->core_if->dma_enable) {
++		if ((hcint.b.chhltd) && (hcint.d32 != 0x2))
++			hcint.b.chhltd = 0;
++	}
++
++	if (hcint.b.xfercomp) {
++		retval |=
++		    handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++		/*
++		 * If NYET occurred at same time as Xfer Complete, the NYET is
++		 * handled by the Xfer Complete interrupt handler. Don't want
++		 * to call the NYET interrupt handler in this case.
++		 */
++		hcint.b.nyet = 0;
++	}
++	if (hcint.b.chhltd)
++		retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.ahberr)
++		retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.stall)
++		retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.nak)
++		retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.ack)
++		retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.nyet)
++		retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.xacterr)
++		retval |=
++		    handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.bblerr)
++		retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.frmovrun)
++		retval |=
++		    handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	if (hcint.b.datatglerr)
++		retval |=
++		    handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
++
++	return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
+new file mode 100644
+index 0000000..e4c96f2
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_hcd_queue.c
+@@ -0,0 +1,695 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++#ifndef DWC_DEVICE_ONLY
++
++/*
++ *
++ * This file contains the functions to manage Queue Heads and Queue
++ * Transfer Descriptors.
++ */
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/list.h>
++#include <linux/interrupt.h>
++#include <linux/string.h>
++
++#include "dwc_otg_driver.h"
++#include "dwc_otg_hcd.h"
++#include "dwc_otg_regs.h"
++
++/**
++ * This function allocates and initializes a QH.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @urb: Holds the information about the device/endpoint that we need
++ * to initialize the QH.
++ *
++ * Returns Returns pointer to the newly allocated QH, or NULL on error. */
++struct dwc_otg_qh *dwc_otg_hcd_qh_create(struct dwc_otg_hcd *hcd,
++				    struct urb *urb)
++{
++	struct dwc_otg_qh *qh;
++
++	/* Allocate memory */
++	/** @todo add memflags argument */
++	qh = dwc_otg_hcd_qh_alloc();
++	if (qh == NULL)
++		return NULL;
++
++	dwc_otg_hcd_qh_init(hcd, qh, urb);
++	return qh;
++}
++
++/** Free each QTD in the QH's QTD-list then free the QH.  QH should already be
++ * removed from a list.  QTD list should already be empty if called from URB
++ * Dequeue.
++ *
++ * @qh: The QH to free.
++ */
++void dwc_otg_hcd_qh_free(struct dwc_otg_qh *qh)
++{
++	struct dwc_otg_qtd *qtd;
++	struct list_head *pos;
++
++	/* Free each QTD in the QTD list */
++	for (pos = qh->qtd_list.next;
++	     pos != &qh->qtd_list; pos = qh->qtd_list.next) {
++		list_del(pos);
++		qtd = dwc_list_to_qtd(pos);
++		dwc_otg_hcd_qtd_free(qtd);
++	}
++
++	kfree(qh);
++	return;
++}
++
++/** Initializes a QH structure.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: The QH to init.
++ * @urb: Holds the information about the device/endpoint that we need
++ * to initialize the QH. */
++#define SCHEDULE_SLOP 10
++void dwc_otg_hcd_qh_init(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
++			 struct urb *urb)
++{
++	memset(qh, 0, sizeof(struct dwc_otg_qh));
++
++	/* Initialize QH */
++	switch (usb_pipetype(urb->pipe)) {
++	case PIPE_CONTROL:
++		qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
++		break;
++	case PIPE_BULK:
++		qh->ep_type = USB_ENDPOINT_XFER_BULK;
++		break;
++	case PIPE_ISOCHRONOUS:
++		qh->ep_type = USB_ENDPOINT_XFER_ISOC;
++		break;
++	case PIPE_INTERRUPT:
++		qh->ep_type = USB_ENDPOINT_XFER_INT;
++		break;
++	}
++
++	qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
++
++	qh->data_toggle = DWC_OTG_HC_PID_DATA0;
++	qh->maxp =
++	    usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
++	INIT_LIST_HEAD(&qh->qtd_list);
++	INIT_LIST_HEAD(&qh->qh_list_entry);
++	qh->channel = NULL;
++
++	/* FS/LS Enpoint on HS Hub
++	 * NOT virtual root hub */
++	qh->do_split = 0;
++	if (((urb->dev->speed == USB_SPEED_LOW) ||
++	     (urb->dev->speed == USB_SPEED_FULL)) &&
++	    (urb->dev->tt) && (urb->dev->tt->hub->devnum != 1)) {
++		DWC_DEBUGPL(DBG_HCD,
++			    "QH init: EP %d: TT found at hub addr %d, for "
++			    "port %d\n",
++			    usb_pipeendpoint(urb->pipe),
++			    urb->dev->tt->hub->devnum, urb->dev->ttport);
++		qh->do_split = 1;
++	}
++
++	if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
++	    qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
++		/* Compute scheduling parameters once and save them. */
++		union hprt0_data hprt;
++
++		/* todo Account for split transfers in the bus time. */
++		int bytecount =
++		    dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
++		/*
++		 * The results from usb_calc_bus_time are in nanosecs,
++		 * so divide the result by 1000 to convert to
++		 * microsecs expected by this driver
++		 */
++		qh->usecs = usb_calc_bus_time(urb->dev->speed,
++					       usb_pipein(urb->pipe),
++					       (qh->ep_type ==
++						USB_ENDPOINT_XFER_ISOC),
++					       bytecount) / 1000;
++
++		/* Start in a slightly future (micro)frame. */
++		qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
++						     SCHEDULE_SLOP);
++		qh->interval = urb->interval;
++#if 0
++		/* Increase interrupt polling rate for debugging. */
++		if (qh->ep_type == USB_ENDPOINT_XFER_INT)
++			qh->interval = 8;
++#endif
++		hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
++		if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
++		    ((urb->dev->speed == USB_SPEED_LOW) ||
++		     (urb->dev->speed == USB_SPEED_FULL))) {
++			qh->interval *= 8;
++			qh->sched_frame |= 0x7;
++			qh->start_split_frame = qh->sched_frame;
++		}
++
++	}
++
++	DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
++	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - qh = %p\n", qh);
++	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Device Address = %d\n",
++		    urb->dev->devnum);
++	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Endpoint %d, %s\n",
++		    usb_pipeendpoint(urb->pipe),
++		    usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
++	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Speed = %s\n",
++		({
++			char *speed;
++			switch (urb->dev->speed) {
++			case USB_SPEED_LOW:
++				speed = "low";
++				break;
++			case USB_SPEED_FULL:
++				speed = "full";
++				break;
++			case USB_SPEED_HIGH:
++				speed = "high";
++				break;
++			default:
++				speed = "?";
++				break;
++			}
++			speed;
++		}));
++	DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH  - Type = %s\n",
++		({
++			char *type;
++			switch (qh->ep_type) {
++			case USB_ENDPOINT_XFER_ISOC:
++				type = "isochronous";
++				break;
++			case USB_ENDPOINT_XFER_INT:
++				type = "interrupt";
++				break;
++			case USB_ENDPOINT_XFER_CONTROL:
++				type = "control";
++				break;
++			case USB_ENDPOINT_XFER_BULK:
++				type = "bulk";
++				break;
++			default:
++				type = "?";
++				break;
++			}
++			type;
++		}));
++#ifdef DEBUG
++	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++		DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
++			    qh->usecs);
++		DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
++			    qh->interval);
++	}
++#endif
++
++	return;
++}
++
++/**
++ * Checks that a channel is available for a periodic transfer.
++ *
++ * Returns 0 if successful, negative error code otherise.
++ */
++static int periodic_channel_available(struct dwc_otg_hcd *hcd)
++{
++	/*
++	 * Currently assuming that there is a dedicated host channnel for each
++	 * periodic transaction plus at least one host channel for
++	 * non-periodic transactions.
++	 */
++	int status;
++	int num_channels;
++
++	num_channels = hcd->core_if->core_params->host_channels;
++	if ((hcd->periodic_channels + hcd->non_periodic_channels <
++	     num_channels) && (hcd->periodic_channels < num_channels - 1)) {
++		status = 0;
++	} else {
++		DWC_NOTICE
++		    ("%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
++		     __func__, num_channels, hcd->periodic_channels,
++		     hcd->non_periodic_channels);
++		status = -ENOSPC;
++	}
++
++	return status;
++}
++
++/**
++ * Checks that there is sufficient bandwidth for the specified QH in the
++ * periodic schedule. For simplicity, this calculation assumes that all the
++ * transfers in the periodic schedule may occur in the same (micro)frame.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH containing periodic bandwidth required.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++static int check_periodic_bandwidth(struct dwc_otg_hcd *hcd,
++				    struct dwc_otg_qh *qh)
++{
++	int status;
++	uint16_t max_claimed_usecs;
++
++	status = 0;
++
++	if (hcd->core_if->core_params->speed == DWC_SPEED_PARAM_HIGH) {
++		/*
++		 * High speed mode.
++		 * Max periodic usecs is 80% x 125 usec = 100 usec.
++		 */
++		max_claimed_usecs = 100 - qh->usecs;
++	} else {
++		/*
++		 * Full speed mode.
++		 * Max periodic usecs is 90% x 1000 usec = 900 usec.
++		 */
++		max_claimed_usecs = 900 - qh->usecs;
++	}
++
++	if (hcd->periodic_usecs > max_claimed_usecs) {
++		DWC_NOTICE("%s: already claimed usecs %d, required usecs %d\n",
++			   __func__, hcd->periodic_usecs, qh->usecs);
++		status = -ENOSPC;
++	}
++
++	return status;
++}
++
++/**
++ * Checks that the max transfer size allowed in a host channel is large enough
++ * to handle the maximum data transfer in a single (micro)frame for a periodic
++ * transfer.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH for a periodic endpoint.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++static int check_max_xfer_size(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++	int status;
++	uint32_t max_xfer_size;
++	uint32_t max_channel_xfer_size;
++
++	status = 0;
++
++	max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
++	max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
++
++	if (max_xfer_size > max_channel_xfer_size) {
++		DWC_NOTICE("%s: Periodic xfer length %d > "
++			   "max xfer length for channel %d\n",
++			   __func__, max_xfer_size, max_channel_xfer_size);
++		status = -ENOSPC;
++	}
++
++	return status;
++}
++
++/**
++ * Schedules an interrupt or isochronous transfer in the periodic schedule.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH for the periodic transfer. The QH should already contain the
++ * scheduling information.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++static int schedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++	int status = 0;
++
++	status = periodic_channel_available(hcd);
++	if (status) {
++		DWC_NOTICE("%s: No host channel available for periodic "
++			   "transfer.\n", __func__);
++		return status;
++	}
++
++	status = check_periodic_bandwidth(hcd, qh);
++	if (status) {
++		DWC_NOTICE("%s: Insufficient periodic bandwidth for "
++			   "periodic transfer.\n", __func__);
++		return status;
++	}
++
++	status = check_max_xfer_size(hcd, qh);
++	if (status) {
++		DWC_NOTICE("%s: Channel max transfer size too small "
++			   "for periodic transfer.\n", __func__);
++		return status;
++	}
++
++	/* Always start in the inactive schedule. */
++	list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
++
++	/* Reserve the periodic channel. */
++	hcd->periodic_channels++;
++
++	/* Update claimed usecs per (micro)frame. */
++	hcd->periodic_usecs += qh->usecs;
++
++	/*
++	 * Update average periodic bandwidth claimed and # periodic
++	 * reqs for usbfs.
++	 */
++	hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated +=
++	    qh->usecs / qh->interval;
++	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs++;
++		DWC_DEBUGPL(DBG_HCD,
++			    "Scheduled intr: qh %p, usecs %d, period %d\n", qh,
++			    qh->usecs, qh->interval);
++	} else {
++		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs++;
++		DWC_DEBUGPL(DBG_HCD,
++			    "Scheduled isoc: qh %p, usecs %d, period %d\n", qh,
++			    qh->usecs, qh->interval);
++	}
++
++	return status;
++}
++
++/**
++ * This function adds a QH to either the non periodic or periodic schedule if
++ * it is not already in the schedule. If the QH is already in the schedule, no
++ * action is taken.
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qh_add(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++	int status = 0;
++
++	if (!spin_is_locked(&hcd->global_lock))	{
++		pr_err("%s don't have hcd->global_lock", __func__);
++		BUG();
++	}
++
++	if (!list_empty(&qh->qh_list_entry)) {
++		/* QH already in a schedule. */
++		goto done;
++	}
++
++	/* Add the new QH to the appropriate schedule */
++	if (dwc_qh_is_non_per(qh)) {
++		/* Always start in the inactive schedule. */
++		list_add_tail(&qh->qh_list_entry,
++			      &hcd->non_periodic_sched_inactive);
++	} else {
++		status = schedule_periodic(hcd, qh);
++	}
++
++done:
++	return status;
++}
++
++/**
++ * Removes an interrupt or isochronous transfer from the periodic schedule.
++ *
++ * @hcd: The HCD state structure for the DWC OTG controller.
++ * @qh: QH for the periodic transfer.
++ */
++static void deschedule_periodic(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++	list_del_init(&qh->qh_list_entry);
++
++	/* Release the periodic channel reservation. */
++	hcd->periodic_channels--;
++
++	/* Update claimed usecs per (micro)frame. */
++	hcd->periodic_usecs -= qh->usecs;
++
++	/*
++	 * Update average periodic bandwidth claimed and # periodic
++	 * reqs for usbfs.
++	 */
++	hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_allocated -=
++	    qh->usecs / qh->interval;
++
++	if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
++		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_int_reqs--;
++		DWC_DEBUGPL(DBG_HCD,
++			    "Descheduled intr: qh %p, usecs %d, period %d\n",
++			    qh, qh->usecs, qh->interval);
++	} else {
++		hcd_to_bus(dwc_otg_hcd_to_hcd(hcd))->bandwidth_isoc_reqs--;
++		DWC_DEBUGPL(DBG_HCD,
++			    "Descheduled isoc: qh %p, usecs %d, period %d\n",
++			    qh, qh->usecs, qh->interval);
++	}
++}
++
++/**
++ * Removes a QH from either the non-periodic or periodic schedule.  Memory is
++ * not freed.
++ *
++ * @hcd: The HCD state structure.
++ * @qh: QH to remove from schedule. */
++void dwc_otg_hcd_qh_remove(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh)
++{
++	if (!spin_is_locked(&hcd->global_lock))	{
++		pr_err("%s don't have hcd->global_lock", __func__);
++		BUG();
++	}
++
++	if (list_empty(&qh->qh_list_entry)) {
++		/* QH is not in a schedule. */
++		goto done;
++	}
++
++	if (dwc_qh_is_non_per(qh)) {
++		if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
++			hcd->non_periodic_qh_ptr =
++			    hcd->non_periodic_qh_ptr->next;
++		}
++		list_del_init(&qh->qh_list_entry);
++	} else {
++		deschedule_periodic(hcd, qh);
++	}
++
++done:
++	;
++}
++
++/**
++ * Deactivates a QH. For non-periodic QHs, removes the QH from the active
++ * non-periodic schedule. The QH is added to the inactive non-periodic
++ * schedule if any QTDs are still attached to the QH.
++ *
++ * For periodic QHs, the QH is removed from the periodic queued schedule. If
++ * there are any QTDs still attached to the QH, the QH is added to either the
++ * periodic inactive schedule or the periodic ready schedule and its next
++ * scheduled frame is calculated. The QH is placed in the ready schedule if
++ * the scheduled frame has been reached already. Otherwise it's placed in the
++ * inactive schedule. If there are no QTDs attached to the QH, the QH is
++ * completely removed from the periodic schedule.
