diff options
author | John Crispin <john@openwrt.org> | 2014-04-03 14:26:42 +0000 |
---|---|---|
committer | John Crispin <john@openwrt.org> | 2014-04-03 14:26:42 +0000 |
commit | 08b49244014c1349278c9df3a61c124acecd31ae (patch) | |
tree | 8c042bd62fc2af4dc4f96e11e22306abadcf0323 /package/utils/ubi-utils/patches/130-lzma_jffs2.patch | |
parent | 69519ed75f91539b16fdcd6bec2f4deb5805d856 (diff) | |
download | mtk-20170518-08b49244014c1349278c9df3a61c124acecd31ae.zip mtk-20170518-08b49244014c1349278c9df3a61c124acecd31ae.tar.gz mtk-20170518-08b49244014c1349278c9df3a61c124acecd31ae.tar.bz2 |
ubi-utils: mini version of mtd-utils that only includes ubi tools
Signed-off-by: John Crispin <blogic@openwrt.org>
SVN-Revision: 40367
Diffstat (limited to 'package/utils/ubi-utils/patches/130-lzma_jffs2.patch')
-rw-r--r-- | package/utils/ubi-utils/patches/130-lzma_jffs2.patch | 5029 |
1 files changed, 5029 insertions, 0 deletions
diff --git a/package/utils/ubi-utils/patches/130-lzma_jffs2.patch b/package/utils/ubi-utils/patches/130-lzma_jffs2.patch new file mode 100644 index 0000000..a40199e --- /dev/null +++ b/package/utils/ubi-utils/patches/130-lzma_jffs2.patch @@ -0,0 +1,5029 @@ +--- a/Makefile ++++ b/Makefile +@@ -3,7 +3,7 @@ + + VERSION = 1.5.0 + +-CPPFLAGS += -D_GNU_SOURCE -I./include -I$(BUILDDIR)/include -I./ubi-utils/include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS) ++CPPFLAGS += -D_GNU_SOURCE -I./include -I$(BUILDDIR)/include -I./ubi-utils/include $(ZLIBCPPFLAGS) $(LZOCPPFLAGS) -I./include/linux/lzma + + ifeq ($(WITHOUT_XATTR), 1) + CPPFLAGS += -DWITHOUT_XATTR +@@ -84,7 +84,7 @@ + # + # Utils in top level + # +-obj-mkfs.jffs2 = compr_rtime.o compr_zlib.o compr_lzo.o compr.o rbtree.o ++obj-mkfs.jffs2 = compr_rtime.o compr_zlib.o $(if $(WITHOUT_LZO),,compr_lzo.o) compr_lzma.o lzma/LzFind.o lzma/LzmaEnc.o lzma/LzmaDec.o compr.o rbtree.o + LDFLAGS_mkfs.jffs2 = $(ZLIBLDFLAGS) $(LZOLDFLAGS) + LDLIBS_mkfs.jffs2 = -lz $(LZOLDLIBS) + +--- a/compr.c ++++ b/compr.c +@@ -520,6 +520,9 @@ int jffs2_compressors_init(void) + #ifdef CONFIG_JFFS2_LZO + jffs2_lzo_init(); + #endif ++#ifdef CONFIG_JFFS2_LZMA ++ jffs2_lzma_init(); ++#endif + return 0; + } + +@@ -534,5 +537,8 @@ int jffs2_compressors_exit(void) + #ifdef CONFIG_JFFS2_LZO + jffs2_lzo_exit(); + #endif ++#ifdef CONFIG_JFFS2_LZMA ++ jffs2_lzma_exit(); ++#endif + return 0; + } +--- a/compr.h ++++ b/compr.h +@@ -18,13 +18,14 @@ + + #define CONFIG_JFFS2_ZLIB + #define CONFIG_JFFS2_RTIME +-#define CONFIG_JFFS2_LZO ++#define CONFIG_JFFS2_LZMA + + #define JFFS2_RUBINMIPS_PRIORITY 10 + #define JFFS2_DYNRUBIN_PRIORITY 20 + #define JFFS2_RTIME_PRIORITY 50 +-#define JFFS2_ZLIB_PRIORITY 60 +-#define JFFS2_LZO_PRIORITY 80 ++#define JFFS2_LZMA_PRIORITY 70 ++#define JFFS2_ZLIB_PRIORITY 80 ++#define JFFS2_LZO_PRIORITY 90 + + #define JFFS2_COMPR_MODE_NONE 0 + #define JFFS2_COMPR_MODE_PRIORITY 1 +@@ -115,5 +116,10 @@ void jffs2_rtime_exit(void); + int jffs2_lzo_init(void); + void jffs2_lzo_exit(void); + #endif ++#ifdef CONFIG_JFFS2_LZMA ++int jffs2_lzma_init(void); ++void jffs2_lzma_exit(void); ++#endif ++ + + #endif /* __JFFS2_COMPR_H__ */ +--- /dev/null ++++ b/compr_lzma.c +@@ -0,0 +1,128 @@ ++/* ++ * JFFS2 -- Journalling Flash File System, Version 2. ++ * ++ * For licensing information, see the file 'LICENCE' in this directory. ++ * ++ * JFFS2 wrapper to the LZMA C SDK ++ * ++ */ ++ ++#include <linux/lzma.h> ++#include "compr.h" ++ ++#ifdef __KERNEL__ ++ static DEFINE_MUTEX(deflate_mutex); ++#endif ++ ++CLzmaEncHandle *p; ++Byte propsEncoded[LZMA_PROPS_SIZE]; ++SizeT propsSize = sizeof(propsEncoded); ++ ++STATIC void lzma_free_workspace(void) ++{ ++ LzmaEnc_Destroy(p, &lzma_alloc, &lzma_alloc); ++} ++ ++STATIC int INIT lzma_alloc_workspace(CLzmaEncProps *props) ++{ ++ if ((p = (CLzmaEncHandle *)LzmaEnc_Create(&lzma_alloc)) == NULL) ++ { ++ PRINT_ERROR("Failed to allocate lzma deflate workspace\n"); ++ return -ENOMEM; ++ } ++ ++ if (LzmaEnc_SetProps(p, props) != SZ_OK) ++ { ++ lzma_free_workspace(); ++ return -1; ++ } ++ ++ if (LzmaEnc_WriteProperties(p, propsEncoded, &propsSize) != SZ_OK) ++ { ++ lzma_free_workspace(); ++ return -1; ++ } ++ ++ return 0; ++} ++ ++STATIC int jffs2_lzma_compress(unsigned char *data_in, unsigned char *cpage_out, ++ uint32_t *sourcelen, uint32_t *dstlen, void *model) ++{ ++ SizeT compress_size = (SizeT)(*dstlen); ++ int ret; ++ ++ #ifdef __KERNEL__ ++ mutex_lock(&deflate_mutex); ++ #endif ++ ++ ret = LzmaEnc_MemEncode(p, cpage_out, &compress_size, data_in, *sourcelen, ++ 0, NULL, &lzma_alloc, &lzma_alloc); ++ ++ #ifdef __KERNEL__ ++ mutex_unlock(&deflate_mutex); ++ #endif ++ ++ if (ret != SZ_OK) ++ return -1; ++ ++ *dstlen = (uint32_t)compress_size; ++ ++ return 0; ++} ++ ++STATIC int jffs2_lzma_decompress(unsigned char *data_in, unsigned char *cpage_out, ++ uint32_t srclen, uint32_t destlen, void *model) ++{ ++ int ret; ++ SizeT dl = (SizeT)destlen; ++ SizeT sl = (SizeT)srclen; ++ ELzmaStatus status; ++ ++ ret = LzmaDecode(cpage_out, &dl, data_in, &sl, propsEncoded, ++ propsSize, LZMA_FINISH_ANY, &status, &lzma_alloc); ++ ++ if (ret != SZ_OK || status == LZMA_STATUS_NOT_FINISHED || dl != (SizeT)destlen) ++ return -1; ++ ++ return 0; ++} ++ ++static struct jffs2_compressor jffs2_lzma_comp = { ++ .priority = JFFS2_LZMA_PRIORITY, ++ .name = "lzma", ++ .compr = JFFS2_COMPR_LZMA, ++ .compress = &jffs2_lzma_compress, ++ .decompress = &jffs2_lzma_decompress, ++ .disabled = 0, ++}; ++ ++int INIT jffs2_lzma_init(void) ++{ ++ int ret; ++ CLzmaEncProps props; ++ LzmaEncProps_Init(&props); ++ ++ props.dictSize = LZMA_BEST_DICT(0x2000); ++ props.level = LZMA_BEST_LEVEL; ++ props.lc = LZMA_BEST_LC; ++ props.lp = LZMA_BEST_LP; ++ props.pb = LZMA_BEST_PB; ++ props.fb = LZMA_BEST_FB; ++ ++ ret = lzma_alloc_workspace(&props); ++ if (ret < 0) ++ return ret; ++ ++ ret = jffs2_register_compressor(&jffs2_lzma_comp); ++ if (ret) ++ lzma_free_workspace(); ++ ++ return ret; ++} ++ ++void jffs2_lzma_exit(void) ++{ ++ jffs2_unregister_compressor(&jffs2_lzma_comp); ++ lzma_free_workspace(); ++} +--- a/include/linux/jffs2.h ++++ b/include/linux/jffs2.h +@@ -47,6 +47,7 @@ + #define JFFS2_COMPR_DYNRUBIN 0x05 + #define JFFS2_COMPR_ZLIB 0x06 + #define JFFS2_COMPR_LZO 0x07 ++#define JFFS2_COMPR_LZMA 0x08 + /* Compatibility flags. */ + #define JFFS2_COMPAT_MASK 0xc000 /* What do to if an unknown nodetype is found */ + #define JFFS2_NODE_ACCURATE 0x2000 +--- /dev/null ++++ b/include/linux/lzma.h +@@ -0,0 +1,61 @@ ++#ifndef __LZMA_H__ ++#define __LZMA_H__ ++ ++#ifdef __KERNEL__ ++ #include <linux/kernel.h> ++ #include <linux/sched.h> ++ #include <linux/slab.h> ++ #include <linux/vmalloc.h> ++ #include <linux/init.h> ++ #define LZMA_MALLOC vmalloc ++ #define LZMA_FREE vfree ++ #define PRINT_ERROR(msg) printk(KERN_WARNING #msg) ++ #define INIT __init ++ #define STATIC static ++#else ++ #include <stdint.h> ++ #include <stdlib.h> ++ #include <stdio.h> ++ #include <unistd.h> ++ #include <string.h> ++ #include <errno.h> ++ #include <linux/jffs2.h> ++ #ifndef PAGE_SIZE ++ extern int page_size; ++ #define PAGE_SIZE page_size ++ #endif ++ #define LZMA_MALLOC malloc ++ #define LZMA_FREE free ++ #define PRINT_ERROR(msg) fprintf(stderr, msg) ++ #define INIT ++ #define STATIC ++#endif ++ ++#include "lzma/LzmaDec.h" ++#include "lzma/LzmaEnc.h" ++ ++#define LZMA_BEST_LEVEL (9) ++#define LZMA_BEST_LC (0) ++#define LZMA_BEST_LP (0) ++#define LZMA_BEST_PB (0) ++#define LZMA_BEST_FB (273) ++ ++#define LZMA_BEST_DICT(n) (((int)((n) / 2)) * 2) ++ ++static void *p_lzma_malloc(void *p, size_t size) ++{ ++ if (size == 0) ++ return NULL; ++ ++ return LZMA_MALLOC(size); ++} ++ ++static void p_lzma_free(void *p, void *address) ++{ ++ if (address != NULL) ++ LZMA_FREE(address); ++} ++ ++static ISzAlloc lzma_alloc = {p_lzma_malloc, p_lzma_free}; ++ ++#endif +--- /dev/null ++++ b/include/linux/lzma/LzFind.h +@@ -0,0 +1,116 @@ ++/* LzFind.h -- Match finder for LZ algorithms ++2008-04-04 ++Copyright (c) 1999-2008 Igor Pavlov ++You can use any of the following license options: ++ 1) GNU Lesser General Public License (GNU LGPL) ++ 2) Common Public License (CPL) ++ 3) Common Development and Distribution License (CDDL) Version 1.0 ++ 4) Igor Pavlov, as the author of this code, expressly permits you to ++ statically or dynamically link your code (or bind by name) to this file, ++ while you keep this file unmodified. ++*/ ++ ++#ifndef __LZFIND_H ++#define __LZFIND_H ++ ++#include "Types.h" ++ ++typedef UInt32 CLzRef; ++ ++typedef struct _CMatchFinder ++{ ++ Byte *buffer; ++ UInt32 pos; ++ UInt32 posLimit; ++ UInt32 streamPos; ++ UInt32 lenLimit; ++ ++ UInt32 cyclicBufferPos; ++ UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */ ++ ++ UInt32 matchMaxLen; ++ CLzRef *hash; ++ CLzRef *son; ++ UInt32 hashMask; ++ UInt32 cutValue; ++ ++ Byte *bufferBase; ++ ISeqInStream *stream; ++ int streamEndWasReached; ++ ++ UInt32 blockSize; ++ UInt32 keepSizeBefore; ++ UInt32 keepSizeAfter; ++ ++ UInt32 numHashBytes; ++ int directInput; ++ int btMode; ++ /* int skipModeBits; */ ++ int bigHash; ++ UInt32 historySize; ++ UInt32 fixedHashSize; ++ UInt32 hashSizeSum; ++ UInt32 numSons; ++ SRes result; ++ UInt32 crc[256]; ++} CMatchFinder; ++ ++#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((p)->buffer) ++#define Inline_MatchFinder_GetIndexByte(p, index) ((p)->buffer[(Int32)(index)]) ++ ++#define Inline_MatchFinder_GetNumAvailableBytes(p) ((p)->streamPos - (p)->pos) ++ ++int MatchFinder_NeedMove(CMatchFinder *p); ++Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p); ++void MatchFinder_MoveBlock(CMatchFinder *p); ++void MatchFinder_ReadIfRequired(CMatchFinder *p); ++ ++void MatchFinder_Construct(CMatchFinder *p); ++ ++/* Conditions: ++ historySize <= 3 GB ++ keepAddBufferBefore + matchMaxLen + keepAddBufferAfter < 511MB ++*/ ++int MatchFinder_Create(CMatchFinder *p, UInt32 historySize, ++ UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ++ ISzAlloc *alloc); ++void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc); ++void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems); ++void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue); ++ ++UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son, ++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue, ++ UInt32 *distances, UInt32 maxLen); ++ ++/* ++Conditions: ++ Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func. ++ Mf_GetPointerToCurrentPos_Func's result must be used only before any other function ++*/ ++ ++typedef void (*Mf_Init_Func)(void *object); ++typedef Byte (*Mf_GetIndexByte_Func)(void *object, Int32 index); ++typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object); ++typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object); ++typedef UInt32 (*Mf_GetMatches_Func)(void *object, UInt32 *distances); ++typedef void (*Mf_Skip_Func)(void *object, UInt32); ++ ++typedef struct _IMatchFinder ++{ ++ Mf_Init_Func Init; ++ Mf_GetIndexByte_Func GetIndexByte; ++ Mf_GetNumAvailableBytes_Func GetNumAvailableBytes; ++ Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos; ++ Mf_GetMatches_Func GetMatches; ++ Mf_Skip_Func Skip; ++} IMatchFinder; ++ ++void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable); ++ ++void MatchFinder_Init(CMatchFinder *p); ++UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances); ++UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances); ++void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num); ++void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num); ++ ++#endif +--- /dev/null ++++ b/include/linux/lzma/LzHash.h +@@ -0,0 +1,56 @@ ++/* LzHash.h -- HASH functions for LZ algorithms ++2008-03-26 ++Copyright (c) 1999-2008 Igor Pavlov ++Read LzFind.h for license options */ ++ ++#ifndef __LZHASH_H ++#define __LZHASH_H ++ ++#define kHash2Size (1 << 10) ++#define kHash3Size (1 << 16) ++#define kHash4Size (1 << 20) ++ ++#define kFix3HashSize (kHash2Size) ++#define kFix4HashSize (kHash2Size + kHash3Size) ++#define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size) ++ ++#define HASH2_CALC hashValue = cur[0] | ((UInt32)cur[1] << 8); ++ ++#define HASH3_CALC { \ ++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \ ++ hash2Value = temp & (kHash2Size - 1); \ ++ hashValue = (temp ^ ((UInt32)cur[2] << 8)) & p->hashMask; } ++ ++#define HASH4_CALC { \ ++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \ ++ hash2Value = temp & (kHash2Size - 1); \ ++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \ ++ hashValue = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & p->hashMask; } ++ ++#define HASH5_CALC { \ ++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \ ++ hash2Value = temp & (kHash2Size - 1); \ ++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \ ++ hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)); \ ++ hashValue = (hash4Value ^ (p->crc[cur[4]] << 3)) & p->hashMask; \ ++ hash4Value &= (kHash4Size - 1); } ++ ++/* #define HASH_ZIP_CALC hashValue = ((cur[0] | ((UInt32)cur[1] << 8)) ^ p->crc[cur[2]]) & 0xFFFF; */ ++#define HASH_ZIP_CALC hashValue = ((cur[2] | ((UInt32)cur[0] << 8)) ^ p->crc[cur[1]]) & 0xFFFF; ++ ++ ++#define MT_HASH2_CALC \ ++ hash2Value = (p->crc[cur[0]] ^ cur[1]) & (kHash2Size - 1); ++ ++#define MT_HASH3_CALC { \ ++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \ ++ hash2Value = temp & (kHash2Size - 1); \ ++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); } ++ ++#define MT_HASH4_CALC { \ ++ UInt32 temp = p->crc[cur[0]] ^ cur[1]; \ ++ hash2Value = temp & (kHash2Size - 1); \ ++ hash3Value = (temp ^ ((UInt32)cur[2] << 8)) & (kHash3Size - 1); \ ++ hash4Value = (temp ^ ((UInt32)cur[2] << 8) ^ (p->crc[cur[3]] << 5)) & (kHash4Size - 1); } ++ ++#endif +--- /dev/null ++++ b/include/linux/lzma/LzmaDec.h +@@ -0,0 +1,232 @@ ++/* LzmaDec.h -- LZMA Decoder ++2008-04-29 ++Copyright (c) 1999-2008 Igor Pavlov ++You can use any of the following license options: ++ 1) GNU Lesser General Public License (GNU LGPL) ++ 2) Common Public License (CPL) ++ 3) Common Development and Distribution License (CDDL) Version 1.0 ++ 4) Igor Pavlov, as the author of this code, expressly permits you to ++ statically or dynamically link your code (or bind by name) to this file, ++ while you keep this file unmodified. ++*/ ++ ++#ifndef __LZMADEC_H ++#define __LZMADEC_H ++ ++#include "Types.h" ++ ++/* #define _LZMA_PROB32 */ ++/* _LZMA_PROB32 can increase the speed on some CPUs, ++ but memory usage for CLzmaDec::probs will be doubled in that case */ ++ ++#ifdef _LZMA_PROB32 ++#define CLzmaProb UInt32 ++#else ++#define CLzmaProb UInt16 ++#endif ++ ++ ++/* ---------- LZMA Properties ---------- */ ++ ++#define LZMA_PROPS_SIZE 5 ++ ++typedef struct _CLzmaProps ++{ ++ unsigned lc, lp, pb; ++ UInt32 dicSize; ++} CLzmaProps; ++ ++/* LzmaProps_Decode - decodes properties ++Returns: ++ SZ_OK ++ SZ_ERROR_UNSUPPORTED - Unsupported properties ++*/ ++ ++SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size); ++ ++ ++/* ---------- LZMA Decoder state ---------- */ ++ ++/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case. ++ Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */ ++ ++#define LZMA_REQUIRED_INPUT_MAX 20 ++ ++typedef struct ++{ ++ CLzmaProps prop; ++ CLzmaProb *probs; ++ Byte *dic; ++ const Byte *buf; ++ UInt32 range, code; ++ SizeT dicPos; ++ SizeT dicBufSize; ++ UInt32 processedPos; ++ UInt32 checkDicSize; ++ unsigned state; ++ UInt32 reps[4]; ++ unsigned remainLen; ++ int needFlush; ++ int needInitState; ++ UInt32 numProbs; ++ unsigned tempBufSize; ++ Byte tempBuf[LZMA_REQUIRED_INPUT_MAX]; ++} CLzmaDec; ++ ++#define LzmaDec_Construct(p) { (p)->dic = 0; (p)->probs = 0; } ++ ++void LzmaDec_Init(CLzmaDec *p); ++ ++/* There are two types of LZMA streams: ++ 0) Stream with end mark. That end mark adds about 6 bytes to compressed size. ++ 1) Stream without end mark. You must know exact uncompressed size to decompress such stream. */ ++ ++typedef enum ++{ ++ LZMA_FINISH_ANY, /* finish at any point */ ++ LZMA_FINISH_END /* block must be finished at the end */ ++} ELzmaFinishMode; ++ ++/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!! ++ ++ You must use LZMA_FINISH_END, when you know that current output buffer ++ covers last bytes of block. In other cases you must use LZMA_FINISH_ANY. ++ ++ If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK, ++ and output value of destLen will be less than output buffer size limit. ++ You can check status result also. ++ ++ You can use multiple checks to test data integrity after full decompression: ++ 1) Check Result and "status" variable. ++ 2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize. ++ 3) Check that output(srcLen) = compressedSize, if you know real compressedSize. ++ You must use correct finish mode in that case. */ ++ ++typedef enum ++{ ++ LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */ ++ LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */ ++ LZMA_STATUS_NOT_FINISHED, /* stream was not finished */ ++ LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */ ++ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */ ++} ELzmaStatus; ++ ++/* ELzmaStatus is used only as output value for function call */ ++ ++ ++/* ---------- Interfaces ---------- */ ++ ++/* There are 3 levels of interfaces: ++ 1) Dictionary Interface ++ 2) Buffer Interface ++ 3) One Call Interface ++ You can select any of these interfaces, but don't mix functions from different ++ groups for same object. */ ++ ++ ++/* There are two variants to allocate state for Dictionary Interface: ++ 1) LzmaDec_Allocate / LzmaDec_Free ++ 2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs ++ You can use variant 2, if you set dictionary buffer manually. ++ For Buffer Interface you must always use variant 1. ++ ++LzmaDec_Allocate* can return: ++ SZ_OK ++ SZ_ERROR_MEM - Memory allocation error ++ SZ_ERROR_UNSUPPORTED - Unsupported properties ++*/ ++ ++SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc); ++void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc); ++ ++SRes LzmaDec_Allocate(CLzmaDec *state, const Byte *prop, unsigned propsSize, ISzAlloc *alloc); ++void LzmaDec_Free(CLzmaDec *state, ISzAlloc *alloc); ++ ++/* ---------- Dictionary Interface ---------- */ ++ ++/* You can use it, if you want to eliminate the overhead for data copying from ++ dictionary to some other external buffer. ++ You must work with CLzmaDec variables directly in this interface. ++ ++ STEPS: ++ LzmaDec_Constr() ++ LzmaDec_Allocate() ++ for (each new stream) ++ { ++ LzmaDec_Init() ++ while (it needs more decompression) ++ { ++ LzmaDec_DecodeToDic() ++ use data from CLzmaDec::dic and update CLzmaDec::dicPos ++ } ++ } ++ LzmaDec_Free() ++*/ ++ ++/* LzmaDec_DecodeToDic ++ ++ The decoding to internal dictionary buffer (CLzmaDec::dic). ++ You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!! ++ ++finishMode: ++ It has meaning only if the decoding reaches output limit (dicLimit). ++ LZMA_FINISH_ANY - Decode just dicLimit bytes. ++ LZMA_FINISH_END - Stream must be finished after dicLimit. ++ ++Returns: ++ SZ_OK ++ status: ++ LZMA_STATUS_FINISHED_WITH_MARK ++ LZMA_STATUS_NOT_FINISHED ++ LZMA_STATUS_NEEDS_MORE_INPUT ++ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK ++ SZ_ERROR_DATA - Data error ++*/ ++ ++SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, ++ const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status); ++ ++ ++/* ---------- Buffer Interface ---------- */ ++ ++/* It's zlib-like interface. ++ See LzmaDec_DecodeToDic description for information about STEPS and return results, ++ but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need ++ to work with CLzmaDec variables manually. ++ ++finishMode: ++ It has meaning only if the decoding reaches output limit (*destLen). ++ LZMA_FINISH_ANY - Decode just destLen bytes. ++ LZMA_FINISH_END - Stream must be finished after (*destLen). ++*/ ++ ++SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, ++ const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status); ++ ++ ++/* ---------- One Call Interface ---------- */ ++ ++/* LzmaDecode ++ ++finishMode: ++ It has meaning only if the decoding reaches output limit (*destLen). ++ LZMA_FINISH_ANY - Decode just destLen bytes. ++ LZMA_FINISH_END - Stream must be finished after (*destLen). ++ ++Returns: ++ SZ_OK ++ status: ++ LZMA_STATUS_FINISHED_WITH_MARK ++ LZMA_STATUS_NOT_FINISHED ++ LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK ++ SZ_ERROR_DATA - Data error ++ SZ_ERROR_MEM - Memory allocation error ++ SZ_ERROR_UNSUPPORTED - Unsupported properties ++ SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src). ++*/ ++ ++SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ++ const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode, ++ ELzmaStatus *status, ISzAlloc *alloc); ++ ++#endif +--- /dev/null ++++ b/include/linux/lzma/LzmaEnc.h +@@ -0,0 +1,74 @@ ++/* LzmaEnc.h -- LZMA Encoder ++2008-04-27 ++Copyright (c) 1999-2008 Igor Pavlov ++Read LzFind.h for license options */ ++ ++#ifndef __LZMAENC_H ++#define __LZMAENC_H ++ ++#include "Types.h" ++ ++#define LZMA_PROPS_SIZE 5 ++ ++typedef struct _CLzmaEncProps ++{ ++ int level; /* 0 <= level <= 9 */ ++ UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version ++ (1 << 12) <= dictSize <= (1 << 30) for 64-bit version ++ default = (1 << 24) */ ++ int lc; /* 0 <= lc <= 8, default = 3 */ ++ int lp; /* 0 <= lp <= 4, default = 0 */ ++ int pb; /* 0 <= pb <= 4, default = 2 */ ++ int algo; /* 0 - fast, 1 - normal, default = 1 */ ++ int fb; /* 5 <= fb <= 273, default = 32 */ ++ int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */ ++ int numHashBytes; /* 2, 3 or 4, default = 4 */ ++ UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */ ++ unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */ ++ int numThreads; /* 1 or 2, default = 2 */ ++} CLzmaEncProps; ++ ++void LzmaEncProps_Init(CLzmaEncProps *p); ++void LzmaEncProps_Normalize(CLzmaEncProps *p); ++UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2); ++ ++ ++/* ---------- CLzmaEncHandle Interface ---------- */ ++ ++/* LzmaEnc_* functions can return the following exit codes: ++Returns: ++ SZ_OK - OK ++ SZ_ERROR_MEM - Memory allocation error ++ SZ_ERROR_PARAM - Incorrect paramater in props ++ SZ_ERROR_WRITE - Write callback error. ++ SZ_ERROR_PROGRESS - some break from progress callback ++ SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version) ++*/ ++ ++typedef void * CLzmaEncHandle; ++ ++CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc); ++void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig); ++SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props); ++SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size); ++SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStream *outStream, ISeqInStream *inStream, ++ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig); ++SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, ++ int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig); ++ ++/* ---------- One Call Interface ---------- */ ++ ++/* LzmaEncode ++Return code: ++ SZ_OK - OK ++ SZ_ERROR_MEM - Memory allocation error ++ SZ_ERROR_PARAM - Incorrect paramater ++ SZ_ERROR_OUTPUT_EOF - output buffer overflow ++ SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version) ++*/ ++ ++SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, ++ const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark, ++ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig); ++ ++#endif +--- /dev/null ++++ b/include/linux/lzma/Types.h +@@ -0,0 +1,130 @@ ++/* Types.h -- Basic types ++2008-04-11 ++Igor Pavlov ++Public domain */ ++ ++#ifndef __7Z_TYPES_H ++#define __7Z_TYPES_H ++ ++#define SZ_OK 0 ++ ++#define SZ_ERROR_DATA 1 ++#define SZ_ERROR_MEM 2 ++#define SZ_ERROR_CRC 3 ++#define SZ_ERROR_UNSUPPORTED 4 ++#define SZ_ERROR_PARAM 5 ++#define SZ_ERROR_INPUT_EOF 6 ++#define SZ_ERROR_OUTPUT_EOF 7 ++#define SZ_ERROR_READ 8 ++#define SZ_ERROR_WRITE 9 ++#define SZ_ERROR_PROGRESS 10 ++#define SZ_ERROR_FAIL 11 ++#define SZ_ERROR_THREAD 12 ++ ++#define SZ_ERROR_ARCHIVE 16 ++#define SZ_ERROR_NO_ARCHIVE 17 ++ ++typedef int SRes; ++ ++#ifndef RINOK ++#define RINOK(x) { int __result__ = (x); if (__result__ != 0) return __result__; } ++#endif ++ ++typedef unsigned char Byte; ++typedef short Int16; ++typedef unsigned short UInt16; ++ ++#ifdef _LZMA_UINT32_IS_ULONG ++typedef long Int32; ++typedef unsigned long UInt32; ++#else ++typedef int Int32; ++typedef unsigned int UInt32; ++#endif ++ ++/* #define _SZ_NO_INT_64 */ ++/* define it if your compiler doesn't support 64-bit integers */ ++ ++#ifdef _SZ_NO_INT_64 ++ ++typedef long Int64; ++typedef unsigned long UInt64; ++ ++#else ++ ++#if defined(_MSC_VER) || defined(__BORLANDC__) ++typedef __int64 Int64; ++typedef unsigned __int64 UInt64; ++#else ++typedef long long int Int64; ++typedef unsigned long long int UInt64; ++#endif ++ ++#endif ++ ++#ifdef _LZMA_NO_SYSTEM_SIZE_T ++typedef UInt32 SizeT; ++#else ++#include <stddef.h> ++typedef size_t SizeT; ++#endif ++ ++typedef int Bool; ++#define True 1 ++#define False 0 ++ ++ ++#ifdef _MSC_VER ++ ++#if _MSC_VER >= 1300 ++#define MY_NO_INLINE __declspec(noinline) ++#else ++#define MY_NO_INLINE ++#endif ++ ++#define MY_CDECL __cdecl ++#define MY_STD_CALL __stdcall ++#define MY_FAST_CALL MY_NO_INLINE __fastcall ++ ++#else ++ ++#define MY_CDECL ++#define MY_STD_CALL ++#define MY_FAST_CALL ++ ++#endif ++ ++ ++/* The following interfaces use first parameter as pointer to structure */ ++ ++typedef struct ++{ ++ SRes (*Read)(void *p, void *buf, size_t *size); ++ /* if (input(*size) != 0 && output(*size) == 0) means end_of_stream. ++ (output(*size) < input(*size)) is allowed */ ++} ISeqInStream; ++ ++typedef struct ++{ ++ size_t (*Write)(void *p, const void *buf, size_t size); ++ /* Returns: result - the number of actually written bytes. ++ (result < size) means error */ ++} ISeqOutStream; ++ ++typedef struct ++{ ++ SRes (*Progress)(void *p, UInt64 inSize, UInt64 outSize); ++ /* Returns: result. (result != SZ_OK) means break. ++ Value (UInt64)(Int64)-1 for size means unknown value. */ ++} ICompressProgress; ++ ++typedef struct ++{ ++ void *(*Alloc)(void *p, size_t size); ++ void (*Free)(void *p, void *address); /* address can be 0 */ ++} ISzAlloc; ++ ++#define IAlloc_Alloc(p, size) (p)->Alloc((p), size) ++#define IAlloc_Free(p, a) (p)->Free((p), a) ++ ++#endif +--- /dev/null ++++ b/lzma/LzFind.c +@@ -0,0 +1,753 @@ ++/* LzFind.c -- Match finder for LZ algorithms ++2008-04-04 ++Copyright (c) 1999-2008 Igor Pavlov ++Read LzFind.h for license options */ ++ ++#include <string.h> ++ ++#include "LzFind.h" ++#include "LzHash.h" ++ ++#define kEmptyHashValue 0 ++#define kMaxValForNormalize ((UInt32)0xFFFFFFFF) ++#define kNormalizeStepMin (1 << 10) /* it must be power of 2 */ ++#define kNormalizeMask (~(kNormalizeStepMin - 1)) ++#define kMaxHistorySize ((UInt32)3 << 30) ++ ++#define kStartMaxLen 3 ++ ++static void LzInWindow_Free(CMatchFinder *p, ISzAlloc *alloc) ++{ ++ if (!p->directInput) ++ { ++ alloc->Free(alloc, p->bufferBase); ++ p->bufferBase = 0; ++ } ++} ++ ++/* keepSizeBefore + keepSizeAfter + keepSizeReserv must be < 4G) */ ++ ++static int LzInWindow_Create(CMatchFinder *p, UInt32 keepSizeReserv, ISzAlloc *alloc) ++{ ++ UInt32 blockSize = p->keepSizeBefore + p->keepSizeAfter + keepSizeReserv; ++ if (p->directInput) ++ { ++ p->blockSize = blockSize; ++ return 1; ++ } ++ if (p->bufferBase == 0 || p->blockSize != blockSize) ++ { ++ LzInWindow_Free(p, alloc); ++ p->blockSize = blockSize; ++ p->bufferBase = (Byte *)alloc->Alloc(alloc, (size_t)blockSize); ++ } ++ return (p->bufferBase != 0); ++} ++ ++Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p) { return p->buffer; } ++Byte MatchFinder_GetIndexByte(CMatchFinder *p, Int32 index) { return p->buffer[index]; } ++ ++UInt32 MatchFinder_GetNumAvailableBytes(CMatchFinder *p) { return p->streamPos - p->pos; } ++ ++void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue) ++{ ++ p->posLimit -= subValue; ++ p->pos -= subValue; ++ p->streamPos -= subValue; ++} ++ ++static void MatchFinder_ReadBlock(CMatchFinder *p) ++{ ++ if (p->streamEndWasReached || p->result != SZ_OK) ++ return; ++ for (;;) ++ { ++ Byte *dest = p->buffer + (p->streamPos - p->pos); ++ size_t size = (p->bufferBase + p->blockSize - dest); ++ if (size == 0) ++ return; ++ p->result = p->stream->Read(p->stream, dest, &size); ++ if (p->result != SZ_OK) ++ return; ++ if (size == 0) ++ { ++ p->streamEndWasReached = 1; ++ return; ++ } ++ p->streamPos += (UInt32)size; ++ if (p->streamPos - p->pos > p->keepSizeAfter) ++ return; ++ } ++} ++ ++void MatchFinder_MoveBlock(CMatchFinder *p) ++{ ++ memmove(p->bufferBase, ++ p->buffer - p->keepSizeBefore, ++ (size_t)(p->streamPos - p->pos + p->keepSizeBefore)); ++ p->buffer = p->bufferBase + p->keepSizeBefore; ++} ++ ++int MatchFinder_NeedMove(CMatchFinder *p) ++{ ++ /* if (p->streamEndWasReached) return 0; */ ++ return ((size_t)(p->bufferBase + p->blockSize - p->buffer) <= p->keepSizeAfter); ++} ++ ++void MatchFinder_ReadIfRequired(CMatchFinder *p) ++{ ++ if (p->streamEndWasReached) ++ return; ++ if (p->keepSizeAfter >= p->streamPos - p->pos) ++ MatchFinder_ReadBlock(p); ++} ++ ++static void MatchFinder_CheckAndMoveAndRead(CMatchFinder *p) ++{ ++ if (MatchFinder_NeedMove(p)) ++ MatchFinder_MoveBlock(p); ++ MatchFinder_ReadBlock(p); ++} ++ ++static void MatchFinder_SetDefaultSettings(CMatchFinder *p) ++{ ++ p->cutValue = 32; ++ p->btMode = 1; ++ p->numHashBytes = 4; ++ /* p->skipModeBits = 0; */ ++ p->directInput = 0; ++ p->bigHash = 0; ++} ++ ++#define kCrcPoly 0xEDB88320 ++ ++void MatchFinder_Construct(CMatchFinder *p) ++{ ++ UInt32 i; ++ p->bufferBase = 0; ++ p->directInput = 0; ++ p->hash = 0; ++ MatchFinder_SetDefaultSettings(p); ++ ++ for (i = 0; i < 256; i++) ++ { ++ UInt32 r = i; ++ int j; ++ for (j = 0; j < 8; j++) ++ r = (r >> 1) ^ (kCrcPoly & ~((r & 1) - 1)); ++ p->crc[i] = r; ++ } ++} ++ ++static void MatchFinder_FreeThisClassMemory(CMatchFinder *p, ISzAlloc *alloc) ++{ ++ alloc->Free(alloc, p->hash); ++ p->hash = 0; ++} ++ ++void MatchFinder_Free(CMatchFinder *p, ISzAlloc *alloc) ++{ ++ MatchFinder_FreeThisClassMemory(p, alloc); ++ LzInWindow_Free(p, alloc); ++} ++ ++static CLzRef* AllocRefs(UInt32 num, ISzAlloc *alloc) ++{ ++ size_t sizeInBytes = (size_t)num * sizeof(CLzRef); ++ if (sizeInBytes / sizeof(CLzRef) != num) ++ return 0; ++ return (CLzRef *)alloc->Alloc(alloc, sizeInBytes); ++} ++ ++int MatchFinder_Create(CMatchFinder *p, UInt32 historySize, ++ UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ++ ISzAlloc *alloc) ++{ ++ UInt32 sizeReserv; ++ if (historySize > kMaxHistorySize) ++ { ++ MatchFinder_Free(p, alloc); ++ return 0; ++ } ++ sizeReserv = historySize >> 1; ++ if (historySize > ((UInt32)2 << 30)) ++ sizeReserv = historySize >> 2; ++ sizeReserv += (keepAddBufferBefore + matchMaxLen + keepAddBufferAfter) / 2 + (1 << 19); ++ ++ p->keepSizeBefore = historySize + keepAddBufferBefore + 1; ++ p->keepSizeAfter = matchMaxLen + keepAddBufferAfter; ++ /* we need one additional byte, since we use MoveBlock after pos++ and before dictionary using */ ++ if (LzInWindow_Create(p, sizeReserv, alloc)) ++ { ++ UInt32 newCyclicBufferSize = (historySize /* >> p->skipModeBits */) + 1; ++ UInt32 hs; ++ p->matchMaxLen = matchMaxLen; ++ { ++ p->fixedHashSize = 0; ++ if (p->numHashBytes == 2) ++ hs = (1 << 16) - 1; ++ else ++ { ++ hs = historySize - 1; ++ hs |= (hs >> 1); ++ hs |= (hs >> 2); ++ hs |= (hs >> 4); ++ hs |= (hs >> 8); ++ hs >>= 1; ++ /* hs >>= p->skipModeBits; */ ++ hs |= 0xFFFF; /* don't change it! It's required for Deflate */ ++ if (hs > (1 << 24)) ++ { ++ if (p->numHashBytes == 3) ++ hs = (1 << 24) - 1; ++ else ++ hs >>= 1; ++ } ++ } ++ p->hashMask = hs; ++ hs++; ++ if (p->numHashBytes > 2) p->fixedHashSize += kHash2Size; ++ if (p->numHashBytes > 3) p->fixedHashSize += kHash3Size; ++ if (p->numHashBytes > 4) p->fixedHashSize += kHash4Size; ++ hs += p->fixedHashSize; ++ } ++ ++ { ++ UInt32 prevSize = p->hashSizeSum + p->numSons; ++ UInt32 newSize; ++ p->historySize = historySize; ++ p->hashSizeSum = hs; ++ p->cyclicBufferSize = newCyclicBufferSize; ++ p->numSons = (p->btMode ? newCyclicBufferSize * 2 : newCyclicBufferSize); ++ newSize = p->hashSizeSum + p->numSons; ++ if (p->hash != 0 && prevSize == newSize) ++ return 1; ++ MatchFinder_FreeThisClassMemory(p, alloc); ++ p->hash = AllocRefs(newSize, alloc); ++ if (p->hash != 0) ++ { ++ p->son = p->hash + p->hashSizeSum; ++ return 1; ++ } ++ } ++ } ++ MatchFinder_Free(p, alloc); ++ return 0; ++} ++ ++static void