/******************************************************************************
**
** FILE NAME    : ifxmips_atm_core.c
** PROJECT      : UEIP
** MODULES      : ATM
**
** DATE         : 7 Jul 2009
** AUTHOR       : Xu Liang
** DESCRIPTION  : ATM driver common source file (core functions)
** COPYRIGHT    :       Copyright (c) 2006
**                      Infineon Technologies AG
**                      Am Campeon 1-12, 85579 Neubiberg, Germany
**
**    This program is free software; you can redistribute it and/or modify
**    it under the terms of the GNU General Public License as published by
**    the Free Software Foundation; either version 2 of the License, or
**    (at your option) any later version.
**
** HISTORY
** $Date        $Author         $Comment
** 07 JUL 2009  Xu Liang        Init Version
*******************************************************************************/

#define IFX_ATM_VER_MAJOR               1
#define IFX_ATM_VER_MID                 0
#define IFX_ATM_VER_MINOR               26

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/ioctl.h>
#include <linux/atmdev.h>
#include <linux/platform_device.h>
#include <linux/of_device.h>
#include <linux/atm.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#ifdef CONFIG_XFRM
  #include <net/xfrm.h>
#endif

#include <lantiq_soc.h>

#include "ifxmips_atm_core.h"

#define MODULE_PARM_ARRAY(a, b)   module_param_array(a, int, NULL, 0)
#define MODULE_PARM(a, b)         module_param(a, int, 0)

/*!
  \brief QSB cell delay variation due to concurrency
 */
static int qsb_tau   = 1;                       /*  QSB cell delay variation due to concurrency     */
/*!
  \brief QSB scheduler burst length
 */
static int qsb_srvm  = 0x0F;                    /*  QSB scheduler burst length                      */
/*!
  \brief QSB time step, all legal values are 1, 2, 4
 */
static int qsb_tstep = 4 ;                      /*  QSB time step, all legal values are 1, 2, 4     */

/*!
  \brief Write descriptor delay
 */
static int write_descriptor_delay  = 0x20;      /*  Write descriptor delay                          */

/*!
  \brief AAL5 padding byte ('~')
 */
static int aal5_fill_pattern       = 0x007E;    /*  AAL5 padding byte ('~')                         */
/*!
  \brief Max frame size for RX
 */
static int aal5r_max_packet_size   = 0x0700;    /*  Max frame size for RX                           */
/*!
  \brief Min frame size for RX
 */
static int aal5r_min_packet_size   = 0x0000;    /*  Min frame size for RX                           */
/*!
  \brief Max frame size for TX
 */
static int aal5s_max_packet_size   = 0x0700;    /*  Max frame size for TX                           */
/*!
  \brief Min frame size for TX
 */
static int aal5s_min_packet_size   = 0x0000;    /*  Min frame size for TX                           */
/*!
  \brief Drop error packet in RX path
 */
static int aal5r_drop_error_packet = 1;         /*  Drop error packet in RX path                    */

/*!
  \brief Number of descriptors per DMA RX channel
 */
static int dma_rx_descriptor_length = 128;      /*  Number of descriptors per DMA RX channel        */
/*!
  \brief Number of descriptors per DMA TX channel
 */
static int dma_tx_descriptor_length = 64;       /*  Number of descriptors per DMA TX channel        */
/*!
  \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
 */
static int dma_rx_clp1_descriptor_threshold = 38;
/*@}*/

MODULE_PARM(qsb_tau, "i");
MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
MODULE_PARM(qsb_srvm, "i");
MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
MODULE_PARM(qsb_tstep, "i");
MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");

MODULE_PARM(write_descriptor_delay, "i");
MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");

MODULE_PARM(aal5_fill_pattern, "i");
MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
MODULE_PARM(aal5r_max_packet_size, "i");
MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5r_min_packet_size, "i");
MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
MODULE_PARM(aal5s_max_packet_size, "i");
MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5s_min_packet_size, "i");
MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
MODULE_PARM(aal5r_drop_error_packet, "i");
MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");

MODULE_PARM(dma_rx_descriptor_length, "i");
MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
MODULE_PARM(dma_tx_descriptor_length, "i");
MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");



/*
 * ####################################
 *              Definition
 * ####################################
 */

#ifdef CONFIG_AMAZON_SE
  #define ENABLE_LESS_CACHE_INV                 1
  #define LESS_CACHE_INV_LEN                    96
#endif

#define DUMP_SKB_LEN                            ~0



/*
 * ####################################
 *             Declaration
 * ####################################
 */

/*
 *  Network Operations
 */
static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
static int ppe_open(struct atm_vcc *);
static void ppe_close(struct atm_vcc *);
static int ppe_send(struct atm_vcc *, struct sk_buff *);
static int ppe_send_oam(struct atm_vcc *, void *, int);
static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);

/*
 *  ADSL LED
 */
static inline void adsl_led_flash(void);

/*
 *  64-bit operation used by MIB calculation
 */
static inline void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);

/*
 *  buffer manage functions
 */
static inline struct sk_buff* alloc_skb_rx(void);
static inline struct sk_buff* alloc_skb_tx(unsigned int);
struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
static inline void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
static inline struct sk_buff *get_skb_rx_pointer(unsigned int);
static inline int get_tx_desc(unsigned int);
static struct sk_buff* skb_duplicate(struct sk_buff *);
static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *);

/*
 *  mailbox handler and signal function
 */
static inline void mailbox_oam_rx_handler(void);
static inline void mailbox_aal_rx_handler(void);
static irqreturn_t mailbox_irq_handler(int, void *);
static inline void mailbox_signal(unsigned int, int);
static void do_ppe_tasklet(unsigned long);
DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);

/*
 *  QSB & HTU setting functions
 */
static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
static void qsb_global_set(void);
static inline void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
static inline void clear_htu_entry(unsigned int);
static void validate_oam_htu_entry(void);
static void invalidate_oam_htu_entry(void);

/*
 *  look up for connection ID
 */
static inline int find_vpi(unsigned int);
static inline int find_vpivci(unsigned int, unsigned int);
static inline int find_vcc(struct atm_vcc *);

static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *);

/*
 *  Init & clean-up functions
 */
static inline void check_parameters(void);
static inline int init_priv_data(void);
static inline void clear_priv_data(void);
static inline void init_rx_tables(void);
static inline void init_tx_tables(void);

/*
 *  Exteranl Function
 */
#if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
extern void ifx_push_oam(unsigned char *);
#else
static inline void ifx_push_oam(unsigned char *dummy) {}
#endif