++ */
++void dwc_otg_hcd_qh_deactivate(struct dwc_otg_hcd *hcd, struct dwc_otg_qh *qh,
++			       int sched_next_periodic_split)
++{
++	uint16_t frame_number;
++
++	if (!spin_is_locked(&hcd->global_lock))	{
++		pr_err("%s don't have hcd->global_lock", __func__);
++		BUG();
++	}
++
++	if (dwc_qh_is_non_per(qh)) {
++		dwc_otg_hcd_qh_remove(hcd, qh);
++		if (!list_empty(&qh->qtd_list))
++			/* Add back to inactive non-periodic schedule. */
++			dwc_otg_hcd_qh_add(hcd, qh);
++		return;
++	}
++
++	frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
++
++	if (qh->do_split) {
++		/* Schedule the next continuing periodic split transfer */
++		if (sched_next_periodic_split) {
++
++			qh->sched_frame = frame_number;
++			if (dwc_frame_num_le(frame_number,
++				dwc_frame_num_inc(qh->start_split_frame,
++						  1))) {
++				/*
++				 * Allow one frame to elapse after
++				 * start split microframe before
++				 * scheduling complete split, but DONT
++				 * if we are doing the next start
++				 * split in the same frame for an ISOC
++				 * out.
++				 */
++				if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC)
++				     || (qh->ep_is_in != 0)) {
++					qh->sched_frame =
++						dwc_frame_num_inc(qh->sched_frame,
++								  1);
++				}
++			}
++		} else {
++			qh->sched_frame =
++				dwc_frame_num_inc(qh->start_split_frame,
++						  qh->interval);
++			if (dwc_frame_num_le(qh->sched_frame, frame_number))
++				qh->sched_frame = frame_number;
++
++			qh->sched_frame |= 0x7;
++			qh->start_split_frame = qh->sched_frame;
++		}
++	} else {
++		qh->sched_frame = dwc_frame_num_inc(qh->sched_frame,
++						    qh->interval);
++		if (dwc_frame_num_le(qh->sched_frame, frame_number))
++			qh->sched_frame = frame_number;
++	}
++
++	if (list_empty(&qh->qtd_list)) {
++		dwc_otg_hcd_qh_remove(hcd, qh);
++	} else {
++		/*
++		 * Remove from periodic_sched_queued and move to
++		 * appropriate queue.
++		 */
++		if (qh->sched_frame == frame_number) {
++			list_move(&qh->qh_list_entry,
++				&hcd->periodic_sched_ready);
++		} else {
++			list_move(&qh->qh_list_entry,
++				&hcd->periodic_sched_inactive);
++		}
++	}
++}
++
++/**
++ * This function allocates and initializes a QTD.
++ *
++ * @urb: The URB to create a QTD from.  Each URB-QTD pair will end up
++ * pointing to each other so each pair should have a unique correlation.
++ *
++ * Returns Returns pointer to the newly allocated QTD, or NULL on error. */
++struct dwc_otg_qtd *dwc_otg_hcd_qtd_create(struct urb *urb)
++{
++	struct dwc_otg_qtd *qtd;
++
++	qtd = dwc_otg_hcd_qtd_alloc();
++	if (qtd == NULL)
++		return NULL;
++
++	dwc_otg_hcd_qtd_init(qtd, urb);
++	return qtd;
++}
++
++/**
++ * Initializes a QTD structure.
++ *
++ * @qtd: The QTD to initialize.
++ * @urb: The URB to use for initialization.
++ */
++void dwc_otg_hcd_qtd_init(struct dwc_otg_qtd *qtd, struct urb *urb)
++{
++	memset(qtd, 0, sizeof(struct dwc_otg_qtd));
++	qtd->urb = urb;
++	if (usb_pipecontrol(urb->pipe)) {
++		/*
++		 * The only time the QTD data toggle is used is on the data
++		 * phase of control transfers. This phase always starts with
++		 * DATA1.
++		 */
++		qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
++		qtd->control_phase = DWC_OTG_CONTROL_SETUP;
++	}
++
++	/* start split */
++	qtd->complete_split = 0;
++	qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
++	qtd->isoc_split_offset = 0;
++
++	/* Store the qtd ptr in the urb to reference what QTD. */
++	urb->hcpriv = qtd;
++	return;
++}
++
++/**
++ * This function adds a QTD to the QTD-list of a QH.  It will find the correct
++ * QH to place the QTD into.  If it does not find a QH, then it will create a
++ * new QH. If the QH to which the QTD is added is not currently scheduled, it
++ * is placed into the proper schedule based on its EP type.
++ *
++ * @qtd: The QTD to add
++ * @dwc_otg_hcd: The DWC HCD structure
++ *
++ * Returns 0 if successful, negative error code otherwise.
++ */
++int dwc_otg_hcd_qtd_add(struct dwc_otg_qtd *qtd,
++			struct dwc_otg_hcd *dwc_otg_hcd)
++{
++	struct usb_host_endpoint *ep;
++	struct dwc_otg_qh *qh;
++	int retval = 0;
++
++	struct urb *urb = qtd->urb;
++
++	/*
++	 * Get the QH which holds the QTD-list to insert to. Create QH if it
++	 * doesn't exist.
++	 */
++	ep = dwc_urb_to_endpoint(urb);
++	qh = ep->hcpriv;
++	if (qh == NULL) {
++		qh = dwc_otg_hcd_qh_create(dwc_otg_hcd, urb);
++		if (qh == NULL) {
++			retval = -ENOMEM;
++			goto done;
++		}
++		ep->hcpriv = qh;
++	}
++	qtd->qh = qh;
++	retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
++	if (retval == 0)
++		list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
++done:
++	return retval;
++}
++
++#endif /* DWC_DEVICE_ONLY */
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_octeon.c b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c
+new file mode 100644
+index 0000000..5e92b3c
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_octeon.c
+@@ -0,0 +1,1078 @@
++/* ==========================================================================
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#include <linux/kernel.h>
++#include <linux/module.h>
++#include <linux/moduleparam.h>
++#include <linux/init.h>
++#include <linux/device.h>
++#include <linux/errno.h>
++#include <linux/types.h>
++#include <linux/stat.h>		/* permission constants */
++#include <linux/platform_device.h>
++#include <linux/io.h>
++
++#include "dwc_otg_plat.h"
++#include "dwc_otg_attr.h"
++#include "dwc_otg_driver.h"
++#include "dwc_otg_cil.h"
++#ifndef DWC_HOST_ONLY
++#include "dwc_otg_pcd.h"
++#endif
++#include "dwc_otg_hcd.h"
++
++#define	DWC_DRIVER_VERSION	"2.40a 10-APR-2006"
++#define	DWC_DRIVER_DESC		"HS OTG USB Controller driver"
++
++static const char dwc_driver_name[] = "dwc_otg";
++int dwc_errata_write_count;	/* See dwc_otg_plat.h, dwc_write_reg32 */
++
++/*-------------------------------------------------------------------------*/
++/* Encapsulate the module parameter settings */
++
++static struct dwc_otg_core_params dwc_otg_module_params = {
++	.opt = -1,
++	.otg_cap = -1,
++	.dma_enable = -1,
++	.dma_burst_size = -1,
++	.speed = -1,
++	.host_support_fs_ls_low_power = -1,
++	.host_ls_low_power_phy_clk = -1,
++	.enable_dynamic_fifo = -1,
++	.data_fifo_size = -1,
++	.dev_rx_fifo_size = -1,
++	.dev_nperio_tx_fifo_size = -1,
++	.dev_perio_tx_fifo_size = {-1,	/* dev_perio_tx_fifo_size_1 */
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1,
++				   -1},	/* 15 */
++	.host_rx_fifo_size = -1,
++	.host_nperio_tx_fifo_size = -1,
++	.host_perio_tx_fifo_size = -1,
++	.max_transfer_size = -1,
++	.max_packet_count = -1,
++	.host_channels = -1,
++	.dev_endpoints = -1,
++	.phy_type = -1,
++	.phy_utmi_width = -1,
++	.phy_ulpi_ddr = -1,
++	.phy_ulpi_ext_vbus = -1,
++	.i2c_enable = -1,
++	.ulpi_fs_ls = -1,
++	.ts_dline = -1,
++};
++
++/**
++ * Global Debug Level Mask.
++ */
++uint32_t g_dbg_lvl;		/* 0 -> OFF */
++
++/**
++ * This function shows the Driver Version.
++ */
++static ssize_t version_show(struct device_driver *dev, char *buf)
++{
++	return snprintf(buf, sizeof(DWC_DRIVER_VERSION) + 2, "%s\n",
++			DWC_DRIVER_VERSION);
++}
++
++static DRIVER_ATTR(version, S_IRUGO, version_show, NULL);
++
++/**
++ * This function is called during module intialization to verify that
++ * the module parameters are in a valid state.
++ */
++static int check_parameters(struct dwc_otg_core_if *core_if)
++{
++	int i;
++	int retval = 0;
++
++/* Checks if the parameter is outside of its valid range of values */
++#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_)    \
++	((dwc_otg_module_params._param_ < (_low_)) || \
++		(dwc_otg_module_params._param_ > (_high_)))
++
++/* If the parameter has been set by the user, check that the parameter value is
++ * within the value range of values.  If not, report a module error. */
++#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_)	\
++	do {								\
++		if (dwc_otg_module_params._param_ != -1) {		\
++			if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
++				DWC_ERROR("`%d' invalid for parameter `%s'\n", \
++					dwc_otg_module_params._param_, _string_); \
++				dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++				retval++; \
++			} \
++		} \
++	} while (0)
++
++	DWC_OTG_PARAM_ERR(opt, 0, 1, "opt");
++	DWC_OTG_PARAM_ERR(otg_cap, 0, 2, "otg_cap");
++	DWC_OTG_PARAM_ERR(dma_enable, 0, 1, "dma_enable");
++	DWC_OTG_PARAM_ERR(speed, 0, 1, "speed");
++	DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power, 0, 1,
++			  "host_support_fs_ls_low_power");
++	DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk, 0, 1,
++			  "host_ls_low_power_phy_clk");
++	DWC_OTG_PARAM_ERR(enable_dynamic_fifo, 0, 1, "enable_dynamic_fifo");
++	DWC_OTG_PARAM_ERR(data_fifo_size, 32, 32768, "data_fifo_size");
++	DWC_OTG_PARAM_ERR(dev_rx_fifo_size, 16, 32768, "dev_rx_fifo_size");
++	DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size, 16, 32768,
++			  "dev_nperio_tx_fifo_size");
++	DWC_OTG_PARAM_ERR(host_rx_fifo_size, 16, 32768, "host_rx_fifo_size");
++	DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size, 16, 32768,
++			  "host_nperio_tx_fifo_size");
++	DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size, 16, 32768,
++			  "host_perio_tx_fifo_size");
++	DWC_OTG_PARAM_ERR(max_transfer_size, 2047, 524288, "max_transfer_size");
++	DWC_OTG_PARAM_ERR(max_packet_count, 15, 511, "max_packet_count");
++	DWC_OTG_PARAM_ERR(host_channels, 1, 16, "host_channels");
++	DWC_OTG_PARAM_ERR(dev_endpoints, 1, 15, "dev_endpoints");
++	DWC_OTG_PARAM_ERR(phy_type, 0, 2, "phy_type");
++	DWC_OTG_PARAM_ERR(phy_ulpi_ddr, 0, 1, "phy_ulpi_ddr");
++	DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus, 0, 1, "phy_ulpi_ext_vbus");
++	DWC_OTG_PARAM_ERR(i2c_enable, 0, 1, "i2c_enable");
++	DWC_OTG_PARAM_ERR(ulpi_fs_ls, 0, 1, "ulpi_fs_ls");
++	DWC_OTG_PARAM_ERR(ts_dline, 0, 1, "ts_dline");
++
++	if (dwc_otg_module_params.dma_burst_size != -1) {
++		if (DWC_OTG_PARAM_TEST(dma_burst_size, 1, 1) &&
++		    DWC_OTG_PARAM_TEST(dma_burst_size, 4, 4) &&
++		    DWC_OTG_PARAM_TEST(dma_burst_size, 8, 8) &&
++		    DWC_OTG_PARAM_TEST(dma_burst_size, 16, 16) &&
++		    DWC_OTG_PARAM_TEST(dma_burst_size, 32, 32) &&
++		    DWC_OTG_PARAM_TEST(dma_burst_size, 64, 64) &&
++		    DWC_OTG_PARAM_TEST(dma_burst_size, 128, 128) &&
++		    DWC_OTG_PARAM_TEST(dma_burst_size, 256, 256)) {
++			DWC_ERROR
++			    ("`%d' invalid for parameter `dma_burst_size'\n",
++			     dwc_otg_module_params.dma_burst_size);
++			dwc_otg_module_params.dma_burst_size = 32;
++			retval++;
++		}
++	}
++
++	if (dwc_otg_module_params.phy_utmi_width != -1) {
++		if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
++		    DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
++			DWC_ERROR
++			    ("`%d' invalid for parameter `phy_utmi_width'\n",
++			     dwc_otg_module_params.phy_utmi_width);
++			dwc_otg_module_params.phy_utmi_width = 16;
++			retval++;
++		}
++	}
++
++	for (i = 0; i < 15; i++) {
++		/* @todo should be like above */
++		if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] !=
++		    (unsigned)-1) {
++			if (DWC_OTG_PARAM_TEST
++			    (dev_perio_tx_fifo_size[i], 4, 768)) {
++				DWC_ERROR
++				    ("`%d' invalid for parameter `%s_%d'\n",
++				     dwc_otg_module_params.
++				     dev_perio_tx_fifo_size[i],
++				     "dev_perio_tx_fifo_size", i);
++				dwc_otg_module_params.
++				    dev_perio_tx_fifo_size[i] =
++				    dwc_param_dev_perio_tx_fifo_size_default;
++				retval++;
++			}
++		}
++	}
++
++	/* At this point, all module parameters that have been set by the user
++	 * are valid, and those that have not are left unset.  Now set their
++	 * default values and/or check the parameters against the hardware
++	 * configurations of the OTG core. */
++
++/* This sets the parameter to the default value if it has not been set by the
++ * user */
++#define PARAM_SET_DEFAULT(_param_) \
++	({ \
++		int changed = 1; \
++		if (dwc_otg_module_params._param_ == -1) { \
++			changed = 0; \
++			dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
++		} \
++		changed; \
++	})
++
++/* This checks the macro agains the hardware configuration to see if it is
++ * valid.  It is possible that the default value could be invalid.  In this
++ * case, it will report a module error if the user touched the parameter.
++ * Otherwise it will adjust the value without any error. */
++#define PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
++	({								\
++		int changed = PARAM_SET_DEFAULT(_param_);	\
++		int error = 0;						\
++		if (!(_is_valid_)) {					\
++			if (changed) {					\
++				DWC_ERROR("`%d' invalid for parameter `%s'.  Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
++				error = 1;				\
++			}						\
++			dwc_otg_module_params._param_ = (_set_valid_);	\
++		}							\
++		error;							\
++	})
++
++	/* OTG Cap */
++	retval += PARAM_CHECK_VALID(otg_cap, "otg_cap",
++		({
++			int valid;
++			valid = 1;
++			switch (dwc_otg_module_params.otg_cap) {
++			case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
++				if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++					valid = 0;
++				break;
++			case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
++				if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++					&& (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
++					&& (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
++					&& (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
++					valid = 0;
++				break;
++			case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
++				/* always valid */
++				break;
++			}
++			valid;
++		}),
++		(((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
++			|| (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG)
++			|| (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE)
++			|| (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST))
++			?
++			DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE : DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
++
++	retval += PARAM_CHECK_VALID(dma_enable, "dma_enable",
++					((dwc_otg_module_params.
++						dma_enable == 1)
++						&& (core_if->hwcfg2.b.