MatchFinder_SetLimits(CMatchFinder *p) ++{ ++ UInt32 limit = kMaxValForNormalize - p->pos; ++ UInt32 limit2 = p->cyclicBufferSize - p->cyclicBufferPos; ++ if (limit2 < limit) ++ limit = limit2; ++ limit2 = p->streamPos - p->pos; ++ if (limit2 <= p->keepSizeAfter) ++ { ++ if (limit2 > 0) ++ limit2 = 1; ++ } ++ else ++ limit2 -= p->keepSizeAfter; ++ if (limit2 < limit) ++ limit = limit2; ++ { ++ UInt32 lenLimit = p->streamPos - p->pos; ++ if (lenLimit > p->matchMaxLen) ++ lenLimit = p->matchMaxLen; ++ p->lenLimit = lenLimit; ++ } ++ p->posLimit = p->pos + limit; ++} ++ ++void MatchFinder_Init(CMatchFinder *p) ++{ ++ UInt32 i; ++ for(i = 0; i < p->hashSizeSum; i++) ++ p->hash[i] = kEmptyHashValue; ++ p->cyclicBufferPos = 0; ++ p->buffer = p->bufferBase; ++ p->pos = p->streamPos = p->cyclicBufferSize; ++ p->result = SZ_OK; ++ p->streamEndWasReached = 0; ++ MatchFinder_ReadBlock(p); ++ MatchFinder_SetLimits(p); ++} ++ ++static UInt32 MatchFinder_GetSubValue(CMatchFinder *p) ++{ ++ return (p->pos - p->historySize - 1) & kNormalizeMask; ++} ++ ++void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, UInt32 numItems) ++{ ++ UInt32 i; ++ for (i = 0; i < numItems; i++) ++ { ++ UInt32 value = items[i]; ++ if (value <= subValue) ++ value = kEmptyHashValue; ++ else ++ value -= subValue; ++ items[i] = value; ++ } ++} ++ ++static void MatchFinder_Normalize(CMatchFinder *p) ++{ ++ UInt32 subValue = MatchFinder_GetSubValue(p); ++ MatchFinder_Normalize3(subValue, p->hash, p->hashSizeSum + p->numSons); ++ MatchFinder_ReduceOffsets(p, subValue); ++} ++ ++static void MatchFinder_CheckLimits(CMatchFinder *p) ++{ ++ if (p->pos == kMaxValForNormalize) ++ MatchFinder_Normalize(p); ++ if (!p->streamEndWasReached && p->keepSizeAfter == p->streamPos - p->pos) ++ MatchFinder_CheckAndMoveAndRead(p); ++ if (p->cyclicBufferPos == p->cyclicBufferSize) ++ p->cyclicBufferPos = 0; ++ MatchFinder_SetLimits(p); ++} ++ ++static UInt32 * Hc_GetMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son, ++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue, ++ UInt32 *distances, UInt32 maxLen) ++{ ++ son[_cyclicBufferPos] = curMatch; ++ for (;;) ++ { ++ UInt32 delta = pos - curMatch; ++ if (cutValue-- == 0 || delta >= _cyclicBufferSize) ++ return distances; ++ { ++ const Byte *pb = cur - delta; ++ curMatch = son[_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)]; ++ if (pb[maxLen] == cur[maxLen] && *pb == *cur) ++ { ++ UInt32 len = 0; ++ while(++len != lenLimit) ++ if (pb[len] != cur[len]) ++ break; ++ if (maxLen < len) ++ { ++ *distances++ = maxLen = len; ++ *distances++ = delta - 1; ++ if (len == lenLimit) ++ return distances; ++ } ++ } ++ } ++ } ++} ++ ++UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son, ++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue, ++ UInt32 *distances, UInt32 maxLen) ++{ ++ CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1; ++ CLzRef *ptr1 = son + (_cyclicBufferPos << 1); ++ UInt32 len0 = 0, len1 = 0; ++ for (;;) ++ { ++ UInt32 delta = pos - curMatch; ++ if (cutValue-- == 0 || delta >= _cyclicBufferSize) ++ { ++ *ptr0 = *ptr1 = kEmptyHashValue; ++ return distances; ++ } ++ { ++ CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1); ++ const Byte *pb = cur - delta; ++ UInt32 len = (len0 < len1 ? len0 : len1); ++ if (pb[len] == cur[len]) ++ { ++ if (++len != lenLimit && pb[len] == cur[len]) ++ while(++len != lenLimit) ++ if (pb[len] != cur[len]) ++ break; ++ if (maxLen < len) ++ { ++ *distances++ = maxLen = len; ++ *distances++ = delta - 1; ++ if (len == lenLimit) ++ { ++ *ptr1 = pair[0]; ++ *ptr0 = pair[1]; ++ return distances; ++ } ++ } ++ } ++ if (pb[len] < cur[len]) ++ { ++ *ptr1 = curMatch; ++ ptr1 = pair + 1; ++ curMatch = *ptr1; ++ len1 = len; ++ } ++ else ++ { ++ *ptr0 = curMatch; ++ ptr0 = pair; ++ curMatch = *ptr0; ++ len0 = len; ++ } ++ } ++ } ++} ++ ++static void SkipMatchesSpec(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *cur, CLzRef *son, ++ UInt32 _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 cutValue) ++{ ++ CLzRef *ptr0 = son + (_cyclicBufferPos << 1) + 1; ++ CLzRef *ptr1 = son + (_cyclicBufferPos << 1); ++ UInt32 len0 = 0, len1 = 0; ++ for (;;) ++ { ++ UInt32 delta = pos - curMatch; ++ if (cutValue-- == 0 || delta >= _cyclicBufferSize) ++ { ++ *ptr0 = *ptr1 = kEmptyHashValue; ++ return; ++ } ++ { ++ CLzRef *pair = son + ((_cyclicBufferPos - delta + ((delta > _cyclicBufferPos) ? _cyclicBufferSize : 0)) << 1); ++ const Byte *pb = cur - delta; ++ UInt32 len = (len0 < len1 ? len0 : len1); ++ if (pb[len] == cur[len]) ++ { ++ while(++len != lenLimit) ++ if (pb[len] != cur[len]) ++ break; ++ { ++ if (len == lenLimit) ++ { ++ *ptr1 = pair[0]; ++ *ptr0 = pair[1]; ++ return; ++ } ++ } ++ } ++ if (pb[len] < cur[len]) ++ { ++ *ptr1 = curMatch; ++ ptr1 = pair + 1; ++ curMatch = *ptr1; ++ len1 = len; ++ } ++ else ++ { ++ *ptr0 = curMatch; ++ ptr0 = pair; ++ curMatch = *ptr0; ++ len0 = len; ++ } ++ } ++ } ++} ++ ++#define MOVE_POS \ ++ ++p->cyclicBufferPos; \ ++ p->buffer++; \ ++ if (++p->pos == p->posLimit) MatchFinder_CheckLimits(p); ++ ++#define MOVE_POS_RET MOVE_POS return offset; ++ ++static void MatchFinder_MovePos(CMatchFinder *p) { MOVE_POS; } ++ ++#define GET_MATCHES_HEADER2(minLen, ret_op) \ ++ UInt32 lenLimit; UInt32 hashValue; const Byte *cur; UInt32 curMatch; \ ++ lenLimit = p->lenLimit; { if (lenLimit < minLen) { MatchFinder_MovePos(p); ret_op; }} \ ++ cur = p->buffer; ++ ++#define GET_MATCHES_HEADER(minLen) GET_MATCHES_HEADER2(minLen, return 0) ++#define SKIP_HEADER(minLen) GET_MATCHES_HEADER2(minLen, continue) ++ ++#define MF_PARAMS(p) p->pos, p->buffer, p->son, p->cyclicBufferPos, p->cyclicBufferSize, p->cutValue ++ ++#define GET_MATCHES_FOOTER(offset, maxLen) \ ++ offset = (UInt32)(GetMatchesSpec1(lenLimit, curMatch, MF_PARAMS(p), \ ++ distances + offset, maxLen) - distances); MOVE_POS_RET; ++ ++#define SKIP_FOOTER \ ++ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); MOVE_POS; ++ ++static UInt32 Bt2_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances) ++{ ++ UInt32 offset; ++ GET_MATCHES_HEADER(2) ++ HASH2_CALC; ++ curMatch = p->hash[hashValue]; ++ p->hash[hashValue] = p->pos; ++ offset = 0; ++ GET_MATCHES_FOOTER(offset, 1) ++} ++ ++UInt32 Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances) ++{ ++ UInt32 offset; ++ GET_MATCHES_HEADER(3) ++ HASH_ZIP_CALC; ++ curMatch = p->hash[hashValue]; ++ p->hash[hashValue] = p->pos; ++ offset = 0; ++ GET_MATCHES_FOOTER(offset, 2) ++} ++ ++static UInt32 Bt3_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances) ++{ ++ UInt32 hash2Value, delta2, maxLen, offset; ++ GET_MATCHES_HEADER(3) ++ ++ HASH3_CALC; ++ ++ delta2 = p->pos - p->hash[hash2Value]; ++ curMatch = p->hash[kFix3HashSize + hashValue]; ++ ++ p->hash[hash2Value] = ++ p->hash[kFix3HashSize + hashValue] = p->pos; ++ ++ ++ maxLen = 2; ++ offset = 0; ++ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) ++ { ++ for (; maxLen != lenLimit; maxLen++) ++ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) ++ break; ++ distances[0] = maxLen; ++ distances[1] = delta2 - 1; ++ offset = 2; ++ if (maxLen == lenLimit) ++ { ++ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); ++ MOVE_POS_RET; ++ } ++ } ++ GET_MATCHES_FOOTER(offset, maxLen) ++} ++ ++static UInt32 Bt4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances) ++{ ++ UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset; ++ GET_MATCHES_HEADER(4) ++ ++ HASH4_CALC; ++ ++ delta2 = p->pos - p->hash[ hash2Value]; ++ delta3 = p->pos - p->hash[kFix3HashSize + hash3Value]; ++ curMatch = p->hash[kFix4HashSize + hashValue]; ++ ++ p->hash[ hash2Value] = ++ p->hash[kFix3HashSize + hash3Value] = ++ p->hash[kFix4HashSize + hashValue] = p->pos; ++ ++ maxLen = 1; ++ offset = 0; ++ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) ++ { ++ distances[0] = maxLen = 2; ++ distances[1] = delta2 - 1; ++ offset = 2; ++ } ++ if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur) ++ { ++ maxLen = 3; ++ distances[offset + 1] = delta3 - 1; ++ offset += 2; ++ delta2 = delta3; ++ } ++ if (offset != 0) ++ { ++ for (; maxLen != lenLimit; maxLen++) ++ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) ++ break; ++ distances[offset - 2] = maxLen; ++ if (maxLen == lenLimit) ++ { ++ SkipMatchesSpec(lenLimit, curMatch, MF_PARAMS(p)); ++ MOVE_POS_RET; ++ } ++ } ++ if (maxLen < 3) ++ maxLen = 3; ++ GET_MATCHES_FOOTER(offset, maxLen) ++} ++ ++static UInt32 Hc4_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances) ++{ ++ UInt32 hash2Value, hash3Value, delta2, delta3, maxLen, offset; ++ GET_MATCHES_HEADER(4) ++ ++ HASH4_CALC; ++ ++ delta2 = p->pos - p->hash[ hash2Value]; ++ delta3 = p->pos - p->hash[kFix3HashSize + hash3Value]; ++ curMatch = p->hash[kFix4HashSize + hashValue]; ++ ++ p->hash[ hash2Value] = ++ p->hash[kFix3HashSize + hash3Value] = ++ p->hash[kFix4HashSize + hashValue] = p->pos; ++ ++ maxLen = 1; ++ offset = 0; ++ if (delta2 < p->cyclicBufferSize && *(cur - delta2) == *cur) ++ { ++ distances[0] = maxLen = 2; ++ distances[1] = delta2 - 1; ++ offset = 2; ++ } ++ if (delta2 != delta3 && delta3 < p->cyclicBufferSize && *(cur - delta3) == *cur) ++ { ++ maxLen = 3; ++ distances[offset + 1] = delta3 - 1; ++ offset += 2; ++ delta2 = delta3; ++ } ++ if (offset != 0) ++ { ++ for (; maxLen != lenLimit; maxLen++) ++ if (cur[(ptrdiff_t)maxLen - delta2] != cur[maxLen]) ++ break; ++ distances[offset - 2] = maxLen; ++ if (maxLen == lenLimit) ++ { ++ p->son[p->cyclicBufferPos] = curMatch; ++ MOVE_POS_RET; ++ } ++ } ++ if (maxLen < 3) ++ maxLen = 3; ++ offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p), ++ distances + offset, maxLen) - (distances)); ++ MOVE_POS_RET ++} ++ ++UInt32 Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances) ++{ ++ UInt32 offset; ++ GET_MATCHES_HEADER(3) ++ HASH_ZIP_CALC; ++ curMatch = p->hash[hashValue]; ++ p->hash[hashValue] = p->pos; ++ offset = (UInt32)(Hc_GetMatchesSpec(lenLimit, curMatch, MF_PARAMS(p), ++ distances, 2) - (distances)); ++ MOVE_POS_RET ++} ++ ++static void Bt2_MatchFinder_Skip(CMatchFinder *p, UInt32 num) ++{ ++ do ++ { ++ SKIP_HEADER(2) ++ HASH2_CALC; ++ curMatch = p->hash[hashValue]; ++ p->hash[hashValue] = p->pos; ++ SKIP_FOOTER ++ } ++ while (--num != 0); ++} ++ ++void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num) ++{ ++ do ++ { ++ SKIP_HEADER(3) ++ HASH_ZIP_CALC; ++ curMatch = p->hash[hashValue]; ++ p->hash[hashValue] = p->pos; ++ SKIP_FOOTER ++ } ++ while (--num != 0); ++} ++ ++static void Bt3_MatchFinder_Skip(CMatchFinder *p, UInt32 num) ++{ ++ do ++ { ++ UInt32 hash2Value; ++ SKIP_HEADER(3) ++ HASH3_CALC; ++ curMatch = p->hash[kFix3HashSize + hashValue]; ++ p->hash[hash2Value] = ++ p->hash[kFix3HashSize + hashValue] = p->pos; ++ SKIP_FOOTER ++ } ++ while (--num != 0); ++} ++ ++static void Bt4_MatchFinder_Skip(CMatchFinder *p, UInt32 num) ++{ ++ do ++ { ++ UInt32 hash2Value, hash3Value; ++ SKIP_HEADER(4) ++ HASH4_CALC; ++ curMatch = p->hash[kFix4HashSize + hashValue]; ++ p->hash[ hash2Value] = ++ p->hash[kFix3HashSize + hash3Value] = p->pos; ++ p->hash[kFix4HashSize + hashValue] = p->pos; ++ SKIP_FOOTER ++ } ++ while (--num != 0); ++} ++ ++static void Hc4_MatchFinder_Skip(CMatchFinder *p, UInt32 num) ++{ ++ do ++ { ++ UInt32 hash2Value, hash3Value; ++ SKIP_HEADER(4) ++ HASH4_CALC; ++ curMatch = p->hash[kFix4HashSize + hashValue]; ++ p->hash[ hash2Value] = ++ p->hash[kFix3HashSize + hash3Value] = ++ p->hash[kFix4HashSize + hashValue] = p->pos; ++ p->son[p->cyclicBufferPos] = curMatch; ++ MOVE_POS ++ } ++ while (--num != 0); ++} ++ ++void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num) ++{ ++ do ++ { ++ SKIP_HEADER(3) ++ HASH_ZIP_CALC; ++ curMatch = p->hash[hashValue]; ++ p->hash[hashValue] = p->pos; ++ p->son[p->cyclicBufferPos] = curMatch; ++ MOVE_POS ++ } ++ while (--num != 0); ++} ++ ++void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder *vTable) ++{ ++ vTable->Init = (Mf_Init_Func)MatchFinder_Init; ++ vTable->GetIndexByte = (Mf_GetIndexByte_Func)MatchFinder_GetIndexByte; ++ vTable->GetNumAvailableBytes = (Mf_GetNumAvailableBytes_Func)MatchFinder_GetNumAvailableBytes; ++ vTable->GetPointerToCurrentPos = (Mf_GetPointerToCurrentPos_Func)MatchFinder_GetPointerToCurrentPos; ++ if (!p->btMode) ++ { ++ vTable->GetMatches = (Mf_GetMatches_Func)Hc4_MatchFinder_GetMatches; ++ vTable->Skip = (Mf_Skip_Func)Hc4_MatchFinder_Skip; ++ } ++ else if (p->numHashBytes == 2) ++ { ++ vTable->GetMatches = (Mf_GetMatches_Func)Bt2_MatchFinder_GetMatches; ++ vTable->Skip = (Mf_Skip_Func)Bt2_MatchFinder_Skip; ++ } ++ else if (p->numHashBytes == 3) ++ { ++ vTable->GetMatches = (Mf_GetMatches_Func)Bt3_MatchFinder_GetMatches; ++ vTable->Skip = (Mf_Skip_Func)Bt3_MatchFinder_Skip; ++ } ++ else ++ { ++ vTable->GetMatches = (Mf_GetMatches_Func)Bt4_MatchFinder_GetMatches; ++ vTable->Skip = (Mf_Skip_Func)Bt4_MatchFinder_Skip; ++ } ++} +--- /dev/null ++++ b/lzma/LzmaDec.c +@@ -0,0 +1,1014 @@ ++/* LzmaDec.c -- LZMA Decoder ++2008-04-29 ++Copyright (c) 1999-2008 Igor Pavlov ++Read LzmaDec.h for license options */ ++ ++#include "LzmaDec.h" ++ ++#include <string.h> ++ ++#define kNumTopBits 24 ++#define kTopValue ((UInt32)1 << kNumTopBits) ++ ++#define kNumBitModelTotalBits 11 ++#define kBitModelTotal (1 << kNumBitModelTotalBits) ++#define kNumMoveBits 5 ++ ++#define RC_INIT_SIZE 5 ++ ++#define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); } ++ ++#define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound) ++#define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits)); ++#define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); ++#define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \ ++ { UPDATE_0(p); i = (i + i); A0; } else \ ++ { UPDATE_1(p); i = (i + i) + 1; A1; } ++#define GET_BIT(p, i) GET_BIT2(p, i, ; , ;) ++ ++#define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); } ++#define TREE_DECODE(probs, limit, i) \ ++ { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; } ++ ++/* #define _LZMA_SIZE_OPT */ ++ ++#ifdef _LZMA_SIZE_OPT ++#define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i) ++#else ++#define TREE_6_DECODE(probs, i) \ ++ { i = 1; \ ++ TREE_GET_BIT(probs, i); \ ++ TREE_GET_BIT(probs, i); \ ++ TREE_GET_BIT(probs, i); \ ++ TREE_GET_BIT(probs, i); \ ++ TREE_GET_BIT(probs, i); \ ++ TREE_GET_BIT(probs, i); \ ++ i -= 0x40; } ++#endif ++ ++#define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); } ++ ++#define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound) ++#define UPDATE_0_CHECK range = bound; ++#define UPDATE_1_CHECK range -= bound; code -= bound; ++#define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \ ++ { UPDATE_0_CHECK; i = (i + i); A0; } else \ ++ { UPDATE_1_CHECK; i = (i + i) + 1; A1; } ++#define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;) ++#define TREE_DECODE_CHECK(probs, limit, i) \ ++ { i = 1; do { GET_BIT_CHECK(probs + i, i) } while(i < limit); i -= limit; } ++ ++ ++#define kNumPosBitsMax 4 ++#define kNumPosStatesMax (1 << kNumPosBitsMax) ++ ++#define kLenNumLowBits 3 ++#define kLenNumLowSymbols (1 << kLenNumLowBits) ++#define kLenNumMidBits 3 ++#define kLenNumMidSymbols (1 << kLenNumMidBits) ++#define kLenNumHighBits 8 ++#define kLenNumHighSymbols (1 << kLenNumHighBits) ++ ++#define LenChoice 0 ++#define LenChoice2 (LenChoice + 1) ++#define LenLow (LenChoice2 + 1) ++#define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits)) ++#define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits)) ++#define kNumLenProbs (LenHigh + kLenNumHighSymbols) ++ ++ ++#define kNumStates 12 ++#define kNumLitStates 7 ++ ++#define kStartPosModelIndex 4 ++#define kEndPosModelIndex 14 ++#define kNumFullDistances (1 << (kEndPosModelIndex >> 1)) ++ ++#define kNumPosSlotBits 6 ++#define kNumLenToPosStates 4 ++ ++#define kNumAlignBits 4 ++#define kAlignTableSize (1 << kNumAlignBits) ++ ++#define kMatchMinLen 2 ++#define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) ++ ++#define IsMatch 0 ++#define IsRep (IsMatch + (kNumStates << kNumPosBitsMax)) ++#define IsRepG0 (IsRep + kNumStates) ++#define IsRepG1 (IsRepG0 + kNumStates) ++#define IsRepG2 (IsRepG1 + kNumStates) ++#define IsRep0Long (IsRepG2 + kNumStates) ++#define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax)) ++#define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits)) ++#define