#if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);

extern int (*ifx_mei_atm_showtime_exit)(void);
extern int ifx_mei_atm_led_blink(void);
#else
static inline int ifx_mei_atm_led_blink(void) { return 0; }
static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
{
	if ( is_showtime != NULL )
		*is_showtime = 0;
	return 0;
}
int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);

int (*ifx_mei_atm_showtime_exit)(void) = NULL;
EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);

#endif

static struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL;

static struct atm_priv_data g_atm_priv_data;

static struct atmdev_ops g_ifx_atm_ops = {
	.open = ppe_open,
	.close = ppe_close,
	.ioctl = ppe_ioctl,
	.send = ppe_send,
	.send_oam = ppe_send_oam,
	.change_qos = ppe_change_qos,
	.owner = THIS_MODULE,
};

static int g_showtime = 0;
static void *g_xdata_addr = NULL;

static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
{
	int ret = 0;
	atm_cell_ifEntry_t mib_cell;
	atm_aal5_ifEntry_t mib_aal5;
	atm_aal5_vcc_x_t mib_vcc;
	unsigned int value;
	int conn;

	if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
			|| _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
		return -ENOTTY;

	if ( _IOC_DIR(cmd) & _IOC_READ )
		ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
	else if ( _IOC_DIR(cmd) & _IOC_WRITE )
		ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
	if ( ret )
		return -EFAULT;

	switch (cmd) {
	case PPE_ATM_MIB_CELL:  /*  cell level  MIB */
		/*  These MIB should be read at ARC side, now put zero only.    */
		mib_cell.ifHCInOctets_h = 0;
		mib_cell.ifHCInOctets_l = 0;
		mib_cell.ifHCOutOctets_h = 0;
		mib_cell.ifHCOutOctets_l = 0;
		mib_cell.ifInErrors = 0;
		mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
		mib_cell.ifOutErrors = 0;

		ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
		break;

	case PPE_ATM_MIB_AAL5:  /*  AAL5 MIB    */
		value = WAN_MIB_TABLE->wrx_total_byte;
		u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
		g_atm_priv_data.prev_wrx_total_byte = value;
		mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
		mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;

		value = WAN_MIB_TABLE->wtx_total_byte;
		u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
		g_atm_priv_data.prev_wtx_total_byte = value;
		mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
		mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;

		mib_aal5.ifInUcastPkts  = g_atm_priv_data.wrx_pdu;
		mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
		mib_aal5.ifInErrors     = WAN_MIB_TABLE->wrx_err_pdu;
		mib_aal5.ifInDiscards   = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
		mib_aal5.ifOutErros     = g_atm_priv_data.wtx_err_pdu;
		mib_aal5.ifOutDiscards  = g_atm_priv_data.wtx_drop_pdu;

		ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
		break;

	case PPE_ATM_MIB_VCC:   /*  VCC related MIB */
		copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
		conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
		if (conn >= 0) {
			mib_vcc.mib_vcc.aal5VccCrcErrors     = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
			mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
			mib_vcc.mib_vcc.aal5VccSarTimeOuts   = 0;   /*  no timer support    */
			ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
		} else
			ret = -EINVAL;
		break;

	default:
		ret = -ENOIOCTLCMD;
	}

	return ret;
}

static int ppe_open(struct atm_vcc *vcc)
{
	int ret;
	short vpi = vcc->vpi;
	int   vci = vcc->vci;
	struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
	int conn;
	int f_enable_irq = 0;

	if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
		return -EPROTONOSUPPORT;

#if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
	/*  check bandwidth */
	if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
		|| (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
		|| (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
		|| (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
	{
		ret = -EINVAL;
		goto PPE_OPEN_EXIT;
	}
#endif

	/*  check existing vpi,vci  */
	conn = find_vpivci(vpi, vci);
	if ( conn >= 0 ) {
		ret = -EADDRINUSE;
		goto PPE_OPEN_EXIT;
	}

	/*  check whether it need to enable irq */
	if ( g_atm_priv_data.conn_table == 0 )
		f_enable_irq = 1;

	/*  allocate connection */
	for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
		if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
			g_atm_priv_data.conn[conn].vcc = vcc;
			break;
		}
	}
	if ( conn == MAX_PVC_NUMBER ) {
		ret = -EINVAL;
		goto PPE_OPEN_EXIT;
	}

	/*  reserve bandwidth   */
	switch ( vcc->qos.txtp.traffic_class ) {
	case ATM_CBR:
	case ATM_VBR_RT:
		port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
		break;
	case ATM_VBR_NRT:
		port->tx_current_cell_rate += vcc->qos.txtp.scr;
		break;
	case ATM_UBR_PLUS:
		port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
		break;
	}

	/*  set qsb */
	set_qsb(vcc, &vcc->qos, conn);

	/*  update atm_vcc structure    */
	vcc->itf = (int)vcc->dev->dev_data;
	vcc->vpi = vpi;
	vcc->vci = vci;
	set_bit(ATM_VF_READY, &vcc->flags);

	/*  enable irq  */
	if ( f_enable_irq ) {
		ifx_atm_alloc_tx = atm_alloc_tx;

		*MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
		*MBOX_IGU1_IER  = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);

		enable_irq(PPE_MAILBOX_IGU1_INT);
	}

	/*  set port    */
	WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;

	/*  set htu entry   */
	set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);

	ret = 0;

PPE_OPEN_EXIT:
	return ret;
}

static void ppe_close(struct atm_vcc *vcc)
{
	int conn;
	struct port *port;
	struct connection *connection;
	if ( vcc == NULL )
		return;

	/*  get connection id   */
	conn = find_vcc(vcc);
	if ( conn < 0 ) {
		pr_err("can't find vcc\n");
		goto PPE_CLOSE_EXIT;
	}
	connection = &g_atm_priv_data.conn[conn];
	port = &g_atm_priv_data.port[connection->port];

	/*  clear htu   */
	clear_htu_entry(conn);

	/*  release connection  */
	connection->vcc = NULL;
	connection->aal5_vcc_crc_err = 0;
	connection->aal5_vcc_oversize_sdu = 0;
	clear_bit(conn, &g_atm_priv_data.conn_table);

	/*  disable irq */
	if ( g_atm_priv_data.conn_table == 0 ) {
		disable_irq(PPE_MAILBOX_IGU1_INT);
		ifx_atm_alloc_tx = NULL;
	}

	/*  release bandwidth   */
	switch ( vcc->qos.txtp.traffic_class )
	{
	case ATM_CBR:
	case ATM_VBR_RT:
		port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
		break;
	case ATM_VBR_NRT:
		port->tx_current_cell_rate -= vcc->qos.txtp.scr;
		break;
	case ATM_UBR_PLUS:
		port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
		break;
	}

	/* wait for incoming packets to be processed by upper layers */
	tasklet_unlock_wait(&g_dma_tasklet);