++							architecture == 0)) ? 0 : 1,
++					0);
++
++	retval += PARAM_CHECK_VALID(opt, "opt", 1, 0);
++
++	PARAM_SET_DEFAULT(dma_burst_size);
++
++	retval += PARAM_CHECK_VALID(host_support_fs_ls_low_power,
++					    "host_support_fs_ls_low_power",
++					    1, 0);
++
++	retval += PARAM_CHECK_VALID(enable_dynamic_fifo,
++				    "enable_dynamic_fifo",
++				    ((dwc_otg_module_params.enable_dynamic_fifo == 0)
++				     || (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
++
++	retval += PARAM_CHECK_VALID(data_fifo_size,
++				    "data_fifo_size",
++				    dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth,
++				    core_if->hwcfg3.b.dfifo_depth);
++
++	retval += PARAM_CHECK_VALID(dev_rx_fifo_size,
++				    "dev_rx_fifo_size",
++				    (dwc_otg_module_params.dev_rx_fifo_size <=
++					    dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
++				    dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++	retval += PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
++				    "dev_nperio_tx_fifo_size",
++				    dwc_otg_module_params.dev_nperio_tx_fifo_size <=
++					     (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16),
++				    dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16);
++
++	retval += PARAM_CHECK_VALID(host_rx_fifo_size,
++				    "host_rx_fifo_size",
++				    dwc_otg_module_params.host_rx_fifo_size <=
++					dwc_read_reg32(&core_if->core_global_regs->grxfsiz),
++				    dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
++
++	retval += PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
++				    "host_nperio_tx_fifo_size",
++				    dwc_otg_module_params.host_nperio_tx_fifo_size <=
++					(dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16),
++				    dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16);
++
++	retval += PARAM_CHECK_VALID(host_perio_tx_fifo_size,
++				    "host_perio_tx_fifo_size",
++				    dwc_otg_module_params.host_perio_tx_fifo_size <=
++					(dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16),
++				    (dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16));
++
++	retval += PARAM_CHECK_VALID(max_transfer_size,
++				    "max_transfer_size",
++				    dwc_otg_module_params.max_transfer_size <
++					(1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)),
++				    (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1);
++
++	retval += PARAM_CHECK_VALID(max_packet_count,
++				    "max_packet_count",
++				    dwc_otg_module_params.max_packet_count <
++					(1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)),
++				    (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1);
++
++	retval += PARAM_CHECK_VALID(host_channels,
++				    "host_channels",
++				    dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1),
++				    core_if->hwcfg2.b.num_host_chan + 1);
++
++	retval += PARAM_CHECK_VALID(dev_endpoints,
++				    "dev_endpoints",
++				    dwc_otg_module_params.dev_endpoints <= core_if->hwcfg2.b.num_dev_ep,
++				    core_if->hwcfg2.b.num_dev_ep);
++
++/*
++ * Define the following to disable the FS PHY Hardware checking.  This is for
++ * internal testing only.
++ *
++ * #define NO_FS_PHY_HW_CHECKS
++ */
++
++#ifdef NO_FS_PHY_HW_CHECKS
++	retval += PARAM_CHECK_VALID(phy_type, "phy_type", 1, 0);
++#else
++	retval += PARAM_CHECK_VALID(phy_type, "phy_type",
++		({
++			int valid = 0;
++			if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) && ((core_if->hwcfg2.b.hs_phy_type == 1) || (core_if->hwcfg2.b.hs_phy_type == 3)))
++				valid = 1;
++			else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) && ((core_if->hwcfg2.b.hs_phy_type == 2) || (core_if->hwcfg2.b.hs_phy_type == 3)))
++				valid = 1;
++			else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) && (core_if->hwcfg2.b.fs_phy_type == 1))
++				valid = 1;
++			valid;
++		}),
++		({
++			int set = DWC_PHY_TYPE_PARAM_FS;
++			if (core_if->hwcfg2.b.hs_phy_type) {
++				if ((core_if->hwcfg2.b.hs_phy_type == 3)
++					|| (core_if->hwcfg2.b.hs_phy_type == 1))
++					set = DWC_PHY_TYPE_PARAM_UTMI;
++				else
++					set = DWC_PHY_TYPE_PARAM_ULPI;
++			}
++			set;
++		}));
++#endif
++
++	retval += PARAM_CHECK_VALID(speed, "speed",
++				    dwc_otg_module_params.speed == 0
++				     && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
++				    dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
++
++	retval += PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
++				    "host_ls_low_power_phy_clk",
++				    dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ
++				     && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
++				    (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ?
++					DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ);
++
++	PARAM_SET_DEFAULT(phy_ulpi_ddr);
++	PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
++	PARAM_SET_DEFAULT(phy_utmi_width);
++	PARAM_SET_DEFAULT(ulpi_fs_ls);
++	PARAM_SET_DEFAULT(ts_dline);
++
++#ifdef NO_FS_PHY_HW_CHECKS
++	retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
++#else
++	retval += PARAM_CHECK_VALID(i2c_enable, "i2c_enable",
++				    dwc_otg_module_params.i2c_enable == 1
++				     && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1, 0);
++#endif
++
++	for (i = 0; i < 15; i++) {
++
++		int changed = 1;
++		int error = 0;
++
++		if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
++			changed = 0;
++			dwc_otg_module_params.dev_perio_tx_fifo_size[i] =
++			    dwc_param_dev_perio_tx_fifo_size_default;
++		}
++		if (!
++		    (dwc_otg_module_params.dev_perio_tx_fifo_size[i] <=
++		     (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz[i])))) {
++			if (changed) {
++				DWC_ERROR("`%d' invalid for parameter "
++					  "`dev_perio_fifo_size_%d'.  "
++					  "Check HW configuration.\n",
++				     dwc_otg_module_params.
++				     dev_perio_tx_fifo_size[i], i);
++				error = 1;
++			}
++			dwc_otg_module_params.dev_perio_tx_fifo_size[i] =
++			    dwc_read_reg32(&core_if->core_global_regs->
++					   dptxfsiz[i]);
++		}
++		retval += error;
++	}
++
++	return retval;
++}
++
++/**
++ * This function is the top level interrupt handler for the Common
++ * (Device and host modes) interrupts.
++ */
++static irqreturn_t dwc_otg_common_irq(int _irq, void *_dev)
++{
++	struct dwc_otg_device *otg_dev = _dev;
++	int32_t retval = IRQ_NONE;
++	unsigned long flags;
++
++	spin_lock_irqsave(&otg_dev->hcd->global_lock, flags);
++
++	retval = dwc_otg_handle_common_intr(otg_dev->core_if);
++
++	spin_unlock_irqrestore(&otg_dev->hcd->global_lock, flags);
++
++	return IRQ_RETVAL(retval);
++}
++
++/**
++ * This function is called when a device is unregistered with the
++ * dwc_otg_driver. This happens, for example, when the rmmod command is
++ * executed. The device may or may not be electrically present. If it is
++ * present, the driver stops device processing. Any resources used on behalf
++ * of this device are freed.
++ *
++ * @dev:
++ */
++static int dwc_otg_driver_remove(struct platform_device *pdev)
++{
++	struct device *dev = &pdev->dev;
++	struct dwc_otg_device *otg_dev = dev->platform_data;
++	DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, dev);
++
++	if (otg_dev == NULL)
++		/* Memory allocation for the dwc_otg_device failed. */
++		return -ENOMEM;
++
++	/*
++	 * Free the IRQ
++	 */
++	if (otg_dev->common_irq_installed)
++		free_irq(platform_get_irq(to_platform_device(dev), 0), otg_dev);
++
++#ifndef DWC_DEVICE_ONLY
++	if (otg_dev->hcd != NULL)
++		dwc_otg_hcd_remove(dev);
++#endif
++
++#ifndef DWC_HOST_ONLY
++	if (otg_dev->pcd != NULL)
++		dwc_otg_pcd_remove(dev);
++#endif
++	if (otg_dev->core_if != NULL)
++		dwc_otg_cil_remove(otg_dev->core_if);
++
++	/*
++	 * Remove the device attributes
++	 */
++	dwc_otg_attr_remove(dev);
++
++	/*
++	 * Clear the platform_data pointer.
++	 */
++	dev->platform_data = 0;
++	return 0;
++}
++
++/**
++ * This function is called when an device is bound to a
++ * dwc_otg_driver. It creates the driver components required to
++ * control the device (CIL, HCD, and PCD) and it initializes the
++ * device. The driver components are stored in a dwc_otg_device
++ * structure. A reference to the dwc_otg_device is saved in the
++ * device. This allows the driver to access the dwc_otg_device
++ * structure on subsequent calls to driver methods for this device.
++ *
++ * @dev:  device definition
++ */
++static __devinit int dwc_otg_driver_probe(struct platform_device *pdev)
++{
++	struct resource *res_base;
++	struct device *dev = &pdev->dev;
++	struct dwc_otg_device *dwc_otg_device;
++	int32_t snpsid;
++	unsigned long flags;
++	int irq;
++	int retval;
++
++	dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", dev);
++
++	dwc_otg_device = devm_kzalloc(&pdev->dev,
++				      sizeof(struct dwc_otg_device),
++				      GFP_KERNEL);
++	if (!dwc_otg_device) {
++		dev_err(dev, "kmalloc of dwc_otg_device failed\n");
++		return -ENOMEM;
++	}
++	dwc_otg_device->reg_offset = 0xFFFFFFFF;
++
++	/*
++	 * Map the DWC_otg Core memory into virtual address space.
++	 */
++	res_base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
++	if (!res_base)
++		goto err_ports;
++
++	dwc_otg_device->base =
++		devm_ioremap_nocache(&pdev->dev,
++				     res_base->start,
++				     res_base->end - res_base->start);
++
++	if (!dwc_otg_device->base)
++		goto err_ports;
++
++	dev_dbg(dev, "base=%p\n", dwc_otg_device->base);
++
++	/*
++	 * Attempt to ensure this device is really a DWC_otg Controller.
++	 * Read and verify the SNPSID register contents. The value should be
++	 * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
++	 */
++	snpsid =
++	    dwc_read_reg32((uint32_t *) ((uint8_t *) dwc_otg_device->base +
++					 0x40));
++	if ((snpsid & 0xFFFFF000) != 0x4F542000) {
++		dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
++		goto err_ports;
++	}
++
++	/*
++	 * Initialize driver data to point to the global DWC_otg
++	 * Device structure.
++	 */
++	dev->platform_data = dwc_otg_device;
++	dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
++
++	dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
++						   &dwc_otg_module_params);
++	if (dwc_otg_device->core_if == 0) {
++		dev_err(dev, "CIL initialization failed!\n");
++		goto err_ports;
++	}
++	dwc_otg_device->core_if->usb_num = to_platform_device(dev)->id;
++
++	/*
++	 * Validate parameter values.
++	 */
++	if (check_parameters(dwc_otg_device->core_if) != 0)
++		goto err_ports;
++
++	/*
++	 * Create Device Attributes in sysfs
++	 */
++	dwc_otg_attr_create(dev);
++
++	/*
++	 * Disable the global interrupt until all the interrupt
++	 * handlers are installed.
++	 */
++	dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
++	/*
++	 * Install the interrupt handler for the common interrupts before
++	 * enabling common interrupts in core_init below.
++	 */
++	irq = platform_get_irq(to_platform_device(dev), 0);
++	DWC_DEBUGPL(DBG_CIL, "registering (common) handler for irq%d\n", irq);
++	retval = request_irq(irq, dwc_otg_common_irq,
++			     IRQF_SHARED, "dwc_otg", dwc_otg_device);
++	if (retval != 0) {
++		DWC_ERROR("request of irq%d failed\n", irq);
++		goto err_ports;
++	} else {
++		dwc_otg_device->common_irq_installed = 1;
++	}
++
++	/*
++	 * Initialize the DWC_otg core.
++	 */
++	dwc_otg_core_init(dwc_otg_device->core_if);
++
++#ifndef DWC_HOST_ONLY
++	/*
++	 * Initialize the PCD
++	 */
++	retval = dwc_otg_pcd_init(dev);
++	if (retval != 0) {
++		DWC_ERROR("dwc_otg_pcd_init failed\n");
++		dwc_otg_device->pcd = NULL;
++		goto err_ports;
++	}
++#endif
++#ifndef DWC_DEVICE_ONLY
++	/*
++	 * Initialize the HCD
++	 */
++	retval = dwc_otg_hcd_init(dev);
++	if (retval != 0) {
++		DWC_ERROR("dwc_otg_hcd_init failed\n");
++		dwc_otg_device->hcd = NULL;
++		goto err_ports;
++	}
++#endif
++
++	/*
++	 * Enable the global interrupt after all the interrupt
++	 * handlers are installed.
++	 */
++	local_irq_save(flags);
++	dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
++	local_irq_restore(flags);
++
++	return 0;
++
++err_ports:
++	devm_kfree(&pdev->dev, dwc_otg_device);
++	return -ENOENT;
++}
++
++/**
++ * This structure defines the methods to be called by a bus driver
++ * during the lifecycle of a device on that bus. Both drivers and
++ * devices are registered with a bus driver. The bus driver matches
++ * devices to drivers based on information in the device and driver
++ * structures.
++ *
++ * The probe function is called when the bus driver matches a device
++ * to this driver. The remove function is called when a device is
++ * unregistered with the bus driver.
++ */
++static struct platform_driver dwc_otg_driver = {
++	.probe = dwc_otg_driver_probe,
++	.remove = dwc_otg_driver_remove,
++	.driver = {
++		   .name = dwc_driver_name,
++		   .owner = THIS_MODULE},
++};
++
++/**
++ * This function is called when the dwc_otg_driver is installed with the
++ * insmod command. It registers the dwc_otg_driver structure with the
++ * appropriate bus driver. This will cause the dwc_otg_driver_probe function
++ * to be called. In addition, the bus driver will automatically expose
++ * attributes defined for the device and driver in the special sysfs file
++ * system.
++ *
++ * Returns
++ */
++static int __init dwc_otg_driver_init(void)
++{
++	int retval;
++
++	pr_info("%s: version %s\n", dwc_driver_name, DWC_DRIVER_VERSION);
++
++	/* Though core was configured for external dma override that with slave
++	   mode only for CN31XX. DMA is broken in this chip */
++	if (OCTEON_IS_MODEL(OCTEON_CN31XX))
++		dwc_otg_module_params.dma_enable = 0;
++
++	retval = platform_driver_register(&dwc_otg_driver);
++
++	if (retval < 0) {
++		pr_err("%s retval=%d\n", __func__, retval);
++		return retval;
++	}
++	if (driver_create_file(&dwc_otg_driver.driver, &driver_attr_version))
++		pr_warning("DWC_OTG: Failed to create driver version file\n");
++
++	return retval;
++}
++module_init(dwc_otg_driver_init);
++
++/**
++ * This function is called when the driver is removed from the kernel
++ * with the rmmod command. The driver unregisters itself with its bus
++ * driver.
++ *
++ */
++static void __exit dwc_otg_driver_cleanup(void)
++{
++	printk(KERN_DEBUG "dwc_otg_driver_cleanup()\n");
++
++	driver_remove_file(&dwc_otg_driver.driver, &driver_attr_version);
++
++	platform_driver_unregister(&dwc_otg_driver);
++
++	printk(KERN_INFO "%s module removed\n", dwc_driver_name);
++}
++module_exit(dwc_otg_driver_cleanup);
++
++MODULE_DESCRIPTION(DWC_DRIVER_DESC);
++MODULE_AUTHOR("Synopsys Inc.");
++MODULE_LICENSE("GPL");
++
++module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
++MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
++module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
++MODULE_PARM_DESC(opt, "OPT Mode");
++module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
++MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
++module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int,
++		   0444);
++MODULE_PARM_DESC(dma_burst_size,
++		 "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
++module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
++MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
++module_param_named(host_support_fs_ls_low_power,
++		   dwc_otg_module_params.host_support_fs_ls_low_power, int,
++		   0444);
++MODULE_PARM_DESC(host_support_fs_ls_low_power,
++		 "Support Low Power w/FS or LS 0=Support 1=Don't Support");
++module_param_named(host_ls_low_power_phy_clk,
++		   dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
++MODULE_PARM_DESC(host_ls_low_power_phy_clk,
++		 "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
++module_param_named(enable_dynamic_fifo,
++		   dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
++MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
++module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int,
++		   0444);
++MODULE_PARM_DESC(data_fifo_size,
++		 "Total number of words in the data FIFO memory 32-32768");
++module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size,
++		   int, 0444);
++MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(dev_nperio_tx_fifo_size,
++		   dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(dev_nperio_tx_fifo_size,
++		 "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(dev_perio_tx_fifo_size_1,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_1,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_2,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_2,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_3,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_3,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_4,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_4,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_5,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_5,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_6,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_6,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_7,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_7,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_8,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_8,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_9,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_9,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_10,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_10,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_11,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_11,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_12,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_12,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_13,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_13,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_14,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_14,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(dev_perio_tx_fifo_size_15,
++		   dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
++MODULE_PARM_DESC(dev_perio_tx_fifo_size_15,
++		 "Number of words in the periodic Tx FIFO 4-768");
++module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size,
++		   int, 0444);
++MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
++module_param_named(host_nperio_tx_fifo_size,
++		   dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_nperio_tx_fifo_size,
++		 "Number of words in the non-periodic Tx FIFO 16-32768");
++module_param_named(host_perio_tx_fifo_size,
++		   dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
++MODULE_PARM_DESC(host_perio_tx_fifo_size,
++		 "Number of words in the host periodic Tx FIFO 16-32768");
++module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size,
++		   int, 0444);
++/** @todo Set the max to 512K, modify checks */
++MODULE_PARM_DESC(max_transfer_size,
++		 "The maximum transfer size supported in bytes 2047-65535");
++module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count,
++		   int, 0444);
++MODULE_PARM_DESC(max_packet_count,
++		 "The maximum number of packets in a transfer 15-511");
++module_param_named(host_channels, dwc_otg_module_params.host_channels, int,
++		   0444);
++MODULE_PARM_DESC(host_channels,
++		 "The number of host channel registers to use 1-16");
++module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int,
++		   0444);
++MODULE_PARM_DESC(dev_endpoints,
++		 "The number of endpoints in addition to EP0 available "
++		 "for device mode 1-15");
++module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
++MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
++module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int,
++		   0444);
++MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
++module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ddr,
++		 "ULPI at double or single data rate 0=Single 1=Double");
++module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus,
++		   int, 0444);
++MODULE_PARM_DESC(phy_ulpi_ext_vbus,
++		 "ULPI PHY using internal or external vbus 0=Internal");
++module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
++MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
++module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
++MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
++module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
++MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
++module_param_named(debug, g_dbg_lvl, int, 0644);
++MODULE_PARM_DESC(debug, "");
++
++/** @page "Module Parameters"
++ *
++ * The following parameters may be specified when starting the module.