Align (SpecPos + kNumFullDistances - kEndPosModelIndex) ++#define LenCoder (Align + kAlignTableSize) ++#define RepLenCoder (LenCoder + kNumLenProbs) ++#define Literal (RepLenCoder + kNumLenProbs) ++ ++#define LZMA_BASE_SIZE 1846 ++#define LZMA_LIT_SIZE 768 ++ ++#define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp))) ++ ++#if Literal != LZMA_BASE_SIZE ++StopCompilingDueBUG ++#endif ++ ++/* ++#define LZMA_STREAM_WAS_FINISHED_ID (-1) ++#define LZMA_SPEC_LEN_OFFSET (-3) ++*/ ++ ++Byte kLiteralNextStates[kNumStates * 2] = ++{ ++ 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5, ++ 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10 ++}; ++ ++#define LZMA_DIC_MIN (1 << 12) ++ ++/* First LZMA-symbol is always decoded. ++And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization ++Out: ++ Result: ++ 0 - OK ++ 1 - Error ++ p->remainLen: ++ < kMatchSpecLenStart : normal remain ++ = kMatchSpecLenStart : finished ++ = kMatchSpecLenStart + 1 : Flush marker ++ = kMatchSpecLenStart + 2 : State Init Marker ++*/ ++ ++static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit) ++{ ++ CLzmaProb *probs = p->probs; ++ ++ unsigned state = p->state; ++ UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3]; ++ unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1; ++ unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1; ++ unsigned lc = p->prop.lc; ++ ++ Byte *dic = p->dic; ++ SizeT dicBufSize = p->dicBufSize; ++ SizeT dicPos = p->dicPos; ++ ++ UInt32 processedPos = p->processedPos; ++ UInt32 checkDicSize = p->checkDicSize; ++ unsigned len = 0; ++ ++ const Byte *buf = p->buf; ++ UInt32 range = p->range; ++ UInt32 code = p->code; ++ ++ do ++ { ++ CLzmaProb *prob; ++ UInt32 bound; ++ unsigned ttt; ++ unsigned posState = processedPos & pbMask; ++ ++ prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; ++ IF_BIT_0(prob) ++ { ++ unsigned symbol; ++ UPDATE_0(prob); ++ prob = probs + Literal; ++ if (checkDicSize != 0 || processedPos != 0) ++ prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) + ++ (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc)))); ++ ++ if (state < kNumLitStates) ++ { ++ symbol = 1; ++ do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100); ++ } ++ else ++ { ++ unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; ++ unsigned offs = 0x100; ++ symbol = 1; ++ do ++ { ++ unsigned bit; ++ CLzmaProb *probLit; ++ matchByte <<= 1; ++ bit = (matchByte & offs); ++ probLit = prob + offs + bit + symbol; ++ GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit) ++ } ++ while (symbol < 0x100); ++ } ++ dic[dicPos++] = (Byte)symbol; ++ processedPos++; ++ ++ state = kLiteralNextStates[state]; ++ /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */ ++ continue; ++ } ++ else ++ { ++ UPDATE_1(prob); ++ prob = probs + IsRep + state; ++ IF_BIT_0(prob) ++ { ++ UPDATE_0(prob); ++ state += kNumStates; ++ prob = probs + LenCoder; ++ } ++ else ++ { ++ UPDATE_1(prob); ++ if (checkDicSize == 0 && processedPos == 0) ++ return SZ_ERROR_DATA; ++ prob = probs + IsRepG0 + state; ++ IF_BIT_0(prob) ++ { ++ UPDATE_0(prob); ++ prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; ++ IF_BIT_0(prob) ++ { ++ UPDATE_0(prob); ++ dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; ++ dicPos++; ++ processedPos++; ++ state = state < kNumLitStates ? 9 : 11; ++ continue; ++ } ++ UPDATE_1(prob); ++ } ++ else ++ { ++ UInt32 distance; ++ UPDATE_1(prob); ++ prob = probs + IsRepG1 + state; ++ IF_BIT_0(prob) ++ { ++ UPDATE_0(prob); ++ distance = rep1; ++ } ++ else ++ { ++ UPDATE_1(prob); ++ prob = probs + IsRepG2 + state; ++ IF_BIT_0(prob) ++ { ++ UPDATE_0(prob); ++ distance = rep2; ++ } ++ else ++ { ++ UPDATE_1(prob); ++ distance = rep3; ++ rep3 = rep2; ++ } ++ rep2 = rep1; ++ } ++ rep1 = rep0; ++ rep0 = distance; ++ } ++ state = state < kNumLitStates ? 8 : 11; ++ prob = probs + RepLenCoder; ++ } ++ { ++ unsigned limit, offset; ++ CLzmaProb *probLen = prob + LenChoice; ++ IF_BIT_0(probLen) ++ { ++ UPDATE_0(probLen); ++ probLen = prob + LenLow + (posState << kLenNumLowBits); ++ offset = 0; ++ limit = (1 << kLenNumLowBits); ++ } ++ else ++ { ++ UPDATE_1(probLen); ++ probLen = prob + LenChoice2; ++ IF_BIT_0(probLen) ++ { ++ UPDATE_0(probLen); ++ probLen = prob + LenMid + (posState << kLenNumMidBits); ++ offset = kLenNumLowSymbols; ++ limit = (1 << kLenNumMidBits); ++ } ++ else ++ { ++ UPDATE_1(probLen); ++ probLen = prob + LenHigh; ++ offset = kLenNumLowSymbols + kLenNumMidSymbols; ++ limit = (1 << kLenNumHighBits); ++ } ++ } ++ TREE_DECODE(probLen, limit, len); ++ len += offset; ++ } ++ ++ if (state >= kNumStates) ++ { ++ UInt32 distance; ++ prob = probs + PosSlot + ++ ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits); ++ TREE_6_DECODE(prob, distance); ++ if (distance >= kStartPosModelIndex) ++ { ++ unsigned posSlot = (unsigned)distance; ++ int numDirectBits = (int)(((distance >> 1) - 1)); ++ distance = (2 | (distance & 1)); ++ if (posSlot < kEndPosModelIndex) ++ { ++ distance <<= numDirectBits; ++ prob = probs + SpecPos + distance - posSlot - 1; ++ { ++ UInt32 mask = 1; ++ unsigned i = 1; ++ do ++ { ++ GET_BIT2(prob + i, i, ; , distance |= mask); ++ mask <<= 1; ++ } ++ while(--numDirectBits != 0); ++ } ++ } ++ else ++ { ++ numDirectBits -= kNumAlignBits; ++ do ++ { ++ NORMALIZE ++ range >>= 1; ++ ++ { ++ UInt32 t; ++ code -= range; ++ t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */ ++ distance = (distance << 1) + (t + 1); ++ code += range & t; ++ } ++ /* ++ distance <<= 1; ++ if (code >= range) ++ { ++ code -= range; ++ distance |= 1; ++ } ++ */ ++ } ++ while (--numDirectBits != 0); ++ prob = probs + Align; ++ distance <<= kNumAlignBits; ++ { ++ unsigned i = 1; ++ GET_BIT2(prob + i, i, ; , distance |= 1); ++ GET_BIT2(prob + i, i, ; , distance |= 2); ++ GET_BIT2(prob + i, i, ; , distance |= 4); ++ GET_BIT2(prob + i, i, ; , distance |= 8); ++ } ++ if (distance == (UInt32)0xFFFFFFFF) ++ { ++ len += kMatchSpecLenStart; ++ state -= kNumStates; ++ break; ++ } ++ } ++ } ++ rep3 = rep2; ++ rep2 = rep1; ++ rep1 = rep0; ++ rep0 = distance + 1; ++ if (checkDicSize == 0) ++ { ++ if (distance >= processedPos) ++ return SZ_ERROR_DATA; ++ } ++ else if (distance >= checkDicSize) ++ return SZ_ERROR_DATA; ++ state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3; ++ /* state = kLiteralNextStates[state]; */ ++ } ++ ++ len += kMatchMinLen; ++ ++ { ++ SizeT rem = limit - dicPos; ++ unsigned curLen = ((rem < len) ? (unsigned)rem : len); ++ SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0); ++ ++ processedPos += curLen; ++ ++ len -= curLen; ++ if (pos + curLen <= dicBufSize) ++ { ++ Byte *dest = dic + dicPos; ++ ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos; ++ const Byte *lim = dest + curLen; ++ dicPos += curLen; ++ do ++ *(dest) = (Byte)*(dest + src); ++ while (++dest != lim); ++ } ++ else ++ { ++ do ++ { ++ dic[dicPos++] = dic[pos]; ++ if (++pos == dicBufSize) ++ pos = 0; ++ } ++ while (--curLen != 0); ++ } ++ } ++ } ++ } ++ while (dicPos < limit && buf < bufLimit); ++ NORMALIZE; ++ p->buf = buf; ++ p->range = range; ++ p->code = code; ++ p->remainLen = len; ++ p->dicPos = dicPos; ++ p->processedPos = processedPos; ++ p->reps[0] = rep0; ++ p->reps[1] = rep1; ++ p->reps[2] = rep2; ++ p->reps[3] = rep3; ++ p->state = state; ++ ++ return SZ_OK; ++} ++ ++static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit) ++{ ++ if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart) ++ { ++ Byte *dic = p->dic; ++ SizeT dicPos = p->dicPos; ++ SizeT dicBufSize = p->dicBufSize; ++ unsigned len = p->remainLen; ++ UInt32 rep0 = p->reps[0]; ++ if (limit - dicPos < len) ++ len = (unsigned)(limit - dicPos); ++ ++ if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len) ++ p->checkDicSize = p->prop.dicSize; ++ ++ p->processedPos += len; ++ p->remainLen -= len; ++ while (len-- != 0) ++ { ++ dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)]; ++ dicPos++; ++ } ++ p->dicPos = dicPos; ++ } ++} ++ ++/* LzmaDec_DecodeReal2 decodes LZMA-symbols and sets p->needFlush and p->needInit, if required. */ ++ ++static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit) ++{ ++ do ++ { ++ SizeT limit2 = limit; ++ if (p->checkDicSize == 0) ++ { ++ UInt32 rem = p->prop.dicSize - p->processedPos; ++ if (limit - p->dicPos > rem) ++ limit2 = p->dicPos + rem; ++ } ++ RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit)); ++ if (p->processedPos >= p->prop.dicSize) ++ p->checkDicSize = p->prop.dicSize; ++ LzmaDec_WriteRem(p, limit); ++ } ++ while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart); ++ ++ if (p->remainLen > kMatchSpecLenStart) ++ { ++ p->remainLen = kMatchSpecLenStart; ++ } ++ return 0; ++} ++ ++typedef enum ++{ ++ DUMMY_ERROR, /* unexpected end of input stream */ ++ DUMMY_LIT, ++ DUMMY_MATCH, ++ DUMMY_REP ++} ELzmaDummy; ++ ++static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize) ++{ ++ UInt32 range = p->range; ++ UInt32 code = p->code; ++ const Byte *bufLimit = buf + inSize; ++ CLzmaProb *probs = p->probs; ++ unsigned state = p->state; ++ ELzmaDummy res; ++ ++ { ++ CLzmaProb *prob; ++ UInt32 bound; ++ unsigned ttt; ++ unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1); ++ ++ prob = probs + IsMatch + (state << kNumPosBitsMax) + posState; ++ IF_BIT_0_CHECK(prob) ++ { ++ UPDATE_0_CHECK ++ ++ /* if (bufLimit - buf >= 7) return DUMMY_LIT; */ ++ ++ prob = probs + Literal; ++ if (p->checkDicSize != 0 || p->processedPos != 0) ++ prob += (LZMA_LIT_SIZE * ++ ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) + ++ (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc)))); ++ ++ if (state < kNumLitStates) ++ { ++ unsigned symbol = 1; ++ do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100); ++ } ++ else ++ { ++ unsigned matchByte = p->dic[p->dicPos - p->reps[0] + ++ ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)]; ++ unsigned offs = 0x100; ++ unsigned symbol = 1; ++ do ++ { ++ unsigned bit; ++ CLzmaProb *probLit; ++ matchByte <<= 1; ++ bit = (matchByte & offs); ++ probLit = prob + offs + bit + symbol; ++ GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit) ++ } ++ while (symbol < 0x100); ++ } ++ res = DUMMY_LIT; ++ } ++ else ++ { ++ unsigned len; ++ UPDATE_1_CHECK; ++ ++ prob = probs + IsRep + state; ++ IF_BIT_0_CHECK(prob) ++ { ++ UPDATE_0_CHECK; ++ state = 0; ++ prob = probs + LenCoder; ++ res = DUMMY_MATCH; ++ } ++ else ++ { ++ UPDATE_1_CHECK; ++ res = DUMMY_REP; ++ prob = probs + IsRepG0 + state; ++ IF_BIT_0_CHECK(prob) ++ { ++ UPDATE_0_CHECK; ++ prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState; ++ IF_BIT_0_CHECK(prob) ++ { ++ UPDATE_0_CHECK; ++ NORMALIZE_CHECK; ++ return DUMMY_REP; ++ } ++ else ++ { ++ UPDATE_1_CHECK; ++ } ++ } ++ else ++ { ++ UPDATE_1_CHECK; ++ prob = probs + IsRepG1 + state; ++ IF_BIT_0_CHECK(prob) ++ { ++ UPDATE_0_CHECK; ++ } ++ else ++ { ++ UPDATE_1_CHECK; ++ prob = probs + IsRepG2 + state; ++ IF_BIT_0_CHECK(prob) ++ { ++ UPDATE_0_CHECK; ++ } ++ else ++ { ++ UPDATE_1_CHECK; ++ } ++ } ++ } ++ state = kNumStates; ++ prob = probs + RepLenCoder; ++ } ++ { ++ unsigned limit, offset; ++ CLzmaProb *probLen = prob + LenChoice; ++ IF_BIT_0_CHECK(probLen) ++ { ++ UPDATE_0_CHECK; ++ probLen = prob + LenLow + (posState << kLenNumLowBits); ++ offset = 0; ++ limit = 1 << kLenNumLowBits; ++ } ++ else ++ { ++ UPDATE_1_CHECK; ++ probLen = prob + LenChoice2; ++ IF_BIT_0_CHECK(probLen) ++ { ++ UPDATE_0_CHECK; ++ probLen = prob + LenMid + (posState << kLenNumMidBits); ++ offset = kLenNumLowSymbols; ++ limit = 1 << kLenNumMidBits; ++ } ++ else ++ { ++ UPDATE_1_CHECK; ++ probLen = prob + LenHigh; ++ offset = kLenNumLowSymbols + kLenNumMidSymbols; ++ limit = 1 << kLenNumHighBits; ++ } ++ } ++ TREE_DECODE_CHECK(probLen, limit, len); ++ len += offset; ++ } ++ ++ if (state < 4) ++ { ++ unsigned posSlot; ++ prob = probs + PosSlot + ++ ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << ++ kNumPosSlotBits); ++ TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot); ++ if (posSlot >= kStartPosModelIndex) ++ { ++ int numDirectBits = ((posSlot >> 1) - 1); ++ ++ /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */ ++ ++ if (posSlot < kEndPosModelIndex) ++ { ++ prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1; ++ } ++ else ++ { ++ numDirectBits -= kNumAlignBits; ++ do ++ { ++ NORMALIZE_CHECK ++ range >>= 1; ++ code -= range & (((code - range) >> 31) - 1); ++ /* if (code >= range) code -= range; */ ++ } ++ while (--numDirectBits != 0); ++ prob = probs + Align; ++ numDirectBits = kNumAlignBits; ++ } ++ { ++ unsigned i = 1; ++ do ++ { ++ GET_BIT_CHECK(prob + i, i); ++ } ++ while(--numDirectBits != 0); ++ } ++ } ++ } ++ } ++ } ++ NORMALIZE_CHECK; ++ return res; ++} ++ ++ ++static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data) ++{ ++ p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]); ++ p->range = 0xFFFFFFFF; ++ p->needFlush = 0; ++} ++ ++void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState) ++{ ++ p->needFlush = 1; ++ p->remainLen = 0; ++ p->tempBufSize = 0; ++ ++ if (initDic) ++ { ++ p->processedPos = 0; ++ p->checkDicSize = 0; ++ p->needInitState = 1; ++ } ++ if (initState) ++ p->needInitState = 1; ++} ++ ++void LzmaDec_Init(CLzmaDec *p) ++{ ++ p->dicPos = 0; ++ LzmaDec_InitDicAndState(p, True, True); ++} ++ ++static void LzmaDec_InitStateReal(CLzmaDec *p) ++{ ++ UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp)); ++ UInt32 i; ++ CLzmaProb *probs = p->probs; ++ for (i = 0; i < numProbs; i++) ++ probs[i] = kBitModelTotal >> 1; ++ p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1; ++ p->state = 0; ++ p->needInitState = 0; ++} ++ ++SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen, ++ ELzmaFinishMode finishMode, ELzmaStatus *status) ++{ ++ SizeT inSize = *srcLen; ++ (*srcLen) = 0; ++ LzmaDec_WriteRem(p, dicLimit); ++ ++ *status = LZMA_STATUS_NOT_SPECIFIED; ++ ++ while (p->remainLen != kMatchSpecLenStart) ++ { ++ int checkEndMarkNow; ++ ++ if (p->needFlush != 0) ++ { ++ for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--) ++ p->tempBuf[p->tempBufSize++] = *src++; ++ if (p->tempBufSize < RC_INIT_SIZE) ++ { ++ *status = LZMA_STATUS_NEEDS_MORE_INPUT; ++ return SZ_OK; ++ } ++ if (p->tempBuf[0] != 0) ++ return SZ_ERROR_DATA; ++ ++ LzmaDec_InitRc(p, p->tempBuf); ++ p->tempBufSize = 0; ++ } ++ ++ checkEndMarkNow = 0; ++ if (p->dicPos >= dicLimit) ++ { ++ if (p->remainLen == 0 && p->code == 0) ++ { ++ *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK; ++ return SZ_OK; ++ } ++ if (finishMode == LZMA_FINISH_ANY) ++ { ++ *status = LZMA_STATUS_NOT_FINISHED; ++ return SZ_OK; ++ } ++ if (p->remainLen != 0) ++ { ++ *status = LZMA_STATUS_NOT_FINISHED; ++ return SZ_ERROR_DATA; ++ } ++ checkEndMarkNow = 1; ++ } ++ ++ if (p->needInitState) ++ LzmaDec_InitStateReal(p); ++ ++ if (p->tempBufSize == 0) ++ { ++ SizeT processed; ++ const Byte *bufLimit; ++ if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) ++ { ++ int dummyRes = LzmaDec_TryDummy(p, src, inSize); ++ if (dummyRes == DUMMY_ERROR) ++ { ++ memcpy(p->tempBuf, src, inSize); ++ p->tempBufSize = (unsigned)inSize; ++ (*srcLen) += inSize; ++ *status = LZMA_STATUS_NEEDS_MORE_INPUT; ++ return SZ_OK; ++ } ++ if (checkEndMarkNow && dummyRes != DUMMY_MATCH) ++ { ++ *status = LZMA_STATUS_NOT_FINISHED; ++ return SZ_ERROR_DATA; ++ } ++ bufLimit = src; ++ } ++ else ++ bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX; ++ p->buf = src; ++ if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0) ++ return SZ_ERROR_DATA; ++ processed = p->buf - src; ++ (*srcLen) += processed; ++ src += processed; ++ inSize -= processed; ++ } ++ else ++ { ++ unsigned rem = p->tempBufSize, lookAhead = 0; ++ while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize) ++ p->tempBuf[rem++] = src[lookAhead++]; ++ p->tempBufSize = rem; ++ if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow) ++ { ++ int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem); ++ if (dummyRes == DUMMY_ERROR) ++ { ++ (*srcLen) += lookAhead; ++ *status = LZMA_STATUS_NEEDS_MORE_INPUT; ++ return SZ_OK; ++ } ++ if (checkEndMarkNow && dummyRes != DUMMY_MATCH) ++ { ++ *status = LZMA_STATUS_NOT_FINISHED; ++ return SZ_ERROR_DATA; ++ } ++ } ++ p->buf = p->tempBuf; ++ if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0) ++ return SZ_ERROR_DATA; ++ lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf)); ++ (*srcLen) += lookAhead; ++ src += lookAhead; ++ inSize -= lookAhead; ++ p->tempBufSize = 0; ++ } ++ } ++ if (p->code == 0) ++ *status = LZMA_STATUS_FINISHED_WITH_MARK; ++ return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA; ++} ++ ++SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status) ++{ ++ SizeT outSize = *destLen; ++ SizeT inSize = *srcLen; ++ *srcLen = *destLen = 0; ++ for (;;) ++ { ++ SizeT inSizeCur = inSize, outSizeCur, dicPos; ++ ELzmaFinishMode curFinishMode; ++ SRes res; ++ if (p->dicPos == p->dicBufSize) ++ p->dicPos = 0; ++ dicPos = p->dicPos; ++ if (outSize > p->dicBufSize - dicPos) ++ { ++ outSizeCur = p->dicBufSize; ++ curFinishMode = LZMA_FINISH_ANY; ++ } ++ else ++ { ++ outSizeCur = dicPos + outSize; ++ curFinishMode = finishMode; ++ } ++ ++ res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status); ++ src += inSizeCur; ++ inSize -= inSizeCur; ++ *srcLen += inSizeCur; ++ outSizeCur = p->dicPos - dicPos; ++ memcpy(dest, p->dic + dicPos, outSizeCur); ++ dest += outSizeCur; ++ outSize -= outSizeCur; ++ *destLen += outSizeCur; ++ if (res != 0) ++ return res; ++ if (outSizeCur == 0 || outSize == 0) ++ return SZ_OK; ++ } ++} ++ ++void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc) ++{ ++ alloc->Free(alloc, p->probs); ++ p->probs = 0; ++} ++ ++static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc) ++{ ++ alloc->Free(alloc, p->dic); ++ p->dic = 0; ++} ++ ++void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc) ++{ ++ LzmaDec_FreeProbs(p, alloc); ++ LzmaDec_FreeDict(p, alloc); ++} ++ ++SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size) ++{ ++ UInt32 dicSize; ++ Byte d; ++ ++ if (size < LZMA_PROPS_SIZE) ++ return SZ_ERROR_UNSUPPORTED; ++ else ++ dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24); ++ ++ if (dicSize < LZMA_DIC_MIN) ++ dicSize = LZMA_DIC_MIN; ++ p->dicSize = dicSize; ++ ++ d = data[0]; ++ if (d >= (9 * 5 * 5)) ++ return SZ_ERROR_UNSUPPORTED; ++ ++ p->lc = d % 9; ++ d /= 9; ++ p->pb = d / 5; ++ p->lp = d % 5; ++ ++ return SZ_OK; ++} ++ ++static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc) ++{ ++ UInt32 numProbs = LzmaProps_GetNumProbs(propNew); ++ if (p->probs == 0 || numProbs != p->numProbs) ++ { ++ LzmaDec_FreeProbs(p, alloc); ++ p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb)); ++ p->numProbs = numProbs; ++ if (p->probs == 0) ++ return SZ_ERROR_MEM; ++ } ++ return SZ_OK; ++} ++ ++SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc) ++{ ++ CLzmaProps propNew; ++ RINOK(LzmaProps_Decode(&propNew, props, propsSize)); ++ RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc)); ++ p->prop = propNew; ++ return SZ_OK; ++} ++ ++SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc) ++{ ++ CLzmaProps propNew; ++ SizeT dicBufSize; ++ RINOK(LzmaProps_Decode(&propNew, props, propsSize)); ++ RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc)); ++ dicBufSize = propNew.dicSize; ++ if (p->dic == 0 || dicBufSize != p->dicBufSize) ++ { ++ LzmaDec_FreeDict(p, alloc); ++ p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize); ++ if (p->dic == 0) ++ { ++ LzmaDec_FreeProbs(p, alloc); ++ return SZ_ERROR_MEM; ++ } ++ } ++ p->dicBufSize = dicBufSize; ++ p->prop = propNew; ++ return SZ_OK; ++} ++ ++SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ++ const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode, ++ ELzmaStatus *status, ISzAlloc *alloc) ++{ ++ CLzmaDec p; ++ SRes res; ++ SizeT inSize = *srcLen; ++ SizeT outSize = *destLen; ++ *srcLen = *destLen = 0; ++ if (inSize < RC_INIT_SIZE) ++ return SZ_ERROR_INPUT_EOF; ++ ++ LzmaDec_Construct(&p); ++ res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc); ++ if (res != 0) ++ return res; ++ p.dic = dest; ++ p.dicBufSize = outSize; ++ ++ LzmaDec_Init(&p); ++ ++ *srcLen = inSize; ++ res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status); ++ ++ if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT) ++ res = SZ_ERROR_INPUT_EOF; ++ ++ (*destLen) = p.dicPos; ++ LzmaDec_FreeProbs(&p, alloc); ++ return res; ++} +--- /dev/null ++++ b/lzma/LzmaEnc.c +@@ -0,0 +1,2335 @@ ++/* LzmaEnc.c -- LZMA Encoder ++2008-04-28 ++Copyright (c) 1999-2008 Igor Pavlov ++Read LzmaEnc.h for license options */ ++ ++#if defined(SHOW_STAT) || defined(SHOW_STAT2) ++#include <stdio.h> ++#endif ++ ++#include <string.h> ++ ++#include "LzmaEnc.h" ++ ++#include "LzFind.h" ++#ifdef COMPRESS_MF_MT ++#include "LzFindMt.h" ++#endif ++ ++/* #define SHOW_STAT */ ++/* #define SHOW_STAT2 */ ++ ++#ifdef SHOW_STAT ++static int ttt = 0; ++#endif ++ ++#define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1) ++ ++#define kBlockSize (9 << 10) ++#define kUnpackBlockSize (1 << 18) ++#define kMatchArraySize (1 << 21) ++#define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX) ++ ++#define kNumMaxDirectBits (31) ++ ++#define kNumTopBits 24 ++#define kTopValue ((UInt32)1 << kNumTopBits) ++ ++#define kNumBitModelTotalBits 11 ++#define kBitModelTotal (1 << kNumBitModelTotalBits) ++#define kNumMoveBits 5 ++#define kProbInitValue (kBitModelTotal >> 1) ++ ++#define kNumMoveReducingBits 4 ++#define kNumBitPriceShiftBits 4 ++#define kBitPrice (1 << kNumBitPriceShiftBits) ++ ++void LzmaEncProps_Init(CLzmaEncProps *p) ++{ ++ p->level = 5; ++ p->dictSize = p->mc = 0; ++ p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1; ++ p->writeEndMark = 0; ++} ++ ++void LzmaEncProps_Normalize(CLzmaEncProps *p) ++{ ++ int level = p->level; ++ if (level < 0) level = 5; ++ p->level = level; ++ if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26))); ++ if (p->lc < 0) p->lc = 3; ++ if (p->lp < 0) p->lp = 0; ++ if (p->pb < 0) p->pb = 2; ++ if (p->algo < 0) p->algo = (level < 5 ? 0 : 1); ++ if (p->fb < 0) p->fb = (level < 7 ? 32 : 64); ++ if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1); ++ if (p->numHashBytes < 0) p->numHashBytes = 4; ++ if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1); ++ if (p->numThreads < 0) p->numThreads = ((p->btMode && p->algo) ? 2 : 1); ++} ++ ++UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2) ++{ ++ CLzmaEncProps props = *props2; ++ LzmaEncProps_Normalize(&props); ++ return props.dictSize; ++} ++ ++/* #define LZMA_LOG_BSR */ ++/* Define it for Intel's CPU */ ++ ++ ++#ifdef LZMA_LOG_BSR ++ ++#define kDicLogSizeMaxCompress 30 ++ ++#define BSR2_RET(pos, res) { unsigned long i; _BitScanReverse(&i, (pos)); res = (i + i) + ((pos >> (i - 1)) & 1); } ++ ++UInt32 GetPosSlot1(UInt32 pos) ++{ ++ UInt32 res; ++ BSR2_RET(pos, res); ++ return res; ++} ++#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } ++#define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); } ++ ++#else ++ ++#define kNumLogBits (9 + (int)sizeof(size_t) / 2) ++#define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7) ++ ++void LzmaEnc_FastPosInit(Byte *g_FastPos) ++{ ++ int c = 2, slotFast; ++ g_FastPos[0] = 0; ++ g_FastPos[1] = 1; ++ ++ for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++) ++ { ++ UInt32 k = (1 << ((slotFast >> 1) - 1)); ++ UInt32 j; ++ for (j = 0; j < k; j++, c++) ++ g_FastPos[c] = (Byte)slotFast; ++ } ++} ++ ++#define BSR2_RET(pos, res) { UInt32 i = 6 + ((kNumLogBits - 1) & \ ++ (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \ ++ res = p->g_FastPos[pos >> i] + (i * 2); } ++/* ++#define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \ ++ p->g_FastPos[pos >> 6] + 12 : \ ++ p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; } ++*/ ++ ++#define GetPosSlot1(pos) p->g_FastPos[pos] ++#define GetPosSlot2(pos, res) { BSR2_RET(pos, res); } ++#define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); } ++ ++#endif ++ ++ ++#define LZMA_NUM_REPS 4 ++ ++typedef unsigned CState; ++ ++typedef struct _COptimal ++{ ++ UInt32 price; ++ ++ CState state; ++ int prev1IsChar; ++ int prev2; ++ ++ UInt32 posPrev2; ++ UInt32 backPrev2; ++ ++ UInt32 posPrev; ++ UInt32 backPrev; ++ UInt32 backs[LZMA_NUM_REPS]; ++} COptimal; ++ ++#define kNumOpts (1 << 12) ++ ++#define kNumLenToPosStates 4 ++#define kNumPosSlotBits 6 ++#define kDicLogSizeMin 0 ++#define kDicLogSizeMax 32 ++#define kDistTableSizeMax (kDicLogSizeMax * 2) ++ ++ ++#define kNumAlignBits 4 ++#define kAlignTableSize (1 << kNumAlignBits) ++#define kAlignMask (kAlignTableSize - 1) ++ ++#define kStartPosModelIndex 4 ++#define kEndPosModelIndex 14 ++#define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex) ++ ++#define kNumFullDistances (1 << (kEndPosModelIndex / 2)) ++ ++#ifdef _LZMA_PROB32 ++#define CLzmaProb UInt32 ++#else ++#define CLzmaProb UInt16 ++#endif ++ ++#define LZMA_PB_MAX 4 ++#define LZMA_LC_MAX 8 ++#define LZMA_LP_MAX 4 ++ ++#define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX) ++ ++ ++#define kLenNumLowBits 3 ++#define kLenNumLowSymbols (1 << kLenNumLowBits) ++#define kLenNumMidBits 3 ++#define kLenNumMidSymbols (1 << kLenNumMidBits) ++#define kLenNumHighBits 8 ++#define kLenNumHighSymbols (1 << kLenNumHighBits) ++ ++#define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols) ++ ++#define LZMA_MATCH_LEN_MIN 2 ++#define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1) ++ ++#define kNumStates 12 ++ ++typedef struct ++{ ++ CLzmaProb choice; ++ CLzmaProb choice2; ++ CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits]; ++ CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits]; ++ CLzmaProb high[kLenNumHighSymbols]; ++} CLenEnc; ++ ++typedef struct ++{ ++ CLenEnc p; ++ UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal]; ++ UInt32 tableSize; ++ UInt32 counters[LZMA_NUM_PB_STATES_MAX]; ++} CLenPriceEnc; ++ ++typedef struct _CRangeEnc ++{ ++ UInt32 range; ++ Byte cache; ++ UInt64 low; ++ UInt64 cacheSize; ++ Byte *buf; ++ Byte *bufLim; ++ Byte *bufBase; ++ ISeqOutStream *outStream; ++ UInt64 processed; ++ SRes res; ++} CRangeEnc; ++ ++typedef struct _CSeqInStreamBuf ++{ ++ ISeqInStream funcTable; ++ const Byte *data; ++ SizeT rem; ++} CSeqInStreamBuf; ++ ++static SRes MyRead(void *pp, void *data, size_t *size) ++{ ++ size_t curSize = *size; ++ CSeqInStreamBuf *p = (CSeqInStreamBuf *)pp; ++ if (p->rem < curSize) ++ curSize = p->rem; ++ memcpy(data, p->data, curSize); ++ p->rem -= curSize; ++ p->data += curSize; ++ *size = curSize; ++ return SZ_OK; ++} ++ ++typedef struct ++{ ++ CLzmaProb *litProbs; ++ ++ CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; ++ CLzmaProb isRep[kNumStates]; ++ CLzmaProb isRepG0[kNumStates]; ++ CLzmaProb isRepG1[kNumStates]; ++ CLzmaProb isRepG2[kNumStates]; ++ CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; ++ ++ CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; ++ CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; ++ CLzmaProb posAlignEncoder[1 << kNumAlignBits]; ++ ++ CLenPriceEnc lenEnc; ++ CLenPriceEnc repLenEnc; ++ ++ UInt32 reps[LZMA_NUM_REPS]; ++ UInt32 state; ++} CSaveState; ++ ++typedef struct _CLzmaEnc ++{ ++ IMatchFinder matchFinder; ++ void *matchFinderObj; ++ ++ #ifdef COMPRESS_MF_MT ++ Bool mtMode; ++ CMatchFinderMt matchFinderMt; ++ #endif ++ ++ CMatchFinder matchFinderBase; ++ ++ #ifdef COMPRESS_MF_MT ++ Byte pad[128]; ++ #endif ++ ++ UInt32 optimumEndIndex; ++ UInt32 optimumCurrentIndex; ++ ++ Bool longestMatchWasFound; ++ UInt32 longestMatchLength; ++ UInt32 numDistancePairs; ++ ++ COptimal opt[kNumOpts]; ++ ++ #ifndef LZMA_LOG_BSR ++ Byte g_FastPos[1 << kNumLogBits]; ++ #endif ++ ++ UInt32 ProbPrices[kBitModelTotal >> kNumMoveReducingBits]; ++ UInt32 matchDistances[LZMA_MATCH_LEN_MAX * 2 + 2 + 1]; ++ UInt32 numFastBytes; ++ UInt32 additionalOffset; ++ UInt32 reps[LZMA_NUM_REPS]; ++ UInt32 state; ++ ++ UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax]; ++ UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances]; ++ UInt32 alignPrices[kAlignTableSize]; ++ UInt32 alignPriceCount; ++ ++ UInt32 distTableSize; ++ ++ unsigned lc, lp, pb; ++ unsigned lpMask, pbMask; ++ ++ CLzmaProb *litProbs; ++ ++ CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX]; ++ CLzmaProb isRep[kNumStates]; ++ CLzmaProb isRepG0[kNumStates]; ++ CLzmaProb isRepG1[kNumStates]; ++ CLzmaProb isRepG2[kNumStates]; ++ CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX]; ++ ++ CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits]; ++ CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex]; ++ CLzmaProb posAlignEncoder[1 << kNumAlignBits]; ++ ++ CLenPriceEnc lenEnc; ++ CLenPriceEnc repLenEnc; ++ ++ unsigned lclp; ++ ++ Bool fastMode; ++ ++ CRangeEnc rc; ++ ++ Bool writeEndMark; ++ UInt64 nowPos64; ++ UInt32 matchPriceCount; ++ Bool finished; ++ Bool multiThread; ++ ++ SRes result; ++ UInt32 dictSize; ++ UInt32 matchFinderCycles; ++ ++ ISeqInStream *inStream; ++ CSeqInStreamBuf seqBufInStream; ++ ++ CSaveState saveState; ++} CLzmaEnc; ++ ++void LzmaEnc_SaveState(CLzmaEncHandle pp) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ CSaveState *dest = &p->saveState; ++ int i; ++ dest->lenEnc = p->lenEnc; ++ dest->repLenEnc = p->repLenEnc; ++ dest->state = p->state; ++ ++ for (i = 0; i < kNumStates; i++) ++ { ++ memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); ++ memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); ++ } ++ for (i = 0; i < kNumLenToPosStates; i++) ++ memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); ++ memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); ++ memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); ++ memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); ++ memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); ++ memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); ++ memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); ++ memcpy(dest->reps, p->reps, sizeof(p->reps)); ++ memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb)); ++} ++ ++void LzmaEnc_RestoreState(CLzmaEncHandle pp) ++{ ++ CLzmaEnc *dest = (CLzmaEnc *)pp; ++ const CSaveState *p = &dest->saveState; ++ int i; ++ dest->lenEnc = p->lenEnc; ++ dest->repLenEnc = p->repLenEnc; ++ dest->state = p->state; ++ ++ for (i = 0; i < kNumStates; i++) ++ { ++ memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i])); ++ memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i])); ++ } ++ for (i = 0; i < kNumLenToPosStates; i++) ++ memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i])); ++ memcpy(dest->isRep, p->isRep, sizeof(p->isRep)); ++ memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0)); ++ memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1)); ++ memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2)); ++ memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders)); ++ memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder)); ++ memcpy(dest->reps, p->reps, sizeof(p->reps)); ++ memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb)); ++} ++ ++SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ CLzmaEncProps props = *props2; ++ LzmaEncProps_Normalize(&props); ++ ++ if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX || ++ props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30)) ++ return SZ_ERROR_PARAM; ++ p->dictSize = props.dictSize; ++ p->matchFinderCycles = props.mc; ++ { ++ unsigned fb = props.fb; ++ if (fb < 5) ++ fb = 5; ++ if (fb > LZMA_MATCH_LEN_MAX) ++ fb = LZMA_MATCH_LEN_MAX; ++ p->numFastBytes = fb; ++ } ++ p->lc = props.lc; ++ p->lp = props.lp; ++ p->pb = props.pb; ++ p->fastMode = (props.algo == 0); ++ p->matchFinderBase.btMode = props.btMode; ++ { ++ UInt32 numHashBytes = 4; ++ if (props.btMode) ++ { ++ if (props.numHashBytes < 2) ++ numHashBytes = 2; ++ else if (props.numHashBytes < 4) ++ numHashBytes = props.numHashBytes; ++ } ++ p->matchFinderBase.numHashBytes = numHashBytes; ++ } ++ ++ p->matchFinderBase.cutValue = props.mc; ++ ++ p->writeEndMark = props.writeEndMark; ++ ++ #ifdef COMPRESS_MF_MT ++ /* ++ if (newMultiThread != _multiThread) ++ { ++ ReleaseMatchFinder(); ++ _multiThread = newMultiThread; ++ } ++ */ ++ p->multiThread = (props.numThreads > 1); ++ #endif ++ ++ return SZ_OK; ++} ++ ++static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5}; ++static const int kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10}; ++static const int kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11}; ++static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11}; ++ ++/* ++ void UpdateChar() { Index = kLiteralNextStates[Index]; } ++ void UpdateMatch() { Index = kMatchNextStates[Index]; } ++ void UpdateRep() { Index = kRepNextStates[Index]; } ++ void UpdateShortRep() { Index = kShortRepNextStates[Index]; } ++*/ ++ ++#define IsCharState(s) ((s) < 7) ++ ++ ++#define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1) ++ ++#define kInfinityPrice (1 << 30) ++ ++static void RangeEnc_Construct(CRangeEnc *p) ++{ ++ p->outStream = 0; ++ p->bufBase = 0; ++} ++ ++#define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize) ++ ++#define RC_BUF_SIZE (1 << 16) ++static int RangeEnc_Alloc(CRangeEnc *p, ISzAlloc *alloc) ++{ ++ if (p->bufBase == 0) ++ { ++ p->bufBase = (Byte *)alloc->Alloc(alloc, RC_BUF_SIZE); ++ if (p->bufBase == 0) ++ return 0; ++ p->bufLim = p->bufBase + RC_BUF_SIZE; ++ } ++ return 1; ++} ++ ++static void RangeEnc_Free(CRangeEnc *p, ISzAlloc *alloc) ++{ ++ alloc->Free(alloc, p->bufBase); ++ p->bufBase = 0; ++} ++ ++static void RangeEnc_Init(CRangeEnc *p) ++{ ++ /* Stream.Init(); */ ++ p->low = 0; ++ p->range = 0xFFFFFFFF; ++ p->cacheSize = 1; ++ p->cache = 0; ++ ++ p->buf = p->bufBase; ++ ++ p->processed = 0; ++ p->res = SZ_OK; ++} ++ ++static void RangeEnc_FlushStream(CRangeEnc *p) ++{ ++ size_t num; ++ if (p->res != SZ_OK) ++ return; ++ num = p->buf - p->bufBase; ++ if (num != p->outStream->Write(p->outStream, p->bufBase, num)) ++ p->res = SZ_ERROR_WRITE; ++ p->processed += num; ++ p->buf = p->bufBase; ++} ++ ++static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p) ++{ ++ if ((UInt32)p->low < (UInt32)0xFF000000 || (int)(p->low >> 32) != 0) ++ { ++ Byte temp = p->cache; ++ do ++ { ++ Byte *buf = p->buf; ++ *buf++ = (Byte)(temp + (Byte)(p->low >> 32)); ++ p->buf = buf; ++ if (buf == p->bufLim) ++ RangeEnc_FlushStream(p); ++ temp = 0xFF; ++ } ++ while (--p->cacheSize != 0); ++ p->cache = (Byte)((UInt32)p->low >> 24); ++ } ++ p->cacheSize++; ++ p->low = (UInt32)p->low << 8; ++} ++ ++static void RangeEnc_FlushData(CRangeEnc *p) ++{ ++ int i; ++ for (i = 0; i < 5; i++) ++ RangeEnc_ShiftLow(p); ++} ++ ++static void RangeEnc_EncodeDirectBits(CRangeEnc *p, UInt32 value, int numBits) ++{ ++ do ++ { ++ p->range >>= 1; ++ p->low += p->range & (0 - ((value >> --numBits) & 1)); ++ if (p->range < kTopValue) ++ { ++ p->range <<= 8; ++ RangeEnc_ShiftLow(p); ++ } ++ } ++ while (numBits != 0); ++} ++ ++static void RangeEnc_EncodeBit(CRangeEnc *p, CLzmaProb *prob, UInt32 symbol) ++{ ++ UInt32 ttt = *prob; ++ UInt32 newBound = (p->range >> kNumBitModelTotalBits) * ttt; ++ if (symbol == 0) ++ { ++ p->range = newBound; ++ ttt += (kBitModelTotal - ttt) >> kNumMoveBits; ++ } ++ else ++ { ++ p->low += newBound; ++ p->range -= newBound; ++ ttt -= ttt >> kNumMoveBits; ++ } ++ *prob = (CLzmaProb)ttt; ++ if (p->range < kTopValue) ++ { ++ p->range <<= 8; ++ RangeEnc_ShiftLow(p); ++ } ++} ++ ++static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol) ++{ ++ symbol |= 0x100; ++ do ++ { ++ RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1); ++ symbol <<= 1; ++ } ++ while (symbol < 0x10000); ++} ++ ++static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte) ++{ ++ UInt32 offs = 0x100; ++ symbol |= 0x100; ++ do ++ { ++ matchByte <<= 1; ++ RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1); ++ symbol <<= 1; ++ offs &= ~(matchByte ^ symbol); ++ } ++ while (symbol < 0x10000); ++} ++ ++void LzmaEnc_InitPriceTables(UInt32 *ProbPrices) ++{ ++ UInt32 i; ++ for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits)) ++ { ++ const int kCyclesBits = kNumBitPriceShiftBits; ++ UInt32 w = i; ++ UInt32 bitCount = 0; ++ int j; ++ for (j = 0; j < kCyclesBits; j++) ++ { ++ w = w * w; ++ bitCount <<= 1; ++ while (w >= ((UInt32)1 << 16)) ++ { ++ w >>= 1; ++ bitCount++; ++ } ++ } ++ ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount); ++ } ++} ++ ++ ++#define GET_PRICE(prob, symbol) \ ++ p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; ++ ++#define GET_PRICEa(prob, symbol) \ ++ ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits]; ++ ++#define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits] ++#define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] ++ ++#define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits] ++#define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits] ++ ++static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 *ProbPrices) ++{ ++ UInt32 price = 0; ++ symbol |= 0x100; ++ do ++ { ++ price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1); ++ symbol <<= 1; ++ } ++ while (symbol < 0x10000); ++ return price; ++}; ++ ++static UInt32 LitEnc_GetPriceMatched(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, UInt32 *ProbPrices) ++{ ++ UInt32 price = 0; ++ UInt32 offs = 0x100; ++ symbol |= 0x100; ++ do ++ { ++ matchByte <<= 1; ++ price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1); ++ symbol <<= 1; ++ offs &= ~(matchByte ^ symbol); ++ } ++ while (symbol < 0x10000); ++ return price; ++}; ++ ++ ++static void RcTree_Encode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) ++{ ++ UInt32 m = 1; ++ int i; ++ for (i = numBitLevels; i != 0 ;) ++ { ++ UInt32 bit; ++ i--; ++ bit = (symbol >> i) & 1; ++ RangeEnc_EncodeBit(rc, probs + m, bit); ++ m = (m << 1) | bit; ++ } ++}; ++ ++static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, UInt32 symbol) ++{ ++ UInt32 m = 1; ++ int i; ++ for (i = 0; i < numBitLevels; i++) ++ { ++ UInt32 bit = symbol & 1; ++ RangeEnc_EncodeBit(rc, probs + m, bit); ++ m = (m << 1) | bit; ++ symbol >>= 1; ++ } ++} ++ ++static UInt32 RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) ++{ ++ UInt32 price = 0; ++ symbol |= (1 << numBitLevels); ++ while (symbol != 1) ++ { ++ price += GET_PRICEa(probs[symbol >> 1], symbol & 1); ++ symbol >>= 1; ++ } ++ return price; ++} ++ ++static UInt32 RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, UInt32 symbol, UInt32 *ProbPrices) ++{ ++ UInt32 price = 0; ++ UInt32 m = 1; ++ int i; ++ for (i = numBitLevels; i != 0; i--) ++ { ++ UInt32 bit = symbol & 1; ++ symbol >>= 1; ++ price += GET_PRICEa(probs[m], bit); ++ m = (m << 1) | bit; ++ } ++ return price; ++} ++ ++ ++static void LenEnc_Init(CLenEnc *p) ++{ ++ unsigned i; ++ p->choice = p->choice2 = kProbInitValue; ++ for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++) ++ p->low[i] = kProbInitValue; ++ for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++) ++ p->mid[i] = kProbInitValue; ++ for (i = 0; i < kLenNumHighSymbols; i++) ++ p->high[i] = kProbInitValue; ++} ++ ++static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState) ++{ ++ if (symbol < kLenNumLowSymbols) ++ { ++ RangeEnc_EncodeBit(rc, &p->choice, 0); ++ RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol); ++ } ++ else ++ { ++ RangeEnc_EncodeBit(rc, &p->choice, 1); ++ if (symbol < kLenNumLowSymbols + kLenNumMidSymbols) ++ { ++ RangeEnc_EncodeBit(rc, &p->choice2, 0); ++ RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols); ++ } ++ else ++ { ++ RangeEnc_EncodeBit(rc, &p->choice2, 1); ++ RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols); ++ } ++ } ++} ++ ++static void LenEnc_SetPrices(CLenEnc *p, UInt32 posState, UInt32 numSymbols, UInt32 *prices, UInt32 *ProbPrices) ++{ ++ UInt32 a0 = GET_PRICE_0a(p->choice); ++ UInt32 a1 = GET_PRICE_1a(p->choice); ++ UInt32 b0 = a1 + GET_PRICE_0a(p->choice2); ++ UInt32 b1 = a1 + GET_PRICE_1a(p->choice2); ++ UInt32 i = 0; ++ for (i = 0; i < kLenNumLowSymbols; i++) ++ { ++ if (i >= numSymbols) ++ return; ++ prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices); ++ } ++ for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++) ++ { ++ if (i >= numSymbols) ++ return; ++ prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices); ++ } ++ for (; i < numSymbols; i++) ++ prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices); ++} ++ ++static void MY_FAST_CALL LenPriceEnc_UpdateTable(CLenPriceEnc *p, UInt32 posState, UInt32 *ProbPrices) ++{ ++ LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices); ++ p->counters[posState] = p->tableSize; ++} ++ ++static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, UInt32 numPosStates, UInt32 *ProbPrices) ++{ ++ UInt32 posState; ++ for (posState = 0; posState < numPosStates; posState++) ++ LenPriceEnc_UpdateTable(p, posState, ProbPrices); ++} ++ ++static void LenEnc_Encode2(CLenPriceEnc *p, CRangeEnc *rc, UInt32 symbol, UInt32 posState, Bool updatePrice, UInt32 *ProbPrices) ++{ ++ LenEnc_Encode(&p->p, rc, symbol, posState); ++ if (updatePrice) ++ if (--p->counters[posState] == 0) ++ LenPriceEnc_UpdateTable(p, posState, ProbPrices); ++} ++ ++ ++ ++ ++static void MovePos(CLzmaEnc *p, UInt32 num) ++{ ++ #ifdef SHOW_STAT ++ ttt += num; ++ printf("\n MovePos %d", num); ++ #endif ++ if (num != 0) ++ { ++ p->additionalOffset += num; ++ p->matchFinder.Skip(p->matchFinderObj, num); ++ } ++} ++ ++static UInt32 ReadMatchDistances(CLzmaEnc *p, UInt32 *numDistancePairsRes) ++{ ++ UInt32 lenRes = 0, numDistancePairs; ++ numDistancePairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matchDistances); ++ #ifdef SHOW_STAT ++ printf("\n i = %d numPairs = %d ", ttt, numDistancePairs / 2); ++ if (ttt >= 61994) ++ ttt = ttt; ++ ++ ttt++; ++ { ++ UInt32 i; ++ for (i = 0; i < numDistancePairs; i += 2) ++ printf("%2d %6d | ", p->matchDistances[i], p->matchDistances[i + 1]); ++ } ++ #endif ++ if (numDistancePairs > 0) ++ { ++ lenRes = p->matchDistances[numDistancePairs - 2]; ++ if (lenRes == p->numFastBytes) ++ { ++ UInt32 numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) + 1; ++ const Byte *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; ++ UInt32 distance = p->matchDistances[numDistancePairs - 1] + 1; ++ if (numAvail > LZMA_MATCH_LEN_MAX) ++ numAvail = LZMA_MATCH_LEN_MAX; ++ ++ { ++ const Byte *pby2 = pby - distance; ++ for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++); ++ } ++ } ++ } ++ p->additionalOffset++; ++ *numDistancePairsRes = numDistancePairs; ++ return lenRes; ++} ++ ++ ++#define MakeAsChar(p) (p)->backPrev = (UInt32)(-1); (p)->prev1IsChar = False; ++#define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = False; ++#define IsShortRep(p) ((p)->backPrev == 0) ++ ++static UInt32 GetRepLen1Price(CLzmaEnc *p, UInt32 state, UInt32 posState) ++{ ++ return ++ GET_PRICE_0(p->isRepG0[state]) + ++ GET_PRICE_0(p->isRep0Long[state][posState]); ++} ++ ++static UInt32 GetPureRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 state, UInt32 posState) ++{ ++ UInt32 price; ++ if (repIndex == 0) ++ { ++ price = GET_PRICE_0(p->isRepG0[state]); ++ price += GET_PRICE_1(p->isRep0Long[state][posState]); ++ } ++ else ++ { ++ price = GET_PRICE_1(p->isRepG0[state]); ++ if (repIndex == 1) ++ price += GET_PRICE_0(p->isRepG1[state]); ++ else ++ { ++ price += GET_PRICE_1(p->isRepG1[state]); ++ price += GET_PRICE(p->isRepG2[state], repIndex - 2); ++ } ++ } ++ return price; ++} ++ ++static UInt32 GetRepPrice(CLzmaEnc *p, UInt32 repIndex, UInt32 len, UInt32 state, UInt32 posState) ++{ ++ return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] + ++ GetPureRepPrice(p, repIndex, state, posState); ++} ++ ++static UInt32 Backward(CLzmaEnc *p, UInt32 *backRes, UInt32 cur) ++{ ++ UInt32 posMem = p->opt[cur].posPrev; ++ UInt32 backMem = p->opt[cur].backPrev; ++ p->optimumEndIndex = cur; ++ do ++ { ++ if (p->opt[cur].prev1IsChar) ++ { ++ MakeAsChar(&p->opt[posMem]) ++ p->opt[posMem].posPrev = posMem - 1; ++ if (p->opt[cur].prev2) ++ { ++ p->opt[posMem - 1].prev1IsChar = False; ++ p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2; ++ p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2; ++ } ++ } ++ { ++ UInt32 posPrev = posMem; ++ UInt32 backCur = backMem; ++ ++ backMem = p->opt[posPrev].backPrev; ++ posMem = p->opt[posPrev].posPrev; ++ ++ p->opt[posPrev].backPrev = backCur; ++ p->opt[posPrev].posPrev = cur; ++ cur = posPrev; ++ } ++ } ++ while (cur != 0); ++ *backRes = p->opt[0].backPrev; ++ p->optimumCurrentIndex = p->opt[0].posPrev; ++ return p->optimumCurrentIndex; ++} ++ ++#define LIT_PROBS(pos, prevByte) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevByte) >> (8 - p->lc))) * 0x300) ++ ++static UInt32 GetOptimum(CLzmaEnc *p, UInt32 position, UInt32 *backRes) ++{ ++ UInt32 numAvailableBytes, lenMain, numDistancePairs; ++ const Byte *data; ++ UInt32 reps[LZMA_NUM_REPS]; ++ UInt32 repLens[LZMA_NUM_REPS]; ++ UInt32 repMaxIndex, i; ++ UInt32 *matchDistances; ++ Byte currentByte, matchByte; ++ UInt32 posState; ++ UInt32 matchPrice, repMatchPrice; ++ UInt32 lenEnd; ++ UInt32 len; ++ UInt32 normalMatchPrice; ++ UInt32 cur; ++ if (p->optimumEndIndex != p->optimumCurrentIndex) ++ { ++ const COptimal *opt = &p->opt[p->optimumCurrentIndex]; ++ UInt32 lenRes = opt->posPrev - p->optimumCurrentIndex; ++ *backRes = opt->backPrev; ++ p->optimumCurrentIndex = opt->posPrev; ++ return lenRes; ++ } ++ p->optimumCurrentIndex = p->optimumEndIndex = 0; ++ ++ numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); ++ ++ if (!p->longestMatchWasFound) ++ { ++ lenMain = ReadMatchDistances(p, &numDistancePairs); ++ } ++ else ++ { ++ lenMain = p->longestMatchLength; ++ numDistancePairs = p->numDistancePairs; ++ p->longestMatchWasFound = False; ++ } ++ ++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; ++ if (numAvailableBytes < 2) ++ { ++ *backRes = (UInt32)(-1); ++ return 1; ++ } ++ if (numAvailableBytes > LZMA_MATCH_LEN_MAX) ++ numAvailableBytes = LZMA_MATCH_LEN_MAX; ++ ++ repMaxIndex = 0; ++ for (i = 0; i < LZMA_NUM_REPS; i++) ++ { ++ UInt32 lenTest; ++ const Byte *data2; ++ reps[i] = p->reps[i]; ++ data2 = data - (reps[i] + 1); ++ if (data[0] != data2[0] || data[1] != data2[1]) ++ { ++ repLens[i] = 0; ++ continue; ++ } ++ for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++); ++ repLens[i] = lenTest; ++ if (lenTest > repLens[repMaxIndex]) ++ repMaxIndex = i; ++ } ++ if (repLens[repMaxIndex] >= p->numFastBytes) ++ { ++ UInt32 lenRes; ++ *backRes = repMaxIndex; ++ lenRes = repLens[repMaxIndex]; ++ MovePos(p, lenRes - 1); ++ return lenRes; ++ } ++ ++ matchDistances = p->matchDistances; ++ if (lenMain >= p->numFastBytes) ++ { ++ *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS; ++ MovePos(p, lenMain - 1); ++ return lenMain; ++ } ++ currentByte = *data; ++ matchByte = *(data - (reps[0] + 1)); ++ ++ if (lenMain < 2 && currentByte != matchByte && repLens[repMaxIndex] < 2) ++ { ++ *backRes = (UInt32)-1; ++ return 1; ++ } ++ ++ p->opt[0].state = (CState)p->state; ++ ++ posState = (position & p->pbMask); ++ ++ { ++ const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); ++ p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) + ++ (!IsCharState(p->state) ? ++ LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) : ++ LitEnc_GetPrice(probs, currentByte, p->ProbPrices)); ++ } ++ ++ MakeAsChar(&p->opt[1]); ++ ++ matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]); ++ repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]); ++ ++ if (matchByte == currentByte) ++ { ++ UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState); ++ if (shortRepPrice < p->opt[1].price) ++ { ++ p->opt[1].price = shortRepPrice; ++ MakeAsShortRep(&p->opt[1]); ++ } ++ } ++ lenEnd = ((lenMain >= repLens[repMaxIndex]) ? lenMain : repLens[repMaxIndex]); ++ ++ if (lenEnd < 2) ++ { ++ *backRes = p->opt[1].backPrev; ++ return 1; ++ } ++ ++ p->opt[1].posPrev = 0; ++ for (i = 0; i < LZMA_NUM_REPS; i++) ++ p->opt[0].backs[i] = reps[i]; ++ ++ len = lenEnd; ++ do ++ p->opt[len--].price = kInfinityPrice; ++ while (len >= 2); ++ ++ for (i = 0; i < LZMA_NUM_REPS; i++) ++ { ++ UInt32 repLen = repLens[i]; ++ UInt32 price; ++ if (repLen < 2) ++ continue; ++ price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState); ++ do ++ { ++ UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2]; ++ COptimal *opt = &p->opt[repLen]; ++ if (curAndLenPrice < opt->price) ++ { ++ opt->price = curAndLenPrice; ++ opt->posPrev = 0; ++ opt->backPrev = i; ++ opt->prev1IsChar = False; ++ } ++ } ++ while (--repLen >= 2); ++ } ++ ++ normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]); ++ ++ len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2); ++ if (len <= lenMain) ++ { ++ UInt32 offs = 0; ++ while (len > matchDistances[offs]) ++ offs += 2; ++ for (; ; len++) ++ { ++ COptimal *opt; ++ UInt32 distance = matchDistances[offs + 1]; ++ ++ UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN]; ++ UInt32 lenToPosState = GetLenToPosState(len); ++ if (distance < kNumFullDistances) ++ curAndLenPrice += p->distancesPrices[lenToPosState][distance]; ++ else ++ { ++ UInt32 slot; ++ GetPosSlot2(distance, slot); ++ curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot]; ++ } ++ opt = &p->opt[len]; ++ if (curAndLenPrice < opt->price) ++ { ++ opt->price = curAndLenPrice; ++ opt->posPrev = 0; ++ opt->backPrev = distance + LZMA_NUM_REPS; ++ opt->prev1IsChar = False; ++ } ++ if (len == matchDistances[offs]) ++ { ++ offs += 2; ++ if (offs == numDistancePairs) ++ break; ++ } ++ } ++ } ++ ++ cur = 0; ++ ++ #ifdef SHOW_STAT2 ++ if (position >= 0) ++ { ++ unsigned i; ++ printf("\n pos = %4X", position); ++ for (i = cur; i <= lenEnd; i++) ++ printf("\nprice[%4X] = %d", position - cur + i, p->opt[i].price); ++ } ++ #endif ++ ++ for (;;) ++ { ++ UInt32 numAvailableBytesFull, newLen, numDistancePairs; ++ COptimal *curOpt; ++ UInt32 posPrev; ++ UInt32 state; ++ UInt32 curPrice; ++ Bool nextIsChar; ++ const Byte *data; ++ Byte currentByte, matchByte; ++ UInt32 posState; ++ UInt32 curAnd1Price; ++ COptimal *nextOpt; ++ UInt32 matchPrice, repMatchPrice; ++ UInt32 numAvailableBytes; ++ UInt32 startLen; ++ ++ cur++; ++ if (cur == lenEnd) ++ return Backward(p, backRes, cur); ++ ++ numAvailableBytesFull = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); ++ newLen = ReadMatchDistances(p, &numDistancePairs); ++ if (newLen >= p->numFastBytes) ++ { ++ p->numDistancePairs = numDistancePairs; ++ p->longestMatchLength = newLen; ++ p->longestMatchWasFound = True; ++ return Backward(p, backRes, cur); ++ } ++ position++; ++ curOpt = &p->opt[cur]; ++ posPrev = curOpt->posPrev; ++ if (curOpt->prev1IsChar) ++ { ++ posPrev--; ++ if (curOpt->prev2) ++ { ++ state = p->opt[curOpt->posPrev2].state; ++ if (curOpt->backPrev2 < LZMA_NUM_REPS) ++ state = kRepNextStates[state]; ++ else ++ state = kMatchNextStates[state]; ++ } ++ else ++ state = p->opt[posPrev].state; ++ state = kLiteralNextStates[state]; ++ } ++ else ++ state = p->opt[posPrev].state; ++ if (posPrev == cur - 1) ++ { ++ if (IsShortRep(curOpt)) ++ state = kShortRepNextStates[state]; ++ else ++ state = kLiteralNextStates[state]; ++ } ++ else ++ { ++ UInt32 pos; ++ const COptimal *prevOpt; ++ if (curOpt->prev1IsChar && curOpt->prev2) ++ { ++ posPrev = curOpt->posPrev2; ++ pos = curOpt->backPrev2; ++ state = kRepNextStates[state]; ++ } ++ else ++ { ++ pos = curOpt->backPrev; ++ if (pos < LZMA_NUM_REPS) ++ state = kRepNextStates[state]; ++ else ++ state = kMatchNextStates[state]; ++ } ++ prevOpt = &p->opt[posPrev]; ++ if (pos < LZMA_NUM_REPS) ++ { ++ UInt32 i; ++ reps[0] = prevOpt->backs[pos]; ++ for (i = 1; i <= pos; i++) ++ reps[i] = prevOpt->backs[i - 1]; ++ for (; i < LZMA_NUM_REPS; i++) ++ reps[i] = prevOpt->backs[i]; ++ } ++ else ++ { ++ UInt32 i; ++ reps[0] = (pos - LZMA_NUM_REPS); ++ for (i = 1; i < LZMA_NUM_REPS; i++) ++ reps[i] = prevOpt->backs[i - 1]; ++ } ++ } ++ curOpt->state = (CState)state; ++ ++ curOpt->backs[0] = reps[0]; ++ curOpt->backs[1] = reps[1]; ++ curOpt->backs[2] = reps[2]; ++ curOpt->backs[3] = reps[3]; ++ ++ curPrice = curOpt->price; ++ nextIsChar = False; ++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; ++ currentByte = *data; ++ matchByte = *(data - (reps[0] + 1)); ++ ++ posState = (position & p->pbMask); ++ ++ curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]); ++ { ++ const CLzmaProb *probs = LIT_PROBS(position, *(data - 1)); ++ curAnd1Price += ++ (!IsCharState(state) ? ++ LitEnc_GetPriceMatched(probs, currentByte, matchByte, p->ProbPrices) : ++ LitEnc_GetPrice(probs, currentByte, p->ProbPrices)); ++ } ++ ++ nextOpt = &p->opt[cur + 1]; ++ ++ if (curAnd1Price < nextOpt->price) ++ { ++ nextOpt->price = curAnd1Price; ++ nextOpt->posPrev = cur; ++ MakeAsChar(nextOpt); ++ nextIsChar = True; ++ } ++ ++ matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]); ++ repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]); ++ ++ if (matchByte == currentByte && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0)) ++ { ++ UInt32 shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState); ++ if (shortRepPrice <= nextOpt->price) ++ { ++ nextOpt->price = shortRepPrice; ++ nextOpt->posPrev = cur; ++ MakeAsShortRep(nextOpt); ++ nextIsChar = True; ++ } ++ } ++ ++ { ++ UInt32 temp = kNumOpts - 1 - cur; ++ if (temp < numAvailableBytesFull) ++ numAvailableBytesFull = temp; ++ } ++ numAvailableBytes = numAvailableBytesFull; ++ ++ if (numAvailableBytes < 2) ++ continue; ++ if (numAvailableBytes > p->numFastBytes) ++ numAvailableBytes = p->numFastBytes; ++ if (!nextIsChar && matchByte != currentByte) /* speed optimization */ ++ { ++ /* try Literal + rep0 */ ++ UInt32 temp; ++ UInt32 lenTest2; ++ const Byte *data2 = data - (reps[0] + 1); ++ UInt32 limit = p->numFastBytes + 1; ++ if (limit > numAvailableBytesFull) ++ limit = numAvailableBytesFull; ++ ++ for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++); ++ lenTest2 = temp - 1; ++ if (lenTest2 >= 2) ++ { ++ UInt32 state2 = kLiteralNextStates[state]; ++ UInt32 posStateNext = (position + 1) & p->pbMask; ++ UInt32 nextRepMatchPrice = curAnd1Price + ++ GET_PRICE_1(p->isMatch[state2][posStateNext]) + ++ GET_PRICE_1(p->isRep[state2]); ++ /* for (; lenTest2 >= 2; lenTest2--) */ ++ { ++ UInt32 curAndLenPrice; ++ COptimal *opt; ++ UInt32 offset = cur + 1 + lenTest2; ++ while (lenEnd < offset) ++ p->opt[++lenEnd].price = kInfinityPrice; ++ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); ++ opt = &p->opt[offset]; ++ if (curAndLenPrice < opt->price) ++ { ++ opt->price = curAndLenPrice; ++ opt->posPrev = cur + 1; ++ opt->backPrev = 0; ++ opt->prev1IsChar = True; ++ opt->prev2 = False; ++ } ++ } ++ } ++ } ++ ++ startLen = 2; /* speed optimization */ ++ { ++ UInt32 repIndex; ++ for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++) ++ { ++ UInt32 lenTest; ++ UInt32 lenTestTemp; ++ UInt32 price; ++ const Byte *data2 = data - (reps[repIndex] + 1); ++ if (data[0] != data2[0] || data[1] != data2[1]) ++ continue; ++ for (lenTest = 2; lenTest < numAvailableBytes && data[lenTest] == data2[lenTest]; lenTest++); ++ while (lenEnd < cur + lenTest) ++ p->opt[++lenEnd].price = kInfinityPrice; ++ lenTestTemp = lenTest; ++ price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState); ++ do ++ { ++ UInt32 curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2]; ++ COptimal *opt = &p->opt[cur + lenTest]; ++ if (curAndLenPrice < opt->price) ++ { ++ opt->price = curAndLenPrice; ++ opt->posPrev = cur; ++ opt->backPrev = repIndex; ++ opt->prev1IsChar = False; ++ } ++ } ++ while (--lenTest >= 2); ++ lenTest = lenTestTemp; ++ ++ if (repIndex == 0) ++ startLen = lenTest + 1; ++ ++ /* if (_maxMode) */ ++ { ++ UInt32 lenTest2 = lenTest + 1; ++ UInt32 limit = lenTest2 + p->numFastBytes; ++ UInt32 nextRepMatchPrice; ++ if (limit > numAvailableBytesFull) ++ limit = numAvailableBytesFull; ++ for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); ++ lenTest2 -= lenTest + 1; ++ if (lenTest2 >= 2) ++ { ++ UInt32 state2 = kRepNextStates[state]; ++ UInt32 posStateNext = (position + lenTest) & p->pbMask; ++ UInt32 curAndLenCharPrice = ++ price + p->repLenEnc.prices[posState][lenTest - 2] + ++ GET_PRICE_0(p->isMatch[state2][posStateNext]) + ++ LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), ++ data[lenTest], data2[lenTest], p->ProbPrices); ++ state2 = kLiteralNextStates[state2]; ++ posStateNext = (position + lenTest + 1) & p->pbMask; ++ nextRepMatchPrice = curAndLenCharPrice + ++ GET_PRICE_1(p->isMatch[state2][posStateNext]) + ++ GET_PRICE_1(p->isRep[state2]); ++ ++ /* for (; lenTest2 >= 2; lenTest2--) */ ++ { ++ UInt32 curAndLenPrice; ++ COptimal *opt; ++ UInt32 offset = cur + lenTest + 1 + lenTest2; ++ while (lenEnd < offset) ++ p->opt[++lenEnd].price = kInfinityPrice; ++ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); ++ opt = &p->opt[offset]; ++ if (curAndLenPrice < opt->price) ++ { ++ opt->price = curAndLenPrice; ++ opt->posPrev = cur + lenTest + 1; ++ opt->backPrev = 0; ++ opt->prev1IsChar = True; ++ opt->prev2 = True; ++ opt->posPrev2 = cur; ++ opt->backPrev2 = repIndex; ++ } ++ } ++ } ++ } ++ } ++ } ++ /* for (UInt32 lenTest = 2; lenTest <= newLen; lenTest++) */ ++ if (newLen > numAvailableBytes) ++ { ++ newLen = numAvailableBytes; ++ for (numDistancePairs = 0; newLen > matchDistances[numDistancePairs]; numDistancePairs += 2); ++ matchDistances[numDistancePairs] = newLen; ++ numDistancePairs += 2; ++ } ++ if (newLen >= startLen) ++ { ++ UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]); ++ UInt32 offs, curBack, posSlot; ++ UInt32 lenTest; ++ while (lenEnd < cur + newLen) ++ p->opt[++lenEnd].price = kInfinityPrice; ++ ++ offs = 0; ++ while (startLen > matchDistances[offs]) ++ offs += 2; ++ curBack = matchDistances[offs + 1]; ++ GetPosSlot2(curBack, posSlot); ++ for (lenTest = /*2*/ startLen; ; lenTest++) ++ { ++ UInt32 curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN]; ++ UInt32 lenToPosState = GetLenToPosState(lenTest); ++ COptimal *opt; ++ if (curBack < kNumFullDistances) ++ curAndLenPrice += p->distancesPrices[lenToPosState][curBack]; ++ else ++ curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask]; ++ ++ opt = &p->opt[cur + lenTest]; ++ if (curAndLenPrice < opt->price) ++ { ++ opt->price = curAndLenPrice; ++ opt->posPrev = cur; ++ opt->backPrev = curBack + LZMA_NUM_REPS; ++ opt->prev1IsChar = False; ++ } ++ ++ if (/*_maxMode && */lenTest == matchDistances[offs]) ++ { ++ /* Try Match + Literal + Rep0 */ ++ const Byte *data2 = data - (curBack + 1); ++ UInt32 lenTest2 = lenTest + 1; ++ UInt32 limit = lenTest2 + p->numFastBytes; ++ UInt32 nextRepMatchPrice; ++ if (limit > numAvailableBytesFull) ++ limit = numAvailableBytesFull; ++ for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++); ++ lenTest2 -= lenTest + 1; ++ if (lenTest2 >= 2) ++ { ++ UInt32 state2 = kMatchNextStates[state]; ++ UInt32 posStateNext = (position + lenTest) & p->pbMask; ++ UInt32 curAndLenCharPrice = curAndLenPrice + ++ GET_PRICE_0(p->isMatch[state2][posStateNext]) + ++ LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]), ++ data[lenTest], data2[lenTest], p->ProbPrices); ++ state2 = kLiteralNextStates[state2]; ++ posStateNext = (posStateNext + 1) & p->pbMask; ++ nextRepMatchPrice = curAndLenCharPrice + ++ GET_PRICE_1(p->isMatch[state2][posStateNext]) + ++ GET_PRICE_1(p->isRep[state2]); ++ ++ /* for (; lenTest2 >= 2; lenTest2--) */ ++ { ++ UInt32 offset = cur + lenTest + 1 + lenTest2; ++ UInt32 curAndLenPrice; ++ COptimal *opt; ++ while (lenEnd < offset) ++ p->opt[++lenEnd].price = kInfinityPrice; ++ curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext); ++ opt = &p->opt[offset]; ++ if (curAndLenPrice < opt->price) ++ { ++ opt->price = curAndLenPrice; ++ opt->posPrev = cur + lenTest + 1; ++ opt->backPrev = 0; ++ opt->prev1IsChar = True; ++ opt->prev2 = True; ++ opt->posPrev2 = cur; ++ opt->backPrev2 = curBack + LZMA_NUM_REPS; ++ } ++ } ++ } ++ offs += 2; ++ if (offs == numDistancePairs) ++ break; ++ curBack = matchDistances[offs + 1]; ++ if (curBack >= kNumFullDistances) ++ GetPosSlot2(curBack, posSlot); ++ } ++ } ++ } ++ } ++} ++ ++#define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist)) ++ ++static UInt32 GetOptimumFast(CLzmaEnc *p, UInt32 *backRes) ++{ ++ UInt32 numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); ++ UInt32 lenMain, numDistancePairs; ++ const Byte *data; ++ UInt32 repLens[LZMA_NUM_REPS]; ++ UInt32 repMaxIndex, i; ++ UInt32 *matchDistances; ++ UInt32 backMain; ++ ++ if (!p->longestMatchWasFound) ++ { ++ lenMain = ReadMatchDistances(p, &numDistancePairs); ++ } ++ else ++ { ++ lenMain = p->longestMatchLength; ++ numDistancePairs = p->numDistancePairs; ++ p->longestMatchWasFound = False; ++ } ++ ++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; ++ if (numAvailableBytes > LZMA_MATCH_LEN_MAX) ++ numAvailableBytes = LZMA_MATCH_LEN_MAX; ++ if (numAvailableBytes < 2) ++ { ++ *backRes = (UInt32)(-1); ++ return 1; ++ } ++ ++ repMaxIndex = 0; ++ ++ for (i = 0; i < LZMA_NUM_REPS; i++) ++ { ++ const Byte *data2 = data - (p->reps[i] + 1); ++ UInt32 len; ++ if (data[0] != data2[0] || data[1] != data2[1]) ++ { ++ repLens[i] = 0; ++ continue; ++ } ++ for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++); ++ if (len >= p->numFastBytes) ++ { ++ *backRes = i; ++ MovePos(p, len - 1); ++ return len; ++ } ++ repLens[i] = len; ++ if (len > repLens[repMaxIndex]) ++ repMaxIndex = i; ++ } ++ matchDistances = p->matchDistances; ++ if (lenMain >= p->numFastBytes) ++ { ++ *backRes = matchDistances[numDistancePairs - 1] + LZMA_NUM_REPS; ++ MovePos(p, lenMain - 1); ++ return lenMain; ++ } ++ ++ backMain = 0; /* for GCC */ ++ if (lenMain >= 2) ++ { ++ backMain = matchDistances[numDistancePairs - 1]; ++ while (numDistancePairs > 2 && lenMain == matchDistances[numDistancePairs - 4] + 1) ++ { ++ if (!ChangePair(matchDistances[numDistancePairs - 3], backMain)) ++ break; ++ numDistancePairs -= 2; ++ lenMain = matchDistances[numDistancePairs - 2]; ++ backMain = matchDistances[numDistancePairs - 1]; ++ } ++ if (lenMain == 2 && backMain >= 0x80) ++ lenMain = 1; ++ } ++ ++ if (repLens[repMaxIndex] >= 2) ++ { ++ if (repLens[repMaxIndex] + 1 >= lenMain || ++ (repLens[repMaxIndex] + 2 >= lenMain && (backMain > (1 << 9))) || ++ (repLens[repMaxIndex] + 3 >= lenMain && (backMain > (1 << 15)))) ++ { ++ UInt32 lenRes; ++ *backRes = repMaxIndex; ++ lenRes = repLens[repMaxIndex]; ++ MovePos(p, lenRes - 1); ++ return lenRes; ++ } ++ } ++ ++ if (lenMain >= 2 && numAvailableBytes > 2) ++ { ++ UInt32 i; ++ numAvailableBytes = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); ++ p->longestMatchLength = ReadMatchDistances(p, &p->numDistancePairs); ++ if (p->longestMatchLength >= 2) ++ { ++ UInt32 newDistance = matchDistances[p->numDistancePairs - 1]; ++ if ((p->longestMatchLength >= lenMain && newDistance < backMain) || ++ (p->longestMatchLength == lenMain + 1 && !ChangePair(backMain, newDistance)) || ++ (p->longestMatchLength > lenMain + 1) || ++ (p->longestMatchLength + 1 >= lenMain && lenMain >= 3 && ChangePair(newDistance, backMain))) ++ { ++ p->longestMatchWasFound = True; ++ *backRes = (UInt32)(-1); ++ return 1; ++ } ++ } ++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1; ++ for (i = 0; i < LZMA_NUM_REPS; i++) ++ { ++ UInt32 len; ++ const Byte *data2 = data - (p->reps[i] + 1); ++ if (data[1] != data2[1] || data[2] != data2[2]) ++ { ++ repLens[i] = 0; ++ continue; ++ } ++ for (len = 2; len < numAvailableBytes && data[len] == data2[len]; len++); ++ if (len + 1 >= lenMain) ++ { ++ p->longestMatchWasFound = True; ++ *backRes = (UInt32)(-1); ++ return 1; ++ } ++ } ++ *backRes = backMain + LZMA_NUM_REPS; ++ MovePos(p, lenMain - 2); ++ return lenMain; ++ } ++ *backRes = (UInt32)(-1); ++ return 1; ++} ++ ++static void WriteEndMarker(CLzmaEnc *p, UInt32 posState) ++{ ++ UInt32 len; ++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); ++ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); ++ p->state = kMatchNextStates[p->state]; ++ len = LZMA_MATCH_LEN_MIN; ++ LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); ++ RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1); ++ RangeEnc_EncodeDirectBits(&p->rc, (((UInt32)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits); ++ RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask); ++} ++ ++static SRes CheckErrors(CLzmaEnc *p) ++{ ++ if (p->result != SZ_OK) ++ return p->result; ++ if (p->rc.res != SZ_OK) ++ p->result = SZ_ERROR_WRITE; ++ if (p->matchFinderBase.result != SZ_OK) ++ p->result = SZ_ERROR_READ; ++ if (p->result != SZ_OK) ++ p->finished = True; ++ return p->result; ++} ++ ++static SRes Flush(CLzmaEnc *p, UInt32 nowPos) ++{ ++ /* ReleaseMFStream(); */ ++ p->finished = True; ++ if (p->writeEndMark) ++ WriteEndMarker(p, nowPos & p->pbMask); ++ RangeEnc_FlushData(&p->rc); ++ RangeEnc_FlushStream(&p->rc); ++ return CheckErrors(p); ++} ++ ++static void FillAlignPrices(CLzmaEnc *p) ++{ ++ UInt32 i; ++ for (i = 0; i < kAlignTableSize; i++) ++ p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices); ++ p->alignPriceCount = 