PPE_CLOSE_EXIT:
	return;
}

static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
	int ret;
	int conn;
	int desc_base;
	struct tx_descriptor reg_desc = {0};
	struct sk_buff *new_skb;

	if ( vcc == NULL || skb == NULL )
		return -EINVAL;

	skb_get(skb);
	atm_free_tx_skb_vcc(skb, vcc);

	conn = find_vcc(vcc);
	if ( conn < 0 ) {
		ret = -EINVAL;
		goto FIND_VCC_FAIL;
	}

	if ( !g_showtime ) {
		pr_debug("not in showtime\n");
		ret = -EIO;
		goto PPE_SEND_FAIL;
	}

	if ( vcc->qos.aal == ATM_AAL5 ) {
		int byteoff;
		int datalen;
		struct tx_inband_header *header;

		byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
		if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH )
			new_skb = skb_duplicate(skb);
		else
			new_skb = skb_break_away_from_protocol(skb);
		if ( new_skb == NULL ) {
			pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
			ret = -ENOMEM;
			goto PPE_SEND_FAIL;
		}
		dev_kfree_skb_any(skb);
		skb = new_skb;

		datalen = skb->len;
		byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);

		skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);

		header = (struct tx_inband_header *)skb->data;

		/*  setup inband trailer    */
		header->uu   = 0;
		header->cpi  = 0;
		header->pad  = aal5_fill_pattern;
		header->res1 = 0;

		/*  setup cell header   */
		header->clp  = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
		header->pti  = ATM_PTI_US0;
		header->vci  = vcc->vci;
		header->vpi  = vcc->vpi;
		header->gfc  = 0;

		/*  setup descriptor    */
		reg_desc.dataptr = (unsigned int)skb->data >> 2;
		reg_desc.datalen = datalen;
		reg_desc.byteoff = byteoff;
		reg_desc.iscell  = 0;
	} else {
		/*  if data pointer is not aligned, allocate new sk_buff    */
		if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
			pr_err("skb->data not aligned\n");
			new_skb = skb_duplicate(skb);
		} else
			new_skb = skb_break_away_from_protocol(skb);
		if ( new_skb == NULL ) {
			pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
			ret = -ENOMEM;
			goto PPE_SEND_FAIL;
		}
		dev_kfree_skb_any(skb);
		skb = new_skb;

		reg_desc.dataptr = (unsigned int)skb->data >> 2;
		reg_desc.datalen = skb->len;
		reg_desc.byteoff = 0;
		reg_desc.iscell  = 1;
	}

	reg_desc.own = 1;
	reg_desc.c = 1;
	reg_desc.sop = reg_desc.eop = 1;

	desc_base = get_tx_desc(conn);
	if ( desc_base < 0 ) {
		pr_debug("ALLOC_TX_CONNECTION_FAIL\n");
		ret = -EIO;
		goto PPE_SEND_FAIL;
	}

	if ( vcc->stats )
		atomic_inc(&vcc->stats->tx);
	if ( vcc->qos.aal == ATM_AAL5 )
		g_atm_priv_data.wtx_pdu++;

	/*  update descriptor send pointer  */
	if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
		dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
	g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;

	/*  write discriptor to memory and write back cache */
	g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
	dma_cache_wback((unsigned long)skb->data, skb->len);

	mailbox_signal(conn, 1);

	adsl_led_flash();

	return 0;

FIND_VCC_FAIL:
	pr_err("FIND_VCC_FAIL\n");
	g_atm_priv_data.wtx_err_pdu++;
	dev_kfree_skb_any(skb);
	return ret;

PPE_SEND_FAIL:
	if ( vcc->qos.aal == ATM_AAL5 )
		g_atm_priv_data.wtx_drop_pdu++;
	if ( vcc->stats )
		atomic_inc(&vcc->stats->tx_err);
	dev_kfree_skb_any(skb);
	return ret;
}

/* operation and maintainance */
static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
{
	int conn;
	struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
	int desc_base;
	struct sk_buff *skb;
	struct tx_descriptor reg_desc = {0};

	if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
			&& find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
			|| ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
			&& find_vpi(uni_cell_header->vpi) < 0) )
	{
		g_atm_priv_data.wtx_err_oam++;
		return -EINVAL;
	}

	if ( !g_showtime ) {
		pr_err("not in showtime\n");
		g_atm_priv_data.wtx_drop_oam++;
		return -EIO;
	}

	conn = find_vcc(vcc);
	if ( conn < 0 ) {
		pr_err("FIND_VCC_FAIL\n");
		g_atm_priv_data.wtx_drop_oam++;
		return -EINVAL;
	}

	skb = alloc_skb_tx(CELL_SIZE);
	if ( skb == NULL ) {
		pr_err("ALLOC_SKB_TX_FAIL\n");
		g_atm_priv_data.wtx_drop_oam++;
		return -ENOMEM;
	}
	skb_put(skb, CELL_SIZE);
	memcpy(skb->data, cell, CELL_SIZE);

	reg_desc.dataptr = (unsigned int)skb->data >> 2;
	reg_desc.datalen = CELL_SIZE;
	reg_desc.byteoff = 0;
	reg_desc.iscell  = 1;

	reg_desc.own = 1;
	reg_desc.c = 1;
	reg_desc.sop = reg_desc.eop = 1;

	desc_base = get_tx_desc(conn);
	if ( desc_base < 0 ) {
		dev_kfree_skb_any(skb);
		pr_err("ALLOC_TX_CONNECTION_FAIL\n");
		g_atm_priv_data.wtx_drop_oam++;
		return -EIO;
	}

	if ( vcc->stats )
		atomic_inc(&vcc->stats->tx);

	/*  update descriptor send pointer  */
	if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
		dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
	g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;

	/*  write discriptor to memory and write back cache */
	g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
	dma_cache_wback((unsigned long)skb->data, CELL_SIZE);

	mailbox_signal(conn, 1);

	g_atm_priv_data.wtx_oam++;
	adsl_led_flash();

	return 0;
}

static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
{
	int conn;

	if ( vcc == NULL || qos == NULL )
		return -EINVAL;

	conn = find_vcc(vcc);
	if ( conn < 0 )
		return -EINVAL;

	set_qsb(vcc, qos, conn);

	return 0;
}

static inline void adsl_led_flash(void)
{
	ifx_mei_atm_led_blink();
}

/*
*  Description:
*    Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
*  Input:
*    opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
*    opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
*    ret  --- ppe_u64_t, pointer to a variable to hold result
*  Output:
*    none
*/
static inline void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
{
	ret->l = opt1.l + opt2;
	if ( ret->l < opt1.l || ret->l < opt2 )
		ret->h++;
}

static inline struct sk_buff* alloc_skb_rx(void)
{
	struct sk_buff *skb;

	skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
	if ( skb != NULL ) {
		/*  must be burst length alignment  */
		if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
			skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
		/*  pub skb in reserved area "skb->data - 4"    */
		*((struct sk_buff **)skb->data - 1) = skb;
		/*  write back and invalidate cache */
		dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
		/*  invalidate cache    */
#if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
		dma_cache_inv((unsigned long)skb->data, LESS_CACHE_INV_LEN);
#else
		dma_cache_inv((unsigned long)skb->data, RX_DMA_CH_AAL_BUF_SIZE);
#endif
	}
	return skb;
}

static inline struct sk_buff* alloc_skb_tx(unsigned int size)
{
	struct sk_buff *skb;