++ * These parameters define how the DWC_otg controller should be
++ * configured.  Parameter values are passed to the CIL initialization
++ * function dwc_otg_cil_init
++ *
++ * Example: <code>modprobe dwc_otg speed=1 otg_cap=1</code>
++ *
++
++ <table>
++ <tr><td>Parameter Name</td><td>Meaning</td></tr>
++
++ <tr>
++ <td>otg_cap</td>
++ <td>Specifies the OTG capabilities. The driver will automatically detect the
++ value for this parameter if none is specified.
++ - 0: HNP and SRP capable (default, if available)
++ - 1: SRP Only capable
++ - 2: No HNP/SRP capable
++ </td></tr>
++
++ <tr>
++ <td>dma_enable</td>
++ <td>Specifies whether to use slave or DMA mode for accessing the data FIFOs.
++ The driver will automatically detect the value for this parameter if none is
++ specified.
++ - 0: Slave
++ - 1: DMA (default, if available)
++ </td></tr>
++
++ <tr>
++ <td>dma_burst_size</td>
++ <td>The DMA Burst size (applicable only for External DMA Mode).
++ - Values: 1, 4, 8 16, 32, 64, 128, 256 (default 32)
++ </td></tr>
++
++ <tr>
++ <td>speed</td>
++ <td>Specifies the maximum speed of operation in host and device mode. The
++ actual speed depends on the speed of the attached device and the value of
++ phy_type.
++ - 0: High Speed (default)
++ - 1: Full Speed
++ </td></tr>
++
++ <tr>
++ <td>host_support_fs_ls_low_power</td>
++ <td>Specifies whether low power mode is supported when attached to a Full
++ Speed or Low Speed device in host mode.
++ - 0: Don't support low power mode (default)
++ - 1: Support low power mode
++ </td></tr>
++
++ <tr>
++ <td>host_ls_low_power_phy_clk</td>
++ <td>Specifies the PHY clock rate in low power mode when connected to a Low
++ Speed device in host mode. This parameter is applicable only if
++ HOST_SUPPORT_FS_LS_LOW_POWER is enabled.
++ - 0: 48 MHz (default)
++ - 1: 6 MHz
++ </td></tr>
++
++ <tr>
++ <td>enable_dynamic_fifo</td>
++ <td> Specifies whether FIFOs may be resized by the driver software.
++ - 0: Use cC FIFO size parameters
++ - 1: Allow dynamic FIFO sizing (default)
++ </td></tr>
++
++ <tr>
++ <td>data_fifo_size</td>
++ <td>Total number of 4-byte words in the data FIFO memory. This memory
++ includes the Rx FIFO, non-periodic Tx FIFO, and periodic Tx FIFOs.
++ - Values: 32 to 32768 (default 8192)
++
++ Note: The total FIFO memory depth in the FPGA configuration is 8192.
++ </td></tr>
++
++ <tr>
++ <td>dev_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in device mode when dynamic
++ FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1064)
++ </td></tr>
++
++ <tr>
++ <td>dev_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in device mode when
++ dynamic FIFO sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>dev_perio_tx_fifo_size_n (n = 1 to 15)</td>
++ <td>Number of 4-byte words in each of the periodic Tx FIFOs in device mode
++ when dynamic FIFO sizing is enabled.
++ - Values: 4 to 768 (default 256)
++ </td></tr>
++
++ <tr>
++ <td>host_rx_fifo_size</td>
++ <td>Number of 4-byte words in the Rx FIFO in host mode when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_nperio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the non-periodic Tx FIFO in host mode when
++ dynamic FIFO sizing is enabled in the core.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>host_perio_tx_fifo_size</td>
++ <td>Number of 4-byte words in the host periodic Tx FIFO when dynamic FIFO
++ sizing is enabled.
++ - Values: 16 to 32768 (default 1024)
++ </td></tr>
++
++ <tr>
++ <td>max_transfer_size</td>
++ <td>The maximum transfer size supported in bytes.
++ - Values: 2047 to 65,535 (default 65,535)
++ </td></tr>
++
++ <tr>
++ <td>max_packet_count</td>
++ <td>The maximum number of packets in a transfer.
++ - Values: 15 to 511 (default 511)
++ </td></tr>
++
++ <tr>
++ <td>host_channels</td>
++ <td>The number of host channel registers to use.
++ - Values: 1 to 16 (default 12)
++
++ Note: The FPGA configuration supports a maximum of 12 host channels.
++ </td></tr>
++
++ <tr>
++ <td>dev_endpoints</td>
++ <td>The number of endpoints in addition to EP0 available for device mode
++ operations.
++ - Values: 1 to 15 (default 6 IN and OUT)
++
++ Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
++ addition to EP0.
++ </td></tr>
++
++ <tr>
++ <td>phy_type</td>
++ <td>Specifies the type of PHY interface to use. By default, the driver will
++ automatically detect the phy_type.
++ - 0: Full Speed
++ - 1: UTMI+ (default, if available)
++ - 2: ULPI
++ </td></tr>
++
++ <tr>
++ <td>phy_utmi_width</td>
++ <td>Specifies the UTMI+ Data Width. This parameter is applicable for a
++ phy_type of UTMI+. Also, this parameter is applicable only if the
++ OTG_HSPHY_WIDTH cC parameter was set to "8 and 16 bits", meaning that the
++ core has been configured to work at either data path width.
++ - Values: 8 or 16 bits (default 16)
++ </td></tr>
++
++ <tr>
++ <td>phy_ulpi_ddr</td>
++ <td>Specifies whether the ULPI operates at double or single data rate. This
++ parameter is only applicable if phy_type is ULPI.
++ - 0: single data rate ULPI interface with 8 bit wide data bus (default)
++ - 1: double data rate ULPI interface with 4 bit wide data bus
++ </td></tr>
++
++ <tr>
++ <td>i2c_enable</td>
++ <td>Specifies whether to use the I2C interface for full speed PHY. This
++ parameter is only applicable if PHY_TYPE is FS.
++ - 0: Disabled (default)
++ - 1: Enabled
++ </td></tr>
++
++*/
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_plat.h b/drivers/usb/host/dwc_otg/dwc_otg_plat.h
+new file mode 100644
+index 0000000..93ef282
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_plat.h
+@@ -0,0 +1,236 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#if !defined(__DWC_OTG_PLAT_H__)
++#define __DWC_OTG_PLAT_H__
++
++#include <linux/types.h>
++#include <linux/slab.h>
++#include <linux/list.h>
++#include <linux/delay.h>
++#include <linux/device.h>
++#include <linux/io.h>
++
++#include <asm/octeon/octeon.h>
++#include <asm/octeon/cvmx-usbnx-defs.h>
++
++#define SZ_256K 0x00040000
++#ifndef CONFIG_64BIT
++#define OCTEON_USB_BASE_ADDRESS 0x80016F0010000000ull
++#endif
++
++/**
++ * @file
++ *
++ * This file contains the Platform Specific constants, interfaces
++ * (functions and macros) for Linux.
++ *
++ */
++
++/**
++ * Reads the content of a register.
++ *
++ * @_reg: address of register to read.
++ * Returns contents of the register.
++ *
++
++ * Usage:<br>
++ * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
++ */
++static inline uint32_t dwc_read_reg32(uint32_t *_reg)
++{
++	uint32_t result;
++	/* USB device registers on Octeon are 32bit address swapped */
++#ifdef CONFIG_64BIT
++	uint64_t address = (unsigned long)_reg ^ 4;
++#else
++	uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4);
++#endif
++	result = cvmx_read64_uint32(address);
++	return result;
++};
++
++/**
++ * Writes a register with a 32 bit value.
++ *
++ * @_reg: address of register to read.
++ * @_value: to write to _reg.
++ *
++ * Usage:<br>
++ * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
++ */
++static inline void dwc_write_reg32(uint32_t *_reg,
++				   const uint32_t _value)
++{
++	/* USB device registers on Octeon are 32bit address swapped */
++#ifdef CONFIG_64BIT
++	uint64_t address = (unsigned long)_reg ^ 4;
++#else
++	uint64_t address = OCTEON_USB_BASE_ADDRESS | ((unsigned long)_reg ^ 4);
++#endif
++	wmb();
++	cvmx_write64_uint32(address, _value);
++
++#ifdef CONFIG_CPU_CAVIUM_OCTEON
++	/* O2P/O1P pass 1 bug workaround: A read must occur for at least
++	   every 3rd write to insure that the writes do not overrun the
++	   USBN. */
++	if (OCTEON_IS_MODEL(OCTEON_CN31XX) || OCTEON_IS_MODEL(OCTEON_CN30XX)) {
++		extern int dwc_errata_write_count;
++		if (++dwc_errata_write_count > 2) {
++			cvmx_read_csr(CVMX_USBNX_DMA0_INB_CHN0(0));
++			dwc_errata_write_count = 0;
++		}
++	}
++#endif
++};
++
++/**
++ * This function modifies bit values in a register.  Using the
++ * algorithm: (reg_contents & ~clear_mask) | set_mask.
++ *
++ * @_reg: address of register to read.
++ * @_clear_mask: bit mask to be cleared.
++ * @_set_mask: bit mask to be set.
++ *
++ * Usage:<br>
++ * <code> // Clear the SOF Interrupt Mask bit and <br>
++ * // set the OTG Interrupt mask bit, leaving all others as they were.
++ *    dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
++ */
++static inline void dwc_modify_reg32(uint32_t *_reg,
++				    const uint32_t _clear_mask,
++				    const uint32_t _set_mask)
++{
++	uint32_t value = dwc_read_reg32(_reg);
++	value &= ~_clear_mask;
++	value |= _set_mask;
++	dwc_write_reg32(_reg, value);
++};
++
++/*
++ * Debugging support vanishes in non-debug builds.
++ */
++
++/**
++ * The Debug Level bit-mask variable.
++ */
++extern uint32_t g_dbg_lvl;
++/**
++ * Set the Debug Level variable.
++ */
++static inline uint32_t SET_DEBUG_LEVEL(const uint32_t _new)
++{
++	uint32_t old = g_dbg_lvl;
++	g_dbg_lvl = _new;
++	return old;
++}
++
++/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
++#define DBG_CIL		(0x2)
++/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
++ * messages */
++#define DBG_CILV	(0x20)
++/**  When debug level has the DBG_PCD bit set, display PCD (Device) debug
++ *  messages */
++#define DBG_PCD		(0x4)
++/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
++ * messages */
++#define DBG_PCDV	(0x40)
++/** When debug level has the DBG_HCD bit set, display Host debug messages */
++#define DBG_HCD		(0x8)
++/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
++ * messages */
++#define DBG_HCDV	(0x80)
++/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
++ *  mode. */
++#define DBG_HCD_URB	(0x800)
++
++/** When debug level has any bit set, display debug messages */
++#define DBG_ANY		(0xFF)
++
++/** All debug messages off */
++#define DBG_OFF		0
++
++/** Prefix string for DWC_DEBUG print macros. */
++#define USB_DWC "DWC_otg: "
++
++/**
++ * Print a debug message when the Global debug level variable contains
++ * the bit defined in <code>lvl</code>.
++ *
++ * @lvl: - Debug level, use one of the DBG_ constants above.
++ * @x: - like printf
++ *
++ *    Example:<p>
++ * <code>
++ *      DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
++ * </code>
++ * <br>
++ * results in:<br>
++ * <code>
++ * usb-DWC_otg: dwc_otg_cil_init(ca867000)
++ * </code>
++ */
++#ifdef DEBUG
++
++# define DWC_DEBUGPL(lvl, x...)						\
++	do {								\
++		if ((lvl)&g_dbg_lvl)					\
++			printk(KERN_DEBUG USB_DWC x);			\
++	} while (0)
++# define DWC_DEBUGP(x...)	DWC_DEBUGPL(DBG_ANY, x)
++
++# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
++
++#else
++
++# define DWC_DEBUGPL(lvl, x...) do { } while (0)
++# define DWC_DEBUGP(x...)
++
++# define CHK_DEBUG_LEVEL(level) (0)
++
++#endif /*DEBUG*/
++/*
++ * Print an Error message.
++ */
++#define DWC_ERROR(x...) printk(KERN_ERR USB_DWC x)
++/*
++ * Print a Warning message.
++ */
++#define DWC_WARN(x...) printk(KERN_WARNING USB_DWC x)
++/*
++ * Print a notice (normal but significant message).
++ */
++#define DWC_NOTICE(x...) printk(KERN_NOTICE USB_DWC x)
++/*
++ *  Basic message printing.
++ */
++#define DWC_PRINT(x...) printk(KERN_INFO USB_DWC x)
++#endif
+diff --git a/drivers/usb/host/dwc_otg/dwc_otg_regs.h b/drivers/usb/host/dwc_otg/dwc_otg_regs.h
+new file mode 100644
+index 0000000..34cc4f7
+--- /dev/null
++++ b/drivers/usb/host/dwc_otg/dwc_otg_regs.h
+@@ -0,0 +1,2355 @@
++/* ==========================================================================
++ *
++ * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
++ * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
++ * otherwise expressly agreed to in writing between Synopsys and you.
++ *
++ * The Software IS NOT an item of Licensed Software or Licensed Product under
++ * any End User Software License Agreement or Agreement for Licensed Product
++ * with Synopsys or any supplement thereto. You are permitted to use and
++ * redistribute this Software in source and binary forms, with or without
++ * modification, provided that redistributions of source code must retain this
++ * notice. You may not view, use, disclose, copy or distribute this file or
++ * any information contained herein except pursuant to this license grant from
++ * Synopsys. If you do not agree with this notice, including the disclaimer
++ * below, then you are not authorized to use the Software.
++ *
++ * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
++ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
++ * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
++ * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
++ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
++ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
++ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
++ * DAMAGE.
++ * ========================================================================== */
++
++#ifndef __DWC_OTG_REGS_H__
++#define __DWC_OTG_REGS_H__
++
++/*
++ *
++ * This file contains the data structures for accessing the DWC_otg
++ * core registers.
++ *
++ * The application interfaces with the HS OTG core by reading from and
++ * writing to the Control and Status Register (CSR) space through the
++ * AHB Slave interface. These registers are 32 bits wide, and the
++ * addresses are 32-bit-block aligned.
++ * CSRs are classified as follows:
++ * - Core Global Registers
++ * - Device Mode Registers
++ * - Device Global Registers
++ * - Device Endpoint Specific Registers
++ * - Host Mode Registers
++ * - Host Global Registers
++ * - Host Port CSRs
++ * - Host Channel Specific Registers
++ *
++ * Only the Core Global registers can be accessed in both Device and
++ * Host modes. When the HS OTG core is operating in one mode, either
++ * Device or Host, the application must not access registers from the
++ * other mode. When the core switches from one mode to another, the
++ * registers in the new mode of operation must be reprogrammed as they
++ * would be after a power-on reset.