0; ++} ++ ++static void FillDistancesPrices(CLzmaEnc *p) ++{ ++ UInt32 tempPrices[kNumFullDistances]; ++ UInt32 i, lenToPosState; ++ for (i = kStartPosModelIndex; i < kNumFullDistances; i++) ++ { ++ UInt32 posSlot = GetPosSlot1(i); ++ UInt32 footerBits = ((posSlot >> 1) - 1); ++ UInt32 base = ((2 | (posSlot & 1)) << footerBits); ++ tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices); ++ } ++ ++ for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++) ++ { ++ UInt32 posSlot; ++ const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState]; ++ UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState]; ++ for (posSlot = 0; posSlot < p->distTableSize; posSlot++) ++ posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices); ++ for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++) ++ posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits); ++ ++ { ++ UInt32 *distancesPrices = p->distancesPrices[lenToPosState]; ++ UInt32 i; ++ for (i = 0; i < kStartPosModelIndex; i++) ++ distancesPrices[i] = posSlotPrices[i]; ++ for (; i < kNumFullDistances; i++) ++ distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i]; ++ } ++ } ++ p->matchPriceCount = 0; ++} ++ ++void LzmaEnc_Construct(CLzmaEnc *p) ++{ ++ RangeEnc_Construct(&p->rc); ++ MatchFinder_Construct(&p->matchFinderBase); ++ #ifdef COMPRESS_MF_MT ++ MatchFinderMt_Construct(&p->matchFinderMt); ++ p->matchFinderMt.MatchFinder = &p->matchFinderBase; ++ #endif ++ ++ { ++ CLzmaEncProps props; ++ LzmaEncProps_Init(&props); ++ LzmaEnc_SetProps(p, &props); ++ } ++ ++ #ifndef LZMA_LOG_BSR ++ LzmaEnc_FastPosInit(p->g_FastPos); ++ #endif ++ ++ LzmaEnc_InitPriceTables(p->ProbPrices); ++ p->litProbs = 0; ++ p->saveState.litProbs = 0; ++} ++ ++CLzmaEncHandle LzmaEnc_Create(ISzAlloc *alloc) ++{ ++ void *p; ++ p = alloc->Alloc(alloc, sizeof(CLzmaEnc)); ++ if (p != 0) ++ LzmaEnc_Construct((CLzmaEnc *)p); ++ return p; ++} ++ ++void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAlloc *alloc) ++{ ++ alloc->Free(alloc, p->litProbs); ++ alloc->Free(alloc, p->saveState.litProbs); ++ p->litProbs = 0; ++ p->saveState.litProbs = 0; ++} ++ ++void LzmaEnc_Destruct(CLzmaEnc *p, ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ #ifdef COMPRESS_MF_MT ++ MatchFinderMt_Destruct(&p->matchFinderMt, allocBig); ++ #endif ++ MatchFinder_Free(&p->matchFinderBase, allocBig); ++ LzmaEnc_FreeLits(p, alloc); ++ RangeEnc_Free(&p->rc, alloc); ++} ++ ++void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig); ++ alloc->Free(alloc, p); ++} ++ ++static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, Bool useLimits, UInt32 maxPackSize, UInt32 maxUnpackSize) ++{ ++ UInt32 nowPos32, startPos32; ++ if (p->inStream != 0) ++ { ++ p->matchFinderBase.stream = p->inStream; ++ p->matchFinder.Init(p->matchFinderObj); ++ p->inStream = 0; ++ } ++ ++ if (p->finished) ++ return p->result; ++ RINOK(CheckErrors(p)); ++ ++ nowPos32 = (UInt32)p->nowPos64; ++ startPos32 = nowPos32; ++ ++ if (p->nowPos64 == 0) ++ { ++ UInt32 numDistancePairs; ++ Byte curByte; ++ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) ++ return Flush(p, nowPos32); ++ ReadMatchDistances(p, &numDistancePairs); ++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0); ++ p->state = kLiteralNextStates[p->state]; ++ curByte = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset); ++ LitEnc_Encode(&p->rc, p->litProbs, curByte); ++ p->additionalOffset--; ++ nowPos32++; ++ } ++ ++ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0) ++ for (;;) ++ { ++ UInt32 pos, len, posState; ++ ++ if (p->fastMode) ++ len = GetOptimumFast(p, &pos); ++ else ++ len = GetOptimum(p, nowPos32, &pos); ++ ++ #ifdef SHOW_STAT2 ++ printf("\n pos = %4X, len = %d pos = %d", nowPos32, len, pos); ++ #endif ++ ++ posState = nowPos32 & p->pbMask; ++ if (len == 1 && pos == 0xFFFFFFFF) ++ { ++ Byte curByte; ++ CLzmaProb *probs; ++ const Byte *data; ++ ++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0); ++ data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; ++ curByte = *data; ++ probs = LIT_PROBS(nowPos32, *(data - 1)); ++ if (IsCharState(p->state)) ++ LitEnc_Encode(&p->rc, probs, curByte); ++ else ++ LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0] - 1)); ++ p->state = kLiteralNextStates[p->state]; ++ } ++ else ++ { ++ RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1); ++ if (pos < LZMA_NUM_REPS) ++ { ++ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1); ++ if (pos == 0) ++ { ++ RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0); ++ RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1)); ++ } ++ else ++ { ++ UInt32 distance = p->reps[pos]; ++ RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1); ++ if (pos == 1) ++ RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0); ++ else ++ { ++ RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1); ++ RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2); ++ if (pos == 3) ++ p->reps[3] = p->reps[2]; ++ p->reps[2] = p->reps[1]; ++ } ++ p->reps[1] = p->reps[0]; ++ p->reps[0] = distance; ++ } ++ if (len == 1) ++ p->state = kShortRepNextStates[p->state]; ++ else ++ { ++ LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); ++ p->state = kRepNextStates[p->state]; ++ } ++ } ++ else ++ { ++ UInt32 posSlot; ++ RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0); ++ p->state = kMatchNextStates[p->state]; ++ LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices); ++ pos -= LZMA_NUM_REPS; ++ GetPosSlot(pos, posSlot); ++ RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot); ++ ++ if (posSlot >= kStartPosModelIndex) ++ { ++ UInt32 footerBits = ((posSlot >> 1) - 1); ++ UInt32 base = ((2 | (posSlot & 1)) << footerBits); ++ UInt32 posReduced = pos - base; ++ ++ if (posSlot < kEndPosModelIndex) ++ RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced); ++ else ++ { ++ RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits); ++ RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask); ++ p->alignPriceCount++; ++ } ++ } ++ p->reps[3] = p->reps[2]; ++ p->reps[2] = p->reps[1]; ++ p->reps[1] = p->reps[0]; ++ p->reps[0] = pos; ++ p->matchPriceCount++; ++ } ++ } ++ p->additionalOffset -= len; ++ nowPos32 += len; ++ if (p->additionalOffset == 0) ++ { ++ UInt32 processed; ++ if (!p->fastMode) ++ { ++ if (p->matchPriceCount >= (1 << 7)) ++ FillDistancesPrices(p); ++ if (p->alignPriceCount >= kAlignTableSize) ++ FillAlignPrices(p); ++ } ++ if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0) ++ break; ++ processed = nowPos32 - startPos32; ++ if (useLimits) ++ { ++ if (processed + kNumOpts + 300 >= maxUnpackSize || ++ RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize) ++ break; ++ } ++ else if (processed >= (1 << 15)) ++ { ++ p->nowPos64 += nowPos32 - startPos32; ++ return CheckErrors(p); ++ } ++ } ++ } ++ p->nowPos64 += nowPos32 - startPos32; ++ return Flush(p, nowPos32); ++} ++ ++#define kBigHashDicLimit ((UInt32)1 << 24) ++ ++static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ UInt32 beforeSize = kNumOpts; ++ Bool btMode; ++ if (!RangeEnc_Alloc(&p->rc, alloc)) ++ return SZ_ERROR_MEM; ++ btMode = (p->matchFinderBase.btMode != 0); ++ #ifdef COMPRESS_MF_MT ++ p->mtMode = (p->multiThread && !p->fastMode && btMode); ++ #endif ++ ++ { ++ unsigned lclp = p->lc + p->lp; ++ if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp) ++ { ++ LzmaEnc_FreeLits(p, alloc); ++ p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); ++ p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb)); ++ if (p->litProbs == 0 || p->saveState.litProbs == 0) ++ { ++ LzmaEnc_FreeLits(p, alloc); ++ return SZ_ERROR_MEM; ++ } ++ p->lclp = lclp; ++ } ++ } ++ ++ p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit); ++ ++ if (beforeSize + p->dictSize < keepWindowSize) ++ beforeSize = keepWindowSize - p->dictSize; ++ ++ #ifdef COMPRESS_MF_MT ++ if (p->mtMode) ++ { ++ RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)); ++ p->matchFinderObj = &p->matchFinderMt; ++ MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder); ++ } ++ else ++ #endif ++ { ++ if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig)) ++ return SZ_ERROR_MEM; ++ p->matchFinderObj = &p->matchFinderBase; ++ MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder); ++ } ++ return SZ_OK; ++} ++ ++void LzmaEnc_Init(CLzmaEnc *p) ++{ ++ UInt32 i; ++ p->state = 0; ++ for(i = 0 ; i < LZMA_NUM_REPS; i++) ++ p->reps[i] = 0; ++ ++ RangeEnc_Init(&p->rc); ++ ++ ++ for (i = 0; i < kNumStates; i++) ++ { ++ UInt32 j; ++ for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++) ++ { ++ p->isMatch[i][j] = kProbInitValue; ++ p->isRep0Long[i][j] = kProbInitValue; ++ } ++ p->isRep[i] = kProbInitValue; ++ p->isRepG0[i] = kProbInitValue; ++ p->isRepG1[i] = kProbInitValue; ++ p->isRepG2[i] = kProbInitValue; ++ } ++ ++ { ++ UInt32 num = 0x300 << (p->lp + p->lc); ++ for (i = 0; i < num; i++) ++ p->litProbs[i] = kProbInitValue; ++ } ++ ++ { ++ for (i = 0; i < kNumLenToPosStates; i++) ++ { ++ CLzmaProb *probs = p->posSlotEncoder[i]; ++ UInt32 j; ++ for (j = 0; j < (1 << kNumPosSlotBits); j++) ++ probs[j] = kProbInitValue; ++ } ++ } ++ { ++ for(i = 0; i < kNumFullDistances - kEndPosModelIndex; i++) ++ p->posEncoders[i] = kProbInitValue; ++ } ++ ++ LenEnc_Init(&p->lenEnc.p); ++ LenEnc_Init(&p->repLenEnc.p); ++ ++ for (i = 0; i < (1 << kNumAlignBits); i++) ++ p->posAlignEncoder[i] = kProbInitValue; ++ ++ p->longestMatchWasFound = False; ++ p->optimumEndIndex = 0; ++ p->optimumCurrentIndex = 0; ++ p->additionalOffset = 0; ++ ++ p->pbMask = (1 << p->pb) - 1; ++ p->lpMask = (1 << p->lp) - 1; ++} ++ ++void LzmaEnc_InitPrices(CLzmaEnc *p) ++{ ++ if (!p->fastMode) ++ { ++ FillDistancesPrices(p); ++ FillAlignPrices(p); ++ } ++ ++ p->lenEnc.tableSize = ++ p->repLenEnc.tableSize = ++ p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN; ++ LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices); ++ LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices); ++} ++ ++static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ UInt32 i; ++ for (i = 0; i < (UInt32)kDicLogSizeMaxCompress; i++) ++ if (p->dictSize <= ((UInt32)1 << i)) ++ break; ++ p->distTableSize = i * 2; ++ ++ p->finished = False; ++ p->result = SZ_OK; ++ RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig)); ++ LzmaEnc_Init(p); ++ LzmaEnc_InitPrices(p); ++ p->nowPos64 = 0; ++ return SZ_OK; ++} ++ ++static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqInStream *inStream, ISeqOutStream *outStream, ++ ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ p->inStream = inStream; ++ p->rc.outStream = outStream; ++ return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig); ++} ++ ++SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp, ++ ISeqInStream *inStream, UInt32 keepWindowSize, ++ ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ p->inStream = inStream; ++ return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); ++} ++ ++static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen) ++{ ++ p->seqBufInStream.funcTable.Read = MyRead; ++ p->seqBufInStream.data = src; ++ p->seqBufInStream.rem = srcLen; ++} ++ ++SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen, ++ UInt32 keepWindowSize, ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ LzmaEnc_SetInputBuf(p, src, srcLen); ++ p->inStream = &p->seqBufInStream.funcTable; ++ return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig); ++} ++ ++void LzmaEnc_Finish(CLzmaEncHandle pp) ++{ ++ #ifdef COMPRESS_MF_MT ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ if (p->mtMode) ++ MatchFinderMt_ReleaseStream(&p->matchFinderMt); ++ #endif ++} ++ ++typedef struct _CSeqOutStreamBuf ++{ ++ ISeqOutStream funcTable; ++ Byte *data; ++ SizeT rem; ++ Bool overflow; ++} CSeqOutStreamBuf; ++ ++static size_t MyWrite(void *pp, const void *data, size_t size) ++{ ++ CSeqOutStreamBuf *p = (CSeqOutStreamBuf *)pp; ++ if (p->rem < size) ++ { ++ size = p->rem; ++ p->overflow = True; ++ } ++ memcpy(p->data, data, size); ++ p->rem -= size; ++ p->data += size; ++ return size; ++} ++ ++ ++UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp) ++{ ++ const CLzmaEnc *p = (CLzmaEnc *)pp; ++ return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj); ++} ++ ++const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp) ++{ ++ const CLzmaEnc *p = (CLzmaEnc *)pp; ++ return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset; ++} ++ ++SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit, ++ Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ UInt64 nowPos64; ++ SRes res; ++ CSeqOutStreamBuf outStream; ++ ++ outStream.funcTable.Write = MyWrite; ++ outStream.data = dest; ++ outStream.rem = *destLen; ++ outStream.overflow = False; ++ ++ p->writeEndMark = False; ++ p->finished = False; ++ p->result = SZ_OK; ++ ++ if (reInit) ++ LzmaEnc_Init(p); ++ LzmaEnc_InitPrices(p); ++ nowPos64 = p->nowPos64; ++ RangeEnc_Init(&p->rc); ++ p->rc.outStream = &outStream.funcTable; ++ ++ res = LzmaEnc_CodeOneBlock(pp, True, desiredPackSize, *unpackSize); ++ ++ *unpackSize = (UInt32)(p->nowPos64 - nowPos64); ++ *destLen -= outStream.rem; ++ if (outStream.overflow) ++ return SZ_ERROR_OUTPUT_EOF; ++ ++ return res; ++} ++ ++SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress, ++ ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ SRes res = SZ_OK; ++ ++ #ifdef COMPRESS_MF_MT ++ Byte allocaDummy[0x300]; ++ int i = 0; ++ for (i = 0; i < 16; i++) ++ allocaDummy[i] = (Byte)i; ++ #endif ++ ++ RINOK(LzmaEnc_Prepare(pp, inStream, outStream, alloc, allocBig)); ++ ++ for (;;) ++ { ++ res = LzmaEnc_CodeOneBlock(pp, False, 0, 0); ++ if (res != SZ_OK || p->finished != 0) ++ break; ++ if (progress != 0) ++ { ++ res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc)); ++ if (res != SZ_OK) ++ { ++ res = SZ_ERROR_PROGRESS; ++ break; ++ } ++ } ++ } ++ LzmaEnc_Finish(pp); ++ return res; ++} ++ ++SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ int i; ++ UInt32 dictSize = p->dictSize; ++ if (*size < LZMA_PROPS_SIZE) ++ return SZ_ERROR_PARAM; ++ *size = LZMA_PROPS_SIZE; ++ props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc); ++ ++ for (i = 11; i <= 30; i++) ++ { ++ if (dictSize <= ((UInt32)2 << i)) ++ { ++ dictSize = (2 << i); ++ break; ++ } ++ if (dictSize <= ((UInt32)3 << i)) ++ { ++ dictSize = (3 << i); ++ break; ++ } ++ } ++ ++ for (i = 0; i < 4; i++) ++ props[1 + i] = (Byte)(dictSize >> (8 * i)); ++ return SZ_OK; ++} ++ ++SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, ++ int writeEndMark, ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ SRes res; ++ CLzmaEnc *p = (CLzmaEnc *)pp; ++ ++ CSeqOutStreamBuf outStream; ++ ++ LzmaEnc_SetInputBuf(p, src, srcLen); ++ ++ outStream.funcTable.Write = MyWrite; ++ outStream.data = dest; ++ outStream.rem = *destLen; ++ outStream.overflow = False; ++ ++ p->writeEndMark = writeEndMark; ++ res = LzmaEnc_Encode(pp, &outStream.funcTable, &p->seqBufInStream.funcTable, ++ progress, alloc, allocBig); ++ ++ *destLen -= outStream.rem; ++ if (outStream.overflow) ++ return SZ_ERROR_OUTPUT_EOF; ++ return res; ++} ++ ++SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen, ++ const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark, ++ ICompressProgress *progress, ISzAlloc *alloc, ISzAlloc *allocBig) ++{ ++ CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc); ++ SRes res; ++ if (p == 0) ++ return SZ_ERROR_MEM; ++ ++ res = LzmaEnc_SetProps(p, props); ++ if (res == SZ_OK) ++ { ++ res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize); ++ if (res == SZ_OK) ++ res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen, ++ writeEndMark, progress, alloc, allocBig); ++ } ++ ++ LzmaEnc_Destroy(p, alloc, allocBig); ++ return res; ++} +--- a/mkfs.jffs2.c ++++ b/mkfs.jffs2.c +@@ -1658,11 +1658,11 @@ int main(int argc, char **argv) + } + erase_block_size *= units; + +- /* If it's less than 8KiB, they're not allowed */ +- if (erase_block_size < 0x2000) { +- fprintf(stderr, "Erase size 0x%x too small. Increasing to 8KiB minimum\n", ++ /* If it's less than 4KiB, they're not allowed */ ++ if (erase_block_size < 0x1000) { ++ fprintf(stderr, "Erase size 0x%x too small. Increasing to 4KiB minimum\n", + erase_block_size); +- erase_block_size = 0x2000; ++ erase_block_size = 0x1000; + } + break; + } |