	/*  allocate memory including header and padding    */
	size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
	size &= ~(DATA_BUFFER_ALIGNMENT - 1);
	skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
	/*  must be burst length alignment  */
	if ( skb != NULL )
		skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
	return skb;
}

struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
{
	int conn;
	struct sk_buff *skb;

	/*  oversize packet */
	if ( size > aal5s_max_packet_size ) {
		pr_err("atm_alloc_tx: oversize packet\n");
		return NULL;
	}
	/*  send buffer overflow    */
	if ( sk_wmem_alloc_get(sk_atm(vcc)) && !atm_may_send(vcc, size) ) {
		pr_err("atm_alloc_tx: send buffer overflow\n");
		return NULL;
	}
	conn = find_vcc(vcc);
	if ( conn < 0 ) {
		pr_err("atm_alloc_tx: unknown VCC\n");
		return NULL;
	}

	skb = dev_alloc_skb(size);
	if ( skb == NULL ) {
		pr_err("atm_alloc_tx: sk buffer is used up\n");
		return NULL;
	}

	atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);

	return skb;
}

static inline void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
{
	if ( vcc->pop != NULL )
		vcc->pop(vcc, skb);
	else
		dev_kfree_skb_any(skb);
}

static inline struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
{
	unsigned int skb_dataptr;
	struct sk_buff *skb;

	skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
	skb = *(struct sk_buff **)skb_dataptr;

	ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
	ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);

	return skb;
}

static inline int get_tx_desc(unsigned int conn)
{
	int desc_base = -1;
	struct connection *p_conn = &g_atm_priv_data.conn[conn];

	if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
		desc_base = p_conn->tx_desc_pos;
		if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
			p_conn->tx_desc_pos = 0;
	}

	return desc_base;
}

static struct sk_buff* skb_duplicate(struct sk_buff *skb)
{
	struct sk_buff *new_skb;

	new_skb = alloc_skb_tx(skb->len);
	if ( new_skb == NULL )
		return NULL;

	skb_put(new_skb, skb->len);
	memcpy(new_skb->data, skb->data, skb->len);

	return new_skb;
}

static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *skb)
{
	struct sk_buff *new_skb;

	if ( skb_shared(skb) ) {
		new_skb = skb_clone(skb, GFP_ATOMIC);
		if ( new_skb == NULL )
			return NULL;
	} else
		new_skb = skb_get(skb);

	skb_dst_drop(new_skb);
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	nf_conntrack_put(new_skb->nfct);
	new_skb->nfct = NULL;
  #ifdef CONFIG_BRIDGE_NETFILTER
	nf_bridge_put(new_skb->nf_bridge);
	new_skb->nf_bridge = NULL;
  #endif
#endif

	return new_skb;
}

static inline void mailbox_oam_rx_handler(void)
{
	unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
	struct rx_descriptor reg_desc;
	struct uni_cell_header *header;
	int conn;
	struct atm_vcc *vcc;
	unsigned int i;

	for ( i = 0; i < vlddes; i++ ) {
		unsigned int loop_count = 0;

		do {
			reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
			if ( ++loop_count == 1000 )
				break;
		} while ( reg_desc.own || !reg_desc.c );    //  keep test OWN and C bit until data is ready
		ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, oam_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.oam_desc_pos);

		header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];

		if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
			conn = find_vpivci(header->vpi, header->vci);
		else if ( header->vci == 0x03 || header->vci == 0x04 )
			conn = find_vpi(header->vpi);
		else
			conn = -1;

		if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
			vcc = g_atm_priv_data.conn[conn].vcc;

			if ( vcc->push_oam != NULL )
				vcc->push_oam(vcc, header);
			else
				ifx_push_oam((unsigned char *)header);

			g_atm_priv_data.wrx_oam++;

			adsl_led_flash();
		} else
			g_atm_priv_data.wrx_drop_oam++;

		reg_desc.byteoff = 0;
		reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
		reg_desc.own = 1;
		reg_desc.c   = 0;

		g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
		if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
			g_atm_priv_data.oam_desc_pos = 0;

		dma_cache_inv((unsigned long)header, CELL_SIZE);
		mailbox_signal(RX_DMA_CH_OAM, 0);
	}
}

static inline void mailbox_aal_rx_handler(void)
{
	unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
	struct rx_descriptor reg_desc;
	int conn;
	struct atm_vcc *vcc;
	struct sk_buff *skb, *new_skb;
	struct rx_inband_trailer *trailer;
	unsigned int i;

	for ( i = 0; i < vlddes; i++ ) {
		unsigned int loop_count = 0;

		do {
			reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
			if ( ++loop_count == 1000 )
				break;
		} while ( reg_desc.own || !reg_desc.c );    //  keep test OWN and C bit until data is ready
		ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, aal_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.aal_desc_pos);

		conn = reg_desc.id;

		if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
			vcc = g_atm_priv_data.conn[conn].vcc;

			skb = get_skb_rx_pointer(reg_desc.dataptr);

			if ( reg_desc.err ) {
				if ( vcc->qos.aal == ATM_AAL5 ) {
					trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
					if ( trailer->stw_crc )
						g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
					if ( trailer->stw_ovz )
						g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
					g_atm_priv_data.wrx_drop_pdu++;
				}
				if ( vcc->stats ) {
					atomic_inc(&vcc->stats->rx_drop);
					atomic_inc(&vcc->stats->rx_err);
				}
				reg_desc.err = 0;
			} else if ( atm_charge(vcc, skb->truesize) ) {
				new_skb = alloc_skb_rx();
				if ( new_skb != NULL ) {
#if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
					if ( reg_desc.byteoff + reg_desc.datalen > LESS_CACHE_INV_LEN )
						dma_cache_inv((unsigned long)skb->data + LESS_CACHE_INV_LEN, reg_desc.byteoff + reg_desc.datalen - LESS_CACHE_INV_LEN);
#endif