++ */
++
++/****************************************************************************/
++/* DWC_otg Core registers .
++ * The dwc_otg_core_global_regs structure defines the size
++ * and relative field offsets for the Core Global registers.
++ */
++struct dwc_otg_core_global_regs {
++	/* OTG Control and Status Register.  Offset: 000h */
++	uint32_t gotgctl;
++	/* OTG Interrupt Register.  Offset: 004h */
++	uint32_t gotgint;
++	/* Core AHB Configuration Register.  Offset: 008h */
++	uint32_t gahbcfg;
++#define DWC_GLBINTRMASK 	0x0001
++#define DWC_DMAENABLE   	0x0020
++#define DWC_NPTXEMPTYLVL_EMPTY 	0x0080
++#define DWC_NPTXEMPTYLVL_HALFEMPTY 	0x0000
++#define DWC_PTXEMPTYLVL_EMPTY 	0x0100
++#define DWC_PTXEMPTYLVL_HALFEMPTY 	0x0000
++
++	/* Core USB Configuration Register.  Offset: 00Ch */
++	uint32_t gusbcfg;
++	/* Core Reset Register.  Offset: 010h */
++	uint32_t grstctl;
++	/* Core Interrupt Register.  Offset: 014h */
++	uint32_t gintsts;
++	/* Core Interrupt Mask Register.  Offset: 018h */
++	uint32_t gintmsk;
++	/* Receive Status Queue Read Register (Read Only).  Offset: 01Ch */
++	uint32_t grxstsr;
++	/* Receive Status Queue Read & POP Register (Read Only).  Offset: 020h*/
++	uint32_t grxstsp;
++	/* Receive FIFO Size Register.  Offset: 024h */
++	uint32_t grxfsiz;
++	/* Non Periodic Transmit FIFO Size Register.  Offset: 028h */
++	uint32_t gnptxfsiz;
++	/*
++	 *Non Periodic Transmit FIFO/Queue Status Register (Read
++	 * Only). Offset: 02Ch
++	 */
++	uint32_t gnptxsts;
++	/* I2C Access Register.  Offset: 030h */
++	uint32_t gi2cctl;
++	/* PHY Vendor Control Register.  Offset: 034h */
++	uint32_t gpvndctl;
++	/* General Purpose Input/Output Register.  Offset: 038h */
++	uint32_t ggpio;
++	/* User ID Register.  Offset: 03Ch */
++	uint32_t guid;
++	/* Synopsys ID Register (Read Only).  Offset: 040h */
++	uint32_t gsnpsid;
++	/* User HW Config1 Register (Read Only).  Offset: 044h */
++	uint32_t ghwcfg1;
++	/* User HW Config2 Register (Read Only).  Offset: 048h */
++	uint32_t ghwcfg2;
++#define DWC_SLAVE_ONLY_ARCH 0
++#define DWC_EXT_DMA_ARCH 1
++#define DWC_INT_DMA_ARCH 2
++
++#define DWC_MODE_HNP_SRP_CAPABLE 	0
++#define DWC_MODE_SRP_ONLY_CAPABLE 	1
++#define DWC_MODE_NO_HNP_SRP_CAPABLE 	2
++#define DWC_MODE_SRP_CAPABLE_DEVICE 	3
++#define DWC_MODE_NO_SRP_CAPABLE_DEVICE  4
++#define DWC_MODE_SRP_CAPABLE_HOST 	5
++#define DWC_MODE_NO_SRP_CAPABLE_HOST  	6
++
++	/* User HW Config3 Register (Read Only).  Offset: 04Ch */
++	uint32_t ghwcfg3;
++	/* User HW Config4 Register (Read Only).  Offset: 050h*/
++	uint32_t ghwcfg4;
++	/* Reserved  Offset: 054h-0FFh */
++	uint32_t reserved[43];
++	/* Host Periodic Transmit FIFO Size Register. Offset: 100h */
++	uint32_t hptxfsiz;
++	/*
++	 * Device Periodic Transmit FIFO#n Register.
++	 * Offset: 104h + (FIFO_Number-1)*04h,
++	 * 1 <= FIFO Number <= 15 (1<=n<=15).
++	 */
++	uint32_t dptxfsiz[15];
++};
++
++/*
++ * This union represents the bit fields of the Core OTG Control
++ * and Status Register (GOTGCTL).  Set the bits using the bit
++ * fields then write the d32 value to the register.
++ */
++union gotgctl_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved21_31:11;
++		unsigned currmod:1;
++		unsigned bsesvld:1;
++		unsigned asesvld:1;
++		unsigned reserved17:1;
++		unsigned conidsts:1;
++		unsigned reserved12_15:4;
++		unsigned devhnpen:1;
++		unsigned hstsethnpen:1;
++		unsigned hnpreq:1;
++		unsigned hstnegscs:1;
++		unsigned reserved2_7:6;
++		unsigned sesreq:1;
++		unsigned sesreqscs:1;
++#else
++		unsigned sesreqscs:1;
++		unsigned sesreq:1;
++		unsigned reserved2_7:6;
++		unsigned hstnegscs:1;
++		unsigned hnpreq:1;
++		unsigned hstsethnpen:1;
++		unsigned devhnpen:1;
++		unsigned reserved12_15:4;
++		unsigned conidsts:1;
++		unsigned reserved17:1;
++		unsigned asesvld:1;
++		unsigned bsesvld:1;
++		unsigned currmod:1;
++		unsigned reserved21_31:11;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields of the Core OTG Interrupt Register
++ * (GOTGINT).  Set/clear the bits using the bit fields then write the d32
++ * value to the register.
++ */
++union gotgint_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved31_20:12;
++		unsigned debdone:1;
++		unsigned adevtoutchng:1;
++		unsigned hstnegdet:1;
++		unsigned reserver10_16:7;
++		unsigned hstnegsucstschng:1;
++		unsigned sesreqsucstschng:1;
++		unsigned reserved3_7:5;
++		unsigned sesenddet:1;
++		unsigned reserved0_1:2;
++#else
++
++		/* Current Mode */
++		unsigned reserved0_1:2;
++
++		/* Session End Detected */
++		unsigned sesenddet:1;
++
++		unsigned reserved3_7:5;
++
++		/* Session Request Success Status Change */
++		unsigned sesreqsucstschng:1;
++		/* Host Negotiation Success Status Change */
++		unsigned hstnegsucstschng:1;
++
++		unsigned reserver10_16:7;
++
++		/* Host Negotiation Detected */
++		unsigned hstnegdet:1;
++		/* A-Device Timeout Change */
++		unsigned adevtoutchng:1;
++		/* Debounce Done */
++		unsigned debdone:1;
++
++		unsigned reserved31_20:12;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields of the Core AHB Configuration
++ * Register (GAHBCFG).  Set/clear the bits using the bit fields then
++ * write the d32 value to the register.
++ */
++union gahbcfg_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY	0
++#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 		1
++#define DWC_GAHBCFG_DMAENABLE   		1
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 	7
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 	5
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 	3
++#define DWC_GAHBCFG_INT_DMA_BURST_INCR 		1
++#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 	0
++#define DWC_GAHBCFG_GLBINT_ENABLE 		1
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved9_31:23;
++		unsigned ptxfemplvl:1;
++		unsigned nptxfemplvl:1;
++		unsigned reserved:1;
++		unsigned dmaenable:1;
++		unsigned hburstlen:4;
++		unsigned glblintrmsk:1;
++#else
++		unsigned glblintrmsk:1;
++		unsigned hburstlen:4;
++		unsigned dmaenable:1;
++		unsigned reserved:1;
++		unsigned nptxfemplvl:1;
++		unsigned ptxfemplvl:1;
++		unsigned reserved9_31:23;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields of the Core USB Configuration
++ * Register (GUSBCFG).  Set the bits using the bit fields then write
++ * the d32 value to the register.
++ */
++union gusbcfg_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:9;
++		unsigned term_sel_dl_pulse:1;
++		unsigned ulpi_int_vbus_indicator:1;
++		unsigned ulpi_ext_vbus_drv:1;
++		unsigned ulpi_clk_sus_m:1;
++		unsigned ulpi_auto_res:1;
++		unsigned ulpi_fsls:1;
++		unsigned otgutmifssel:1;
++		unsigned phylpwrclksel:1;
++		unsigned nptxfrwnden:1;
++		unsigned usbtrdtim:4;
++		unsigned hnpcap:1;
++		unsigned srpcap:1;
++		unsigned ddrsel:1;
++		unsigned physel:1;
++		unsigned fsintf:1;
++		unsigned ulpi_utmi_sel:1;
++		unsigned phyif:1;
++		unsigned toutcal:3;
++#else
++		unsigned toutcal:3;
++		unsigned phyif:1;
++		unsigned ulpi_utmi_sel:1;
++		unsigned fsintf:1;
++		unsigned physel:1;
++		unsigned ddrsel:1;
++		unsigned srpcap:1;
++		unsigned hnpcap:1;
++		unsigned usbtrdtim:4;
++		unsigned nptxfrwnden:1;
++		unsigned phylpwrclksel:1;
++		unsigned otgutmifssel:1;
++		unsigned ulpi_fsls:1;
++		unsigned ulpi_auto_res:1;
++		unsigned ulpi_clk_sus_m:1;
++		unsigned ulpi_ext_vbus_drv:1;
++		unsigned ulpi_int_vbus_indicator:1;
++		unsigned term_sel_dl_pulse:1;
++		unsigned reserved:9;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields of the Core Reset Register
++ * (GRSTCTL).  Set/clear the bits using the bit fields then write the
++ * d32 value to the register.
++ */
++union grstctl_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned ahbidle:1;
++		unsigned dmareq:1;
++		unsigned reserved11_29:19;
++		unsigned txfnum:5;
++		unsigned txfflsh:1;
++		unsigned rxfflsh:1;
++		unsigned intknqflsh:1;
++		unsigned hstfrm:1;
++		unsigned hsftrst:1;
++		unsigned csftrst:1;
++#else
++
++		/*
++		 * Core Soft Reset (CSftRst) (Device and Host)
++		 *
++		 * The application can flush the control logic in the
++		 * entire core using this bit. This bit resets the
++		 * pipelines in the AHB Clock domain as well as the
++		 * PHY Clock domain.
++		 *
++		 * The state machines are reset to an IDLE state, the
++		 * control bits in the CSRs are cleared, all the
++		 * transmit FIFOs and the receive FIFO are flushed.
++		 *
++		 * The status mask bits that control the generation of
++		 * the interrupt, are cleared, to clear the
++		 * interrupt. The interrupt status bits are not
++		 * cleared, so the application can get the status of
++		 * any events that occurred in the core after it has
++		 * set this bit.
++		 *
++		 * Any transactions on the AHB are terminated as soon
++		 * as possible following the protocol. Any
++		 * transactions on the USB are terminated immediately.
++		 *
++		 * The configuration settings in the CSRs are
++		 * unchanged, so the software doesn't have to
++		 * reprogram these registers (Device
++		 * Configuration/Host Configuration/Core System
++		 * Configuration/Core PHY Configuration).
++		 *
++		 * The application can write to this bit, any time it
++		 * wants to reset the core. This is a self clearing
++		 * bit and the core clears this bit after all the
++		 * necessary logic is reset in the core, which may
++		 * take several clocks, depending on the current state
++		 * of the core.
++		 */
++		unsigned csftrst:1;
++		/*
++		 * Hclk Soft Reset
++		 *
++		 * The application uses this bit to reset the control logic in
++		 * the AHB clock domain. Only AHB clock domain pipelines are
++		 * reset.
++		 */
++		unsigned hsftrst:1;
++		/*
++		 * Host Frame Counter Reset (Host Only)<br>
++		 *
++		 * The application can reset the (micro)frame number
++		 * counter inside the core, using this bit. When the
++		 * (micro)frame counter is reset, the subsequent SOF
++		 * sent out by the core, will have a (micro)frame
++		 * number of 0.
++		 */
++		unsigned hstfrm:1;
++		/*
++		 * In Token Sequence Learning Queue Flush
++		 * (INTknQFlsh) (Device Only)
++		 */
++		unsigned intknqflsh:1;
++		/*
++		 * RxFIFO Flush (RxFFlsh) (Device and Host)
++		 *
++		 * The application can flush the entire Receive FIFO
++		 * using this bit.  <p>The application must first
++		 * ensure that the core is not in the middle of a
++		 * transaction.  <p>The application should write into
++		 * this bit, only after making sure that neither the
++		 * DMA engine is reading from the RxFIFO nor the MAC
++		 * is writing the data in to the FIFO.  <p>The
++		 * application should wait until the bit is cleared
++		 * before performing any other operations. This bit
++		 * will takes 8 clocks (slowest of PHY or AHB clock)
++		 * to clear.
++		 */
++		unsigned rxfflsh:1;
++		/*
++		 * TxFIFO Flush (TxFFlsh) (Device and Host).
++		 *
++		 * This bit is used to selectively flush a single or
++		 * all transmit FIFOs.  The application must first
++		 * ensure that the core is not in the middle of a
++		 * transaction.  <p>The application should write into
++		 * this bit, only after making sure that neither the
++		 * DMA engine is writing into the TxFIFO nor the MAC
++		 * is reading the data out of the FIFO.  <p>The
++		 * application should wait until the core clears this
++		 * bit, before performing any operations. This bit
++		 * will takes 8 clocks (slowest of PHY or AHB clock)
++		 * to clear.
++		 */
++		unsigned txfflsh:1;
++
++		/*
++		 * TxFIFO Number (TxFNum) (Device and Host).
++		 *
++		 * This is the FIFO number which needs to be flushed,
++		 * using the TxFIFO Flush bit. This field should not
++		 * be changed until the TxFIFO Flush bit is cleared by
++		 * the core.
++		 *   - 0x0:Non Periodic TxFIFO Flush
++		 *   - 0x1:Periodic TxFIFO #1 Flush in device mode
++		 *     or Periodic TxFIFO in host mode
++		 *   - 0x2:Periodic TxFIFO #2 Flush in device mode.
++		 *   - ...
++		 *   - 0xF:Periodic TxFIFO #15 Flush in device mode
++		 *   - 0x10: Flush all the Transmit NonPeriodic and
++		 *     Transmit Periodic FIFOs in the core
++		 */
++		unsigned txfnum:5;
++		/* Reserved */
++		unsigned reserved11_29:19;
++		/*
++		 * DMA Request Signal.  Indicated DMA request is in
++		 * probress.  Used for debug purpose.
++		 */
++		unsigned dmareq:1;
++		/*
++		 * AHB Master Idle.  Indicates the AHB Master State
++		 * Machine is in IDLE condition.
++		 */
++		unsigned ahbidle:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields of the Core Interrupt Mask
++ * Register (GINTMSK).  Set/clear the bits using the bit fields then
++ * write the d32 value to the register.
++ */
++union gintmsk_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned wkupintr:1;
++		unsigned sessreqintr:1;
++		unsigned disconnect:1;
++		unsigned conidstschng:1;
++		unsigned reserved27:1;
++		unsigned ptxfempty:1;
++		unsigned hcintr:1;
++		unsigned portintr:1;
++		unsigned reserved22_23:2;
++		unsigned incomplisoout:1;
++		unsigned incomplisoin:1;
++		unsigned outepintr:1;
++		unsigned inepintr:1;
++		unsigned epmismatch:1;
++		unsigned reserved16:1;
++		unsigned eopframe:1;
++		unsigned isooutdrop:1;
++		unsigned enumdone:1;
++		unsigned usbreset:1;
++		unsigned usbsuspend:1;
++		unsigned erlysuspend:1;
++		unsigned i2cintr:1;
++		unsigned reserved8:1;
++		unsigned goutnakeff:1;
++		unsigned ginnakeff:1;
++		unsigned nptxfempty:1;
++		unsigned rxstsqlvl:1;
++		unsigned sofintr:1;
++		unsigned otgintr:1;
++		unsigned modemismatch:1;
++		unsigned reserved0:1;
++#else
++		unsigned reserved0:1;
++		unsigned modemismatch:1;
++		unsigned otgintr:1;
++		unsigned sofintr:1;
++		unsigned rxstsqlvl:1;
++		unsigned nptxfempty:1;
++		unsigned ginnakeff:1;
++		unsigned goutnakeff:1;
++		unsigned reserved8:1;
++		unsigned i2cintr:1;
++		unsigned erlysuspend:1;
++		unsigned usbsuspend:1;
++		unsigned usbreset:1;
++		unsigned enumdone:1;
++		unsigned isooutdrop:1;
++		unsigned eopframe:1;
++		unsigned reserved16:1;
++		unsigned epmismatch:1;
++		unsigned inepintr:1;
++		unsigned outepintr:1;
++		unsigned incomplisoin:1;
++		unsigned incomplisoout:1;
++		unsigned reserved22_23:2;
++		unsigned portintr:1;
++		unsigned hcintr:1;
++		unsigned ptxfempty:1;
++		unsigned reserved27:1;
++		unsigned conidstschng:1;
++		unsigned disconnect:1;
++		unsigned sessreqintr:1;
++		unsigned wkupintr:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields of the Core Interrupt Register
++ * (GINTSTS).  Set/clear the bits using the bit fields then write the
++ * d32 value to the register.