					skb_reserve(skb, reg_desc.byteoff);
					skb_put(skb, reg_desc.datalen);
					ATM_SKB(skb)->vcc = vcc;

					vcc->push(vcc, skb);

					if ( vcc->qos.aal == ATM_AAL5 )
						g_atm_priv_data.wrx_pdu++;
					if ( vcc->stats )
						atomic_inc(&vcc->stats->rx);
					adsl_led_flash();

					reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
				} else {
					atm_return(vcc, skb->truesize);
					if ( vcc->qos.aal == ATM_AAL5 )
						g_atm_priv_data.wrx_drop_pdu++;
					if ( vcc->stats )
						atomic_inc(&vcc->stats->rx_drop);
				}
			} else {
				if ( vcc->qos.aal == ATM_AAL5 )
					g_atm_priv_data.wrx_drop_pdu++;
				if ( vcc->stats )
					atomic_inc(&vcc->stats->rx_drop);
			}
		} else {
			g_atm_priv_data.wrx_drop_pdu++;
		}

		reg_desc.byteoff = 0;
		reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
		reg_desc.own = 1;
		reg_desc.c   = 0;

		g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
		if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
			g_atm_priv_data.aal_desc_pos = 0;

		mailbox_signal(RX_DMA_CH_AAL, 0);
	}
}

static void do_ppe_tasklet(unsigned long data)
{
	*MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
	mailbox_oam_rx_handler();
	mailbox_aal_rx_handler();

	if ((*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0)
		tasklet_schedule(&g_dma_tasklet);
	else
		enable_irq(PPE_MAILBOX_IGU1_INT);
}

static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
{
	if ( !*MBOX_IGU1_ISR )
		return IRQ_HANDLED;

	disable_irq_nosync(PPE_MAILBOX_IGU1_INT);
	tasklet_schedule(&g_dma_tasklet);

	return IRQ_HANDLED;
}

static inline void mailbox_signal(unsigned int queue, int is_tx)
{
	int count = 1000;

	if ( is_tx ) {
		while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count > 0 )
			count--;
		*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
	} else {
		while ( MBOX_IGU3_ISR_ISR(queue) && count > 0 )
			count--;
		*MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
	}

	ASSERT(count > 0, "queue = %u, is_tx = %d, MBOX_IGU3_ISR = 0x%08x", queue, is_tx, IFX_REG_R32(MBOX_IGU3_ISR));
}

static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
{
	struct clk *fpi_clk = clk_get_fpi();
	unsigned int qsb_clk = clk_get_rate(fpi_clk);
	unsigned int qsb_qid = queue + FIRST_QSB_QID;
	union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
	union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
	unsigned int tmp;


	/*
	 *  Peak Cell Rate (PCR) Limiter
	 */
	if ( qos->txtp.max_pcr == 0 )
		qsb_queue_parameter_table.bit.tp = 0;   /*  disable PCR limiter */
	else {
		/*  peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
		tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
		/*  check if overflow takes place   */
		qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
	}

#if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
	//  A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
	//  Send packets to these two PVCs at same time, it trigger strange behavior.
	//  In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
	//  In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
	//  To work around, create UBR always with max_pcr.
	//  If user want to create UBR without max_pcr, we give a default one larger than line-rate.
	if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
		int port = g_atm_priv_data.conn[queue].port;
		unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;

		tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
		if ( tmp > QSB_TP_TS_MAX )
			tmp = QSB_TP_TS_MAX;
		else if ( tmp < 1 )
			tmp = 1;
		qsb_queue_parameter_table.bit.tp = tmp;
	}
#endif

	/*
	 *  Weighted Fair Queueing Factor (WFQF)
	 */
	switch ( qos->txtp.traffic_class ) {
	case ATM_CBR:
	case ATM_VBR_RT:
		/*  real time queue gets weighted fair queueing bypass  */
		qsb_queue_parameter_table.bit.wfqf = 0;
		break;
	case ATM_VBR_NRT:
	case ATM_UBR_PLUS:
		/*  WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates  */
		/*  WFQF is maximum cell rate / garenteed cell rate                                             */
		/*  wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate        */
		if ( qos->txtp.min_pcr == 0 )
			qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
		else {
			tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
			if ( tmp == 0 )
				qsb_queue_parameter_table.bit.wfqf = 1;
			else if ( tmp > QSB_WFQ_NONUBR_MAX )
				qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
			else
				qsb_queue_parameter_table.bit.wfqf = tmp;
		}
		break;
	default:
	case ATM_UBR:
		qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
	}

	/*
	 *  Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
	 */
	if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
		if ( qos->txtp.scr == 0 ) {
			/*  disable shaper  */
			qsb_queue_vbr_parameter_table.bit.taus = 0;
			qsb_queue_vbr_parameter_table.bit.ts = 0;
		} else {
			/*  Cell Loss Priority  (CLP)   */
			if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
				/*  CLP1    */
				qsb_queue_parameter_table.bit.vbr = 1;
			else
				/*  CLP0    */
				qsb_queue_parameter_table.bit.vbr = 0;
			/*  Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
			tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
			qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
			tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
			if ( tmp == 0 )
				qsb_queue_vbr_parameter_table.bit.taus = 1;
			else if ( tmp > QSB_TAUS_MAX )
				qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
			else
				qsb_queue_vbr_parameter_table.bit.taus = tmp;
		}
	} else {
		qsb_queue_vbr_parameter_table.bit.taus = 0;
		qsb_queue_vbr_parameter_table.bit.ts = 0;
	}

	/*  Queue Parameter Table (QPT) */
	*QSB_RTM   = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
	*QSB_RTD   = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
	*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
	/*  Queue VBR Paramter Table (QVPT) */
	*QSB_RTM   = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
	*QSB_RTD   = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
	*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);

}

static void qsb_global_set(void)
{
	struct clk *fpi_clk = clk_get_fpi();
	unsigned int qsb_clk = clk_get_rate(fpi_clk);
	int i;
	unsigned int tmp1, tmp2, tmp3;

	*QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
	*QSB_SBL  = QSB_SBL_SBL_SET(qsb_srvm);
	*QSB_CFG  = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);

	/*
	 *  set SCT and SPT per port
	 */
	for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
		if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
			tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
			tmp2 = tmp1 >> 6;                   /*  integer value of Tsb    */
			tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /*  fractional part of Tsb  */
			/*  carry over to integer part (?)  */
			if ( tmp3 == (1 << 6) ) {
				tmp3 = 0;
				tmp2++;
			}
			if ( tmp2 == 0 )
				tmp2 = tmp3 = 1;
			/*  1. set mask                                 */
			/*  2. write value to data transfer register    */
			/*  3. start the tranfer                        */
			/*  SCT (FracRate)  */
			*QSB_RTM   = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
			*QSB_RTD   = QSB_RTD_TTV_SET(tmp3);
			*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
					QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) |
					QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
					QSB_RAMAC_TESEL_SET(i & 0x01);
			/*  SPT (SBV + PN + IntRage)    */
			*QSB_RTM   = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
			*QSB_RTD   = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
			*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
				QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) |
				QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
				QSB_RAMAC_TESEL_SET(i & 0x01);
		}
	}
}

static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
{
	struct htu_entry htu_entry = {
		res1:       0x00,
		clp:        is_retx ? 0x01 : 0x00,
		pid:        g_atm_priv_data.conn[queue].port & 0x01,
		vpi:        vpi,
		vci:        vci,
		pti:        0x00,
		vld:        0x01};

	struct htu_mask htu_mask = {
		set:        0x01,
		clp:        0x01,
		pid_mask:   0x02,
		vpi_mask:   0x00,
		vci_mask:   0x0000,
		pti_mask:   0x03,   //  0xx, user data
		clear:      0x00};

	struct htu_result htu_result = {
		res1:       0x00,
		cellid:     queue,
		res2:       0x00,
		type:       aal5 ? 0x00 : 0x01,
		ven:        0x01,
		res3:       0x00,
		qid:        queue};

	*HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
	*HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER)   = htu_mask;
	*HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)  = htu_entry;
}

static inline void clear_htu_entry(unsigned int queue)
{
	HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
}

static void validate_oam_htu_entry(void)
{
	HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
	HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
	HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
}

static void invalidate_oam_htu_entry(void)
{
	HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
	HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
	HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
}

static inline int find_vpi(unsigned int vpi)
{
	int i;
	unsigned int bit;

	for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
		if ( (g_atm_priv_data.conn_table & bit) != 0
				&& g_atm_priv_data.conn[i].vcc != NULL
				&& vpi == g_atm_priv_data.conn[i].vcc->vpi )
			return i;
	}

	return -1;
}

static inline int find_vpivci(unsigned int vpi, unsigned int vci)
{
	int i;
	unsigned int bit;

	for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
		if ( (g_atm_priv_data.conn_table & bit) != 0
				&& g_atm_priv_data.conn[i].vcc != NULL
				&& vpi == g_atm_priv_data.conn[i].vcc->vpi
				&& vci == g_atm_priv_data.conn[i].vcc->vci )
			return i;
	}

	return -1;
}

static inline int find_vcc(struct atm_vcc *vcc)
{
	int i;
	unsigned int bit;

	for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
		if ( (g_atm_priv_data.conn_table & bit) != 0
			&& g_atm_priv_data.conn[i].vcc == vcc )
		return i;
	}

	return -1;
}

static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *buf)
{
	int len = 0;
	unsigned int major, minor;

	ops->fw_ver(&major, &minor);

	len += sprintf(buf + len, "ATM%d.%d.%d", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
	len += sprintf(buf + len, "    ATM (A1) firmware version %d.%d\n", major, minor);

	return len;
}

static inline void check_parameters(void)
{
	/*  Please refer to Amazon spec 15.4 for setting these values.  */
	if ( qsb_tau < 1 )
		qsb_tau = 1;
	if ( qsb_tstep < 1 )
		qsb_tstep = 1;
	else if ( qsb_tstep > 4 )
		qsb_tstep = 4;
	else if ( qsb_tstep == 3 )
		qsb_tstep = 2;

	/*  There is a delay between PPE write descriptor and descriptor is       */
	/*  really stored in memory. Host also has this delay when writing        */
	/*  descriptor. So PPE will use this value to determine if the write      */
	/*  operation makes effect.                                               */
	if ( write_descriptor_delay < 0 )
		write_descriptor_delay = 0;

	if ( aal5_fill_pattern < 0 )
		aal5_fill_pattern = 0;
	else
		aal5_fill_pattern &= 0xFF;

	/*  Because of the limitation of length field in descriptors, the packet  */
	/*  size could not be larger than 64K minus overhead size.                */
	if ( aal5r_max_packet_size < 0 )
		aal5r_max_packet_size = 0;
	else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
		aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
	if ( aal5r_min_packet_size < 0 )
		aal5r_min_packet_size = 0;
	else if ( aal5r_min_packet_size > aal5r_max_packet_size )
		aal5r_min_packet_size = aal5r_max_packet_size;
	if ( aal5s_max_packet_size < 0 )
		aal5s_max_packet_size = 0;
	else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
		aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
	if ( aal5s_min_packet_size < 0 )
		aal5s_min_packet_size = 0;
	else if ( aal5s_min_packet_size > aal5s_max_packet_size )
		aal5s_min_packet_size = aal5s_max_packet_size;

	if ( dma_rx_descriptor_length < 2 )
		dma_rx_descriptor_length = 2;
	if ( dma_tx_descriptor_length < 2 )
		dma_tx_descriptor_length = 2;
	if ( dma_rx_clp1_descriptor_threshold < 0 )
		dma_rx_clp1_descriptor_threshold = 0;
	else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
		dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;

	if ( dma_tx_descriptor_length < 2 )
		dma_tx_descriptor_length = 2;
}

static inline int init_priv_data(void)
{
	void *p;
	int i;
	struct rx_descriptor rx_desc = {0};
	struct sk_buff *skb;
	volatile struct tx_descriptor *p_tx_desc;
	struct sk_buff **ppskb;

	//  clear atm private data structure
	memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));

	//  allocate memory for RX (AAL) descriptors
	p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
	if ( p == NULL )
		return -1;
	dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
	g_atm_priv_data.aal_desc_base = p;
	p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
	g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;

	//  allocate memory for RX (OAM) descriptors
	p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
	if ( p == NULL )
		return -1;
	dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
	g_atm_priv_data.oam_desc_base = p;
	p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
	g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;

	//  allocate memory for RX (OAM) buffer
	p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
	if ( p == NULL )
		return -1;
	dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
	g_atm_priv_data.oam_buf_base = p;
	p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
	g_atm_priv_data.oam_buf = p;

	//  allocate memory for TX descriptors
	p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
	if ( p == NULL )
		return -1;
	dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
	g_atm_priv_data.tx_desc_base = p;

	//  allocate memory for TX skb pointers
	p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
	if ( p == NULL )
		return -1;
	dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
	g_atm_priv_data.tx_skb_base = p;

	//  setup RX (AAL) descriptors
	rx_desc.own     = 1;
	rx_desc.c       = 0;
	rx_desc.sop     = 1;
	rx_desc.eop     = 1;
	rx_desc.byteoff = 0;
	rx_desc.id      = 0;
	rx_desc.err     = 0;
	rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
	for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
		skb = alloc_skb_rx();
		if ( skb == NULL )
			return -1;
		rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
		g_atm_priv_data.aal_desc[i] = rx_desc;
	}