++ */
++union gintsts_data {
++	/* raw register data */
++	uint32_t d32;
++#define DWC_SOF_INTR_MASK 0x0008
++
++	/* register bits */
++	struct {
++#define DWC_HOST_MODE 1
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned wkupintr:1;
++		unsigned sessreqintr:1;
++		unsigned disconnect:1;
++		unsigned conidstschng:1;
++		unsigned reserved27:1;
++		unsigned ptxfempty:1;
++		unsigned hcintr:1;
++		unsigned portintr:1;
++		unsigned reserved22_23:2;
++		unsigned incomplisoout:1;
++		unsigned incomplisoin:1;
++		unsigned outepintr:1;
++		unsigned inepint:1;
++		unsigned epmismatch:1;
++		unsigned intokenrx:1;
++		unsigned eopframe:1;
++		unsigned isooutdrop:1;
++		unsigned enumdone:1;
++		unsigned usbreset:1;
++		unsigned usbsuspend:1;
++		unsigned erlysuspend:1;
++		unsigned i2cintr:1;
++		unsigned reserved8:1;
++		unsigned goutnakeff:1;
++		unsigned ginnakeff:1;
++		unsigned nptxfempty:1;
++		unsigned rxstsqlvl:1;
++		unsigned sofintr:1;
++		unsigned otgintr:1;
++		unsigned modemismatch:1;
++		unsigned curmode:1;
++#else
++		unsigned curmode:1;
++		unsigned modemismatch:1;
++		unsigned otgintr:1;
++		unsigned sofintr:1;
++		unsigned rxstsqlvl:1;
++		unsigned nptxfempty:1;
++		unsigned ginnakeff:1;
++		unsigned goutnakeff:1;
++		unsigned reserved8:1;
++		unsigned i2cintr:1;
++		unsigned erlysuspend:1;
++		unsigned usbsuspend:1;
++		unsigned usbreset:1;
++		unsigned enumdone:1;
++		unsigned isooutdrop:1;
++		unsigned eopframe:1;
++		unsigned intokenrx:1;
++		unsigned epmismatch:1;
++		unsigned inepint:1;
++		unsigned outepintr:1;
++		unsigned incomplisoin:1;
++		unsigned incomplisoout:1;
++		unsigned reserved22_23:2;
++		unsigned portintr:1;
++		unsigned hcintr:1;
++		unsigned ptxfempty:1;
++		unsigned reserved27:1;
++		unsigned conidstschng:1;
++		unsigned disconnect:1;
++		unsigned sessreqintr:1;
++		unsigned wkupintr:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Device Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
++ * element then read out the bits using the bit elements.
++ */
++union device_grxsts_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#define DWC_DSTS_SETUP_UPDT	0x6	/* SETUP Packet */
++#define DWC_DSTS_SETUP_COMP 	0x4	/* Setup Phase Complete */
++#define DWC_DSTS_GOUT_NAK   	0x1	/* Global OUT NAK */
++#define DWC_STS_XFER_COMP   	0x3	/* OUT Data Transfer Complete */
++#define DWC_STS_DATA_UPDT   	0x2	/* OUT Data Packet */
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:7;
++		unsigned fn:4;
++		unsigned pktsts:4;
++		unsigned dpid:2;
++		unsigned bcnt:11;
++		unsigned epnum:4;
++#else
++		unsigned epnum:4;
++		unsigned bcnt:11;
++		unsigned dpid:2;
++		unsigned pktsts:4;
++		unsigned fn:4;
++		unsigned reserved:7;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Host Receive Status Read and
++ * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the d32
++ * element then read out the bits using the bit elements.
++ */
++union host_grxsts_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#define DWC_GRXSTS_PKTSTS_CH_HALTED       0x7
++#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
++#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP    0x3
++#define DWC_GRXSTS_PKTSTS_IN              0x2
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:11;
++		unsigned pktsts:4;
++		unsigned dpid:2;
++		unsigned bcnt:11;
++		unsigned chnum:4;
++#else
++		unsigned chnum:4;
++		unsigned bcnt:11;
++		unsigned dpid:2;
++		unsigned pktsts:4;
++		unsigned reserved:11;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
++ * GNPTXFSIZ, DPTXFSIZn). Read the register into the d32 element then
++ * read out the bits using the bit elements.
++ */
++union fifosize_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned depth:16;
++		unsigned startaddr:16;
++#else
++		unsigned startaddr:16;
++		unsigned depth:16;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Non-Periodic Transmit
++ * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
++ * d32 element then read out the bits using the bit
++ * elements.
++ */
++union gnptxsts_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:1;
++		unsigned nptxqtop_chnep:4;
++		unsigned nptxqtop_token:2;
++		unsigned nptxqtop_terminate:1;
++		unsigned nptxqspcavail:8;
++		unsigned nptxfspcavail:16;
++#else
++		unsigned nptxfspcavail:16;
++		unsigned nptxqspcavail:8;
++		/*
++		 * Top of the Non-Periodic Transmit Request Queue
++		 *  - bit 24 - Terminate (Last entry for the selected
++		 *    channel/EP)
++		 *  - bits 26:25 - Token Type
++		 *    - 2'b00 - IN/OUT
++		 *    - 2'b01 - Zero Length OUT
++		 *    - 2'b10 - PING/Complete Split
++		 *    - 2'b11 - Channel Halt
++		 *  - bits 30:27 - Channel/EP Number
++		 */
++		unsigned nptxqtop_terminate:1;
++		unsigned nptxqtop_token:2;
++		unsigned nptxqtop_chnep:4;
++		unsigned reserved:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the I2C Control Register
++ * (I2CCTL). Read the register into the d32 element then read out the
++ * bits using the bit elements.
++ */
++union gi2cctl_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned bsydne:1;
++		unsigned rw:1;
++		unsigned reserved:2;
++		unsigned i2cdevaddr:2;
++		unsigned i2csuspctl:1;
++		unsigned ack:1;
++		unsigned i2cen:1;
++		unsigned addr:7;
++		unsigned regaddr:8;
++		unsigned rwdata:8;
++#else
++		unsigned rwdata:8;
++		unsigned regaddr:8;
++		unsigned addr:7;
++		unsigned i2cen:1;
++		unsigned ack:1;
++		unsigned i2csuspctl:1;
++		unsigned i2cdevaddr:2;
++		unsigned reserved:2;
++		unsigned rw:1;
++		unsigned bsydne:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the User HW Config1
++ * Register.  Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg1_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned ep_dir15:2;
++		unsigned ep_dir14:2;
++		unsigned ep_dir13:2;
++		unsigned ep_dir12:2;
++		unsigned ep_dir11:2;
++		unsigned ep_dir10:2;
++		unsigned ep_dir9:2;
++		unsigned ep_dir8:2;
++		unsigned ep_dir7:2;
++		unsigned ep_dir6:2;
++		unsigned ep_dir5:2;
++		unsigned ep_dir4:2;
++		unsigned ep_dir3:2;
++		unsigned ep_dir2:2;
++		unsigned ep_dir1:2;
++		unsigned ep_dir0:2;
++#else
++		unsigned ep_dir0:2;
++		unsigned ep_dir1:2;
++		unsigned ep_dir2:2;
++		unsigned ep_dir3:2;
++		unsigned ep_dir4:2;
++		unsigned ep_dir5:2;
++		unsigned ep_dir6:2;
++		unsigned ep_dir7:2;
++		unsigned ep_dir8:2;
++		unsigned ep_dir9:2;
++		unsigned ep_dir10:2;
++		unsigned ep_dir11:2;
++		unsigned ep_dir12:2;
++		unsigned ep_dir13:2;
++		unsigned ep_dir14:2;
++		unsigned ep_dir15:2;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the User HW Config2
++ * Register.  Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg2_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
++#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
++#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
++#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
++#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
++#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
++#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
++#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
++#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved31:1;
++		unsigned dev_token_q_depth:5;
++		unsigned host_perio_tx_q_depth:2;
++		unsigned nonperio_tx_q_depth:2;
++		unsigned rx_status_q_depth:2;
++		unsigned dynamic_fifo:1;
++		unsigned perio_ep_supported:1;
++		unsigned num_host_chan:4;
++		unsigned num_dev_ep:4;
++		unsigned fs_phy_type:2;
++		unsigned hs_phy_type:2;
++		unsigned point2point:1;
++		unsigned architecture:2;
++		unsigned op_mode:3;
++#else
++		unsigned op_mode:3;
++		unsigned architecture:2;
++		unsigned point2point:1;
++		unsigned hs_phy_type:2;
++		unsigned fs_phy_type:2;
++		unsigned num_dev_ep:4;
++		unsigned num_host_chan:4;
++		unsigned perio_ep_supported:1;
++		unsigned dynamic_fifo:1;
++		unsigned rx_status_q_depth:2;
++		unsigned nonperio_tx_q_depth:2;
++		unsigned host_perio_tx_q_depth:2;
++		unsigned dev_token_q_depth:5;
++		unsigned reserved31:1;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the User HW Config3
++ * Register.  Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg3_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++		/* GHWCFG3 */
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned dfifo_depth:16;
++		unsigned reserved15_13:3;
++		unsigned ahb_phy_clock_synch:1;
++		unsigned synch_reset_type:1;
++		unsigned optional_features:1;
++		unsigned vendor_ctrl_if:1;
++		unsigned i2c:1;
++		unsigned otg_func:1;
++		unsigned packet_size_cntr_width:3;
++		unsigned xfer_size_cntr_width:4;
++#else
++		unsigned xfer_size_cntr_width:4;
++		unsigned packet_size_cntr_width:3;
++		unsigned otg_func:1;
++		unsigned i2c:1;
++		unsigned vendor_ctrl_if:1;
++		unsigned optional_features:1;
++		unsigned synch_reset_type:1;
++		unsigned ahb_phy_clock_synch:1;
++		unsigned reserved15_13:3;
++		unsigned dfifo_depth:16;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the User HW Config4
++ * Register.  Read the register into the d32 element then read
++ * out the bits using the bit elements.
++ */
++union hwcfg4_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved31_25:7;
++		unsigned session_end_filt_en:1;
++		unsigned b_valid_filt_en:1;
++		unsigned a_valid_filt_en:1;
++		unsigned vbus_valid_filt_en:1;
++		unsigned iddig_filt_en:1;
++		unsigned num_dev_mode_ctrl_ep:4;
++		unsigned utmi_phy_data_width:2;
++		unsigned min_ahb_freq:9;
++		unsigned power_optimiz:1;
++		unsigned num_dev_perio_in_ep:4;
++#else
++		unsigned num_dev_perio_in_ep:4;
++		unsigned power_optimiz:1;
++		unsigned min_ahb_freq:9;
++		unsigned utmi_phy_data_width:2;
++		unsigned num_dev_mode_ctrl_ep:4;
++		unsigned iddig_filt_en:1;
++		unsigned vbus_valid_filt_en:1;
++		unsigned a_valid_filt_en:1;
++		unsigned b_valid_filt_en:1;
++		unsigned session_end_filt_en:1;
++		unsigned reserved31_25:7;
++#endif
++	} b;
++};
++
++
++/*
++ * Device Global Registers. Offsets 800h-BFFh
++ *
++ * The following structures define the size and relative field offsets
++ * for the Device Mode Registers.
++ *
++ * These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.
++ */
++struct dwc_otg_dev_global_regs {
++	/* Device Configuration Register. Offset 800h */
++	uint32_t dcfg;
++	/* Device Control Register. Offset: 804h */
++	uint32_t dctl;
++	/* Device Status Register (Read Only). Offset: 808h */
++	uint32_t dsts;
++	/* Reserved. Offset: 80Ch */
++	uint32_t unused;
++	/*
++	 * Device IN Endpoint Common Interrupt Mask  Register. Offset: 810h
++	 */
++	uint32_t diepmsk;
++	/*
++	 * Device OUT Endpoint Common Interrupt Mask
++	 * Register. Offset: 814h
++	 */
++	uint32_t doepmsk;
++	/*
++	 * Device All Endpoints Interrupt Register.  Offset: 818h
++	 */
++	uint32_t daint;
++	/*
++	 * Device All Endpoints Interrupt Mask Register.  Offset:
++	 * 81Ch
++	 */
++	uint32_t daintmsk;
++	/*
++	 * Device IN Token Queue Read Register-1 (Read Only).
++	 * Offset: 820h
++	 */
++	uint32_t dtknqr1;
++	/*
++	 * Device IN Token Queue Read Register-2 (Read Only).
++	 * Offset: 824h
++	 */
++	uint32_t dtknqr2;
++	/*
++	 * Device VBUS  discharge Register.  Offset: 828h
++	 */
++	uint32_t dvbusdis;
++	/*
++	 * Device VBUS Pulse Register.  Offset: 82Ch
++	 */
++	uint32_t dvbuspulse;
++	/*
++	 * Device IN Token Queue Read Register-3 (Read Only).
++	 * Offset: 830h
++	 */
++	uint32_t dtknqr3;
++	/*
++	 * Device IN Token Queue Read Register-4 (Read Only).
++	 * Offset: 834h
++	 */
++	uint32_t dtknqr4;
++};
++
++/*
++ * This union represents the bit fields in the Device Configuration
++ * Register.  Read the register into the d32 member then
++ * set/clear the bits using the bit elements.  Write the
++ * d32 member to the dcfg register.
++ */
++union dcfg_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#define DWC_DCFG_FRAME_INTERVAL_95 3
++#define DWC_DCFG_FRAME_INTERVAL_90 2
++#define DWC_DCFG_FRAME_INTERVAL_85 1
++#define DWC_DCFG_FRAME_INTERVAL_80 0
++#define DWC_DCFG_SEND_STALL 1
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved9:10;
++		unsigned epmscnt:4;
++		unsigned reserved13_17:5;
++		unsigned perfrint:2;
++		unsigned devaddr:7;
++		unsigned reserved3:1;
++		unsigned nzstsouthshk:1;
++		unsigned devspd:2;
++#else
++
++		/* Device Speed */
++		unsigned devspd:2;
++		/* Non Zero Length Status OUT Handshake */
++		unsigned nzstsouthshk:1;
++		unsigned reserved3:1;
++		/* Device Addresses */
++		unsigned devaddr:7;
++		/* Periodic Frame Interval */
++		unsigned perfrint:2;
++		unsigned reserved13_17:5;
++		/* In Endpoint Mis-match count */
++		unsigned epmscnt:4;
++		unsigned reserved9:10;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Device Control
++ * Register.  Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union dctl_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:21;
++		unsigned cgoutnak:1;
++		unsigned sgoutnak:1;
++		unsigned cgnpinnak:1;
++		unsigned sgnpinnak:1;
++		unsigned tstctl:3;
++		unsigned goutnaksts:1;
++		unsigned gnpinnaksts:1;
++		unsigned sftdiscon:1;
++		unsigned rmtwkupsig:1;
++#else
++
++		/* Remote Wakeup */
++		unsigned rmtwkupsig:1;
++		/* Soft Disconnect */
++		unsigned sftdiscon:1;
++		/* Global Non-Periodic IN NAK Status */
++		unsigned gnpinnaksts:1;
++		/* Global OUT NAK Status */
++		unsigned goutnaksts:1;
++		/* Test Control */
++		unsigned tstctl:3;
++		/* Set Global Non-Periodic IN NAK */
++		unsigned sgnpinnak:1;
++		/* Clear Global Non-Periodic IN NAK */
++		unsigned cgnpinnak:1;
++		/* Set Global OUT NAK */
++		unsigned sgoutnak:1;
++		/* Clear Global OUT NAK */
++		unsigned cgoutnak:1;
++
++		unsigned reserved:21;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Device Status
++ * Register.  Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union dsts_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ          3
++#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ           2
++#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
++#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved22_31:10;
++		unsigned soffn:14;
++		unsigned reserved4_7:4;
++		unsigned errticerr:1;
++		unsigned enumspd:2;
++		unsigned suspsts:1;
++#else
++
++		/* Suspend Status */
++		unsigned suspsts:1;
++		/* Enumerated Speed */
++		unsigned enumspd:2;
++		/* Erratic Error */
++		unsigned errticerr:1;
++		unsigned reserved4_7:4;
++		/* Frame or Microframe Number of the received SOF */
++		unsigned soffn:14;
++		unsigned reserved22_31:10;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Device IN EP Interrupt
++ * Register and the Device IN EP Common Mask Register.