	//  setup RX (OAM) descriptors
	p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
	rx_desc.own     = 1;
	rx_desc.c       = 0;
	rx_desc.sop     = 1;
	rx_desc.eop     = 1;
	rx_desc.byteoff = 0;
	rx_desc.id      = 0;
	rx_desc.err     = 0;
	rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
	for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
		rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
		g_atm_priv_data.oam_desc[i] = rx_desc;
		p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
	}

	//  setup TX descriptors and skb pointers
	p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
	ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
	for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
		g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
		g_atm_priv_data.conn[i].tx_skb  = &ppskb[i * dma_tx_descriptor_length];
	}

	for ( i = 0; i < ATM_PORT_NUMBER; i++ )
		g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;

	return 0;
}

static inline void clear_priv_data(void)
{
	int i, j;
	struct sk_buff *skb;

	for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
		if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
			for ( j = 0; j < dma_tx_descriptor_length; j++ )
				if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
					dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
		}
	}

	if ( g_atm_priv_data.tx_skb_base != NULL )
		kfree(g_atm_priv_data.tx_skb_base);

	if ( g_atm_priv_data.tx_desc_base != NULL )
		kfree(g_atm_priv_data.tx_desc_base);

	if ( g_atm_priv_data.oam_buf_base != NULL )
		kfree(g_atm_priv_data.oam_buf_base);

	if ( g_atm_priv_data.oam_desc_base != NULL )
		kfree(g_atm_priv_data.oam_desc_base);

	if ( g_atm_priv_data.aal_desc_base != NULL ) {
		for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
			if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { //  descriptor initialized
				skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
				dev_kfree_skb_any(skb);
			}
		}
		kfree(g_atm_priv_data.aal_desc_base);
	}
}

static inline void init_rx_tables(void)
{
	int i;
	struct wrx_queue_config wrx_queue_config = {0};
	struct wrx_dma_channel_config wrx_dma_channel_config = {0};
	struct htu_entry htu_entry = {0};
	struct htu_result htu_result = {0};
	struct htu_mask htu_mask = {
		set:        0x01,
		clp:        0x01,
		pid_mask:   0x00,
		vpi_mask:   0x00,
		vci_mask:   0x00,
		pti_mask:   0x00,
		clear:      0x00
	};

	/*
	 *  General Registers
	 */
	*CFG_WRX_HTUTS  = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
#ifndef CONFIG_AMAZON_SE
	*CFG_WRX_QNUM   = MAX_QUEUE_NUMBER;
#endif
	*CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
	*WRX_DMACH_ON   = (1 << RX_DMA_CH_TOTAL) - 1;
	*WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;

	/*
	 *  WRX Queue Configuration Table
	 */
	wrx_queue_config.uumask    = 0xFF;
	wrx_queue_config.cpimask   = 0xFF;
	wrx_queue_config.uuexp     = 0;
	wrx_queue_config.cpiexp    = 0;
	wrx_queue_config.mfs       = aal5r_max_packet_size;
	wrx_queue_config.oversize  = aal5r_max_packet_size;
	wrx_queue_config.undersize = aal5r_min_packet_size;
	wrx_queue_config.errdp     = aal5r_drop_error_packet;
	wrx_queue_config.dmach     = RX_DMA_CH_AAL;
	for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
		*WRX_QUEUE_CONFIG(i) = wrx_queue_config;
	WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;

	/*
	 *  WRX DMA Channel Configuration Table
	 */
	wrx_dma_channel_config.chrl   = 0;
	wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
	wrx_dma_channel_config.mode   = 0;
	wrx_dma_channel_config.rlcfg  = 0;

	wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
	wrx_dma_channel_config.desba  = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
	*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;

	wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
	wrx_dma_channel_config.desba  = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
	*WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;

	/*
	 *  HTU Tables
	 */
	for (i = 0; i < MAX_PVC_NUMBER; i++) {
		htu_result.qid = (unsigned int)i;

		*HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER)  = htu_entry;
		*HTU_MASK(i + OAM_HTU_ENTRY_NUMBER)   = htu_mask;
		*HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
	}

	/*  OAM HTU Entry   */
	htu_entry.vci = 0x03;
	htu_mask.pid_mask = 0x03;
	htu_mask.vpi_mask = 0xFF;
	htu_mask.vci_mask = 0x0000;
	htu_mask.pti_mask = 0x07;
	htu_result.cellid = OAM_RX_QUEUE;
	htu_result.type   = 1;
	htu_result.ven    = 1;
	htu_result.qid    = OAM_RX_QUEUE;
	*HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
	*HTU_MASK(OAM_F4_SEG_HTU_ENTRY)   = htu_mask;
	*HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)  = htu_entry;
	htu_entry.vci     = 0x04;
	htu_result.cellid = OAM_RX_QUEUE;
	htu_result.type   = 1;
	htu_result.ven    = 1;
	htu_result.qid    = OAM_RX_QUEUE;
	*HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
	*HTU_MASK(OAM_F4_TOT_HTU_ENTRY)   = htu_mask;
	*HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)  = htu_entry;
	htu_entry.vci     = 0x00;
	htu_entry.pti     = 0x04;
	htu_mask.vci_mask = 0xFFFF;
	htu_mask.pti_mask = 0x01;
	htu_result.cellid = OAM_RX_QUEUE;
	htu_result.type   = 1;
	htu_result.ven    = 1;
	htu_result.qid    = OAM_RX_QUEUE;
	*HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
	*HTU_MASK(OAM_F5_HTU_ENTRY)   = htu_mask;
	*HTU_ENTRY(OAM_F5_HTU_ENTRY)  = htu_entry;
}

static inline void init_tx_tables(void)
{
	int i;
	struct wtx_queue_config wtx_queue_config = {0};
	struct wtx_dma_channel_config wtx_dma_channel_config = {0};
	struct wtx_port_config wtx_port_config = {
		res1:   0,
		qid:    0,
		qsben:  1
	};

	/*
	 *  General Registers
	 */
	*CFG_WTX_DCHNUM     = MAX_TX_DMA_CHANNEL_NUMBER;
	*WTX_DMACH_ON       = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
	*CFG_WRDES_DELAY    = write_descriptor_delay;

	/*
	 *  WTX Port Configuration Table
	 */
	for ( i = 0; i < ATM_PORT_NUMBER; i++ )
		*WTX_PORT_CONFIG(i) = wtx_port_config;