++ *
++ * It also represents the bit fields in the Device IN EP Common
++ * Interrupt Mask Register.
++
++ * - Read the register into the d32 member then set/clear the
++ *   bits using the bit elements.
++ */
++union diepint_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved07_31:25;
++		unsigned inepnakeff:1;
++		unsigned intknepmis:1;
++		unsigned intktxfemp:1;
++		unsigned timeout:1;
++		unsigned ahberr:1;
++		unsigned epdisabled:1;
++		unsigned xfercompl:1;
++#else
++
++y		/* Transfer complete mask */
++		unsigned xfercompl:1;
++		/* Endpoint disable mask */
++		unsigned epdisabled:1;
++		/* AHB Error mask */
++		unsigned ahberr:1;
++		/* TimeOUT Handshake mask (non-ISOC EPs) */
++		unsigned timeout:1;
++		/* IN Token received with TxF Empty mask */
++		unsigned intktxfemp:1;
++		/* IN Token Received with EP mismatch mask */
++		unsigned intknepmis:1;
++		/* IN Endpoint HAK Effective mask */
++		unsigned inepnakeff:1;
++		unsigned reserved07_31:25;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Device OUT EP Interrupt
++ * Registerand Device OUT EP Common Interrupt Mask Register.
++ *
++ * It also represents the bit fields in the Device OUT EP Common
++ * Interrupt Mask Register.
++ *
++ * - Read the register into the d32 member then set/clear the
++ *   bits using the bit elements.
++ */
++union doepint_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved04_31:28;
++		unsigned setup:1;
++		unsigned ahberr:1;
++		unsigned epdisabled:1;
++		unsigned xfercompl:1;
++#else
++
++	/* Transfer complete */
++		unsigned xfercompl:1;
++	/* Endpoint disable  */
++		unsigned epdisabled:1;
++	/* AHB Error */
++		unsigned ahberr:1;
++	/* Setup Phase Done (contorl EPs) */
++		unsigned setup:1;
++		unsigned reserved04_31:28;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Device All EP Interrupt
++ * and Mask Registers.
++ * - Read the register into the d32 member then set/clear the
++ *   bits using the bit elements.
++ */
++union daint_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned out:16;
++		unsigned in:16;
++#else
++
++		/* IN Endpoint bits */
++		unsigned in:16;
++		/* OUT Endpoint bits */
++		unsigned out:16;
++#endif
++	} ep;
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned outep15:1;
++		unsigned outep14:1;
++		unsigned outep13:1;
++		unsigned outep12:1;
++		unsigned outep11:1;
++		unsigned outep10:1;
++		unsigned outep9:1;
++		unsigned outep8:1;
++		unsigned outep7:1;
++		unsigned outep6:1;
++		unsigned outep5:1;
++		unsigned outep4:1;
++		unsigned outep3:1;
++		unsigned outep2:1;
++		unsigned outep1:1;
++		unsigned outep0:1;
++		unsigned inep15:1;
++		unsigned inep14:1;
++		unsigned inep13:1;
++		unsigned inep12:1;
++		unsigned inep11:1;
++		unsigned inep10:1;
++		unsigned inep9:1;
++		unsigned inep8:1;
++		unsigned inep7:1;
++		unsigned inep6:1;
++		unsigned inep5:1;
++		unsigned inep4:1;
++		unsigned inep3:1;
++		unsigned inep2:1;
++		unsigned inep1:1;
++		unsigned inep0:1;
++#else
++
++		/* IN Endpoint bits */
++		unsigned inep0:1;
++		unsigned inep1:1;
++		unsigned inep2:1;
++		unsigned inep3:1;
++		unsigned inep4:1;
++		unsigned inep5:1;
++		unsigned inep6:1;
++		unsigned inep7:1;
++		unsigned inep8:1;
++		unsigned inep9:1;
++		unsigned inep10:1;
++		unsigned inep11:1;
++		unsigned inep12:1;
++		unsigned inep13:1;
++		unsigned inep14:1;
++		unsigned inep15:1;
++		/* OUT Endpoint bits */
++		unsigned outep0:1;
++		unsigned outep1:1;
++		unsigned outep2:1;
++		unsigned outep3:1;
++		unsigned outep4:1;
++		unsigned outep5:1;
++		unsigned outep6:1;
++		unsigned outep7:1;
++		unsigned outep8:1;
++		unsigned outep9:1;
++		unsigned outep10:1;
++		unsigned outep11:1;
++		unsigned outep12:1;
++		unsigned outep13:1;
++		unsigned outep14:1;
++		unsigned outep15:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Device IN Token Queue
++ * Read Registers.
++ * - Read the register into the d32 member.
++ * - READ-ONLY Register
++ */
++union dtknq1_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned epnums0_5:24;
++		unsigned wrap_bit:1;
++		unsigned reserved05_06:2;
++		unsigned intknwptr:5;
++#else
++
++		/* In Token Queue Write Pointer */
++		unsigned intknwptr:5;
++		/* Reserved */
++		unsigned reserved05_06:2;
++		/* write pointer has wrapped. */
++		unsigned wrap_bit:1;
++		/* EP Numbers of IN Tokens 0 ... 4 */
++		unsigned epnums0_5:24;
++#endif
++	} b;
++};
++
++/*
++ * Device Logical IN Endpoint-Specific Registers. Offsets
++ * 900h-AFCh
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.
++ */
++struct dwc_otg_dev_in_ep_regs {
++	/*
++	 * Device IN Endpoint Control Register. Offset:900h +
++	 * (ep_num * 20h) + 00h
++	 */
++	uint32_t diepctl;
++	/* Reserved. Offset:900h + (ep_num * 20h) + 04h */
++	uint32_t reserved04;
++	/*
++	 * Device IN Endpoint Interrupt Register. Offset:900h +
++	 * (ep_num * 20h) + 08h
++	 */
++	uint32_t diepint;
++	/* Reserved. Offset:900h + (ep_num * 20h) + 0Ch */
++	uint32_t reserved0C;
++	/*
++	 * Device IN Endpoint Transfer Size
++	 * Register. Offset:900h + (ep_num * 20h) + 10h
++	 */
++	uint32_t dieptsiz;
++	/*
++	 * Device IN Endpoint DMA Address Register. Offset:900h +
++	 * (ep_num * 20h) + 14h
++	 */
++	uint32_t diepdma;
++	/*
++	 * Reserved. Offset:900h + (ep_num * 20h) + 18h - 900h +
++	 * (ep_num * 20h) + 1Ch
++	 */
++	uint32_t reserved18[2];
++};
++
++/**
++ * Device Logical OUT Endpoint-Specific Registers. Offsets:
++ * B00h-CFCh
++ *
++ * There will be one set of endpoint registers per logical endpoint
++ * implemented.
++ *
++ * These registers are visible only in Device mode and must not be
++ * accessed in Host mode, as the results are unknown.
++ */
++struct dwc_otg_dev_out_ep_regs {
++	/*
++	 * Device OUT Endpoint Control Register. Offset:B00h +
++	 * (ep_num * 20h) + 00h
++	 */
++	uint32_t doepctl;
++	/*
++	 * Device OUT Endpoint Frame number Register.  Offset:
++	 * B00h + (ep_num * 20h) + 04h
++	 */
++	uint32_t doepfn;
++	/*
++	 * Device OUT Endpoint Interrupt Register. Offset:B00h +
++	 * (ep_num * 20h) + 08h
++	 */
++	uint32_t doepint;
++	/*
++	 * Reserved. Offset:B00h + (ep_num * 20h) + 0Ch */
++	uint32_t reserved0C;
++	/*
++	 * Device OUT Endpoint Transfer Size Register. Offset:
++	 * B00h + (ep_num * 20h) + 10h
++	 */
++	uint32_t doeptsiz;
++	/*
++	 * Device OUT Endpoint DMA Address Register. Offset:B00h
++	 * + (ep_num * 20h) + 14h
++	 */
++	uint32_t doepdma;
++	/*
++	 * Reserved. Offset:B00h + (ep_num * 20h) + 18h - B00h +
++	 * (ep_num * 20h) + 1Ch
++	 */
++	uint32_t unused[2];
++};
++
++/*
++ * This union represents the bit fields in the Device EP Control
++ * Register.  Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union depctl_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#define DWC_DEP0CTL_MPS_64   0
++#define DWC_DEP0CTL_MPS_32   1
++#define DWC_DEP0CTL_MPS_16   2
++#define DWC_DEP0CTL_MPS_8    3
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned mps:11;
++		unsigned epena:1;
++		unsigned epdis:1;
++		unsigned setd1pid:1;
++		unsigned setd0pid:1;
++		unsigned snak:1;
++		unsigned cnak:1;
++		unsigned txfnum:4;
++		unsigned stall:1;
++		unsigned snp:1;
++		unsigned eptype:2;
++		unsigned naksts:1;
++		unsigned dpid:1;
++		unsigned usbactep:1;
++		unsigned nextep:4;
++#else
++
++		/*
++		 * Maximum Packet Size
++		 * IN/OUT EPn
++		 * IN/OUT EP0 - 2 bits
++		 *   2'b00: 64 Bytes
++		 *   2'b01: 32
++		 *   2'b10: 16
++		 *   2'b11: 8
++		 */
++		unsigned mps:11;
++		/*
++		 * Next Endpoint
++		 * IN EPn/IN EP0
++		 * OUT EPn/OUT EP0 - reserved
++		 */
++		unsigned nextep:4;
++
++		/* USB Active Endpoint */
++		unsigned usbactep:1;
++
++		/*
++		 * Endpoint DPID (INTR/Bulk IN and OUT endpoints)
++		 * This field contains the PID of the packet going to
++		 * be received or transmitted on this endpoint. The
++		 * application should program the PID of the first
++		 * packet going to be received or transmitted on this
++		 * endpoint , after the endpoint is
++		 * activated. Application use the SetD1PID and
++		 * SetD0PID fields of this register to program either
++		 * D0 or D1 PID.
++		 *
++		 * The encoding for this field is
++		 *   - 0: D0
++		 *   - 1: D1
++		 */
++		unsigned dpid:1;
++
++		/* NAK Status */
++		unsigned naksts:1;
++
++		/*
++		 * Endpoint Type
++		 *  2'b00: Control
++		 *  2'b01: Isochronous
++		 *  2'b10: Bulk
++		 *  2'b11: Interrupt
++		 */
++		unsigned eptype:2;
++
++		/*
++		 * Snoop Mode
++		 * OUT EPn/OUT EP0
++		 * IN EPn/IN EP0 - reserved
++		 */
++		unsigned snp:1;
++
++		/* Stall Handshake */
++		unsigned stall:1;
++
++		/*
++		 * Tx Fifo Number
++		 * IN EPn/IN EP0
++		 * OUT EPn/OUT EP0 - reserved
++		 */
++		unsigned txfnum:4;
++
++		/* Clear NAK */
++		unsigned cnak:1;
++		/* Set NAK */
++		unsigned snak:1;
++		/*
++		 * Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
++		 * Writing to this field sets the Endpoint DPID (DPID)
++		 * field in this register to DATA0. Set Even
++		 * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
++		 * Writing to this field sets the Even/Odd
++		 * (micro)frame (EO_FrNum) field to even (micro)
++		 * frame.
++		 */
++		unsigned setd0pid:1;
++		/*
++		 * Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
++		 * Writing to this field sets the Endpoint DPID (DPID)
++		 * field in this register to DATA1 Set Odd
++		 * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
++		 * Writing to this field sets the Even/Odd
++		 * (micro)frame (EO_FrNum) field to odd (micro) frame.
++		 */
++		unsigned setd1pid:1;
++
++		/* Endpoint Disable */
++		unsigned epdis:1;
++		/* Endpoint Enable */
++		unsigned epena:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Device EP Transfer
++ * Size Register.  Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union deptsiz_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:1;
++		unsigned mc:2;
++		unsigned pktcnt:10;
++		unsigned xfersize:19;
++#else
++
++		/* Transfer size */
++		unsigned xfersize:19;
++		/* Packet Count */
++		unsigned pktcnt:10;
++		/* Multi Count - Periodic IN endpoints */
++		unsigned mc:2;
++		unsigned reserved:1;
++#endif
++	} b;
++};
++
++/*
++ * This union represents the bit fields in the Device EP 0 Transfer
++ * Size Register.  Read the register into the d32 member then
++ * set/clear the bits using the bit elements.
++ */
++union deptsiz0_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved31:1;
++		unsigned supcnt:2;
++		unsigned reserved20_28:9;
++		unsigned pktcnt:1;
++		unsigned reserved7_18:12;
++		unsigned xfersize:7;
++#else
++
++		/* Transfer size */
++		unsigned xfersize:7;
++		/* Reserved */
++		unsigned reserved7_18:12;
++		/* Packet Count */
++		unsigned pktcnt:1;
++		/* Reserved */
++		unsigned reserved20_28:9;
++		/* Setup Packet Count (DOEPTSIZ0 Only) */
++		unsigned supcnt:2;
++		unsigned reserved31:1;
++#endif
++	} b;
++};
++
++/** Maximum number of Periodic FIFOs */
++#define MAX_PERIO_FIFOS 15
++
++/** Maximum number of Endpoints/HostChannels */
++#define MAX_EPS_CHANNELS 16
++
++/*
++ * The dwc_otg_dev_if structure contains information needed to manage
++ * the DWC_otg controller acting in device mode. It represents the
++ * programming view of the device-specific aspects of the controller.
++ */
++struct dwc_otg_dev_if {
++	/*
++	 * Pointer to device Global registers.
++	 * Device Global Registers starting at offset 800h
++	 */
++	struct dwc_otg_dev_global_regs *dev_global_regs;
++#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
++
++	/*
++	 * Device Logical IN Endpoint-Specific Registers 900h-AFCh
++	 */
++	struct dwc_otg_dev_in_ep_regs *in_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_IN_EP_REG_OFFSET 0x900
++#define DWC_EP_REG_OFFSET 0x20
++
++	/* Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
++	struct dwc_otg_dev_out_ep_regs *out_ep_regs[MAX_EPS_CHANNELS];
++#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
++
++	/* Device configuration information */
++	uint8_t speed;	 /* Device Speed  0: Unknown, 1: LS, 2:FS, 3: HS */
++	uint8_t num_eps;  /* Number of EPs  range: 1-16 (includes EP0) */
++	uint8_t num_perio_eps;	 /* # of Periodic EP range: 0-15 */
++
++	/* Size of periodic FIFOs (Bytes) */
++	uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
++
++};
++
++
++/* Host Mode Register Structures */
++
++/*
++ * The Host Global Registers structure defines the size and relative
++ * field offsets for the Host Mode Global Registers.  Host Global
++ * Registers offsets 400h-7FFh.
++ */
++struct dwc_otg_host_global_regs {
++	/* Host Configuration Register.   Offset: 400h */
++	uint32_t hcfg;
++	/* Host Frame Interval Register.   Offset: 404h */
++	uint32_t hfir;
++	/* Host Frame Number / Frame Remaining Register. Offset: 408h */
++	uint32_t hfnum;
++	/* Reserved.   Offset: 40Ch */
++	uint32_t reserved40C;
++	/* Host Periodic Transmit FIFO/ Queue Status Register. Offset: 410h */
++	uint32_t hptxsts;
++	/* Host All Channels Interrupt Register. Offset: 414h */
++	uint32_t haint;
++	/* Host All Channels Interrupt Mask Register. Offset: 418h */
++	uint32_t haintmsk;
++};
++
++/*
++ * This union represents the bit fields in the Host Configuration Register.
++ * Read the register into the d32 member then set/clear the bits using
++ * the bit elements. Write the d32 member to the hcfg register.
++ */
++union hcfg_data {
++    /** raw register data */
++	uint32_t d32;
++
++    /** register bits */
++	struct {
++#define DWC_HCFG_6_MHZ     2
++#define DWC_HCFG_48_MHZ    1
++#define DWC_HCFG_30_60_MHZ 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:29;
++		unsigned fslssupp:1;
++		unsigned fslspclksel:2;
++#else
++
++		/* FS/LS Phy Clock Select */
++		unsigned fslspclksel:2;
++		/* FS/LS Only Support */
++		unsigned fslssupp:1;
++		unsigned reserved:29;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++union hfir_data {
++	/* raw register data */
++	uint32_t d32;
++
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:16;
++		unsigned frint:16;
++#else
++		unsigned frint:16;
++		unsigned reserved:16;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Host Frame Remaing/Number
++ * Register.
++ */
++union hfnum_data {
++	/* raw register data */
++	uint32_t d32;
++
++	/* register bits */
++	struct {
++#define DWC_HFNUM_MAX_FRNUM 0x3FFF
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned frrem:16;
++		unsigned frnum:16;
++#else
++		unsigned frnum:16;
++		unsigned frrem:16;
++#endif
++	} b;
++};
++
++union hptxsts_data {
++	/* raw register data */
++	uint32_t d32;
++
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned ptxqtop_odd:1;
++		unsigned ptxqtop_chnum:4;
++		unsigned ptxqtop_token:2;
++		unsigned ptxqtop_terminate:1;
++		unsigned ptxqspcavail:8;
++		unsigned ptxfspcavail:16;
++#else
++		unsigned ptxfspcavail:16;
++		unsigned ptxqspcavail:8;
++		/*
++		 * Top of the Periodic Transmit Request Queue
++		 *  - bit 24 - Terminate (last entry for the selected channel)
++		 *  - bits 26:25 - Token Type
++		 *    - 2'b00 - Zero length
++		 *    - 2'b01 - Ping
++		 *    - 2'b10 - Disable
++		 *  - bits 30:27 - Channel Number
++		 *  - bit 31 - Odd/even microframe
++		 */
++		unsigned ptxqtop_terminate:1;
++		unsigned ptxqtop_token:2;
++		unsigned ptxqtop_chnum:4;
++		unsigned ptxqtop_odd:1;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Host Port Control and Status
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hprt0 register.
++ */
++union hprt0_data {
++    /** raw register data */
++	uint32_t d32;
++    /** register bits */
++	struct {
++#define DWC_HPRT0_PRTSPD_LOW_SPEED  2
++#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
++#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved19_31:13;
++		unsigned prtspd:2;
++		unsigned prttstctl:4;
++		unsigned prtpwr:1;
++		unsigned prtlnsts:2;
++		unsigned reserved9:1;
++		unsigned prtrst:1;
++		unsigned prtsusp:1;
++		unsigned prtres:1;
++		unsigned prtovrcurrchng:1;
++		unsigned prtovrcurract:1;
++		unsigned prtenchng:1;
++		unsigned prtena:1;
++		unsigned prtconndet:1;
++		unsigned prtconnsts:1;
++#else
++		unsigned prtconnsts:1;
++		unsigned prtconndet:1;
++		unsigned prtena:1;
++		unsigned prtenchng:1;
++		unsigned prtovrcurract:1;
++		unsigned prtovrcurrchng:1;
++		unsigned prtres:1;
++		unsigned prtsusp:1;
++		unsigned prtrst:1;
++		unsigned reserved9:1;
++		unsigned prtlnsts:2;
++		unsigned prtpwr:1;
++		unsigned prttstctl:4;
++		unsigned prtspd:2;
++		unsigned reserved19_31:13;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++union haint_data {
++    /** raw register data */
++	uint32_t d32;
++    /** register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:16;
++		unsigned ch15:1;
++		unsigned ch14:1;
++		unsigned ch13:1;
++		unsigned ch12:1;
++		unsigned ch11:1;
++		unsigned ch10:1;
++		unsigned ch9:1;
++		unsigned ch8:1;
++		unsigned ch7:1;
++		unsigned ch6:1;
++		unsigned ch5:1;
++		unsigned ch4:1;
++		unsigned ch3:1;
++		unsigned ch2:1;
++		unsigned ch1:1;
++		unsigned ch0:1;
++#else
++		unsigned ch0:1;
++		unsigned ch1:1;
++		unsigned ch2:1;
++		unsigned ch3:1;
++		unsigned ch4:1;
++		unsigned ch5:1;
++		unsigned ch6:1;
++		unsigned ch7:1;
++		unsigned ch8:1;
++		unsigned ch9:1;
++		unsigned ch10:1;
++		unsigned ch11:1;
++		unsigned ch12:1;
++		unsigned ch13:1;
++		unsigned ch14:1;
++		unsigned ch15:1;
++		unsigned reserved:16;
++#endif
++	} b;
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:16;
++		unsigned chint:16;
++#else
++		unsigned chint:16;
++		unsigned reserved:16;
++#endif
++	} b2;
++};
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++union haintmsk_data {
++    /** raw register data */
++	uint32_t d32;
++    /** register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:16;
++		unsigned ch15:1;
++		unsigned ch14:1;
++		unsigned ch13:1;
++		unsigned ch12:1;
++		unsigned ch11:1;
++		unsigned ch10:1;
++		unsigned ch9:1;
++		unsigned ch8:1;
++		unsigned ch7:1;
++		unsigned ch6:1;
++		unsigned ch5:1;
++		unsigned ch4:1;
++		unsigned ch3:1;
++		unsigned ch2:1;
++		unsigned ch1:1;
++		unsigned ch0:1;
++#else
++		unsigned ch0:1;
++		unsigned ch1:1;
++		unsigned ch2:1;
++		unsigned ch3:1;
++		unsigned ch4:1;
++		unsigned ch5:1;
++		unsigned ch6:1;
++		unsigned ch7:1;
++		unsigned ch8:1;
++		unsigned ch9:1;
++		unsigned ch10:1;
++		unsigned ch11:1;
++		unsigned ch12:1;
++		unsigned ch13:1;
++		unsigned ch14:1;
++		unsigned ch15:1;
++		unsigned reserved:16;
++#endif
++	} b;
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:16;
++		unsigned chint:16;
++#else
++		unsigned chint:16;
++		unsigned reserved:16;
++#endif
++	} b2;
++};
++
++/*
++ * Host Channel Specific Registers. 500h-5FCh
++ */
++struct dwc_otg_hc_regs {
++	/*
++	 * Host Channel 0 Characteristic Register.
++	 * Offset: 500h + (chan_num * 20h) + 00h
++	 */
++	uint32_t hcchar;
++	/*
++	 * Host Channel 0 Split Control Register.
++	 * Offset: 500h + (chan_num * 20h) + 04h
++	 */
++	uint32_t hcsplt;
++	/*
++	 * Host Channel 0 Interrupt Register.
++	 * Offset: 500h + (chan_num * 20h) + 08h
++	 */
++	uint32_t hcint;
++	/*
++	 * Host Channel 0 Interrupt Mask Register.
++	 * Offset: 500h + (chan_num * 20h) + 0Ch
++	 */
++	uint32_t hcintmsk;
++	/*
++	 * Host Channel 0 Transfer Size Register.
++	 * Offset: 500h + (chan_num * 20h) + 10h
++	 */
++	uint32_t hctsiz;
++	/*
++	 * Host Channel 0 DMA Address Register.
++	 * Offset: 500h + (chan_num * 20h) + 14h
++	 */
++	uint32_t hcdma;
++	/*
++	 * Reserved.
++	 * Offset: 500h + (chan_num * 20h) + 18h -
++	 *         500h + (chan_num * 20h) + 1Ch
++	 */
++	uint32_t reserved[2];
++};
++
++/**
++ * This union represents the bit fields in the Host Channel Characteristics
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hcchar register.
++ */
++union hcchar_data {
++    /** raw register data */
++	uint32_t d32;
++
++    /** register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned chen:1;
++		unsigned chdis:1;
++		unsigned oddfrm:1;
++		unsigned devaddr:7;
++		unsigned multicnt:2;
++		unsigned eptype:2;
++		unsigned lspddev:1;
++		unsigned reserved:1;
++		unsigned epdir:1;
++		unsigned epnum:4;
++		unsigned mps:11;
++#else
++
++		/* Maximum packet size in bytes */
++		unsigned mps:11;
++
++		/* Endpoint number */
++		unsigned epnum:4;
++
++		/* 0: OUT, 1: IN */
++		unsigned epdir:1;
++
++		unsigned reserved:1;
++
++		/* 0: Full/high speed device, 1: Low speed device */
++		unsigned lspddev:1;
++
++		/* 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
++		unsigned eptype:2;
++
++		/* Packets per frame for periodic transfers. 0 is reserved. */
++		unsigned multicnt:2;
++
++		/* Device address */
++		unsigned devaddr:7;
++
++		/*
++		 * Frame to transmit periodic transaction.
++		 * 0: even, 1: odd
++		 */
++		unsigned oddfrm:1;
++
++		/* Channel disable */
++		unsigned chdis:1;
++
++		/* Channel enable */
++		unsigned chen:1;
++#endif
++	} b;
++};
++
++union hcsplt_data {
++	/* raw register data */
++	uint32_t d32;
++
++	/* register bits */
++	struct {
++#define DWC_HCSPLIT_XACTPOS_ALL 3
++#define DWC_HCSPLIT_XACTPOS_BEGIN 2
++#define DWC_HCSPLIT_XACTPOS_END 1
++#define DWC_HCSPLIT_XACTPOS_MID 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned spltena:1;
++		unsigned reserved:14;
++		unsigned compsplt:1;
++		unsigned xactpos:2;
++		unsigned hubaddr:7;
++		unsigned prtaddr:7;
++#else
++
++		/* Port Address */
++		unsigned prtaddr:7;
++
++		/* Hub Address */
++		unsigned hubaddr:7;
++
++		/* Transaction Position */
++		unsigned xactpos:2;
++
++		/* Do Complete Split */
++		unsigned compsplt:1;
++
++		/* Reserved */
++		unsigned reserved:14;
++
++		/* Split Enble */
++		unsigned spltena:1;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Host All Interrupt
++ * Register.
++ */
++union hcint_data {
++	/* raw register data */
++	uint32_t d32;
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:21;
++		unsigned datatglerr:1;
++		unsigned frmovrun:1;
++		unsigned bblerr:1;
++		unsigned xacterr:1;
++		unsigned nyet:1;
++		unsigned ack:1;
++		unsigned nak:1;
++		unsigned stall:1;
++		unsigned ahberr:1;
++		unsigned chhltd:1;
++		unsigned xfercomp:1;
++#else
++
++		/* Transfer Complete */
++		unsigned xfercomp:1;
++		/* Channel Halted */
++		unsigned chhltd:1;
++		/* AHB Error */
++		unsigned ahberr:1;
++		/* STALL Response Received */
++		unsigned stall:1;
++		/* NAK Response Received */
++		unsigned nak:1;
++		/* ACK Response Received */
++		unsigned ack:1;
++		/* NYET Response Received */
++		unsigned nyet:1;
++		/* Transaction Err */
++		unsigned xacterr:1;
++		/* Babble Error */
++		unsigned bblerr:1;
++		/* Frame Overrun */
++		unsigned frmovrun:1;
++		/* Data Toggle Error */
++		unsigned datatglerr:1;
++		/* Reserved */
++		unsigned reserved:21;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Host Channel Transfer Size
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hcchar register.
++ */
++union hctsiz_data {
++	/* raw register data */
++	uint32_t d32;
++
++	/* register bits */
++	struct {
++#define DWC_HCTSIZ_SETUP 3
++#define DWC_HCTSIZ_MDATA 3
++#define DWC_HCTSIZ_DATA2 1
++#define DWC_HCTSIZ_DATA1 2
++#define DWC_HCTSIZ_DATA0 0
++
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned dopng:1;
++		unsigned pid:2;
++		unsigned pktcnt:10;
++		unsigned xfersize:19;
++#else
++
++		/* Total transfer size in bytes */
++		unsigned xfersize:19;
++
++		/* Data packets to transfer */
++		unsigned pktcnt:10;
++
++		/*
++		 * Packet ID for next data packet
++		 * 0: DATA0
++		 * 1: DATA2
++		 * 2: DATA1
++		 * 3: MDATA (non-Control), SETUP (Control)
++		 */
++		unsigned pid:2;
++
++		/* Do PING protocol when 1 */
++		unsigned dopng:1;
++#endif
++	} b;
++};
++
++/**
++ * This union represents the bit fields in the Host Channel Interrupt Mask
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements. Write the d32 member to the
++ * hcintmsk register.
++ */
++union hcintmsk_data {
++    /** raw register data */
++	uint32_t d32;
++
++    /** register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:21;
++		unsigned datatglerr:1;
++		unsigned frmovrun:1;
++		unsigned bblerr:1;
++		unsigned xacterr:1;
++		unsigned nyet:1;
++		unsigned ack:1;
++		unsigned nak:1;
++		unsigned stall:1;
++		unsigned ahberr:1;
++		unsigned chhltd:1;
++		unsigned xfercompl:1;
++#else
++		unsigned xfercompl:1;
++		unsigned chhltd:1;
++		unsigned ahberr:1;
++		unsigned stall:1;
++		unsigned nak:1;
++		unsigned ack:1;
++		unsigned nyet:1;
++		unsigned xacterr:1;
++		unsigned bblerr:1;
++		unsigned frmovrun:1;
++		unsigned datatglerr:1;
++		unsigned reserved:21;
++#endif
++	} b;
++};
++
++/** OTG Host Interface Structure.
++ *
++ * The OTG Host Interface Structure structure contains information
++ * needed to manage the DWC_otg controller acting in host mode. It
++ * represents the programming view of the host-specific aspects of the
++ * controller.
++ */
++struct dwc_otg_host_if {
++	/* Host Global Registers starting at offset 400h.*/
++	struct dwc_otg_host_global_regs *host_global_regs;
++#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
++
++	/* Host Port 0 Control and Status Register */
++	uint32_t *hprt0;
++#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
++
++	/* Host Channel Specific Registers at offsets 500h-5FCh. */
++	struct dwc_otg_hc_regs *hc_regs[MAX_EPS_CHANNELS];
++#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
++#define DWC_OTG_CHAN_REGS_OFFSET 0x20
++
++	/* Host configuration information */
++	/* Number of Host Channels (range: 1-16) */
++	uint8_t num_host_channels;
++	/* Periodic EPs supported (0: no, 1: yes) */
++	uint8_t perio_eps_supported;
++	/* Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
++	uint16_t perio_tx_fifo_size;
++
++};
++
++/**
++ * This union represents the bit fields in the Power and Clock Gating Control
++ * Register. Read the register into the d32 member then set/clear the
++ * bits using the bit elements.
++ */
++union pcgcctl_data {
++	/* raw register data */
++	uint32_t d32;
++
++	/* register bits */
++	struct {
++#ifdef __BIG_ENDIAN_BITFIELD
++		unsigned reserved:27;
++		unsigned physuspended:1;
++		unsigned rstpdwnmodule:1;
++		unsigned pwrclmp:1;
++		unsigned gatehclk:1;
++		unsigned stoppclk:1;
++#else
++
++		/* Stop Pclk */
++		unsigned stoppclk:1;
++		/* Gate Hclk */
++		unsigned gatehclk:1;
++		/* Power Clamp */
++		unsigned pwrclmp:1;
++		/* Reset Power Down Modules */
++		unsigned rstpdwnmodule:1;
++		/* PHY Suspended */
++		unsigned physuspended:1;
++
++		unsigned reserved:27;
++#endif
++	} b;
++};
++
++#endif
+-- 
+1.6.0.6
+
-- 
cgit v1.1