	/*
	 *  WTX Queue Configuration Table
	 */
	wtx_queue_config.qsben = 1;
	wtx_queue_config.sbid  = 0;
	for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
		wtx_queue_config.qsb_vcid = i;
		*WTX_QUEUE_CONFIG(i) = wtx_queue_config;
	}

	/*
	 *  WTX DMA Channel Configuration Table
	 */
	wtx_dma_channel_config.mode   = 0;
	wtx_dma_channel_config.deslen = 0;
	wtx_dma_channel_config.desba  = 0;
	for ( i = 0; i < FIRST_QSB_QID; i++ )
		*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
	/*  normal connection   */
	wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
	for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
		wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
		*WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
	}
}

static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
{
	int i, j;

	ASSERT(port_cell != NULL, "port_cell is NULL");
	ASSERT(xdata_addr != NULL, "xdata_addr is NULL");

	for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
		if ( port_cell->tx_link_rate[j] > 0 )
			break;
	for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
		g_atm_priv_data.port[i].tx_max_cell_rate =
			port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];

	qsb_global_set();

	for ( i = 0; i < MAX_PVC_NUMBER; i++ )
		if ( g_atm_priv_data.conn[i].vcc != NULL )
			set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);

	//  TODO: ReTX set xdata_addr
	g_xdata_addr = xdata_addr;

	g_showtime = 1;

#if defined(CONFIG_VR9)
	IFX_REG_W32(0x0F, UTP_CFG);
#endif

	printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n",
		g_atm_priv_data.port[0].tx_max_cell_rate,
		g_atm_priv_data.port[1].tx_max_cell_rate,
		(unsigned int)g_xdata_addr);

	return 0;
}

static int atm_showtime_exit(void)
{
	if ( !g_showtime )
		return -1;

#if defined(CONFIG_VR9)
	IFX_REG_W32(0x00, UTP_CFG);
#endif
	g_showtime = 0;
	g_xdata_addr = NULL;
	printk("leave showtime\n");
	return 0;
}

extern struct ltq_atm_ops ar9_ops;
extern struct ltq_atm_ops vr9_ops;
extern struct ltq_atm_ops danube_ops;
extern struct ltq_atm_ops ase_ops;

static const struct of_device_id ltq_atm_match[] = {
#ifdef CONFIG_DANUBE
	{ .compatible = "lantiq,ppe-danube", .data = &danube_ops },
#elif defined CONFIG_AMAZON_SE
	{ .compatible = "lantiq,ppe-ase", .data = &ase_ops },
#elif defined CONFIG_AR9
	{ .compatible = "lantiq,ppe-arx100", .data = &ar9_ops },
#elif defined CONFIG_VR9
	{ .compatible = "lantiq,ppe-xrx200", .data = &vr9_ops },
#endif
	{},
};
MODULE_DEVICE_TABLE(of, ltq_atm_match);

static int ltq_atm_probe(struct platform_device *pdev)
{
	const struct of_device_id *match;
	struct ltq_atm_ops *ops = NULL;
	int ret;
	int port_num;
	struct port_cell_info port_cell = {0};
	int i, j;
	char ver_str[256];

	match = of_match_device(ltq_atm_match, &pdev->dev);
	if (!match) {
		dev_err(&pdev->dev, "failed to find matching device\n");
		return -ENOENT;
	}
	ops = (struct ltq_atm_ops *) match->data;

	check_parameters();

	ret = init_priv_data();
	if ( ret != 0 ) {
		pr_err("INIT_PRIV_DATA_FAIL\n");
		goto INIT_PRIV_DATA_FAIL;
	}

	ops->init();
	init_rx_tables();
	init_tx_tables();

	/*  create devices  */
	for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
		g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
		if ( !g_atm_priv_data.port[port_num].dev ) {
			pr_err("failed to register atm device %d!\n", port_num);
			ret = -EIO;
			goto ATM_DEV_REGISTER_FAIL;
		} else {
			g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
			g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
			g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
			g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
		}
	}

	/*  register interrupt handler  */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4,1,0)
	ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, 0, "atm_mailbox_isr", &g_atm_priv_data);
#else
	ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
#endif
	if ( ret ) {
		if ( ret == -EBUSY ) {
			pr_err("IRQ may be occupied by other driver, please reconfig to disable it.\n");
		} else {
			pr_err("request_irq fail irq:%d\n", PPE_MAILBOX_IGU1_INT);
		}
		goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
	}
	disable_irq(PPE_MAILBOX_IGU1_INT);


	ret = ops->start(0);
	if ( ret ) {
		pr_err("ifx_pp32_start fail!\n");
		goto PP32_START_FAIL;
	}

	port_cell.port_num = ATM_PORT_NUMBER;
	ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
	if ( g_showtime ) {
		for ( i = 0; i < ATM_PORT_NUMBER; i++ )
			if ( port_cell.tx_link_rate[i] != 0 )
				break;
		for ( j = 0; j < ATM_PORT_NUMBER; j++ )
			g_atm_priv_data.port[j].tx_max_cell_rate =
				port_cell.tx_link_rate[j] != 0 ? port_cell.tx_link_rate[j] : port_cell.tx_link_rate[i];
	}

	qsb_global_set();
	validate_oam_htu_entry();

	ifx_mei_atm_showtime_enter = atm_showtime_enter;
	ifx_mei_atm_showtime_exit  = atm_showtime_exit;

	ifx_atm_version(ops, ver_str);
	printk(KERN_INFO "%s", ver_str);
	platform_set_drvdata(pdev, ops);
	printk("ifxmips_atm: ATM init succeed\n");

	return 0;

PP32_START_FAIL:
	free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
ATM_DEV_REGISTER_FAIL:
	while ( port_num-- > 0 )
		atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
INIT_PRIV_DATA_FAIL:
	clear_priv_data();
	printk("ifxmips_atm: ATM init failed\n");
	return ret;
}

static int ltq_atm_remove(struct platform_device *pdev)
{
	int port_num;
	struct ltq_atm_ops *ops = platform_get_drvdata(pdev);

	ifx_mei_atm_showtime_enter = NULL;
	ifx_mei_atm_showtime_exit  = NULL;

	invalidate_oam_htu_entry();

	ops->stop(0);

	free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);

	for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
		atm_dev_deregister(g_atm_priv_data.port[port_num].dev);

	ops->shutdown();

	clear_priv_data();

	return 0;
}

static struct platform_driver ltq_atm_driver = {
	.probe = ltq_atm_probe,
	.remove = ltq_atm_remove,
	.driver = {
		.name = "atm",
		.owner = THIS_MODULE,
		.of_match_table = ltq_atm_match,
	},
};

module_platform_driver(ltq_atm_driver);

MODULE_LICENSE("Dual BSD/GPL");